
A MATLAB to C vectorizing compiler
exploiting custom instructions of targeted

processors

by
Latifis Ioannis

Department of Informatics and Telecommunications,
University of Peloponnese

A dissertation submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

February 2017

2

ABSTRACT

This Ph.D. dissertation presents a MATLAB to C vectorizing compiler exploiting
custom instructions of the target processor such as SIMD instructions or scalar math
instructions which are supported by hardware. The compiler generates ANSI C code
and the derived custom instructions are represented via intrinsic C functions enabling
the compatibility of the compiler to any target processor.
Firstly, a parameterized target processor model which is used for the specification of

the specialized instruction set is presented. The processor model allows the description
of the available customized instructions, operations for packing data to vectors ready for
SIMD processing and native data structures such as vector data types. The processor
model is used by an instruction selection algorithm to map the MATLAB source code
with the available hardware modules of the target architecture. It is also utilized by
the type inference compilation stage to infer the result type of the MATLAB function
calls that are mapped to customized instructions. The parametrized processor model
forms a multi-target MATLAB-to-C compilation framework allowing the generation of
optimized code for any target architecture.
Next, the compiler’s infrastructure is described with emphasis to the parts that sup-

port the data parallel execution and the generation of the vectorized C code. Initially,
an instruction selection algorithm is presented that matches the MATLAB operations
and functions with the customized instructions of the target architecture. The algo-
rithm selects a suitable intrinsic from that have been specified in the processor model.
Subsequently, packing and unpacking statements are introduced in the intermediate rep-
resentation to enable data parallel execution. The process concerns the insertion of
packing (and unpacking) instructions to convert data in packed form (and vice versa)
ready for SIMD execution. Afterwards local value numbering is performed to remove
the redundant packing/unpacking statements that have been inserted from the previous
compilation stage. The code generator is also discussed in the dissertation focusing on
the production of the vectorized code and the fixed point code generation. The vec-
torized code generation includes the production of for-loops that correspond to SIMD
blocks as well as the generation of packing instructions and the matched SIMD instruc-
tions with vector semantics. The code generation of fixed point data types concerns the
production of additional C code to handle the fixed point arithmetic such as shift oper-
ations. The compilation framework supports the data parallel processing and it leads
to the vectorized code generation exploiting the customized instructions of the target
architecture. The generated code achieves significant speed-up against other approaches
that don’t produce vectorized code or any processor’s special instruction.

3

4

Finally, a comprehensive evaluation of the generated code by the MATLAB compiler
is presented on diverse architectures. The experimental environment includes two ASIP
processors (one of them supporting SIMD) that have been developed in IMEC research
center and four processors from ARM and x86 architectures. The benchmark composed
by eight representative DSP applications using different SIMD widths as well as a variety
of data types including floating or fixed point and packed or unpacked types. The perfor-
mance of the generated code by the compiler has been compared against the generated
code by MathWorks Coder showing that the proposed approach achieves substantial
speed-up across all target architectures especially when using SIMD processing. Further
experiments have been conducted to evaluate the performance of the auto-vectorization
of popular C compilers including Clang/LLVM, GCC and MSVC, on the generated code
by MathWorks Coder and the scalarized code that have been produced by the MATLAB
compiler. The experimental results show that the auto-vectorizing C compilers vector-
ize only a small percentage of the benchmark’s loops concluding that the processor’s
SIMD units cannot be fully leveraged by auto-vectorization. In contrast, the approach
developed in this thesis handles a much broader class of applications. α

ΠΕΡ ΙΛΗΨΗ

Στην παρούσα διδακτορική διατριβή παρουσιάζεται ένας μεταγλωττιστής της γλώσσας

MATLAB ο οποίος παράγει κώδικα C αξιοποιώντας εντολές ειδικού σκοπού του εκάστοτε
επεξεργαστή στόχου όπως εντολές επεξεργασίας πολλαπλών δεδομένων (SIMD) και βαθ-
μωτές (scalar) εντολές μαθηματικών συναρτήσεων/λειτουργιών που υποστηρίζονται από
το υλικό. Ο μεταγλωττιστής παράγει ANSI C κώδικα και οι εντολές ειδικού σκοπού α-
ναπαρίστανται από εσωτερικές (intrinsic) συναρτήσεις επιτρέποντας τη συμβατότητα του
μεταγλωττιστή σε οποιοδήποτε επεξεργαστή (και το μεταγλωττιστή του).

Αρχικά, παρουσιάζεται ένα παραμετρικό μοντέλο επεξεργαστή, το οποίο χρησιμοποιείται

για την περιγραφή των εντολών ειδικού σκοπού. Το μοντέλο αυτό επιτρέπει την περιγραφή

εξειδικευμένων εντολών, λειτουργίες εισαγωγής δεδομένων σε διανύσματα (packing) για
παράλληλη επεξεργασία και εσωτερικές δομές δεδομένων όπως οι τύποι δεδομένων των δια-

νυσμάτων ενός επεξεργαστή. Το μοντέλο επεξεργαστή χρησιμοποιείται από έναν αλγόριθ-

μο επιλογής εντολών (instruction selection) με σκοπό να αντιστοιχήσει τον πηγαίο κώδικα
εισόδου με τις διαθέσιμες μονάδες του υλικού της αρχιτεκτονικής-στόχου. Το μοντέλο του

επεξεργαστή χρησιμοποιείται επίσης από το στάδιο της εξαγωγής τύπων δεδομένων (type
inference) ώστε να εξάγεται ο τύπος του αποτελέσματος των συναρτήσεων που αναπαρι-
στόνται από εντολές ειδικού σκοπού. Το παραμετρικό μοντέλο επεξεργαστή διαμορφώνει

ένα πλαίσιο μεταγλώττισης υποστηρίζοντας διαφορετικούς επεξεργαστές-στόχους κάτι που

έχει ως αποτέλεσμα την παραγωγή βελτιστοποιημένου κώδικα για οποιαδήποτε αρχιτεκτο-

νική.

Στην συνέχεια, περιγράφεται η υποδομή του μεταγλωττιστή με έμφαση στα τμήματα υπο-

στήριξης της παράλληλης επεξεργασίας δεδομένων και παραγωγής διανυσματικού C κώδικα.
Αρχικά, παρουσιάζεται ο αλγόριθμος επιλογής εντολών ο οποίος αντιστοιχίζει τις εντολές

και συναρτήσεις MATLAB με τις εντολές ειδικού σκοπού της αρχιτεκτονικής-στόχου. Ο
αλγόριθμος επιλέγει την κατάλληλη από τις εντολές που περιλαμβάνονται στο μοντέλο του

επεξεργαστή. Στη συνέχεια, λειτουργίες εισαγωγής και εξαγωγής δεδομένων σε μεταβλη-

τές διανύσματα εισάγονται στην ενδιάμεση αναπαράσταση για να επιτρέψουν την παραγωγή

κώδικα παράλληλης επεξεργασίας. Η διαδικασία αφορά την εισαγωγή των συγκεκριμένων

λειτουργιών ώστε να μετατρέπονται τα δεδομένα σε κατάλληλη μορφή για παράλληλη επε-

ξεργασία. Στη συνέχεια, ένας αλγόριθμος αρίθμησης των τοπικών μεταβλητών (local value
numbering) εκτελείται με σκοπό την αφαίρεση από την ενδιάμεση αναπαράσταση των περιτ-
τών λειτουργιών εισαγωγής/εξαγωγής δεδομένων σε διανύσματα οι οποίες εισάγονται από

το προηγούμενο στάδιο μεταγλώττισης. Τέλος, περιγράφεται το στάδιο παραγωγής κώδικα,

εστιάζοντας στην παραγωγή κώδικα για παράλληλη επεξεργασίας δεδομένων και την παρα-

γωγή κώδικα για τύπους δεδομένων σταθερής υποδιαστολής. Η παραγωγή διανυσματικού

κώδικα περιλαμβάνει την παραγωγή βρόχων οι οποίοι αναπαριστούν τα τμήματα του κώδι-

5

6

κα που περιλαμβάνουν διανυσματικές εντολές ειδικού σκοπού, την παραγωγή λειτουργιών

εισαγωγής/εξαγωγής δεδομένων σε διανύσματα καθώς επίσης και τις εντολές παράλληλης

επεξεργασίας. Η παραγωγή κώδικα για τύπους δεδομένων σταθερής υποδιαστολής αφορά

την παραγωγή επιπλέον C κώδικα για τη διαχείριση της αριθμητικής δεδομένων σταθερής
υποδιαστολής (π.χ. λειτουργίες ολίσθησης). Ο μεταγλωττιστής υποστηρίζει την παράλλη-

λη επεξεργασία δεδομένων και επιτρέπει την παραγωγή διανυσματικού κώδικα αξιοποιώντας

τις εντολές ειδικού σκοπού του εκάστοτε επεξεργαστή-στόχου. Ο παραγόμενος κώδικας

επιτυγχάνει αξιοσημείωτη βελτίωση ως προς το χρόνο εκτέλεσης έναντι άλλων τεχνικών

οι οποίες δεν παράγουν διανυσματικό κώδικα και/ή δεν αξιοποιούν εντολές ειδικού σκοπού

ενός επεξεργαστή.

Στην παρούσα διδακτορική διατριβή παρουσιάζεται επίσης η αξιολόγηση του μεταγλωττι-

στή σε διαφορετικές αρχιτεκτονικές. Για την αξιολόγηση του μεταγλωττιστή χρησιμοποι-

ήθηκαν δύο επεξεργαστές ειδικών εφαρμογών (ASIP) εκ των οποίων ο ένας περιλαμβάνει
εντολές επεξεργασίας πολλαπλών δεδομένων, και τέσσερις επεξεργαστές αρχιτεκτονικών

ARM και x86. Για την αξιολόγηση του μεταγλωττιστή, χρησιµοποιήθηκαν οκτώ εφαρ-
μογές ψηφιακής επεξεργασίας σήματος χρησιμοποιώντας διαφορετικά πλάτη παραλληλίας,

τύπους δεδομένων κινητής και σταθερής υποδιαστολής καθώς επίσης και τύπους/μορφές

δεδομένων για παράλληλη επεξεργασία. Η απόδοση ως προς το χρόνο εκτέλεσης του παρα-

γόμενου κώδικα συγκρίθηκε με την απόδοση του κώδικα που παράγεται από τονMathWorks
Coder. Ο προτεινόμενος μεταγλωττιστής επιτυγχάνει σημαντική βελτίωση της απόδοσης
(ταχύτητας) σε όλες τις εξεταζόμενες αρχιτεκτονικές και ειδικά όταν χρησιμοποιούνται ε-

ντολές επεξεργασίας πολλαπλών δεδομένων. Επιπλεόν πραγματοποιήθηκαν δοκιμές για την

αξιολόγηση της αυτόματης διανυσματοποίησης κώδικα (auto-vectorization) από δημοφιλε-
ίς μεταγλωττιστές της γλώσσας C όπως οι Clang/LLVM, GCC και MSVC. Οι δοκιμές
πραγματοποιήθηκαν στους κώδικες οι οποίοι παράγονται από τον MathWorks Coder και
τον προτεινόμενο μεταγλωττιστή. Τα πειραματικά αποτελέσματα έδειξαν ότι οι C μετα-
γλωττιστές διανυσματοποιουν ένα μικρό ποσοστό των βρόχων που μπορούν πραγματικά

να διανυσματοποιηθούν οδηγώντας στο συμπέρασμα ότι οι μονάδες των επεξεργαστών που

υποστηρίζουν την παράλλήλη επεξεργασία δεδομένων δεν μπορούν να αξιοποιηθούν πλήρως

από αυτούς. Αντίθετα ο προτεινόμενος μεταγλωττιστής υποστηρίζει μια ευρύτερη κατηγο-

ρία περιπτώσεων.

ACKNOWLEDGEMENTS

I would like to thank all people who have contributed to the completion of my doctoral
studies.
Initially, I would like to thank my supervisor, professor and rector of University of

Peloponnese, Konstantinos Masselos about his contribution and help at my Ph.D studies
as well as his useful advices all these years.
I would like also to thank and express my appreciation to the supervisor of my research

activity at Inter-University Micro-Electronics Center, professor Francky Catthoor for his
support and his guidance of my Ph.D.
Special thanks to Grigoris Dimitroulakos, who provided me with his knowledge of

compilers construction and his support not only during the period of my Ph.D studies,
but also during the elaboration of my undergraduate thesis.
Many thanks to my colleagues at Inter-University Micro-Electronics Center, Karthick

Parashar and Hans Cappelle for helping me to carry out the experiments of my research
and their guidance on technical issues of my Ph.D.
Finally, I would like to thank my parents and my brother for their invaluable support

during the time of undergraduate and postgraduate studies.

7

CONTENTS

1 introduction . 40
1.1 Need for Applications Development in High Level Languages . . . 41
1.2 Field of Application . 42
1.3 Advantage of Generating C Code Exploiting Custom Instructions . 43

1.3.1 Tools and Methodologies That Do Not Exploit Custom
Instructions of Targeted Processors 44

1.3.2 An Example of MATLAB Code That Cannot Be
Automatically Vectorized 45

1.4 Brief Review of Related Work . 47
1.5 Brief Presentation of the Developed Compiler/Innovative Features 48

1.5.1 Presentation of Compiler’s Infrastructure 48
1.5.2 Innovations and Contributions of the Compiler 51

1.6 Thesis Organization . 52
2 related work . 54

2.1 Type Inference Approaches . 55
2.2 MATLAB-to-C Compilation . 56
2.3 MATLAB Compilation to Hardware 59
2.4 MathWorks Commercial Tools . 61
2.5 Auto-vectorization . 62

2.5.1 Auto-vectorizing C compilers 63
2.5.2 Limitations of Auto-vectorization 64
2.5.3 Auto-vectorization Evaluation 65
2.5.4 Comparison against auto-vectorizing C compilers 66

2.6 Comparison of the Proposed Compiler Against State-of-the-art . . 66
2.6.1 MATLAB to FORTRAN 68
2.6.2 MATLAB Just-in-time Compilation 68
2.6.3 Aspect oriented Approaches 69

2.7 Compiling MATLAB to Other Efficient Execution Environments . 70
3 compiler’s front-end . 71

3.1 MATLAB Input Code . 71
3.1.1 MATLAB Language Subset That Is Not Supported 72
3.1.2 Built-in functions . 73
3.1.3 Annotations . 73

3.1.3.1 Annotations of Variable Decelerations 74
3.1.3.2 Other Annotations 75

3.2 Parametrized Processor Model . 77

8

Contents 9

3.2.1 Description of Customized Instructions in XML 79
3.2.1.1 Description of Operands’/Parameters’ Types . . . 80
3.2.1.2 Description of Customized Instructions 81
3.2.1.3 Description of Derived C Types 83
3.2.1.4 Description of fixed point semantics 84
3.2.1.5 Description of packing/unpacking operations . . . 86
3.2.1.6 Description of Other Auxiliary Semantics -

Operations . 90
3.3 Front-end . 91
3.4 Conclusion . 92

4 compiler’s middle-layer . 95
4.1 Abstract Syntax Tree Representation 95
4.2 Type Inference . 98

4.2.1 Function Calls Type Inference 98
4.2.2 Intrinsics Type Inference . 100
4.2.3 Intrinsics Type Inference Example 100
4.2.4 Key Contribution of Type Inference 101

4.3 Instruction Selection . 101
4.3.1 Instruction Selection Example 104
4.3.2 Generated Custom Instructions of benchmark 104

4.4 Support for Data Parallel Execution - AST Decomposition 108
4.4.1 AST Decomposition . 109
4.4.2 Packing/Unpacking statements Introduction 113

4.5 Redundant Packing/Unpacking Elimination 115
4.5.1 Inserted/Removed Packing and Unpacking Statements

of Benchmark . 119
4.6 Conclusion . 119

5 compiler’s back-end (code generation) 121
5.1 Structure of Generated C Code . 122
5.2 Code Generation For Control Flow Statements 124
5.3 Fixed Point Code Generation . 127
5.4 Code Generation of Derived Data Types 129
5.5 Code Generation For MATLAB Operations - customized instructions131
5.6 Scalarized Code Generation . 133
5.7 Code Generation of Packing/Unpacking Statements 134
5.8 Vectorized Code Generation . 136
5.9 Code Generation statistics of benchmark 138
5.10 Conclusion . 139

6 evaluation of the compiler . 141
6.1 Executive Summary . 141

10 Contents

6.1.1 Executive Summary of Performance on the ARM
Architectures . 142

6.1.2 Executive Summary of Performance on the x86
Architectures . 144

6.1.3 Executive Summary of Performance on Application
Specific Instruction Set Processors 145

6.2 Experimental Setup . 146
6.2.1 Experimental Environment and Configurations 147
6.2.2 Abbreviations of Diagrams and Tables 148
6.2.3 Benchmark Characteristics 149
6.2.4 Architectures Selection . 151

6.3 Results from ARM Architectures 152
6.3.1 Presentation of ARM Architectures 153
6.3.2 Performance of Generated Code on Raspberry PI 2 155
6.3.3 Performance of Generated Code on Raspberry PI 3 168

6.4 Results from x86 Architectures . 179
6.4.1 Presentation of x86 Architectures 179
6.4.2 Performance of Generated Code on Intel Sandy Bridge

(i7-3820) . 182
6.4.3 Performance of Generated Code on Intel Ivy Bridge

(i7-3770) . 195
6.5 Results from BoT ASIP . 207

6.5.1 Presentation of BoT Architecture 207
6.5.2 Presentation and Discussion of Results on BoT Architecture 209

6.6 Results from tinyBoT ASIP . 213
6.6.1 Presentation and Discussion of Results on TinyBoT

Architecture . 214
6.7 Comparison of the Proposed Compiler at the Different Architectures 217

6.7.1 Comparison of Generated Code by MathWorks and
Proposed Compiler on ARM Processors 217

6.7.2 Comparison of Generated Code by MathWorks and
Proposed Compiler on x86 Processors 219

6.7.3 Comparison of the Proposed Compiler on TinyBoT and
BoT ASIPs . 222

6.8 Comparison Against MathWorks Coder 224
6.8.1 Comparison of Generated Code Without Intrinsics Against

MathWorks Coder on ARM and x86 Processors 224
6.8.2 Comparison of Generated Code Without Intrinsics Against

MathWorks Coder on TinyBoT ASIP 228
6.9 Examination of Clang/LLVM Aggressive Auto-vectorization Options 230
6.10 Auto-vectorization Evaluation for C compilers 234

Contents 11

6.10.1 Report of Successfully Auto-vectorized Loops by
C Compilers . 234

6.10.2 Comparison of Auto-vectorizing C Compilers 238
6.11 Comparison of C Compilers on the Generated Code 243
6.12 Compilation Times . 246
6.13 Conclusion . 247

7 conclusion and future work 249
7.1 Contribution of Dissertation . 250
7.2 Future Work . 251

8 appendix . 255
8.1 Compiler Options . 256
8.2 Compilation Options Used in The Experiments 257
8.3 XML description examples of the target architectures 261

8.3.1 XML description of Bot Processor 261
8.3.2 XML description of tinyBot Processor 262
8.3.3 XML description of ARM and x86 Architectures 263

8.4 Comprehensive Results of Aggressive Clang Optimization Options 265
8.4.1 Results Compiling with Aggressive Clang Optimization

Options on Raspberry PI 2 265
8.4.2 Results Compiling with Aggressive Clang Optimization

Options on i7-3770 . 265
8.5 Performance of Vectorized Code Against Compiler’s Scalarized Code 272

8.5.1 Performance of Vectorized Code Against Compiler’s
Scalarized Code on Raspberry PI 2 272

8.5.2 Performance of Vectorized Code Against Compiler’s
Scalarized Code on Raspberry PI 3 277

8.5.3 Performance of Vectorized Code Against Compiler’s
Scalarized Code on x86 Desktop with i7-3820 Processor . . 282

8.5.4 Performance of Vectorized Code Against Compiler’s
Scalarized Code on x86 Desktop with i7-3770 Processor . . 287

8.6 Performance of MathWorks and Compiler’s Scalarized Code 292
8.6.1 Performance of MathWorks Generated Code, Compiler’s

Scalarized Generated Code and Non-vectorized
Generated Code on Raspberry PI 2 292

8.6.2 Performance of MathWorks Generated Code, Compiler’s
Scalarized Generated Code and Non-vectorized
Generated Code on Raspberry PI 3 300

8.6.3 Performance of MathWorks Generated Code, Compiler’s
Scalarized Generated Code and Non-vectorized
Generated Code on Desktop with i7-3820 Processor 307

12 Contents

8.6.4 Performance of MathWorks Generated Code, Compiler’s
Scalarized Generated Code and Non-vectorized
Generated Code on Desktop with i7-3770 Processor 314

8.7 Performance of Generated Code on x86 Using Alternative Options 321
8.7.1 Performance of Generated Code on x86 Architectures

Producing x64 Code . 321
8.7.1.1 Performance of Generated Code on Intel i7-3820

Producing x64 Code 322
8.7.1.2 Performance of Generated Code on Intel i7-3770

Producing x64 Code 324
8.7.2 Performance of Generated Code on x86 Architectures

Producing x86 Code with SSE 326
8.7.2.1 Performance of Generated Code on Intel i7-3820

Producing x86 with SSE Extension 327
8.7.2.2 Performance of Generated Code on Intel i7-3770

Producing x86 with SSE Extension 329
8.7.3 Performance of Generated Code on x86 architectures

Producing x64 Code with SSE 331
8.7.3.1 Performance of Generated Code on Intel i7-3820

Producing x64 with SSE Extension 332
8.7.3.2 Performance of Generated Code on Intel i7-3770

Producing x64 with SSE Extension 334

L I ST OF F IGURES

Figure 1 Compiler infrastructure. 49
Figure 2 Dependence graph of chapters. 53
Figure 3 Parametrized processor model. 77
Figure 4 Example of Parametrized processor model. 79
Figure 5 UML diagram of classes representing parse tree. 93
Figure 6 UML diagram of classes representing AST tree. 97
Figure 7 Control flow diagram for type inference of functions calls. 99
Figure 8 Type inference example. 101
Figure 9 Instruction Selection example. 104
Figure 10 AST Decomposition example. 110
Figure 11 Redundant packing/unpacking Elimination example. . . . 118
Figure 12 Dependence graph of back-end components. 121
Figure 13 Control flow diagram for the generation of fixed point addition.128
Figure 14 Speed-up of fixed point generated code on Raspberry PI 3 143
Figure 15 Speed-up of floating point generated code on Raspberry PI 3143
Figure 16 Speed-up of fixed point generated code on Core i7-3770 . . 144
Figure 17 Speed-up of floating point generated code on Core i7-3770 145
Figure 18 Speed-up of generated code on ASIPs 146
Figure 19 Speed-up comparing with MathWorks compiler on PI 2 using

Clang/LLVM with packed fixed point data 157
Figure 20 Speed-up comparing with MathWorks compiler on PI 2 using

GCC with packed fixed point data 158
Figure 21 Speed-up comparing with MathWorks compiler on PI 2 using

MSVC with packed fixed point data 158
Figure 22 Speed-up comparing with MathWorks compiler on PI 2 using

Clang/LLVM with unpacked fixed point data 159
Figure 23 Speed-up comparing with MathWorks compiler on PI 2 using

GCC with unpacked fixed point data 160
Figure 24 Speed-up comparing with MathWorks compiler on PI 2 using

MSVC with unpacked fixed point data 160
Figure 25 Speed-up comparing with MathWorks compiler on PI 2 using

Clang/LLVM with packed floating point data 161
Figure 26 Speed-up comparing with MathWorks compiler on PI 2 using

GCC with packed floating point data 162
Figure 27 Speed-up comparing with MathWorks compiler on PI 2 using

MSVC with packed floating point data 162

13

14 List of Figures

Figure 28 Speed-up comparing with MathWorks compiler on PI 2 using
Clang/LLVM with unpacked floating point data 163

Figure 29 Speed-up comparing with MathWorks compiler on PI 2 using
GCC with unpacked floating point data 163

Figure 30 Speed-up comparing with MathWorks compiler on PI 2 using
MSVC with unpacked floating point data 164

Figure 31 Performance of vectorized code with unpacked fixed point data
types versus packed fixed point data types using Clang/LLVM
on Raspberry PI 2 . 165

Figure 32 Performance of vectorized code with unpacked fixed point data
types versus packed fixed point data types using GCC on Rasp-
berry PI 2 . 166

Figure 33 Performance of vectorized code with unpacked fixed point data
types versus packed fixed point data types using MSVC on Rasp-
berry PI 2 . 166

Figure 34 Performance of vectorized code with unpacked floating point data
types versus packed floating point data types using Clang/LLVM
on Raspberry PI 2 . 167

Figure 35 Performance of vectorized code with unpacked floating point data
types versus packed floating point data types using GCC on Rasp-
berry PI 2 . 167

Figure 36 Performance of vectorized code with unpacked floating point data
types versus packed floating point data types using MSVC on
Raspberry PI 2 . 167

Figure 37 Speed-up comparing with MathWorks compiler on PI 3 using
Clang/LLVM with packed fixed point data 168

Figure 38 Speed-up comparing with MathWorks compiler on PI 3 using
GCC with packed fixed point data 169

Figure 39 Speed-up comparing with MathWorks compiler on PI 3 using
MSVC with packed fixed point data 170

Figure 40 Speed-up comparing with MathWorks compiler on PI 3 using
Clang/LLVM with unpacked fixed point data 170

Figure 41 Speed-up comparing with MathWorks compiler on PI 3 using
GCC with unpacked fixed point data 171

Figure 42 Speed-up comparing with MathWorks compiler on PI 3 using
MSVC with unpacked fixed point data 171

Figure 43 Speed-up comparing with MathWorks compiler on PI 3 using
Clang/LLVM with packed floating point data 172

Figure 44 Speed-up comparing with MathWorks compiler on PI 3 using
GCC with packed floating point data 172

List of Figures 15

Figure 45 Speed-up comparing with MathWorks compiler on PI 3 using
MSVC with packed floating point data 172

Figure 46 Speed-up comparing with MathWorks compiler on PI 3 using
Clang/LLVM with unpacked floating point data 173

Figure 47 Speed-up comparing with MathWorks compiler on PI 3 using
GCC with unpacked floating point data 173

Figure 48 Speed-up comparing with MathWorks compiler on PI 3 using
MSVC with unpacked floating point data 174

Figure 49 Performance of vectorized code with unpacked fixed point data
types versus packed fixed point data types using Clang/LLVM
on Raspberry PI 3 . 175

Figure 50 Performance of vectorized code with unpacked fixed point data
types versus packed fixed point data types using GCC on Rasp-
berry PI 3 . 176

Figure 51 Performance of vectorized code with unpacked fixed point data
types versus packed fixed point data types using MSVC on Rasp-
berry PI 3 . 176

Figure 52 Performance of vectorized code with unpacked floating point data
types versus packed floating point data types using Clang/LLVM
on Raspberry PI 3 . 177

Figure 53 Performance of vectorized code with unpacked floating point data
types versus packed floating point data types using GCC on Rasp-
berry PI 3 . 177

Figure 54 Performance of vectorized code with unpacked floating point data
types versus packed floating point data types using MSVC on
Raspberry PI 3 . 177

Figure 55 Speed-up comparing with MathWorks compiler on i7-3820 using
Clang/LLVM with packed fixed point data 184

Figure 56 Speed-up comparing with MathWorks compiler on i7-3820 using
GCC with packed fixed point data 184

Figure 57 Speed-up comparing with MathWorks compiler on i7-3820 using
MSVC with packed fixed point data 184

Figure 58 Speed-up comparing with MathWorks compiler on i7-3820 using
Clang/LLVM with unpacked fixed point data 186

Figure 59 Speed-up comparing with MathWorks compiler on i7-3820 using
GCC with unpacked fixed point data 186

Figure 60 Speed-up comparing with MathWorks compiler on i7-3820 using
MSVC with unpacked fixed point data 186

Figure 61 Speed-up comparing with MathWorks compiler on i7-3820 using
Clang/LLVM with packed floating point data 188

16 List of Figures

Figure 62 Speed-up comparing with MathWorks compiler on i7-3820 using
GCC with packed floating point data 188

Figure 63 Speed-up comparing with MathWorks compiler on i7-3820 using
MSVC with packed floating point data 188

Figure 64 Speed-up comparing with MathWorks compiler on i7-3820 using
Clang/LLVM with unpacked floating point data 190

Figure 65 Speed-up comparing with MathWorks compiler on i7-3820 using
GCC with unpacked floating point data 190

Figure 66 Speed-up comparing with MathWorks compiler on i7-3820 using
MSVC with unpacked floating point data 190

Figure 67 Performance of vectorized code with unpacked fixed point data
types versus packed fixed point data types using Clang/LLVM
on desktop with i7-3820 191

Figure 68 Performance of vectorized code with unpacked fixed point data
types versus packed fixed point data types using GCC on desktop
with i7-3820 . 192

Figure 69 Performance of vectorized code with unpacked fixed point data
types versus packed fixed point data types using MSVC on desk-
top with i7-3820 . 193

Figure 70 Performance of vectorized code with unpacked floating point data
types versus packed floating point data types using Clang/LLVM
on desktop with i7-3820 194

Figure 71 Performance of vectorized code with unpacked floating point data
types versus packed floating point data types using GCC on desk-
top with i7-3820 . 194

Figure 72 Performance of vectorized code with unpacked floating point data
types versus packed floating point data types using MSVC on
desktop with i7-3820 . 194

Figure 73 Speed-up comparing with MathWorks compiler on i7-3770 using
Clang/LLVM with packed fixed point data 196

Figure 74 Speed-up comparing with MathWorks compiler on i7-3770 using
GCC with packed fixed point data 197

Figure 75 Speed-up comparing with MathWorks compiler on i7-3770 using
MSVC with packed fixed point data 197

Figure 76 Speed-up comparing with MathWorks compiler on i7-3770 using
Clang/LLVM with unpacked fixed point data 198

Figure 77 Speed-up comparing with MathWorks compiler on i7-3770 using
GCC with unpacked fixed point data 198

Figure 78 Speed-up comparing with MathWorks compiler on i7-3770 using
MSVC with unpacked fixed point data 199

List of Figures 17

Figure 79 Speed-up comparing with MathWorks compiler on i7-3770 using
Clang/LLVM with packed floating point data 200

Figure 80 Speed-up comparing with MathWorks compiler on i7-3770 using
GCC with packed floating point data 200

Figure 81 Speed-up comparing with MathWorks compiler on i7-3770 using
MSVC with packed floating point data 200

Figure 82 Speed-up comparing with MathWorks compiler on i7-3770 using
Clang/LLVM with unpacked floating point data 202

Figure 83 Speed-up comparing with MathWorks compiler on i7-3770 using
GCC with unpacked floating point data 202

Figure 84 Speed-up comparing with MathWorks compiler on i7-3770 using
MSVC with unpacked floating point data 202

Figure 85 Performance of vectorized code with unpacked fixed point data
types versus packed fixed point data types using Clang/LLVM
on desktop with i7-3770 203

Figure 86 Performance of vectorized code with unpacked fixed point data
types versus packed fixed point data types using GCC on desktop
with i7-3770 . 204

Figure 87 Performance of vectorized code with unpacked fixed point data
types versus packed fixed point data types using MSVC on desk-
top with i7-3770 . 205

Figure 88 Performance of vectorized code with unpacked floating point data
types versus packed floating point data types using Clang/LLVM
on desktop with i7-3770 206

Figure 89 Performance of vectorized code with unpacked floating point data
types versus packed floating point data types using GCC on desk-
top with i7-3770 . 206

Figure 90 Performance of vectorized code with unpacked floating point data
types versus packed floating point data types using MSVC on
desktop with i7-3770 . 206

Figure 91 BoT architecture. 208
Figure 92 Speed up comparing with MathWorks compiler on BoT using

packed data . 210
Figure 93 Speed up comparing with MathWorks compiler on BoT using

unpacked data . 211
Figure 94 Performance of vectorized code with unpacked data types versus

packed data types on BoT 211
Figure 95 Executions times of vectorized code with SIMD width 8 compar-

ing to SIMD width 4 on BoT using packed data 212
Figure 96 Executions times of vectorized code with SIMD width 8 compar-

ing to SIMD width 4 on BoT using unpacked data 212

18 List of Figures

Figure 97 Execution times of FFT comparing with optimized versions on
BoT . 213

Figure 98 Speed up comparing with MathWorks compiler on TinyBoT.214
Figure 99 Execution times of FFT comparing with optimized versions on

tinyBoT . 216
Figure 100 Speed-up of MathWorks and scalarized with no intrinsics gener-

ated code on PI 3 compared to PI 2 217
Figure 101 Speed-up of vectorized generated code on PI 3 compared to PI

2 . 218
Figure 102 Difference between PI 2 and PI 3 of the speed-up achieved by

the vectorized generated code against the MathWorks generated
code . 219

Figure 103 Speed-up of MathWorks and scalarized with no intrinsics gener-
ated code on i7-3770 compared to i7-3820 220

Figure 104 Speed-up of vectorized generated code on i7-3770 compared to
i7-3820 . 221

Figure 105 Difference between i7-3770 and i7-3820 of the speed-up achieved
by the vectorized generated code against the MathWorks gener-
ated code . 221

Figure 106 Execution times of TinyBoT versus BoT with packed data types223
Figure 107 Execution times of TinyBoT versus BoT with unpacked data

types . 223
Figure 108 Speed-up of MathWorks generated code compared to scalarized

generated code without intrinsics 225
Figure 109 Speed-up of MathWorks floating point generated code compared

to scalarized floating point generated code without intrinsics on
PI 2 using MSVC . 225

Figure 110 Speed-up of MathWorks fixed point generated code compared to
scalarized fixed point generated code without intrinsics on PI 3
using Clang/LLVM . 226

Figure 111 Speed-up of MathWorks floating generated code compared to
scalarized floating point generated code without intrinsics on i7-
3820 using GCC . 227

Figure 112 Performance of MathWorks code and generated code without in-
trinsics on tinyBoT. 229

Figure 113 Normalized execution times of MathWorks fixed point generated
code, compiled with aggressive Clang auto-vectorization options232

Figure 114 Normalized execution times of MathWorks fixed point generated
code, compiled with aggressive superword-level parallelism Clang
options . 232

List of Figures 19

Figure 115 Normalized execution times of scalarized floating point gener-
ated code, compiled with aggressive Clang auto-vectorization op-
tions . 232

Figure 116 Normalized execution times of scalarized floating point generated
code, compiled with aggressive superword-level parallelism Clang
options . 233

Figure 117 Auto-vectorization speed-up of MathWorks generated code 238
Figure 118 Auto-vectorization speed-up of scalarized without intrinsics gen-

erated code . 238
Figure 119 GCC auto-vectorization speed-up of MathWorks floating point

generated code on i7-3820 240
Figure 120 MSVC auto-vectorization speed-up of scalarized floating point

generated code on i7-3820 240
Figure 121 GCC auto-vectorization speed-up of scalarized fixed point gener-

ated code on PI 3 . 240
Figure 122 Auto-vectorization speed-up of MathWorks fixed point generated

code . 241
Figure 123 Auto-vectorization speed-up of MathWorks floating point gener-

ated code . 242
Figure 124 Auto-vectorization speed-up of scalarized fixed point generated

code . 242
Figure 125 Auto-vectorization speed-up of scalarized floating point generated

code . 242
Figure 126 Performance of the MathWorks generated code by C compilers244
Figure 127 Performance of the scalarized generated code by C compilers244
Figure 128 Performance of the vectorized (SIMD width 4) generated code by

C compilers . 245
Figure 129 Performance of the vectorized (unpacked data with SIMD width

4) generated code by C compilers 245
Figure 130 Performance of the vectorized (SIMD width 8) generated code by

C compilers . 245
Figure 131 Performance of the vectorized (unpacked data with SIMD width

8) generated code by C compilers 246
Figure 132 Compilations times. 246
Figure 133 Dependence graph of experiments. 255
Figure 134 Normalized execution times of MathWorks fixed point generated

code on PI 2, compiled with aggressive Clang auto-vectorization
options . 266

Figure 135 Normalized execution times of MathWorks fixed point generated
code on PI 2, compiled with aggressive superword-level paral-
lelism Clang options . 266

20 List of Figures

Figure 136 Normalized execution times of compiler’s scalarized fixed point
generated code on PI 2, compiled with aggressive Clang auto-
vectorization options . 266

Figure 137 Normalized execution times of compiler’s scalarized fixed point
generated code on PI 2, compiled with aggressive superword-level
parallelism Clang options 267

Figure 138 Normalized execution times of MathWorks floating point gener-
ated code on PI 2, compiled with aggressive Clang auto-vectorization
options . 267

Figure 139 Normalized execution times of MathWorks floating point gen-
erated code on PI 2, compiled with aggressive superword-level
parallelism Clang options 267

Figure 140 Normalized execution times of compiler’s scalarized floating point
generated code on PI 2, compiled with aggressive Clang auto-
vectorization options . 268

Figure 141 Normalized execution times of compiler’s scalarized floating point
generated code on PI 2, compiled with aggressive superword-level
parallelism Clang options 268

Figure 142 Normalized execution times of MathWorks fixed point generated
code on i7-3770, compiled with aggressive Clang auto-vectorization
options . 268

Figure 143 Normalized execution times of MathWorks fixed point generated
code on i7-3770, compiled with aggressive superword-level paral-
lelism Clang options . 269

Figure 144 Normalized execution times of compiler’s scalarized fixed point
generated code on i7-3770, compiled with aggressive Clang auto-
vectorization options . 269

Figure 145 Normalized execution times of compiler’s scalarized fixed point
generated code on i7-3770, compiled with aggressive superword-
level parallelism Clang options 269

Figure 146 Normalized execution times of MathWorks floating point gen-
erated code on i7-3770, compiled with aggressive Clang auto-
vectorization options . 270

Figure 147 Normalized execution times of MathWorks floating point gener-
ated code on i7-3770, compiled with aggressive superword-level
parallelism Clang options 270

Figure 148 Normalized execution times of compiler’s scalarized floating point
generated code on i7-3770, compiled with aggressive Clang auto-
vectorization options . 270

List of Figures 21

Figure 149 Normalized execution times of compiler’s scalarized floating point
generated code on i7-3770, compiled with aggressive superword-
level parallelism Clang options 271

Figure 150 Performance of vectorized code compared to scalarized code using
packed fixed point data types, compiled with Clang on Raspberry
PI 2 . 273

Figure 151 Performance of vectorized code compared to scalarized code us-
ing unpacked fixed point data types, compiled with Clang on
Raspberry PI 2 . 273

Figure 152 Performance of vectorized code compared to scalarized code us-
ing packed floating point data types, compiled with Clang on
Raspberry PI 2 . 273

Figure 153 Performance of vectorized code compared to scalarized code us-
ing unpacked floating point data types, compiled with Clang on
Raspberry PI 2 . 274

Figure 154 Performance of vectorized code compared to scalarized code using
packed fixed point data types, compiled with GCC on Raspberry
PI 2 . 274

Figure 155 Performance of vectorized code compared to scalarized code using
unpacked fixed point data types, compiled with GCC on Rasp-
berry PI 2 . 274

Figure 156 Performance of vectorized code compared to scalarized code using
packed floating point data types, compiled with GCC on Rasp-
berry PI 2 . 275

Figure 157 Performance of vectorized code compared to scalarized code us-
ing unpacked floating point data types, compiled with GCC on
Raspberry PI 2 . 275

Figure 158 Performance of vectorized code compared to scalarized code us-
ing packed fixed point data types, compiled with MSVC on Rasp-
berry PI 2 . 275

Figure 159 Performance of vectorized code compared to scalarized code us-
ing unpacked fixed point data types, compiled with MSVC on
Raspberry PI 2 . 276

Figure 160 Performance of vectorized code compared to scalarized code us-
ing packed floating point data types, compiled with MSVC on
Raspberry PI 2 . 276

Figure 161 Performance of vectorized code compared to scalarized code us-
ing unpacked floating point data types, compiled with MSVC on
Raspberry PI 2 . 276

22 List of Figures

Figure 162 Performance of vectorized code compared to scalarized code using
packed fixed point data types, compiled with Clang on Raspberry
PI 3 . 278

Figure 163 Performance of vectorized code compared to scalarized code us-
ing unpacked fixed point data types, compiled with Clang on
Raspberry PI 3 . 278

Figure 164 Performance of vectorized code compared to scalarized code us-
ing packed floating point data types, compiled with Clang on
Raspberry PI 3 . 278

Figure 165 Performance of vectorized code compared to scalarized code us-
ing unpacked floating point data types, compiled with Clang on
Raspberry PI 3 . 279

Figure 166 Performance of vectorized code compared to scalarized code using
packed fixed point data types, compiled with GCC on Raspberry
PI 3 . 279

Figure 167 Performance of vectorized code compared to scalarized code using
unpacked fixed point data types, compiled with GCC on Rasp-
berry PI 3 . 279

Figure 168 Performance of vectorized code compared to scalarized code using
packed floating point data types, compiled with GCC on Rasp-
berry PI 3 . 280

Figure 169 Performance of vectorized code compared to scalarized code us-
ing unpacked floating point data types, compiled with GCC on
Raspberry PI 3 . 280

Figure 170 Performance of vectorized code compared to scalarized code us-
ing packed fixed point data types, compiled with MSVC on Rasp-
berry PI 3 . 280

Figure 171 Performance of vectorized code compared to scalarized code us-
ing unpacked fixed point data types, compiled with MSVC on
Raspberry PI 3 . 281

Figure 172 Performance of vectorized code compared to scalarized code us-
ing packed floating point data types, compiled with MSVC on
Raspberry PI 3 . 281

Figure 173 Performance of vectorized code compared to scalarized code us-
ing unpacked floating point data types, compiled with MSVC on
Raspberry PI 3 . 281

Figure 174 Performance of vectorized code compared to scalarized code using
packed fixed point data types, compiled with Clang on desktop
with i7-3820 processor . 283

List of Figures 23

Figure 175 Performance of vectorized code compared to scalarized code using
unpacked fixed point data types, compiled with Clang on desktop
with i7-3820 processor . 283

Figure 176 Performance of vectorized code compared to scalarized code using
packed floating point data types, compiled with Clang on desktop
with i7-3820 processor . 283

Figure 177 Performance of vectorized code compared to scalarized code using
unpacked floating point data types, compiled with Clang on on
desktop with i7-3820 processor 284

Figure 178 Performance of vectorized code compared to scalarized code using
packed fixed point data types, compiled with GCC on on desktop
with i7-3820 processor . 284

Figure 179 Performance of vectorized code compared to scalarized code us-
ing unpacked fixed point data types, compiled with GCC on on
desktop with i7-3820 processor 284

Figure 180 Performance of vectorized code compared to scalarized code us-
ing packed floating point data types, compiled with GCC on on
desktop with i7-3820 processor 285

Figure 181 Performance of vectorized code compared to scalarized code using
unpacked floating point data types, compiled with GCC on on
desktop with i7-3820 processor 285

Figure 182 Performance of vectorized code compared to scalarized code us-
ing packed fixed point data types, compiled with MSVC on on
desktop with i7-3820 processor 285

Figure 183 Performance of vectorized code compared to scalarized code using
unpacked fixed point data types, compiled with MSVC on on
desktop with i7-3820 processor 286

Figure 184 Performance of vectorized code compared to scalarized code using
packed floating point data types, compiled with MSVC on on
desktop with i7-3820 processor 286

Figure 185 Performance of vectorized code compared to scalarized code using
unpacked floating point data types, compiled with MSVC on on
desktop with i7-3820 processor 286

Figure 186 Performance of vectorized code compared to scalarized code using
packed fixed point data types, compiled with Clang on desktop
with i7-3770 processor . 288

Figure 187 Performance of vectorized code compared to scalarized code using
unpacked fixed point data types, compiled with Clang on desktop
with i7-3770 processor . 288

24 List of Figures

Figure 188 Performance of vectorized code compared to scalarized code using
packed floating point data types, compiled with Clang on desktop
with i7-3770 processor . 288

Figure 189 Performance of vectorized code compared to scalarized code using
unpacked floating point data types, compiled with Clang on on
desktop with i7-3770 processor 289

Figure 190 Performance of vectorized code compared to scalarized code using
packed fixed point data types, compiled with GCC on on desktop
with i7-3770 processor . 289

Figure 191 Performance of vectorized code compared to scalarized code us-
ing unpacked fixed point data types, compiled with GCC on on
desktop with i7-3770 processor 289

Figure 192 Performance of vectorized code compared to scalarized code us-
ing packed floating point data types, compiled with GCC on on
desktop with i7-3770 processor 290

Figure 193 Performance of vectorized code compared to scalarized code using
unpacked floating point data types, compiled with GCC on on
desktop with i7-3770 processor 290

Figure 194 Performance of vectorized code compared to scalarized code us-
ing packed fixed point data types, compiled with MSVC on on
desktop with i7-3770 processor 290

Figure 195 Performance of vectorized code compared to scalarized code using
unpacked fixed point data types, compiled with MSVC on on
desktop with i7-3770 processor 291

Figure 196 Performance of vectorized code compared to scalarized code using
packed floating point data types, compiled with MSVC on on
desktop with i7-3770 processor 291

Figure 197 Performance of vectorized code compared to scalarized code using
unpacked floating point data types, compiled with MSVC on on
desktop with i7-3770 processor 291

Figure 198 Performance of MathWorks fixed point generated code compared
to MathWorks non-vectorized code compiling with Clang on Rasp-
berry PI 2 . 292

Figure 199 Performance of compiler’s scalarized fixed point code compared
to compiler’s non-vectorized code compiling with Clang on Rasp-
berry PI 2 . 293

Figure 200 Performance of compiler’s scalarized fixed point code compared
to MathWorks fixed point generated code compiling with Clang
on Raspberry PI 2 . 294

List of Figures 25

Figure 201 Performance of MathWorks floating point generated code com-
pared to MathWorks non-vectorized code compiling with Clang
on Raspberry PI 2 . 294

Figure 202 Performance of compiler’s scalarized floating point code com-
pared to compiler’s non-vectorized code compiling with Clang
on Raspberry PI 2 . 294

Figure 203 Performance of compiler’s scalarized floating point code com-
pared to MathWorks floating point generated code compiling with
Clang on Raspberry PI 2 295

Figure 204 Performance of MathWorks fixed point generated code compared
to MathWorks non-vectorized code compiling with GCC on Rasp-
berry PI 2 . 295

Figure 205 Performance of compiler’s scalarized fixed point code compared
to compiler’s non-vectorized code compiling with GCC on Rasp-
berry PI 2 . 295

Figure 206 Performance of compiler’s scalarized fixed point code compared
to MathWorks fixed point generated code compiling with GCC
on Raspberry PI 2 . 296

Figure 207 Performance of MathWorks floating point generated code com-
pared to MathWorks non-vectorized code compiling with GCC
on Raspberry PI 2 . 296

Figure 208 Performance of compiler’s scalarized floating point code com-
pared to compiler’s non-vectorized code compiling with GCC on
Raspberry PI 2 . 296

Figure 209 Performance of compiler’s scalarized floating point code com-
pared to MathWorks floating point generated code compiling with
GCC on Raspberry PI 2 297

Figure 210 Performance of MathWorks fixed point generated code compared
to MathWorks non-vectorized code compiling with MSVC on
Raspberry PI 2 . 297

Figure 211 Performance of compiler’s scalarized fixed point code compared
to compiler’s non-vectorized code compiling with MSVC on Rasp-
berry PI 2 . 297

Figure 212 Performance of compiler’s scalarized fixed point code compared
to MathWorks fixed point generated code compiling with MSVC
on Raspberry PI 2 . 298

Figure 213 Performance of MathWorks floating point generated code com-
pared to MathWorks non-vectorized code compiling with MSVC
on Raspberry PI 2 . 298

26 List of Figures

Figure 214 Performance of compiler’s scalarized floating point code com-
pared to compiler’s non-vectorized code compiling with MSVC
on Raspberry PI 2 . 298

Figure 215 Performance of compiler’s scalarized floating point code com-
pared to MathWorks floating point generated code compiling with
MSVC on Raspberry PI 2 299

Figure 216 Performance of MathWorks fixed point generated code compared
to MathWorks non-vectorized code compiling with Clang on Rasp-
berry PI 3 . 301

Figure 217 Performance of compiler’s scalarized fixed point code compared
to compiler’s non-vectorized code compiling with Clang on Rasp-
berry PI 3 . 301

Figure 218 Performance of compiler’s scalarized fixed point code compared
to MathWorks fixed point generated code compiling with Clang
on Raspberry PI 3 . 301

Figure 219 Performance of MathWorks floating point generated code com-
pared to MathWorks non-vectorized code compiling with Clang
on Raspberry PI 3 . 302

Figure 220 Performance of compiler’s scalarized floating point code com-
pared to compiler’s non-vectorized code compiling with Clang
on Raspberry PI 3 . 302

Figure 221 Performance of compiler’s scalarized floating point code com-
pared to MathWorks floating point generated code compiling with
Clang on Raspberry PI 3 302

Figure 222 Performance of MathWorks fixed point generated code compared
to MathWorks non-vectorized code compiling with GCC on Rasp-
berry PI 3 . 303

Figure 223 Performance of compiler’s scalarized fixed point code compared
to compiler’s non-vectorized code compiling with GCC on Rasp-
berry PI 3 . 303

Figure 224 Performance of compiler’s scalarized fixed point code compared
to MathWorks fixed point generated code compiling with GCC
on Raspberry PI 3 . 303

Figure 225 Performance of MathWorks floating point generated code com-
pared to MathWorks non-vectorized code compiling with GCC
on Raspberry PI 3 . 304

Figure 226 Performance of compiler’s scalarized floating point code com-
pared to compiler’s non-vectorized code compiling with GCC on
Raspberry PI 3 . 304

List of Figures 27

Figure 227 Performance of compiler’s scalarized floating point code com-
pared to MathWorks floating point generated code compiling with
GCC on Raspberry PI 3 304

Figure 228 Performance of MathWorks fixed point generated code compared
to MathWorks non-vectorized code compiling with MSVC on
Raspberry PI 3 . 305

Figure 229 Performance of compiler’s scalarized fixed point code compared
to compiler’s non-vectorized code compiling with MSVC on Rasp-
berry PI 3 . 305

Figure 230 Performance of compiler’s scalarized fixed point code compared
to MathWorks fixed point generated code compiling with MSVC
on Raspberry PI 3 . 305

Figure 231 Performance of MathWorks floating point generated code com-
pared to MathWorks non-vectorized code compiling with MSVC
on Raspberry PI 3 . 306

Figure 232 Performance of compiler’s scalarized floating point code com-
pared to compiler’s non-vectorized code compiling with MSVC
on Raspberry PI 3 . 306

Figure 233 Performance of compiler’s scalarized floating point code com-
pared to MathWorks floating point generated code compiling with
MSVC on Raspberry PI 3 306

Figure 234 Performance of MathWorks fixed point generated code compared
to MathWorks non-vectorized code compiling with Clang on desk-
top with i7-3820 . 308

Figure 235 Performance of compiler’s scalarized fixed point code compared to
compiler’s non-vectorized code compiling with Clang on desktop
with i7-3820 . 308

Figure 236 Performance of compiler’s scalarized fixed point code compared
to MathWorks fixed point generated code compiling with Clang
on desktop with i7-3820 308

Figure 237 Performance of MathWorks floating point generated code com-
pared to MathWorks non-vectorized code compiling with Clang
on desktop with i7-3820 309

Figure 238 Performance of compiler’s scalarized floating point code com-
pared to compiler’s non-vectorized code compiling with Clang
on desktop with i7-3820 309

Figure 239 Performance of compiler’s scalarized floating point code com-
pared to MathWorks floating point generated code compiling with
Clang on desktop with i7-3820 309

28 List of Figures

Figure 240 Performance of MathWorks fixed point generated code compared
to MathWorks non-vectorized code compiling with GCC on desk-
top with i7-3820 . 310

Figure 241 Performance of compiler’s scalarized fixed point code compared to
compiler’s non-vectorized code compiling with GCC on desktop
with i7-3820 . 310

Figure 242 Performance of compiler’s scalarized fixed point code compared
to MathWorks fixed point generated code compiling with GCC
on desktop with i7-3820 310

Figure 243 Performance of MathWorks floating point generated code com-
pared to MathWorks non-vectorized code compiling with GCC
on desktop with i7-3820 311

Figure 244 Performance of compiler’s scalarized floating point code com-
pared to compiler’s non-vectorized code compiling with GCC on
desktop with i7-3820 . 311

Figure 245 Performance of compiler’s scalarized floating point code com-
pared to MathWorks floating point generated code compiling with
GCC on desktop with i7-3820 311

Figure 246 Performance of MathWorks fixed point generated code compared
to MathWorks non-vectorized code compiling with MSVC on
desktop with i7-3820 . 312

Figure 247 Performance of compiler’s scalarized fixed point code compared to
compiler’s non-vectorized code compiling with MSVC on desktop
with i7-3820 . 312

Figure 248 Performance of compiler’s scalarized fixed point code compared
to MathWorks fixed point generated code compiling with MSVC
on desktop with i7-3820 312

Figure 249 Performance of MathWorks floating point generated code com-
pared to MathWorks non-vectorized code compiling with MSVC
on desktop with i7-3820 313

Figure 250 Performance of compiler’s scalarized floating point code com-
pared to compiler’s non-vectorized code compiling with MSVC
on desktop with i7-3820 313

Figure 251 Performance of compiler’s scalarized floating point code com-
pared to MathWorks floating point generated code compiling with
MSVC on desktop with i7-3820 313

Figure 252 Performance of MathWorks fixed point generated code compared
to MathWorks non-vectorized code compiling with Clang on desk-
top with i7-3770 . 315

List of Figures 29

Figure 253 Performance of compiler’s scalarized fixed point code compared to
compiler’s non-vectorized code compiling with Clang on desktop
with i7-3770 . 315

Figure 254 Performance of compiler’s scalarized fixed point code compared
to MathWorks fixed point generated code compiling with Clang
on desktop with i7-3770 315

Figure 255 Performance of MathWorks floating point generated code com-
pared to MathWorks non-vectorized code compiling with Clang
on desktop with i7-3770 316

Figure 256 Performance of compiler’s scalarized floating point code com-
pared to compiler’s non-vectorized code compiling with Clang
on desktop with i7-3770 316

Figure 257 Performance of compiler’s scalarized floating point code com-
pared to MathWorks floating point generated code compiling with
Clang on desktop with i7-3770 316

Figure 258 Performance of MathWorks fixed point generated code compared
to MathWorks non-vectorized code compiling with GCC on desk-
top with i7-3770 . 317

Figure 259 Performance of compiler’s scalarized fixed point code compared to
compiler’s non-vectorized code compiling with GCC on desktop
with i7-3770 . 317

Figure 260 Performance of compiler’s scalarized fixed point code compared
to MathWorks fixed point generated code compiling with GCC
on desktop with i7-3770 317

Figure 261 Performance of MathWorks floating point generated code com-
pared to MathWorks non-vectorized code compiling with GCC
on desktop with i7-3770 318

Figure 262 Performance of compiler’s scalarized floating point code com-
pared to compiler’s non-vectorized code compiling with GCC on
desktop with i7-3770 . 318

Figure 263 Performance of compiler’s scalarized floating point code com-
pared to MathWorks floating point generated code compiling with
GCC on desktop with i7-3770 318

Figure 264 Performance of MathWorks fixed point generated code compared
to MathWorks non-vectorized code compiling with MSVC on
desktop with i7-3770 . 319

Figure 265 Performance of compiler’s scalarized fixed point code compared to
compiler’s non-vectorized code compiling with MSVC on desktop
with i7-3770 . 319

30 List of Figures

Figure 266 Performance of compiler’s scalarized fixed point code compared
to MathWorks fixed point generated code compiling with MSVC
on desktop with i7-3770 319

Figure 267 Performance of MathWorks floating point generated code com-
pared to MathWorks non-vectorized code compiling with MSVC
on desktop with i7-3770 320

Figure 268 Performance of compiler’s scalarized floating point code com-
pared to compiler’s non-vectorized code compiling with MSVC
on desktop with i7-3770 320

Figure 269 Performance of compiler’s scalarized floating point code com-
pared to MathWorks floating point generated code compiling with
MSVC on desktop with i7-3770 320

Figure 270 Performance of vectorized generated code (x64) with packed fixed
point data types compared to MathWorks generated code on i7-
3820 . 322

Figure 271 Performance of vectorized generated code (x64) with unpacked
fixed point data types compared to MathWorks generated code
on i7-3820 . 322

Figure 272 Performance of vectorized code (x64) with unpacked fixed point
data types versus packed fixed point data types on desktop with
i7-3820 . 322

Figure 273 Performance of vectorized generated code (x64) with packed float-
ing point data types compared to MathWorks generated code on
i7-3820 . 323

Figure 274 Performance of vectorized generated code (x64) with unpacked
floating point data types compared to MathWorks generated code
on i7-3820 . 323

Figure 275 Performance of vectorized code (x64) with unpacked floating point
data types versus packed floating point data types on desktop
with i7-3820 . 323

Figure 276 Performance of vectorized generated code (x64) with packed fixed
point data types compared to MathWorks generated code on i7-
3770 . 324

Figure 277 Performance of vectorized generated code (x64) with unpacked
fixed point data types compared to MathWorks generated code
on i7-3770 . 324

Figure 278 Performance of vectorized code (x64) with unpacked fixed point
data types versus packed fixed point data types on desktop with
i7-3770 . 324

List of Figures 31

Figure 279 Performance of vectorized generated code (x64) with packed float-
ing point data types compared to MathWorks generated code on
i7-3770 . 325

Figure 280 Performance of vectorized generated code (x64) with unpacked
floating point data types compared to MathWorks generated code
on i7-3770 . 325

Figure 281 Performance of vectorized code (x64) with unpacked floating point
data types versus packed floating point data types on desktop
with i7-3770 . 325

Figure 282 Performance of vectorized generated code (x86-SSE) with packed
fixed point data types compared to MathWorks generated code
on i7-3820 . 327

Figure 283 Performance of vectorized generated code (x86-SSE) with un-
packed fixed point data types compared to MathWorks generated
code on i7-3820 . 327

Figure 284 Performance of vectorized code (x86-SSE) with unpacked fixed
point data types versus packed fixed point data types on desktop
with i7-3820 . 327

Figure 285 Performance of vectorized generated code (x86-SSE) with packed
floating point data types compared to MathWorks generated code
on i7-3820 . 328

Figure 286 Performance of vectorized generated code (x86-SSE) with un-
packed floating point data types compared to MathWorks gener-
ated code on i7-3820 . 328

Figure 287 Performance of vectorized code (x86-SSE) with unpacked float-
ing point data types versus packed floating point data types on
desktop with i7-3820 . 328

Figure 288 Performance of vectorized generated code (x86-SSE) with packed
fixed point data types compared to MathWorks generated code
on i7-3770 . 329

Figure 289 Performance of vectorized generated code (x86-SSE) with un-
packed fixed point data types compared to MathWorks generated
code on i7-3770 . 329

Figure 290 Performance of vectorized code (x86-SSE) with unpacked fixed
point data types versus packed fixed point data types on desktop
with i7-3770 . 329

Figure 291 Performance of vectorized generated code (x86-SSE) with packed
floating point data types compared to MathWorks generated code
on i7-3770 . 330

32 List of Figures

Figure 292 Performance of vectorized generated code (x86-SSE) with un-
packed floating point data types compared to MathWorks gener-
ated code on i7-3770 . 330

Figure 293 Performance of vectorized code (x86-SSE) with unpacked float-
ing point data types versus packed floating point data types on
desktop with i7-3770 . 330

Figure 294 Performance of vectorized generated code (x64-SSE) with packed
fixed point data types compared to MathWorks generated code
on i7-3820 . 332

Figure 295 Performance of vectorized generated code (x64-SSE) with un-
packed fixed point data types compared to MathWorks generated
code on i7-3820 . 332

Figure 296 Performance of vectorized code (x64-SSE) with unpacked fixed
point data types versus packed fixed point data types on desktop
with i7-3820 . 332

Figure 297 Performance of vectorized generated code (x64-SSE) with packed
floating point data types compared to MathWorks generated code
on i7-3820 . 333

Figure 298 Performance of vectorized generated code (x64-SSE) with un-
packed floating point data types compared to MathWorks gener-
ated code on i7-3820 . 333

Figure 299 Performance of vectorized code (x64-SSE) with unpacked float-
ing point data types versus packed floating point data types on
desktop with i7-3820 . 333

Figure 300 Performance of vectorized generated code (x64-SSE) with packed
fixed point data types compared to MathWorks generated code
on i7-3770 . 334

Figure 301 Performance of vectorized generated code (x64-SSE) with un-
packed fixed point data types compared to MathWorks generated
code on i7-3770 . 334

Figure 302 Performance of vectorized code (x64-SSE) with unpacked fixed
point data types versus packed fixed point data types on desktop
with i7-3770 . 334

Figure 303 Performance of vectorized generated code (x64-SSE) with packed
floating point data types compared to MathWorks generated code
on i7-3770 . 335

Figure 304 Performance of vectorized generated code (x64-SSE) with un-
packed floating point data types compared to MathWorks gener-
ated code on i7-3770 . 335

List of Figures 33

Figure 305 Performance of vectorized code (x64-SSE) with unpacked float-
ing point data types versus packed floating point data types on
desktop with i7-3770 . 335

L I ST OF TABLES

Table 1 Comparison of MATLAB to C compilers. 59
Table 2 Comparison of MATLAB compilation to hardware. 61
Table 3 MATLAB built-in functions 74
Table 4 Pragma functions for variable declaration 76
Table 5 XML specification of operands/result type. 81
Table 6 XML specification of customized instructions. 82
Table 7 XML specification of derived C types. 84
Table 8 XML specification of shift operations. 85
Table 9 XML specification of reciprocal operations. 85
Table 10 XML specification of packing/unpacking attributes. 87
Table 11 Packing operations. 87
Table 12 Unpacking operations. 88
Table 13 Matched intrinsics of scalarized fixed point generated code on

ARM/x86 . 106
Table 14 Matched intrinsics of SIMD fixed point generated code on AR-

M/x86 . 107
Table 15 Inserted and removed packing and unpacking statements of bench-

mark. 119
Table 16 Generated code statistics of benchmark. 139
Table 17 Different experimental setups on CPU architectures 148
Table 18 Benchmarks characteristics. 150
Table 19 Comparison between BoT and processors in the CEVA DSP fam-

ily. 152
Table 20 Reference values (exec. time in µs) used for normalization of

results on PI 2 . 157
Table 21 Reference values (exec. time in µs) used for normalization of

vectorized results on PI 2 165
Table 22 Reference values (exec. time in µs) used for normalization of

results on PI 3 . 169
Table 23 Reference values (exec. time in µs) used for normalization of

vectorized results on PI 3 175
Table 24 Reference values (exec. time in µs) used for normalization of

results on i7-3820 . 183
Table 25 Reference values (exec. time in µs) used for normalization of

vectorized results on i7-3820 192

34

List of Tables 35

Table 26 Reference values (exec. time in µs) used for normalization of
results on i7-3770 . 196

Table 27 Reference values (exec. time in µs) used for normalization of
vectorized results on i7-3770 204

Table 28 Reference values (instructions count) used for normalization of
results at BoT . 210

Table 29 Reference values (instructions count) used for normalization at
additional FFT results . 213

Table 30 Reference values (instructions count) used for normalization of
results at tinyBoT . 215

Table 31 Reference values (instructions count) used for normalization at
additional FFT results . 216

Table 32 Reference values (instructions count) used for normalization at
ASIPs comparison . 222

Table 33 Reference values (exec. time in µs) used for normalization of
MathWorks versus scalarized code comparison 226

Table 34 Reference values (instructions count) used for normalization of
baseline experiment at tinyBoT 229

Table 35 Reference values (exec. time in µs) used for normalization of
aggressive Clang options examination 231

Table 36 Successfully auto-vectorized loops of MathWorks fixed point gen-
erated code . 235

Table 37 Successfully auto-vectorized loops of MathWorks floating point
generated code . 236

Table 38 Successfully auto-vectorized loops of scalarized fixed point gen-
erated code . 236

Table 39 Successfully auto-vectorized loops of scalarized floating point gen-
erated code . 237

Table 40 Reference values (exec. time in µs) used for normalization of
auto-vectorization results 239

Table 41 Compilation options . 257
Table 42 Compilation options of Clang/LLVM 258
Table 43 Compilation options of GCC 259
Table 44 Compilation options of MSVC 260
Table 45 Reference values (exec. time in µs) used for normalization of

aggressive Clang options examination 265
Table 46 Reference values (exec. time in µs) used for normalization of

results on PI 2 . 272
Table 47 Reference values (exec. time in µs) used for normalization of

results on PI 3 . 277

36 List of Tables

Table 48 Reference values (exec. time in µs) used for normalization of
results on desktop with i7-3820 processor 282

Table 49 Reference values (exec. time in µs) used for normalization of
results on desktop with i7-3770 processor 287

Table 50 Reference values (exec. time in µs) used for normalization of
results on Raspberry PI 2 293

Table 51 Reference values (exec. time in µs) used for normalization of
results on Raspberry PI 3 300

Table 52 Reference values (exec. time in µs) used for normalization of
results on desktop with i7-3820 processor 307

Table 53 Reference values (exec. time in µs) used for normalization of
results on desktop with i7-3770 processor 314

Table 54 Reference values (exec. time in µs) used for normalization of
aggressive Clang options examination 321

Table 55 Reference values (exec. time in µs) used for normalization of
aggressive Clang options examination 326

Table 56 Reference values (exec. time in µs) used for normalization of
aggressive Clang options examination 331

L I ST INGS

1.1 MATLAB example code that cannot be automatically vectorized 46
1.2 Generated C code by MathWorks compiler 46
1.3 Generated SIMD code by current compiler 46
1.4 LLVM pseudocode using as input the generated code from MathWorks

compiler . 47
1.5 LLVM pseudocode generated by SIMD C code 47
1.6 FFT-32 stage 1, MATLAB code annotated for SIMD generation 50
1.7 FFT-32 stage 1, SIMD C code . 50
1.8 Snippet of parametrized processor model for code example 50

3.1 Example of pragmas for definition of SIMD block. 76
3.2 Example of pragmas for handling the fixed point arithmetic. 77
3.3 Example of types XML specification. 80
3.4 Example of customized instructions XML specification 82
3.5 Example of MATLAB code with matching operation and function. 83
3.6 Generated C code with matched operation and function. 83
3.7 Example of derived C types XML specification 84
3.8 Example of MATLAB code with variable declarations 84
3.9 Generated C code with derived C types 84
3.10 Example of shift and reciprocal XML specification. 86
3.11 Example of MATLAB code with shift and reciprocal operations. 86
3.12 Generated C code with shift and reciprocal operations. 86
3.13 Example of packing/unpacking XML specification 88
3.14 Function C prototypes of packing/unpacking operations 88
3.15 Example of MATLAB code with packing/unpacking operations at scalar-

ized code generation. 89
3.16 Generated C code with packing/unpacking operations at scalarized code

generation. 89
3.17 Example of MATLAB code with packing/unpacking operations at vector-

ized code generation. 90
3.18 Generated C code with packing/unpacking operations at vectorized code

generation. 90
3.19 Example of auxilary semantics XML specification 91

4.1 Customized instructions example . 111
4.2 Decomposed Customized instructions example 111

37

38 Listings

4.3 Function example . 112
4.4 Decomposed Function example . 112
4.5 Array Concatenation example . 113
4.6 Decomposed Array Concatenation example 113
4.7 Packing/unpacking example . 115
4.8 Packing/unpacking example after AST decomposition 115

5.1 Compiler’s output example (MATLAB file). 122
5.2 Compiler’s output example (C header file). 123
5.3 Compiler’s output example (defines file). 123
5.4 Compiler’s output example (C source file). 123
5.5 Code generation of for-loop example (MATLAB source). 125
5.6 Code generation of for-loop example (C generated code). 125
5.7 Code generation of if-else example (MATLAB source). 126
5.8 Code generation of if-else example (C generated code). 126
5.9 Code generation of while statement example (MATLAB source). 127
5.10 Code generation of while statement example (C generated code). 127
5.11 Fixed point operations example (MATLAB source). 129
5.12 Fixed point operations example (C generated code). 129
5.13 Derived C data types example (MATLAB source). 130
5.14 Derived C data types example (XML processor model) 130
5.15 Derived C data types example (C generated code). 131
5.16 Customized instructions - MATLAB operations example (MATLAB source).132
5.17 Customized instructions - MATLAB operations example (XML processor

model) . 132
5.18 Customized instructions - MATLAB operations example (C generated code).132
5.19 Scalarized MATLAB code example (MATLAB source). 134
5.20 Scalarized MATLAB code example (C generated code). 134
5.21 Packing/Unpacking code generation example (C generated code). 136
5.22 Vectorized MATLAB code example (MATLAB source). 138
5.23 Vectorized MATLAB code example (C generated code). 138

8.1 Snippet of parametrized processor model for the BoT architecture 262
8.2 Snippet of parametrized processor model for the tinyBoT architecture . . 263
8.3 Snippet of parametrized processor model for the ARM and x86 architectures264

Chapter 1

Introduction
MATLAB [MATLAB, 2016] is among very popular, perhaps the most preferred lan-

guage for algorithmic and system modeling with several million users worldwide both
in industry and academia in different scientific and technical disciplines. In the context
of embedded systems and Systems-on-Chip MATLAB is used for the development of
executable specification. Consequently, MATLAB compilation to implementation code
(e.g. C, VHDL etc) targeting software or hardware is of major importance to bridge the
gap between specification and implementation and reduce design time, effort and cost
of computer systems and systems-on-chip.
On the other hand, modern processors have been extended beyond the boundaries

of traditional architectures which provide only a conventional instruction set of limited
operations/tasks. In recent years, the capabilities of cutting edge processors have been
enlarged to provide a more efficient environment for the execution of applications which
demand intensive processing power. Several instruction-set architectures (ISA) have
been expanded to provide parallel computing in the form of Single Instruction, Multiple
Data (SIMD). Popular examples of SIMD extensions are the NEON [NEON, 2016] tech-
nology of ARM architecture and the SSE [SSE, 2016] technology of the x86 architecture.
Other classes of processors offered for advanced computing are the Domain-Specific

Instruction set Processor (DSIP) and Application Specific Instruction Set Processors
(ASIP) which offer a very interesting trade-off between implementation efficiency (area
and power for given performance) and flexibility/programmability (to implement differ-
ent algorithms with non overlapping execution, to accommodate future updates etc.).
DSIP processors composed by heterogeneous functional units of generic hardware blocks
with optional massive parallelism to enable real-time processing. Contrary to DSIP plat-
forms, the instruction set of ASIP processors is more customized to benefit a specific
set of applications constraining their reusability [Fasthuber et al., 2013]. DSIPs and
ASIPs are in most cases instantiated as components in Systems-on-Chip (including field
programmable ones) in embedded systems.
In the current thesis a MATLAB to C vectorizing compiler is presented exploiting

custom instructions, e.g. for SIMD processing and instructions for complex arithmetic
present in several processors and ASIPs. The compiler matches the MATLAB input
code (functions and operations) with the available instruction set of the target proces-
sor and generates ANSI C code representing the custom instructions via specialized

40

1.1 need for applications development in high level languages 41

intrinsic functions. The instruction set extension of the target processor is described
in a parameterized way using a target processor independent architecture description
thereby allowing support for any processor. The information contained in the target
processor description is used for the type inference of functions mapped with specialized
intrinsics to determine the type of function call. Furthermore, the compiler is able to
produce different data types such as fixed point, floating point or integers as well as
complex and non-complex types. The generated code is evaluated on various popular
processors and ASIP processors from DSP domain. In the evaluation, the generated
code by the compiler is compared against the MathWorks Coder [MathWorks Coder,
2016] generated code in combination with the state of the art optimizers/C compilers
(Clang/LLVM [Lopes and Auler, 2014], GCC [GCC, 2016], MSVC [MSVC, 2016]). The
evaluation comprises the comparison of the generated code performance by the MAT-
LAB compilers as well as the auto-vectorization techniques which are applied on the
generated code.

1.1 Need for Applications Development in High Level Lan-
guages

The development of an application demanding an optimized implementation of the
algorithm in a given time frame is a difficult procedure. High level languages, like
MATLAB, are indicated for the rapid prototyping of the application avoiding the detailed
specification of the algorithm where strong programming skills and a lot of effort/time
are required. Especially, due to MATLAB semantics the language is recommended for
the development of digital signal processing applications (a well supported domain by
hardware to meet real-time processing constraints). By using high level languages, the
algorithm developer focus on the design of the application without addressing issues
which are related to the target architecture. The high level specification alone does not
help as the insight required for efficient porting of algorithm to different architectures
is not captured. Furthermore, the abstract specification of the algorithm allows more
opportunities to the compilation flow for depended to architecture optimizations, leading
to a more efficient execution code.
Currently algorithm developers specify and explore an algorithm first at the MATLAB

level. Where performance (such as latency and throughput) of the code matters, the
limitations of existing compilers requires developers to spend effort writing code in low
level languages such as C or VHDL for every target type. Especially, the difficulty of
manual translation of algorithm in a lower level language is raised in relation with the
always increasing application complexity and technology capabilities. This design flow
is too time-consuming and erroneous and thus there is strong demand to effectively raise
the abstraction level.

42 introduction

The aforementioned reasons create the need for design automation in the form of com-
pilers from high level specifications to implementation code (e.g. C or VHDL etc) to meet
time related to market constraints of embedded systems markets. The greatest advan-
tage of the proposed compiler is that it raises the abstraction of algorithm development
by effectively supporting generation of target specific optimized C code automatically.
Thus the compiler allows algorithm developers to focus on a higher level of abstraction
(MATLAB coding). Utilizing the proposed Matlab to C compiler, developers can avoid
spending a lot of effort worrying about the right usage of specific custom instructions
at a low level abstraction such as the C language. Moreover, the MATLAB code can
be re-used for the compilation of the application to other architectures with only minor
changes at the specification of customized instructions.
The most challenging part of the MATLAB compilation is the addressing of the type

inference problem, the conversion of floating point MATLAB algorithm to fixed point
representation and the code generation system for complex instructions in order to im-
plement an efficient translation path from the MATLAB input code to a lower level rep-
resentation. The majority of research activity have focused at the efficient compilation
of the MATLAB code resolving the specific issues without leveraging the architecture’s
features. For this reason, the research presented in the current thesis has focused on
exploitation of the target processor/ASIP where substantial speed-up can be achieved.

1.2 Field of Application

MATLAB programming has a wide range of application in fields like math, statistics,
Digital Signal Processing (DSP), image processing and computer vision, finance and
biology. Although the compiler can be used for the compilation of applications that are
derived from these fields, the current study focuses at the application of the compiler
in the DSP domain. The compiler is evaluated within the domain of wireless -signal
processing applications. Popular kernels such as: CFO, FFT, mean, FIR, CORDIC and
QR-decomposition. The selected kernels offer various code characteristics such as data
dependencies, control flow, array dimensions and diversity of indexing instances and
SIMD operations. These properties are representative for the complete evaluation of the
compiler’s generated code. Furthermore, the specific domain in most of the cases allows
parallel computing which is the factor with the greatest impact regarding the speed-up
which can be achieved via the generation of vectorized C code. Thus, the selected kernels
also allow the evaluation of auto-vectorizing C compilers on the generated code by the
MATLAB compilers. The experimental applications are discussed more detail at section
6.2.
The generated code have been executed and evaluated on various ASIPs and general

purpose processors. More specifically, two different ASIP processors (one of them sup-
porting SIMD), two processors of ARM architecture and two processors of x86 architec-
ture have been employed. The two ASIPs are derived from IMEC ADRES template [Mei

1.3 advantage of generating c code exploiting custom instructions 43

et al., 2003] which is used for wireless signal processing applications delivering high per-
formance and energy efficiency. The ASIP processor supporting SIMD processing was
primary selected due to the VLIW paradigm which is used in this class of processors
and helps in instantiating several heterogeneous functional units. Several instantiations
of the VLIW data-paths are typically dedicated to SIMD data-paths to benefit from
the data-level parallelism (DLP). Secondly, the ASIP processors provide flexibility and
expandability of the architecture regarding the different application scenarios. This char-
acteristic meets the re-targetability of the compiler which matches the MATLAB code
with the specified custom instructions of the target processor.

The ARM and x86 are the most dominant commercial ISAs providing instruction set
extensions for SIMD processing accelerating the MATLAB generated code. The gener-
ated code may be executed on these processors using different operating systems and
different C compilers. Thus, the benchmarking of the compiler can be carried out using
different configurations making the benchmarking results more reliable. Finally, popu-
lar compilers like Clang/LLVM, GCC, or MSVC, which are used in the benchmarking,
perform many optimizations (such as auto-vectorization) at the C generated code and
in combination with the MathWorks Coder constitute the most competitive solution
against the proposed vectorizing compiler.

1.3 Advantage of Generating C Code Exploiting Custom In-
structions of Targeted Processors

The majority of the compilers don’t automatically generate code producing instruc-
tions from ISA extensions (ISE) of the target processor. The conventional compilers
generate code using only the basic ISA and they don’t produce the highest quality code
could be achieved in relation with the available architecture capabilities. Furthermore,
the instruction level parallelism (ILP) is provided in VLIW architectures cannot be ef-
ficiently exploited due to lack of advanced instruction selection algorithms to match
the input code with target processor/ASIP function units. This disadvantage has a
greater impact especially in the embedded systems domain. The embedded proces-
sors (like ASIPs) provide complicated, expendable and expensive, in the context of time,
tasks/operations/instructions via hardware modules which aren’t exploited by existing C
compilers. There is a considerable interest in academic community [Murray and Franke,
2012], [Arnold and Corporaal, 2001], [Scharwaechter et al., 2007], [Almer et al., 2012], [Li
et al., 2009], [Manilov et al., 2015], [Leupers and Bashford, 2000], [Leupers and Marwedel,
1996] and [Clark et al., 2006] with regard to the efficient instruction selection (in a low
level representation) from the custom instructions of the current processor/architecture.
Additionally, auto-vectorization techniques transform the intermediate representation

code (loop unrolling) into a suitable form and subsequently match the converted inter-
nal code with the available SIMD instructions of the target architecture. Despite that

44 introduction

the optimization looks promising, most of the popular vectorizing C compilers such as
GCC, Intel C compiler (ICC), IBM XLC don’t apply it extensively. According to the
study in [Maleki et al., 2011], only a small amount of loops can be automatically vec-
torized by commercial vectorizing C compilers. Although the loops theoretically can be
vectorized, compilers lack accurate analysis and they fail to perform certain compiler
transformations in order to enable vectorization [Maleki et al., 2011].
The above research studies/commercial tools try to exploit custom and SIMD instruc-

tions in a low level representation such as C code or an intermediate representation of
input C code. On the contrary, the current study introduces a new approach which
matches the input code with the available custom and SIMD instructions at a high level
representation. The proposed methodology is simpler for instruction selection because
the MATLAB code include compact information related to vectorization, since the MAT-
LAB statements may express vector or array operations. Thus, the high level vectorized
representation can be directly translated to lower level vectorized C code. Moreover,
due to its abstract specification, MATLAB code consists of complicated operations/-
functions, usually involving advanced math structures such as complex numbers and
multi-dimensional arrays. In embedded systems domain, operations such as complex
numbers and their polar coordinate representations are provided by many ASIP pro-
cessors as application-specific instructions. Therefore, there is a direct correspondence
between the MATLAB operations and custom instructions which are offered for the
generation of C code exploiting the custom instruction of the targeted processor.
On the contrary, traditional approaches such as the use of MathWorks compilation

tools in combination with a C compiler/optimizer (ex. Clang/LLVM) attempting to
vectorize the generated code, wouldn’t be an optimal solution. After scalarization, the
vectorization information contained in MATLAB code may sometimes be eliminated
incapacitating the auto-vectorizer to fully exploit the vectorized MATLAB operations/-
functions (such as a complex number or a matrix as a C-struct). In that way, the
vectorization information would be distributed among the nodes of the intermediate rep-
resentation tree (internal representation of input code) and it would be hard to export
the necessary information for vectorization.

1.3.1 Tools and Methodologies That Do Not Exploit Custom
Instructions of Targeted Processors

MathWorks Embedded Coder [MathWorks Embedded Coder, 2016] provides a pro-
cessor architecture description model similar to the one used by the compiler for the
description of the target processor customized instructions. The main disadvantage of
MathWorks Embedded Coder is that it supports customization of operations and func-
tions only for scalar and array data types. Embedded Coder neither generates vectorized
code nor exploits the features of the target vectorized architectures (e.g. native vector

1.3 advantage of generating c code exploiting custom instructions 45

data types, packing/unpacking elements to/from vector operations etc). Furthermore,
MATLAB code including operations with indexing cannot be always efficiently compiled
using Embedded Coder and employing array (instead of vector) operations to describe
customized C instructions. In such cases Embedded Coder first generates temporary
arrays to store sub-array references (related to indexed references) and then the special-
ized functions are called. The intermediate storage of indexed references (frequently used
in MATLAB coding) generates performance overheads in the generated code and may
cause even worse performance compared to that of the corresponding code generated by
MathWorks Coder [MathWorks Coder, 2016].
The fact that using MathWorks Coder combined with an auto-vectorizing C compiler

such as LLVM [Lopes and Auler, 2014] is not an efficient approach for generation high
performance code is already well argued in [Maleki et al., 2011]. MATLAB-to-C com-
piler scalarizes MATLAB array statements and thus largely eliminates information and
opportunities (present in MATLAB source code) for vectorization by LLVM or other
vectorizing compiler. Furthermore, MathWorks Coder doesn’t apply any optimizations
or code transformations to ensure that generated loop-nested statements are suitable for
vectorization. An auto-vectorizing compiler such as LLVM cannot vectorize any for-loop.
Even if LLVM is directed by the developer to vectorize any for-loop, this may not be
beneficial and might lead to even worse performance.

1.3.2 An Example of MATLAB Code That Cannot Be
Automatically Vectorized

The LLVM auto-vectorizer cannot vectorize any loop especially those, which process
data non-sequentially. The example described in the code-snippet in listing 1.1 below
presents a representative case where an automatic vectorizing compiler such as LLVM
cannot vectorize a given code, although this is still possible. The example code consti-
tutes a common case of MATLAB code which is frequently used in MATLAB program-
ming. The attempt to vectorize MATLAB code in listing 1.1 for Cortex A9 processor
with MathWorks compiler (generated code is presented in listing 1.2) in combination
with Clang/LLVM compiler with auto-vectorization enabled fails to vectorize for loop
corresponding to MATLAB array statement in line 5 of listing 1.2 as LLVM reports. Us-
ing the arguments -mllvm -force-vector-width=8 in clang/LLVM, the compiler is forced
to vectorize the for-loop producing the code shown in listing 1.4 (readable pseudocode
of LLVM). The code includes operations of packing (and unpacking) elements to vectors.
The intermediate result of ’out’ variable after the addition is unpacked and then packed
again to be used as an operand in the multiplication. This proves that LLVM doesn’t
perform code elimination of redundant packing/unpacking operations as applied by our
compiler.

46 introduction

Compiling the code of listing 1.1 for ARMv7-A architecture introducing to the para-
metrized processor model SIMD instructions for multiplication and addition on 32-bit
integers, the compiler produces the code shown in listing 1.3. The generated code for
this example qualifies that data are packed in array of vector inversely (packing in rows
instead of packing in columns). Then, the generated C code is compiled with clang to
produce the LLVM code which is shown in listing 1.5. The LLVM code consist of packed
data types and only SIMD addition and multiplication are performed. Finally, compil-
ing the MATLAB code of listing 1.1 and declaring the input parameters as unpacked
variables, the generated code by current compiler in combination with clang is similar to
the code in listing 1.4 but without the intermediate redundant packing and unpacking
operations.� �

1 function [out] = matlabCoder_ex(in1, in2) %in1, in2 are 512x16384
2 out = int32(zeros(512,16384));
3 for k=1:2:512
4 out(k,:) = in1(k,:)+in2(k,:);
5 out(k,:) = out(k,:).*in2(k,:);
6 end
7 end� �

Listing 1.1: MATLAB example code that cannot be automatically vectorized

� �
1 void matlabCoder_ex(const int in1[8388608], const int in2[8388608], int out[8388608]){
2 int k; int b_k; int i0;
3 for (k = 0; k < 256; k++) {
4 b_k = k << 1;
5 for (i0 = 0; i0 < 16384; i0++) {
6 out[b_k+(i0 << 9)]=in1[b_k+(i0 << 9)] + in2[b_k + (i0 << 9)];
7 out[b_k + (i0 << 9)] *= in2[b_k + (i0 << 9)];
8 }
9 }

10 }� �
Listing 1.2: Generated C code by MathWorks compiler

� �
1 void matlabCoder_ex(vect_t out[8388608/SW], vect_t in1[8388608/SW], vect_t in2[8388608/SW]){
2 for(k=1; k < 513; k=k+2){
3 for (si0 = 0; si0 < 16384; si0 = si0 + SW){
4 out[(si0+(k-1)*16384)/4]=vaddq_s32(in1[(si0+(k-1)*16384)/SW],in2[(si0+(k-1)*16384)/SW]);
5 out[(si0+(k-1)*16384)/4]=vmulq_s32(out[(si0+(k-1)*16384)/SW],in2[(si0+(k-1)*16384)/SW]);
6 }
7 }
8 }� �

Listing 1.3: Generated SIMD code by current compiler

1.4 brief review of related work 47

� �
1 for loop
2 %1 = load the 4 next elements of in1
3 %2 = insert elements %1 to vector
4 %3 = load the 4 next elements of in2
5 %4 = insert elements %3 to vector
6 %add_res = SIMD_addition %2, %4
7 %5 = extract elements of vector %add_res
8 store 4 elements of %5 to out
9 %6 = load the 4 next elements of in2

10 %7 = insert elements %6 to vector
11 %mul_res = SIMD_multiplication %add_res, %7
12 %8 = extract elements of vector %mul_res
13 store 4 elements of %8 to out
14 end for
15� �
Listing 1.4: LLVM pseudocode using as input the generated code from MathWorks

compiler

� �
1 for loop
2 %1 = load i vector from in1
3 %2 = load i vector from in2
4 %add_res = SIMD addition %1, %2
5 store %add_res to i vector of out
6 %3 = load i vector from in2
7 %mul_res = SIMD multiplication %add_res, %3
8 store %mul_res to i vector of out
9 end for� �

Listing 1.5: LLVM pseudocode generated by SIMD C code

1.4 Brief Review of Related Work

Several approaches have been presented for the compilation of MATLAB to languages
that provide a more efficient execution environment. One of the first approaches is FAL-
CON [De Rose and Padua, 1999], [DeRose, L. A., 1996] a MATLAB to FORTRAN 90
compiler with main key contribution the static and dynamic inference mechanism sup-
ported by a sophisticated symbolic value propagation algorithm. MaJIC [Almási and
Padua, 2002], is a just-in-time compiler applying ahead-of-time compilation in MAT-
LAB codes, using a type inference technique similar to FALCON. MATCH [Banerjee
et al.,], [Banerjee et al., 1999] and [Banerjee, 2003] compiler and its commercial version,
AccelDSP [Banerjee et al., 2004] target high-level synthesis [Micheli, 1994] and translate
MATLAB code to a register transfer level HDL supporting fixed point arithmetic. Both
tools provide a framework of notations named as directives, that the user can insert in
MATLAB code to bridge the gap between MATLAB source and the available computa-

48 introduction

tional structures. OTTER [Quinn et al., 1998b], [Quinn et al., 1998a], MENHIR [Chau-
veau and Bodin, 1999] and RTExpress [Benincasa et al., 1998] are MATLAB compilers
producing SPMD-style C code for parallel code execution (MENHIR can produce C or
FORTRAN) relying on libraries such as ScaLapack and MPI message-passing libraries.
The MAT2C [Joisha and Banerjee, 2007], a similar to MathWorks compiler [MATLAB
compiler, 2016], uses MAJICA [Joisha and Banerjee, 2003a] type inference tool attain-
ing better performance from MathWorks compiler (MCC) [MATLAB compiler, 2016].
MEGHA [Prasad et al., 2011] uses a heuristic algorithm to map data parallel regions of
the program (kernels) to heterogeneous processors (CPU and GPU). In [Shei et al., 2011],
fragments of MATLAB code that incur high overheads, are compiled and scalarized us-
ing a modified typed fusion algorithm [Kennedy and Allen, 2002] aiming at parallelizing
the scalarized statements. MATISSE [Bispo et al., 2014], [Bispo et al., 2015] compiler
focuses on MATLAB to C efficient compilation performing optimizations and transfor-
mations on MATLAB code supported by LARA [Cardoso et al., 2012] aspect-Oriented
programming language.

1.5 Brief Presentation of the Developed Compiler and Its In-
novative Features

The MATLAB-to-C compiler generates optimized C code exploiting the instruction set
architecture extensions (ISE) presented in the given ASIP platforms/processors. MAT-
LAB expressions matching the extended instruction set of the targeted processor are
exposed in C code in the form of intrinsic functions. Such functions can be exploited
by any C compiler supporting the target processor at a later stage including the pop-
ular GCC and LLVM/Clang and also (retargetable) ASIP compilers (i.e. Target Suite
Tool [ASIP Designer, 2016]). In this way the compiler allows mapping specialized op-
erations to specific hardware modules present in ASIPs and advanced processors. The
compiler is target processor independent since the selection of instructions is made us-
ing a parameterized processor model. For the type inference of functions mapped to
hardware, the parametrized processor model is employed to resolve the function’s type
result using the specification of the associated specialized instructions. The compiler’s
back-end may produce either scalarized or SIMD-style C depending on the target pro-
cessor. SIMD support can be configured with respect to the blocks that are eligible for
SIMD code generation and the preferred vector size. Furthermore, the compiler is able
to produce different data types such as fixed point, floating point or integers as well
as complex and non-complex types. The subsection 1.5.1 present briefly the compiler’s
architecture while in subsection 1.5.2 the innovations of compiler are discussed.

1.5 brief presentation of the developed compiler/innovative features 49

1.5.1 Presentation of Compiler’s Infrastructure

Parsing using
flex/bison

AST
construction

Front end (Parsing)

Annotated
MATLAB

code

Scalarized
C code

SIMD-style
C code

Floating
point

Fixed
point

User-
defined

architecture

Specialized instruction set
Intrinsic

name
Function /
operator

Instruction’s
type/ SIMD

width

Packed
operands

Operands’/
result’s type

…..

ADD + 4 <packed,
packed>

<t_fi, t_fi,
t_fi>

t_fi type
Data type

Word, fraction
Shape / size

Complex fixed point
unspecified, unspecified

unspecified
SIMD width 4

Code generation

Back end

Instruction
selection

AST
transformation

Type inference/
Type checking

M
iddle layer

redundant packing/
unpacking
elimination

unspecifiedConstant value

Figure 1: Compiler infrastructure.

Figure 1 depicts the compiler’s flow highlighting the innovative contributions. The
inputs to the compiler are the annotated application MATLAB code and the instruction
set architecture of the target processor in XML. Annotations of MATLAB code are in-
troduced by the developer in the form of pragma functions that comply to MATLAB
syntax. MATLAB code with annotations beyond MATLAB syntax could not be used by
MathWorks tools thus making very difficult the application development in MATLAB.
Pragmas are used to declare the program’s parameters as to the data type, the array
shape/size and the fixed point attributes (word and fraction length) in the case of fixed
point variable. Pragma functions are also used for the selection of the parts of the input
code (SIMD blocks) that will be translated into SIMD style allowing the developer to
select the preferred vector size of the block’s SIMD operations. Listing 1.6 shows the
MATLAB code of the first stage of a 32-point FFT annotated for SIMD code generation.
The dec_fixpc_p pragma functions declare vector variables of complex fixed point data
type with word length of 16 and fraction length of 12 while the last two parameters are
referred to the dimensions of the variables. The startSIMD and stopSIMD pragma func-
tions define the SIMD block while the parameter (value 2) of startSIMD indicates the

50 introduction

selected SIMD width. Listing 1.7 presents the generated SIMD code of the MATLAB
code depicted in listing 1.6 using the parametrized processor model of listing 1.8. The
output includes the SIMD block for-loop with step ’SW’ (can be defined by user at C
with any value) and loop condition 4 as the operands’ size for the specialized instructions.
The complex fixed point addition, subtraction and multiplication have been mapped to
ADD, SUB, VMUL intrinsic functions which has been specified in the parametrized pro-
cessor model, while flattening has been performed for the generation of the vector indices.� �
1 dec_fixpc_p(’in’,’16’,’12’,4,8); %variable declerations
2 dec_fixpc_p(’twd_fac’,’16’,’12’,4,1);
3 dec_fixpc_p(’out’,’16’,’12’,4,8);
4 startSIMD(’2’);
5 for k=1:size(in,1) %stage 1
6 out(:,k) = in(:,k) +in(:,k+4);
7 out(:,k+4) = (in(:,k) - in(:,k+4)).* twd_fac;
8 end
9 ... %code for stage 2 and 3

10 stopSIMD();� �
Listing 1.6: FFT-32 stage 1, MATLAB code annotated for SIMD generation

� �
1 for(si=0; si < 4; si=si+SW){ //SIMD block for-loop
2 for(k=1; k < 5; k=k+1){
3 out[(si+(k-1)*4)/SW]=ADD(in[(si+(k-1)*4)/SW],in[(si+(k+3)*4)/SW]);
4 tmp0[si/SW]=SUB(in[(si+((k-1)*4))/SW],in[(si+((k + 3)*4))/SW]);
5 out[(si+((k + 3)*4))/SW]=VMUL(tmp0[si/SW], twd_fac [si/SW]);
6 }
7 ... //code of the rest FFT stages is continued here
8 }� �

Listing 1.7: FFT-32 stage 1, SIMD C code

� �
1 <!---types--->
2 <type id="f_c" dt="fixp" complex="true"></type>
3 <!–-Customized operations–->
4 <instruction name="ADD" type="SIMD" op="+" pack="p,p" SIMD_width ="true" op_types="f_c,f_c">
5 </instruction>
6 <instruction name="SUB" type="SIMD" op="-" pack="p,p" SIMD_width ="true" op_types="f_c,f_c">
7 </instruction>
8 <instruction name="VMUL" type="SIMD" op="*" pack="p,p" SIMD_width ="true" op_types="f_c,f_c">
9 </instruction>� �

Listing 1.8: Snippet of parametrized processor model for code example

The parameterized processor model describes the instruction set architecture of the
target processor including custom instructions. The model includes a list with informa-
tion about the instructions. For each instruction the function name or operation type,
the corresponding instruction name in C, the instruction type (scalar, SIMD or array),

1.5 brief presentation of the developed compiler/innovative features 51

the operands needed to be packed for SIMD processing and the operands’ (and result’s)
types are provided. For the instructions which can be mapped without the requirement
of any of the type’s attributes, the corresponding attributes can remain unspecified.
Listing 1.8 shows an example of the parametrized processor model using XML specifi-

cation. Firstly, the operand type f_c is defined which is used in the below instructions
specification to determine the intrinsic’s type operands. Then three customized SIMD
instructions are described for the addition, subtraction and multiplication MATLAB op-
erations. The pack attribute denotes that the instructions’ operands must be in packed
form and the op_types attribute associates the operands’ types with the predefined f_c
type.
In the compiler’s middle-layer, type inference analysis is performed using an approach

similar to the one described in [De Rose and Padua, 1999] only for compile-time type
detection while the type inference of the function calls mapped to custom instructions
is based on the parameterized processor model. For the latter, the type checking of
operands’ types and the type inference of function call’s result is performed involving
the specified types of the custom instruction in parametrized processor model. In the
next step, the instruction selection pass utilizes the parametrized processor model to
map available specialized instructions to function calls and MATLAB operations. To
achieve this, the traversal passes to the model, the operands/parameters types, the op-
eration type or function name and information on whether or not the current function
or operation is part of a SIMD block. After instruction selection, a multi-pass stage is
applied to transform the AST for data parallelization execution. This first pass involves
the decomposition of complex MATLAB array expressions to simpler ones retaining the
vectorized form of the SIMD operands. In the next step, new statements are created
to transfer only the unpacked SIMD operand values’ to packed data structure (ready
for SIMD processing). Similar statements are introduced in the low-level IR, only for
SIMD operation result variable’s which have been declared as unpacked data types,
transferring the packed result’s values to the unpacked data structure. In the next step
redundant packing/unpacking elimination is performed to remove the redundant inter-
mediate packing/un-packing statements. After this optimization the SIMD operands
are packed only once (unlike to multi reads) and only the results which are used outside
the SIMD block are unpacked.
The compiler’s back-end consists of the code generation which generates the special

instructions as intrinsic functions. The output depends on the developer’s SIMD block
declarations and may be scalarized where MATLAB array expressions (operations) are
translated to C loop nests or SIMD-style C where each SIMD block is implemented
as a C for-loop. The for-loops corresponding to SIMD blocks use the specified by the
developer vector width as step and the array size of the SIMD block operands as for
loop condition. The derived data types can be floating point, integer or fixed point. For
the latter, extra C code is generated for handling fixed point arithmetic such as shifting
to adjust the operand’s fraction length.

52 introduction

1.5.2 Innovations and Contributions of the Compiler

The compiler constitutes an innovation since no compilation frameworks supporting
the generation of customized and vectorized C code for any target processor (in par-
ticularly useful in ASIP context) currently exist. The proposed approach introduces a
multitarget MATLAB-to-C compilation framework exploiting the entire instruction set
of a given target processor through the use of a parameterized target processor model.
The compiler generates vectorized (SIMD) or scalarized code supporting different data
types (including floating point, integer or fixed point) compatible with any standard
C/C++ compiler supporting the target architecture and its custom instructions. The
compiler is able to generate C code including vectoring semantics such as native vector
types, packing/unpacking operations and indexing corresponds to vector arrays. The
main contribution of the work presented in this thesis includes:

• A target processor independent MATLAB to vectorizing C compiler that exploits
custom instructions present in the target instruction set.

• The description of a parametrized processor model that can be used for the spec-
ification of the target architecture ISE. The processor model is exploited by the
MATLAB compiler to generate high performance C code.

• An instruction selection algorithm for efficient matching of complex MATLAB
operations/functions to custom instructions.

• A methodology for the support of data parallel execution and the generation of
vectorized C code.
• A type inference approach for type checking and inference of function calls which

are matched to custom instructions using the parametrized processor model.
• Evaluation of the compiler on a variety of ASIPs and processors comparing against

MathWorks Coder.

1.6 Thesis Organization

The remainder of this thesis is organized as follows:

• Chapter 2 overviews the existing works of approaches for MATLAB compilation
to a more efficient execution environment. Furthermore, auto-vectorization tech-
niques are discussed and an evaluation of auto-vectorizing compilers from literature
is presented.

• In chapter 3 the compiler’s front-end is presented. The compiler’s input is described
focusing on the annotations of MATLAB code and the parametrized processor
model. The infrastructure of the compiler’s front-end is presented as well.

1.6 thesis organization 53

• In chapter 4 the compiler’s middle-layer is presented. In this chapter, the internal
stages of the compiler’s to prepare the input MATLAB code for code generation
are described.

• In chapter 5 the compiler’s back-end is presented. The code generation of MAT-
LAB input code is described and generated C code examples by the compiler are
presented.

• Chapter 6 discusses the evaluation of the compiler. The performance of the com-
piler’s generated code by the compiler is examined comparing to the performance
of the generated code by the MathWorks Coder on various processors. A brief
discussion of the execution performance of the generated code by both compilers
using different compilation techniques among the different architectures/processors
is discussed as well.

• Chapter 7 discusses the final conclusion of this thesis. In addition, topics for future
work are discussed in the domain of MATLAB compilation.
• The chapter 8 includes the appendix presenting technical details and supplemen-

tary diagrams of the compiler’s evaluation results.

Figure 2 shows a dependence graph of the chapters.

Chapter 1

Introduction

Chapter 2

Related Work

Chapter 3

Compiler s Front-end

Chapter 4

Compiler s Middle-layer

Chapter 5

Compiler's Back-end

(Code generation)

Chapter 6

Evaluation of the

Compiler

Chapter 7

Conclusion and Future

Work

Chapter 8

Appendix

Figure 2: Dependence graph of chapters.

Chapter 2

Related work
The research activity in the domain of MATLAB compilation focused on the type infer-

ence analysis and the translation of MATLAB code to lower level representations aiming
improvement of performance. Due to MATLAB type-less semantics, sophisticated anal-
ysis is required for the type inference of MATLAB code. Furthermore, MATLAB is
a scripting language accompanied with an interpretation system. This programming
environment comprises performance constraints, especially for a language intended for
numerical computing. Thus, there is the need for the compilation of MATLAB to im-
plementation code targeting software or hardware.
Modern architectures include vector units that have been designed to accelerate the

processor’s performance. The vector extensions can be leveraged either explicitly by pro-
gramming with SIMD instructions or implicitly by utilizing an auto-vectorizing C com-
piler. Although, the development of application code with vector instructions can con-
siderably accelerate the performance, it requires effort, deep knowledge of the SIMD ar-
chitecture and comprises portability constraints. On the other hand, auto-vectorization
is a promising optimization method, that transforms loops to vectorized code. There is a
considerable interest in academic community about the application of auto-vectorization
techniques on C code. However, auto-vectorization is not always applicable due to al-
gorithmic constraints (data dependencies) as well as the low level semantics of the C
language, where much data type information is hidden in detailed complex syntax con-
structs. Hence, as advocated in Chapter 1, we propose to work from the Matlab specifi-
cation level instead.
This chapter gives an overview of the existing work on the compilation of MATLAB

language or alternative to MATLAB languages such as Octave and Scilab. The studies
concern the type inference and the translation of MATLAB language to C or FORTRAN
providing a more efficient environment such as the execution of generated code on GPUs,
high performance parallel computing architectures or reconfigurable multi-Core embed-
ded systems. Furthermore, compilers are also presented for the mapping of MATLAB to
heterogeneous computing systems and aspect oriented optimization approaches. At the
end of chapter, studies concerning auto-vectorization issues as well as studies evaluating
the effectiveness of auto-vectorization are discussed as well.

54

2.1 type inference approaches 55

2.1 Type Inference Approaches

In [De Rose and Padua, 1999] and [De Rose and Padua, 1996] De Rose and Padua
present a technique which combines a static and a dynamic inference methodology to
translate MATLAB code to FORTRAN. Initially, the source code is transformed to
static single statement (SSA) form. Then static analysis operates on SSA to resolve the
variables types using a repetitive forward propagation algorithm. Additionally, constant
value propagation and an on-demand backward propagation of types are applied. Fur-
thermore, the type inference mechanism generates code that applies dynamic analysis
at run time to infer the type of variables with unknown attributes. More specifically,
the code that is generated allocates variables with appropriate arrays dimensions while
extra variables are produced to handle any possible data type.
The MAGICA [Joisha and Banerjee, 2003a] type inference engine is a tool that deter-

mines compile-time the variable types of MATLAB expressions and scripts. The tool
infers the value range, data type and array shape of the variables of the given input
MATLAB code. It uses its own internal system of types representation, using semantics
and mechanisms from Mathematica [Mathematica, 2014]. The MAGICA tool supports a
large set of the MATLAB language with a variety of built-in functions. It can be used as
add-on, integrated in compilers’ front-ends for type-related optimizations, code genera-
tion or code annotation and visualization. In studies [Joisha et al., 2001] and [Joisha and
Banerjee, 2006], Joisha and Banerjee describe their array inference methodology using
an algebraic system to determine the shape of MATLAB variables/arrays. The model
is able to cope with unknown array shapes/dimensions in compile-time where symbolic
types are propagated for the resolution of the subsequent arrays. The new type inference
mechanism have been adopted by the MAGICA tool.
In [Chauhan et al., 2003], a translation system which generates FORTRAN or C

linear algebra libraries from MATLAB code is presented. The translator’s type infer-
ence scheme accepts the MATLAB prototype with a variety of specifications about the
library’s input parameters. The type inference algorithm transforms the input MAT-
LAB code in graph performing a n-clique algorithm to statically deduce the variables
types. Subsequently, the slice-hoisting [Chauhan and Kennedy, 2003] method (based
on [De Rose and Padua, 1999]) is applied for the dynamic size inference of the types
which have not been resolved. The idea of slice-hoisting technique is to identify slices
of code that participate in the computing of the arrays size and hoist them before the
first use of the corresponding array variable in order to preallocate the entire array from
the beginning of its use. The result of this type inference scheme is a set of specialized
variants of library procedures depending on the types that have been inferred.

In [Shei et al., 2009] a type inference approach which specializes the MATLAB input
code to different type-based versions is discussed. The approach incorporates constant
propagation using data flow analysis to evaluate the statement’s type for the variables
that can be determined in compile-time enhancing the resolution of variables’ types. The

56 related work

disambiguation of types is applied via partial evaluation [Jones et al., 1993] distinguishing
the types can be inferred in compile-time. For variables that cannot be resolved, fall-back
code is produced to handle parts of code involving unknown type of variables in run-
time. The proposed type inference approach is indicated for optimization applications
such as recognizing code patterns, MATLAB vectorization [Birkbeck et al., 2007] and
better mapping of operations to the underlying libraries [McFarlin and Chauhan, 2007].
The existing approaches provide adequate solutions for the resolution of the types of

MATLAB code. Most of them introduce advanced algorithms for the static type infer-
ence in compile-time as well as methods for run-time analysis of the MATLAB variables
that haven’t been resolved. However, the existing approaches qualify the requirements
of the proposed compilation framework where the type inference of the function calls
mapped to customized instructions are based on the prototype of the underlying tar-
get processor/ASIP instructions. The proposed MATLAB compiler uses a variation of
that described in [De Rose and Padua, 1999]. The FALCON project approach was cho-
sen to be implemented in the current compilation framework because it provides the
fundamental and well defined solution of the type inference problem. However, the de-
ployed type inference mechanism has been extended according to the specifications of
current compiler scheme. The proposed type inference mechanism resolves the output
of function calls mapped with customized instructions depending on the hardware im-
plementation. This is achieved thought the description of the customized instruction at
the parametrized processor model.

2.2 MATLAB-to-C Compilation

Otter [Quinn et al., 1998b] and [Quinn et al., 1998a] is a MATLAB to C compiler
producing SPMD-style C code, suitable for parallel processing using the MPI communi-
cation protocol. The compiler transforms the AST inserting additional statements for
the manipulation of calls to the run-time library for parallel processing. The compiler’s
output is C code with calls to the run-time library for the distribution/communication of
the data to be processed in parallel along the architecture’s nodes. Otter is equipped with
an MPI run-time library implementing the initialization of the parallel environment and
the communication between platform’s nodes. Otter’s run-time library also implements
parallel operations through calls to third-party numerical libraries such as the linear
algebra ScaLAPACK library. The generated code by the Otter compiler can be applied
on a distributed-memory multicomputer, a cluster of PCs, a symmetric multiprocessor,
or a network of symmetric multiprocessors.
RTExpress [Benincasa et al., 1998] is a MATLAB compilation framework for the

execution of MATLAB code on high performance computers. The RTExpress utilizes
a target balancing tool to allow the manually parallel partitioning of MATLAB code
providing a variety of parallel paradigms: task parallel, pipelined, data parallel, round
robin, and mixed mode parallelization. The RTExpress environment acts in combination

2.2 matlab-to-c compilation 57

with the MCC compiler. More specifically, it modifies the MATLAB input code for
parallel execution preventing the generation of for-loops by MCC. After the generation
of C code by MCC, RTExpress links the generated code with its Parallel Function
Library, MPI Library, Third Party Libraries, and vendor specific libraries.

Menhir [Chauveau and Bodin, 1999] is a multi-target compiler for MATLAB, gen-
erating C or FORTRAN code. The compiler allows the generation of sequential or
parallel code which is relied on libraries such as ScaLAPACK. Menhir provides a target
description system addressing targets programming languages such as FORTRAN and
C, or a linear algebra library. Menhir’s target system may generate various code styles
defining MATLAB language semantics such as: data structures, matrix accessing, MAT-
LAB operators and functions, memory management operations and the form of output
statements.
In [Allen, 2005], an automation path from MATLAB to C targeting DSP platforms is

presented. The study focus on the conversion of floating point to fixed point arithmetic.
It introduces the mode inference to infer the mode of fixed point arithmetic as to the
overflow/rounding mode and fixed point precision. Furthermore, it discusses issues con-
cerning the application of generated code on DSPs, the generation of array statements
with loop-carried dependencies and the loop-fusion optimization in order to improve the
reuse of array references.
MAT2C [Joisha and Banerjee, 2007] is a MATLAB to C translator system similar

to the MCC [MATLAB compiler, 2016] MathWorks compiler. The MAT2C uses MAG-
ICA [Joisha and Banerjee, 2003a] tool to statically infer the types of input MATLAB
code. In case that the types cannot be resolved, a fall-back code is produced for run-time
resolution. MAT2C performs several optimizations such as dead-code elimination, array
copy propagation, common-subexpression elimination, constant folding, code selection
and array storage coalescence. The translator is able to produce C/C++ code of stan-
dard C library or MathWorks math library. Furthermore, MAT2C compiler also applies
an optimization [Joisha and Banerjee, 2003b] on the generated code for the memory
allocation problem of MATLAB array variables.
MEGHA [Prasad et al., 2011] is a MATLAB compiler framework which enables syner-

gistic execution on heterogeneous processors. MEGHA’s output is a combination of C++
and CUDA code. The compiler identifies regions of MATLAB source code as kernels
(fragments of code that can be run together on GPU) assigning them to heterogeneous
processors (CPU or GPU). For the mapping of kernels to heterogeneous processors, ker-
nels and their associated dependencies are represented in the form of graph. Then, a
heuristic algorithm is applied to solve the scheduling problem, minimizing the mem-
ory overhead of transferring data from/to GPU. Finally, the compiler implements opti-
mizations such as the transformation of kernels’ intermediate arrays to scalar variables
(common technique in CUDA programming) and parallel loop reordering to increase the
locality.

58 related work

MATISSE [Bispo et al., 2014], [Bispo et al., 2015] is multi-target MATLAB to C
compiler performing optimizations and transformations. The compiler can also produce
MATLAB code for validation, testing and monitoring purposes. Another target system
of MATISSE is the generation of pragma directives which accelerate the generated code
via openCL (OpenACC). MATISSE incorporates LARA [Cardoso et al., 2012], an aspect
oriented programming language developed for code instrumentation and analysis, type
inference assistance and hardware synthesis optimizations. MATISSE implements type
inference with the assistance of LARA which provides information about the variable
types. LARA is also utilized by MATISSE for source to source code transformations.
In [Shei et al., 2011], a compilation framework which compiles MATLAB array state-

ments to scalarized C++ code is presented. The compiler uses a modified version of
Allen and Kennedy’s typed fusion algorithm [Kennedy and Allen, 2002] to group vec-
tor/array statements which don’t contain dependences among them. Subsequently, the
clustered statements are translated to C++ performing scalarization and loop fusion.
The generated loop-nested code is always parallelizable, since is produced by vectorized
statements. Thus, the compiler’s output can be leveraged by high performance parallel
architectures.
Table 1 gives an overview of the basic characteristics of existing MATLAB to C com-

pilers by comparing features that are presented in the proposed compiler. The various
approaches address a wide range of MATLAB compilation for high performance comput-
ing. However, all these compilers produce sequential or parallel C code in SPMD-style
targeting mainly distributed architectures. More specifically, the Otter [Quinn et al.,
1998b], RTExpress [Benincasa et al., 1998] and Menhir [Chauveau and Bodin, 1999]
MATLAB compilers produce parallel code in the style of SPMD targeting the compi-
lation of MATLAB code for parallel distributed architectures. MEGHA [Prasad et al.,
2011] compiler generates CUDA C code for the acceleration of performance on GPU
cores. The MAT2C [Joisha and Banerjee, 2007], MATISSE [Bispo et al., 2014] and the
compilers in [Allen, 2005] and [Shei et al., 2011] generate sequential C code targeting
conventional processors. None of the existing approaches produces vectorized C code
in the form of SIMD intrinsics. Some of these approaches take advantage of computing
parallel capabilities. However, none of them produce code that is suitable/optimized
for embedded systems generating specialized instructions of the target processor/ASIP.
Finally, only the Menhir and Matisse compilers support a multi-target compilation en-
vironment for the customization of the generated code, although they don’t provide a
description model to exploit the capabilities of the target architecture.
On the contrary, the proposed approach introduces a multi-target MATLAB-to-C

compilation framework expendable and flexible to cover any target processor especially
those presented in embedded systems. The proposed compiler uses a parameterized
target processor model and exploits the entire instructions set of the processor. The
compiler generates scalarized or vectorized C code in the form of SIMD intrinsics. Finally,

2.3 matlab compilation to hardware 59

the compilation framework support the code generation of floating point and fixed point
data types (which are commonly used on DSP cores).

C code style ISE
code generation

multi
-target

fixed point
support

Otter [Quinn et al., 1998b] SPMD-style C - - -
RTExpress

[Benincasa et al., 1998] parallel C - - -

Menhir
[Chauveau and Bodin, 1999]

parallel
/sequential C -

√
-

[Allen, 2005] sequential C - -
√

MAT2C
[Joisha and Banerjee, 2007] sequential C - - -

MEGHA
[Prasad et al., 2011]

CUDA
SPMD-style - - -

MATISSE
[Bispo et al., 2014] sequential C -

√
-

[Shei et al., 2011] sequential C - - -

Table 1: Comparison of MATLAB to C compilers.

2.3 MATLAB Compilation to Hardware

MATCH [Banerjee et al., 1999], [Banerjee et al.,], [Haldar et al., 2001b] and [Haldar
et al., 2001a] compiler and its commercial version, AccelDSP [Banerjee, 2003] and [Baner-
jee et al., 2004] automatically map MATLAB code to distributed, heterogeneous com-
puting systems composed by field-programmable gate arrays (FPGAs), embedded pro-
cessors and digital signal processors. MATCH translates the MATLAB code assigned to
DSP or Embedded processors into equivalent C code while the MATLAB code mapped
to FPGA’s is translated in Register Transfer Level (RTL) to VHDL code. The com-
piler provides a set of directives to: explicitly declare the variables’ type/shape, describe
the available computing systems and pre-defined libraries, indicate optimizations (un-
roll, pipeline, map array variables to embedded RAMs) and indications to map the
MATLAB code to computing components. However, MATCH is able to automatically
map the MATLAB code into the available computing systems of a target architecture.
To achieve this, it uses a mixed integer linear programming formulation with primary
objective to optimize the performance under resources constraints or vice versa. Ac-
celDSP converts the floating point MATLAB code to fixed point equivalent using an
auto-quantization algorithm [Banerjee et al., 2003] and [Roy and Banerjee, 2004]. The
algorithm computes the value range of variables using quantization of MATLAB oper-
ations. Then, it calculates the difference between the initial floating point code and
the examined fixed point version. The procedure is repeated, increasing the fixed point

60 related work

bit-width, until the difference of floating and fixed point values is smaller than the pre-
defined error metric value.
In [Khoury et al., 2011] a framework is presented as extension to Octave’s interpreta-

tion system for the parallel execution on Cell Broadband Engine architecture following
a MIMD style. The framework exploits the Cell architecture as to the data, instruction-
level, pipeline and task parallelism. It performs partitioning of the matrix instructions
as sub-operations which process different amount of data and assigns (scheduling) them
for processing on the available matrix execution units. The scheduler assigns at the Cell
processor elements different instructions or the same operation with a different partition
of data under the restrictions of data and control dependencies.
The ALMA project [Stripf et al., 2012], [Becker et al., 2012] and [Stripf et al., 2013]

is a toolchain approach for the compilation of the Scilab language to reconfigurable
multi-Core embedded systems. The toolchain produces automatically parallel code sup-
porting any reconfigurable architecture. To achieve this, a Architecture Description
Model (ADL) has been developed to describe the target architecture. The information
is used by the compiler for parallelization tasks and the generation of target-depended
code. The compiler’s framework performs fine-grain and coarse-grain parallelism using
the GeCoS [Floc’h et al., 2013] compiler infrastructure.
Math2Mat [Thoma et al., 2012] is a translation system of Octave/MATLAB to VHDL

focusing on the efficient generation of hardware with a pipelined structure. The main goal
of Math2Mat is the efficient combination of basic blocks in order to generate MATLB
operations or functions of the source code. The tool is accompanied by automated
verification methods using the SystemVerilog language to verify the generated design.

Table 2 presents the major features of the existing works regarding the application of
MATLAB into hardware. The MATCH compiler [Banerjee et al., 1999] targets to the
generation of code including embedded processors while its output may be of fixed point
data types. However, the tool focus at the assignment of the source code sections for
execution to the heterogeneous computing systems. The tool is not designed to leverage
any hardware components special capabilities, thus any available specialized instructions
or SIMD operations cannot be exploited. In [Khoury et al., 2011], a framework for the
extension of the Octave’s interpretation system is presented. The framework internally
transforms the source code to allow parallelization in different granularities such as data
parallelism (SIMD) or instruction level parallelism having main objective the generation
of MIMD code. Although, the tool is a component of an interpretation system - not
a standalone compiler. Moreover, its use is restricted allowing the parallel computing
of Octave code only at cell broadband engine architecture. The ALMA project [Stripf
et al., 2012] presents a toolchain compilation framework for the application of Scilab
code to embedded Multi-core systems. The tool consists of an architecture description
model for the description of the target processor including the specification of available
SIMD instructions. The ALMA project and the proposed compiler present similar char-
acteristics and the two approaches are closely related. However, there is a significant

2.4 mathworks commercial tools 61

difference between the two tools. The compilation framework of ALMA project trans-
form the array-syntax source code to a scalarized lower level representation. Then, the
intermediate representation code is vectorized using the GeCos tool included the ALMA
compilation framework. The approach is more similar to that of using the MathWorks
Coder in combination with an auto-vectorizing C compiler than the proposed approach
which directly vectorizes the array MATLAB statements.

code style hardware fixed point
support

SIMD
support

MATCH
[Banerjee et al., 1999] C/VHDL FPGA, DSP,

embedded processors
√

-

[Khoury et al., 2011] internal shared
library’s functions

Cell Broadband
Engine -

√

ALMA project
[Stripf et al., 2012] binary code embedded Multicore

systems
√ √

Math2Mat
[Thoma et al., 2012] VHDL FPGA - -

Table 2: Comparison of MATLAB compilation to hardware.

Several approaches have been also presented in the bibliography discussing method-
ology flows for the translation of MATLAB into hardware. The following studies do
not address automatic implementation of MATLAB into hardware, and therefore, are
briefly discussed. In [Krukowski and Kale, 1999], a methodology system is presented for
the conversion of Simulink/Matlab to VHDL aiming at the prototyping of DSP applica-
tions on FPGA platforms. In [Weijers et al., 2006], a methodology flow for the manual
translation of MATLAB models into real-time hardware prototype is discussed. [Bhatt
and McCain, 2005], addresses the design of FPGAs using the MATLAB environment in
combination with high level synthesis tools.

2.4 MathWorks Commercial Tools

MathWorks provide a suite of tools for the generation of C or HDL code from MAT-
LAB language. MathWorks MATLAB Coder [MathWorks Coder, 2016] is the Math-
Works MATLAB to C (and C++) compiler. The generated code can be used as source
code, static or dynamic library in a C++ application project or it can be integrated in a
MATLAB application (using MEX functions) to accelerate the performance. The com-
piler supports code generation of several MATLAB toolboxes, as well as a large set of
MATLAB language. The tool allows the specification of the type of MATLAB input vari-
ables but it also generates code for variables with unknown shape/size on compile-time.
For the latter case, MathWorks Coder produces code with dynamic memory allocation.
MathWorks Coder may incorporate Fixed-Point Designer [Fixed-Point Designer, 2016]
to convert the initial floating point MATLAB code to a fixed point implementation.

62 related work

MathWorks Embedded Coder [MathWorks Embedded Coder, 2016] provides a frame-
work of configuration options and optimizations. The tool can be leveraged by Math-
Works Coder and Simulink Coder for the deployment of generated code on an embed-
ded system. By using the tool, the characteristics of the target architecture can be
defined such as the primitive types or byte ordering. Embedded Coder also provides
the code replacement library for the description of the instructions which are provided
by the hardware (or software) of the target device. The code replacement library pro-
vides a framework for the specification of customized instructions as to the MATLAB
operation/function are corresponded, the instruction’s type (scalar or array), types of
operands and the C function prototypes. MathWorks Coder uses the code replacement
library to match the MATLAB code with the available customized instructions.
Simulink Coder [Simulink Coder, 2016] and HDL Coder [HDL Coder,] are available

for the deployment of MATLAB applications on FPGAs and SoCs. Simulink Coder gen-
erates C and C++ code from Simulink diagrams and MATLAB functions. HDL Coder
generates synthesizable Verilog and VHDL code from Simulink models and MATLAB
functions. The C or HDL output can be used by a subsequent compiler/design tool to ap-
ply the MATLAB application on an FPGA board or SoC. A variety of compilers/design
tools may be used to automatically synthesize the generated code by Simulink and HDL
coders on FPGA boards such as the Vivado Suite tool [Altera, 2016] and SoC Embedded
Design Suite [SoC Embedded Design Suite, 2016] for XILINX FPGA boards [XILINX,
2016] and Altera FPGAs/SoCs [Altera, 2016] respectively.

The MathWorks tools present deficiencies for the compilation of MATLAB code target-
ing a vectorized architectures. Compiling MATLAB to C for vectorized processor archi-
tectures using the Mathworks Coder [MathWorks Coder, 2016] and an auto-vectorization
compiler (i.e. LLVM) wouldn’t lead to the optimal solution. The information related to
vectorization which should be represented in MATLAB would be partly counteracted or
even eliminated (due to internal transformations and other optimizations) during trans-
lation to scalarized C code; the latter would not allow the full exploit of the vectorized
MATLAB operations by the auto-vectorizer. MathWorks Embedded Coder [MathWorks
Embedded Coder, 2016] provides the user with an environment to compile MATLAB
code targeting embedded systems. Embedded Coder uses an architecture description
model similar to the one used by the proposed compiler for the customization of the
generated C code. The major disadvantage is the lack of support for vector operations
since only instructions for scalars and arrays are supported and vectorized C code cannot
be generated. Even if array (instead of vector) operations are used for the customiza-
tion of the generated code, code including operations with indexing cannot be efficiently
compiled. Furthermore, Embedded Coder generates code storing sub-array references
to an intermediate temporary array and then the specialized function (corresponding to
customized instruction) is called. Such code results in most cases to a worse performance
than the corresponding code generated from the Mathworks Coder [MathWorks Coder,
2016].

2.5 auto-vectorization 63

2.5 Auto-vectorization

Auto-vectorization is a special case of automatic parallelization which converts scalar
to vector implementation. Auto-vectorization approaches are differentiated in two cat-
egories - the loop level parallelism and the superword level parallelism. The specific
optimization is mostly applied by the auto-vectorizing C compiler. However, C lan-
guage’s characteristics incapacitate the auto-vectorization of C code. These limitations
will be discussed for the entire group of research activities because they are common
for all projects. Additionally, several recent evaluation studies suggest that despite the
progress of auto-vectorization techniques, many existing C code cannot be vectorized by
state of the art auto-vectorizing C compilers.

2.5.1 Auto-vectorizing C compilers

According to the description of GCC auto-vectorization procedure [Naishlos, 2004],
Auto-vectorizers construct a strongly connected components graph to detect loop car-
ried dependencies. In the case of identification of dependencies, the compiler optionally
perform loop distribution (or any transformation such as loop interchange, scaling, skew-
ing, reversal) to allow parallelism. If there aren’t dependencies (or can be eliminated)
auto-vectorizers apply a set of analyses on each loop to determine if loops are eligible
to be vectorized. The analysis includes evaluation regarding issues that are discussed
below (subsection 2.5.2) and further restrictions that incapacitate auto-vectorization (ex.
function calls). In case that the loop specified as vectorizable, a set of code transforma-
tions are applied for the vectorization of the loop. There are two different techniques
for the vectorization of a loop. The first is the unrolling of loop by the vector’s width
and the replacement of unrolled statements by a vector instruction. The latter is the
strip-mining of the loop and the vectorization of the new loop replacing the scalar to
vector statements. In the next stage, the loop bound and step are changed accordingly
to the vector’s width. In case of uncountable loop, additional code is inserted after
the vectorized code as well as code for run-time check may be generated. The loops
that include unaligned data structures, non-unit stride, or if-else statements can be vec-
torized using techniques which are discussed in [Eichenberger et al., 2004], [Wu et al.,
2005], [Nuzman et al., 2006], [Ren et al., 2006], [Kennedy and McKinley, 1990], [Shin
et al., 2005] and [Shin, 2007].

In [Larsen and Amarasinghe, 2000], the concept of Superword Level Parallelism (SLP)
is introduced presenting a novel technique for the parallelization of basic blocks including
isomorphic statements (execute same operation) instead of vectorizing loops. The main
objective of the proposed algorithm is to detect statements of same operation that can be
executed in parallel. The source operands are packed into registers for SIMD processing.
Then, the isomorphic statements whose operands have been packed, are transformed to

64 related work

vector instructions. The algorithm benefits from the reuse of packed operands and the
intermediate packed results which can be used directly as a source in next computations.
There is a considerable interest in academic community regarding auto-vectorization

approaches. The study in [Li et al., 2006], discusses the translation of binary programs
written for one architecture to be executed at another architecture focusing on the ef-
ficient use of SIMD registers. In [Trifunovic et al., 2009], the impact of interactions
between loop transformations and vectorization is explored using a polyhedral model for
the representation of cost model. In [Nuzman et al., 2011] a split vectorization framework
is presented aiming at the efficient execution of SIMD code on disparate architectures.
In [Guelton et al., 2014], a vectorizer for the Python language is presented. The compila-
tion framework uses a Python to C++ compiler (named Pythran) to generate vectorized
code producing functions of a SIMD C library.

2.5.2 Limitations of Auto-vectorization

Auto-vectorizing C code is a highly complex task [Bik, 2004], [Allen and Johnson, 1988]
and [Naishlos, 2004] due to language semantics and re-targetability issues [Nuzman and
Henderson, 2006]. Cases that prevent or make harder the auto-vectorization of C loops
are presented below:

• C applications usually include pointer variables. Multiple pointers may refer to
same memory block (aliasing) preventing auto-vectorization. Most of the com-
mercial compilers perform alias analysis to certify that references in loops do not
access the same region of memory. In [Sui et al., 2016], an inter-procedural loop
oriented pointer analysis is presented analyzing arrays/pointers in order to enable
auto-vectorization.

• Unaligned data structures (or aligned with different size compared to the vector
alignment) cannot be efficiently vectorized. Memory data must be aligned on a
natural vectors size boundary to increase efficiency of data loads/stores to/from
the processor. Unaligned data incur considerable overhead or even may prevent
auto-vectorization. Even if the memory data are aligned, misaligned references
may be presented in the code. The studies in [Eichenberger et al., 2004] and [Wu
et al., 2005] discuss a compilation scheme to vectorize loops in the presence of
misaligned memory generating data reorganization instructions to align data in
registers.

• Loops with non-unit stride or with indirect addressing usually lead to non-contiguous
memory accessing which prevent massive loading/storing of data from/to mem-
ory for SIMD processing. To achieve auto-vectorization in the presence of inter-
leaved data without performance penalty, a) data reordering techniques are ap-
plied [Nuzman et al., 2006] and b) data permutation merging optimizations are
performed [Ren et al., 2006].

2.5 auto-vectorization 65

• Uncountable loop bounds obstacle auto-vectorization or enlarge the generated code.
The auto-vectorizer cannot evaluate the loop bound either at compile time or at
run-time; subsequently aborts auto-vectorization of the loop or generates SIMD
code with special epilog code. The additional code consists of loop iterations
(placed at the end of a vectorized loop) that are not a multiple of the vector width.
• Nested loops with vectorizable outer-most loops must be interchanged. Usually

inner-most loops cannot be vectorized [Prieto et al., 2005] or outer-most loops
exhibit greater data-level parallelism and locality [Nuzman and Zaks, 2008]. How-
ever, many auto-vectorizing C compiler don’t perform that loop transformation to
enable auto-vectorization.

• Loops of single basic blocks are more straightforward to be vectorized than multi
basic blocks such as if-then-else which require the generation of vectorized code
using vector predicate statements [Kennedy and McKinley, 1990], [Shin et al., 2005]
and [Shin, 2007]. Auto-vectorizers generate a vector instruction for the execution
of the if-statement condition. Then they generate SIMD instructions for both if
and else scopes avoiding the generation of if-else statement. Finally, they insert at
the end of if-else statement a conditional SIMD instruction for merging the results
of different control flow paths.

• The fact that auto-vectorizing C compilers commonly support multi platforms
complicates the cost analysis algorithm to determine whether or not the examined
loop is beneficial to be vectorized. The different architectures implement various
vector widths and vector instructions with different acceleration (or overhead for
packing/unpacking). This information usually isn’t available at C compilers.

2.5.3 Auto-vectorization Evaluation

The evaluation study in [Smith, 1991] discusses the performance of auto-vectorization
for the Convex and Cray Standard C compilers. The auto-vectorizing compilers are
evaluated on two test suites - a collection of kernels have been developed by compiler
researches and a test suite from real applications. The compilers vectorize approximately
more than the half loops of test suites but different types of loops from one another. This
suggests that compilers fail to vectorize all the valid for vectorization loops. Furthermore,
they fail to vectorize loops including characteristics such as: break statements, pointers,
induction variables, function calls and structure assignments. The study concludes that
there are many areas where the auto-vectorization can be improved.
In [Ren et al., 2005], the performance of the vectorization on multimedia applications

is explored. The study evaluates the performance of a multimedia benchmark whose
characteristics are discussed in detail in [Ren et al., 2003]. According to the study [Ren
et al., 2005], the Intel compiler v8.0 (ICC) vectorizes only 17 loops of the total 160 which
are included in the benchmark. However, 23 of 34 core procedures (a subset of benchmark
selected to experiment with) can be manually vectorized by re-writing the applications

66 related work

code with SSE intrinsics. The manually optimized code achieves considerable speed-up
up to 239%. On the contrary, the Intel vectorizer achieves similar speed-up comparing
with the manually optimized counterparts only for one application while for the rest
benchmark cases, the speed-up is marginal or even negative.
The evaluation in [Maleki et al., 2011] discusses the effectiveness of three vectorizing

C compilers on:

• A synthetic benchmark which is used for the evaluation of auto-vectorization per-
formance.

• A collection of real applications.
• A multimedia applications benchmark.

The study shows that the GCC, Intel C compiler (ICC) and the IBM XLC vectorizing
C compilers automatically vectorize only the 46%, 70% and 54% of the synthetic bench-
mark respectively and only the 21%, 30% and 18% of the real applications respectively.
According to this study, compilers lack accurate analysis and they don’t implement
transformations to enable vectorization. Despite the small amount of loops that can be
automatically vectorized, in theory, a vectorizing C compiler could vectorize the 81% of
the synthetic benchmark and the 48% of the collection of real applications [Maleki et al.,
2011].

2.5.4 Comparison against auto-vectorizing C compilers

The subsection discusses the limitations for auto-vectorization of the code that is de-
riving from MathWorks tools. Auto-vectorizing C compilers vectorize the loops of C
language encountering difficulties such as unaligned variables, aliasing of memory refer-
ences, non-continuous memory accessing and uncountable loops. The proposed vectoriza-
tion scheme provides a higher level of programming (than C) translating the MATLAB
source code to vectorized code producing native vector semantics. Thus, a MATLAB
application can be efficiently compiled to be executed on a vectorized architecture with-
out invoking an auto-vectorizing C compiler and thus leading to sub-optimal results.
Auto-vectorizing C compilers doesn’t always vectorize all kinds of C code especially the
MathWorks generated code which isn’t suitable for auto-vectorization. The generated
code by MathWorks Coder doesn’t ensure that the derived data types are aligned to
vector’s natural vectors size. Furthermore, MATLAB variables which represent complex
numbers, are translated to C by a structure with two variables containing the real and
imaginary part. For arrays, this leads to the non-sequential storing of real and imaginary
part in memory which could be loaded instantly for SIMD processing. Additionally, the
generated code may include non-unit stride addressing which could add performance
overhead during packing/unpacking of data. Moreover, MathWorks Coder usually fuses
the generated loops of array MATLAB statements and inlines the implementation of

2.6 comparison of the proposed compiler against state-of-the-art 67

functions leading to loops with large scopes. Taking into account that auto-vectorizers
doesn’t vectorize all the operations and built-in functions, it is more likely to find such
a restriction preventing the auto-vectorization of a loop with large scope. Finally, C
compilers perform loop-based auto-vectorization. Thus, even if loops can be vectorized,
intermediate packing/unpacking is still required between vectorized loops.

2.6 Comparison of the Proposed Compiler Against State-of-
the-art

This section discusses the comparison of the proposed MATLAB compiler against
other research activities. The proposed compilation framework is distinguished from the
other approaches due to its multi-platform scheme supporting the generation of either
scalarized or vectorized C code. Below, the differences between the proposed approach
and other existing works are discussed.
Several approaches have been proposed for the compilation of MATLAB to implemen-

tation code targeting software or hardware. The compilation frameworks for production
of software focus on the generation of optimized code [Joisha and Banerjee, 2007], [Bispo
et al., 2015] or the generation of code which is applicable on parallel distributed archi-
tectures [Quinn et al., 1998a], [Benincasa et al., 1998] and GPUs [Prasad et al., 2011].
Furthermore, the mapping of MATLAB code to hardware translates MATLAB func-
tions and operations to a suitable form that can be executed by heterogeneous comput-
ing systems [Banerjee et al., 1999] (FPGA, DSP), reconfigurable multi-Core embedded
systems [Stripf et al., 2012] or the Cell broadband engine [Khoury et al., 2011].
The proposed approach suggests a multi-target compilation framework that take ad-

vantage of the ISE extensions or other hardware function units of any target architec-
ture. Unlike the compilers generating SPMD-style (or MIMD [Khoury et al., 2011]) code
for parallel distributed architectures [Quinn et al., 1998a], [Benincasa et al., 1998] and
GPUs [Prasad et al., 2011], the proposed compiler generates SIMD code in the form of
C intrinsics - suitable for embedded systems and programming of ASIPs. The proposed
compiler introduces a parametrized processor model for the generation of code, which
is optimized for the target architecture. Menhir [Chauveau and Bodin, 1999] compiler
and ALMA project [Stripf et al., 2012] introduce description models which assist the
generation of code as well. However, Menhir’s target system description is proposed to
form the generated code (ex. FORTRAN or C). The compilation framework of ALMA
project uses an architecture description model to specify the characteristics of target
architecture and define the available SIMD instructions. However, the ALMA’s and
the proposed compiler’s description models are different. The current processor model
provides a complete framework for the description of the specialized instruction set of
a processor; these include scalar, SIMD or array instructions instead of ALMA’s archi-
tecture description model which allows only for the specification of the available SIMD

68 related work

instructions. Furthermore, the list of SIMD intrinsics is used by GeCoS [Floc’h et al.,
2013] (internal component of the compilation framework) to vectorize the code. The
GeCos framework operates on a low level representation following an auto-vectorization
approach relevant to that of auto-vectorizing C compilers. In conclusion, the proposed
compiler vectorizes directly the source code translating the MATLAB array statements
to SIMD instructions, while ALMA compilation framework translates the Scilab input
code into scalarized code from which auto-vectorization is performed.
The compilation of MATLAB code targeting vectorized architectures could be achieved

by using the MathWorks Coder [MathWorks Coder, 2016] in combination with a auto-
vectorizing C compiler such Clang/LLVM. Furthermore, the MathWorks Embedded
Coder [MathWorks Embedded Coder, 2016] could be also used for the description of
the available specialized instructions of the target processor/ASIP. However, the ap-
proach would lead to sub-optimal results due to the deficiencies of auto-vectorization
techniques. The MATLAB code is translated to scalarized code performing several
transformations/optimizations. Thus, the generated code isn’t suitable for vectoriza-
tion by the C compiler. The generated code may include unaligned structures, pointers
(aliasing problem) and loops with complicated indexing that could prevent vectorization.
Finally, the usage of Embedded Coder generating specialized instructions of the target
architecture is limited only for scalar and array operations. The tool doesn’t support
SIMD instructions, and therefore the capabilities of vectorized architecture cannot be
exploited.
Finally, the [Birkbeck et al., 2007] describes a tool for source to source transformation

vectorizing the loop-based Matlab code. The proposed approach doesn’t overlap with
the current work which generates SIMD C code. However, the tool could be used as an
extension to the current compilation framework to vectorize the MATLAB source code
allowing the proposed MATLAB compiler to generate vectorized C code.

2.6.1 MATLAB to FORTRAN

This section presents existing works of the compilation of MATLAB code to FOR-
TRAN language. There is no overlap between the proposed compiler and the research
activities of MATLAB to FORTRAN compilation, thus no comparison is discussed in
the section.

FALCON project [Rose et al., 1995], [De Rose and Padua, 1996], [De Rose and Padua,
1999] and [De Rose and Padua, 2003] is a MATLAB to FORTRAN compiler. The key
contribution is the static type inference system and the fall-back scheme to resolve array
shapes, when they have not been statically determined. The static inference mechanism
extracts information about the variables types from constant values, operators, built-in
functions and input files. Functions in MATLAB can be called with different type argu-
ments. To facilitate the type inference analysis, FALCON inlines the calls to user-defined
functions in the MATLAB code. Regarding the dynamic type inference, FALCON pro-

2.6 comparison of the proposed compiler against state-of-the-art 69

duces additional variables storing information about the variables hasn’t been resolved
in compile-time. Furthermore, additional code is generated for the statements involving
unknown type variables to perform type checking and memory management.
CMC [Kawabata et al., 2004] is a MATLAB to FORTRAN compiler supporting pro-

grams with sparse matrix computations. The compiler provides annotations for the
specification of sparse structures. Depending on the annotated MATLAB code, CMC
performs inference of variable attributes based on the sparsity/density of arrays, and
generates appropriate data structures and FORTRAN code. CMC also applies a set of
optimizations such as loop-invariant code motion, copy propagation, common subexpres-
sion elimination, dead-code elimination and strength reduction of operations.
Mc2FOR [Li and Hendren, 2014] is an automatic translation system from MATLAB to

FORTRAN. The MATLAB translator is a part of McLAB project [Hendren et al., 2011],
a toolkit with a MATLAB to FORTRAN translator (McFOR), a MATLAB JIT (McVM)
[Chevalier-Boisvert et al., 2010], and an aspect oriented language (AspectMatlab) [Aslam
et al., 2010] for source level transformation and program profiling. Mc2FOR uses its
own type analysis to infer the type shape/dimensions and range values of the MATLAB
variables. The translator generates code for run-time checking of array bounds. This
feature can be disabled in the generation to obtain higher performance.

2.6.2 MATLAB Just-in-time Compilation

The section presents just-in-time compilers for the MATLAB language. The just-in-
time compilation approach is differentiated from the traditional compilation framework
that is described in the thesis and no comparison was made about the tools against the
proposed compiler.
A variety of MATLAB just-in-time (JIT) compilers [Almási and Padua, 2002], [Chevalier-

Boisvert et al., 2010] and [D’Elia and Demetrescu, 2016] have been suggested in the bib-
liography. MaJIC [Almási and Padua, 2002] is a JIT compiler which also performs ahead
of time compilation attempting to guess the most possible context will occur at run-time.
During run-time, pre-compiled parts of MATLAB code that can be used are instantly
executed gaining higher performance, otherwise JIT compilation is performed. In stud-
ies [Chevalier-Boisvert et al., 2010], [Casey et al., 2010], [Hendren et al., 2011], [Lameed
and Hendren, 2013a], and [D’Elia and Demetrescu, 2016] two different MATLAB JIT
compilers are presented which are based on the LLVM JIT framework. Additionally,
several works have been presented based on the McVM JIT compiler [Chevalier-Boisvert
et al., 2010] regarding the optimization of MATLAB feval function [Lameed and Hen-
dren, 2013b], the elimination of redundant array copies [Lameed and Hendren, 2011]
and the profiling of MATLAB code as to the range of loop-bounds [Aslam and Hendren,
2010].

70 related work

2.6.3 Aspect oriented Approaches

The section discusses aspect oriented approaches which are used for the optimization
of source code as well as for the profiling of programs. The approaches are not related
to the proposed compilation framework, instead they could be used as extensions to
improve the compilation framework.
Cardoso et al. have been explored aspect oriented approaches for MATLAB compila-

tion. In [Cardoso et al., 2006], aspect oriented rules are discussed for the application of
MATLAB code in DSP processors with fixed point arithmetic. The aspect rules concern
the insertion of fixed point behavior in MATLAB code. The approach discusses a set
of rules for customization to add in the source MATLAB code quantization statements,
casting assignments, and code for run-time monitoring of fixed point arithmetic. In [Car-
doso et al., 2010] domain-specific aspect language is described for the specification of
transformations on MATLAB code. The approach enables program’s transformation-
s/optimizations, such as loop unrolling or function inlining. Using the aspect language,
transformations are applied for specific variable types/sizes or input values. The ap-
proach can be also used for the profiling and monitoring of MATLAB applications. The
overall work of aspect oriented approaches for MATLAB compilation is discussed in
detail in [Cardoso et al., 2013].

[Aslam et al., 2010] and [Hendren, 2011] are discussing aspect oriented approaches for
the MATLAB language. The study in [Aslam et al., 2010] presents the AspectMatlab,
an aspect oriented language intended for profiling programs and monitoring of data.
AspectMatlab was inspired from other aspect languages and follows the traditional design
of patterns (for the specification of matching) and actions (the code to be inserted). The
study in [Hendren, 2011] discusses further the aspect oriented approach for the run-time
checking of the variable types against those that have been specified.

2.7 Compiling MATLAB to Other Efficient Execution Environ-
ments

The section discusses research activities with regard to the improvement of the MAT-
LAB environment performance. The studies concern the translation of MATLAB to
other languages as well as source to source transformations that optimize the execution
performance. The activities are not related with the proposed compiler, therefore no
comparison is discussed in the section.

[Birkbeck et al., 2007] present a tool that vectorizes scalarized MATLAB statements
using an extension of Allen & Kennedy’s [Allen and Kennedy, 2001] codegen algorithm.
The codegen algorithm constructs a data dependence graph which is used by the loop
vectorizer to examine each loop of the source code and determine if it can be vectorized.
Then, the loop-based code with no loop-carried dependencies is converted to the equiv-

2.7 compiling matlab to other efficient execution environments 71

alent array-based one. The vectorization tool additionally provides an extensible loop
pattern database with user-defined patterns for the transformation of scalarized code to
more efficient equivalent vectorized code.
In [McFarlin and Chauhan, 2007], an algorithm is presented for the mapping of Octave

code with functions from a target library such as BLAS. The proposed selection instruc-
tion algorithm uses empirical data to select the appropriate library’s function. The data
which are evaluated is the performance of function for a target architecture depending
on the operands’ size. The algorithm is able to map operations (to functions) with more
than two operands. This is achieved by performing an iterative procedure using the
already mapped operations as operands for the mapping of higher-level operations to
library’s functions.
Further research implementations have been presented in the bibliography for the

compilation of MATLAB to more efficient execution environments. However, the follow-
ing studies are not relevant to the current thesis and thus, they are briefly discussed.
In [Menon and Pingali, 1999], a case study is discussed for source to source transforma-
tions of MATLAB code in order to enhance the execution performance. The transfor-
mations regard the vectorization of MATLAB for-loops, the pre-allocation of variables
and the optimization of MATLAB expressions with high overhead. [DeRose et al., 1995]
present another part of De Rose study which translates the MATLAB to FORTRAN
code generating directives which enable parallelism. MIX10 [Kumar and Hendren, 2014]
is source to source compiler translating MATLAB to X10, a language providing high
performance parallel computing. Velociraptor [Garg and Hendren, 2014] is a compiler
toolkit infrastructure for the development of JIT compilers targeting CPU and GPU
from high level languages such as MATLAB and Python. The study in [Jahanzeb et al.,
2014] presents a translator from MATLAB to Modelica, an object oriented language for
system modeling. The M2M [Zhang et al., 2013] translates the MATLAB language to
MapReduce, a parallel programming model for clouding computing.

Chapter 3

Compiler’s Front-end
The architecture of a compiler is typically composed of a front-end, back-end and

optionally a middle-layer. The division of compiler’s infrastructure to separate parts
aims at the implementation of different compilation tasks individually. The compiler’s
front-end performs scanning and parsing of the source code producing its parse tree and
subsequently the Abstract syntax tree (AST).
In the beginning of the section, the subset of MATLAB language that isn’t supported

is listed. Then, the components of the compiler’s front-end are presented. The MATLAB
compiler has been developed in C++ and follows the compilers formal design. It consists
of a front-end performing the parsing of MATLAB language, a middle-layer applying
transformations/optimizations at AST and a back-end generating the C output code.
Regarding the compiler’s front-end, the compiler performs lexical and syntax analysis
of the annotated MATLAB source code producing the parse tree of the input code and
eventually the AST which is derived from parse tree. Typical front-end designs are
well known in compiler theory therefore the syntax and lexical analysis as well as the
production of parse tree and AST are discussed briefly in the current thesis. However, the
novel parts namely the annotations of MATLAB code and the parametrized processor
model are thoroughly discussed. Finally, the compiler’s options constitute technical
content and they are presented in the appendix (section 8.1).

3.1 MATLAB Input Code

The compiler’s grammar complies with the MATLAB language syntax. Some of the
main features which are supported by the compiler is the majority of MATLAB oper-
ations, any kind of user defined functions and function calls, basic built-in MATLAB
functions (ex. zeros), all the types of control flow statements, array concatenations state-
ments, all the MATLAB primitive types, struct variables, global variables and arrays of
any shape/dimensions. Nonetheless, the compiler supports a large subset of MATLAB
language but features which aren’t considered relevant in embedded systems context,
have not been implemented.

72

3.1 matlab input code 73

3.1.1 MATLAB Language Subset That Is Not Supported

The list below show the restrictions of the MATLAB compiler:

• Dynamically typed variables are not supported. The type/dimension of variables
is inferred during compile time with the assistance of annotations. In many cases
the compiler’s user have to insert pragma functions to declare the static type and
dimensions of a variable.

• The first appearance of a non-inferred variable must not include indexing (ex.
myArray(1:10,x)).
• The compiler doesn’t generate code for bounds checking. Indexing that exceeds

the boundaries of an array possibly will cause a runtime error.
• The compiler doesn’t perform dependence analysis and it isn’t able to detect loop-

carried dependencies of MATLAB array statements. For example the res(2:10) =
res(1:11) statement would be translated incorrectly by the compiler. Thus, the user
must explicitly transforms the source code using temporary variables to eliminate
such data dependencies.

• Control flow statements such If-else and while with array dimension conditions
aren’t supported for SIMD code generation. However, for-loops as well as If-else
and while of scalar conditions can be included in SIMD blocks. In that case, the
control-flow statements are translated to scalarized code. However, this kind of
statements may be included in SIMD blocks. In that case they are translated to
scalarized code.

• The compiler vectorizes only statements/expressions of one dimension. Although
the variables can be multi-dimensional, the operands and the result of a SIMD
operation/function must be one-dimensional references. For example
res(1:10,1:32)= simdFun(op1(1:10,1:32)) is not supported for vectorized code gen-
eration. The user must explicitly insert a for-loop accessing the non-vectorized
dimension: for k=1:10 res(k,1:32)= simdFun(op1(k,1:32)); end.
• The size of SIMD operands must be a multiple of block’s SIMD width. No special
epilog code is generated for the processing of the data are remaining.
• The functions that are mapped to customized instructions must contain only one
output variable.
• Matrix division ’/’ isn’t supported. Although, the parametrized processor model
can be used to describe a C implementation for that operation.
• The compiler infers the fraction length of the intermediate expression’s results of an
assignment which includes more than one fixed point operations/functions in order
to achieve accurate results. Although, it is strongly recommended (specifically for
multiplication and division operations) the user to use MATLAB assignments with
only one operation adjusting manually (set_fixp pragma) the fraction length of the
result.

74 compiler’s front-end

• Targeting BoT (and tinyBoT) the floating point constants are automatically trans-
lated to fixed point values. This isn’t applied for integer constants. In order to
convert integer values to fixed point use zero decimal instead. For example: myFixp
= [1.2 1.0].
• For high performance generated code the array variables are passed by reference

in functions. This doesn’t comply with the MATLAB language specification. User
should manually write MATLAB code to copy the data of the array if these are
changed inside a function.
• Switch statements are supported only scalar expressions.
• Structures are supported. However, array structures are not fully supported. More-
over, a field of a structure must have same type/dimensions among all the cells of
an array structure.
• Type checking and type inference isn’t completely supported for struct references.
• Cells are not supported because of their complexity. Supporting cells would cause
inefficient generated C code.
• All the relative features of object oriented programming are not supported.
• Function handles are not supported.

3.1.2 Built-in functions

The compiler supports a small set of MATLAB built-in functions. Only essential
built-in functions are supported due to engineering effort that is needed for the code
generation of their implementation. However, the compiler’s infrastructure is flexible
and additional built-in functions may be inserted. Table 3 shows the available built-
in functions by category. Math built-in functions are not supported for fixed point
data types while bit-wise built-in functions are supported only for integer data types.
All built-in functions are supported for complex and non-complex variables. For the
math built-in functions, the compiler also generates code including the ’stdlib.h’ and
’math.h’ libraries. Therefore, if the target architecture doesn’t support these libraries,
the generated code cannot be executed. In that case, the user can alternatively use the
parametrized processor model to overwrite the built-in functions specifying customized
implementations of the built-in functions.

3.1.3 Annotations

The compiler provides a set of annotations for the declaration of variables as well
as the indication of the parts of the input code (SIMD blocks) that will be translated
into SIMD style. The annotations are in the form of pragma functions that comply
with MATLAB syntax. The compatibility of pragmas with MATLAB syntax facilitate
the development of an application since the annotated MATLAB code can be used

3.1 matlab input code 75

Type functions Math bit-wise complex Dimension Array construction
int8 floor bitand complex

size
zerosuint8 round

int16 abs bitor
realuint16 sqrt

lengthint32 log bitxor
uint32 log2

imag onesint64 exp bitcmp
uint64 sin ndims
double cos bitshift conj
char power
logical atan2 bitsra isreal numel rand
struct mod

Table 3: MATLAB built-in functions

both by the MATLAB compiler and the MathWorks tools. The MATLAB compiler
is accompanied with MATLAB files including the pragmas as MATLAB functions of
empty body. Thus, using the MATLAB code with pragmas in MathWorks environment,
the MathWorks syntax analyzer handles pragmas as MATLAB functions which doesn’t
effect the execution of the code due to their empty implementation.

3.1.3.1 Annotations of Variable Decelerations
The compiler provides a set of pragmas for the declaration of program’s parameters as

to the data type, the shape/dimensions, as well as including indications to determine if a
variable’s data elements are in immediate consumable form (packed) for SIMD processing.
Moreover, a set of options is provided to specify the fixed point attributes (word and
fraction length) in the case of a fixed point variable and the integer class in case of an
integer variable. The variable declaration pragmas start with the prefix dec_, continue
with the data type definition such as fixp_, dbl_ or int_, followed by the c if the variable
is complex and they suffix with _p if the variable is a vector. The parameters of the
pragmas consist of the variable’s name and its dimensions while in the case of fixed
point or integer definition extra parameters are provided for the specification of word
and fraction length or the integer class respectively.
Table 4 shows the complete set of pragmas for variable declarations. Declarations

among complex, non-complex or packed variables are provided for floating point, fixed
point and integers types. Moreover, pragmas are available for the variable declaration
of logical, character and structure types. The pragma for structure declaration doesn’t
provide attributes for the definition of the structure’s fields and should be accompanied
with the built-in struct function.

76 compiler’s front-end

The first attribute of pragmas is a string constant which denotes the variable’s name
while the last parameter is a list of the variable’s dimensions. Each dimension may be
a number constant or any MATLAB expression/reference for which a constant value
have been determined via constant propagation. Finally, for the declaration of scalar
variables the dimension attributes may be skipped. Regarding the declaration of fixed
point variables, two additional attributes are required for the specification of variable’s
word and fraction length which are given in the form of string literal. Similarly, for the
pragmas of integer declaration an extra attribute is available for the determination of
integer class. The value of that parameter can be any of the: uint8, int8, uint16, int16,
uint32, int32, uint64, int64 strings.

The pragmas concerning the declaration of vector variables consist of two additional
attributes: the specification of SIMD width and optionally the indication of the pack-
ing dimension. The first attribute regards the number of elements which are stored in
the vector unit while the second denotes the dimension of which data are packed. For
instance, declaring a 16x32 matrix of packed data with packing dimension of ’2’, the
compiler assumes that the data are packed by the second dimension (by rows in MAT-
LAB context). The packing dimension attribute isn’t necessary at declaration of packed
variables and it may be avoided. In this case, the default packing dimension is the last
dimension of variable (for any array shape) which is the most commonly used. The
attribute composed by two number constants in the form of a string literal separated by
’/’ character.

The example below declares a complex fixed point variable myFixp of 10 elements
with word length of 16 and fraction length of 8.

dec_fixpc(’myFixp’,’16’,’8’,1,10)

The following example declares a floating point matrix of 4x64 dimensions with packed
data types. The vector’s size is 4 and the data are packed by default at the second di-
mension.

dec_dbl_p(’myVector’,’4’,4,64)

The example below declares a fixed point array of 4x64 dimensions with packed data
types. The vector’s size is 8 and the data are packed at the second dimension.

dec_fixp_p(’myFixpVector’,’16’,’12’,’8/2’,10,32,10)

3.1.3.2 Other Annotations
Pragma functions are also used for the indication of SIMD blocks as well as the

specification of word and fraction length of the assignment’s fixed point result. The

3.1 matlab input code 77

Description Pragmas Attributes Pragmas for vectors Attributes for vectors
Fixed point dec_fixp ’var_name’ dec_fixp_p ’var_name’

dec_fixpc ’word_l’ dec_fixpc_p ’word_l’
’fraction_l’ ’fraction_l’
(dim1,dim2,...) ’SIMD_width/pack_dim’

(dim1,dim2,...)

Floating point dec_dbl ’var_name’ dec_dbl_p ’var_name’
dec_dblc (dim1,dim2,...) dec_dblc_p ’SIMD_width/pack_dim’

(dim1,dim2,...)

Integer dec_int ’var_name’ dec_int_p ’var_name’
dec_intc ’int_type’ dec_intc_p ’int_type’

(dim1,dim2,...) ’SIMD_width/pack_dim’
(dim1,dim2,...)

Logical dec_log ’var_name’ - -
(dim1,dim2,...) -

Character dec_chr ’var_name’ - -
(dim1,dim2,...) -

Structure dec_stc ’var_name’ - -
(dim1,dim2,...)

Table 4: Pragma functions for variable declaration

pragmas startSIMD and endSIMD can be used for the selection of the parts of the input
code (SIMD blocks) that will be translated into SIMD style allowing the developer to
select the preferred vector size of the block’s SIMD operations. The parameters of the
pragmas are the preferred SIMD width and the array size of the SIMD block operands.
According to the code snippet below (listing 3.1), the array size of the SIMD block
operands is 32 as the second parameter of startSIMD. Compiling the code snippet, the
compiler will generate SIMD instructions of vector size 4 as this is indicated at the first
attribute of the pragma.� �
1 startSIMD(4,32)
2 res = vect(1,1:32) + vect(1,33:64)
3 endSIMD()� �

Listing 3.1: Example of pragmas for definition of SIMD block.

Fixed point arithmetic demands the modification of variable’s fraction (and word)
length during the execution of an application in order to enhance the precision of the
algorithm result. Pragma set_fixp allows the modification of the resulted fixed point

78 compiler’s front-end

attributes of the next assignment’s operation. The pragma consist of three attributes:
the name of the variable which is effected, the new word length and the new fraction
length. The example below (listing 3.2) shows the usage of pragma. Although, the
myFixp variable has been declared with fraction length of 8, after the execution of the
fixed point multiplication the fraction length of myFixp variable will be 12.� �
1 dec_fixpc(’myFixp’,’16’,’8’,1,10)
2 ...
3 set_fixp(’myFixp’,’16’,’12’)
4 myFixp = myFixp * 0.0364;� �

Listing 3.2: Example of pragmas for handling the fixed point arithmetic.

3.2 Parametrized Processor Model

The parameterized processor model (Fig. 3) describes the specialized instruction set
architecture of the target processor. The model consists of a primary list with informa-
tion about the custom instructions and a secondary list with types which are associated
with the custom instruction operands and result. In more detail, the custom instructions
description includes: a) the operation type or function name with the corresponding in-
trinsic C name, b) the instruction’s type which can be scalar type, array type or an

Type attributes

Instruction’s attributes

 Instruction’s name
 Function name or operation’s type (ex. +,-,*)
 Instruction’s type {SCALAR,SIMD,ARRAY}

 Vector width in case of ‘SIMD’ type
 List of packed/unpacked operands

Specialized instruction set list
instruction 1
instruction 2

….
instruction N

Types list
type 1
type 2

….
type N

List of IDs with operands’ and result’s type

 Data type
 {fixed ,floating, integer, complex fixed, …}

 For fixed point data type:
 Word Length
 Fraction length

 Shape/size
 SIMD width (for vector variables)
 Constant value

*All type attributes are optional and they may be
declared as ‘unspecified’

Figure 3: Parametrized processor model.

3.2 parametrized processor model 79

integer that represents the vector width in the case of SIMD instruction’s type, c) a
boolean value for each operand indicating which operands are required to be in packed
format ready for SIMD processing and d) an ID (type name) for each operand and the
result (this corresponds to a name of a type in the secondary list of types). The sec-
ondary list includes a) the shape/size, b) the SIMD width (in case of a vector type) c) the
data type which can be any of those supported and d) the constant value(s) of operand.
In case of fixed point type the word and fraction length may be defined as well. The
parametrized processor model allows declaring any of the type attributes as unspecified
in case the specific attribute is not required. Unspecified attributes for the result allow
the dependent on the instruction type, inference of function calls as described below.
On the other hand, unspecified attributes for operands enable an abstract and flexible
description of instructions where instruction selection mechanism can match custom in-
structions with operations or function calls regardless of the unspecified attributes. This
technique aims at having only one custom instruction required for different operand
types of the same operation or function. For instance, all the element-wise operations
can be described leaving unspecified the shape/size of operands since one appropriate
custom instruction could be matched for any shape/size. One more case which demon-
strates the importance of the unspecified attributes is the custom instructions on the
fixed point type which can be applied without any constraint of fraction or word length
(ex. addition, subtraction).

An example of a custom instruction is shown in figure 4. The record shown in the
parametrized processor list is a vector addition of SIMD width 4. Additionally, the
instruction requires that the two operands should be in packed form while the types
of the operands and the result are specified by the t_fi type. The t_fi type denotes
a complex fixed point vector of SIMD width 4 with any word and fraction length, any
shape/size and unspecified constant values.
Different implementations of a MATLAB function or operation in hardware are sup-

ported. For instance, an architecture may support different instructions for the multipli-
cation of complex operands and for the multiplication of a complex with a non-complex
operand. In such cases, the parametrized processor model supports multiple entries for
a function or an operation corresponding to different custom instructions – hardware
implementations. In case that a function or operation of the MATLAB source code
could be matched with more than one custom instructions in the parametrized proces-
sor list, the first in the list will be selected in the instruction selection phase. Thus, the
processor model allows the user to choose the priority in which customized instructions
will be selected.

The parametrized processor model is described using XML given as input to the com-
piler. The developer describes the available customized instructions using XML and
defines information related to the target processor such as the native vector types in C
or the packing and unpacking instructions (for each supported vector type). The XML
language provides an appropriate and sufficient structure for the specification of the cus-

80 compiler’s front-end

Specialized instruction set

Intrinsic

name

Function /

operator

Instruction s

type/ SIMD

width

Packed

operands

Operands

result s type

ADD + 4
<packed,

packed>

<t_fi, t_fi,

t_fi>

t_fi type

Data type

Word, fraction

Shape / size

Complex fixed point

unspecified, unspecified

unspecified

SIMD width 4

Constant value unspecified

Figure 4: Example of Parametrized processor model.

tom instructions facilitating the compiler to extract only the relevant information. On
the contrary, if a processor/architecture description language was used, a new parser
would be required to extract only the relevant information (in some cases that could be
impossible due to information absence), and more effort would be required by the com-
piler’s user to design the instruction space (as to the binary encoding of instructions).
Furthermore, processor/architecture description languages are used internally from spe-
cific tools (e.g Synopsys Processor Designer [ASIP Designer, 2016] uses nML Processor
Modeling Language) limiting the compiler to be used in combination with other C/C++
compilers.

3.2.1 Description of Customized Instructions in XML

The parametrized processor model is described using the XML language. The descrip-
tion of the architecture primarily includes the specification of the processor’s customized
instructions and their operands/result types. Additional information about the target
architecture is described in the model as well. The information concerns auxiliary se-
mantics such as the name of derived C data types, additional C libraries and C header
files to be included and other special operations such as shift instructions which are used
in fixed point arithmetic, packing/unpacking operations and instructions to read/store

3.2 parametrized processor model 81

the real or imaginary part of complex variables. Such information is depended on the
target architecture and is required for the portability of the generated code to the various
architectures. The user can encapsulate the code related to architecture at header C files
and describes the semantics/functions of the header files in the parametrized processor
model. Then, the compiler is able to use that information to produce code which is
applied on the target architecture. Thus, the schema allows the compatibility of the
compiler to any target architecture. Below a detailed description of the parametrized
processor model regarding the XML specification is given. The section 8.3 in appendix
presents XML description examples of the target architectures.

3.2.1.1 Description of Operands’/Parameters’ Types

The parametrized processor model allows the description of the types which are asso-
ciated with the custom instruction operands and result. Table 5 shows the attributes
which are specified for a type. The id attribute is the type’s name which is used at
custom instructions specification to identify an associated type. The dt attribute de-
notes the data type and can be any of these are shown in the table. Specifying fixed
point data types, word and fraction length may be also declared with number constants
in parenthesis. If word and fraction length aren’t declared, they are considered as un-
specified attributes. In the case that only word (or fraction) length is required to be
specified the other attribute can be declared as unspecified denoting with ’any’ string
literal. Attributes dim and complex represent the dimensions of the type and whether or
not the type is complex. The dim is a list of integers separated by comma or space while
the complex is the ’true’ or ’false’ value. Constant values may be also specified for a
type. The specification of constant values implies that the instruction’s operand of this
type is a constant number or any expression/reference for which a constant value have
been determined via constant propagation. Constant values (const) are specified using
MATLAB syntax with a constant number or an array concatenation expression. The
attributes of a type may be declared with XML tags (t1 in listing 3.3) or XML elements
(t2 in listing 3.3) while missing attributes are considered as unspecified.

Listing 3.3 shows two examples of type specification (t1 and t2). The first exam-
ple specifies a complex fixed point type with fraction length of 12. The word length
of type as well as its dimensions are missing and they are considered as unspecified
attributes. Finally, the last line of listing declares a square matrix (2x2) of com-
plex fixed point type (with any word/fraction length) and specific constant values.

82 compiler’s front-end

� �
1 <type id="t1">
2 <dt>fixp(any,12)</dt>
3 <complex>true</complex>
4 </type>
5 <type id="t2" dt="fixp" dim="2" complex="true" const="[1+1i 1; 2i 2]"> </type>� �

Listing 3.3: Example of types XML specification.

Attributes Specific values Description
id - The name of type

dt fixp(WL,FL), double, int8, int16, int32,
int64, uint8, uint16, uint32, uint64

In case of fixp the word WL
and fraction FL lengths are specified, too

dim - A list of dimensions
complex true, false Specify if the type is complex
const - Specify any constant values

Table 5: XML specification of operands/result type.

3.2.1.2 Description of Customized Instructions
Table 6 presents the customized instructions specification. The name attribute is the

name of the generated intrinsic and the type attribute represents the type of instruction
among: scalar, SIMD and array types. For the specification of a customized instruc-
tions which are mapped with MATLAB functions, the func attribute is assigned with
a MATLAB function’s name while the customized instructions implementing MATLAB
operations are set with the appropriate operator at op attribute. The pack list is used
to determine the intrinsic’s operands which must be in packed format. According to
that argument, the compiler generates additional code to pack the unpacked operands.
The SIMD_width is used to specify the intrinsic’s SIMD width and must be the same
as that it has been defined in startSIMD pragma for the matching of instruction with a
MATLAB function/operation included in a SIMD block. Customized instructions which
operate on any vector’s width, are set as true instead of determining the exact SIMD
width. The op_types defines the operands’ types of customized instruction. The at-
tribute consists of a list separated by comma with the name of the types which have
been also declared in the XML file. For an operand more than one types can be specified.
At this case the multiple types are included in parenthesis and they are separated by the
character ’|’. Regarding the customized instructions mapped with MATLAB functions,
the additional res_type attribute is specified. The attribute is used in the type inference
stage to infer the type of the function’s call result as it is discussed in subsection 4.2.2.
Skipping the declaration of the result’s type, the MATLAB function call fully inherits
the type of its first parameter.

3.2 parametrized processor model 83

Attributes Specific values Description
name - Intrinsic name
type scalar, SIMD, array Intrinsic type
func - Function name

op +, -, *, .*, /, \, ./, .\, ^, .^, :,
<, <=, >, >=, ==, !=, &, |, &&, ||, ’, .’ Operator

pack p, u List of packed/unpacked
operands

SIMD_width false, true, any number SIMD width
op_types - List of operand types
res_type - Results type

Table 6: XML specification of customized instructions.

� �
1 <type id="t1" dt="int32" complex="false"></type>
2 <type id="t2" dt="fixp(any,8)" complex="false"></type>
3 <type id="t3" dt="fixp(any,12)" complex="false"></type>
4 <instruction>
5 <name>SUB</name>
6 <type>SCALAR</type>
7 <op>-</op>
8 <op_types>t1,t1</op_types>
9 </instruction>

10 <instruction name="RSH_v4" type="SIMD" func="bitsra" pack="p,u" SIMD_block ="4"
11 op_types="(t2|t3),t1"></instruction>� �

Listing 3.4: Example of customized instructions XML specification

Listing 3.4 presents the specification of two customized instructions. The first one
concerns the definition of the intrinsic SUB which implements the subtraction of two
scalar 32-bit integers. The second instruction describes the hardware implementation,
named RSH_v4, of the bitsra MATLAB function for a non-complex fixed point vector
with SIMD width 4. For the purposes of the example it is assumed that the instruction
operates with fixed points of fraction length 8 and 12 which are expressed by the types
t2 and t3 respectively. The function consists of two parameters (the sifted vector and
the shifting value) requiring the first one to be in packed form and the second one to
be unpacked. Finally, no result type is needed for the customized instruction because
result’s type fully depended on the first parameter’s type.
The listing 3.6 shows the generated C code of the MATLAB code in listing 3.5 us-

ing the parametrized processor model described in listing 3.4. In the MATLAB code
a scalar integer and an unpacked fixed point matrix are defined. Moreover, the MAT-
LAB code includes a subtraction between scalar integers and a function call of bitrsa
enclosed in SIMD block with vector width of 4. The compiler matches the MATLAB
operation and function with the available instructions of the parametrized processor

84 compiler’s front-end

model as this is shown in listing 3.6. For the generation of vector intrinsic, additional
code is produced to pack only the first operand’s data. Similarly, additional code is
generated to unpack the packed result of RHS_v4 instruction. Finally, declaring op1
and res as packed variables, the packing/unpacking operations wouldn’t be generated.� �

1 function [res] = cust_instr_ex(op1, myInt)
2 dec_fixp(’op1’,’32’,’8’,1,32);
3 dec_int(’myInt’,’int32’);
4 myInt = 32-myInt; %matching with SUB
5 startSIMD(4,32);
6 res = bitsra(op1, myInt); %matching with RSH_v4
7 endSIMD();
8 end� �

Listing 3.5: Example of MATLAB code with matching operation and function.

� �
1 void cust_instr_ex_1(_fixp_t res[32], _fixp_t op1[32],D_SINT32 myInt){
2 fixp32x4_t vec_0, vec_1;
3 D_SINT32 i2, i1;
4 myInt = SUB(32,myInt); //matched operation
5 D_SINT32 si0;
6 for(si0=0; si0 < 32; si0=si0+4){
7 for(i2=si0; i2 < si0+4; i2=i2+1){
8 vec_0 = insert_i_4(vec_0, i2-si0, op1[i2]);
9 }

10 vec_1 = RSH_v4(vec_0, myInt); //matched function
11 for(i1=si0; i1 < si0+4; i1=i1+1){
12 res[i1] = extract_i_4(i1-si0, vec_1);
13 }
14 }
15 }� �

Listing 3.6: Generated C code with matched operation and function.

3.2.1.3 Description of Derived C Types
The parametrized processor model allows the declaration of the generated C data

types for an architecture. The derived types may vary among data types (and different
fraction or word length), dimensions, complex/non-complex type, or different SIMD
widths. For their description (Table 7), an ID of a specified type is assigned in the type
attribute while the SIMD width can be also defined in case of packed variable (vector)
declaration. Finally, the name attribute is set with name of the derived C type.
During code generation, the compiler produces C variable declarations using the

derived C data types which have been matched with the types of variables in the
parametrized processor model. However, for the non matched variables, default C type
names are produced.

3.2 parametrized processor model 85

Attributes Specific values Description
name - C data type
type - The name of a specified types
SIMD_width - SIMD width for vectors

Table 7: XML specification of derived C types.

� �
1 <type id="t1" dt="fixp" complex="true"></type>
2 <derived_type name="cfixp_t" type="t1"></derived_type>
3 <derived_type name="cfixp32x4_t" type="t1" SIMD_width="4"></derived_type>� �

Listing 3.7: Example of derived C types XML specification

Listing 3.7 shows an example of two derived type declarations. Both of them use the
t1 type which is complex fixed point with the difference that the second declaration
(cfixp32x4_t) refers to a vector definition with SIMD width 4.

Listing 3.9 shows the generated C code of MATLAB code in listing 3.8 using the
snippet of parametrized processor model in listing 3.7. The first variable in MATLAB
code is a complex fixed point while the second variable is a vector with SIMD width 4
of complex fixed point type. The compiler generates declaration statements for the two
variables which are declared in MATLAB code using the names of the derived types in
the XML specification.� �
1 function [] = der_types_ex()
2 dec_fixpc(’var1’,’32’,’8’,1,32);
3 dec_fixpc_p(’var2’,’32’,’8’,’4’,1,32);
4 end� �

Listing 3.8: Example of MATLAB code with variable declarations

� �
1 void der_types_ex(){
2 cfixp_t var1[32];
3 cfixp32x4_t var2[8];
4 }� �

Listing 3.9: Generated C code with derived C types

3.2.1.4 Description of fixed point semantics
The fixed point arithmetic requires shifting operations to adjust the fraction length of

operands and result. Moreover, the majority of processors doesn’t provide any instruc-
tion for the division of integers (fixed points are based in integers). Although, most of

86 compiler’s front-end

them provide instructions for the calculation of the reciprocal of a number which can
be used as follows: a division is replaced by a multiplication of the dividend and the
reciprocal of the divisor.
The parametrized processor model allows the description of such operations concerning

the fixed point arithmetic. Table 8 shows the attributes used for the description of the
right and left shift operations. Attribute op_types is used to specify the operand’s type
of shift operation and type attribute denotes the intrinsic’s type concerning scalar or
SIMD processing. The SIMD_width attribute is used in case of SIMD shift operation
to define the vector’s width. Table 9 presents the description of the reciprocal operation.
The description composed by the name of the instruction and attributes concerning the
operation’s type as those in the shift operation description.
Reciprocal instructions are generated only targeting BoT and tinyBoT ASIPs (using

option -arch). Furthermore, the compiler doesn’t automatically transform division to
multiplication using the reciprocal of the divisor. To achieve that, customized instruc-
tions of multiplication intrinsics must be included in the parametrized processor model
for the description of the division operators.

Attributes Specific values Description
leftShift - Left shift instruction name
rightShift - Right shift instruction name
type scalar, SIMD Intrinsic type
SIMD_width - SIMD width for vectors
op_types - Operand type

Table 8: XML specification of shift operations.

Attributes Specific values Description
recip - Reciprocal instruction name
type scalar, SIMD Intrinsic type
SIMD_width - SIMD width for vectors
op_types - Operand type

Table 9: XML specification of reciprocal operations.

Listing 3.10 presents specification examples of the shift and reciprocal operations.
The examples include the description of scalar and SIMD shift/reciprocal instructions
operating on fixed point data type.

3.2 parametrized processor model 87

� �
1 <type id="t1" dt="fixp" complex="false"></type>
2 <shift leftShift="LSH" rightShift="RSH" type="SCALAR" op_types="t1"></shift>
3 <shift leftShift="V4_LSH" rightShift="V4_RSH" type="SIMD" SIMD_block ="4" op_types="t1"></shift>
4 <reciprocal recip="RECIP" type="SCALAR" op_types="t1"></reciprocal>
5 <reciprocal recip="V4_RECIP" type="SIMD" SIMD_block ="4" op_types="t1"></reciprocal>� �

Listing 3.10: Example of shift and reciprocal XML specification.

Listing 3.12 shows the generated code of MATLAB code in listing 3.11 using the
shift and reciprocal operations of listing 3.10. The compiler generates the scalar and
vector customized instructions which have been specified for the ’./’ operator in the
parametrized processor model and produces additional code to calculate the divisor’s
reciprocal (RECIP and v4_RECIP). The fraction length of the fixed point multiplica-
tion’s result equals to the sum of the fraction length of operands. Thus, the compiler
generates right shift instructions to adjust the fraction length of the multiplication’s
result from 16 to 8.� �
1 function [scRes, vecRes] = division_ex(sc1,sc2, vec1,vec2)
2 dec_fixp(’sc1’,’32’,’8’);
3 dec_fixp(’sc2’,’32’,’8’);
4 dec_fixp_p(’vec1’,’32’,’8’,’4’,1,4);
5 dec_fixp_p(’vec2’,’32’,’8’,’4’,1,4);
6 scRes = sc1 ./ sc2;
7 startSIMD(4,4)
8 vecRes = vec1 ./ vec2;
9 endSIMD();

10 end� �
Listing 3.11: Example of MATLAB code with shift and reciprocal operations.

� �
1 void division_ex_1(_fixp_t &scRes,fixp32x4_t vecRes, _fixp_t sc1,_fixp_t sc2,fixp32x4_t vec1,

fixp32x4_t vec2){
2 scRes=RSH(mul_fxp(sc1,RECIP(sc2)),8);
3 vecRes=V4_RSH(v4_mul_fxp(vec1,V4_RECIP(vec2)),8);
4 }� �

Listing 3.12: Generated C code with shift and reciprocal operations.

3.2.1.5 Description of packing/unpacking operations
The parametrized processor model allows the specification of packing and unpacking

operations of different data types and SIMD width. Table 10 presents the attributes of
operations while tables 11 and 12 show the different packing and unpacking operations
are provided by the parametrized processor model. The insert and extract operations are
used in the vectorized generation code to pack/unpack the SIMD instruction’s operands

88 compiler’s front-end

and result to/from vectors. The insert_ptr and extract_ptr operations are used for the
same purpose for packing/unpacking a memory segment (by using a pointer) in case
that data stored in continuous memory locations. The rest operations are used in the
scalarized generation code to insert or extract a scalar to/from a vector. The different
packing/unpacking operations concern the various shapes and packing dimensions of
packed array variables. Finally, the expand operation is used for the expanding of a
scalar to a vector.

Attributes Specific Values Description
SIMD_width false, true, any number SIMD width
op_types - List of operand types

Table 10: XML specification of packing/unpacking attributes.

Architectures with SIMD processing provide only basic instructions of packing/unpack-
ing operations. Most of the packing/unpacking operations included in a parametrized
model cannot be directly mapped to a hardware intrinsic. However, the compiler’s
user can write his own implementation (C function prototypes are included in listing
3.14) of the specified packing/unpacking operations and include them in the generated
code (including additional code in the compilation of generated code is described at
3.2.1.6). Listing 3.13 shows the description of packing and unpacking operations for
fixed point vectors of SIMD width 4. The prototypes of C functions corresponding to
the packing/unpacking operations of the parametrized processor example are shown in
the listing 3.14.

Pack Operations Description
insert Insert element to vector given the offset of an array of vectors
insert_ptr Insert massively elements to vector
insertToVector Similar to insert. It is used at scalar processing with vectors
insertToVector_RowsPack Pack in rows at scalar processing with vectors
insertToVector_firstDimPack Pack in the 1st dimension of 3D array at scalar processing
insertToVector_SecondDimPack Pack in the 2st dimension of 3D array at scalar processing
expand Expand a scalar to vector

Table 11: Packing operations.

3.2 parametrized processor model 89

Unpack operations Description

extract Extract element from vector given the offset of an array of
vectors

extract_ptr Extract massively elements from vector

extractFromVector Similar to extract. It is used at scalar processing with
vectors

extractFromVector_RowsPack Unpack from rows at scalar processing with vectors

extractFromVector_firstDimPack Unpack from the 1st dimension of 3D array
at scalar processing

extractFromVector_SecondDimPack Unpack from the 2st dimension of 3D array
at scalar processing

Table 12: Unpacking operations.

� �
1 <type id="t1" dt="fixp(any,any)" complex="false"></type>
2 <derived_type name="fixp_t" type="t1" ></derived_type>
3 <derived_type name="fixp32x4_t" type="t1" SIMD_width="4"></derived_type>
4 <pack op_types="t1" SIMD_width ="4" insert="insert_i_4" insert_ptr="insert_all_ptr_i_4"

insertToVector="insert_v_i4" insertToVector_RowsPack="insert_v_r_i4"
insertToVector_firstDimPack="insert_v_3d_1_i4" insertToVector_SecondDimPack="insert_v_3d_2_i4"
expand="insert_all_i_4"></pack>

5 <unpack op_types="t1" SIMD_width ="4">
6 <extract>extract_i_4</extract>
7 <extract_ptr>extract_all_ptr_i_4</extract_ptr>
8 <extractFromVector>extract_v_i4</extractFromVector>
9 <extractFromVector_RowsPack>extract_v_r_i4</extractFromVector_RowsPack>

10 <extractFromVector_firstDimPack>extract_v_3d_1_i4</extractFromVector_firstDimPack>
11 <extractFromVector_SecondDimPack>extract_v_3d_2_i4</extractFromVector_SecondDimPack>
12 </unpack>� �

Listing 3.13: Example of packing/unpacking XML specification

� �
1 inline fixp32x4_t insert_i_4(fixp32x4_t vect, int offset, fixp_t val);
2 inline fixp32x4_t insert_all_ptr_i_4(fixp32x4_t res, fixp_t *val);
3 inline void insert_v_i4(fixp32x4_t *res, int offset, fixp_t x, int SIMDW);
4 inline void insert_v_r_i4(fixp32x4_t *res, int offset, fixp_t x, int rowD, int colD, int SIMDW);
5 inline void insert_v_3d_1_i4(fixp32x4_t *res, int offset, fixp_t x, int dim1, int dim2, int dim3,

int SIMDW);
6 inline void insert_v_3d_2_i4(fixp32x4_t *res, int offset, fixp_t x, int dim1, int dim2, int dim3,

int SIMDW);
7 inline fixp32x4_t insert_all_i_4(fixp_t val);
8
9 inline fixp_t extract_i_4(int offset, fixp32x4_t vect);

10 inline void _extract_all_ptr_i_4(fixp_t *val, fixp32x4_t vect);
11 inline fixp_t extract_v_i4(int offset, fixp32x4_t *x, int SIMDW);
12 inline fixp_t extract_v_r_i4(int offset, fixp32x4_t *x, int rowD, int colD, int SIMDW);
13 inline fixp_t extract_v_3d_1_i4(int offset, fixp32x4_t *x, int dim1, int dim2, int dim3, int SIMDW);
14 inline fixp_t extract_v_3d_2_i4(int offset, fixp32x4_t *x, int dim1, int dim2, int dim3, int SIMDW);� �

Listing 3.14: Function C prototypes of packing/unpacking operations

90 compiler’s front-end

Listing 3.16 shows examples of producing packing and unpacking operations for scalar-
ized code generation compiling the MATLAB code of listing 3.15. The MATLAB code
includes pragmas for the declaration of a scalar variable and the declarations of packed
arrays of different shapes and packing dimensions. Then, there are scalar assignments
inserting and extracting an element from/to a vector. In the generated code (listing
3.16) different packing/unpacking operations are produced depended on the shape and
the packing dimension of the packed variables. For the assignment of line 6, the instruc-
tion assigned as extractFromVector (listing 3.13) is produced because the vec variable
has been declared with default packing dimension, while for the assignment in line 7, it
is produced the specified as insertToVector_RowsPack instruction. Finally, the instruc-
tion assigned as insertToVector_SecondDimPack packing operation is produced for the
line 8 of MATLAB code because the second dimension of vec3d has been declared as
packing dimension.� �
1 function [] = pack_unpack_scalar_ex()
2 dec_fixp(’sc’,’32’,’8’);
3 dec_fixp_p(’vec’,’32’,’8’,’4’,32,2);
4 dec_fixp_p(’vecR’,’32’,’8’,’4/2’,2,32);
5 dec_fixp_p(’vec3d’,’32’,’8’,’4/2’,2,32,6);
6 sc = vec(4,2);
7 vecR(2,4) = sc;
8 vec3d(2,8,6) = sc;
9 end� �
Listing 3.15: Example of MATLAB code with packing/unpacking operations at

scalarized code generation.

� �
1 void pack_unpack_scalar_ex_1(){
2 fixp_t sc;
3 fixp32x4_t vec[16];
4 fixp32x4_t vec3d[96];
5 fixp32x4_t vecR[16];
6 sc = extract_v_i4(4-1+(2-1)*32, vec, 4);
7 insert_v_r_i4(vecR, 2-1+(4-1)*2, sc, 32,2,4);
8 insert_v_3d_2_i4(vec3d, 2-1+(8-1)*2+(6-1)*64, sc, 6,32,2,4);
9 }� �
Listing 3.16: Generated C code with packing/unpacking operations at scalarized code

generation.

Listing 3.18 presents an example producing packing/unpacking operations for vector-
ized code generation. For the example, the MATLAB code of listing 3.17 has been used
which includes a declaration of unpacked matrix and an addition inside SIMD block
scope. In the C code, the compiler produces additional code to pack the unpacked
operands and unpack the packed result generating the instructions has been specified
in the parametrized processor model of listing 3.13. The reference var(1:8,1) accesses

3.2 parametrized processor model 91

data sequentially, therefore the instruction specified as insert_ptr is produced while for
the reference var(1:2:16,1) (non-sequential data accessing), the instruction assigned to
insert packing operation is generated.� �
1 function [] = pack_unpack_simd_ex()
2 dec_fixp(’var’,’32’,’8’,16,1);
3 startSIMD(4,8)
4 vecRes = var(1:2:16,1) + var(1:8,1);
5 endSIMD();
6 end� �
Listing 3.17: Example of MATLAB code with packing/unpacking operations at

vectorized code generation.

� �
1 void pack_unpack_simd_ex_1(){
2 fixp32x4_t vec_0;
3 fixp32x4_t vec_1;
4 fixp32x4_t vec_2;
5 fixp_t var[16];
6 fixp_t vecRes[8];
7 D_SINT32 i2;
8 D_SINT32 si0;
9 for(si0=0; si0 < 8; si0=si0+4){

10 for(i2=(si0*2 + 1); i2 < (si0*2 + 1)+8; i2=i2+2){
11 vec_0 = insert_i_4(vec_0, (i2-(si0*2 + 1))/2, var[i2-1]);
12 }
13 vec_1 = insert_all_ptr_i_4(vec_1, &((var)[16+si0]));
14 vec_2=v4_add_i_rr(vec_0,vec_1);
15 _extract_all_ptr_i_4(&((vecRes)[si0]), vec_2);
16 }
17 }� �
Listing 3.18: Generated C code with packing/unpacking operations at vectorized code

generation.

3.2.1.6 Description of Other Auxiliary Semantics -
Operations

The parametrized processor model allows the description of auxiliary semantics and
operations such as accessing real or imaginary part of a complex variable instructions,
specification of vector assignments and names of header C files which are included in the
generated code.
Listing 3.19 shows the auxiliary semantics supported by parametrized processor model.

The XML tag header_files is used to define the header files to be included in the gen-
erated code. For each header file specification, an ’#include’ statement with the name
of file is inserted in the generated code. The XML tag setConstant defines the instruc-

92 compiler’s front-end

tions used by the compiler to generate assignments of a number constant to the real
and imaginary part (or both parts) of a complex variable. Similarly, the getPart tag
specifies operations to get the real or imaginary part of a variable. The operation may
be used on unpacked variables (scalar type) or packed variables (SIMD type) for dif-
ferent data types while using a SIMD operation of this purpose outside SIMD block,
the SIMD_width attribute must be set to zero. The vectorAssign tag is used to specify
instructions of assignments between vectors. For the most of the architectures, simple
statements such as vec1 = vec2 assign the content of a vector to the other one. Nonethe-
less, the parametrized processor model provides the specification of these instructions for
reasons of applicability of the compiler to any architecture. Finally, definition of print
operations is supported by the parametrized processor model among scalar, array and
packed array variables of different data types.� �
1 <type id="t1" dt="fixp(any,any)" complex="false"></type>
2 <header_files type="types.h">
3 <common>common.h</common>
4 </header_files>
5 <setConstant setReal="SET_RE" setImag="SET_IM" setReIm="SET_RE_IM" op_types="t1"></setConstant>
6 <getPart getReal="getRe" getImag="getIm" op_types="t1" type="SCALAR" ></getPart>
7 <getPart getReal="getRe_v" getImag="getIm_v" op_types="t1" type="SIMD" SIMD_width ="0"></getPart>
8 <vectorAssign assign="_copy_vector" SIMD_width ="true" op_types="t1"></vectorAssign>
9 <print printScalar="printFXPc" printArray="printFXPAc" printPackedArray="printFXPVc" op_types="t1">

</print>� �
Listing 3.19: Example of auxilary semantics XML specification

3.3 Front-end

The compiler’s front-end performs syntax analysis using a lexical and syntax analyzer
that have been generated by the flex/bison tools [Levine, 2009] for MATLAB grammar.
No simplifying assumptions about the input syntax have been made. The compiler scans
the input MATLAB code using the generated by Flex lexical analyzer which feeds with
tokens the parser. At the syntax analysis stage, the parse syntax tree is constructed
consisting of nodes of terminal and non-terminal symbols that have been determined
in the grammar. The tree’s nodes are connected according to the production rules of
grammar. More specifically, a node representing a non-terminal symbol is constituted
by descendants which are the derived symbols of the corresponding syntax rule.
In the next stage, the parse tree is transformed to an Abstract Syntax Tree. The

parse tree is composed by nodes for each symbol of grammar. Most of these nodes are
redundant incapacitating any tree traversals. During the generation of the AST only
nodes including useful information about the input program are constructed. The AST
facilitates any traversals for transformations/optimization and code generation.

3.4 conclusion 93

The parse tree is represented by 122 classes each of them referring to a different
symbol of MATLAB grammar. Figure 5 shows a part of UML class diagram regard-
ing the parse tree representation. Each grammar symbol is a derived class of CParse-
Tree_SyntaxElement base class. The CParseTree_translation_unit class represents the
root of parse tree. Class CParseTree_TOKEN represents terminal symbols and the
rest derived classes are referred to non-terminal grammar symbols. Each derived class
includes a specific number of class constructor overloads corresponding to the syntax
production rules of the symbol. The base class includes member variables about the
descendants of the node, its symbol type (terminal or non-terminal), a symbol enumer-
ation and the location of the token at input file (line and column). Methods which
traverse the parse tree (ex. ParseTreeToASTGenerationPass) are polymorphic (virtual
functions). Through polymorphism there are different implementations of the same
traversal function among the derived classes allowing the specialization of actions at
parse tree nodes of different symbols.

3.4 Conclusion

In this chapter the front-end of the MATLAB compiler was presented. The compiler’s
front-end parses the source MATLAB code producing the parse tree which is subsequent
transformed to AST. Another part of the front-end is the compiler’s input specification
which is the annotated MATLAB code and the processor model in XML. The annotations
in source code are used for the declaration of the type of MATLAB variables as well
as the definition of the blocks that are eligible for SIMD code generation specifying
the preferred vector size. The parameterized processor model allows the generation
of code that exploits the capabilities of the current architecture. Through the use of
processor model, the specialized instruction set and native semantics of an architecture
are described which are leveraged by the compiler to generate C code for the specific
target processor.

94 compiler’s front-end

Figure 5: UML diagram of classes representing parse tree.

Chapter 4

Compiler’s Middle-layer
The middle-layer is the part of the compiler’s infrastructure that converts the inter-

mediate representation to an appropriate form for code generation. Furthermore, depen-
dence analysis and program optimizations are performed by the compiler to improve the
performance of the code that is generated.
The middle-layer of the MATLAB compiler initially performs type inference analysis

on AST representation to resolve the type of MATLAB variables. In this stage, the
parametrized processor model is invoked to determine the result’s type of MATLAB
function calls that later are mapped with customized instructions. Subsequently, in-
struction selection is applied to match the MATLAB operations and functions with the
customized instructions of the target architecture. The instruction selection algorithm
utilizes the parametrized processor model for the mapping process. In the next step
of the compiler’s middle-layer, a multi-pass stage is applied to transform the AST for
data parallel execution. Firstly, complex MATLAB array expressions are decomposed
to simpler ones retaining the vectorized form of the SIMD operands. Afterwards, new
statements are introduced in the AST for the packing of the unpacked data which are
involved in SIMD instructions. Similarly, unpacking statements are inserted to transfer
the packed result’s values to the unpacked data structure. Finally, data flow analysis is
performed and packing/unpacking elimination follows to remove the redundant interme-
diate packing/un-packing statements. The majority of the middle-layer stages including
the type inference, instruction selection and introduction of packing/unpacking state-
ments constitute the main contributions of the thesis.

4.1 Abstract Syntax Tree Representation

The AST is composed by classes that represent the syntax elements of MATLAB
language. Figure 6 presents a part of UML class diagram regarding the AST repre-
sentation. The AST_SyntaxElement is the base AST class which includes member
variables such as the list of node’s descendants. The AST classes that represent syn-
tax elements are divided to a) statements such assignments and control flow statements
using the AST_StatementElement as base class and b) syntax elements composing MAT-
LAB expressions which derived from AST_ExpressionElement class. The classes of AST
which represent the MATLAB syntax elements (ex. AST_REFERENCE) may be consti-

96

4.1 abstract syntax tree representation 97

tuted by other derived classes creating a multilevel of inheritance in the class hierarchy
model. For instance, the AST_EXPRESSION class represents a MATLAB expres-
sion node at AST. The class is base of classes such as the AST_EXPRESSION_MUL
and AST_EXPRESSION_TRANSPOSE which express the multiplication and trans-
pose operations respectively. Furthermore, a reference syntax element may be special-
ized to a variable reference or a function reference using the AST_VAR_REFERENCE
or AST_FUNCTION_REFERENCE respectively deriving from AST_REFERENCE
class. The hierarchical structure of classes allows implementation of specialized actions
depending on the type of syntax element among the different compilation stages.

98 compiler’s middle-layer

Figure 6: UML diagram of classes representing AST tree.

4.2 type inference 99

4.2 Type Inference

The type inference mechanism is a variation of the method described in [De Rose and
Padua, 1999]. The technique presented in De Rose and Padua work combines a static
and a dynamic inference methodology to translate MATLAB code to FORTRAN. The
static analysis mechanism transforms the input code to static single statement (SSA)
form where repetitive forward propagation of types takes place. To improve the quality
of the generated code, value propagation analysis and an on-demand backward propaga-
tion of types are applied as well. For the variables not being inferred during compilation
time, dynamic analysis is performed generating extra code to determine at run time the
type of variables with unknown attributes. More specifically, code is generated for prop-
erly allocating arrays dimensions and extra variables are produced to handle any possible
data type. Our work uses a simplification of the static inference mechanism presented
in [De Rose and Padua, 1999] with only one forward repetition for variables type infer-
ence. The proposed approach doesn’t currently support runtime type inference. More
specifically, in the compiler type inference involves a special AST pass initiating from the
leaf nodes (variables, constants) towards the root node which resolves the type of every
MATLAB expression in the input program. The type of the unspecified variables derives
from the assignment’s right-side expression while for the left-side typed variables, type
checking is performed instead of type inference. In the case of undetermined variables,
such as the input parameters of the primary function, the user can declare them using
pragma functions.

4.2.1 Function Calls Type Inference

One part of the type inference mechanism is the type analysis of function calls. When
the type inference traversal reach an AST node that represents a function call, the
compiler determines the type of function that is called (special instruction, built-in or
user-defined) and performs type inference appropriately. Figure 7 shows the control
flow diagram for the type inference of functions calls. Firstly, the compiler checks if
the evaluated function will subsequently be mapped with a customized instruction. In
that case, the parametrized processor model is invoked to infer the type of the function’s
result as discussed in section 4.2.2. In case that a function call cannot be matched to any
custom instruction in the processor model, the compiler determines whether the function
is a built-in function or a user defined function. In case of a built-in function call the
result type is inferred according to a rule (similar to those used for MATLAB operations)
specified internally in the compiler. If the function call refers to a user defined function,
the type inference process is suspended and a new type inference instance is applied to
determine the type of the current function call. More specifically, for each user defined
MATLAB function the compiler reserves (in Symbol Table structure) pairs of function’s

100 compiler’s middle-layer

start

function can be mapped with
 customized instruction

infer function’s result
type using processor

model Use built‐in’s rule to infer
result typeif function is built‐in

If function hasn’t been inferred for the
current set of operand types

Apply type inference on
user‐defined function

end

Figure 7: Control flow diagram for type inference of functions calls.

input parameter types and inferred result types. Each time a user defined function is
inferred by the compiler, the pair of the input and output parameters is stored in a list.
Thus, the compiler can use this information during type inference phase (searching for
the result type of a function based on the parameter types) avoiding the type analysis of
function calls with same parameter types. Finally, if none of the above cases occurred,
an error message of undefined function is shown to the user.

4.2 type inference 101

4.2.2 Intrinsics Type Inference

The type inference of function calls to be mapped to custom instructions is based on
the parameterized processor model. When the type inference traversal reaches a function
call node, the processor model is used to infer the type of the function call getting as
input the types of the function’s parameters. The processor model is used to apply
a forward matching (discussed in section 4.3) to identify the appropriate instruction.
When a custom instruction is identified, type inference is applied using the types of the
input parameters. The unspecified attributes of the custom instruction result type are
determined by inheriting the type attributes from the first parameter of the function call.
The fully specified result type of the custom instruction can be used as the result type
of the function call contributing for the type inference of the higher AST expressions.
Type inference of function calls mapped to custom instructions can be used extensively
on MATLAB functions during compilation since the majority of them perform element-
wise processing on the input matrices returning output with the same type as the input
type.
Forward matching is necessary only for function calls at the type inference stage

because the parametrized processor model is used in the type inference of function calls
which will be subsequently matched to custom instructions. At this stage no information
of the matched custom instructions is stored in the AST. This is performed during
instruction selection stage where the complete matching of both functions and operations
is implemented. Integrating the instruction selection phase in the type inference phase
would not be a good option as far as the compiler’s design is concerned. The code would
be too complicated and difficult to maintain/extend.

4.2.3 Intrinsics Type Inference Example

Figure 8 shows the type inference process of atan function using the ATAN custom
instruction in the processor model. The scalar instruction can be used for complex fixed
point variables of fraction length 12 and word length 16 with any shape/size (unspecified
shape/size). The type of the function’s output is a complex fixed point variable with word
length of 16 and fraction length of 15 (instead 12) while the array shape/size depends
on the input parameter’s shape/size (unspecified shape/size). During type inference of
function call, the result type inherits from the input parameter the shape/size which is
a vector of 32 elements while the attributes of data type, word and fraction length and
SIMD width (zero due to scalar) are copied from the specification of instruction’s result
type. Thus, the result type of the function has been fully determined using a partial
specification in the processor model in combination with the input parameter type of
the function call.

102 compiler’s middle-layer

Specialized instruction set

Intrinsic

name

Function /

operator

Instruction s

type/ SIMD

width

Packed

operands

Operands

result s type

ATAN atan scalar <packed> <outT, inT>

inT type

Data type

Word, fraction

Shape / size

Complex fixed point

16, 12

unspecified

SIMD width 0

outT type

Data type

Word, fraction

Shape / size

Complex fixed point

16, 15

unspecified

SIMD width 0

instance of inT

Data type

Word, fraction

Shape / size

Complex fixed point

16, 12

<1,32>

SIMD width 0

Instance of outT

Data type

Word, fraction

Shape / size

Complex fixed point

16, 15

<1,32>

SIMD width 0

Attributes are inherited
from input type

Attributes are used from
result type

Figure 8: Type inference example.

4.2.4 Key Contribution of Type Inference

The type inference mechanism developed in the compilation framework is composed by
methodologies that are already existed in the literature. However, the type inference of
function calls that are mapped to customized instructions according to their description
in the processor model is one of the main contributions of this thesis regarding the type
checking/inference.

4.3 Instruction Selection

The next compiler stage is one of the contributions presented in the thesis applying an
instruction selection algorithm to map the MATLAB code with the customized instruc-
tions described in the processor model. This stage is a post-order traversal (algorithm
1) which acts on AST nodes of function calls and MATLAB operations utilizing the
parametrized processor model to search for available custom instructions of the target
processor. To achieve this, the traversal passes to the parametrized processor model,
the operands/parameters types, the operation type or function name and information
on whether or not the current function or operation is required to be included inside a
SIMD block. In the next step (algorithm 2), the parametrized processor model matches
the provided information with the appropriate available custom instruction. The process
of matching involves the sequential comparison of each record contained in the custom
instruction list with the provided criteria until the first match is found. In a first step, the
MATLAB operation/function is compared against the instruction’s name in order to be
matched with an appropriate custom instruction. Afterwards, the instruction’s type is

4.3 instruction selection 103

examined, to check whether a SIMD instruction is required or not. If SIMD_width vari-
able is zero (current node not in SIMD block), then a scalar or array type instruction
should be identified. Otherwise the examined instruction must have the same SIMD
width as the SIMD block width (same value of SIMD_width). After examining the
instruction’s type, the input parameters of the function/operation and the instruction
under consideration are evaluated/compared (only for the specified type attributes). The
first instruction matching the function/operation, is returned to the instruction selection
traversal process and the custom instruction is assigned to the current AST node.

ALGORITHM 1: Instruction selection traversal (AST_instrSelect_trav)
Data: SIMD_width
Result: AST with matched custom instructions

1 if current_node == ′StartSIMD′ then
2 SIMD_width← currrent_node.getSIMD_width();
3 else if current_node == ′StopSIMD′ then
4 SIMD_width← 0;
5 foreach descendant Di of current_node do
6 Di.AST_instrSelect_trav(SIMD_width);
7 input_param_list.add_type(Di);

8 if current_node.isFunctionCall() || current_node.isOperation() then
9 matched_instruction←

instrSelection(node_name,SIMD_width, input_param_list);

104 compiler’s middle-layer

ALGORITHM 2: Instruction Selection procedure
Data: node_name, SIMD_width, input_param_list
Result: Returns the matched custom instruction

1 foreach instruction instri in proccesor_model_list do
2 if node_name == instri.getName() then
3 if (instri.isScalar() || instri.isArray()) && SIMD_width! = 0 then
4 continue;
5 else if instri.getSIMD_width() != SIMD_width then
6 continue;

7 foreach type tj in input_param_list do
8 if SIMD_width ! = 0 && tj .getSIMD_width() ! = instri.getSIMD_width()

then
9 continue;

10 else if instri.parj .Type_isSpecified() && tj .getType() ! = instri.parj .getType()
then

11 continue;
12 else if instri.parj .Size_isSpecifiedj() && tj .getSize() ! = instri.parj .getSize()

then
13 continue;
14 else if instri.parj .ConstantV alue_isSpecifiedj() && tj .getConstantV alue() ! =

instri.parj .getConstantV alue() then
15 continue;
16 return intri;
17 return NULL;

4.3 instruction selection 105

4.3.1 Instruction Selection Example

Figure 9 presents an example of the instruction selection stage. The figure presents
the matching of the add operator and the cosine MATLAB function with the vectorized
instructions available in the parametrized processor list. In the first step, the traversal
collects the parameters types and the SIMD block width. In the next step, instruction
selection is performed to identify an available instruction according to the provided
criteria.

operand1 operand2

ADD
operation

parameter

SIMD
block

AST

Operand1
type

Operand2
type parameter

type

Cosine
function

cos 4 <instance_of_inT>

+ 4
<instance_of_in1T,

instance_of_in1T>

COS
<pack,

pack>
<outT, inT>cos 4

<outT1,

in1T, in1T>

Intrinsic

name

Function/

operator

Packed

operands

Operands

result s type

Specialized instruction set
Instr.

type

ADD + 4
<pack,

pack>

M
a

tc
h

in
g

 P
ro

ce
ss

Collect information for operation/function.
Matching of operation/ function with instruction

SIMD width

Figure 9: Instruction Selection example.

4.3.2 Generated Custom Instructions of benchmark

This subsection discusses the custom instructions which are generated during the com-
pilation of the benchmark on the ARM and x86 targeted architectures. The compiler
may generate code including custom instructions which represent native intrinsic func-
tions of the current architecture or any other C function such as built-in and user defined
functions. Although the generated code for the ASIPs have been mapped to intrinsic
functions, the MATLAB operations and functions have been matched to custom instruc-
tions which are represented by C user defined functions for the ARM and x86 targets.
The names of the corresponding user defined functions between the two architectures
(ARM and x86) are the same, but their implementations are different for ARM and
x86. Finally, the C functions are included in header files (’common_ARM.h’ and ’com-
mon_x86.h’) which are also given as input to the C compiler for the compilation of the
generated code for a specific target.

The mapping of MATLAB code to user defined C functions for ARM and x86 has
been performed for two reasons. Primary, several MATLAB operations and functions

106 compiler’s middle-layer

cannot be directly mapped to C code for these architectures. For example, the current
processors don’t provide math operations such as the calculation of sine and exponential
in vector mode. Thus, it was required to be written C vectorized code implementing these
operations in the form of user defined functions. Furthermore, even if a direct mapping
of a MATLAB operation/function to an intrinsic could be performed, the MATLAB code
has been mapped to user defined functions used as wrappers to intrinsic functions. The
use of wrappers enables the portability of the generated code on various architectures.
Therefore, the generated code can be compiled/executed in both architectures using
the appropriate version of the common header file. The described technique avoids the
description of the parametrized processor model for each architecture.
Tables 13 and 14 present the generated custom instructions for the set of benchmarks

targeting ARM and x86 architectures with fixed point data types. More specifically,
the tables present the number of custom instructions that have been generated per
benchmark producing scalarized (Table 13) and vectorized code (Table 14) (using packed
data types and SIMD width 4). The custom instructions generated for other experiments
such as targeting to ASIPs or using floating point data types are similar, and they are
not presented in the thesis. In table 13, the custom instructions of rows 1-8 are math
operations, the rows 9-17 represent complex arithmetic instructions, the rows 18-24
are auxiliary custom instructions for save/read to/from the real and imaginary part of
complex variables and the two last rows are shifting operations which are used in fixed
point arithmetic. For all the benchmarks, 175 custom instructions have been generated
with most of them appeared in the FFT’s and QR-decomposition applications.

Similarly in table 14, the first 8 rows are vectorized math functions and the following
rows are complex arithmetic operations with vectors (rows 9-20). The rows 21-26 are
packing and unpacking operations for vectors. Although the benchmark compiled for the
current measurement with packed data types, packing/unpacking operations were gen-
erated to expand scalar operands to vectors for SIMD processing as well as instructions
to access/write vectors at benchmark parts of scalar processing with vectors. The rest
of the table rows are custom instructions for assigning vector-to-vector commands (27-
28), vectorized shifting operations (29-30), reading the real part/imaginary of a vector
(31-32) and other scalarized instructions (33-37). Although vectorized code is gener-
ated, scalarized instructions are required for some parts of benchmark. For instance, the
mean application calculates in scalar mode the average value of the vector which has
been occurred by previous vectorized processing. For all the benchmarks, the custom
instructions that have been generated are 347, with most of them appearing in the FFT’s
and QR-decomposition. The scalarized generated code includes less custom instructions
than the vectorized generated code, because the vectorized code includes packing and
unpacking operations. Furthermore, some operations such as scalarized addition of real
numbers have been generated without the use of any custom instruction reducing the
number of generated instructions.

4.3 instruction selection 107

cf
o

co
rd
ic

fft
32

fft
64
-v
1

fft
64
-v
2

fft
12
8

fir m
ea
n

qr
-d
ec

cexp_i 1 4
angleR_i 1
angle_i 5
sin_i 2
cos_i 2
abs_i 6
conj_i 3
scaleDown_i 1 1
cadd_i 4 6 8 9 1 3
cadd_i_rc 1
csub_i 4 6 8 11
cminus_i 1 2 2
cmul_i 1 4 4 6 10 1
cmul_i_rc 6
cmul_i_cr 3
cdiv_i_cr 1
SET_RE_IM_F 2 2 5 3
SET_RE_IM_I 3 2 3 8
getRe_f 1
getIm_f 1
getRe_i 2
getIm_i 2
_rshift 6 5 1 5
_lshift 1
OVERALL: 8 7 12 24 28 40 1 2 53

Table 13: Matched intrinsics of scalarized fixed point generated code on ARM/x86

108 compiler’s middle-layer

cf
o

co
rd
ic

fft
32

fft
64
-v
1

fft
64
-v
2

fft
12
8

fir m
ea
n

qr
-d
ec

v4_abs_i 6
v4_angle_i 5
v4_angleR_i 1
v4_cos_i 2
v4_sin_i 2
v4_cexp_i 1 1 4
v4_conj_i 3
scaleDown_i 1
v4_sub_i 4 2 4 4
v4_sub_i_rr 2 5
v4_minus_i_r 1
v4_add_i 4 2 4 5 1 3
v4_add_i_rc 1
v4_add_i_rr 2 1 1 1
v4_mul_i 1 4 3 5 7 1
v4_mul_i_rr 3 5 1 1
v4_mul_i_rc 6
v4_mul_i_cr 3
v4_div_i_rr 4
v4_div_i_cr 1
_insert_v_ic4 8 8 8 1 2
_insert_v_i4 1 2
insert_all_ic_4 3 1 5 13
insert_all_i_4 4 6 2 5
_extract_v_ic4 16 16 18 1 2
_extract_v_i4 3 2
_cp_vect 7 2 12 6 1 17
_cp_vectR_to_c4 3
V4_ASR_i 1 4
V4_ASL_i 1
v4_getIm_r 2
v4_getIm_i 2
SET_RE_IM_F 2 2 6
SET_RE_IM_I 1 4 2 13
cadd_i 4 4 4 1
cdiv_i_cr 1
_rshift 1
OVERALL: 22 21 12 43 56 67 5 7 114

Table 14: Matched intrinsics of SIMD fixed point generated code on ARM/x86

4.4 support for data parallel execution - ast decomposition 109

4.4 Support for Data Parallel Execution - AST Decomposition

After instruction selection, a multi-pass stage is applied to transform the AST for
data parallelization execution. This compiler stage prepares the AST for SIMD code
generation, introducing statements in the intermediate representation to convert data in
packed form (and vice versa) ready for SIMD execution. Currently the compiler doesn’t
apply dependence-analysis to determine whether vectorization should be applied to a
code segment annotated by the user for this purpose. Furthermore, no enabling trans-
formations such as loop-peeling, loop-skewing or loop-unswitching are applied before
vectorization. The data parallelization steps applied by the compiler include:

• A first pass of AST which involves the decomposition of complex MATLAB array
expressions to simpler ones retaining the vectorized form of the SIMD operands.
After this pass, each statement includes only one operation or function call facili-
tating the implementation of the following steps.
• In the next step, information related to the instruction which has been assigned
to the current node (operation or function) during instruction selection is used to
determine which operands need packing. Not all operands of a SIMD instruction
need to be packed vectors. For instance, a vector shifting instruction may include
an input vector in packed form and a non-packed scalar constant defining the
shifting factor. According to custom instruction’s prototype, new statements are
generated to transfer only the unpacked SIMD operand values’ to packed data
structure (ready for SIMD processing). Similar statements are introduced in the
low-level IR, only for SIMD operation result variables which have been declared as
unpacked data types, transferring the packed result’s values to the unpacked data
structure. Packing/unpacking statements are also inserted for packed operands
and results with non-continuous memory accessing.
• In the final step, an implementation of the local value numbering [Cooper and Tor-
czon, 2012] is performed to remove the redundant intermediate packing/unpacking
statements. The redundant packing/unpacking elimination removes packing/un-
packing statements existing among SIMD operations by exploiting the fact that an
intermediate packed variable can be used at a subsequent SIMD operation without
being unpacked first and then packed again.

The introduction of packing/unpacking statements is one of the major contributions
of the thesis. The methodology allows the generation of C code that executes data in
parallel using unpacked data types for the compilation of MATLAB input code. In com-
bination with the existing local value numbering algorithm, the output code is optimal
packing unpacked data only at their first invocation in SIMD processing and vice versa.

110 compiler’s middle-layer

4.4.1 AST Decomposition

The AST decomposition stage transforms the AST representation to a form that is
suitable for code generation. The complex MATLAB statements are converted to simple
statements that are subsequently translated to C code by the compiler’s back-end. The
AST decomposition stage (algorithm 3) is an AST traversal examining statements that
require decomposition. When a statement determined as complex, it is decomposed in
two or more new statements introducing temporary variables to link the new statements.
Then, type inference is applied to assign the type of the decomposed expressions to
new temporary variables. After type inference, the AST decomposition traversal is
called recursively using the decomposed sub-AST for further simplification. Finally, the
simplified statements are replaced with the initial complex statement constructing the
new decomposed AST.
Figure 10 presents an example of the AST decomposition algorithm. The input state-

ment is decomposed to two new statements which are given as input to a new recursive
instance of the AST decomposition algorithm. The new traversal examines the input
statements and decomposes further the already simplified first statement. Then, the in-
put sub-AST is replaced with the decomposed statements and it is returned to the first
invocation of AST decomposition algorithm. The decomposed statements replace the
complex initial statement leading to the final result of the algorithm - the decomposed
AST.

Some of the statements are subject to decomposition include: expressions with more
than one operation that mapped to customized instructions, array concatenation state-
ments, and functions calls with references with indexing. These cases are frequently
appeared in MATLAB code. However a number of other cases are also decomposed but
they aren’t presented in the thesis. Examples of AST decomposition exposing various
cases are presented below.

ALGORITHM 3: AST decomposition traversal (AST_decomp_trav)
Data: AST_statements
Result: Decomposed AST

1 foreach statement Si of AST_statements do
2 if decomposition_required(Si) then
3 decomposed_statements← decompose(Si);
4 foreach statement Dj of decomposed_statements do
5 type_inference(Dj);
6 decomposed_statements← AST_decomp_trav(decomposed_statements);
7 AST_statements→ insert(decomposed_statements);
8 AST_statements→ remove_statement(Si);
9 Si ← decomposed_statements.last;

10 return AST_statements;

4.4 support for data parallel execution - ast decomposition 111

(1) t2 = op1+op2;
(2) t1 = t2+op3
(3) res = t1+op4;

(1) res = op1+op2+op3+op4;
(2) t2 = op1+op2;
(3) t1 = t2+op3
(2) res = t1+op4;

(1) t2 = op1+op2;
(2) t1 = t2+op3
(3) res = t1+op4;

(1) res = op1+op2+op3+op4; (1) t1 = op1+op2+op3;
(2) res = t1+op4;

(1) t1 = op1+op2+op3;
(2) res = t1+op4;

(1) t2 = op1+op2;
(2) t1 = t2+op3;

(1) t1 = op1+op2+op3;
(2) t2 = op1+op2;
(3) t1 = t2+op3;
(2) res = t1+op4;

(1) t1 = op1+op2+op3;
(2) t2 = op1+op2;
(3) t1 = t2+op3
(2) res = t1+op4;

Decompose

New AST Decomposition Traversal

Decompose (1)

Insert (1),(2)

Remove (1)

Return AST

Insert (1),(2),(3)

Remove (1)

Figure 10: AST Decomposition example.

112 compiler’s middle-layer

Customized instructions Decomposition The MATLAB statements including op-
erations that are mapped to customized instructions are decomposed to simplify the code
generation process. Thus, each statement represent a custom instruction consisting of
only one MATLAB operation/function. The listing 4.1 presents a code example with
a MATLAB assignment including three operations that are mapped to customized in-
structions. The AST decomposition process decomposes the statement as it is presented
in listing 4.2. Two new statements are introduced for the calculation of the element-wise
multiplications before the multi-operation statement. Furthermore, the decomposed op-
erations are replaced by temporary variables.� �

1 function [res] = CustomInstrExample(op1,op2,op3,op4)
2 dec_dblc(’op1’,1,8);
3 dec_dblc(’op2’,1,8);
4 dec_dblc(’op3’,1,8);
5 dec_dblc(’op4’,1,8);
6 res = op1.*op2 + op3.*op4;
7 end� �

Listing 4.1: Customized instructions example

� �
1 %Matlab code generation from AST
2 function [res] = CustomInstrExample(op1,op2,op3,op4)
3 dec_dblc(’op1’,1,8)
4 dec_dblc(’op2’,1,8)
5 dec_dblc(’op3’,1,8)
6 dec_dblc(’op4’,1,8)
7 tmp_0 = op1*op2;
8 tmp_1 = op3*op4;
9 res = tmp_0+tmp_1;

10 end
11� �

Listing 4.2: Decomposed Customized instructions example

Function Statement Decomposition AST decomposition stage creates temporary
statements for the function parameters that cannot be passed directly to a function call
at C. Function parameters which are decomposed, maybe a reference of array variable
with indexing or array operations. However, function parameters that comply with C
syntax and decomposition isn’t required are scalar references, scalar operations or array
references without indexing. The listing 4.3 shows a MATLAB code example that calls
a user-defined function of two output and three input parameters. The function call in
line 4 is decomposed (in listing 4.4) as follows: a) a new statement is introduced before
the function call that calculates the array addition (op+op) and the last function input
parameter is replaced be the introduced temporary array b) the last output parameter
(res2(1:2:16)) is replaced by a new temporary variable and a new statement is inserted

4.4 support for data parallel execution - ast decomposition 113

after the function call to transfer the data from the temporary variable to res2. Finally,
the rest function parameters don’t need decomposition. These parameters are two array
references and one scalar reference of array that in C can be passed to the function by
reference and by value respectively.� �

1 function [res1 res2] = FunctionExample(op)
2 dec_dbl(’op’,1,8);
3 dec_dbl(’res2’,1,16);
4 [res1 res2(1:2:16)] = myFun(op(1), op, op+op);
5 end
6
7 function [res1, res2] = myFun(par1,par2,par3)
8 res1 = par1+par2;
9 res2 = par1+par3;

10 end� �
Listing 4.3: Function example

� �
1 %Matlab code generation from AST
2 function [res1,res2] = FunctionExample(op)
3 dec_dbl(’op’,1,8)
4 dec_dbl(’res2’,1,16)
5 _tmp_0 = op+op;
6 [res1 _tmp_1] = myFun(op(1),op,_tmp_0);
7 res2(1:2:16) = _tmp_1;
8 end
9

10 function [res1,res2] = myFun(par1,par2,par3)
11 res1 = par1+par2;
12 res2 = par1+par3;
13 end� �

Listing 4.4: Decomposed Function example

Array Concatenation Statement Decomposition The MATLAB array concate-
nation statements are decomposed to multiple simplified assignments. Each of the new
statements correspond to the assignment of an element inside the brackets to left-side
variable. Listing 4.5 presents the source code of a MATLAB function including an ar-
ray concatenation statement (line 4). The statement consists of the concatenation of
four elements with dimensions 1x8 creating a new matrix of 2x16. Listing 4.6 shows
the decomposed MATLAB code of the source code presented in listing 4.5. The array
concatenation statement of listing 4.5 is converted to four statements. Each of them
assign an element from array concatenation to a different part (generating references
with indexing) of the left-side matrix.

114 compiler’s middle-layer

� �
1 function [res] = arrayConExample(op1,op2)
2 dec_dbl(’op1’,1,8);
3 dec_dbl(’op2’,1,8);
4 res = [op1+op2 op1; op1-op2 op2];
5 end� �

Listing 4.5: Array Concatenation example

� �
1 %Matlab code generation from AST
2 function [res] = arrayConExample(op1,op2)
3 dec_dbl(’op1’,1,8)
4 dec_dbl(’op2’,1,8)
5 res(1,1:8) = op1+op2;
6 res(1,9:16) = op1;
7 res(2,1:8) = op1-op2;
8 res(2,9:16) = op2;
9 end� �

Listing 4.6: Decomposed Array Concatenation example

4.4.2 Packing/Unpacking statements Introduction

The introduction of packing/unpacking statements is an AST traversal (algorithm 4)
that acts on the user defined SIMD blocks. The process is applied at the statements
correspond to SIMD instructions inserting packing/unpacking statements to enable data
parallel execution. For the statements of SIMD block, the instruction’s operands and
result are examined to determine if packing/unpacking of data is needed. To achieve this,
the customized instructions that have been stored in the AST nodes during instruction
selection phase are retrieved to specify the operands need to be packed. According
to that specification, packing statements are introduced in the AST. More specifically,
different packing commands are inserted depending to the references are involved in the
SIMD instructions. For scalar references or constant values, statements that expand the
scalar value to vector are introduced (line 12 of listing 4.8). For references of unpacked
data with sequential indexing, a simple pack command is inserted to transfer massively
the unpacked data to the vector structure (line 7 of listing 4.8). Finally, references
with non-contiguous memory accessing are packed inserting a for-loop that inserts one
data element to a vector at each repetition (lines 13-15 of listing 4.8). The last case
is applied on references of unpacked or even packed data. The re-packing of packed
references is required to reorder the vector elements to an appropriate sequence. After
the introduction of packing statements, unpacking instructions are also inserted in the
AST to transfer the packed instruction’s result to unpacked variables. There are two
types of unpacking statements - the instant transferring of vector to memory and the

4.4 support for data parallel execution - ast decomposition 115

ALGORITHM 4: Packing/Unpacking statements Introduction (Packing_introduction)
Data: AST
Result: AST with packing/unpacking statements

1 foreach simd_block Bi of AST do
2 foreach statement Sj of Bi do
3 AST_decomp_trav(Sj);
4 foreach operand Pk of Sj do
5 if needPacking(Pk) then
6 if isScalar(Pk) || isConstantV alue(Pk) then
7 insertExpand(Pk);
8 else if (sequentialIndex(Pk) || noIndex(Pk)) && isUnpackedRef(Pk)

then
9 insertMassivePacking(Pk);

10 else if nonSequentialIndex(Pk) then
11 insertPacking(Pk);
12 if (sequentialIndex(resultOf(Sj)) || noIndex(resultOf(Sj))) &&

isUnpackedRef(resultOf(Sj)) then
13 insertMassiveUnpacking(resultOf(Sj));
14 else if nonSequentialIndex(resultOf(Sj) then
15 insertUnpacking(resultOf(Sj));

unpacking of data using a for-loop for non-sequential accessing of memory. Similarly to
the re-packing of packed references, unpacking is also applied on packed result reference
with non-sequential indexing.

The packing/unpacking statements introduction requires the use of vector variables to
transfer data from/to memory. The procedure generates a new vector variable for each
textually different reference that pack/unpacked. The textually same references (same
variable name and indexing) use the same vector for packing/unpacking. The re-use of
same vectors assists the elimination of redundant packing/unpacking statements as it is
described below.
Listing 4.7 presents a MATLAB code example with an invocation to scaleUp function

and an array addition inside a specified SIMD block. The scaleUp function performs
bitwise shift left on the input vector (first parameter) by the scalar value which is given
as the second parameter. Finally, the variables that are used in the example are un-
packed data type. Listing 4.8 shows the transformed code after the introduction of
packing/unpacking statements by compiling the code of listing 4.7 using a processor
model that maps the scaleUp and array addition to SIMD instructions. The first pa-
rameter of scaleUp function is an unpacked reference with sequential indexing and a
packing instruction is inserted (line 7) to transfer massively the data to the vector. The
second parameter of the function is unpacked scalar, thus packing is avoided. The array
addition of listing 4.7 consists of unpacked operands and results. The first operand is
a scalar reference, therefore an expand instruction is inserted before the operation (line

116 compiler’s middle-layer

12) to fill a vector with the value. The second operand and result are references with
non-continuous accessing to memory. Consequently for-loop statements are inserted be-
fore and after of the addition to pack and unpack the data respectively.� �

1 function [res1 res2] = packingExample(op)
2 dec_fixpc(’op’,’16’,’12’,1,16);
3
4 startSIMD(4,8)
5 res1 = scaleUp(op(1:8),2);
6 res2(1:2:16) = op(1)+op(1:2:16);
7 endSIMD()
8 end� �

Listing 4.7: Packing/unpacking example

� �
1 %Matlab code generation from AST
2 function [res1,res2] = packingExample(op)
3 dec_fixpc(’op’,’16’,’12’,1,16)
4
5 startSIMD(4,8)
6 %res1 = scaleUp(op(1:8),2);
7 vec_0 = pack(op(1:8));
8 vec_1 = scaleUp(vec_0,2);
9 res1 = unpack(vec_1);

10
11 %res2(1:2:16) = op(1)+op(1:2:16);
12 vec_2 = expand(op(1));
13 for k=1:2:16
14 vec_3 = pack_element(vec_3, op, k);
15 end
16 vec_4 = vec_2+vec_3;
17 for k=1:2:16
18 res2 = unpack_element(vec_4, res2, k);
19 end
20 endSIMD()
21 end� �

Listing 4.8: Packing/unpacking example after AST decomposition

4.5 Redundant Packing/Unpacking Elimination

Redundant code elimination is a common local optimization that is applied in basic
blocks to remove computations that have been previously calculated. The algorithm is
applied to remove/replace the redundant statements performing analysis to determine
whether or not re-computation of a value is required. The analysis comprises the ex-
amination of the statements in order to check if the values of the variables have been
modified since the last execution of the same computation. In case that the values of
the variables involved in the examined statement haven’t been modified, the redundant

4.5 redundant packing/unpacking elimination 117

computation is replaced by the assignment of the variable that holds the result of the
previous calculation.
The MATLAB compiler uses an implementation of the local value numbering described

in [Cooper and Torczon, 2012] to remove the redundant packing/unpacking statements
that are inserted in the AST from the previous compiler’s stage. The idea of value num-
bering algorithm is that same numbers are assigned at the references of same variables
only if they have provably equal values [Cooper and Torczon, 2012]. Therefore, if the
value of variable is changed (variable at the right side of assignment) a new number is
assigned at the subsequent references of this variable. The result of value numbering pro-
cess is the AST of basic block composed by expressions having numbering identification
to determine which re-computations are redundant.
During redundant packing/unpacking elimination stage (algorithm 5), the compiler

applies local value numbering to remove the packing/unpacking statements that are
redundant following the method described in [Cooper and Torczon, 2012]. Firstly, the
compiler assigns numbers at references and vector variables of SIMD block. Subsequently,
it is examined if the vector of a packing/unpacking statement is existed in hash table.
In case that vector isn’t found, a new record is inserted using as key, the name of vector.
The value of the new entry contains a pair of values including the text of expression which
is packed/unpacked with its numbering and the type of instruction (pack or unpack). In
case that an entry is existed in hash table for the examined vector, one of the following
conditions is applied:

• If it is pack instruction and the reference that is packed has the same numbering
with a record of hash table, then the statement is redundant. In that case the
current packing statement is removed. The condition eliminates the duplicates of
packing instruction of SIMD operands whose the values haven’t been modified.
• If it is pack instruction and its input reference is included in the hash table with
the same numbering of a reference that is used as result of unpacking instruction,
then the statement is redundant. In that case of redundancy, the compiler similarly
removes both the current packing statement and the unpacking statement found
in the hash table. The condition eliminates the unpacking-packing instructions
of intermediate results of SIMD block. Thus, the unpacking of data that are
subsequently are re-packed to be used as operand to another SIMD instruction is
avoided.
• If it is unpack instruction and there is a reference with same numbering in the
hash table for another unpacking instruction, then the statement that is found is
redundant and it is removed. The condition eliminates multi-unpacking of same
data in the SIMD block and preserves that data are in packed form until the last
use of them.
• In case that the text of expressions are different, the entry of the hash table is
updated with the text of the expression of the current statement. For the case of

118 compiler’s middle-layer

unpack-pack instructions elimination (second condition), the type of pack instruc-
tion is also changed in the hash table from unpack to pack.

ALGORITHM 5: Elimination of redundant packing/unpacking statements (Pack-
ing_elimination)
Data: AST
Result: AST including only necessary packing/unpacking statements

1 hashTable = init();
2 foreach simd_block Bi of AST do
3 foreach statement Sj of Bi do
4 localV alueNumbering(Sj);
5 if isPacking(Sj) || isUnpacking(Sj) then
6 foundRec← hashTable.find(getV ector(Sj));
7 if foundRec.empty() then
8 newRec.setKey(getV ector(Sj));
9 newRec.setV alue(pair < getExpression(Sj), getPackType(Sj) >);

10 hashTable.insert(newRec);
11 else
12 if isPacking(Sj) && foundRec.isPacking() then
13 if getExpression(Sj) == foundRec.getExpression() then
14 remove_from_AST (Sj);
15 else
16 foundRec.updateExpression(getExpression(Sj));
17 hashTable.modify(foundRec);
18 else if isPacking(Sj) && foundRec.isUnpacking() then
19 if getExpression(Sj) == foundRec.getExpression() then
20 remove_from_AST (Sj);
21 remove_from_AST (foundRec.getAST_statement());
22 else
23 foundRec.updateExpression(getExpression(Sj));
24 foundRec.updatePackingType(getPackType(Sj));
25 hashTable.modify(foundRec);
26 else if isUnpacking(Sj) && foundRec.isUnpacking() then
27 if getExpression(Sj) == foundRec.getExpression() then
28 remove_from_AST (foundRec.getAST_statement());
29 else
30 foundRec.updateExpression(getExpression(Sj));
31 hashTable.modify(foundRec);

The compiler supports for-loops statements as well as if-else and while statements of
scalar conditions inside a SIMD block. In that case, the compiler applies conservative
analysis during local value numbering and assumes that the statements in for-loop are
always executed regardless the run-time execution path of the control-flow statement.

4.5 redundant packing/unpacking elimination 119

Figure 11 presents an example of redundant packing/unpacking elimination. Firstly,
the MATLAB source code is shown comprising by three SIMD additions and two scalar
assignments. The second box of the figure shows the intermediate code highlighting the
vectors that have been introduced after the packing/unpacking statements introduction
stage. The compiler generates a new vector variable for each textually different reference
Therefore, two different vectors are produced for the packing of op2 variable which is
used with different indexing in the SIMD operations. The third box of the figure shows
the intermediate code applying local value numbering. The example demonstrates a
case that unpacking-packing is redundant and another case that re-packing is required
because value of the variable is modified. The red highlighted statements are redundant
and they are eliminated because the second condition (described above) is satisfied. The
variables r1 and r2 are firstly unpacked and subsequently are re-packed using the same
numbering (7 and 12 respectively), therefore they are removed. On the other hand,
the variable op1 is packed twice using the same textually expression, although it isn’t
considered as redundant. This is due to the fact that the two packing references have
different numbering because the value of the variable i used for indexing is modified.

i=1;
r1 = op1(i:(i+4))+op2(1:4);
i=4;
r2 = op1(i:(i+4))+op2(4:8);
res = r1+r2;

i=1;
vec1=pack(op1(i:(i+4)));
vec2=pack(op2(1:4));
vec3 = vec1+vec2;
r1=unpack(vec3);
i=4;
vec1=pack(op1(i:(i+4)));
vec4=pack(op2(4:8));
vec5 = vec1+vec4;
r2=unpack(vec5);
vec3=pack(r1);
vec5=pack(r2);
vec6 = vec3+vec5;
res=unpack(vec6);

i1=1;
vec13=pack(op12(i1:(i1+4)));
vec25=pack(op24(1:4));
vec36 = vec13+vec25;
r17=unpack(vec36);
i8=4;
vec19=pack(op12(i8:(i8+4)));
vec410=pack(op24(4:8));
vec511 = vec19+vec410;
r212=unpack(vec511);
vec313=pack(r17);
vec514=pack(r212);
vec615 = vec313+vec514;
res16=unpack(vec615);

Packing/unpacking
insertion

Local value numbering

Figure 11: Redundant packing/unpacking Elimination example.

120 compiler’s middle-layer

4.5.1 Inserted/Removed Packing and Unpacking Statements
of Benchmark

This subsection discusses the performance of the compiler’s stage regarding the sup-
port for parallel execution. The table 15 presents the number of packing/unpacking
statements inserted in AST and the number of these which has been removed from pack-
ing/unpacking elimination stage for the benchmark. The results show that the 53% of
the statements introduced in AST are redundant and finally are removed. This met-
ric shows the significance of elimination of packing/unpacking statements stage for the
performance of the vectorized generated code using unpacked data types. For the applica-
tions with large SIMD blocks, a higher percentage of packing/unpacking statements are
eliminated. The large SIMD blocks increase the reusability of the intermediate packed
results, thus more packing/unpacking statements are redundant and can be eliminated.
On the other hand, application of single operation included in SIMD blocks (FIR, mean)
doesn’t reuse any packed data and no elimination is performed.

re
m
ov
ed

in
se
rt
ed

cfo 12 20
cordic 5 14
fft32 9 28
fft64-v1 13 22
fft64-v2 47 60
fft128 30 57
fir 0 6
mean 0 3
qr-dec 66 134
OVERALL: 182 344

Table 15: Inserted and removed packing and unpacking statements of benchmark.

4.6 Conclusion

In this chapter the middle-layer of the compiler’s infrastructure was presented. In
middle-layer, the compiler prepares the AST for the generation of C code. Firstly, type
inference is performed to infer/check the type of MATLAB variables. The processor
model is utilized for the resolution of the type of function calls that are matched with

4.6 conclusion 121

custom instructions. Subsequently, instruction selection is applied to map the MAT-
LAB operations and functions with the customized instructions that are described in
the processor model. Finally, a multi-pass stage is performed to transform the AST to
support the generation of data parallel code. The stage comprises the decomposition of
the complicated MATLAB statements following by the introduction of packing/unpack-
ing statements. Next, the elimination of the redundant statements is applied removing
the packing/unpacking operations that has been inserted in the previous stage.
The middle-layer constitutes the most significant part of the compiler enabling the

generation of data parallel code as well as the generation of optimized code (instruction
selection) for a target architecture exploiting its specialized instructions. A number of
contributions are presented in the chapter including: a) a type inference mechanism for
function calls according to the processor model, b) an instruction selection algorithm
for the map of MATLAB code with modules of hardware, c) and a methodology for the
insertion of packing/unpacking statements to enable the data parallel execution of the
generated code.

Chapter 5

Compiler’s Back-end (Code genera-
tion)
The compiler’s back-end consists of the code generator which produces the output of

the compiler. The code generator translates the intermediate source code representation
to the target program which may be in the form of another programming language or
assembly/binary code.
The back-end of the MATLAB compiler generates ANSI C code which is compatible

with any C/C++ compiler supporting the target architecture. The style of the generated
C code may be scalarized or vectorized including the custom instructions of the target
processor/ASIP in the form of intrinsic functions. The back-end generates the intrinsic
functions that have been matched at the instruction selection stage while equivalent C
code is produced for the MATLAB operations that haven’t been mapped with hardware.
The derived data types of the generated C code can be floating point, integer or fixed
point. For the latter, extra C code is generated for handling the fixed point arithmetic.
The figure 12 shows the association of the different parts of compiler’s back-end.

Section 1
Structure of Generated C

Code

Section 2
Code Generation For

Control Flow Statements

Section 4
Code Generation of
Derived Data Types

Section 5
Code Generation For

MATLAB Operations -
customized instructions

Section 7
Code Generation of
Packing/Unpacking

Statements

Section 3
Fixed Point Code

Generation

Section
Vectorized Code

Generation

Section 6
Scalarized Code

Generation

Figure 12: Dependence graph of back-end components.

122

5.1 structure of generated c code 123

5.1 Structure of Generated C Code

The code generator produces a C source file including the translated C code. For
each MATLAB function of the input source files, one or more C implementations are
produced depending on the different parameter types that have been determined during
the type inference stage. The code generator produces two additional C header files.
The first includes the deceleration of the functions, the additional header files which
have been specified in the parametrized processor model and the definitions of the C
derived variables which have been declared in MATLAB as global variables. The second
header file include #define directives that define data names for the C primitive types.

The listings 5.2, 5.3 and 5.4 shows the output of the compiler using the input MATLAB
code of listing 5.1. The MATLAB example includes two definitions of variables which
one of the them is specified as global variable arr, and two function calls myFunc using
different type of parameter. Listing 5.4 shows the translated C code including the
definition of CodeOutput function and two implementations of myFunc function - one
for each different type that is called in MATLAB code. The Listing 5.2 file is the C header
file consisting of a)the declaration of the three generated functions, b)the definition of arr
variable which has been declared as global variable in MATLAB code and c)an include
statement of common.h file which has been specified in the processor model as additional
header file. Finally, the listing 5.3 comprises #define preprocessor directives that allow
the definition of C types. The derived variables are generated using the specified data
names of the file instead of producing variables with the direct primitive types.� �
1 function [] = codeOutput(op, arr)
2 global arr;
3 dec_dbl(’op’);
4 dec_dbl(’arr’,2,3);
5 res1 = myFunc(op);
6 res2 = myFunc(arr);
7 end
8 function [res] = myFunc(op)
9 res = 1-op;

10 end� �
Listing 5.1: Compiler’s output example (MATLAB file).

124 compiler’s back-end (code generation)

� �
1 #ifndef _EX_C_CODE
2 #define _EX_C_CODE
3 #include "ex_Defines.h"
4 #include "common.h"
5 void codeOutput_2(D_DBL_TY op,D_DBL_TY arr[3][2]);
6 void myFunc_3(D_DBL_TY &res, D_DBL_TY op);
7 void myFunc_4(D_DBL_TY res[3][2], D_DBL_TY op[3][2]);
8 D_DBL_TY arr[3][2];
9

10 #endif� �
Listing 5.2: Compiler’s output example (C header file).

� �
1 #ifndef _EX_DEFINES
2 #define _EX_DEFINES
3 #define D_SINT8 signed char
4 #define D_UINT8 unsigned char
5 #define D_SINT16 signed short
6 #define D_UINT16 unsigned short
7 #define D_SINT32 signed int
8 #define D_UINT32 unsigned int
9 #define D_SINT64 signed long long

10 #define D_UINT64 unsigned long long
11 #define D_LOG_TY bool
12 #define D_DBL_TY double
13 #define D_CHR_TY char
14 #endif� �

Listing 5.3: Compiler’s output example (defines file).

� �
1 #include "ex_C_code.h"
2
3 void codeOutput_2(D_DBL_TY op,D_DBL_TY arr[3][2]){
4 D_DBL_TY res1;
5 D_DBL_TY res2[3][2];
6 myFunc_3(res1 ,op);
7 myFunc_4(res2 ,arr);
8 }
9 void myFunc_3(D_DBL_TY &res, D_DBL_TY op){

10 res = 1 - op;
11 }
12 void myFunc_4(D_DBL_TY res[3][2], D_DBL_TY op[3][2]){
13 D_SINT32 i1 ,i2;
14 for(i1=0; i1 < 3; i1=i1+1){
15 for(i2=0; i2 < 2; i2=i2+1){
16 res[i1][i2] = 1 - op[i1][i2];
17 }
18 }
19 }� �

Listing 5.4: Compiler’s output example (C source file).

5.2 code generation for control flow statements 125

5.2 Code Generation For Control Flow Statements

The compiler fully supports the code generation of control flow for-loop, if-else and
while statements and partially supports the code generation of switch-case statements.
The MATLAB language provides if-else and while statements consisting of conditions
of scalar or array dimensions. In MATLAB, a condition of array dimensions is true if
all the element-wise operations satisfy the condition. Moreover, MATLAB is deployed
with for-loops statements which mostly are used with an expression of colon operation
to represent the range of iterations and the increment of loop. The code generator prints
C for-loops using the operands of the colon operation for the lower-upper bounds and
the increment of the loop. In case of known values in compile time, the operands of
colon operations are simply printed to represent the translated for-loop as follows:

• The first colon operand is used as the initializing expression of for-loop statement.
• The last colon operand composes the for-loop condition evaluating if the loop

counter is greater than the upper bound.
• In case that colon operation is composed by three operands, the second one is used

to express the step of for-loop statement. If the colon operation consists of only
two operands, the unit is used as increment of the for-loop statement.

However, MATLAB for-loop statements using variable colon operands, are translated
to C for-loops consisting of a complex condition to terminate accordingly the execution
of the for-loop. The condition examines if the loop counter exceeds the upper bound
of for-loop statement considering that the colon operands may be positive or negative
values.

The if-else and while statements composed by conditions of scalar dimensions, can
be directly translated to C code. However, additional code is generated for MATLAB
control flow statements of conditions with array dimension. For the C code generation
of an array conditional if-else statement, nested for-loops are printed to perform the
operations which are included in the condition assigning the result to a scalar variable.
The for-loops are terminated if all the elements of the array have been accessed or the
scalar variable is false. The checking of the scalar variable implements the behavior
of MATLAB control flow statements where a condition must be satisfied across all the
elements of the evaluated arrays. If one of the element-wise operations is false, the scalar
variable is set to zero to determine that the condition is not satisfied. Finally, the code
generator prints a if statement using as condition, the scalar variable that was used to
store the result of MATLAB if-else statement condition. Therefore, the C code of if
statement scope is executed only if the scalar variable is true, namely only if all the
element-wise operations of array condition are true.
The array conditional while statements are generated similarly to if-else statements.

Firstly, the while statement is generated in C using the true value as condition in order to
infinitely be executed. In the beginning of the while, the nested for-loops implementing

126 compiler’s back-end (code generation)

the MATLAB condition are generated storing the result in scalar variable as well. Sub-
sequently, an if statement is generated that exits (break) the loop only if the MATLAB
condition of while statement is not satisfied.

The listing 5.6 presents the generated C code of the MATLAB example in listing
5.5 showing the generation of the for-loop MATLAB statements. The outer MATLAB
for-loop is composed by a colon operation with constant values while the inner for-loop
includes a colon operation of variables with unknown values in compile time. The code
generator produces the outer for-loop using the values 1,10 and 2 for the lower bound,
the upper bound and the step of for-loop respectively. Generating the inner for-loop, a
more complicated statement is produced examining in runtime the value of x2 whether
or not is negative. Depending on the signedness of the variable, the for-loop counter is
checked to terminate the loop or continue the execution.� �
1 function [res] = for_loop_example(x1,x2,x3)
2 dec_int(’x1’,’int32’);
3 dec_int(’x2’,’int32’);
4 dec_int(’x3’,’int32’);
5 dec_dbl(’res’);
6 res=0;
7 for k= 1:2:10
8 for l=x1:x2:x3
9 res = res+k*l;

10 end
11 end
12 end� �

Listing 5.5: Code generation of for-loop example (MATLAB source).

� �
1 void for_loop_example_1(D_DBL_TY &res, D_SINT32 x1,D_SINT32 x2,D_SINT32 x3){
2 D_SINT32 k;
3 D_SINT32 l;
4 res = 0;
5 for(k=1; k < 11; k=k+2){
6 for(l=(x1); ((((x2) < 0) && (l >=(x3))) || (((x2)>0) && (l <= (x3)))); l=l+(x2)){
7 res = res + k * l;
8 }
9 }

10 }� �
Listing 5.6: Code generation of for-loop example (C generated code).

The listing 5.8 presents the generated code of MATLAB source code in listing 5.7.
The MATLAB code includes an array conditional if-else statement of three scopes (if,
if-else, else). The generated C code in listing 5.8 contains the nested for-loops that per-
form the operations (comparing the equality of zero with the subtraction of op1 and op2
variables) of the if MATLAB condition. The generated for-loop iterates the elements of
condition operands (16 elements) and is terminated if the variable conditionB is false,

5.2 code generation for control flow statements 127

namely the MATLAB array condition is false. Finally, an if statement is generated
including the variable conditionB, as a condition.� �
1 function [res] = if_else_example(op1,op2)
2 dec_dbl(’op1’,1,16);
3 dec_dbl(’op2’,1,16);
4 dec_dbl(’res’);
5
6 if((op1-op2) == 0)
7 res=1;
8 elseif op1<op2
9 res=-1;

10 else
11 res=0;
12 end
13 end� �

Listing 5.7: Code generation of if-else example (MATLAB source).

� �
1 void if_else_example_1(D_DBL_TY &res, D_DBL_TY op1[16],D_DBL_TY op2[16]){
2 D_SINT32 i1;
3 D_SINT32 conditionB = 1;
4 for(i1=0; i1 < 16 && conditionB; i1=_i1+1){
5 conditionB = ((op1[_i1] - op2[_i1]) == 0);
6 }
7 if(conditionB){
8 res = 1;
9 }

10 else{
11 conditionB = 1;
12 for(i1=0; i1 < 16 && conditionB; i1=i1+1){
13 conditionB = op1[i1] < op2[i1];
14 }
15 if(conditionB){
16 res = -1;
17 }
18 else{
19 res = 0;
20 }
21 }
22 }� �

Listing 5.8: Code generation of if-else example (C generated code).

The listing 5.10 shows the generated code of the MATLAB example shown in listing
5.9. The MATLAB code includes an array conditional while statement of the greater
than operation. The generated C code (listing 5.10) includes a for-loop that performs
the relational operation assigning in conditionB the result. Next, an if statement is pro-
duced that examines the conditionB and terminates the while loop only if the condition
is not satisfied.

128 compiler’s back-end (code generation)

� �
1 function [res] = while_example(op)
2 dec_dbl(’op’,1,16);
3 dec_dbl(’res’);
4
5 while(op > 0.1)
6 op = op ./ 1.1;
7 end
8 res = op;
9 end� �

Listing 5.9: Code generation of while statement example (MATLAB source).

� �
1 void while_example_1(D_DBL_TY &res, D_DBL_TY op[16]){
2 D_SINT32 i1 ,i3;
3 D_SINT32 conditionB;
4 while(1){
5 conditionB = 1;
6 for(i1=0; i1 < 16 && conditionB; i1=i1+1){
7 conditionB = (op[i1] > 0.1);
8 }
9 if(!conditionB)

10 break;
11 for(i3=0; i3 < 16; i3=i3+1){
12 op[i3] = (op[i3] / 1.1);
13 }
14 }
15 for(i1=0; i1 < 16; i1=i1+1){
16 res = op[i1];
17 }
18 }� �

Listing 5.10: Code generation of while statement example (C generated code).

5.3 Fixed Point Code Generation

The code generator produces fixed point operations generating additional C code
for the handling of the fixed point arithmetic. For operations such as addition and
subtraction where the fraction length of the two operands must be the same before the
operation execution, shifting instructions are produced to adjust the fraction lengths in
case they are different. Additionally, for the fixed point operations producing a result
with a different fraction length than the declared variable’s fraction length, shifting
instructions are generated, too.
More specifically, the flow diagram of figure 13 presents the principle followed by the

compiler to generate an addition of fixed point numbers (subtraction or bitwise logical
operations). Firstly, the code generator produces extra C code to adjust the fraction
length of the operands if they are not identical. In case that the operand’s fraction

5.3 fixed point code generation 129

lengths are different, a left bitwise shift operation is generated to modify the scaling of
the operand with the lower fraction length. Next, if the fraction length of the fixed point
addition is different from the fraction length of the variable presenting the result, an
extra shift operation is generated to adjust accordingly the scaling.
Concerning the fixed point multiplication (and division), the code generator produces

code to modify the operation’s intermediate fraction length to that of result’s variable.
The multiplication of two fixed point numbers gives their product with fraction length,
the summary of the operand’s fraction lengths. Thus, the compiler produces a shift oper-
ation to scale from the intermediate fraction length (sum of operand’s fraction length’s)
to the fraction length of the result variable. Overflows are commonly appeared in fixed
point arithmetic especially when the operations are implemented in embedded systems
with hardware constraints such as small world length. Quantization operations (ex.
rounding, ones-complement) may be applied by the hardware module units in fixed
point arithmetic as well. Most of these architectures provide special instructions for
the multiplication of integers performing scaling to reduce the precision of the result
and prevent overflow. Therefore, the compiler considers that the underlying customized
instructions that are mapped with the fixed point multiplications, return a result of half
precision (fraction length).

start

fr1 < fr2

left shift (fr1‐>fr2) of op1

end

res:fr
op1:fr1
op2:fr2
res = op1+op2

fr1 > fr2

left shift (fr2‐>fr1) of op2

res = op1 + op2

fr < max(fr1,fr2)

right shift (fr‐>max(fr1,fr2)) of res

left shift (fr‐>max(fr1,fr2)) of res

fr > max(fr1,fr2)

Figure 13: Control flow diagram for the generation of fixed point addition.

130 compiler’s back-end (code generation)

The listing 5.12 presents the generated code of the fixed point operations which are
shown in MATLAB code of listing 5.11. The MATLAB code includes an addition and
a multiplication of fixed point numbers with different fraction lengths. The generated
code consists of the fixed point operations in C performing shifting operations to adjust
the fraction lengths accordingly. The op1 variable is shifted to left by 2 to be aligned
with the fraction length of variable op2. Furthermore, the result of fixed point addition
(fraction length 8) is shifted to right by 4 in order to be adjusted to the fraction length
of the res variable. The fixed point multiplication is generated shifting to the right the
intermediate result (fraction length of 10) by 6 bits in order to achieve 4 bits fractional
precision, as the fraction length of res variable. The fixed point operations are printed
via C macros encapsulating the appropriate instructions instead of producing directly C
operators. The C macros are also generated by the compiler in a separate header file.
For demonstration purposes of the example, the macros are shown in the beginning of
listing 5.12.� �
1 function [res] = fixp_example(op1,op2)
2 dec_fixp(’op1’,’32’,’6’);
3 dec_fixp(’op2’,’32’,’8’);
4 dec_fixp(’res’,’32’,’4’);
5 res = op1+op2;
6 res = op1*res;
7 end� �

Listing 5.11: Fixed point operations example (MATLAB source).

� �
1
2 #define _rshift(op1,op2) (op1 >> op2)
3 #define _lshift(op1,op2) (op1 << op2)
4 #define _add_op(op1,op2) (op1 + op2)
5 #define _mul_op(op1,op2) (op1 * op2)
6
7 void fixp_example_1(_fixp_t &res, _fixp_t op1,_fixp_t op2){
8 res=_rshift(_add_op(_lshift(op1,2),op2),4);
9 res=_rshift(_mul_op(op1,res),6);

10 }� �
Listing 5.12: Fixed point operations example (C generated code).

5.4 Code Generation of Derived Data Types

The code generator prints the local C variables in the beginning of the function scope
while global defined variables are printed in the C header file. Each MATLAB variable
is represented by an equivalent variable in C retaining the shape that has been inferred
(or declared) in type inference stage. The complex variables are represented with a

5.4 code generation of derived data types 131

C structure data types including two variables of simple data types for the real and
imaginary part of the complex number. The code generator utilizes the processor model
to match the derived C data types with the target specific C data types of the current
architecture. In case of type mismatch a default data name is printed according to that
have been defined in the generated header file with the #define directives (ex. listing
5.3).
The Listing 5.15 presents the generated derived C data types of input code in listing

5.13 using the processor model shown in listing 5.14. The MATLAB code includes the
declaration of five variables of different types and dimensions. The generated code in
listing 5.15 uses the information of the specified derived data types of XML configuration
(listing 5.14) and generates variables of target specific data types. The MATLAB vari-
able dbl_var is a non-complex floating point scalar for which no description is existed
in the processor model. Therefore, the default data name D_DBL_TY is produced.
The arr_var and arr_var_512_512 variables are complex floating point arrays of 2x3
and 512x512 dimensions respectively. The arr_var variable is matched with the cfl_t
type and the c_float C data types is generated for the variable. The arr_var_512_512
is matched with the C data type cfl_512x512_t due to dimensions specification and
the c_float_512x512 is generated for that variable. Finally, the vector_var is a packed
variable matching with the derived type cfl_vector which describes a complex floating
point vector of SIMD width 4.� �
1 function [] = derivedTypesExample()
2 dec_dbl(’dbl_var’);
3 dec_dblc(’complex_var’);
4 dec_dblc(’arr_var’, 2,3);
5 dec_dblc(’arr_var_512_512’, 512,512);
6 dec_dblc_p(’vector_var’,’4’, 1,1024);
7 end� �

Listing 5.13: Derived C data types example (MATLAB source).

� �
1 <PROCESSOR_MODEL>
2 <type id="cfl_512x512_t" dt="double" dim="512" complex="true"></type>
3 <type id="cfl_t" dt="double" complex="true"></type>
4 <type id="vec_t" dt="double" complex="true"></type>
5
6 <derived_type name="c_float_512x512" type="cfl_512x512_t" ></derived_type>
7 <derived_type name="c_float" type="cfl_t" ></derived_type>
8 <derived_type name="cfl_vector" SIMD_width="4" type="vec_t" ></derived_type>
9 </PROCESSOR_MODEL>� �

Listing 5.14: Derived C data types example (XML processor model)

132 compiler’s back-end (code generation)

� �
1 void derivedTypesExample_1(){
2 c_float arr_var[3][2];
3 c_float_512x512 arr_var_512_512[512][512];
4 c_float complex_var;
5 D_DBL_TY dbl_var;
6 cfl_vector vector_var[256];
7 }� �

Listing 5.15: Derived C data types example (C generated code).

5.5 Code Generation For MATLAB Operations - customized
instructions

The code generator prints the intrinsic functions that have been matched at the in-
struction selection stage while equivalent C code is produced for the MATLAB operations
that haven’t been mapped with any function unit of the target processor/ASIP. During
code generation stage, the specialized instructions that have been assigned at the AST
nodes, are printed using as parameters the operands of the MATLAB operation. For the
assignments that haven’t been mapped with customized instructions, C code is gener-
ated that implements the MATLAB operation. The compiler supports all the MATLAB
operations and it is able to produce code for any operation of any data type. For the
majority of element-wise MATLAB operations with non-complex numbers a direct trans-
lation of MATLAB to C take place. However, additional C code is produced for several
MATLAB operations such as element-wise operations of complex number, array multi-
plication or transpose operation. For the element-wise operations of complex numbers
two C assignments are produced calculating the real and imaginary part of the complex
number. For array multiplication MATLAB statements, a segment of C code including
three nested loops is generated to calculate the matrix product. Finally, the statements
including a transpose operation are translated to a loop-nested code inversing the data
of the input matrix.
The listing 5.18 presents the generated C code of MATLAB example in listing 5.16 us-

ing the processor model described in listing 5.17. The first statement of MATLAB code
(line 8) includes a floating point multiplication of complex numbers which is matched
with the customized instruction cmul_f in the processor model. The second and third
assignments of MATLAB code are integers’ multiplication of non-complex and complex
numbers respectively which aren’t mapped with any instruction in the XML. The code
generator produces the customized instruction cmul_f for the first MATLAB assignment
using its operands as intrinsic’s parameters. For the second and third MATLAB state-
ments, C code is produced to calculate the multiplication operations. For the complex
multiplication, two statements are printed. The first calculates the real part of the com-

5.5 code generation for matlab operations - customized instructions 133

plex multiplication and the second generated statement calculates the imaginary part.� �
1 function [] = customizedInstructionsExample()
2 dec_dblc(’op_f1’);
3 dec_dblc(’op_f2’);
4 dec_int(’op_i1’,’int32’);
5 dec_int(’op_i2’,’int32’);
6 dec_intc(’op_ic1’,’int32’);
7 dec_intc(’op_ic2’,’int32’);
8 res_f = op_f1.*op_f2;
9 res_i = op_i1.*op_i2;

10 res_ic = op_ic1.*op_ic2;
11 end
12� �
Listing 5.16: Customized instructions - MATLAB operations example (MATLAB

source).

� �
1 <PROCESSOR_MODEL>
2 <type id="cfl_t" dt="double" complex="true"></type>
3 <type id="cint_t" dt="int" complex="true"></type>
4 <derived_type name="c_float" type="cfl_t" ></derived_type>
5 <derived_type name="c_int" type="cint_t" ></derived_type>
6
7 <instruction name="cmul_f" type="SCALAR" op="*" op_types="cfl_t,cfl_t"></instruction>
8 </PROCESSOR_MODEL>� �

Listing 5.17: Customized instructions - MATLAB operations example (XML processor
model)

� �
1 void customizedInstructionsExample_1(){
2 c_float op_f1;
3 c_float op_f2;
4 D_SINT32 op_i1;
5 D_SINT32 op_i2;
6 c_int op_ic1;
7 c_int op_ic2;
8 c_float res_f;
9 D_SINT32 res_i;

10 c_int res_ic;
11 res_f = cmul_f(op_f1, op_f2);
12 res_i = op_i1 * op_i2;
13 res_ic.re = ((op_ic1.re * op_ic2.re) - (op_ic1.im * op_ic2.im));
14 res_ic.im = ((op_ic1.im * op_ic2.re) + (op_ic1.re * op_ic2.im));
15 }� �
Listing 5.18: Customized instructions - MATLAB operations example (C generated

code).

134 compiler’s back-end (code generation)

5.6 Scalarized Code Generation

The code generator produces scalarized C code for the MATLAB statements that are
not included in SIMD blocks. The MATLAB array statements are translated to C loop
nests. For each statement of the input MATLAB code, a loop nest is generated with a
same number of loops as the number of dimensions of expressions/variables which are
involved in the statement. For statements that include references with different indexing
additional counters are generated to access the operand arrays. More specifically, for
references that include index of colon operation with non-unit stride, a new counter is
produced to traverse the array by the specified colon step. In case that two references
access different range of elements, then C code is generated adding the starting point
of MATLAB indexing in the corresponding C counter. Finally, the flattened MATLAB
indexes (MATLAB reference with missing subscripts) are translated accordingly to C
code that flattens the multidimensional derived arrays.
The listing 5.20 presents the generated code of source code shown in listing 5.19. The

MATLAB code includes two functions demonstrating array statements of one dimension
with different indexing and three-dimensional array statements of flattened index. The
code generator produces the MATLAB statement of line 5 (listing 5.19) printing a for-
loop with counter i1 that accesses the elements of res1 array. Two additional counters
(i3 and i4) are generated to traverse the references op1 and op2 which consist of dif-
ferent indexing. The i3 counter is initialized to 17 as the MATLAB colon operation
indicates while the counter i4 is increased by 2 corresponding to the MATLAB indexing.
Moreover, the MATLAB statement of line 6 is generated by the code generator print-
ing a for-loop and only one counter. The counter is used in both references although
their MATLAB indexing is different. The MATLAB reference op1 accesses its last 16
elements, thus the C counter is incremented by 17. Concerning the code generation of
second MATLAB function, the compiler produces two nested loops, one for each MAT-
LAB subscript. The multidimensional derived C variables are transformed to flattened
arrays using pointer notation and printing only one subscript. The C index includes the
translated first subscript of MATLAB code while the second one is multiplied by the
first dimension of the array.

5.7 code generation of packing/unpacking statements 135

� �
1 function [res1 res2] = scalarized_example(op1,op2)
2 dec_dbl(’op1’,1,32);
3 dec_dbl(’op2’,1,32);
4 dec_dbl(’res1’,1,16);
5 res1 = op1(17:32)+op2(1:2:32);
6 res2 = op1(17:32);
7 end
8
9 function [res_3d] = scalarized_3d_example(arr_3d,ind)

10 dec_dbl(’arr_3d’,8,16,32);
11 dec_dbl(’res_3d’,8,16,32);
12 dec_int(’ind’,’int32’,1,16);
13 res_3d(4:end,ind) = arr_3d(4:end,ind);
14 end� �

Listing 5.19: Scalarized MATLAB code example (MATLAB source).

� �
1 void scalarized_example_2(D_DBL_TY res1[16],D_DBL_TY res2[16], D_DBL_TY op1[32],D_DBL_TY op2[32]){
2 D_SINT32 i3 ,i4 ,i1;
3 i3 = 17;
4 i4 = 1;
5 for(i1=0; i1 < 16; i1=i1+1){
6 res1[i1] = op1[(i3-1)] + op2[(i4-1)];
7 i3=i3+1;
8 i4=i4+2;
9 }

10 for(i1=0; i1 < 16; i1=i1+1){
11 res2[i1] = op1[(i1+17-1)];
12 }
13 }
14 void scalarized_3d_example_3(D_DBL_TY res_3d[32][16][8], D_DBL_TY arr_3d[32][16][8],D_SINT32 ind

[16]){
15 D_SINT32 i1 ,i4 ,i2;
16 for(i2=0; i2 < 16; i2=i2+1){
17 for(i1=4; i1 < 9; i1=i1+1){
18 (**res_3d)[(i1-1) +(ind[i2]-1)*8] = (**arr_3d)[(i1-1) +(ind[i2]-1)*8];
19 }
20 }
21 }� �

Listing 5.20: Scalarized MATLAB code example (C generated code).

5.7 Code Generation of Packing/Unpacking Statements

The code generator prints packing/unpacking instructions according to the statements
that have been introduced in the AST during the packing/unpacking introduction stage.
During code generation, the processor model is utilized to retrieve the name of the in-
trinsic function corresponding to the packing/unpacking instruction type (ex. expand,
packing memory by pointer) and the type (floating or fixed point) of the variable which

136 compiler’s back-end (code generation)

is packed/unpacked. To achieve this, an implementation of the instruction selection al-
gorithm discussed in section 4.3 is deployed to match the packing/unpacking instruction
and its types with an available instruction of the target architecture.
The expand instruction is printed with an intrinsic function that is assigned to a vector

variable and accepts the value which fill the vector as input parameter. The packing
memory by pointer instruction is produced similarly to the expand instruction, printing
the corresponding intrinsic function. The code generator follows the prototype of packing
commands of common vectorized architectures which composed by two input parameters
returning the filled vector. The first input parameter is a pointer to the vector which is
filled with the unpacked elements and the second parameter is a pointer to the memory
of the first data that is inserted in the vector. Finally, the packing instruction inserting a
scalar in a vector, is generated in a nested for-loop that repeatedly inserts the unpacked
data to the vector. The intrinsic function composed by the input parameters of

• The vector variable.
• The vector’s index where the data is stored (index from 0 to SIMD width).
• The value that is stored in the vector.

The intrinsic function returns the vector including the inserting value. The sequence be-
low shows the for-loop that are generated for the iterative packing/unpacking statements
in combination with the loop that correspond to the SIMD block.

n∑
n=1

SD(n)
n∗s+SD∗s∑

m=n∗s
s(m)

The nested loops pack or unpack the elements of an array SIMD operand in the
following manner: the inner loop inserts SIMD width number of data in the vector while
the SIMD block for-loop iterates the next SIMD width elements of the array reference
that is packed/unpacked. More detailed, the outer sequence is a for-loop with upper
bound (n) which is the array size of the SIMD block operands, while the for-loop step
is the SIMD width (SD) of the vector instructions. The inner sequence represent the
for-loops that are generated to iteratively insert/extract data to/from vectors. The lower
bound of the for-loop is the current iteration of outer loop (n), multiplied by the stride
(s) (index) of reference that is packed/unpacked. The upper bound is equal to the lower
bound plus the product of stride (s) and the SIMD width (SD). Finally, the step of
the inner loop is the stride of the reference index. The resulted generated loops are
similar to the scalarizing of array MATLAB operations and subsequently performing
loop strip-mining on the scalarized for-loops.
The listing 5.21 presents the generated code using as input the code of listing 4.7 in

chapter 4. The functions in lines 6 and 8 insert and extract four scalars to/from the
vector instantly. The insert_all_ic_4 function in line 9 fills the vector vec_2 with the
first element of op variable. The two last packing/unpacking instructions of the example
insert and extract iteratively data to/from vectors generating for-loops. The MATLAB

5.8 vectorized code generation 137

references involved in the packing/unpacking, contain indexing with colon operation of
non-unit stride. Therefore, the generated for-loops composed by a lower bound of the
SIMD block for-loop counter (si0) multiplied by two (the step of colon operations). The
upper bound of generated loops allows four repetitions (as the SIMD width) and the
increment of loop is 2 as the stride of the reference index that is packed/unpacked.� �
1 void packingExample_1(cfixp_t res1[8],cfixp_t res2[16], cfixp_t op[16]){
2 cfixp32x4_t vec_0, vec_1, vec_3, vec_4;
3 D_SINT32 i2 ,i3 ,i1;
4 D_SINT32 si0;
5 for(si0=0; si0 < 8; si0=si0+SW){
6 vec_0 = insert_all_ptr_ic_4(vec_0, &((op)[si0]));
7 vec_1 = v4_lsl_i(vec_0, 2);
8 extract_all_ptr_ic_4(&((res1)[si0]), vec_1);
9 vec_2 = insert_all_ic_4(op[0]);

10 for(i3=(si0*2 + 1); i3 < (si0*2 + 1)+SW*2; i3=i3+2){
11 vec_3 = insert_ic_4(vec_3, ((i3-(si0*2 + 1))/2), op[i3-1]);
12 }
13 vec_4=v4_add_i(vec_2,vec_3);
14 for(i1=(si0*2 + 1); i1 < (si0*2 + 1)+SW*2; i1=i1+2){
15 res2[i1-1] = _extract_ic_4(((i1-(si0*2 + 1))/2), vec_4);
16 }
17 }
18 }� �

Listing 5.21: Packing/Unpacking code generation example (C generated code).

5.8 Vectorized Code Generation

The generation of vectorized code differentiates from the production of scalarized
code. Furthermore, the generation of vectorized code presented in the section is a novel
methodology for the production of C code with vector semantics from the MATLAB
array-syntax form and it constitutes a contribution of the thesis. The code generator
translates the MATLAB array statements included in SIMD blocks to vectorized C code.
SIMD code generation incorporates the production of for-loops that correspond to SIMD
blocks. The for-loops composed by a string literal "SW " for-loop step and the array size
of the SIMD block operands for-loop condition. Instead of "SW ", the constant width of
the SIMD block could be used as well. However, the use of SIMD block width would
lead to a more restrictive and non-portable (to other architectures) code. By using
"SW ", the compiler’s user is able to execute the generated code with his preferred SIMD
width using, a #define directive in C to specify the value of "SW ". The MATLAB
variables which have been declared with packed format and they are SIMD operands,
are generated as follows:

138 compiler’s back-end (code generation)

• Firstly, the index of a MATLAB reference is translated to C. This comprises the
generation of C code for each subscript of the reference. SIMD operands that are
eligible for SIMD code generation are constrained to be composed by only one
subscript of vector dimension. However, more subscripts are allowed to represent
a MATLAB reference that is vectorized with the restriction that the additional
subscripts are scalar indexing. Finally, the subscript that is vectorized, is always a
colon operation or index represented by other reference/expression. Different kinds
of subscript expressions with vector dimension don’t ensure that access the data
of SIMD operand sequentially and re-packing of data would have been introduced
in the previous compilation stage.

• Next, flattening of index is performed in case that the MATLAB variable is a
multidimensional array. The index flattening comprises the generation of only one
C array subscript which is represented by the summary of the translated MATLAB
subscripts, multiplied accordingly by the variable dimensions.

• Finally, the generated C index is added with the counter of the for-loop that
corresponds to SIMD block and subsequently is divided by the current SIMD width.
The addition of the SIMD for-loop counter allows the accessing of the next SIMD
width elements at each loop iteration. The division of the generated indexing by the
SIMD width ("SW " value) maps the translated indexing to the C vector structure.
Avoiding the division, the derived code of index would point to the corresponding
element of a C array consisting of scalar elements. The C vector structures that
are generated for the packed variables are arrays of vectors. Therefore, dividing
the C index by the SIMD width, it is scaled down to the corresponding vector
element of the derived C vector-typed array.

• In case that a MATLAB reference doesn’t include indexing, the generated SIMD
indexing consists of only the counter of for-loop divided by the SIMD width value.

• Finally, no indexing is generated for packed variables whose dimensions coincide
with the SIMD width (ex. declaring an 1x4 MATLAB variable which is packed to
vector of 4 width).

Listing 5.23 shows the generated SIMD code using as input MATLAB code, the exam-
ple is shown in listing 5.22. The MATLAB code includes an addition and a multiplication
in SIMD block which are mapped to v4_add_f_rr and v4_mul_f_rr respectively. The
SIMD operands are variables of two and three dimensions. The code of listing 5.23 shows
the vectorized code consisting of the generated for-loop that is corresponded to SIMD
block and the for-loop of the MATLAB code in line 8. The C expressions of flattened
index are added by the counter of the SIMD block for-loop s0 and then they are divided
by the vector’s width SW. The generated C variable which corresponds to the MATLAB
packed variable is an array of vectors where each vector stores N elements (where N the
vector’s width 4). Dividing the translated (from MATLAB to C) index by the vector
width the real index of C array vector is computed.

5.9 code generation statistics of benchmark 139

� �
1 function [res res_3d] = vectorized_example(in, arr_3d)
2 dec_dbl_p(’in’,’4’,16,8);
3 dec_dbl_p(’res’,’4’,16,8);
4 dec_dbl_p(’arr_3d’,’4’,4,8,16);
5 dec_dbl_p(’res_3d’,’4’,4,8,16);
6
7 startSIMD(4);
8 for k=1:size(in,1)
9 res(:,k) = in(:,k) +in(:,k+4);

10 res_3d(2,2,:) = arr_3d(2,4,:).*arr_3d(2,8,:);
11 end
12 endSIMD();
13 end
14� �

Listing 5.22: Vectorized MATLAB code example (MATLAB source).

� �
1 void vectorized_example_1(float32x4_t res[128/SW],float32x4_t res_3d[512/SW], float32x4_t in[128/SW

],float32x4_t arr_3d[512/SW]){
2 D_SINT32 k;
3 D_SINT32 si0;
4 for(si0=0; si0 < 16; si0=si0+SW){
5 for(k=1; k < 17; k=k+1){
6 res[(si0+(k-1)*16)/SW] = v4_add_f_rr(in[(si0+(k-1)*16)/SW], in[(si0+(k + 3)*16)/SW]);
7 res_3d[(si0+(1*128+1*16))/SW] = v4_mul_f_rr(arr_3d[(si0+(1*128+3*16))/SW], arr_3d[(si0

+(1*128+7*16))/SW]);
8 }
9 }

10 }� �
Listing 5.23: Vectorized MATLAB code example (C generated code).

5.9 Code Generation statistics of benchmark

The table 16 shows statistics of the benchmark’s generated code producing scalarized
and vectorized C code. The first two rows of table show the scalar and SIMD generated
instructions. The row derived C data types presents the different data types that are
generated for the target architecture. The packing/unpacking operations show the opera-
tions generated for the insertion/extraction of data to/from vectors producing vectorized
C code. The fixed-point shifting operations enumerate the shifting operations that are
generated to handle fixed-point arithmetic. The MATLAB operations row shows the
generated statements for the MATLAB operations that haven’t been mapped with any
customized instructions when producing scalarized code. The SIMD block for-loops row
presents the C for-loops correspond to the SIMD blocks while the scalarized generated
for-loops enumerate the generated for-loops producing scalarized code. Finally, the last

140 compiler’s back-end (code generation)

three rows of the table present the generated if-else statements, the for-loops statements
and the user defined functions respectively.

cf
o

co
rd
ic

fft
32

fft
64
-v
1

fft
64
-v
2

fft
12
8

fir m
ea
n

qr
-d
ec

custom
instructions 2 2 12 24 56 40 2 57

SIMD custom
instructions 7 10 12 7 13 16 2 1 49

derived C
data types 2 1 1 1 1 1 1 1 2

packing/unpacking
operations 8 9 19 13 13 27 6 3 68

fixed-point
shifting operations 7 5 1 5

MATLAB
operations 6 10 2 10

SIMD block
for-loops 1 4 1 2 1 5 1 1 12

scalarized
generated for-loops 8 13 11 9 25 23 3 75

if-else
statements 1

for-loop
statements 3 3 5 2 9 2 1 12

user defined
functions 1 1 3 3 4 1 1 3

Table 16: Generated code statistics of benchmark.

5.10 Conclusion

In this chapter, the compiler’s back-end is presented. The back-end consists of the
code generator producing vectorized or scalarized ANSI C code. The vectorized code
generation includes the production of for-loops that correspond to SIMD blocks as well
as the generation of packing instructions and the matched SIMD instructions with vector
semantics. The scalarized code generation translates the array MATLAB statements to
equivalent C nested loops. The compiler is able to produce the MATLAB operations
via the matched customized instructions while equivalent C code is produced for the

5.10 conclusion 141

MATLAB operations that haven’t been mapped in instruction selection stage. Further-
more, for the generation of fixed point operations additional C code is generated for
handling the fixed point arithmetic. Finally, the compiler generates C code with any of
the primitive MATLAB data types including floating point, fixed point or integers.

Chapter 6

Evaluation of the Compiler
In previous chapters a MATLAB to C vectorizing compiler was presented. In this

chapter the performance of the generated code by the MATLAB compiler is evaluated.
The generated code by the compiler is compared against the generated code by Math-
Works Coder using eight representative DSP benchmarks on various target processors.
The set of target architectures, where the generated C code has been mapped, consists of
an ASIP named BoT supporting SIMD processing, an ASIP named tinyBoT providing
scalar custom instructions, two computer boards of ARM architecture and two different
desktops computers of x86 architecture.
Additional experiments are presented in the chapter regarding the performance of the

generated code and the performance of auto-vectorizing C compilers. The experiments
include evaluation of the generated code by the compiler on the different architectures
without the use of any custom instructions. Additionally, the auto-vectorization perfor-
mance applied by Clang/LLVM, GCC and MSVC is examined on the scalarized gen-
erated code by the two MATLAB compilers. Furthermore, a comparison between the
C compilers on the generated code is also presented. At the end of the chapter, the
compilation times of the two MATLAB compilers are discussed briefly, as well.

6.1 Executive Summary

In this section an executive summary of the performance of the generated code by the
compiler is presented. The section is indicated for readers who are interest for a brief
discussion of the compiler’s experimental results avoiding the detailed result’s presen-
tation which is followed in the below sections. The compiler has been evaluated using
eight representative DSP algorithms (which are enumerated in section 1.2) concerning
different input stream sizes. The benchmarks have been mapped on:

• The raspberry PI 2 and PI 3 single-board computers (SBC) [Raspberry Pi, 2016]
which include a quad-core ARM Cortex-A7 (ARMv7-A) processor and a 64-bit
quad-core Cortex-A53 (ARMv8-A) processor correspondingly.

• Two different x86-based desktops, one of them including an Intel Core i7-3820 from
Sandy Bridge micro-architecture processor, while the second one includes an Intel
(Core i7-3770) from Ivy Bridge micro-architecture processor.

142

6.1 executive summary 143

• Two different ASIP processors (one of them supporting SIMD) customized for
baseband signal processing.

The benchmarking have been conducted using both floating point and fixed point
data types on ARM and x86 architectures while for ASIPs only fixed point data types
has been used since no floating point arithmetic is supported on the specific ASIPs.
Moreover, all experiments relating to the generation of vectorized code have been carried
out using different configurations concerning the SIMD processing width where widths
of 4 and 8 elements have been applied as well as the form of data between unpacked
and packed data types. However, the FFT algorithms have been evaluated using only
SIMD width 4 in order to limit the data shuffling appeared in that application. The
performance (speed) of the generated C code has been compared to that of the code
generated by the MathWorks coder. The following subsections show a summary of the
speed-up compared against the MathWorks coder generated code on the above targets
with different configurations concerning the SIMD width and the form of data (packed
vs unpacked).

6.1.1 Executive Summary of Performance on the ARM
Architectures

Figures 14 and 15 presents the minimum, maximum and average speed-up of the
generated code by the compiler against the MathWorks Coder generated code on a
Raspberry PI 3 using fixed point data types (fig. 14) and floating point data types (fig.
15). For this experiment the Raspberry computer board uses Rasbian [Rasbian, 2016]
operating system and Clang/LLVM has been used for the compilation of generated
C code by both MATLAB compilers. The experiments with floating point has been
conducted only using SIMD width 4 because the NEON technology of ARM architecture
doesn’t provide SIMD width of 8 for floating point.
The compiler’s generated code achieves a substantial speed-up among the different

SIMD configurations for both data types. More specifically, the benchmarks with fixed
point data types achieve a speed-up up to 106.6x and 54.1x and an average speed-up
of 12.8 and 9x for packed data types with SIMD width 4 and 8 respectively while the
speed-up for unpacked data types is up to 46.8x and 24.5x with average speed-up of
8.2x and 7.3x. Additionally, the speed-up of floating point benchmark for the current
experiment is up to 13.3x and 15.6x (4.6x and 3.9x on average) for packed and unpacked
data types with SIMD width 4.
The fixed point benchmarks achieve a higher speed-up compared to the floating point

benchmarks because the generated code produced by MathWorks Coder is more compli-
cated than the corresponding generated code for floating point data types. The fixed
point generated code includes shift operations for fixed point arithmetic or overflow
handling operations which slow up the execution performance of the generated code

144 evaluation of the compiler

compared to the vectorized code by the compiler. Furthermore, in the experiment with
fixed point data types the versions with SIMD width 4 achieve a higher maximum and
average speed-up than the SIMD width 8 versions due to the impressive performance of
FFTs which are evaluated only with SIMD width 4.

0.25

0.5

1

2

4

8

16

speed-up of s4 comp. to MW speed-up of s4-unp comp. to MW

max

average

min

Figure 14: Speed-up of fixed point generated code on Raspberry PI 3

0.25

0.5

1

2

4

8

16

speed-up of s4 comp. to MW speed-up of s4-unp comp. to MW

max

average

min

Figure 15: Speed-up of floating point generated code on Raspberry PI 3

6.1 executive summary 145

6.1.2 Executive Summary of Performance on the x86
Architectures

Figures 16 and 17 presents the minimum, maximum and average speed-up of the
generated code by the compiler compared to the generated code by the MathWorks
Coder on a Core i7-3770 desktop using fixed point data types (fig. 16) and floating point
data types (fig. 17). For the experiment, Linux Ubuntu [Linux, 2016] operating system
have been used and the generated C code has been compiled with Clang/LLVM.
The fixed point generated code by the compiler achieves a speed-up up to 270.7x and

7.5x with 19.3x and 2.9x on average for SIMD width of 4 and 8 with packed data types.
The speed-up achieved for unpacked fixed point data types with SIMD width 4 and 8 is
up to 66.1x and 43.2x with an average speed-up of 8.4x and 8.3x. The speed-up achieved
for the floating point generated code is up to 4.7x and 3.9x with average speed-up of 1.7x
and 1.8x for SIMD width 4 and 8 using packed data types. The unpacked floating point
data type benchmarks achieve a speed-up up to 8.6x and 8.2x with average speed-up of
1.8x and 1.9x.

Similarly to the Raspberry results, the fixed point benchmark achieve a substantial
higher speed-up due to the fixed point arithmetic generated by MathWorks compiler. Fi-
nally, comparisons between different SIMD width configuration shouldn’t be considered
because the SIMD width 8 version doesn’t include the FFT benchmarks which effect the
presented summary speed-ups.

0.125

0.25

0.5

1

2

4

8

16

32

64

128

256

512

speed-up of s4 comp.

to MW

speed-up of s4-unp

comp. to MW

speed-up of s8 comp.

to MW

speed-up of s8-unp

comp. to MW

max

average

min

Figure 16: Speed-up of fixed point generated code on Core i7-3770

146 evaluation of the compiler

0.0625

0.125

0.25

0.5

1

2

4

8

16

speed-up of s4 comp.

to MW

speed-up of s4-unp

comp. to MW

speed-up of s8 comp.

to MW

speed-up of s8-unp

comp. to MW

max

average

min

Figure 17: Speed-up of floating point generated code on Core i7-3770

6.1.3 Executive Summary of Performance on Application
Specific Instruction Set Processors

Figure 18 shows the minimum, maximum and average speed-up of the compiler’s
generated code against the MathWorks Coder generated code on the two ASIPs. The C
application codes generated by both compilers have been mapped to the ASIPs using the
compiler of the Synopsys ASIP Designer [ASIP Designer, 2016]. The values which are
lower than 1 represent a negative speed-up (slow up). The ’speed-up of scalarized code
with intr. comp. to MW’ values refers to the speed-up achieved on the ASIP with scalar
customized instructions. The rest data values of the figure present the speed-up values
of the generated code on ASIP supporting SIMD processing with different configurations.
More specifically, the speed-ups including the ’s4’ (in horizontal axis) indicate that SIMD
width 4 has been used (the ’s8’ refers to SIMD width is 8 respectively) and the speed-ups
including the ’unp’ refer to the compilation of the MATLAB code using unpacked data.

The generated code by the compiler achieves a speed-up between 2x-74x and 8.3x on
average compared to the generated code by the MathWorks coder for the ASIP with
scalar customized instructions. Furthermore, the speed-up achieved on the ASIP with
SIMD processing is up to 39x and 41.3x (10.1x and 14.3x on average) using SIMD width
4 and 8 respectively while the speed-up on the same ASIP using unpacked data types is
up to 81.8x and 97.1x with average values of 10.1x and 17.4x using SIMD width 4 and
8 respectively.
The generated code by the compiler achieves a better execution performance than the

MathWorks generated code on the two ASIPs because custom instructions such as com-
plex number operations and mathematical functions have been mapped on specialized
hardware in contrast to the code generated by MathWorks coder that does not include
custom instructions. Moreover, the speed-ups (of different configurations) on ASIP with

6.2 experimental setup 147

0.25

0.5

1

2

4

8

16

32

64

128

speed-up of scalarized

code with intr. comp.to

MW

speed-up of s4 comp. to

MW

speed-up of s4-unp

comp. to MW

speed-up of s8 comp. to

MW

speed-up of s8-unp comp.

to MW

max

average

min

Figure 18: Speed-up of generated code on ASIPs

SIMD processing are in general higher than the speed-up achieved on ASIP supporting
scalar processing due to the parallel computing which is applied on the ASIP with the
SIMD instructions.

6.2 Experimental Setup

The compiler has been used to generate code for a number of application benchmarks
for the target processors. MathWorks coder 2.8 [MathWorks Coder, 2016] has also been
used to generate code for the application benchmarks for the targeted processors to
allow comparisons. In the case of fixed point application codes, the initial floating point
MATLAB code have been automatically modified with fixed Point Designer [MATLAB
fi, 2016] to add fixed point behavior in the source code using fi objects [MATLAB fi,
2016]. The compilation of applications source code has been on a MS Windows 10, Intel
i-Core7 and 8 GB RAM machine.
The benchmarks include five examples specifically from the signal processing domain

and three more general mathematical/ statistical examples that are also popularly used
in signal processing. More specifically the benchmark consists of:

• The FFT algorithm is used to calculate the DFT [Burrus and Parks, 1991] used in
several wireless baseband algorithms such as IEEE-802.11 [IEEE-802.11, 2009] and
3GPP-LTE [3GPP-LTE, 2016] standards. Often, for these algorithms to adapt to
different bandwidth conditions requires using a different FFT size.
• Carrier Frequency offset (CFO) [Stuber et al., 2004] is similarly a requirement in
almost all OFDM/A based communication systems.

148 evaluation of the compiler

• The digital finite-impulse-response (FIR) filter is among the most popular choice
for band-limiting signals and in general signal conditioning.

• The average computation algorithm (mean) is perhaps the most commonly used
statistical parameter and it is required to be computed as a part of various algo-
rithms including wireless communication and signal processing.

• CORDIC algorithm [Andraka, 1998] has been used as an effective computational
approximation to trigonometric operations especially when using complex numbers.
They are vastly deployed on systems implemented in hardware [Andraka, 1998],
routinely used as a software subroutine in several algorithms.

• QR decomposition is a popular Matrix inversion technique that has wide applica-
bility in many signal processing and learning algorithms [Anderson et al., 1992].

The compiler has been evaluated against MathWorks Coder on multiple scenarios con-
cerning the benchmarks’ input stream sizes, data types and algorithm’s implementation.
The benchmarks’ sizes arise from their application at DSP domain while different input
sizes have been selected to evaluate the performance of generated code relating to the
volume of data which are processed. More specifically, the CFO algorithm has been
tested with a signal stream of 32, 64 and 128 samples. The mean has been evaluated
with input array sizes of 32, 64, 128 and 1024. The FIR has been evaluated using 32
input streams with 64,128 and 256 lengths each for processors while only input matrix of
32x256 has been evaluated on ASIPs. The CORDIC application has been also used for
benchmarking (assuming 64 samples as input). QR decomposition has been used assum-
ing 32, 64 and 128 arrays of 2x2 size each as input for processors. For the two ASIPs, QR
decomposition has been examined using only the version with a 3 dimensional array of
2x2x32 dimensions. Three different algorithms of FFT have been also evaluated. More
specifically, an FFT consisted by 3 stages of radix-2 with 32 input samples, an FFT
of 3 radix-4 stages with 64 input samples and a mixed radix (a radix-8 followed by 2
radix-4 stages) FFT with 128 input samples have been used. For benchmarking FFT-
64 two different implementations of the algorithm have been evaluated - a standard one
(FFT64-v1) and an optimized one (FFT64-v2) for data locality. Finally, the benchmarks
have been evaluated using floating point and fixed point types for the ARM and x86
architectures. For benchmarking on ASIPs only fixed point was used since the specific
ASIPs don’t support floating point arithmetic.

6.2.1 Experimental Environment and Configurations

The C application codes generated by both the compiler and the MathWorks Coder
have been mapped to the targeted ASIPs using the compiler of the Synopsys ASIP
Designer [ASIP Designer, 2016]. The tool was also used for the simulation of the two
ASIPs and the execution of the benchmarks reporting the cycle counts of the executed
code. For benchmarking of the generated code on general purpose processors, a variety

6.2 experimental setup 149

of C compilers and operating systems have been used. Table 17 presents the different
experimental setups that have been used for the targeted processors. Although in ASIPs
the cycle counts can be easily exported, the cycle counting of processors on operating
systems is might be impossible at several instances. Thus, the benchmarking of the
processors has been conducted by counting the execution time of each benchmark using
the clock C function. Using an operating system command such as time at linux OS,
it could affect the results due to the fact that the time required for the loading of the
executable program by the operating system spends a large amount of time regarding
the execution time of the application. Furthermore, due to the small execution times
of some benchmarks and execution time deviations which have been observed on these
environments, each benchmark have been executed 5 times and each of the executions
includes 10000 execution repetitions of the algorithm (in order to achieve time that is
counted by clock C function). The average execution time of each benchmark has been
calculated and has been implemented for the results shown in this chapter.

Architecture OS C compiler
ARM Rasbian Clang/LLVM
ARM Rasbian GCC
ARM Windows IoT MSVC (Visual Studio)
x64 Linux Ubuntu Clang/LLVM
x64 Linux Ubuntu GCC
x64 Windows 10 MSVC (Visual Studio)

Table 17: Different experimental setups on CPU architectures

All experiments have been carried out using SIMD processing widths of 4 and 8 on
unpacked and packed data types except FFT algorithms, where only SIMD processing
width of 4 has been explored. Using SIMD processing width of 8 on FFT is not meaning-
ful since more data shuffling would be needed thus dramatically decreasing performance.
The floating point benchmark on ARM architecture has been evaluated only by using
SIMD width value of 4, because the NEON extension doesn’t provide instructions of
floating point vectors with SIMD width 8. Moreover, due to the incompatibility of
performance value ranges, the experimental results referring to performance have been
normalized per each benchmark and input size. The related to performance result ta-
bles describe the cycles/ execution times that correspond to a performance value of 1 for
each benchmark. The header of each column describes the experimental scenario and
the corresponding figure.

150 evaluation of the compiler

6.2.2 Abbreviations of Diagrams and Tables

The subsection presents the abbreviations appeared in diagrams of current chapter
and appendix and discusses their meaning. The abbreviations concern the configuration
of the experiment as to data types, SIMD configuration, MATLAB compiler, C compiler
and targeted processor. The abbreviations of diagrams are:

• MW (or MathWorks) refers to the generated code by MathWorks Coder.
• MC refers to the scalarized generated code by compiler without using customized

instructions of hardware.
• fx indicates that fixed point data types have been used.
• fl is similar to fx but for floating point data types.
• s4 is mentioned when SIMD width of 4 has been used for the generation of vector-

ized C code.
• s8 is similar to s4 for SIMD width of 8.
• unp is used when unpacked data types have been used for compilation of MATLAB

code.
• Clang, GCC and MSVC are abbreviations to indicate the C compiler which has

been used for the compilation of the generated C code.
• PI2, PI3, i7-3770 and i7-3820 are abbreviations to specify the target processor
where the generated C code has been executed.

6.2.3 Benchmark Characteristics

The selection of applications used as benchmarks has been made focusing on signifi-
cant code properties that are important to evaluate. Benchmarks include a variety of
different codes with respect to data dependencies, control flow, array dimensions, di-
versity of indexing instances and SIMD operations (ex. scalar or constant operands).
In general, the selected applications use the majority of instructions supported by the
targeted architectures with a large variety regarding indexing of MATLAB references.
References have been evaluated with or without indexing accessing data sequentially or
non-sequentially (indexing with colon expressions). No references including array index-
ing using other reference e.g. ’myArrayRef(1,IndexArrayRef(:))’ have been evaluated,
although they supported by the compiler. However, they are not used in SIMD pro-
cessing since data of array references used for indexing ’IndexArrayRef(:)’ are unknown
at compile time. Thus, these data must be packed (or even repacked in case of packed
data) at run time, limiting opportunities for SIMD processing. Evaluation of MATLAB
code including control flow structures such as for-loops and if-else statements combined
with SIMD blocks has been also a focus of benchmarking. A subset of the selected
benchmarks include both control flow and data-dependencies. Control flow dependen-
cies limit vectorization opportunities. The code segments carrying such dependencies are

6.2 experimental setup 151

transformed by the compiler to scalarized code (SIMD block annotations are not used
in this case). The compiler has been evaluated for its efficiency to handle control flow
dependencies and for exploring the overheads introduced when packing and unpacking
operations are used to generate scalarized code with packed data variables. Finally, the
code with loop-carried dependencies has been manually modified to a multi input stream
version enabling vectorization. For example the initial MATLAB code of FIR includes a
one-dimensional vector of 8192 elements. MATLAB code has been manually modified to
a multi input stream of 32 vectors with 26 elements each (32x256 matrix). The variable
references of MATLAB input code have been manually modified from ’in(k)’ to ’in(:,k)’,
thus allowing vectorization of the first dimension by the compiler.
Table 18 shows the characteristics which have been considered about the selection of

the benchmarks for the evaluation of the compiler. FFT algorithms have been selected to
evaluate code generation for two dimensional arrays. Furthermore, FFT benchmarks in-
clude a variety of different indexing cases as well as for-loop statements and scalar opera-
tions involving vector variables (data shuffling). CFO algorithm has been chosen as a case
using one dimensional arrays. The mean, FIR and CORDIC benchmarks are included
in the benchmark set due to the data-dependencies they include (CORDIC includes
data and control flow dependencies). FIR includes two nested for-loops and CORDIC
includes two nested for-loops and one if-else statement. QR decomposition has been
chosen because of several features. The most interesting feature is the three dimensional
structure of the algorithm making code parallelization challenging. QR decomposition
uses a large number of mathematical functions (sine, cosine, Inverse-Tangent, exponen-
tial function, complex conjugate operation and the absolute value function) which are
mapped to custom instructions. QR decomposition also includes advanced MATLAB
operations such as array concatenation, array multiplication and matrix transpose.

6.2.4 Architectures Selection

A number of different instruction set architectures ranging from general purpose to
application specific ones has been selected to run and evaluate the code generated by the
compiler. The selection has been made to address as much as possible a wide range of
state of the art processor features broadly used today and covering a big market share.
The specific choice of processors (and the experimental environment in general) offers a
wide space that allows the thorough evaluation of the compiler’s applicability, flexibility
and extendibility as well as the performance and the portability of the generated code.
ARM architecture provides three different profiles including the A-profile for high per-

formance applications such as mobile and enterprise, the R-profile for embedded systems
demanding high performance, and the energy efficient M-profile for embedded and IoT
applications. ARM is a reduced instruction set computing (RISC) architecture with
a uniform register file operating only on registers (no direct interaction with memory).
ARM generally provides a fixed-length 32-bit instruction set and recently introduced the

152 evaluation of the compiler

FFT

two dimensional arrays
scalar operations with vector variables
indexing
for-loops

CFO
one dimensional arrays
trigonometric functions
scalar operands in SIMD operations (expanding)

CORDIC data and control flow dependencies
nested for-loops and if-else statements

FIR data-dependencies
nested for-loops

MEAN data-dependencies

QR-decomposition

three dimensional arrays
mathematic and trigonometric functions
array concatenation (with vectors)
array multiplication (with vectors)
matrix transpose - scalar processing involving vector variables

Table 18: Benchmarks characteristics.

64-bit ARMv-8 architecture. The newest ARM architectures provide the NEON general-
purpose SIMD engine (supported only in Cortex-A series) to accelerate multimedia and
signal processing algorithms. The NEON technology is a 128-bit SIMD architecture
extension performing packed SIMD processing on integer and single precision floating
point data types.
The x86 is a complex instruction set computer (CISC) architecture, compatible with

the Intel IA-32 and x86 AMD processors. The x86 was firstly appeared in Intel 80386
processor and continued in subsequent Intel processors. The x86 architecture includes
variable length instructions which can operate with memory data. The x86 architec-
ture provides the Streaming SIMD Extension (SSE) which was subsequently expanded
to SSE2, SSE3, SSSE3, and SSE4 as well as the Advanced Vector Extensions (AVX)
SIMD extension (and its AVX2, AVX-512 expansions). The extensions provide SIMD
processing on floating point and integer arithmetic. The different SIMD extensions vary
on the bit width of vectors and the instruction set extension which is supported.
ASIPs is another class of processors intended for advanced computing with a wide

range of available processors at the market. Keeping in view, the cost-performance
trade-off for various signal processing applications, several architectures from CEVA,
Broadcom, Qualcomm, Texas Instruments etc. are used in the embedded system de-
sign community. These processors share several features that differentiate them with
other class of processors such as general purpose processors or other Micro-controllers.
One of the predominant common trait is that all these processors function in the VLIW

6.3 results from arm architectures 153

paradigm which helps in instantiating several heterogeneous functional units. This makes
possible the exploitation of the instruction level parallelism (ILP) in algorithms. Among
the many instantiations of VLIW data-paths, a large part of functional units is typi-
cally dedicated to SIMD data-paths to benefit from the data-level parallelism (DLP).
Thirdly, from flexibility perspective, all of them can either provide extensible processor
architecture or provide a family of architectures to help the cause of catering to the
different application scenarios. In this study, BoT and TinyBoT ASIPs derived from
ADRES [Mei et al., 2003] template, have been chosen to experiment with.

To put this in perspective, the BoT architecture is specially tuned to dimensions in a
much more narrow/niche domain. The BoT architecture has been developed at research
center IMEC and is used for wireless baseband processing meeting high throughput
and low power consumption. The processor provides high performance operations using
VLIW desgin of 10 slots performing parallel processing up to 8 elements on a large set
of trigonometric and complex arithmetic instructions. The BoT architecture described
in subsection 6.5.1, is a realization of such an ASIP for wireless baseband application.
The table 19 below, provides a brief comparison between the BoT and processors in the
CEVA DSP family.

VLIW
-width

SIMD
-width

register-file
-depth

bit
-manipulations

Spl.
instructions

CEVA
DSP
series

(XC4000)
series

Upto 8
4 parallel
complex
-numbers

Upto 512 bits
wide

40 bit shifts,
Pack-unpack

Predicated ALU,
high precision

MAC instruction

BoT 10
8 parallel
complex
-numbers

512 bits wide,
8 parallel 32
bits complex

number

Pack-unpack,
multi-word

shuffle

Multi-cycle
pipelined

trigonometric
and complex-
arithmetic
instructions

Table 19: Comparison between BoT and processors in the CEVA DSP family.

6.3 Results from ARM Architectures

This section presents the performance of the compiler’s generated code compared to
that of the code generated by the MathWorks Coder on two different ARM processors.
For the compilation of generated code by both MATLAB compilers, Clang/LLVM, GCC
and MSVC auto-vectorizing C compilers have been used. The benchmark has been

154 evaluation of the compiler

executed on the Raspberry computer boards using Rasbian [Rasbian, 2016] and Windows
IoT [Windows IoT, 2016] operating systems.

6.3.1 Presentation of ARM Architectures

ARM (Advanced RISC Machine) [ARM, 2016] is a family of reduced instruction set
computing (RISC) architectures for computer processors widely applied in markets such
as mobile, embedded systems and the emerging domains of Internet of Things (IoT) -
wearables [ARM markets, 2016]. The ARM architecture [Furber, 2000] consists of a large
uniform register file with load/store instructions operating only on register content. The
instruction fields are uniform with fixed-length to simplify instruction decoding and ease
pipelining, at the cost of decreased code density. Additionally, the ARM architectures
provides: -an Arithmetic Logic Unit (ALU) with Barrel shifter to maximize data process-
ing instructions -register auto-increment addressing modes for optimization of program
loops -load/store Multiple instructions and conditional execution instructions to maxi-
mize the data and execution throughput. These enhancements allow ARM processors
to achieve a good balance of high performance, small code size, low power consumption,
and small silicon area and maintaining the RISC design strategy [ARM reference manual,
2016].

ARM provides several industry-leading technologies included in the ARM proces-
sors. The big.LITTLE processing is a power-optimization technology combining high-
performance ARM CPU cores (big cores) with efficient power consumption ARM CPU
cores (LITTLE cores) for the execution of high and low intensity workloads to deliver
peak-performance capacity and a good balance between performance and power effi-
ciency. DSP and advanced SIMD (NEON) instruction set extensions, are technologies
aiming to increase the processing capability for multimedia applications. ARM provides
processors with hardware floating point unit to increase the floating point arithmetic
and the Jazelle optimization for the acceleration of multi-tasking Java Virtual Machine
(JVM) execution. Finally, technologies such as the TrustZone technology for low cost
security optimization and the virtualization extension for implementation of efficient vir-
tual machine hypervisors are provided as well. The most related to the current study
technology is the advanced SIMD NEON, which is discussed in the following subsections.

Advanced SIMD Extension (NEON) The Advanced SIMD extension [NEON ref-
erence manual, 2016] (NEON) is a general-purpose SIMD engine supported only by
Cortex-A processors for acceleration of multimedia and signal processing applications
such as video encode/decode, 2D/3D graphics, gaming and image processing. NEON per-
forms parallel computing of 128-bit width of same data types among which: signed/un-
signed 8-bit, 16-bit, 32-bit, 64-bit integer and single precision floating point. The SIMD
engine includes its own independent pipeline and register file while for some ARM de-
vices implementing both NEON and ARM floating point architecture, the register bank

6.3 results from arm architectures 155

is shared between them. There are 32 registers of 64-bits each, but they may also be used
as 16 registers of 128-bits each. NEON technology can be exploited by auto-vectorizing
C compilers, by coding with assembly SIMD instructions, by using C intrinsic functions
or by using other technologies which incorporates NEON such as openMAX library.

Programming with Advanced SIMD Extension (NEON) The definitions of
NEON semantics such as the vector data types and the intrinsic functions are included in
the ’arm_neon.h’ header file. The union ’__n128’ represents the ARM Advanced SIMD
128-bit type including all the supported data types mentioned in previous paragraph. For
the benchmarking of the compiler targeting ARM, signed integers of 32-bit and 16-bit per
vector’s element have been used to implement fixed point vectors of SIMD width 4 and
8 respectively. For the floating point vector with SIMD width 4, single precision floating
point of 32-bit per vector’s element has been used, while floating point vector with SIMD
width 8 is not provided in C by NEON. For the benchmarking of the compiler, several
intrinsics of the aforementioned data types have been used such as loading and storing
elements from/to vectors, arithmetic SIMD instructions and bit shift SIMD operations.

ARMv7 Architecture ARMv7 [ARM reference manual, 2016] is a 32-bit RISC archi-
tecture implementing the Application, Real-time and Microcontroller profiles. The fixed-
length instruction set includes load/store instructions, arithmetic instructions such as
addition, subtraction, 32-bit or 64-bit multiplication and optionally division with barrel
shifter, while the majority of them may be conditionally executed. The architecture con-
sists of 16 32-bit registers including the stack pointer, link register and program counter.
Most of the technologies described in 6.3.1 are supported, and the ARM floating point
architecture may be implemented with different options regarding the trapping of float-
ing point exceptions and the floating point precision (half versus single precision). To
improve code density ARMv7 provides two additional instruction sets: Thump, which is
a 16-bit encoding instruction set supporting a subset of ARM instructions and Thump-
2, which is a variable-length instruction set extending the 16-bit Thump instruction set
with additional 32-bit instructions.

ARMv-8 Architecture ARMv8 [ARMv8 reference manual, 2016] is an optional 64-
bit architecture which is backward compatible with previous ARM architectures. The
ARMv8 provides a 32-bit instruction set (A32) largely similar to that of ARMv7 sup-
porting Thump (T32) and Thump-2 as well. Additionally, ARMv8 introduces a new
instruction set (A64) with similar functionality to A32 and T32. The most significant
improvements of A64 is the insertion of new instructions with 64-bit operands and the
extension of the register file from 16 to 31 64-bit registers. Furthermore, the registers
for SIMD processing have been enlarged from 16 to 32, and the floating point instruc-
tions are fully complaint to IEEE 754, applying single or double precision floating point
arithmetic.

156 evaluation of the compiler

Raspberry PI 2 Raspberry PI 2 Model B [Raspberry Pi 2, 2016] is a single-board
computer of the second generation Raspberry PI, using the BCM2836 Broadcom SoC. It
is composed by a 900Mhz quad-core cortex-A7 processor of ARMv7, 1GB RAM shared
with the Broadcom VideoCore IV GPU and integrated 512KB level 2 cache memory.
There are many available operating systems for Raspberry PI 2 such as the Rasbian
[Rasbian, 2016] (a configured version of Debian) and Windows IoT Core [Windows IoT,
2016] which has been used for the purpose of the study. Cortex-A7 processor may
be used as a power-efficient standalone multicore processor cluster or as a LITTLE
core in ARM big.LITTLE architecture combined with Cortex-A15 and Cortex-A7 big
cores. The processor is an eight stage pipeline microarchitecture executing instructions
in-order. The implemented ARM technologies of Cortex-A7 are: NEON, Thump-2,
Jazelle, hardware virtualization and floating point unit with version ’VFPv4’.

Experimental configuration on Raspberry PI 2 For the conduction of the ex-
periments on Raspberry PI 2, Rasbian 4.4 OS has been used in combination with Clang
3.7/LLVM 3.7 and GCC 4.9 as well as Windows IoT 10 with MSVC (Visual studio 2015,
version 14.0).

Raspberry PI 3 Raspberry PI 3 Model B [Raspberry Pi 3, 2016] is a single-board
computer of the third generation Raspberry PI using the BCM2837 Broadcom SoC.
Raspberry PI 3 consist of a 1.2GHz 64-bit quad-core Cortex-A53 processor of ARMv8
and 1GB LPDDR2 RAM of 900 MHz with 32kB Level 1 and 512kB Level 2 cache
memory. Cortex-A53 achieves significantly higher performance than the Cortex-A7 and
it may be also used either as standalone multicore processor cluster or a LITTLE core in
combination with Cortex-A72 processor as a big core in ARM big.LITTLE architecture.
Cortex-A53 is an eight stage in-order pipelined processor and it supports both 32-bit
and 64-bit instruction sets. Finally, Cortex-A53 implements ARM technologies, similar
to that presented in Cortex-A7.

Experimental configuration on Raspberry PI 3 For the conduction of the ex-
periments on Raspberry PI 3, Rasbian 4.9 OS has been used in combination with Clang
3.5/LLVM 3.5 and GCC 4.9 as well as Windows IoT 10 with MSVC (Visual studio 2015,
version 14.0).

6.3.2 Performance of Generated Code on Raspberry PI 2

Performance using packed fixed point types This section presents the perfor-
mance of the generated code by the compiler using various data types and different C
compilers on the Raspberry PI 2. Figures 19, 20 and 21 show the normalized execution
times (Table 20) of vectorized generated code with packed fixed point types compared to
the generated code by MathWorks Coder using Clang/LLVM, GCC and MSVC C com-

6.3 results from arm architectures 157

pilers correspondingly. The speed-up achieved by the vectorized code compared to that
of MathWorks compiling with clang/LLVM and executing on Rasbian OS, is between
1.1x-44.6x and 7.6x on average for SIMD width 4 and between 2.1x-43.4 with average
speed-up of 7.57x for SIMD width 8. Similarly, using GCC for compilation of the gen-
erated code, and executing the output code on Rasbian OS the speed-up of vectorized
code against MathWorks generated code is from 2.4x up to 76.4x and 14.2x on average
for SIMD width 4, while the speed-up for SIMD width 8 is between 2.4x-45.7 and 13x
on average. Finally, the speed-up achieved by the vectorized generated code using the
MSVC compiler and Windows IoT OS is from 2.9x up to 39.3 and 9.1x on average for
SIMD width 4, and the speed-up achieved for SIMD width 8 is from 3.7x up to 20.4x
with 10.8x on average.

Discussion of performance using packed fixed point types The FFT-32 bench-
mark achieves the highest speed-up using any of the three C compilers with SIMD
width 4. The highest speed-up with SIMD width 8, is obtained at QR-decomposition-32
benchmark for Clang and GCC, while using MSVC the highest speed-up obtained at
FIR application. The vectorized code with SIMD width 4 achieves better performance
than the vectorized code with SIMD width 8 for the MEAN application using small input
stream sizes, especially compiling with GCC compiler. The MSVC doesn’t exploit effi-
ciently the SIMD instructions processing 8 elements for CFO application and it obtains
the same performance as using SIMD width of 4 elements. Finally, the Clang compiles
efficiently the MathWorks generated code of FIR application (comparing the reference
values in Table 20) obtaining similar performance to that of vectorized code with SIMD
width 4. Although, the vectorized code with SIMD width 8 achieves a speed-up of 2.2x
compared to MathWorks generated code for FIR application.

158 evaluation of the compiler

Fig. 19,
Fig. 22

Fig. 20,
Fig. 23

Fig. 21,
Fig. 24

Fig. 25,
Fig. 28

Fig. 26,
Fig. 29

Fig. 27,
Fig. 30

fft32 94.92 87.75 48.07 4.01 4.61 2.90
fft64-v1 31.33 26.16 52.33 15.24 15.84 15.60
fft64-v2 156.19 123.78 99.87 11.33 10.63 13.30
fft128 345.61 311.50 220.20 30.42 33.43 31.77
cfo-32 9.05 9.35 22.30 37.69 36.89 18.07
cfo-64 63.95 64.83 41.60 73.80 74.94 34.13

cfo-128 126.47 132.69 82.30 148.68 153.63 66.83
cordic-64 1178.05 2081.48 4106.57 719.76 645.27 628.17
fir-32x64 175.52 425.50 1695.80 466.88 403.74 396.20
fir-32x128 400.62 928.03 3667.17 1035.53 890.86 863.70
fir-32x256 805.31 1931.84 7743.83 2176.11 1878.44 1799.53
mean-32 1.28 2.41 1.97 0.94 1.09 1.53
mean-64 2.36 4.62 3.40 1.82 2.07 2.90

mean-128 4.53 9.04 6.37 3.51 4.06 6.17
mean-1024 35.61 70.75 48.63 27.23 32.02 46.40

qr-decomp-32 3134.28 2690.74 1388.73 353.98 363.93 168.17
qr-decomp-64 812.29 832.95 730.57 705.69 734.44 344.10

qr-decomp-128 1644.79 1666.91 1445.83 1445.23 1484.21 704.80

Table 20: Reference values (exec. time in µs) used for normalization of results on PI 2

1

2

4

8

16

32

64

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks MC-s4 MC-s8 speed-up of s4 speed-up of s8

Figure 19: Speed-up comparing with MathWorks compiler on PI 2 using Clang/LLVM
with packed fixed point data

6.3 results from arm architectures 159

1

2

4

8

16

32

64

128

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks MC-s4 MC-s8 speed-up of s4 speed-up of s8

Figure 20: Speed-up comparing with MathWorks compiler on PI 2 using GCC with
packed fixed point data

1

2

4

8

16

32

64

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks MC-s4 MC-s8 speed-up of s4 speed-up of s8

Figure 21: Speed-up comparing with MathWorks compiler on PI 2 using MSVC with
packed fixed point data

160 evaluation of the compiler

Performance using unpacked fixed point types Figures 22, 23 and 24 present the
normalized execution times (Table 20) of the compiler’s vectorized generated code with
unpacked fixed point types compared to the generated code by MathWorks Coder. The
speed-up achieved compiling the generated code by both MATLAB compilers with Clang
and executing the output code on Rasbian OS (Fig. 22) is up to 28.4x, with average
speed-up of 6.3x for SIMD width 4, and between up to 19.8x with average speed-up of
6.3x for SIMD width 8. Using GCC for compilation and executing, the output code on
the Rasbian OS (Fig. 23), the speed-up gained from the vectorized code compared to
MathWorks generated code is up to 38x with 7.3x on average for SIMD width 4 and
up to 18.2x with 6.9x on average for SIMD width 8. The Windows IoT OS and MSVC
configuration (Fig. 24) achieves a speed-up between 1x-19.2x and 7.8x on average for
SIMD width 4, and a average speed-up of 11x up to 26.6x for SIMD width of 8.

Discussion of performance using unpacked fixed point types The FFT-32
with unpacked data types obtains the highest speed-up for SIMD width of 4, while
CFO, CORDIC and FIR applications achieve the highest speed-up for SIMD width 8
by using Clang, GCC and MSVC respectively. The worst performance of the compiler’s
generated code is obtained at MEAN application where the vectorized code compiled
with Clang and GCC obtains a negative speed-up (worse performance) compared to
MathWorks generated code and similar performance as that of MathWorks generated
code compiling with MSVC. The reduced performance of vectorized code with unpacked
data types at MEAN application is due to the packing/unpacking overhead which cannot
be eliminated by the acceleration of the SIMD instruction which is included in the SIMD
block.

0.5

1

2

4

8

16

32

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks MC-s4-unp MC-s8-unp speed-up of s4-unp speed-up of s8-unp

Figure 22: Speed-up comparing with MathWorks compiler on PI 2 using Clang/LLVM
with unpacked fixed point data

6.3 results from arm architectures 161

0.12

0.24

0.48

0.96

1.92

3.84

7.68

15.36

30.72

61.44

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks MC-s4-unp MC-s8-unp speed-up of s4-unp speed-up of s8-unp

Figure 23: Speed-up comparing with MathWorks compiler on PI 2 using GCC with un-
packed fixed point data

0.5

1

2

4

8

16

32

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks MC-s4-unp MC-s8-unp speed-up of s4-unp speed-up of s8-unp

Figure 24: Speed-up comparing with MathWorks compiler on PI 2 using MSVC with
unpacked fixed point data

162 evaluation of the compiler

Performance using packed floating point types Figures 25, 26 and 27 present the
normalized execution times (Table 20) of the vectorized generated code with packed (only
of SIMD width 4) floating point types compared to MathWorks generated code using
Clang, GCC and MSVC respectively. The compler’s vectorized generated code compared
to that of MathWorks achieves an average speed-up of 3.3x up to 8.2x using Clang and
Rasbian OS, a speed-up between 1.5x-12.3x with average of 4.4x compiling with GCC
and a maximum speed-up of 4.9x with 2x on average using MSVC and Windows IoT
OS.

Discussion of performance using packed floating point types The vectorized
code achieves the highest speed-up for CFO application compiling the generated code
with any of the three C compilers. The Clang and MSVC doesn’t exploit efficiently
the SIMD-style generated code by the compiler for FFT-64 and FFT-128 benchmarks
leading to worse performance compared to MathWorks generated code. Finally, the
MSVC compiles efficiently the generated code of MEAN application by MathWorks
obtaining a better performance compared to the vectorized generated code.

0.5

1

2

4

8

16

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks MC-s4 speed-up of s4

Figure 25: Speed-up comparing with MathWorks compiler on PI 2 using Clang/LLVM
with packed floating point data

6.3 results from arm architectures 163

1

2

4

8

16

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks MC-s4 speed-up of s4

Figure 26: Speed-up comparing with MathWorks compiler on PI 2 using GCC with
packed floating point data

0.01

0.02

0.04

0.08

0.16

0.32

0.64

1.28

2.56

5.12

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks MC-s4 speed-up of s4

Figure 27: Speed-up comparing with MathWorks compiler on PI 2 using MSVC with
packed floating point data

Performance using unpacked floating point types Figures 28, 29 and 30 present
the normalized execution times (Table 20) of the vectorized generated code with un-
packed of SIMD width 4 floating point types compared to MathWorks generated code.
The vectorized generated code against MathWorks generated code achieves an average
speed-up of 3.1x up to 9.7x compiling with Clang and executing the benchmark on Ras-
bian OS (Fig. 28), a maximum speed-up of 10.6x and 3.3x on average using GCC and
Rasbian OS (Fig. 29), and an average speed-up of 1.9x up to 5.7x compiling with MSVC
and executing the output code on Windows IoT OS (Fig. 30).

Discussion of performance using unpacked floating point types Similarly to
the results with packed floating types, the highest speed-up is obtained at CFO appli-
cation for all three C compilers. The Mean application achieves better performance
compiled with MathWorks Coder than generating vectorized code. Finally, the vector-

164 evaluation of the compiler

ized code of FFT benchmarks cannot be efficiently compiled with MSVC obtaining same
performance as that of MathWorks generated code.

0.5

1

2

4

8

16

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks MC-s4-unp speed-up of s4-unp

Figure 28: Speed-up comparing with MathWorks compiler on PI 2 using Clang/LLVM
with unpacked floating point data

0.25

0.5

1

2

4

8

16

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks MC-s4-unp speed-up of s4-unp

Figure 29: Speed-up comparing with MathWorks compiler on PI 2 using GCC with un-
packed floating point data

6.3 results from arm architectures 165

0.01

0.02

0.04

0.08

0.16

0.32

0.64

1.28

2.56

5.12

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks MC-s4-unp speed-up of s4-unp

Figure 30: Speed-up comparing with MathWorks compiler on PI 2 using MSVC with
unpacked floating point data

Performance among SIMD configurations using fixed point types Figures
31, 32 and 33 show the normalized execution times (Table 21) of the vectorized gen-
erated code among different SIMD configurations for the fixed point benchmark. The
performance of vectorized code with packed data types compared to that of unpacked
data types achieves speed-up 5.3x and 1.7x on average for SIMD width 4 and maximum
speed-up of 9x with 2.7x on average for SIMD width 8 using clang and Rasbian OS
(Fig. 31). The speed-up of the vectorized code with packed data types using GCC (Fig.
32) is up to 37.3x and 6.6x on average for SIMD width 4 and up to 86.7x with 10.8x
on average for SIMD width 8. Finally, the speed-up of vectorized code with packed
data types compared to that of unpacked data types using MSVC and Windows IoT OS
(Fig. 33) is up to 4.8x and 9.9x with 1.9x and 2.8x on average for SIMD width 4 and 8
respectively.

Discussion of performance among SIMD configurations using fixed point
types The vectorized code using packed data types and compiled with Clang achieves
a better performance than the vectorized code using unpacked data types only for FFT-
32, MEAN and QR-decomposition benchmarks while the performance of FIR with SIMD
width 8 between packed/unpacked is same. The vectorized code with packed data types
and compiled with GCC attains speed-up for almost all benchmarks except CORDIC
application, leading to a worse performance compared to the unpacked vectorized code
and MEAN application achieving same performance for packed and unpacked data types.
Compiling with MSVC the performance of vectorized code with packed data types ob-
tains speed-up only for MEAN and QR-decomposition (with any SIMD width) as well as
for CFO application with SIMD width 4. The enhanced performance of vectorized code
with unpacked data types is due to compilers’ optimizations and code transformations
allowing for the vectorized code to be processed more efficiently among the SIMD cores
of the ARM processor.

166 evaluation of the compiler

Fig. 31 Fig. 32 Fig. 33 Fig. 34 Fig. 35 Fig. 36
fft32 3.34 2.31 2.50 2.57 2.24 2.70

fft64-v1 15.40 10.62 14.50 12.66 9.55 15.60
fft64-v2 16.94 7.37 12.20 11.33 8.00 13.30
fft128 30.09 26.22 32.13 26.07 22.72 31.77
cfo-32 4.21 2.76 2.70 4.61 3.66 3.70
cfo-64 8.44 5.41 4.97 9.12 7.12 7.30

cfo-128 16.68 10.92 10.13 18.15 14.43 13.67
cordic-64 579.10 251.85 432.63 511.13 206.47 359.37
fir-32x64 170.32 185.54 174.57 196.06 168.65 148.43
fir-32x128 373.03 409.12 391.27 430.18 367.39 329.80
fir-32x256 785.11 863.30 811.63 896.55 768.87 682.67
mean-32 1.28 2.41 1.83 0.94 1.09 1.53
mean-64 2.36 4.62 3.30 1.82 2.07 2.90

mean-128 4.53 9.04 6.37 3.51 4.06 6.17
mean-1024 35.61 70.75 48.63 27.23 32.02 46.40

qr-decomp-32 175.46 229.31 243.20 148.02 118.49 168.17
qr-decomp-64 351.03 454.52 498.33 297.27 236.63 344.10

qr-decomp-128 700.66 912.01 1006.37 599.35 474.74 689.30

Table 21: Reference values (exec. time in µs) used for normalization of vectorized results
on PI 2

0.125

0.25

0.5

1

2

4

8

16

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC-s4 MC-s4-unp MC-s8 MC-s8-unp speed-up s4 comp. s4-unp speed-up s8 comp. s8-unp

Figure 31: Performance of vectorized code with unpacked fixed point data types versus
packed fixed point data types using Clang/LLVM on Raspberry PI 2

6.3 results from arm architectures 167

0.5

1

2

4

8

16

32

64

128

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC-s4 MC-s4-unp MC-s8 MC-s8-unp speed-up s4 comp. s4-unp speed-up s8 comp. s8-unp

Figure 32: Performance of vectorized code with unpacked fixed point data types versus
packed fixed point data types using GCC on Raspberry PI 2

0.25

0.5

1

2

4

8

16

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC-s4 MC-s4-unp MC-s8 MC-s8-unp speed-up s4 comp. s4-unp speed-up s8 comp. s8-unp

Figure 33: Performance of vectorized code with unpacked fixed point data types versus
packed fixed point data types using MSVC on Raspberry PI 2

Performance among SIMD configurations using floating point types Figures
34, 35 and 36 show the normalized execution times (Table 21) of the vectorized generated
code with different SIMD configurations for the floating point benchmark. The perfor-
mance of the vectorized code with packed data types compared to that with unpacked
data types achieves an average speed-up of 1.6x up to 3.7x using Clang and Rasbian OS
(Fig. 34), a maximum speed-up of 4.1x and 1.9x on average using GCC and Rasbian OS
(Fig. 35) and a maximum speed-up of 5x with 2x on average using the MSVC compiler
and Windows IoT OS (Fig. 36).

Discussion of performance among SIMD configurations using floating point
types The vectorized code with packed data types achieves better performance than
the vectorized code with unpacked data types only for FFT-32, MEAN and QR-decomposition
applications using Clang and MSVC. Moreover, the vectorized code of packed data types
compiled with GCC attains a better performance than the unpacked vectorized code for
all the benchmarks except MEAN application.

168 evaluation of the compiler

0.25

0.5

1

2

4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC-s4 MC-s4-unp speed-up s4 comp. s4-unp

Figure 34: Performance of vectorized code with unpacked floating point data types versus
packed floating point data types using Clang/LLVM on Raspberry PI 2

0.5

1

2

4

8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC-s4 MC-s4-unp speed-up s4 comp. s4-unp

Figure 35: Performance of vectorized code with unpacked floating point data types versus
packed floating point data types using GCC on Raspberry PI 2

0.5

1

2

4

8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC-s4 MC-s4-unp speed-up s4 comp. s4-unp

Figure 36: Performance of vectorized code with unpacked floating point data types versus
packed floating point data types using MSVC on Raspberry PI 2

6.3 results from arm architectures 169

6.3.3 Performance of Generated Code on Raspberry PI 3

Performance using packed fixed point types This subsection presents the per-
formance of the compiler’s generated code compared to that of the code generated by
MathWorks Coder using various data types and different C compilers/Operating sys-
tems on the Raspberry PI 3. Figures 37, 38 and 39 show the normalized execution times
(Table 22) of the vectorized generated code with packed fixed point types compared to
the MathWorks generated code using Clang, GCC and MSVC respectively. The speed-
up achieved by the performance of vectorized code compared to that of MathWorks
generated code compiling with Clang and executing on Rasbian OS is up to 16.6x and
12.8x on average for packed types of SIMD width 4 and between 1.1x-24.5x with average
speed-up of 9x for packed types of SIMD width 8. By compiling with GCC and execut-
ing the output code on Rasbian OS, the speed-up achieved by the vectorized generated
code compared to the generated code by MathWorks is from 1.8x up to 91.8x and from
2.6x up to 52x with average speed-up of 15.9x and 14.1x using SIMD width 4 and 8
respectively. Finally, the speed-up of vectorized generated code compared to the Math-
Works generated code compiling with MSVC and executing the benchmark on Windows
IoT OS is from 3.4x up to 46.7x with 10.5x on average for SIMD width 4 and between
4.1x-21.9x with 12.5x on average for SIMD width 8.

0.5

1

2

4

8

16

32

64

128

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks MC-s4 MC-s8 speed-up of s4 speed-up of s8

Figure 37: Speed-up comparing with MathWorks compiler on PI 3 using Clang/LLVM
with packed fixed point data

170 evaluation of the compiler

Fig. 37,
Fig. 40

Fig. 38,
Fig. 41

Fig. 39,
Fig. 42

Fig. 43,
Fig. 46

Fig. 44,
Fig. 47

Fig. 45,
Fig. 48

fft32 38.50 34.35 27.97 1.85 1.79 1.70
fft64-v1 14.18 9.85 33.73 5.93 6.02 8.10
fft64-v2 61.00 45.67 62.37 4.15 3.60 6.07
fft128 131.73 110.65 135.07 11.67 12.37 16.03
cfo-32 4.00 7.07 12.77 18.72 17.45 9.30
cfo-64 26.21 25.60 24.73 37.66 31.71 18.70

cfo-128 52.24 50.90 49.30 76.59 64.78 36.90
cordic-64 827.56 864.14 2378.07 313.81 257.29 328.37
fir-32x64 99.55 113.37 1087.40 206.20 219.40 225.53
fir-32x128 217.63 248.68 2402.27 450.65 480.07 496.00
fir-32x256 419.97 516.43 5010.60 935.71 996.66 1050.93
mean-32 0.62 0.90 1.50 0.49 0.40 0.90
mean-64 1.14 1.71 2.60 0.94 0.75 1.70

mean-128 2.20 3.40 5.00 1.83 1.45 3.50
mean-1024 16.85 26.66 36.70 14.80 12.88 26.97

qr-decomp-32 1249.65 1101.88 840.40 137.20 143.69 96.70
qr-decomp-64 343.48 343.97 464.33 272.60 286.99 194.83

qr-decomp-128 695.17 682.82 931.37 559.17 579.24 392.13

Table 22: Reference values (exec. time in µs) used for normalization of results on PI 3

1

2

4

8

16

32

64

128

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks MC-s4 MC-s8 speed-up of s4 speed-up of s8

Figure 38: Speed-up comparing with MathWorks compiler on PI 3 using GCC with
packed fixed point data

6.3 results from arm architectures 171

1

2

4

8

16

32

64

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks MC-s4 MC-s8 speed-up of s4 speed-up of s8

Figure 39: Speed-up comparing with MathWorks compiler on PI 3 using MSVC with
packed fixed point data

Performance using unpacked fixed point types Figures 40, 41 and 42 present the
normalized execution times (Table 22) of the compiler’s vectorized generated code with
unpacked fixed point data types compared to the generated code by MathWorks Coder.
The speed-up achieved by compiling the generated code by both MATLAB compilers
with Clang and executing the output code on Rasbian OS (Fig. 40) is up to 46.8x with
average speed-up of 8.2x for SIMD width 4 and up to 24.5x with average speed-up of 7.3x
for SIMD width 8. Compiling with GCC and executing the benchmark on Rasbian OS
(Fig. 41) the speed-up is obtained by the performance of the vectorized code compared
to that of MathWorks generated code is up to 43.2x and 23.6x with 8.2x and 7.2x on
average for SIMD width 4 and 8 correspondingly. Finally, when using Windows IoT
OS and MSVC compiler (Fig. 42) the speed-up achieved by the performance of the
vectorized generated code compared to the performance of MathWorks generated code
is between 1.5x-20x with 8.4 on average for SIMD width 4 and from 1.3x up to 25.9x
with 12.5x on average for SIMD width of 8.

0.25

0.5

1

2

4

8

16

32

64

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks MC-s4-unp MC-s8-unp speed-up of s4-unp speed-up of s8-unp

Figure 40: Speed-up comparing with MathWorks compiler on PI 3 using Clang/LLVM
with unpacked fixed point data

172 evaluation of the compiler

0.125

0.25

0.5

1

2

4

8

16

32

64

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks MC-s4-unp MC-s8-unp speed-up of s4-unp speed-up of s8-unp

Figure 41: Speed-up comparing with MathWorks compiler on PI 3 using GCC with un-
packed fixed point data

1

2

4

8

16

32

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks MC-s4-unp MC-s8-unp speed-up of s4-unp speed-up of s8-unp

Figure 42: Speed-up comparing with MathWorks compiler on PI 3 using MSVC with
unpacked fixed point data

Performance using packed floating point types Figures 43, 44 and 45 show the
normalized execution times (Table 22) of the compiler’s vectorized generated code with
packed (SIMD width 4) floating point data types compared to the MathWorks generated
code. The performance of the vectorized generated code compared to the performance
of the generated code by MathWorks Coder achieves an average speed-up of 4.6x up to
13.4x compiling with Clang and executing the benchmark on Rasbian OS (Fig. 43). The
performance’s speed-up achieved by compiling with GCC (Fig. 44) is between 1.5x-18.4x
and 6x on average. By using MSVC and executing the output code on Windows IoT OS
(Fig. 45) the vectorized generated code obtains maximum speed-up of 5.3x with 2.2x on
average.

6.3 results from arm architectures 173

0.5

1

2

4

8

16

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks MC-s4 speed-up of s4

Figure 43: Speed-up comparing with MathWorks compiler on PI 3 using Clang/LLVM
with packed floating point data

1

2

4

8

16

32

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks MC-s4 speed-up of s4

Figure 44: Speed-up comparing with MathWorks compiler on PI 3 using GCC with
packed floating point data

0.03

0.06

0.12

0.25

0.5

1

2

4

8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks MC-s4 speed-up of s4

Figure 45: Speed-up comparing with MathWorks compiler on PI 3 using MSVC with
packed floating point data

174 evaluation of the compiler

Performance using unpacked floating point types Figures 46, 47 and 48 show
the normalized execution times (Table 22) of the vectorized generated code with un-
packed of SIMD width 4 floating point types against the MathWorks generated code.
The performance of the compiler’s vectorized code compared to that of MathWorks gen-
erated code achieves maximum speed-up of 15.6x with 3.9x on average using Clang and
Rasbian OS (Fig. 46), a maximum speed-up of 16.2x with 4.4x on average compiling
with GCC and executing the benchmark on Rasbian OS (Fig. 47) and a maximum speed-
up of 6.7x with 1.9x on average compiling with MSVC and executing the benchmark on
Windows IoT OS (Fig. 48).

0.25

0.5

1

2

4

8

16

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks MC-s4-unp speed-up of s4-unp

Figure 46: Speed-up comparing with MathWorks compiler on PI 3 using Clang/LLVM
with unpacked floating point data

0.25

0.5

1

2

4

8

16

32

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks MC-s4-unp speed-up of s4-unp

Figure 47: Speed-up comparing with MathWorks compiler on PI 3 using GCC with un-
packed floating point data

6.3 results from arm architectures 175

0.007

0.01

0.03

0.06

0.12

0.25

0.5

1

2

4

8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks MC-s4-unp speed-up of s4-unp

Figure 48: Speed-up comparing with MathWorks compiler on PI 3 using MSVC with
unpacked floating point data

Performance among SIMD configurations using fixed point types Figures 49,
50 and 51 show the normalized execution times (Table 23) of the vectorized generated
code using various SIMD configurations for the fixed point benchmark. The perfromance
of the vectorized code with packed data types compared to that of unpacked data types
achieves maximum speed-up of 5.8x with 2.1x on average for SIMD width 4 and maxi-
mum speed-up of 10.4x with 2.6x on average for SIMD width 8 using clang and Rasbian
OS (Fig. 49). The speed-up of the vectorized code performance with packed data types
using GCC on Rasbian OS (Fig. 50) is up to 33.5x with average speed-up of 6.6x for
SIMD width 4 and up to 76.5x with average speed-up of 10.6x for SIMD width 8. Finally,
the speed-up of the vectorized code performance with packed data types compiling with
MSVC and executing the benchmark on Windows IoT OS (Fig. 51) is up to 4.9x and
10.9x with average speed-up of 1.9x and 3.1x for SIMD width 4 and 8 respectively.

176 evaluation of the compiler

Fig. 49 Fig. 50 Fig. 51 Fig. 52 Fig. 53 Fig. 54
fft32 0.82 0.79 1.40 1.11 0.83 1.50

fft64-v1 4.64 3.95 7.47 4.69 2.88 8.10
fft64-v2 4.24 2.41 6.00 4.15 2.65 6.07
fft128 9.46 10.08 16.20 10.57 7.49 16.03
cfo-32 1.16 0.94 1.43 1.46 1.08 1.77
cfo-64 2.28 1.83 2.70 2.89 2.13 3.60

cfo-128 4.52 3.80 5.37 5.73 4.29 7.20
cordic-64 191.67 97.14 245.97 184.80 66.13 217.70
fir-32x64 99.55 67.22 99.37 84.10 74.62 86.20
fir-32x128 217.63 150.16 221.87 203.93 161.81 190.60
fir-32x256 419.97 307.68 461.27 388.39 338.12 394.70
mean-32 0.62 0.90 1.10 0.49 0.40 0.90
mean-64 1.14 1.71 2.07 0.94 0.75 1.70

mean-128 2.20 3.40 3.90 1.83 1.45 3.50
mean-1024 16.85 26.66 29.13 14.80 12.88 26.97

qr-decomp-32 86.54 79.06 136.87 71.89 45.18 86.93
qr-decomp-64 171.83 159.70 274.93 148.39 91.23 185.63

qr-decomp-128 344.19 315.42 530.70 296.95 181.99 374.77

Table 23: Reference values (exec. time in µs) used for normalization of vectorized results
on PI 3

0.25

0.5

1

2

4

8

16

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC-s4 MC-s4-unp MC-s8 MC-s8-unp speed-up s4 comp. s4-unp speed-up s8 comp. s8-unp

Figure 49: Performance of vectorized code with unpacked fixed point data types versus
packed fixed point data types using Clang/LLVM on Raspberry PI 3

6.3 results from arm architectures 177

0.25

0.5

1

2

4

8

16

32

64

128

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC-s4 MC-s4-unp MC-s8 MC-s8-unp speed-up s4 comp. s4-unp speed-up s8 comp. s8-unp

Figure 50: Performance of vectorized code with unpacked fixed point data types versus
packed fixed point data types using GCC on Raspberry PI 3

0.5

1

2

4

8

16

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC-s4 MC-s4-unp MC-s8 MC-s8-unp speed-up s4 comp. s4-unp speed-up s8 comp. s8-unp

Figure 51: Performance of vectorized code with unpacked fixed point data types versus
packed fixed point data types using MSVC on Raspberry PI 3

Performance among SIMD configurations using floating point types Figures
52, 53 and 54 show the normalized execution times (Table 23) of the compiler’s vector-
ized generated code using different SIMD configurations for floating point data types.
The performance of the vectorized code with packed data types compared to that with
unpacked data types attains a maximum speed-up of 4.8x with 2.1x on average com-
piling with Clang and executing the benchmark on Rasbian OS (Fig. 52), a maximum
speed-up of 5.3x with 2x on average using GCC and Rasbian OS (Fig. 53) and a an
average speed-up of 2.2x up to 6.4x compiling with MSVC compiler and executing the
output code on Windows IoT OS (Fig. 54).

178 evaluation of the compiler

0.25

0.5

1

2

4

8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC-s4 MC-s4-unp speed-up s4 comp. s4-unp

Figure 52: Performance of vectorized code with unpacked floating point data types versus
packed floating point data types using Clang/LLVM on Raspberry PI 3

0.5

1

2

4

8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC-s4 MC-s4-unp speed-up s4 comp. s4-unp

Figure 53: Performance of vectorized code with unpacked floating point data types versus
packed floating point data types using GCC on Raspberry PI 3

0.5

1

2

4

8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC-s4 MC-s4-unp speed-up s4 comp. s4-unp

Figure 54: Performance of vectorized code with unpacked floating point data types versus
packed floating point data types using MSVC on Raspberry PI 3

6.3 results from arm architectures 179

Discussion of performance among the different experiments The highest speed-
up achieved across the different configurations and the test cases which have obtained
slow up (instead of speed-up) are same for the experiments on PI 2 and PI 3. The
observations based on the results on Raspberry PI 2 (diagrams of subsection 6.3.2) are
similar for the results of Raspberry PI 3 (diagrams of the current subsection). However,
there are some differences across the corresponding experiments between Raspberry PI
2 and PI 3 which are quoted below:

• MathWorks generated code versus vectorized code comparison of packed fixed point
data types using Clang: The vectorized code using packed data types of SIMD
width 4 attains better performance than the MathWorks generated code for FIR
application only on PI 2.

• MathWorks generated code versus vectorized code comparison of packed fixed point
data types using MSVC: The speed-up achieved for CFO and CORDIC applica-
tions by the vectorized code compared to MathWorks generated code, is same when
using SIMD width 4 or 8 on PI 2. However, the speed-up of packed data types
with SIMD width 8 is higher than the speed-up achieved with SIMD width 4 for
these applications on PI 3.

• MathWorks generated code versus vectorized code comparison of unpacked fixed
point data types using MSVC: The performance of vectorized code with unpacked
data types with SIMD width 4 is better than the performance of MathWorks
generated code for FIR application on PI 2. However, there isn’t such a speed-up
on PI 3.

• MathWorks generated code versus vectorized code comparison of unpacked fixed
point data types using MSVC: The vectorized code achieves significant performance
compared to the MathWorks generated code for the MEAN application only on PI
3.
• Packed data types versus unpacked data types comparison: The below benchmark-

s/applications obtain better performance using unpacked data types of SIMD width
4 on PI 2 but worse performance on PI 3, comparing with the performance of the
vectorized code with packed data types of SIMD width 4.

• Clang - FFT-128 application with floating point data types
• MSVC - FIR application with floating point data types
• Clang - FFT-64-v2 and FFT-128 benchmark with floating point data types
• MSVC - CFO application with fixed point data types

180 evaluation of the compiler

6.4 Results from x86 Architectures

This section discusses the performance of the code generated by the compiler, com-
pared to the performance of the code generated by the MathWorks Coder on two different
x86 processors. For the compilation of generated code by both MATLAB compilers the
Clang/LLVM, GCC and MSVC auto-vectorizing C compilers have been used. The bench-
mark has been executed on the x86-based desktops using Linux Ubuntu and Windows
10 operating systems.

6.4.1 Presentation of x86 Architectures

The x86 architecture [x86 reference manual, 2016] is a complex instruction set (CISC)
architecture series for computer processors developed by INTEL [Intel, 2016] Corpora-
tion. The x86 architecture consists of variable length instructions and supports backward
compatibility with previous generation x86 microarchitectures. Words are stored in mem-
ory in little-endian byte order and the largest native size of memory addresses depends
on the architecture generation (16,32 or 64 bits), however memory segmentation is sup-
ported allowing programs to use larger (than native size) segments of memory. Most of
the x86 instructions are 2 or 3 bytes, although some instructions are much longer, and
some are single-byte. The instruction operands can be immediate values or references to
memory or registers with the restriction that only one memory reference can be included
in a instruction. The registers of the x86 vary depending on the generation architecture.
Generally, all x86 processors include a set of registers for: general purpose, segment
registers holding the segment address of various items, indexes and pointer registers
with each of them having a specific function and the EFLAGS register which holds the
state of the processor and miscellaneous/special purpose registers. Early generations
of x86 architecture could optionally include floating-point hardware as external proces-
sor’s component, but modern x86 processors integrate the floating point co-processor
on chip. The FPU contains registers of 80 bits width and stores numbers in the IEEE
floating-point standard double extended precision format. The FPU arithmetic, consists
of numerical floating point operations, transcendental functions, including trigonometric
and exponential functions, as well as instructions that load common constants such as
the base of the natural logarithm.
The x86 architecture provides a 64-bit version of its instruction set, named x64, in-

creasing the amount of virtual and physical memory. The x64 architecture provides
64-bit general purpose registers increasing their number as well. Specifically, the general
purpose and XXM (SSE) registers are increased from 8 to 16 keeping more variables
locally, rather than on the stack.
The x86 architecture provides advanced technologies to improve performance such

as pipelining and superscalar execution, as well as SIMD extensions. For superscalar

6.4 results from x86 architectures 181

execution, the x86 processors decodes most instructions to micro-operations (pipelining).
Then, a control unit operates in compliance with x86-semantics so that they are partly
executed in parallel (out-of order execution is also supported) by using the processor’s
specialized execution units. Regarding the SIMD extension, the x86 processors provide
Streaming SIMD Extensions (SSE) and Advanced Vector Extensions (AVX) technologies
which are discussed below.

Streaming SIMD Extensions (SSE) Streaming SIMD Extensions (SSE) [SSE,
2016] is an SIMD instruction set extension to the x86 architecture, designed by Intel
Corporation and introduced in Pentium III series processors. The extension contains
instructions of single precision floating point and sharing registers (MMX registers) with
main CPU unit. The shared registers between CPU and SSE prevents the simultaneous
processing of floating point data on FPU and SIMD data on SSE. Newer generation
processors introduce the SSE2 extension which includes a new supplementary instruc-
tion set and replaces the MMX registers with new registers (XMM registers), dedicated
to the SIMD unit. SSE3, SSSE3 and SSE4 subsequently introduced to enhance the
SSE instruction set introducing double precision floating point instructions as well. SSE
extension consists of 128-bit registers providing parallel processing of 4 32-bit single-
precision floating point numbers. The SSE2, SSE3, SSE3 and SSE4 extensions provides
operations on:

• 2 64-bit double precision floating point numbers
• 2 64-bit long integers
• 4 32-bit integers
• 8 16-bit short integers
• 16 8-bit bytes

AVX Advanced Vector Extensions (AVX) [AVX, 2016] is an extension of x86 archi-
tecture to provide SIMD processing of 256-bit length. The extension was developed by
Intel and AMD Corporations and was firstly supported by Intel in the Sandy Bridge
microarchitecture. Supplementary extensions of AVX are the AVX2 (firstly equipped
in Haswell microarchitecture) which expands most integer commands to 256 bits and
introduces Fused multiply–add (FMA) operation as well as the AVX-512 which extends
the vector’s width to 512-bit. The expansion of vector’s width to the double size, allows
for a maximum parallel processing of 4 64-bit double precision floating point numbers (or
8 single precision floating point) and a maximum parallel processing of 8 32-bit integers
(16 16-bit short integers),

Programming with SSE/AVX and Visual Studio Environment The defini-
tions of SIMD semantics such as the vector data types and the intrinsic functions are
included in the ’xmmintrin.h’, ’emmintrin.h’ and ’immintrin.h’ header files. The files

182 evaluation of the compiler

include the unions which represent the floating point and integers vectors of 128-bit and
256-bit length. In detail, the ’xmmintrin.h’ (SSE) contains the ’__m128’ union which
has been used for the representation of single precision floating point with SIMD width
4 vectors. The ’immintrin.h’ header file (AVX) includes the ’__m256’ union, which
has been used for the representation of single precision floating point with SIMD width
8 vectors. Finally, the ’emmintrin.h’ includes the ’__m128i’ union which has been
deployed for the representation of the integer 128-bit vectors both for SIMD width 4
(32-bit short integers) and SIMD width 8 (16-bit short integers). The integer vectors are
used for the representation of fixed point data types.

Experimental Setup of Visual Studio Environment Although the Intel proces-
sors that have been deployed for the experiments implement the x64 architecture, Visual
Studio (MSVC compiler) has been configured to produce x86 code. The results of the
below sections include benchmark’s execution times of x86 code. Moreover, the C code
has been compiled using ’arch:AVX’ setting to enable the production of AVX SIMD in-
structions (auto-vectorization is implemented using AVX instructions). However, results
of x64 code and compiling with ’arch:SSE2’ are presented in the appendix.

INTEL Sandy Bridge Sandy Bridge is the Intel’s second generation microarchitec-
ture of Intel Core processor family. The processors are distinguished from previous-
generation Intel processors by featuring all cores (including graphics) on a single chip.
Sandy Bridge also introduces the Intel Turbo boost technology 2.0 which enables the
processor to run above its base operating frequency via dynamic control of the proces-
sor’s clock rate. The enhanced memory channel allows the execution of two load/store
operations per CPU cycle. Furthermore, Sandy bridge processors may reach up to eight
physical cores or 16 logical cores through Hyper-threading. The SIMD extensions sup-
ported by Sandy Bridge are: SSE, SSE2, SSE3, SSSE3, SSE4, SSE4.1, SSE4.2 and
AVX.

INTEL Ivy Bridge Ivy Bridge is the third generation microarchitecture of proces-
sors developed by Intel. Ivy bridge mostly differentiate from Sandy Bridge as to the
CMOS semiconductor device fabrication scaling from 32nm to 22nm. Ivy Bridge in-
cludes also improved graphic capabilities and processor’s peripheral enhancements. The
SIMD extensions supported by Ivy Bridge are: SSE, SSE2, SSE3, SSSE3, SSE4, SSE4.1,
SSE4.2 and AVX as well.

x86-based desktops characteristics Two x86 based desktops have been used for
experimentation consisting of the 64-bit (x64) version of x86 architecture. The first of
them includes a i7-3820 [i7-3820 Processor, 2016] Sandy Bridge processor with 10Mb
cashe and 8Gb of DDR3 RAM. The chip consists of 4 cores (8 threads) and operates on
3.6Ghz up to 3.8Ghz using the Turbo boost technology. The latter desktop which have

6.4 results from x86 architectures 183

been used in the experiments is a i7-3770 [i7-3770 Processor, 2016] Ivy Bridge processor
with 8Mb cashe and 16Gb of DDR3 RAM. The chip consists of 4 cores (8 threads) and
operates on 3.4Ghz up to 3.9Ghz using the Turbo boost technology. Both desktops have
been used for experiments operating on Linux Ubuntu 16.04 and Windows 10 OS.

6.4.2 Performance of Generated Code on Intel Sandy Bridge
(i7-3820)

Performance using packed fixed point types This subsection presents the perfor-
mance of the vectorized generated code compared to the performance of the generated
code by MathWorks Coder on i7-3820 Sandy Bridge processor. Figures 55, 56 and 57
present the normalized execution times (Table 24) of the vectorized generated code with
packed fixed point data types compared to the MathWorks generated code using Clang,
GCC and MSVC respectively. The speed-up achieved by the performance of the vec-
torized generated code compiling with Clang and executing the benchmark on Linux
Ubuntu OS is up to 154.6x with 13x on average using SIMD width 4 and up to 51.9x
with 9.9x on average using SIMD width 8. Compiling with GCC, the speed-up achieved
by the performance of the vectorized generated code compared to that of MathWorks
generated code is from 1.5x up to 137.7x with 17x on average speed-up using SIMD
width 4 and up to 39.6x with 12.2x on average using SIMD width 8. The speed-up
achieved by the vectorized code compiling with MSVC and executing the benchmark on
Windows 10 OS is from 3.3x up to 67.9x with 11x on average for SIMD width 4 and
from 2x up to 17.3x with 10.5x on average for SIMD width 8.

Discussion of performance using packed fixed point types The average (and
maximum) speed-up of benchmark is higher with SIMD width 4 than 8. This is due
to the significant speed-up of FFT applications which take part only in experiments
using SIMD width of 4. These applications affect the benchmark’s average speed-up, by
increasing the average value in relation with the value of average speed-up using SIMD
width 8. The maximum speed-up achieved by the three compilers using SIMD width 4
is the FFT-32 application while CFO, QR-decomposition and FIR applications obtain
the maximum speed-up with SIMD width 8 compiling with Clang, GCC and MSVC
respectively. Compiling the generated code by both MATLAB compilers with Clang,
the MathWorks generated code attains better performance than vectorized generated
code with SIMD width 4 for FIR application. In addition, performance of the vectorized
code for the QR-decomposition and MEAN of 32 and 64 input length obtain higher
speed-up against the MathWorks generated code with SIMD width 4 than SIMD width
8. Using MSVC for the compilation of the generated code by both MATLAB compilers,
the performance of the vectorized code achieves speed-up over the whole range of the
benchmarks. However, the performance with SIMD width 8 for CFO-32, CORDIC,

184 evaluation of the compiler

QR-decomposition and MEAN (with input streams of 32,64,128) benchmarks is same
or even worst compared to the performance using SIMD width 4. The performance of
vectorized code compiling with GCC is better across the benchmark compared to that
of MathWorks generated code except at MEAN-32. Additionally, for that benchmark
and MEAN-64, the vectorized code with SIMD width 4 achieves better performance
compared to the vectorized code with SIMD width 8.

Fig. 55,
Fig. 58

Fig. 56,
Fig. 59

Fig. 57,
Fig. 60

Fig. 61,
Fig. 64

Fig. 62,
Fig. 65

Fig. 63,
Fig. 66

fft32 10.95 10.13 4.40 0.19 0.92 0.30
fft64-v1 6.13 4.32 3.80 1.36 2.06 196.92
fft64-v2 15.32 14.01 6.12 2.12 2.56 2.44
fft128 29.77 30.40 16.96 2.93 5.46 4.56
cfo-32 1.40 1.53 4.48 1.79 4.42 4.52
cfo-64 8.22 7.45 5.96 3.70 7.75 5.34

cfo-128 14.21 16.98 11.16 6.74 14.77 8.42
cordic-64 84.38 202.44 406.92 44.28 44.17 44.76
fir-32x64 15.74 25.16 104.30 15.66 20.97 14.62
fir-32x128 32.32 46.10 236.14 25.63 35.40 31.02
fir-32x256 59.88 83.03 492.72 49.34 70.25 64.72
mean-32 0.62 1.28 0.30 0.67 1.02 0.30
mean-64 0.86 2.26 0.50 0.86 1.49 0.50

mean-128 2.13 3.86 1.20 2.20 3.65 1.10
mean-1024 12.15 19.95 9.96 10.95 20.11 9.32

qr-decomp-32 209.50 221.95 151.62 35.65 40.74 37.96
qr-decomp-64 61.10 62.09 84.26 59.82 71.36 62.10

qr-decomp-128 112.70 117.99 168.40 115.95 134.57 123.56

Table 24: Reference values (exec. time in µs) used for normalization of results on i7-3820

6.4 results from x86 architectures 185

0.25

0.5

1

2

4

8

16

32

64

128

256

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks MC-s4 MC-s8 speed-up of s4 speed-up of s8

Figure 55: Speed-up comparing with MathWorks compiler on i7-3820 using Clang/LLVM
with packed fixed point data

0.5

1

2

4

8

16

32

64

128

256

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks MC-s4 MC-s8 speed-up of s4 speed-up of s8

Figure 56: Speed-up comparing with MathWorks compiler on i7-3820 using GCC with
packed fixed point data

1

2

4

8

16

32

64

128

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks MC-s4 MC-s8 speed-up of s4 speed-up of s8

Figure 57: Speed-up comparing with MathWorks compiler on i7-3820 using MSVC with
packed fixed point data

186 evaluation of the compiler

Performance using unpacked fixed point types Figures 58, 59 and 60 show the
normalized execution times (Table 24) of the vectorized generated code with unpacked
fixed point data types, compared to generated code by MathWorks Coder using Clang,
GCC and MSVC, respectively. The performance of the vectorized generated code obtains
maximum speed-up of 93.3x with 9.9x on average for SIMD width 4 and up to 36.4x
with average speed-up of 7.3x for SIMD width 8 compiling the generated code by both
MATLAB compilers with Clang and executing the output code on Linux Ubuntu OS.
Using GCC, the performance of the vectorized code compared to that of MathWorks
generated code achieves maximum speed-up of 24.8x and 24.9x with 6.6x and 7.3x on
average for SIMD width 4 and 8 respectively. The speed-up of vectorized generated code
against MathWorks generated code compiling with MSVC and executing the benchmark
on Windows 10 OS is up to 28.9x with 8.4x on average using SIMD width 4 and up to
44.8x with 13.4x on average using SIMD width 8.

Discussion of performance using unpacked fixed point types The performance
of the vectorized code using SIMD width 4 achieves the maximum speed-up compared to
the performance of the MathWorks generated code for FFT-32 application by compiling
with Clang and for CORDIC application by compiling with GCC and MSVC. The CFO
application attains the maximum speed-up across the benchmark by the three compilers
using SIMD width 8. The MathWorks generated code achieves a considerably better per-
formance against the vectorized code for MEAN application by compiling the generated
code with Clang and GCC. Furthermore, the performance of the MathWorks generated
code for QR-decomposition with input streams of 2x2x64 and 2x2x128 achieves a lower
speed-up compared to the performance of the vectorized generated code by compiling
with GCC. Similar speed-up of MathWorks generated code for that application is ob-
tained by compiling with Clang using only for SIMD width 4. Using for compilation
the MSVC compiler, the generated code by MathWorks obtains substantially better
performance against vectorized code for MEAN as well.

Explanation of performance using unpacked fixed point types The worse
performance of vectorized code against the MathWorks generated code for MEAN ap-
plication proves that packing and unpacking operations considerably costs in time for
x86 architecture inserting overheads that significantly slow up the vectorized code per-
formance and cannot be eliminated by the SIMD processing.

6.4 results from x86 architectures 187

0.06

0.12

0.25

0.5

1

2

4

8

16

32

64

128

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks MC-s4-unp MC-s8-unp speed-up of s4-unp speed-up of s8-unp

Figure 58: Speed-up comparing with MathWorks compiler on i7-3820 using Clang/LLVM
with unpacked fixed point data

0.06

0.12

0.25

0.5

1

2

4

8

16

32

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks MC-s4-unp MC-s8-unp speed-up of s4-unp speed-up of s8-unp

Figure 59: Speed-up comparing with MathWorks compiler on i7-3820 using GCC with
unpacked fixed point data

0.5

1

2

4

8

16

32

64

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks MC-s4-unp MC-s8-unp speed-up of s4-unp speed-up of s8-unp

Figure 60: Speed-up comparing with MathWorks compiler on i7-3820 using MSVC with
unpacked fixed point data

188 evaluation of the compiler

Performance using packed floating point types Figures 61, 62 and 63 present
the normalized execution times (Table 24) of vectorized generated code with packed
floating point data types compared to the generated code by MathWorks Coder. The
performance’s speed-up achieved by compiling the generated code by two MATLAB
compilers with Clang and executing the output code on Linux Ubuntu OS is up to 4.8
with 1.7x on average using SIMD width 4 and up to 4.7x with 2.1x on average using
SIMD width 8. The performance of the vectorized code by compiling with GCC obtains
maximum speed-up of 6.5x with 2.1x on average using SIMD width 4 and 6.6x with 2.4x
on average using SIMD width 8. Using MSVC for the compilation of the benchmark
and executing on Windows 10 OS, the speed-up obtained is up to 164.1x with average
speed-up of 11.9x using SIMD width 4 and up to 15.1x with average speed-up of 4.5x
using SIMD width 8.

Discussion of performance using packed floating point types The maximum
speed-up achieved for floating point data types using different SIMD width and C compil-
ers vary. The performance of the vectorized generated code compiled with clang obtains
a maximum speed-up for FFT-32 using SIMD width 4 and a maximum speed-up for
MEAN-1024 using SIMD width 8. The maximum speed-up of vectorized code compiling
with GCC achieved for CFO and the maximum speed-up of the vectorized code over
the benchmark by compiling with MSVC achieved for FFT64-v1 using SIMD width 4
and for CFO using SIMD width 8. For several benchmarks the MathWorks generated
code obtains better performance compared to vectorized generated code. For the major-
ity of the configurations, CORDIC application achieves better performance compiling
with MathWorks Coder than generating vectorized code. However, the vectorized code
of that application using SIMD width 4 and compiling with GCC and MSVC attains
significant speed-up against MathWorks generated code. MEAN application for small
input streams using various configurations achieves better performance with MathWorks
generated code than vectorized code as well. Finally, the vectorized code of FFT-64 and
FFT-128 cannot be exploited efficiently, resulting on deterioration of the performance,
comparing with the MathWorks generated code. Concerning the SIMD width, CORDIC
application (and MEAN-32 using Clang and MSVC) achieves better performance by
using SIMD width 4.

Explanation of performance using packed floating point types Considering
that CORDIC application includes data and control flow dependencies, the compiler
cannot vectorize that segments of code and it produces scalarized code composed by
extracting and inserting data from/to vectors for each operation/condition. Therefore,
the results regarding the performance of the vectorized code at CORDIC application
show that packing and unpacking operations cause significant overhead for the x86 ar-
chitecture and specifically the targeted processor.

6.4 results from x86 architectures 189

0.125

0.25

0.5

1

2

4

8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks MC-s4 MC-s8 speed-up of s4 speed-up of s8

Figure 61: Speed-up comparing with MathWorks compiler on i7-3820 using Clang/LLVM
with packed floating point data

0.06

0.12

0.25

0.5

1

2

4

8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks MC-s4 MC-s8 speed-up of s4 speed-up of s8

Figure 62: Speed-up comparing with MathWorks compiler on i7-3820 using GCC with
packed floating point data

0.25

0.5

1

2

4

8

16

32

64

128

256

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks MC-s4 MC-s8 speed-up of s4 speed-up of s8

Figure 63: Speed-up comparing with MathWorks compiler on i7-3820 using MSVC with
packed floating point data

190 evaluation of the compiler

Discussion of performance using unpacked floating point types Figures 64,
65 and 66 present the normalized execution times (Table 24) of the vectorized generated
code with unpacked floating point data type compared to that of MathWorks code. The
compiler’s vectorized code compiling with Clang and executing the benchmark on Linux
Ubuntu OS achieves a maximum speed-up of 8.2x with 1.7x on average using SIMD
width 4 and up to 7.4x with 2x on average using SIMD width 8. The performance of
the vectorized code against that of MathWorks generated code using the GCC compiler
attains average speed-up of 2.6x up to 15.1x using SIMD width 4 and average speed-
up of 3.3x up to 15.7x using SIMD width 8. Compiling with MSVC and executing on
Windows 10 OS, the performance of the vectorized code achieves an average speed-up
of 10.9x up to 142x using SIMD width 4 and average speed-up of 2.9x up to 15x using
SIMD width 8.

Discussion of performance using unpacked floating point types The maxi-
mum performance’s speed-up of the vectorized code against MathWorks generated code
achieved for CFO application using Clang and GCC. When compiling the generated
code by both MATLAB compilers with MSVC, the maximum speed-up of vectorized
code obtained for FFT64-v1 application using SIMD width 4 and for CFO application
using SIMD width 8. For the unpacked floating point data types on the current targeted
processor, the majority of applications such as FFT-32, MEAN and QR-decomposition
results to worse performance for the vectorized generated code compared to the Math-
Works generated code. Furthermore, all benchmarks with SIMD width 4 achieve faster
execution times compared to that of SIMD width 8 compiling the vectorized code with
Clang and GCC. Finally, the vectorized code compiling with MSVC achieves same per-
formance using any of the two SIMD widths.

Explanation of performance using unpacked floating point types Results in-
dicate that packing and unpacking operations (especially involving floating point data
types) cause considerable overhead, which deteriorates the overall performance of vector-
ized code. Thus, SIMD processing with unpacked data types for the current architecture
isn’t always efficient and in many cases the MathWorks scalarized code is exploited/ex-
ecuted more efficiently.

6.4 results from x86 architectures 191

0.06

0.12

0.25

0.5

1

2

4

8

16

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks MC-s4-unp MC-s8-unp speed-up of s4-unp speed-up of s8-unp

Figure 64: Speed-up comparing with MathWorks compiler on i7-3820 using Clang/LLVM
with unpacked floating point data

0.007

0.01

0.031

0.06

0.12

0.25

0.5

1

2

4

8

16

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks MC-s4-unp MC-s8-unp speed-up of s4-unp speed-up of s8-unp

Figure 65: Speed-up comparing with MathWorks compiler on i7-3820 using GCC with
unpacked floating point data

0.06
0.12
0.25
0.5
1
2
4
8
16
32
64
128
256

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks MC-s4-unp MC-s8-unp speed-up of s4-unp speed-up of s8-unp

Figure 66: Speed-up comparing with MathWorks compiler on i7-3820 using MSVC with
unpacked floating point data

192 evaluation of the compiler

Performance among SIMD configurations using fixed point types Figures 67,
68 and 69 show the normalized execution times (Table 25) of the vectorized generated
code with different SIMD configurations for the benchmark with fixed point data types.
The performance of vectorized code with packed data types compared to that with
unpacked data types achieves a maximum speed-up of 24.1x with 3.8x on average using
SIMD width 4, and maximum speed-up of 22.2x with 3.7x on average using SIMD width
8 by compiling with Clang and executing the benchmark on Linux Ubuntu OS (Fig. 67).
The performance’s speed-up of packed against unpacked data types compiling with GCC
(Fig. 68) is up to 238.4x with 19x on average using SIMD width 4 and up to 83.5x with
10.3x on average using SIMD width 8. Compiling with MSVC and executing the output
code on Windows 10 OS, the performance of the vectorized code (Fig. 69) with packed
data types compared to that with unpacked data types achieves a maximum speed-up
of 11.8x with 3.2x on average using SIMD width 4 and maximum speed-up of 13.9x with
3.6x on average using SIMD width 8.

Discussion of performance among SIMD configurations using fixed point
types The CORDIC and FIR applications achieve faster execution times using un-
packed data types with any of the available configurations except when using the MSVC
compiler with SIMD width of 8. Moreover, FFT-64-v1, FFT-128 and CFO achieve bet-
ter performance with unpacked data types compared to that of packed data types using
SIMD width 4 and compiling with Clang. Compiling the vectorized code with GCC,
FFT-64-v2 and CFO-32 benchmarks attains better performance with unpacked data
types against packed data types using SIMD width 4. Finally, CFO application achieve
faster execution times with unpacked data types compiling with MSVC.

0.12

0.25

0.5

1

2

4

8

16

32

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC-s4 MC-s4-unp MC-s8 MC-s8-unp speed-up s4 comp. s4-unp speed-up s8 comp. s8-unp

Figure 67: Performance of vectorized code with unpacked fixed point data types versus
packed fixed point data types using Clang/LLVM on desktop with i7-3820

6.4 results from x86 architectures 193

Fig. 67 Fig. 68 Fig. 69 Fig. 70 Fig. 71 Fig. 72
fft32 0.11 0.83 0.40 0.19 0.92 0.30

fft64-v1 1.78 2.39 1.20 1.19 2.06 1.38
fft64-v2 2.05 1.33 2.10 2.12 2.56 2.44
fft128 3.28 4.98 4.54 2.93 5.46 4.56
cfo-32 0.41 0.29 0.30 0.81 0.68 0.30
cfo-64 1.30 0.57 0.70 1.53 1.48 0.96

cfo-128 1.96 0.88 1.68 2.67 2.57 1.84
cordic-64 48.64 11.70 31.76 44.28 44.17 44.76
fir-32x64 15.74 8.52 12.86 15.66 20.97 14.62

fir-32x128 32.32 16.18 25.08 25.63 35.40 31.02
fir-32x256 59.88 28.01 52.42 49.34 70.25 64.72
mean-32 0.62 1.28 0.30 0.67 1.02 0.30
mean-64 0.86 2.26 0.50 0.86 1.49 0.50
mean-128 2.13 3.86 1.20 2.20 3.65 1.10

mean-1024 12.15 19.95 9.96 10.95 20.11 9.32
qr-decomp-32 38.14 36.76 42.04 35.65 40.74 37.96
qr-decomp-64 61.10 62.09 84.26 59.82 71.36 62.10

qr-decomp-128 112.70 117.99 168.40 115.95 134.57 123.56

Table 25: Reference values (exec. time in µs) used for normalization of vectorized results
on i7-3820

0.5

1

2

4

8

16

32

64

128

256

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC-s4 MC-s4-unp MC-s8 MC-s8-unp speed-up s4 comp. s4-unp speed-up s8 comp. s8-unp

Figure 68: Performance of vectorized code with unpacked fixed point data types versus
packed fixed point data types using GCC on desktop with i7-3820

194 evaluation of the compiler

0.25

0.5

1

2

4

8

16

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC-s4 MC-s4-unp MC-s8 MC-s8-unp speed-up s4 comp. s4-unp speed-up s8 comp. s8-unp

Figure 69: Performance of vectorized code with unpacked fixed point data types versus
packed fixed point data types using MSVC on desktop with i7-3820

Performance among SIMD configurations using floating point types Figures
70, 71 and 72 show the normalized execution times (Table 25) of the vectorized gen-
erated code with different SIMD configurations of the floating point benchmark. The
performance of vectorized code with packed data types against that of unpacked data
types achieves maximum speed-up of 13x with 3.4x on average using SIMD width 4 and
maximum speed-up of 24.6x with 4.3x on average using SIMD width 8 by compiling
the vectorized code with Clang and executing the benchmark on Linux Ubuntu OS (Fig.
70). Compiling with GCC, the performance of vectorized code with packed data types
compared to that with unpacked data types (Fig. 71) achieves a speed-up up to 34.3x
with 6.1x on average using SIMD width 4 and up to 50.3x with 8.5x on average using
SIMD width 8. The performance of the vectorized code using MSVC and executing the
benchmark on Windows 10 OS (Fig. 72) with packed data types compared to that with
unpacked data types achieves a speed-up up to 9.2x with 3.5x on average using SIMD
width 4 and up to 46.6x with 6.7x on average using SIMD width 8.

Discussion of performance among SIMD configurations using floating point
types The vectorized code using unpacked data types of CFO and CORDIC applica-
tions achieve faster execution times than the vectorized code using packed data types
with any configuration, except when using the MSVC compiler with SIMD width 4 where
CORDIC application obtains better performance with packed data types. Furthermore,
FFT-64-v2 compiled with GCC and FFT-64-v1/FIR applications compiled with Clang
achieve better execution times with unpacked data types compared to packed data types
for SIMD width of 4.

6.4 results from x86 architectures 195

0.12

0.25

0.5

1

2

4

8

16

32

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC-s4 MC-s4-unp MC-s8 MC-s8-unp speed-up s4 comp. s4-unp speed-up s8 comp. s8-unp

Figure 70: Performance of vectorized code with unpacked floating point data types versus
packed floating point data types using Clang/LLVM on desktop with i7-3820

0.25

0.5

1

2

4

8

16

32

64

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC-s4 MC-s4-unp MC-s8 MC-s8-unp speed-up s4 comp. s4-unp speed-up s8 comp. s8-unp

Figure 71: Performance of vectorized code with unpacked floating point data types versus
packed floating point data types using GCC on desktop with i7-3820

0.25

0.5

1

2

4

8

16

32

64

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC-s4 MC-s4-unp MC-s8 MC-s8-unp speed-up s4 comp. s4-unp speed-up s8 comp. s8-unp

Figure 72: Performance of vectorized code with unpacked floating point data types versus
packed floating point data types using MSVC on desktop with i7-3820

196 evaluation of the compiler

6.4.3 Performance of Generated Code on Intel Ivy Bridge
(i7-3770)

Discussion of performance using packed fixed point types This section presents
the performance of the compiler’s generated vectorized code compared to the one gener-
ated code by MathWorks Coder on a desktop with Ivy Bridge i7-3820 processor. Figures
73, 74 and 75 show the normalized execution times (Table 26) of vectorized generated
code with packed fixed point data types against the MathWorks generated code compil-
ing with Clang, GCC and MSVC respectively. The performance of the vectorized code
using the Clang compiler for the compilation of the generated code and executing the
benchmark on Linux Ubuntu OS obtains a speed-up up to 270.7x with 19.3x on aver-
age using SIMD width 4 and a speed-up up to 7.5x with 2.9x on average using SIMD
width 8. When compiling with GCC the generated code by two MATLAB compilers,
the vectorized code performance achieves a speed-up between 2.5x-272.8x with 26x on
average, using SIMD width 4 and up to 49.4x with 14.3x on average using SIMD width
8. Finally, the performance of vectorized code against MathWorks generated code using
MSVC and Windows 10 OS is from 1.9x up to 65.6x with 10.9x on average, using SIMD
width 4 and between 1x-41.4x with 9.1x on average using SIMD width 8.

Discussion of performance using packed fixed point types The vectorized
code of FFT-32 application obtains the highest speed-up for SIMD width 4 while QR-
decomposition and CFO applications achieve the highest speed-up for SIMD 8 by using
GCC and Clang/MSVC correspondingly. Compiling with Clang, the FIR application
with SIMD width of 4 and MEAN application for small input streams with SIMD width
of 8 achieve better performance using MathWorks Coder than generating vectorized code.
Moreover, MEAN application using small input streams results to better performance
with SIMD width of 4 than 8. Similar results have been achieved for CORDIC and
QR-decomposition applications compiling the generated code with Clang.

6.4 results from x86 architectures 197

Fig. 73,
Fig. 76

Fig. 74,
Fig. 77

Fig. 75,
Fig. 78

Fig. 79,
Fig. 82

Fig. 80,
Fig. 83

Fig. 81,
Fig. 84

fft32 7.86 8.68 3.50 0.15 0.76 0.30
fft64-v1 4.51 3.89 3.10 1.67 2.08 1.10
fft64-v2 13.94 12.69 4.80 1.84 1.61 1.30
fft128 26.25 27.91 13.70 3.22 3.94 2.90
cfo-32 1.07 1.21 4.14 1.37 4.10 1.46
cfo-64 6.70 8.68 4.00 2.80 8.23 1.96

cfo-128 13.44 15.36 8.00 6.31 15.32 2.44
cordic-64 69.40 158.71 326.98 40.91 39.75 37.72
fir-32x64 15.74 20.90 84.54 14.76 14.91 12.30
fir-32x128 29.64 39.10 189.76 26.43 35.18 26.90
fir-32x256 52.55 75.66 395.06 47.27 61.01 56.10
mean-32 0.42 0.90 0.20 0.45 0.77 0.20
mean-64 0.60 1.52 0.40 0.59 1.27 0.40

mean-128 1.62 3.12 0.90 1.73 2.99 0.90
mean-1024 9.40 18.19 7.74 9.61 15.54 7.72

qr-decomp-32 179.83 189.53 126.30 30.86 35.69 26.00
qr-decomp-64 53.96 54.81 113.46 51.87 60.07 52.50

qr-decomp-128 98.85 102.15 140.04 102.03 116.66 105.04

Table 26: Reference values (exec. time in µs) used for normalization of results on i7-3770

0.25

0.5

1

2

4

8

16

32

64

128

256

512

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks MC-s4 MC-s8 speed-up of s4 speed-up of s8

Figure 73: Speed-up comparing with MathWorks compiler on i7-3770 using Clang/LLVM
with packed fixed point data

198 evaluation of the compiler

0.5

1

2

4

8

16

32

64

128

256

512

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks MC-s4 MC-s8 speed-up of s4 speed-up of s8

Figure 74: Speed-up comparing with MathWorks compiler on i7-3770 using GCC with
packed fixed point data

1

2

4

8

16

32

64

128

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks MC-s4 MC-s8 speed-up of s4 speed-up of s8

Figure 75: Speed-up comparing with MathWorks compiler on i7-3770 using MSVC with
packed fixed point data

Discussion of performance using unpacked fixed point types Figures 76, 77
and 78 present the normalized execution times (Table 26) of the vectorized generated
code with unpacked fixed point types compared to the generated code by MathWorks
Coder. The speed-up obtained by compiling the generated code of two MATLAB com-
pilers with Clang and executing the benchmark on Linux Ubuntu OS (Fig. 76) is up
to 66.1x with average speed-up of 8.4x for SIMD width 4 and up to 43.2x with average
speed-up of 8.3x for SIMD width 8. Using GCC for compilation (Fig. 77) the per-
formance of vectorized code compared to that of MathWorks generated code attains a
speed-up up to 17.4x with 6.3x on average for SIMD width 4 and up to 38.2x with 9.3x
on average for SIMD width 8. The Windows 10 OS and MSVC configuration (Fig. 78)
achieves a speed-up of vectorized code up to 41.4x and 9.1x on average for SIMD width
4 and an average speed-up of 11.7x up to 41.4x for SIMD width of 8.

6.4 results from x86 architectures 199

Discussion of performance using unpacked fixed point types The vectorized
code of CFO application achieves the highest speed-up except the one with Clang and
SIMD width 4 configuration where FFT-32 application obtains the maximum speed-up.
MathWorks generated code of MEAN application and QR-decomposition with input
streams of 2x2x64 and 2x2x128 achieves faster execution times compared to that of
the vectorized generated code by using any of C compilers. The specific benchmarks
achieve a reduced performance with the vectorized code of SIMD width 8 compared to
the performance of vectorized code of SIMD width 4 as well.

0.125

0.25

0.5

1

2

4

8

16

32

64

128

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks MC-s4-unp MC-s8-unp speed-up of s4-unp speed-up of s8-unp

Figure 76: Speed-up comparing with MathWorks compiler on i7-3770 using Clang/LLVM
with unpacked fixed point data

0.06

0.12

0.25

0.5

1

2

4

8

16

32

64

0

0.2

0.4

0.6

0.8

1

1.2

Mathworks MC-s4-unp MC-s8-unp speed-up of s4-unp speed-up of s8-unp

Figure 77: Speed-up comparing with MathWorks compiler on i7-3770 using GCC with
unpacked fixed point data

200 evaluation of the compiler

0.5

1

2

4

8

16

32

64

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks MC-s4-unp MC-s8-unp speed-up of s4-unp speed-up of s8-unp

Figure 78: Speed-up comparing with MathWorks compiler on i7-3770 using MSVC with
unpacked fixed point data

Discussion of performance using packed floating point types Figures 79, 80
and 81 show the normalized execution times (Table 26) of the vectorized generated code
with packed floating point data types compared to generated code by MathWorks Coder
using Clang, GCC and MSVC respectively. The performance of the vectorized generated
code achieves maximum speed-up of 4.7x with 1.7x on average for SIMD width 4 and
maximum speed-up of 3.9x with average 1.7x for SIMD width 8 compiling the generated
code by two MATLAB compilers with Clang and executing the benchmark on Linux
Ubuntu OS. By compiling with GCC, the performance of vectorized code compared to
that of MathWorks generated code attains speed-up up to 9.2x with 2.9x on average for
SIMD width 4 and up to 15.5x with average speed-up of 3.7x for SIMD width 8. The
speed-up of the vectorized code performance against that of MathWorks generated code
compiling with MSVC and executing the benchmark on Windows 10 OS is up to 4.9x
with 1.8x on average using SIMD width 4 and up to 7.3x with 2.9x on average using
SIMD width 8.

Discussion of performance using packed floating point types The maximum
speed-up of vectorized code against MathWorks generated code achieved for FFT-32 ap-
plication using Clang and GCC while compiling the generated code by both MATLAB
compilers with MSVC, the maximum speed-up of vectorized code obtained for CFO ap-
plication using SIMD width 4. Furthermore, performance of CFO application vectorized
code also achieves the highest speed-up using any of the C compilers for SIMD width 8.
FFT-64, FFT-128, CORDIC applications compiled with Clang and QR-decomposition
compiled with MSVC obtain better performance with MathWorks generated code than
executing vectorized code. Furthermore, CORDIC and MEAN applications as well as
QR-decompotision compiled with Clang and GCC results to reduced performance with
the vectorized code of SIMD width 8 compared to the performance of vectorized code of
SIMD width 4.

6.4 results from x86 architectures 201

0.125

0.25

0.5

1

2

4

8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks MC-s4 MC-s8 speed-up of s4 speed-up of s8

Figure 79: Speed-up comparing with MathWorks compiler on i7-3770 using Clang/LLVM
with packed floating point data

0.06

0.12

0.25

0.5

1

2

4

8

16

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks MC-s4 MC-s8 speed-up of s4 speed-up of s8

Figure 80: Speed-up comparing with MathWorks compiler on i7-3770 using GCC with
packed floating point data

0.12

0.25

0.5

1

2

4

8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks MC-s4 MC-s8 speed-up of s4 speed-up of s8

Figure 81: Speed-up comparing with MathWorks compiler on i7-3770 using MSVC with
packed floating point data

202 evaluation of the compiler

Discussion of performance using unpacked floating point types Figures 82, 83
and 84 show the normalized execution times (Table 26) of the vectorized generated code
with unpacked floating point data types compared to the MathWorks generated code
using Clang, GCC and MSVC respectively. The performance of the vectorized code
compared to that of MathWorks generated code compiling with Clang and executing the
benchmark on Linux Ubuntu OS is up to 8.6x with 1.8x on average using SIMD width
4 and up to 8.2x with 1.9x on average using SIMD width 8. Compiling with GCC the
speed-up achieved by the vectorized code performance compared to that of MathWorks
generated code is up to 21.2x with 3.4x on average speed-up using SIMD width 4 and
up to 24x with 5.2x on average using SIMD width 8. The performance of the vectorized
code compiling with MSVC and executing the benchmark on Windows 10 OS obtains
a maximum speed-up of 12.1x with 1.6x on average for SIMD width 4 and maximum
speed-up of 14.6x with 2.3x on average for SIMD width 8.

Discussion of performance using unpacked floating point types The maximum
speed-up of vectorized code compared to MathWorks generated code achieved for the
CFO application. The vectorized code of the unpacked floating point data types achieves
significant speed-up against the MathWorks generated code only for CFO and CORDIC
applications. Moreover, most of the benchmarks using SIMD width 8 achieve incidental
or reduced performance compared to that of vectorized code with SIMD width 4.

Explanation of performance of the i7-38770 processor The results of the tar-
geted processor reveal similar performance as that of i7-3820 processor, proving that
packing/unpacking operations insert significant overhead and reduce the overall perfor-
mance of vectorized code. Concerning the floating point types, the MathWorks scalarized
code of several benchmarks executed on x86 processors is more efficient than the cor-
responding vectorized code generated by the compiler. Thus, SIMD processing with
floating point data types isn’t always as efficient on x86 architecture as executing scalar-
ized code.

6.4 results from x86 architectures 203

0.06

0.12

0.25

0.5

1

2

4

8

16

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks MC-s4-unp MC-s8-unp speed-up of s4-unp speed-up of s8-unp

Figure 82: Speed-up comparing with MathWorks compiler on i7-3770 using Clang/LLVM
with unpacked floating point data

0.01

0.03

0.06

0.12

0.25

0.5

1

2

4

8

16

32

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks MC-s4-unp MC-s8-unp speed-up of s4-unp speed-up of s8-unp

Figure 83: Speed-up comparing with MathWorks compiler on i7-3770 using GCC with
unpacked floating point data

0.06

0.12

0.25

0.5

1

2

4

8

16

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks MC-s4-unp MC-s8-unp speed-up of s4-unp speed-up of s8-unp

Figure 84: Speed-up comparing with MathWorks compiler on i7-3770 using MSVC with
unpacked floating point data

204 evaluation of the compiler

Performance among SIMD configurations using fixed point types Figures
85, 86 and 87 show the normalized execution times (Table 27) of the vectorized gener-
ated code using different SIMD configurations for the benchmark with fixed point data
types. The performance of vectorized code with packed data types compared to that
of vectorized code with unpacked data types achieves speed-up up to 24.4x with 4.2x
on average for SIMD width 4 and maximum speed-up of 28.8x with 3.6x on average
for SIMD width 8 using Clang and Linux Ubuntu OS (Fig. 85). The speed-up of the
vectorized code performance with packed data types compiling the generated code by
MATLAB compilers with GCC (Fig. 86) is up to 306.2x with average speed-up of 25.2x
for SIMD width 4 and up to 137.9x with average speed-up of 15.1x for SIMD width 8.
Finally, the speed-up of vectorized code performance with packed data types compared
to that of unpacked data types compiling with MSVC and executing the benchmark on
Windows 10 OS (Fig. 87) is up to 9x with average speed-up of 3.1x for SIMD width 4
and up to 14.3x with 3.7x on average for SIMD width 8.

Discussion of performance using packed fixed point types The performance
of the vectorized code with packed data types compared to that with unpacked data
types achieves the highest speed-up for MEAN-1024 benchmark using any of the C com-
pilers for the compilation of the benchmark. Furthermore, the performance for the most
of the benchmarks using packed data types leads to significant speed-ups against the
corresponding version with unpacked data types. However, CORDIC and FIR appli-
cations performs reduced performance when using packed data types compared to the
performance using unpacked data types. Similar results achieved for CFO application
compiling the generated code with Clang and MSVC C compilers.

0.06

0.12

0.25

0.5

1

2

4

8

16

32

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC-s4 MC-s4-unp MC-s8 MC-s8-unp speed-up s4 comp. s4-unp speed-up s8 comp. s8-unp

Figure 85: Performance of vectorized code with unpacked fixed point data types versus
packed fixed point data types using Clang/LLVM on desktop with i7-3770

6.4 results from x86 architectures 205

Fig. 85 Fig. 86 Fig. 87 Fig. 88 Fig. 89 Fig. 90
fft32 0.12 0.79 0.30 0.15 0.76 0.30

fft64-v1 1.84 1.26 1.00 1.67 2.08 1.10
fft64-v2 1.79 0.82 2.00 1.84 1.61 1.30
fft128 3.29 3.70 3.36 3.22 3.94 2.90
cfo-32 0.58 0.22 0.26 0.49 0.50 1.46
cfo-64 1.32 0.50 0.50 1.12 1.12 1.96

cfo-128 2.00 0.99 1.28 1.70 2.39 2.44
cordic-64 55.86 10.31 24.52 40.91 39.75 37.72
fir-32x64 15.74 7.18 9.20 14.76 14.91 12.30

fir-32x128 29.64 14.17 20.10 26.43 35.18 26.90
fir-32x256 52.55 24.44 41.88 47.27 61.01 56.10
mean-32 0.42 0.90 0.20 0.45 0.77 0.20
mean-64 0.60 1.52 0.40 0.59 1.27 0.40
mean-128 1.62 3.12 0.90 1.73 2.99 0.90

mean-1024 9.40 18.19 7.74 9.61 15.54 7.72
qr-decomp-32 31.75 32.40 35.00 30.86 35.69 26.00
qr-decomp-64 53.96 54.81 113.46 51.87 60.07 52.50

qr-decomp-128 98.85 102.15 140.04 102.03 116.66 105.04

Table 27: Reference values (exec. time in µs) used for normalization of vectorized results
on i7-3770

0.5

1

2

4

8

16

32

64

128

256

512

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC-s4 MC-s4-unp MC-s8 MC-s8-unp speed-up s4 comp. s4-unp speed-up s8 comp. s8-unp

Figure 86: Performance of vectorized code with unpacked fixed point data types versus
packed fixed point data types using GCC on desktop with i7-3770

206 evaluation of the compiler

0.25

0.5

1

2

4

8

16

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC-s4 MC-s4-unp MC-s8 MC-s8-unp speed-up s4 comp. s4-unp speed-up s8 comp. s8-unp

Figure 87: Performance of vectorized code with unpacked fixed point data types versus
packed fixed point data types using MSVC on desktop with i7-3770

Performance among SIMD configurations using floating point types Figures
88, 89 and 90 show the normalized execution times (Table 27) of the vectorized generated
code for different SIMD configurations for the floating point benchmark and compiling
the generated code by MATLAB compilers with Clang, GCC and MSVC respectively.
The performance of the vectorized code with packed data types compared to that of
unpacked data types achieves speed-up up to 15.8x and 4x on average for SIMD width 4,
and speed-up up to 17.7x and 3.6x on average for SIMD width 8, using clang and Linux
Ubuntu OS. The speed-up of the vectorized code with packed data types using GCC on
Linux Ubuntu OS is up to 25.3x and 6.6x on average for SIMD width 4 and up to 50.8x
with 8.2x on average for SIMD width 8. Finally, the speed-up of vectorized code with
packed data types compared to that of unpacked data types compiling with MSVC and
executing the benchmark on Windows 10 OS is up to 9x and 3.4x on average for SIMD
width 4 and up to 35.7x and 5.7x on average for SIMD width 8.

Discussion of performance using packed floating point types The performance
of vectorized code with packed data types compared to that with unpacked data types
achieves the highest speed-up for MEAN application besides GCC with SIMD width 4
configuration where FFT-32 application obtains the maximum speed-up. The majority
of benchmarks achieve better performance using packed data types. However some
applications such as CFO and CORDIC obtain reduced performance with packed data
types.

6.4 results from x86 architectures 207

0.125

0.25

0.5

1

2

4

8

16

32

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC-s4 MC-s4-unp MC-s8 MC-s8-unp speed-up s4 comp. s4-unp speed-up s8 comp. s8-unp

Figure 88: Performance of vectorized code with unpacked floating point data types versus
packed floating point data types using Clang/LLVM on desktop with i7-3770

0.125

0.25

0.5

1

2

4

8

16

32

64

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC-s4 MC-s4-unp MC-s8 MC-s8-unp speed-up s4 comp. s4-unp speed-up s8 comp. s8-unp

Figure 89: Performance of vectorized code with unpacked floating point data types versus
packed floating point data types using GCC on desktop with i7-3770

0.25

0.5

1

2

4

8

16

32

64

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC-s4 MC-s4-unp MC-s8 MC-s8-unp speed-up s4 comp. s4-unp speed-up s8 comp. s8-unp

Figure 90: Performance of vectorized code with unpacked floating point data types versus
packed floating point data types using MSVC on desktop with i7-3770

208 evaluation of the compiler

6.5 Results from BoT ASIP

This section describes the BoT architecture used in the experiments and discusses the
performance (speed) of the generated C code by the compiler compared to that of the
code generated by the MathWorks Coder. Further experiments present the execution
times of the generated code by the compiler using different settings concerning the SIMD
width of vectors and the form of data types (packed versus unpacked).

6.5.1 Presentation of BoT Architecture

The ASIP (application specific instruction processor) approach provides a trade-off
between the less specialized general purpose processors on one hand and the rigidly de-
fined and highly optimized ASIC platforms. ASIPs target application specific domains
to sharpen the efficiency of implementation while keeping them programmable across
various applications in the chosen domain. ADRES [Mei et al., 2003] architecture tem-
plate which developed at research center IMEC targeting applications in the streaming
domain suitable for many signal processing applications. This template has been used
in the past for multi-media and wireless signal processing applications and very high
performances in terms of power and throughput efficiencies have been reported. It has
also been able to prove that in some cases [Fasthuber et al., 2013], that careful design
choices while deriving ADRES can surpass the efficiency of ASIC and FPGA based de-
signs in terms of performance achieved and more importantly, the development time. In
this thesis, two instances of the ADRES template: BoT and TinyBoT (section 6.6) have
been chosen to experiment with.

BoT Micro-architecture The BoT is a 10 way VLIW instruction set processor. It
has been envisioned specially for implementing wireless PHY signal processing [BoT,
2014]. The BoT architecture consists of 4 essential parts as shown in Fig. 91. This
architecture enables massive parallel computation by making use of the SIMD data-
path in the vector units, while the scalar data path is used for managing the control
flow. The shuffle unit consists of data shufflers that operate on vector data-types for
ordering/ re-ordering of data in a vector register file. The scalar units are three in
number and can uniformly accesses a 32 deep scalar register file each containing 32 bit
words. The vector paths are also 3 in number with each of them capable of supporting
4 or 8 way SIMD complex data type with an aggregate width of 32 bits allocated as
16 bits each for imaginary and real parts. The choice of SIMD width between 4 and
8 is a design time choice that the template provides. The vector register file is also 32
deep and 256 bits (or 128 bits for 4 way SIMD) wide to hold vectored data serving any
of the three vector units. The scalar unit supports the traditional Load/Store memory
interface while the vector memory interaction is handled explicitly by the load-store

6.5 results from bot asip 209

Figure 91: BoT architecture.

(LD/ST) unit. The Load and Store operations can happen simultaneously (on different
locations of memory) and can thus improve throughput by benefiting from using multi-
port memory. The scalar and vector data buses are 32 bits and 256 (or 128 bits for 4
way SIMD) bits respectively. The shuffle unit operates on the scalar and vector register
files to modify vector data layouts and there are two of them and they can operate on
data independently.

Domain Specific Instructions in BoT The BoT processor supports up to 10 levels
of pipelining of vector units. These vector instructions include Trigonometric functions
like Sine, Cosine and Inverse-Tangent functions, complex number operations such as
absolute, multiply accumulate (MAC), multiple shift, real operations such as inverse
and inverse square on vector data types. The LD/ST unit can read/ write words of
size 256 bits (or 128 bits for 4 way SIMD) from the vector Register file. The shuffle
exposes intrinsics supporting packing and unpacking of scalar data into vectors, circular
or linear shift of packed data between two vector data types etc. The Load-Store unit
accesses vector data in packed format from one of the two vector memories. The choice of
memories between the load and stores are independent of one another, may be operated
simultaneously using a multi-port memory. In this way, it is possible to make a choice

210 evaluation of the compiler

in software to split the memory into two (say, for ping-pong data through iterations) or
keep them as one as the specific application demands. The scalar unit performs classical
control operations such as looping. Indeed, to alleviate the overhead of comparison in
software, for loops have been accelerated with special intrinsic support for the control
flow.

Programming BoT The BoT architecture is coded by using the Synopsys ASIP
design tool. In this tool the processor is described using the nML language. The tool
generates all required compilation, debug and simulation infrastructure for the defined
architecture. Benefiting from these facilities, the BoT architecture exposes several do-
main specific functionalities as C language intrinsics. These intrinsics directly map to
one or a more predefined group of instructions on the processor and can be called like a
regular C-language function sub-routine.

6.5.2 Presentation and Discussion of Results on BoT Architec-
ture

Figures 92 and 93 presents the normalized execution times per benchmark (Table 28)
achieved by both MATLAB compilers on BoT using packed data types (fig 92) and
unpacked data types (fig 93). The lines added to the figures depict the execution speed-
up achieved with the current approach in respect to MathWorks MATLAB-to-C compiler.
The comparison of the compiler to MathWorks Coder proves that the proposed approach
achieves a substantial speed-up between 1.3x-41.3x on the with packed data of SIMD
width 8 and a speed-up up to 97.1x the with unpacked data of SIMD width 8.

The code generated by the compiler includes SIMD instructions in contrast to the code
generated by MathWorks compiler that does not exploit the target processor/ASIP. The
largest performance difference between the compiler and MathWorks Coder is obtained
for the CFO and QR-decomposition algorithms. In these benchmarks the compiler maps
operations which are expensive for execution with software functions (like exponential,
absolute value, Inverse-Tangent) to corresponding custom instructions of the processor
while the MathWorks compiler generates C code that implements the calculation of these
functions at fixed point.
The Mean application with unpacked data types attains worse performance than Math-

Works generated code due to the overhead of packing and unpacking. The SIMD block
of this example includes only one SIMD operation. The overhead caused by the packing
and unpacking exceeds the acceleration is achieved by the SIMD processing leading to
reduced performance.

Figure 94 presents the normalized execution times per benchmark (Table 28) on BoT
with different configurations. Execution times achieved when packed data types are used
are better (2.6x times faster for SIMD width 4 and 3.2x times faster for SIMD width

6.5 results from bot asip 211

Fig. 92 and Fig. 93 Fig. 94, Fig. 95 and Fig. 96
fft32 1443 612

fft64-v1 8032 2036
fft64-v2 4722 1334
fft128 17420 4846
cfo-32 11563 696
cfo-64 22483 1352

cfo-128 45668 2662
cordic-64 3975253 720155
fir-32x256 724074 719073
mean-32 288 288
mean-64 544 544

mean-128 1056 1056
mean-1024 8224 8224

qr-decomp-32 1726926 44222

Table 28: Reference values (instructions count) used for normalization of results at BoT

1

2

4

8

16

32

64

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

MathWorks MC-s4 MC-s8 speed-up of s4 speed-up of s8

Figure 92: Speed up comparing with MathWorks compiler on BoT using packed data

8) than those achieved when unpacked data types are used. The generated code with
packed data is suitable for execution of SIMD instructions in contrast to the generated
code with unpacked data where packing and unpacking operations are required for SIMD
processing. However, the CORDIC and QR-decomposition algorithms attain a better
performance with unpacked data types. The CORDIC algorithm includes control-flow
dependencies and the QR-decomposition algorithm contain code segments with scalar
instructions. Thereby, the packed data in vector memory are unpacked and transfered
to the scalar memory (and vice versa) for each scalar operation slowing up the execu-

212 evaluation of the compiler

0.25

0.5

1

2

4

8

16

32

64

128

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

MathWorks MC-s4-unp MC-s8-unp speed-up of s4-unp speed-up of s8-unp

Figure 93: Speed up comparing with MathWorks compiler on BoT using unpacked data

0.25

0.5

1

2

4

8

16

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

MC-s4 MC-s4-unp MC-s8 MC-s8-unp speed-up s4 comp. s4-unp speed-up s8 comp. s8-unp

Figure 94: Performance of vectorized code with unpacked data types versus packed data
types on BoT

tion performance of the generated code. On the other hand, the scalarized generated
code with unpacked data types is executed without packing and unpacking operations.
Additionally, the SIMD blocks of these algorithms include several SIMD operations elim-
inating the overhead is cause by packing and unpacking operations. Therefore, it is more
beneficial to use unpacked data types for applications with scalar operations.
Figure 95 shows the speed-up achieved with SIMD width 8 comparing to SIMD width

4 using packed data types on BoT ASIP and figure 96 shows the same comparison using
unpacked data types. The speed-up with SIMD width 8 is up to 1.8x and 1.2x times on
average using packed data types and the speed-up using unpacked data types is up to
1.4x with 1.2x times on average.

For benchmarking FFT-64 and FFT-128 two scenarios have been used. The first
concerns the typical execution of the third stage of the FFT using the MATLAB code
of the corresponding user defined function. The second concerns the implementation of
the third FFT stage using the custom instruction localR4 accelerating the data shuffling.
Furthermore, two different implementations of FFT-64 have been evaluated - a standard
one and an optimized which increasing the data locality. The optimized version includes

6.5 results from bot asip 213

0
0.2
0.4
0.6
0.8
1
1.2
1.4
1.6
1.8
2

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

MC-s4 MC-s8 speed-up s8 comp. to s4

Figure 95: Executions times of vectorized code with SIMD width 8 comparing to SIMD
width 4 on BoT using packed data

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

MC-s4-unp MC-s8-unp speed-up s8-unp comp. to s4-unp

Figure 96: Executions times of vectorized code with SIMD width 8 comparing to SIMD
width 4 on BoT using unpacked data

for-loops inside the function corresponding the FFT stages reusing the function’s local
variables.

Figure 97 presents the normalized execution times (fig. 29) of two optimized 64 point
FFT versions and an optimized 128 point FFT version compared to their standard
version on BoTs. The first optimized version (FFT64-v2) is obtained by performing
loop transformations pushing loops across function boundaries and thus increasing the
data locality. This approach is exploited by BoT architecture where vector register file is
more than sufficient to store the data locally and therefore reduces the number of cycles.
The optimized versions FFT64-R4 and FFT128-R4 focus on the implementation of the

third FFT’s stage using custom instructions instead of software using the corresponding
user defined function in MATLAB code that implements data shuffling. BoT processor
provides the localR4 instruction which implements data shuffling in hardware. This
instruction can be exploited only by the proposed compiler, which maps the function
call to the corresponding hardware intrinsic (localR4 instruction). MathWorks Coder
doesn’t exploit custom instructions and generates generic software code for the given

214 evaluation of the compiler

tasks. The use of localR4 instruction effects mostly the speed-up with packed data
types where costly scalar operations are executed in hardware avoiding the execution
of packing and unpacking operations. Finally, the optimized version (FFT64-v2-R4)
combines optimizations of the two previous versions.

Fig. 97
fft64-v1 8032

fft64-v1-R4 8032
fft64-v2 4722

fft64-v2-R4 4722
fft128 17420

fft128-R4 17420

Table 29: Reference values (instructions count) used for normalization at additional FFT
results

0

2

4

6

8

10

12

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

fft64-v1 fft64-v1-R4 fft64-v2 fft64-v2-R4 fft128 fft128-R4

MathWorks MC-s4 MC-s4-unp speed-up of s4 speed-up of s4-unp

Figure 97: Execution times of FFT comparing with optimized versions on BoT

6.6 Results from tinyBoT ASIP

This section describes the tinyBoT architecture used in the experiments and presents
the performance of the generated C code by the compiler compared to that of the code
generated by the MathWorks Coder. Further experiments present the execution times
of the generated code of an optimized version of FFT application compared to its basic
version.

TinyBoT Architecture The tinyBoT ASIP is another instance of ADRES archi-
tecture template. More specifically, the TinyBoT architecture is derived from the BoT

6.6 results from tinybot asip 215

architecture by removing everything but the Scalar Unit, Scalar RF and Scalar Memory.
The TinyBoT architecture borrows essential complex arithmetic, trigonometric and in-
verse functionalities from the vector units of the BoT architecture and migrates it to the
scalar units. The TinyBoT architecture is functionally compliant with the BoT architec-
ture. That is, all special instructions are available on both architectures. The tinyBoT
architecture is coded by using the Synopsys ASIP design tool [ASIP Designer, 2016].

6.6.1 Presentation and Discussion of Results on TinyBoT
Architecture

Figure 98 presents the normalized execution times per benchmark (Table 30) achieved
by both MATLAB compilers on tinyBoT ASIP. The line added to the figure shows the
execution speed-up achieved with the current approach in respect to MathWorks Coder.
The generated code by the compiler achieves a substantial speed-up between 1.3x-74x and
8.3x times on average. The code generated by the compiler includes scalarized custom
instructions such as complex number operations and mathematical functions (mapped
on specialized hardware) in contrast to the code generated by MathWorks compiler that
does not include custom instructions. The highest speed-up of is obtained for the CFO,
CORDIC and QR-decomposition algorithms where the compiler maps math tasks (like
exponential, absolute value, Inverse-Tangent) to scalarized custom instructions instead
of the MathWorks generated code which implement the calculation of these tasks without
the use of hardware. The custom instructions are accelerated by hardware performing
faster execution times than the corresponding software implementations generated by
MathWorks coder.

1

2

4

8

16

32

64

128

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MathWorks MC generated code speed-up scalarized code comp. to MW

Figure 98: Speed up comparing with MathWorks compiler on TinyBoT.

Figure 99 shows the normalized execution times (fig. 31) of two optimized 64 point
FFT versions and an optimized 128 point FFT version compared to their standard
versions on tinyBoT. Although the optimized FFT-64 version (FFT64-v2) attain a better

216 evaluation of the compiler

Fig. 98
fft32 1443

fft64-v1 8032
fft64-v2 4722
fft128 17420
cfo-32 11563
cfo-64 22483
cfo-128 45668

cordic-64 3975253
fir-32x256 724074
mean-32 181
mean-64 256

mean-128 448
mean-1024 3153

qr-decomp-32 1726926

Table 30: Reference values (instructions count) used for normalization of results at
tinyBoT

performance comparing to the standard FFT-64 version (FFT64-v1) on BoT, the data
locality doesn’t benefit the generated code by the compiler on tinyBoT. This is due to
the fact that some of scalar register files are used for other purposes (i.e. Stack Pointers).
As a result, the local variables spill over into memory increasing load/stores at run time.
In contrast, MathWorks compiler doesn’t consider native complex data type of targeted
architectures producing at least double the amount of C variables. This large number of
variables causes register file spill overs on both FFT implementations. In the optimized
version locality of variables is improved and this benefits MathWorks compiler.

Regarding the optimization of the data shuffling (third stage of FFT), the compiler
maps the corresponding MATLAB function to the localR4 custom instruction but only
a small speed-up is achieved. The reason is that the biggest overhead of the scalarized
generated code is included in the first and second FFT stages while the data shuffling
of third stage doesn’t impact (so much?, as much?) the total execution performance of
the algorithm.

6.6 results from tinybot asip 217

Fig. 97
fft64-v1 8032

fft64-v1-R4 8032
fft64-v2 4722

fft64-v2-R4 4722
fft128 17420

fft128-R4 17420

Table 31: Reference values (instructions count) used for normalization at additional FFT
results

0

0.5

1

1.5

2

2.5

3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

fft64-v1 fft64-v1-R4 fft64-v2 fft64-v2-R4 fft128 fft128-R4

MathWorks MC generated code speed-up MC comp. to MW

Figure 99: Execution times of FFT comparing with optimized versions on tinyBoT

218 evaluation of the compiler

6.7 Comparison of the Proposed Compiler at the Different Ar-
chitectures

In this section the compiler’s generated code is compared and discussed among the
different targeted processors. Experiments include the comparison between the two
ASIPs, as well as comparisons between the ARM and x86 targeted architectures using
different configuration settings regarding the SIMD width of vectors and the form of the
data types (packed versus unpacked).

6.7.1 Comparison of Generated Code by MathWorks and
Proposed Compiler on ARM Processors

This section gives a summary regarding the speed-up of benchmark’s execution times
achieved on Raspberry PI 3 compared to that on Raspberry PI 2, for the generated code
by both MATLAB compilers using various experimental settings. Figure 100 presents
the minimum, maximum and average speed-up of MathWorks generated code and the
scalarized (without use of intrinsics) generated code by compiler achieved on PI 3 com-
pared to the corresponding generated code on PI 2. For the experiment, both the floating
and fixed point benchmark versions have been evaluated and the generated code has been
examined using Clang, GCC, and MSVC C compilers.

0

0.5

1

1.5

2

2.5

3

3.5

4

MIN

MAX

AVG

Figure 100: Speed-up of MathWorks and scalarized with no intrinsics generated code on
PI 3 compared to PI 2

The execution times of the scalarized generated code by both MATLAB compilers on
PI 3 are faster than the execution times on PI 2 using any of the aforementioned settings.
The generated C code compiled with Clang or GCC executed on Rasbian OS obtains
higher speed-up (comparing to the execution times on the two targeted processors) than
the generated code compiled with MSVC and executed on Windows IoT OS. Further-
more, the benchmark with fixed point data types achieves higher speed-up compared to

6.7 comparison of the proposed compiler at the different architectures 219

floating point benchmark for both MathWorks generated code and compiler’s scalarized
generated code using any of the evaluated C compilers. Finally, the speed-up achieved
for the performance of the MathWorks generated code among the various experimental
options is quite similar to the speed-up achieved at the generated code by the compiler.
Figure 101 presents the speed-up of vectorized generated code achieved on PI 3 com-

pared to that on PI 2 using various SIMD options with different data types and compiling
the generated C code with Clang, GCC and MCVC C compilers. The execution times on
PI 3 are faster than the execution times on PI 2 using any of the evaluated experimental
options. The performance of the generated code compiled with MSVC and executed on
Windows IoT OS achieves a lower speed-up (of the execution times between the two
targeted processors) compared to that of generated code which have been compiled with
Clang or GCC and have been executed on Rasbian OS. The performance of the gener-
ated code with fixed point data types achieves a higher speed-up compared to that of
the generated code with floating point data types only by compiling with Clang while
GCC and MSVC obtain a higher speed-up for the floating point data types benchmark.
Finally, packed data types with SIMD width 4 configuration obtain highest speed-up
using any of the three C compilers.

0

1

2

3

4

5

6

7

MIN

MAX

AVG

Figure 101: Speed-up of vectorized generated code on PI 3 compared to PI 2

Figure 102 shows the average speed-up achieved by the performance of the vectorized
generated code compared to that of MathWorks generated code on PI 2 and PI 3. The
vectorized code with fixed point data types (of any SIMD options) compiled with Clang
and executed on Rasbian OS attain the biggest difference of speed-ups while for the
floating point benchmark GCC obtains the biggest difference between the performance
of the two targeted processors. Finally, The vectorized code compiled with MSVC and
executed on Windows IoT OS achieves zero or marginal differentiation on the the speed-
ups achieved on the two targeted ARM processors.
The execution times’ performance of the generated C code depends on the proces-

sor/architecture capabilities and the efficiency of C compilers to produce high perfor-
mance executable code for any target processor. According to the experiments, Clang

220 evaluation of the compiler

and GCC produce code (for Rasbian OS) that takes better advantage of the current
processor efficiency and they obtain significant execution time speed-up in conjunction
with the processor capabilities. However, the two compilers present a more unstable per-
formance, due to big large span of the speed-up values, compared to the corresponding
performance achieved by MSVC compiler where the range of minumum and maximum
speed-up values is small, close to average value. Concerning the evaluation of SIMD
code performance, the experiment shows that the vectorized generated code exploits effi-
ciently the targeted processor resources and SIMD extension capabilities. The speed-ups
obtained by the performance of the vectorized code comparing to the execution times
on the two targeted ARM processors are similar or even better in several cases than the
corresponding speed-ups of the performance of the scalarized code.

0

2

4

6

8

10

12

14

16

18

average speed-up on PI 2 average speed-up on PI 3

Figure 102: Difference between PI 2 and PI 3 of the speed-up achieved by the vectorized
generated code against the MathWorks generated code

6.7.2 Comparison of Generated Code by MathWorks and
Proposed Compiler on x86 Processors

This section discusses the summary speed-up of benchmark’s execution times achieved
on a desktop using the i7-3770 processor compared to that on a desktop using the
i7-3820 processor for the generated code by both MATLAB compilers using different
experimental settings. Figure 103 shows the minimum, maximum and average speed-
up of MathWorks generated code and compiler’s scalarized (without use of intrinsics)
generated code performance on desktop with i7-3770, compared to that on desktop with
i7-3820. For the experiment, both benchmarks using floating point and fixed point data
types have been evaluated and the generated code has been examined using Clang, GCC,
and MSVC C compilers.
All the evaluated configurations achieve minor speed-ups (average is lower than 2x)

with the exception of the MathWorks generated code performance with floating point

6.7 comparison of the proposed compiler at the different architectures 221

0.5

1

2

4

8

16

32

64

128

256

MIN

MAX

AVG

Figure 103: Speed-up of MathWorks and scalarized with no intrinsics generated code on
i7-3770 compared to i7-3820

data types compiled by MSVC attaining an average speed-up of 16x. This high speed-up
is due to the performance difference between the two targeted processors of FFT-64-v1
benchmark (speed-up of 246.1x). The performance of the scalarized generated code and
the MathWorks generated code achieve similar average speed-ups across the different
configurations. However, the scalarized generated code obtains higher maximum results
compared to that achieved by the MathWorks generated code. Finally, when comparing
the performance among C compilers, not significant difference is observed.
Figure 104 presents the speed-up of the vectorized generated code performance achieved

on i7-3770 compared to that on i7-3820 using various SIMD options/data types and by
compiling the generated code with Clang, GCC and MCVC C compilers. The perfor-
mance of vectorized code on i7-3770 compared to the performance of the vectorized code
on i7-3820 always achieves speed-up on average using SIMD width 4. Regarding the
SIMD width 8, the vectorized generated code for some configurations and especially for
floating point data types results to reduced performance (slower execution time on aver-
age) on i7-3770 against that on i7-3820. Speed-up comparison among C compilers using
SIMD width 4, reveals not significant differences. Using SIMD width 8, the speed-up
among C compilers vary, but without distinguishing any of them for a general superior
performance.

222 evaluation of the compiler

0

0.5

1

1.5

2

2.5

3

3.5

MIN

MAX

AVG

Figure 104: Speed-up of vectorized generated code on i7-3770 compared to i7-3820

Figure 105 shows the average speed-up achieved by the performance of the vectorized
generated code compared to that of the MathWorks generated code on i7-3820 and i7-
3770. The results show that none of the two targeted processor achieve clearly better
speed-ups over the different configurations. Only the benchmark with fixed point data
types and SIMD width 4 compiled by Clang and GCC achieves considerable speed-
up executing on i7-3770. For the rest of the configurations the speed-up between two
targeted processors is similar or even higher for the i7-3820 processor.

0

5

10

15

20

25

30

average speed-up on i7-3820 average speed-up on i7-3770

Figure 105: Difference between i7-3770 and i7-3820 of the speed-up achieved by the vec-
torized generated code against the MathWorks generated code

The ARM and x86 architectures achieve speed-up of performance comparing previ-
ous with next generation processors both for scalarized and vectorized generated code.
Although, the speed-up achieved comparing the ARM processors is higher than the
speed-up between x86 processors with the later comparison leading to slow up in many
test cases using SIMD width 8. Comparing the C compilers, MSVC compiler shows a
better acceleration between x86 architectures in contrary to the Clang and GCC com-
pilers which exploit better the capabilities of ARM hardware obtaining higher speed-up
comparing their performance between processors of that architecture.

6.7 comparison of the proposed compiler at the different architectures 223

6.7.3 Comparison of the Proposed Compiler on TinyBoT and
BoT ASIPs

Figures 106 and 107 presents the normalized benchmark code execution times (Table
32) on tinyBoT and BoT processors with packed data types (fig. 106) and unpacked data
types (fig. 107). Execution times are on average 2.6x and 1.3x times faster compared to
tinyBot execution times with packed and unpacked types respectively using SIMD 4 for
FFTs and SIMD 8 for the rest benchmark.

Fig. 106 and Fig. 107
fft32 737

fft64-v1 3237
fft64-v2 3862
fft128 9503
cfo-32 1180
cfo-64 2300

cfo-128 4540
cordic-64 720155
fir-32x256 719073
mean-32 288
mean-64 544

mean-128 1056
mean-1024 8224

qr-decomp-32 44222

Table 32: Reference values (instructions count) used for normalization at ASIPs
comparison

The faster execution times achieved on BoT are due to architectural features and
capabilities. BoT processor provides SIMD custom instructions instead of tinyBoT where
same scalar instructions are existed. The Mean application on BoT processor with
unpacked data types attains worse performance than on tinyBoT processor due to the
overhead of packing and unpacking. The SIMD block of this example includes only
one SIMD operation which leads to reduced performance because the acceleration is
outweighed by the overhead of operands’ packing and unpacking. Similar results have
been achieved for FIR when unpacked data types and an SIMD processing width 4 are
used. Clearly, the execution of SIMD operations with unpacked data types is beneficial
only when large SIMD blocks with multiple SIMD operations are used since in this case
the intermediate packed results are reused. Furthermore, the mean application of 32

224 evaluation of the compiler

input elements in packed format achieves slower execution time compared to execution
time in tinyBoT. The application firstly adds the input packed elements to a vector using
SIMD addition, then the resulting vector is used to calculate the overall sum and finally
it is divided by the number of input elements. During the calculation of the total vector’s
sum, operations for unpacking are required and additions for complex fixed point type
are executed in software (BoT doesn’t provide any scalar special instruction) which add
overhead to the execution time and cannot be outweighed by the SIMD addition at the
first stage of sum calculation (due to small input size).

0.25

0.5

1

2

4

8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

tinyBoT MC-s4 MC-s8 speed-up of s4 comp. to tinyBoT speed-up of s8 comp. to tinyBoT

Figure 106: Execution times of TinyBoT versus BoT with packed data types

0.25

0.5

1

2

4

8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

tinyBoT MC-s4 MC-s8 speed-up of s4 comp. to tinyBoT speed-up of s8 comp. to tinyBoT

Figure 107: Execution times of TinyBoT versus BoT with unpacked data types

6.8 comparison against mathworks coder 225

6.8 Comparison Against MathWorks Coder

This section presents the performance of the generated code without the use of the ad-
vanced capabilities of the target processor/ASIP compared to that of the code generated
by the MathWorks Coder on the different targeted processors.

6.8.1 Comparison of Generated Code Without Intrinsics Against
MathWorks Coder on ARM and x86 Processors

This section discusses the execution times of MathWorks generated code compared to
the execution times of compiler’s scalarized (without use of intrinsics) generated code.
A summary of speed-ups on the targeted processors for floating and fixed point data
types using the three C compilers is presented, as well as detailed speed-up results for
specific targeted processors, C compilers and data types are presented.

Summary comparison of MathWorks generated code versus scalarized code
Figure 108 presents the minimum, maximum and average speed-up of MathWorks gen-
erated code performance compared to that of compiler’s scalarized generated code using
different targeted processors, C compilers and benchmark’s data types. The average
execution time of MathWorks generated code for the most of evaluated configurations
is slower than the scalarized generated code. Moreover, for the cases, almost the entire
benchmark achieve a better performance. This is shown in the figure 108 where the
maximum speed-up values are under the horizontal line of value 1 (some test cases are
higher than 1 but for a small factor). Although, the MathWorks floating point gener-
ated code compiled with MSVC achieves faster execution times than the execution times
of scalarized generated code for floating point data types. Finally, the minimum and
maximum speed-ups achieved for the fixed point benchmark present a big difference in
relation with the difference of maximum and minumum speed-up achieved on floating
point benchmark.

Comparison of MathWorks generated code versus scalarized code for selected
architectures Figures 109, 110 and 111 present the benchmark’s normalized execu-
tion times (Table 33) of MathWorks generated code and compiler’s scalarized generated
code for selected targeted architectures, C compilers and data types. Figure 109 shows
the comparison of the scalarized floating point code by the two MATLAB compilers
on Raspberry PI 2 compiled by MSVC. The performance of the generated code by
MathWorks Coder achieves a substantial speed-up of 47x for MEAN-32 and MEAN-64
benchmarks and a lower speed-up of 1.7x for MEAN-128 an MEAN-1024 benchmarks
while for the rest applications speed-ups from 1.1x up to 1.8x are obtained by the scalar-
ized code. Figure 110 shows the comparison of scalarized fixed point generated code

226 evaluation of the compiler

0.0078
0.015
0.031
0.062
0.12
0.25
0.5

1
2
4
8

16
32
64

MIN

MAX

AVG

Figure 108: Speed-up of MathWorks generated code compared to scalarized generated
code without intrinsics

by the MATLAB compilers on Raspberry PI 3 compiled with Clang. For the current
configuration, the performance of the MathWorks generated code attains only a small
speed-up of 1.5x for FIR application and the performance of the compiler’s scalarized
code achieves speed-up up to 33.3x. Figure 111 shows the execution times between
MathWorks generated code and generated code by the compiler on the desktop with the
i7-3820 processor for floating point data types compiled with GCC. The performance of
MathWorks generated code achieves speed-up from 1.1x up to 5.1x for FFT-64, FFT-128
and MEAN benchmarks and the performance of the compiler’s scalarized generated code
achieves speed-up between 1.05x-4.5x for the rest benchmarks.

0.5

1

2

4

8

16

32

64

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

MW MC-scalarized speed-up MW comp. to MC

Figure 109: Speed-up of MathWorks floating point generated code compared to scalar-
ized floating point generated code without intrinsics on PI 2 using MSVC

6.8 comparison against mathworks coder 227

Fig. 109 Fig. 110 Fig. 111
fft32 2.90 38.50 0.28

fft64-v1 10.23 14.18 1.27
fft64-v2 8.10 61.00 1.35
fft128 22.07 131.73 2.50
cfo-32 18.07 4.00 4.42
cfo-64 34.13 26.21 7.75
cfo-128 66.83 52.24 14.77

cordic-64 628.17 827.56 25.75
fir-32x64 396.20 90.90 10.88

fir-32x128 863.70 216.64 19.33
fir-32x256 1799.53 453.46 39.50
mean-32 0.46 0.27 0.08
mean-64 0.97 0.51 0.08

mean-128 1.80 0.99 0.25
mean-1024 9.70 7.73 1.71

qr-decomp-32 167.27 1249.65 13.40
qr-decomp-64 341.57 343.48 31.28
qr-decomp-128 704.80 695.17 56.60

Table 33: Reference values (exec. time in µs) used for normalization of MathWorks
versus scalarized code comparison

0.03125

0.0625

0.125

0.25

0.5

1

2

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

MW MC-scalarized speed-up MW comp. to MC

Figure 110: Speed-up of MathWorks fixed point generated code compared to scalarized
fixed point generated code without intrinsics on PI 3 using Clang/LLVM

228 evaluation of the compiler

0.125

0.25

0.5

1

2

4

8

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

MW MC-scalarized speed-up MW comp. to MC

Figure 111: Speed-up of MathWorks floating generated code compared to scalarized float-
ing point generated code without intrinsics on i7-3820 using GCC

Explanation of experimental results of the scalarized code The different ex-
ecution times between the MathWorks generated code and the compiler’s scalarized
genarated code is primary due to the different style of generated C code. The MathWorks
Coder generates code inlining the majority of MATLAB operations and functions in the
main code. Furthermore, it flattens the multidimensional matrices to one-dimensional
arrays and it performs internal transformations producing C loops of big scopes which
include several operations and references to different arrays. On the other hand, the
compiler performs a more direct translation of MATLAB to C code retaining the shape
of MATLAB matrices without inlining segments of code in the main program’s scope.
Moreover, the compiler produces separate nested loops for each array MATLAB state-
ment. The generated C statements include only one operation (or function) involving
only the operands’/result’s array references and for some cases indexing references are
involved as well. Finally, the two MATLAB compilers generate different implementa-
tions of fixed point operations. The MathWorks Coder produces general and precision’s
accurate fixed point operations slowing up the generated code. The compiler produces
faster fixed point operations, although for some input values the operation’s result isn’t
accurate. The high maximum speed-up of the scalarized generated code performance
compared to that of generated code of MathWorks Coder on fixed point benchmark is
due to the fixed point implementations of MATLAB operations and functions.

Conclusion of the scalarized generated code comparison Regardless the gen-
erated style of MATLAB code, the execution time is depended on the C compiler and
the targeted processor as well. This is proven by the discussed experiment where the
same generated code achieve different performance across various processors and C com-
pilers. However, execution time results between processors of same architecture (ex. PI
2 compared to PI 3) for the same generated code and compiled by the same C compiler
present similar summary speed-ups (and speed-ups per benchmark). According to the

6.8 comparison against mathworks coder 229

experiment of this section, the compiler generates quality and simple C code without us-
ing any available custom instruction. The scalarized code can be efficiently compiled by
the C compilers to produce executable code which in several cases is faster than the code
derived by MathWorks Coder for floating and fixed point DSP applications. However,
MathWorks Coder is a state of the art MATLAB compiler producing high performance
C code and potentially would be faster than the compiler’s scalarized generated code for
other application domains or applications with other characteristics.

6.8.2 Comparison of Generated Code Without Intrinsics Against
MathWorks Coder on TinyBoT ASIP

Figure 112 shows the normalized execution times per benchmark (Table 34) of the code
generated by MathWorks and the code generated by the compiler without using custom
instructions. In both cases, benchmarks implemented fixed point precision and the
generated codes have been mapped on tinyBoT. During compilation with the compiler,
MATLAB functions and MATLAB operations with complex numbers were mapped to
custom instructions which correspond to C functions. The compiler’s generated code
achieves better performance for the CFO, FIR and QR-decomposition benchmarks. The
differences in the performance of the code generated by the two compilers is mostly due
to the following reasons:

• Different C implementations of fixed point operations.
• Different MATLAB indexing. The MathWorks Coder produces flattened arrays
instead of the compiler, which retains the shape of the MATLAB arrays when
vectorization is not applied.
• Different style of generated C code. For example, MathWorks coder inlines the
majority of MATLAB operations and functions in the main code and fuses the
scalarized code generated by MATLAB array statements in same for-loops. Such
transformations are not applied by the compiler.

230 evaluation of the compiler

Fig. 112
fft32 4667

fft64-v1 19463
fft64-v2 11442
fft128 46124
cfo-32 11563
cfo-64 22483

cfo-128 45668
cordic-64 3975253
fir-32x256 724074
mean-32 992
mean-64 1952
mean-128 3872

mean-1024 30752
qr-decomp-32 1726926

Table 34: Reference values (instructions count) used for normalization of baseline exper-
iment at tinyBoT

0.06

0.12

0.24

0.48

0.96

1.92

3.84

7.68

15.36

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MathWorks MC generated code speed-up MC comp. to MW

Figure 112: Performance of MathWorks code and generated code without intrinsics on
tinyBoT.

6.9 examination of clang/llvm aggressive auto-vectorization options 231

6.9 Examination of Clang/LLVM Aggressive Auto-vectorization
Options

This section discusses the performance of MathWorks generated code and scalarized
generated code by the compiler examining the aggressive Clang optimization options.
Figures 113, 114, 115 and 116 present the normalized execution times (Table 35) of
MathWorks fixed point generated code on the Raspberry PI 2 (Fig. 113 and 114) and
scalarized floating point generated code by the compiler on the desktop with i7-3770
(Fig. 115 and 116) compiling with aggressive Clang optimization options. The ’force
SIMD=4’ column in diagrams refers to the ’-force-vector-width=4’ Clang options. The
option forces the auto-vectorizer to vectorize the C loops using SIMD instructions of
width 4 regardless the decision of auto-vectorization cost model as to whether or not
vectorization is beneficial. Moreover, ’force SIMD=8’ column refers to ’-force-vector-
width=8’ option which is used to force auto-vectorization with SIMD instructions of
width 8. The ’slp-aggressive’ column corresponds to the ’-fslp-vectorize-aggressive’ Clang
option enabling the compiler to perform aggressive superword-level parallelism (SLP) of
basic-blocks - an optimization of combining similar independent instructions into vector
instructions [Larsen and Amarasinghe, 2000]. Finally, the ’slp no’ column corresponds
to compilation options that disables the normal SLP vectorization (’-fno-slp-vectorize’
option) and column ’slp aggr + SIMD=8’ is a test case combining aggressive SLP vec-
torization and the indication for generation of SIMD instructions with width 8.
Our experiments show that the evaluated compiler’s optimizations doesn’t always

achieve speed-up. On the contrary, the specific optimizations significantly decrease the
performance of the executable code in most cases. More specifically, the indication for
auto-vectorization of any C loop (’force SIMD=4’ and ’force SIMD=8’) obtains speed-
up only by using SIMD width of 8 for MathWorks generated code of FIR application on
Raspberry PI 2. The rest benchmarks obtains worse performance for that test case com-
pared to the case where the auto-vectorization cost-model decides the loop are beneficial
to be vectorized. The aggressive SLP vectorization achieves only a small speed-up on
desktop using i7-3770 processor but not for all the benchmarks while disabling the nor-
mal SLP vectorization, the performance is increased for some benchmarks on the same
processor. Finally, the combination of ’slp aggr + SIMD=8’ options obtain a significant
speed-up at FFT64, FFT128, CFO, CORDIC and FIR-32x64 benchmarks on the i7-3770
processor.
In conclusion, the examined Clang optimizations cannot always accelerate the execu-

tion times of the MathWorks generated code and compiler’s scalarized generated code.
Additionally, the specific optimizations don’t ensure that the output code is always op-
timized. On the contrary, the execution time usually attains reduced performance by
enabling these optimizations. The worse performance by enabling the force options in-
dicates that the cost model for most of the cases vectorizes only parts of code which
are beneficial to be vectorized. Although, the test cases which achieve acceleration of

232 evaluation of the compiler

performance applying the specific options shows that there is room for improvement of
the cost model to make correct decisions regarding the target processor. Furthermore,
the enhancement of performance deactivating the SLP optimization proves that the cost
model must perform a more further and accurate analysis to determine the optimal trans-
formations of code preventing the vectorization of basic blocks that is not profitable to
be paralleled.

Fig. 113, Fig. 114 Fig. 115, Fig. 116
fft32 97138.83 180.96

fft64-v1 45648.50 893.18
fft64-v2 214133.03 1095.54
fft128 434562.00 2350.02
cfo-32 9264.93 698.78
cfo-64 66805.30 6784.72
cfo-128 131323.13 12416.92

cordic-64 1207044.07 8281.10
fir-32x64 178774.67 7996.44

fir-32x128 402998.60 16334.70
fir-32x256 810921.97 28365.70
mean-32 698.13 25.46
mean-64 1364.57 87.78

mean-128 2659.83 169.96
mean-1024 21071.00 1795.46

qr-decomp-32 3192630.97 31638.96
qr-decomp-64 1433642.37 61933.68
qr-decomp-128 2830109.40 111648.84

Table 35: Reference values (exec. time in µs) used for normalization of aggressive Clang
options examination

6.9 examination of clang/llvm aggressive auto-vectorization options 233

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks force SIMD=4 force SIMD=8 slp aggr + SIMD=8

Figure 113: Normalized execution times of MathWorks fixed point generated code, com-
piled with aggressive Clang auto-vectorization options

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks slp no slp aggressive

Figure 114: Normalized execution times of MathWorks fixed point generated code, com-
piled with aggressive superword-level parallelism Clang options

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC-scalarized force SIMD=4 force SIMD=8 slp aggr + SIMD=8

Figure 115: Normalized execution times of scalarized floating point generated code, com-
piled with aggressive Clang auto-vectorization options

234 evaluation of the compiler

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC-scalarized slp no slp aggressive

Figure 116: Normalized execution times of scalarized floating point generated code, com-
piled with aggressive superword-level parallelism Clang options

6.10 auto-vectorization evaluation for c compilers 235

6.10 Auto-vectorization Evaluation for C compilers

This section discusses the performance of auto-vectorization applied by C compilers. A
report of the benchmark’s successfully auto-vectorized loops is presented aw well as auto-
vectorization speed-up results are presented. Experiments concern the performance of
Clang/LLVM, GCC and MSVC auto-vectorizing compilers on the ARM and x86 targeted
processors for the benchmark’s scalarized generated code by the MathWorks Coder and
compiler’s scalarized generated code.

6.10.1 Report of Successfully Auto-vectorized Loops by
C Compilers

Auto-vectorizing C compilers provide compilation options to print diagnosing messages
about the auto-vectorization activity. The specific compiler’s option, reports the success-
fully/unsuccessfully auto-vectorized loops and it prints messages indicating the reason
preventing compiler from auto-vectorizing the current loop. The auto-vectorization re-
port options are shown in Tables 42, 43 and 44 for Clang/LLVM, GCC and MSVC
respectively.
Tables 36, 37, 38 and 39 present the successfully auto-vectorized loops for a x86

machine supporting AVX extension (and consequently SSE). More specifically, the ex-
periment concerns the auto-vectorization of benchmark’s generated code by MathWorks
Coder for fixed point data types (Table 36) and floating point data types (Table 37),
and the compiler’s scalarized generated code for fixed point data types (Table 38) and
floating point data types (Table 39). Tables show the successfully auto-vectorized loops
by Clang/LLVM, GCC and MSVC (columns 2,3 and 4) against the total application’s
loops (column 5). The last row in tables show the sum of benchmark’s loops and the
overall auto-vectorized loops.

For the fixed point generated code by MathWorks Coder (Table 36) only the 7%,
14% and 1% of the benchmark loops are successfully vectorized by Clang/LLVM, GCC
and MSVC respectively. For the floating point MathWorks generated code (Table 37)
Clang/LLVM doesn’t vectorize any loop while GCC and MSVC vectorize 10% of bench-
mark loops. The scalarized generated code with fixed point data types (Table 38) is
vectorized by a percentage of 13%, 21% and 6% using Clang/LLVM, GCC and MSVC
correspondingly. Finally, Clang/LLVM, GCC and MSVC vectorize the 3%, 16% and 2%
of floating point scalarized code. The GCC compiler vectorizes more loops compared to
Clang/LLVM and MSVC for both MathWorks generated code and scalarized generated
code by the compiler. Furthermore, the three auto-vectorizing C compilers achieve a
higher percentage of successfully vectorized loops for the fixed point data types bench-
mark except the MSVC which vectorizes a higher loops percentage of the scalarized
generated code by the compiler with floating point data types. The mostly vectorizable

236 evaluation of the compiler

application is the QR-decomposition where a significant amount of loops are vector-
ized. CFO and CORDIC applications are also sufficiently vectorized but only for the
scalarized generated code by the compiler. The compiler’s scalarized code consists of
simple loops including only one operation each of them and allowing the C compilers
to vectorize higher amount of loops compared to the percentage of vectorized loops of
MathWorks generated code. The auto-vectorizing C compilers achieve better applicabil-
ity at scalarized generated code by the compiler and especially for CFO and CORDIC
applications concluding that auto-vectorization is applied more efficiently at code with
single operation loops with one-dimensional arrays.
The three examined C compilers don’t vectorize a significant amount of loops (only the

10% on average) across the benchmark. Furthermore, the different number of vectorized
loops among the C compilers proves that there is a significant room for improvement
of auto-vectorization techniques which are applied by the auto-vectorizing C compilers.
However, some of the generated loops cannot be vectorized (even with manual code trans-
formations) due to code restrictions, dependencies and hardware limitations. According
to the reporting messages some loops are not vectorized because of:

• Outer loop.
• Call instruction cannot be vectorized.
• Loop contains loop-carried data dependences that prevent vectorization.
• Unsafe dependent memory optimizations in loop.

The above cases prevent vectorization of loops and such loops cannot be vectorized
even in theory.

vectorized by
Clang/LLVM

vectorized by
GCC

vectorized by
MSVC

benchmark’s
loops

cfo 2 3 0 26
cordic 1 1 0 11
fft32 1 2 0 19

fft64-v1 0 0 0 23
fft64-v2 2 7 0 24
fft128 2 7 0 31
mean 0 1 0 27
fir 1 1 0 8

qr-decomp 13 19 3 108
OVERALL 22 41 3 277

Table 36: Successfully auto-vectorized loops of MathWorks fixed point generated code

6.10 auto-vectorization evaluation for c compilers 237

vectorized by
Clang/LLVM

vectorized by
GCC

vectorized by
MSVC

benchmark’s
loops

cfo 0 0 1 1
cordic 0 2 0 4
fft32 0 0 0 6

fft64-v1 0 2 0 9
fft64-v2 0 0 0 7
fft128 0 0 0 14
mean 0 1 0 1
fir 0 1 0 3

qr-decomp 0 3 8 39
OVERALL 0 9 9 84

Table 37: Successfully auto-vectorized loops of MathWorks floating point generated code

vectorized by
Clang/LLVM

vectorized by
GCC

vectorized by
MSVC

benchmark’s
loops

cfo 7 8 7 9
cordic 10 10 5 16
fft32 0 1 0 15

fft64-v1 0 2 0 14
fft64-v2 0 1 0 28
fft128 0 2 0 32
mean 0 0 0 2
fir 2 2 0 5

qr-decomp 12 24 3 108
OVERALL 31 50 15 229

Table 38: Successfully auto-vectorized loops of scalarized fixed point generated code

238 evaluation of the compiler

vectorized by
Clang/LLVM

vectorized by
GCC

vectorized by
MSVC

benchmark’s
loops

cfo 2 3 2 4
cordic 5 5 0 11
fft32 0 1 0 15

fft64-v1 0 1 0 14
fft64-v2 0 1 0 27
fft128 0 2 0 32
mean 0 0 0 1
fir 0 1 0 4

qr-decomp 0 18 2 91
OVERALL 7 32 4 199

Table 39: Successfully auto-vectorized loops of scalarized floating point generated code

6.10 auto-vectorization evaluation for c compilers 239

6.10.2 Comparison of Auto-vectorizing C Compilers

This subsection presents the performance of execution times achieved by auto-vec-
torization. Figures 117 and 118 present the minimum, maximum and average speed-up
achieved by C compilers auto-vectorization across the benchmark for the MathWorks
generated code (Fig. 117) and compiler’s scalarized generated code (Fig. 118). The
auto-vectorizers achieve higher maximum and average speed-up targeting x86 architec-
ture. However, for that architecture the performance of vectorized code may be worse
than disabling auto-vectorization (minimum values below of 1x). Furthermore, the auto-
vectorization of Clang/LLVM and MSVC don’t affect the performance of generated code
for ARM processors. Instead, GCC achieves an average speed-up of 1.8x for the com-
piler’s scalarized generated code targeting ARM architecture. Moreover, GCC obtains
in general, better speed-ups compared to Clang/LLVM and MSVC auto-vectorization
performance besides the floating point scalarized generated code by the compiler on x86
targeted architecture where MSVC achieves the higher maximum and average speed-up.
Finally, there isn’t any noticeable difference of auto-vectorization performance between
the fixed point and floating point generated code.

0.5

1

2

4

8

MIN

MAX

AVG

Figure 117: Auto-vectorization speed-up of MathWorks generated code

0.25
0.5

1
2
4
8

16
32
64

128
256

MIN

MAX

AVG

Figure 118: Auto-vectorization speed-up of scalarized without intrinsics generated code

240 evaluation of the compiler

Figures 119, 120 and 121 present the normalized execution times (Table 40) of vec-
torized compared to non-vectorized generated code for the: MathWorks floating point
generated code on desktop with i7-3820 using GCC (Fig. 119), scalarized floating point
generated code by the compiler on i7-3820 using MSVC (Fig. 120) and scalarized fixed
point generated code by the compiler on Raspberry PI 3 using GCC (Fig. 121). GCC
achieves an average speed-up of 1.8x and up to 6.3x for the MathWorks generated code
with floating point data types on i7-3820 (Fig. 119). MSVC doesn’t always achieve speed-
up vectorizing the compiler’s scalarized generated code on i7-3820 (Fig. 120). Only the
FFT-32, FFT-64-v1, FFT-128, CFO and QR-decomposition perform a better execution
time when they are vectorized for the specific target processor. Futhermore, MSVC
achieves a remarkable speed-up of 128x for the FFT-64-v1 benchmark on the desktop
with the i7-3820 processor. Finally, GCC achieves an average speed-up of 1.6x and up
to 4.1x vectorizing only the CFO, CORDIC and FIR applications of the scalarized fixed
point generated code by the compiler on Raspberry PI 3 (Fig. 121).

Fig. 119 Fig. 120 Fig. 121
fft32 0.33 0.56 0.87

fft64-v1 1.32 224.60 3.90
fft64-v2 1.21 1.80 4.20
fft128 2.16 5.50 8.81
cfo-32 6.29 2.10 4.62
cfo-64 10.28 5.70 9.18
cfo-128 17.86 8.68 18.20

cordic-64 32.79 40.36 311.96
fir-32x64 18.74 15.64 208.31

fir-32x128 39.12 34.30 456.20
fir-32x256 71.85 71.84 948.89
mean-32 0.09 0.13 0.19
mean-64 0.05 0.20 0.35

mean-128 0.30 0.50 0.67
mean-1024 0.96 4.98 5.17

qr-decomp-32 22.57 21.58 82.02
qr-decomp-64 45.93 43.08 157.88
qr-decomp-128 88.49 85.96 321.35

Table 40: Reference values (exec. time in µs) used for normalization of auto-vectorization
results

6.10 auto-vectorization evaluation for c compilers 241

0

1

2

3

4

5

6

7

0

0.1
0.2
0.3
0.4

0.5
0.6
0.7
0.8

0.9
1

MC-scalar MC-scalar-no-vec speed-up MW comp. to MW-no-vec

Figure 119: GCC auto-vectorization speed-up of MathWorks floating point generated
code on i7-3820

0.5

1

2

4

8

16

32

64

128

256

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC-scalar MC-scalar-no-vec speed-up MC comp. to MC-no-vec

Figure 120: MSVC auto-vectorization speed-up of scalarized floating point generated
code on i7-3820

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

MC-scalar MC-scalar-no-vec speed-up MC comp. to MC-no-vec

Figure 121: GCC auto-vectorization speed-up of scalarized fixed point generated code
on PI 3

242 evaluation of the compiler

Figures 122, 123, 124 and 125 present the minimum, maximum and average speed-up
achieved by the three C compilers per benchmark. The four different figures concern
the fixed and floating data types and the different generated code derived from Math-
Works Coder and compiler. The FIR and MEAN fixed point applications of MathWorks
generated code (Fig. 122) can be vectorized attaining a speed-up of 1.6x. However,
the vectorization of MathWorks fixed point generated code across all benchmarks per-
forms worse than when disabling auto-vectorization among the different C compilers and
targeted architectures. Auto-vectorization on MathWorks floating point generated code
(Fig. 123) doesn’t obtain any significant speed-up across the benchmarks. However, FIR
MEAN and QR-decomposition can be vectorized achieving a maximum speed-up of 2x,
6.3x and 1.7x respectively. The scalarized fixed point generated code by the compiler
(Fig. 124) achieve a speed-up up to 4x with 2x on average by the three compilers for
FIR application. Rest of the benchmarks attain a maximum speed-up close to 2x and
a minimum speed-up which is negative for the majority of the benchmarks. The auto-
vectorizing C compilers achieve substantial speed-ups on the scalarized floating point
generated code by the compiler (Fig. 125). Auto-vectorization speed-up is achieved
for FFT-64-v1, CFO, CORDIC, FIR and QR-decomposition applications with an av-
erage speed-up of 32x, 2x, 2x, 1.8x and 1.6x (speed-up up to 128x, 8x, 6x, 3.5x and
4x) respectively. The high average and maximum speed-up of FFT-64-v1 is due to the
vectorization speed-up achieved by MSVC on x86 architecture.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

mw-fx-MIN

mw-fx-MAX

mw-fx-AVG

Figure 122: Auto-vectorization speed-up of MathWorks fixed point generated code

6.10 auto-vectorization evaluation for c compilers 243

0.5

1

2

4

8

mw-fl-MIN

mw-fl-MAX

mw-fl-AVG

Figure 123: Auto-vectorization speed-up of MathWorks floating point generated code

0.5

1

2

4

8

mc-fx-MIN

mc-fx-MAX

mc-fx-AVG

Figure 124: Auto-vectorization speed-up of scalarized fixed point generated code

0.25

0.5

1

2

4

8

16

32

64

128

256

mc-fl-MIN

mc-fl-MAX

mc-fl-AVG

Figure 125: Auto-vectorization speed-up of scalarized floating point generated code

244 evaluation of the compiler

6.11 Comparison of C Compilers on the Generated Code

This section presents a comparison of C compilers (using also different operating sys-
tems) performance regarding the benchmark’s execution times over the different targeted
processors. The various diagrams in the section concern the different styles of generated
code by compiler and MathWorks Coder. The experiments/diagrams present the average
speed-up of benchmark among the C three compilers for floating point and fixed point
data types on the various targeted processors. For the conduction of the experiment,
the speed-up per benchmark has been calculated by the comparison of executable code
derived from each C compiler against the worst executable code among the three C com-
pilers. Finally, the generated code compiled with Clang and GCC has been executed
on Rasbian OS for ARM processors and on Linux Ubuntu OS for x86 processors. The
generated code compiled by MSVC has been executed on Windows IoT OS targeting
ARM processors and Windows 10 OS targeting x86 processors.

Figure 126 presents the performance of MathWorks generated code using different C
compilers. Clang and GCC achieve similar performance across the different targeted
processors. MSVC shows worse performance when using fixed point data types for all
the targeted processors as well as using floating point data types on i7-3820 processor.
Figure 127 shows the performance of compiler’s scalarized generated code using the

three C compilers. For scalarized code, GCC achieves the faster execution times across
benchmark except targeting i7-3820 and using floating point data types. For that con-
figuration Clang achieves the best performance instead. Furthermore, Clang and GCC
obtain substantial speed-up compared to the performance of MSVC for Raspberry PI 3
and x86 processors using floating point data types.
Figure 128 presents the performance of vectorized generated code with packed data

types of SIMD width 4 compiled with Clang, GCC and MSVC. For vectorized code,
GCC achieves better performance than Clang across all the targeted processors and by
using fixed or floating point data types. Comparing GCC against MSVC, GCC achieves
a significant speed-up across the targeted processors except the i7-3770 and i7-3820 using
floating point data types where MSVC attains a minor speed-up against GCC and Clang.
Figure 129 shows the performance of vectorized generated code with unpacked data

types of SIMD width 4 compiled with Clang, GCC and MSVC. For that generated code,
significant performance speed-up is obtained by Clang and GCC compared to MSVC
performance on Raspberry PI 3 using fixed point data types and on Raspberry PI 3
using floating point data types. Moreover, GCC attains worse performance than Clang
and MSVC for x86 processors.
Figure 130 presents the performance of vectorized generated code with packed data

types of SIMD width 8 using the three C compilers. GCC achieves better performance
compared to Clang for any targeted processors. GCC also obtain enhanced performance
compared to MSVC except the x86 processors using floating point data types.

6.11 comparison of c compilers on the generated code 245

Figure 131 presents the performance of vectorized generated code with unpacked data
types of SIMD width 8 using the three C compilers. For that style of generated code
Clang achieves better performance than GCC on the different processors. The Clang
and MSVC performing in a similar way across the targeted processors except of the
case of the Raspberry PI 3 using fixed point data types, where Clang achieves better
performance.
In conclusion, GCC achieves better performance compared to Clang among the dif-

ferent styles of generated code. However, using unpacked data types Clang is most
appropriate compiler to be used since it achieves a minor speed-up on benchmark’s ex-
ecution compared to GCC for any targeted processor. Regarding MSVC, the compiler
attains a substantial speed-up compared to GCC and Clang for vectorized generated
code using floating point data types on x86 targeted processors.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

fx-pi 2 fx-pi 3 fx-i7-3770 fx-i7-3820 fl-pi 2 fl-pi 3 fl-i7-3770 fl-i7-3820

MSVC clang gcc

Figure 126: Performance of the MathWorks generated code by C compilers

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

fx-pi 2 fx-pi 3 fx-i7-3770 fx-i7-3820 fl-pi 2 fl-pi 3 fl-i7-3770 fl-i7-3820

MSVC clang gcc

Figure 127: Performance of the scalarized generated code by C compilers

246 evaluation of the compiler

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

fx-pi 2 fx-pi 3 fx-i7-3770 fx-i7-3820 fl-pi 2 fl-pi 3 fl-i7-3770 fl-i7-3820

MSVC clang gcc

Figure 128: Performance of the vectorized (SIMD width 4) generated code by C
compilers

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

fx-pi 2 fx-pi 3 fx-i7-3770 fx-i7-3820 fl-pi 2 fl-pi 3 fl-i7-3770 fl-i7-3820

MSVC clang gcc

Figure 129: Performance of the vectorized (unpacked data with SIMD width 4) generated
code by C compilers

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

fx-pi 2 fx-pi 3 fx-i7-3770 fx-i7-3820 fl-i7-3770 fl-i7-3820

MSVC clang gcc

Figure 130: Performance of the vectorized (SIMD width 8) generated code by C
compilers

6.12 compilation times 247

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

fx-pi 2 fx-pi 3 fx-i7-3770 fx-i7-3820 fl-i7-3770 fl-i7-3820

MSVC clang gcc

Figure 131: Performance of the vectorized (unpacked data with SIMD width 8) generated
code by C compilers

6.12 Compilation Times

The compilation times of the compiler are on average 13.1 times faster than the Math-
Works compiler for compiling the selected set of benchmark’s. Table 132 shows the com-
pilation times achieved for each benchmark by the MathWorks Coder and the MATLAB
compiler using for compilation unpacked data types of SIMD width 4. This is an impres-
sive additional advantage of the compiler. It is difficult to fully explain the compilation
times of the MathWorks compiler because its implementation details are not available.
The speed up achieved by the compiler is possibly due to the fact that the MathWorks
compiler uses generic optimization strategy and extensively applies scalarization without
considering special features/custom instructions of the target processors. The compiler
generates high quality code by focusing on the exploitation of special features/custom
instructions of the targeted processor.

0.001

0.004

0.016

0.064

0.256

1.024

4.096

16.384

65.536

co
m

pi
la

ti
on

 ti
m

e
(s

ec
on

ds
)

MC MathWorks

Figure 132: Compilations times.

248 evaluation of the compiler

6.13 Conclusion

In this chapter the performance of the generated code by the MATLAB compiler has
been evaluated. The experimental evaluation was conducted comparing the performance
of the generated code against the performance of the generated code by the MathWorks
coder. The experimental environment composed by a set of eight benchmarks from
signal processing domain in floating and fixed point. The target architectures where the
generated code was evaluated are two ASIPs, one of them supporting SIMD instructions,
and four general purpose processors of ARM and x86 architectures. The experimental
settings include different configurations of SIMD widths and data types between packed
or unpacked. Finally, various C compilers (Clang, GCC, MSVC) were used for the
compilation of the C generated code.
The experimental results show that the performance of the vectorized code using

packed data types surpass the performance of the code that is generated by MathWorks
coder. The compiler is able to produce vectorized code that is executed faster than the
MathWorks Coder generated code on various target ASIPs/processor by using different
settings of C compilers and data types. However, by using unpacked data types the
performance of the vectorized code for some benchmarks isn’t always higher comparing
to the performance of the MathWorks generated code. This is due to the fact that
for some applications the overhead of packing/unpacking operations is higher than the
acceleration is achieved by SIMD processing. Additional experiments were conducted
concerning the performance of the scalarized code that is generated by the MATLAB
compiler as well as the performance of the auto-vectorization by C compilers. The
performance of the scalarized code by the MATLAB compiler against the MathWorks
generated code vary among the different target architectures and C compilers. The
varying results shows that the execution performance of the generated C code is strongly
depended on the target architecture and the underlying C compiler. Regarding the
evaluation of auto-vectorizing C compilers, the experiments prove that only a small
percentage of benchmark loops can be vectorized by the C compilers. Additionally,
vectorizing the scalarized code that is generated by the two MATLAB compiler, only
minor speed-ups are achieved.

Chapter 7

Conclusion and Future Work
MATLAB is a popular language for rapid prototyping of algorithms in several domains

including engineering, science and embedded computing. In the context of embedded
systems and Systems-on-Chip MATLAB is used for the development of executable spec-
ification. Development of applications with the MATLAB language avoids the detailed
specification of the algorithm where strong programming skills and a lot of effort/time
are required. Consequently, MATLAB compilation to code that can be implemented in
an automated way to software or hardware has been made essential in the domain of
embedded systems.
Several approaches have been presented for the compilation of MATLAB language to

implementation code providing a more efficient execution environment. However, exist-
ing compilation frameworks don’t leverage the capabilities of the target architecture and
especially the processor’s vector units. Previous related studies focus on the generation
of code which is applicable on parallel distributed architectures and GPUs. Moreover,
by using the MathWorks compilation tools with an auto-vectorizing C compiler lead to
sub-optimal results due to deficiencies presented in C auto-vectorization process using
as input the scalarized generated code by MathWorks tools.
In this thesis a MATLAB to C compiler is presented targeting embedded systems

domain and especially Application Specific Instruction Set Processors. The compiler
matches the MATLAB expressions with the available hardware modules and the custom
instructions of the targeted architecture (such as instructions for SIMD processing and
for complex arithmetic). This is achieved through the use of a parametrized processor
model where the custom instruction set is described. This approach allows the compiler
to efficiently support any target processor. Additionally, the information contained in
the target processor description is used for the type inference of functions mapped with
specialized intrinsics to determine the types of function call. The generated code is ANSI
C in which the custom instructions are represented as intrinsic functions that can be
still exploited by conventional C compilers at a later stage. Moreover, the developer can
configure the compiler to generate either SIMD or scalarized C code at the output and
is able to select appropriately the derived data types among floating point, fixed point
or integer.
The compiler has been benchmarked on a set of eight DSP benchmarks using a vari-

ety of ASIP and general purpose processors against the generated code by MathWorks

250

7.1 contribution of dissertation 251

Coder. More specifically, two different ASIP processors (BoT ASIP supports SIMD),
two processors of ARM architecture and two processors of x86 architecture have been
employed. The Synopsys ASIP Designer [ASIP Designer, 2016] have been used for the
compilation of the benchmark and the simulation of ASIPs. For the compilation of
the generated code by the MATLAB compilers, the GCC, Clang/LLVM and MSVC C
compilers have been used. The code generated by the approach achieves a speed-up of
2x-74x on tinyBot and a speed-up of 2x-97x on BoT compared to the code generated
by MathWorks MATLAB-to-C compiler. Moreover, the performance of the vectorized
code using floating point data types compared to that of MathWorks achieves an average
speed-up of 12.3x (using SIMD width 4) and 8.9x on the ARMv8 (Raspberry PI 3) and
i7-3770 x86 processors respectively. Finally, experimental results have been conducted to
evaluate the performance of the auto-vectorization. The experiments prove that only a
small percentage of benchmark loops (compiling with MATLAB compiler or MathWorks
Coder) can be vectorized by the evaluated C compilers.

7.1 Contribution of Dissertation

The compilation framework that has been presented in the current thesis allows the
optimized C code generation of MATLAB language targeting embedded systems and
advanced architectures with instruction set extensions. The contributions of the thesis
are:

• A parametrized processor model that can be used for the specification of the tar-
get processor architecture. The model provides the description of the necessary
information for the production of optimized C code for a target architecture in-
cluding its custom instructions, native data types and operations for packing (or
unpacking) data to vectors. The processor model enables a multi-target compila-
tion framework leading to the optimized code generation of the target architecture.

• An instruction selection algorithm for the mapping of MATLAB code with the
available hardware modules according to the specification of the target processor.
The algorithm matches the MATLAB operations/functions with custom instruc-
tions of the target architecture depending on their type of operands/parameters
and the style of the generated code (scalarized or vectorized). The algorithm al-
lows broadness of application matching function calls and operations of any type
with custom instructions of diverse architectures.
• A detailed discussion of the compiler’s infrastructure about the support for parallel
processing. The compilation framework includes an algorithm for the introduction
of instructions in the AST for the packing/unpacking of data which are processed
in parallel. A procedure for the elimination of the redundant packing/unpacking
instructions is also presented leading to the optimized application of the pack-
ing/unpacking introduction algorithm. The methodology enables the preparation

252 conclusion and future work

of AST for SIMD code generation with unpacked data types. The combination of
two processes leads to the introduction of packing/unpacking statements that are
required for the valid code generation.

• A detailed description of the code generator regarding the vectorized code genera-
tion as well as the code which is related to the target architecture. The innovative
parts of the code generation procedure which are discussed in the thesis are:

A) The for-loops that are generated for the implementation of the SIMD blocks.
B) The code generation of packing/unpacking instructions and their correspond-

ing for-loops.
C) The printing of the vector C variables focusing to the generation of the vector

indexing.

• A type inference approach for type checking and inference of function calls which
are matched to custom instructions using the parametrized processor model. It
allows the type inference of function calls that are subsequently matched to cus-
tomized instructions according to their description in the processor specification.
The approach provides a sophisticated method for functions type resolution com-
bining the description of the type result in the processor model with the type of
function parameters. The type inference approach discussed in the thesis intro-
duces a methodology to infer function calls according to the architecture’s imple-
mentation with respect to the input parameter types.

• The evaluation of the compiler’s performance regarding the speed of the generated
code and its comparison against the generated code by MathWorks Coder. The
thesis presents an extensive benchmarking of the MATLAB compiler in an experi-
mental environment of various options including different processors, C compilers
and operating systems, and diverse data types. An examination of the C compilers
auto-vectorization is presented in the current thesis as well.

7.2 Future Work

The current thesis presents an integrated compilation framework for the generation of
C code from MATLAB source code. However, further extensions may be implemented
to improve the derived code and expand compiler’s applicability. Topics for further
research and development are reported below.

• Extensions of the core functionality to make compiler even broader applicable:

◦ The code generator can be expanded to generate vectorized code for con-
trol flow statements with array dimension conditions. Sophisticated methods
as these are described in [Kennedy and McKinley, 1990], [Shin et al., 2005]
and [Shin, 2007] may be implemented in the current compilation framework

7.2 future work 253

to support the vectorized code generation of SIMD blocks including array
conditional control flow statements.
◦ The compiler’s code generator can be extended to generate OpenCL code.
OpenCL is a framework for a development of programs that are executed
across heterogeneous platforms improving their performance. OpenCL sup-
ports a subset of C++ language allowing parallel programming of applications.
The code generator can be expanded to generated parallel code assigning the
array functions/operations to the compute units of the target architecture.
The automatic SIMD block extension which is discussed above can be used to
identify the segments of code that are translated to OpenCL code (kernels).

• Extensions of methodologies to improve the user support:

◦ The parametrized processor model and the instruction selection algorithm
can be extended in order to map customized instructions with complicated
expressions or multiple MATLAB statements instead of matching only single
operations/functions. Primary example of the usage of this extension is the
mapping of MATLAB expressions such as a*x+b with the cumulative oper-
ations of hardware which are commonly provided by DSP processors. The
extension can be implemented by using patterns for the description of the
MATLAB code represented by customized instructions. A sophisticated in-
struction selection algorithm is also required to map the MATLAB code with
customized instructions. The basic principle of the algorithm’s extension is to
iteratively map MATLAB operations/ functions which are subsequently used
as operands for further mapping. MATLAB code reordering could enhance
the results of mapping process considering that compilation time should be
preserved low.
◦ An automatic SIMD block identification can be implemented allowing to the
compiler the selection of the parts of source code that are beneficial to be
vectorized. The extension require analysis of the input code and a cost model
to determine the segments of code that will be translated to SIMD code.

• Improvement of the implemented methodologies to better support the compiler’s
functionality:

◦ Several optimizations can be implemented to improve the performance of
the generated code. MATLAB is a programming language commonly used
for its array syntax. Therefore, reuse distance analysis and code transforma-
tions [Lezos et al., 2015] and [Lezos et al., 2016] could lead to considerable per-
formance acceleration. Furthermore, loop fusion of the scalarized generated
for-loops can be applied to increase data locality. Finally, additional exper-
iments may be conducted to investigate the capabilities of auto-vectorizing

254 conclusion and future work

C compilers on the different styles of the generated code by enabling and
disabling the MATLAB compiler’s implemented optimizations.

◦ The type inference mechanism is possible to be expanded supporting vari-
ables with unknown dimensions in compile time. This can be implemented
representing the unknown dimensions with symbolic values instead of using
constants inferred dimensions. However, runtime dimensions detection or vari-
ables with variant types wouldn’t be a priority for compiler’s extension since
these characteristics would reduce the performance of generated code and are
rarely used in embedded systems domain applications.

• Additional evaluation of compiler to examine thoroughly the performance of gen-
erated code:

◦ Finally, the compiler can be evaluated on applications from other domains
as well as on additional architectures to explore its performance in order to
potentially optimize it. Especially, the examination of the compiler in a broad
range of applications would improve the compilation framework refining the
methodologies which are discussed in the thesis and specifically the optimiza-
tions and the code generation process.

Chapter 8

Appendix
The appendix includes technical content regarding the MATLAB compilation frame-

work and further benchmarking results of the compiler. Section 8.1 presents the MAT-
LAB compiler options, section 8.2 presents the compilation options that are used in the
experiments by the C compilers and section 8.3 presents examples of the description of
the parametrized processor model for the target architectures. The rest chapter shows
further experimental results. The appendix includes a large set of detailed results re-
lated to that are presented in the chapter 6. The figure 133 shows the association of the
experiments between chapter 6 and the appendix.

Section 6.9

Section 8.4

Section 6.8

Section 8.6

Section 6.10
Section 6.4

Section 8.7

Section 8.5

Figure 133: Dependence graph of experiments.

256

8.1 compiler options 257

8.1 Compiler Options

In this section the compiler’s options are discussed. The compiler’s program accepts
options and filenames as operands regarding the input, output and configuration files.
Compilation options are also provided for the specification of the target architecture
and inclusion of additional directories as well as supplementary options are available
for debugging purposes. Table 41 shows the complete list of compiler’s options. A
description of the compiler options is listed below:

• -help: Print the options usage.
• <MATLAB_file.m>: The filename of input file.
• -o <output_file.c: The filename of output file.
• -dir=<dir>: It specifies additional directories (it may be used multi times in the

command line). The MATLAB files included in additional directories are also
compiled when a primary function is called by the compiling MATLAB code.

• -arch <target>: It specifies the target architecture. Available values are ARM,
x86, tinyBot, BoT and other_target. The compiler uses the option to handle
specifically the MATLAB code for some special cases. For instance, current ASIPs
support only fixed point arithmetic and complex vector data types. For a MATLAB
assignment of a floating point constant to an unknown type variable, the compiler
will generate a transformed fixed point constant and the statement’s right-side
variable will be inferred as fixed point type. For a MATLAB statement with non-
complex variables generated in SIMD-style, the compiler will generate vectorized
code using any available complex vectors (instead of non-complex).

• -noMain: Using this option the compiler doesn’t generate a main C function.
Otherwise the function is generated with code that it calls the primary function of
MATLAB input file.

• -noConstProp: During type inference stage, constant propagation is applied to im-
prove the deduction of variables’ types. Constant propagation is disabled including
the option in command line.
• -conf=<conf_file>: The filename of XML file with the description of parametrized

processor model.
• -parseTree: Using this option, a graph representing the parse tree is produced.
• -ast: Using this option, a graph representing the AST is produced.
• -matlab: It commands compiler to generate the MATLAB code from AST.
• -analyze: It enables the -parseTree, -ast and -analyze options. The options are
used for debugging purposes.

The following line is an example of the MATLAB compiler usage:
./matcom -o fft32.m fft32.c -conf ARM_instr.config -arch ARM -noMain -dir=./myScripts

258 appendix

Compiler options description
- -help Prints the description of the command line options
<MATLAB_file.m> The input file
-o <output_file.c> The output file
-dir=<dir> Additional include directory
-arch=<target> Target architecture
-noMain Disable the generation of C ’main’ function
-noConstProp Disable constant propagation in type inference stage
-conf=<conf_file> The XML file of parametrized processor model
-noC Disable the generation of C code
-parseTree Generate parse tree graph
-ast Generate AST graph
-matlab Print MATLAB input code
-analyze Enable -parseTree, -ast and -matlab options

Table 41: Compilation options

The command compiles the fft32.m MATLAB file generating the output at the fft32.c.
The target processor is ARM architecture and the parametrized processor model is
described in the ARM_instr.config file. The compiler will not generate amain C function
and the ./myScripts folder includes any MATLAB file may be used during compilation.

8.2 Compilation Options Used in The Experiments

This section discusses the compilation options that have been used by the C compilers
at various experiments in chapters 6 and 8. Tables 42, 43 and 44 present the compila-
tion options used by the Clang/LLVM, GCC and the compiler of Visual studio (named
MSVC) respectively.
The first lines (rows 1-4) in tables 42 and 43 show the options related to all experiments

with Clang/LLVM and GCC for the generation of optimized executable code. The option
of ’x86 target’ category concerns the compilation of C code on x86 target architectures
while the options in ’ARM target’ category have been used for compilation on ARM
architectures (different option values have been used for Raspberry PI 2 and 3). The fno-
vectorize’ and ’-fno-tree-vectorize’ have been used in the experiment of auto-vectorizing
C compilers evaluation in subsection 6.10 in order to disable the auto-vectorization
applied by the C compilers. The ’-Rpass=loop-vectorize’ and ’-fopt-info-vec’ options
have been also used by the Clang/LLVM and GCC in the experiment of subsection 6.10 to
report the successfully auto-vectorized loops by the specific C compilers. Finally, the rest
of the options of the ’Extra experiment options’ category in table 42 are Clang/LLVM
options and have been used in the experiment concerning the Clang/LLVM aggressive
auto-vectorization options in subsection 6.9.

8.2 compilation options used in the experiments 259

Option description
Optimization

options
-O3 optimization level

-ffast-math aggressive floating-point math
optimization

Other
options

-lm linking with math library

-lstdc++ supporting C++

x86 target -march=corei7-avx target architecture

ARM target
{PI2,PI3}

-target {armv7–linux-gnueabihf,
armv8–linux-gnueabihf} target architecture

-mcpu={cortex-a7,
cortex-a53} target processor

-mfpu={neon-vfpv4,
neon-fp-armv8} controlling the FP unit available

-mfloat-abi=hard controlling which registers
to use for floating-point

Extra
experiment
options

-fno-vectorize disable auto-vectorization

-mllvm
-force-vector-width=4/8

force auto-vectorization
with SIMD 4/8

-fslp-vectorize-aggressive enable aggresive
superword-level parallelism

-fno-slp-vectorize disable superword-level
parallelism

-Rpass=loop-vectorize reports the auto-vectorized
loops

Table 42: Compilation options of Clang/LLVM

Table 44 shows the compilation option that has been used by the MSVC compiler for
the generation of executable code on the various architectures. The specification of the
target architecture is configured in Visual Studio and no compilation options have been
used. The ’/arch’ option with AVX (or SSE) value is used for the auto-vectorization of
the C code. The ’No Set’ value of ’/arch’ option disables the auto-vectorization and has
been used in the experiment of auto-vectorizing C compilers evaluation in subsection
6.10. Finally, the ’/Qvec-report:1’ reports the successfully auto-vectorized loops and has
been also used in the examination of MSVC at auto-vectorization in subsection 6.10.

260 appendix

Option description

Optimization
options

-O3 optimization level

-ffast-math aggressive floating-point math
optimization

Other
options

-lm linking with math library

-lstdc++ supporting C++

x86 target -march=corei7-avx target architecture

ARM target
{PI2,PI3}

-march {armv7ve,
armv8-a+crc} target architecture

-mcpu={cortex-a7,
cortex-a53} target processor

-mfpu={neon-vfpv4,
neon-fp-armv8} controlling the FP unit available

-mfloat-abi=hard controlling which registers
to use for floating-point

Extra
experiment
options

-fno-tree-vectorize disable auto-vectorization

-fopt-info-vec reports the auto-vectorized
loops

Table 43: Compilation options of GCC

8.2 compilation options used in the experiments 261

Option description
General
options /sdl- disable the Security Development

Lifecycle checks

Optimization
options

/O2 Maximize speed

/Ob2 enable inline functions
expansion

/Oi enable intrinsic functions
generation

Code
Generation

/GS- disable Security checks

/Gy enable function-level linking

/Qpar enable Parallel code generation

/arch:{AVX,SSE,No Set} enable/disable auto-vectorization

/fp:fast set fast floating point model

Extra
experiment
options

/Qvec-report:1 reports the auto-vectorized
loops

Table 44: Compilation options of MSVC

262 appendix

8.3 XML description examples of the target architectures

The section present the XML specification for the description of the parametrized
processor model for the target architectures. The examples below show only a code
snippet of the XML files.

8.3.1 XML description of Bot Processor

The BoT processor provides a variety of SIMD instructions such as trigonometric
functions and complex number operations which operate on vectors of complex data type
with SIMD width of 4 or 8. Most of the available instructions accept fixed point numbers
with any fraction length while some trigonometric functions require (and produce) fixed
point numbers with specific fraction length.
Listing 8.1 shows a snippet of the parametrized processor model which has been used

for the description of the BoT architecture. Firstly, the common.h which includes the
semantics of BoT processor is declared as additional header C file. Subsequently, various
types are specified (lines 4-7) which are used for the description of the customized in-
struction and other special operations. The XML tag in line 9 defines the native vector
data type of BoT architecture which is used by the compiler’s code generator and XML
tags of lines 11 and 13 specify shift and reciprocal operations which are used in the
code generation of fixed point operations. In the main part of parametrized processor
model vector instructions of addition, multiplication and division are described. The
BoT processor doesn’t provide any instruction for the division of vectors. The opera-
tion is performed multiplying the divider with the reciprocal of the divisor, therefore
VMUL instruction (implements vector multiplication) is specified for the ’./’ operator.
The description of customized instructions in lines 22 and 24 concern the specification
of the cos and abs MATLAB functions. BoT implements that functions for specific
fraction lengths, thus the operand types of the described instructions include specific
fraction lengths (15 and 12). The result type of cos function is fully inherited by the
operand’s type and the res_type attribute can be skipped. However, the result type of
a abs function doesn’t completely related with the type of operand. The absolute value
of a complex value is a non-complex number. Consequently, the result type attribute of
CABS instruction is set with the fxpR type denoting that the result will inherit partly
the type of operand (dimensions, word and fraction length) but the result type is always
set statically to non-complex fixed point type.

8.3 xml description examples of the target architectures 263

� �
1 <!--BoT processor description-->
2 <header_files common="common.h"></header_files>
3 <!–-types–->
4 <type id="fxp" dt="fixp(any,any)"></type>
5 <type id="fxpR" dt="fixp(any,any)" complex="false"></type>
6 <type id="fxp_15" dt="fixp(any,15)" ></type>
7 <type id="fxpC_12" dt="fixp(any,12)" complex="true"></type>
8 <!–-Derived types for code generation–->
9 <derived_type name="vcomplex_t" type="fxp" SIMD_width="4" ></derived_type>

10 <!–-Shift operations for fixed point arithmetic–->
11 <shift leftShift="LSL" rightShift="ASR" type="SIMD" SIMD_width ="true" op_types="fxp"></shift>
12 <!–-Reciprocal intrinsic. Used in fixed point division–->
13 <reciprocal recip="V_RECIP" type="SIMD" SIMD_width ="true" op_types="fxp"></reciprocal>
14 <!–-Customized operations–->
15 <instruction name="ADD" type="SIMD" op="+" pack="p,p" SIMD_width ="true" op_types="fxp,fxp">
16 </instruction>
17 <instruction name="VMUL" type="SIMD" op="*" pack="p,p" SIMD_width ="true" op_types="fxp,fxp">
18 </instruction>
19 <instruction name="VMUL" type="SIMD" op="./" pack="p,p" SIMD_width ="true" op_types="fxp,fxp">
20 </instruction>
21 <!–-Customized operations requiring specific fraction length–->
22 <instruction name="COS" type="SIMD" func="cos" pack="p,p" SIMD_width ="true" op_types="fxp_15">
23 </instruction>
24 <instruction name="CABS" type="SIMD" func="abs" res_type="fxpR" pack="p,p" SIMD_width="true"

op_types="fxpC_12">
25 </instruction>� �

Listing 8.1: Snippet of parametrized processor model for the BoT architecture

8.3.2 XML description of tinyBot Processor

The tinyBoT processor is derived from the BoT architecture including scalar instruc-
tions of complex arithmetic and trigonometric operations. Listing 8.2 shows a snippet
of the parametrized processor model for the tinyBoT processor. Similarly to the BoT
description of listing 8.1, in the parametrized processor model of tinyBoT the common.h
is declared as additional header file and complex and non-complex fixed point types are
defined as well. Then, specification of derived types as well as scalar shift and reciprocal
operations are following. Finally, multiplication and conjugation (transpose operator)
scalar instructions are described. The i_CMUL instruction performs multiplication of
complex numbers. Thus, in the description of the instruction is required at least one
operand to be complex. The instruction could be used for multiplication of non-complex
numbers as well. However, in that case the use of the instruction can be avoided and
a simple multiplication statement of two integers (and shifting operations) may be pro-
duced.

264 appendix

� �
1 <!--TinyBot processor description-->
2 <header_files common="common.h"></header_files>
3 <!–-types–->
4 <type id="fxp" dt="fixp"></type>
5 <type id="fxpC" dt="fixp" complex="true"></type>
6 <!–-Derived types for code generation–->
7 <derived_type name="ntype_t" type="fxpC"></derived_type>
8 <!–-Shift operations for fixed point arithmetic–->
9 <shift leftShift="i_CLSL" rightShift="i_CASR" type="SCALAR" op_types="fxpC"></shift>

10 <!–-Reciprocal intrinsic. Used in fixed point division–->
11 <reciprocal recip="RECIP" type="SCALAR" op_types="fxpC"></reciprocal>
12 <!–-Customized operations–->
13 <instruction name="i_CMUL" type="SCALAR" op="*" op_types="(fxp|fxpC),fxpC"></instruction>
14 <instruction name="i_CMUL" type="SCALAR" op="*" op_types="fxpC,(fxp|fxpC)"></instruction>
15 <instruction name="i_CONJ" type="SCALAR" op="’" op_types="fxpC"></instruction>� �

Listing 8.2: Snippet of parametrized processor model for the tinyBoT architecture

8.3.3 XML description of ARM and x86 Architectures

ARM and x86 architectures support SIMD processing through the use of SSE (or AVX)
and NEON SIMD extensions. The extensions provide a conventional SIMD instruction
set with no support of complex arithmetic operations or trigonometric functionalities.
Thus, it can’t always be a direct MATLAB to C translation exploiting the available
architectures capabilities. To surpass that, several MATLAB functions and MATLAB
operations of complex arithmetic has been developed in C using the SIMD extensions of
ARM and x86 architectures. The implemented functions are inserted in the parametrized
processor model and they are handled by the compiler as hardware intrinsics. Further-
more, wrapping functions have been implemented in C (and have been defined in the
processor model) including non-complex SIMD operations and scalar operations of com-
plex arithmetic. Although, the SIMD instructions could be directly described in the
parametrized processor model and the scalar operations of complex numbers could be
generated without the generation of any customized instruction, the wrapping in func-
tions have been used for two reasons: a) the generated code can be applied both on
ARM and x86 architecture developing different implementations of wrapping functions,
b) instruction selection mechanism is extensively evaluated and the applicability of the
tool is widely demonstrated.
Listing 8.3 presents a snippet of the parametrized processor model which have been

used for the code generation on ARM and x86 architectures. The two architectures share
the same parametrized processor model. Their vector semantics and SIMD intrinsics
have been encapsulated in the developed C code which is included in the common.h
and types.h header files (different version for each architecture). Thus, the generated

8.3 xml description examples of the target architectures 265

code can be executed at any ARM or x86 processor including in the compilation the
appropriate header files.
At the snippet of parametrized processor model for the description of ARM and x86

architectures shown at listing 8.3, the complex floating point and complex fixed point
types are specified. Then, derived C data types are defined regarding unpacked variables
and packed variables of different SIMD widths. Finally, the XML tags of lines 14-24
describe instructions of the MATLAB add operation with complex numbers concerning
scalar and SIMD processing of floating and fixed point types.� �
1 <!--Description of general purpose architecture-->
2 <header_files common="common.h" types="types.h"></header_files>
3 <!–-types–->
4 <type id="fc_t" dt="double" complex="true"></type>
5 <type id="ic_t" dt="fixp" complex="true"></type>
6 <!–-Derived types for code generation–->
7 <derived_type name="cfloat_t" type="fc_t" ></derived_type>
8 <derived_type name="cfloat32x4_t" type="fc_t" SIMD_width="4"></derived_type>
9 <derived_type name="cfloat32x8_t" type="fc_t" SIMD_width="8"></derived_type>

10 <derived_type name="cfixp_t" type="ic_t" ></derived_type>
11 <derived_type name="cfixp32x4_t" type="ic_t" SIMD_width="4"></derived_type>
12 <derived_type name="cfixp32x8_t" type="ic_t" SIMD_width="8"></derived_type>
13 <!–-Customized floating point operations–->
14 <instruction name="cadd_f" type="SCALAR" op="+" op_types="fc_t,fc_t"></instruction>
15 <instruction name="v4_add_f" type="SIMD" op="+" pack="p,p" SIMD_width ="4" op_types="fc_t,fc_t">
16 </instruction>
17 <instruction name="vadd_f" type="SIMD" op="+" pack="p,p" SIMD_width ="8" op_types="fc_t,fc_t">
18 </instruction>
19 <!–-Customized fixed point operations–->
20 <instruction name="cadd_i" type="SCALAR" op="+" op_types="ic_t,ic_t"></instruction>
21 <instruction name="v4_add_i" type="SIMD" op="+" pack="p,p" SIMD_width ="4" op_types="ic_t,ic_t">
22 </instruction>
23 <instruction name="vadd_i" type="SIMD" op="+" pack="p,p" SIMD_width ="8" op_types="ic_t,ic_t">
24 </instruction>� �

Listing 8.3: Snippet of parametrized processor model for the ARM and x86 architectures

266 appendix

8.4 Comprehensive Results Compiling with Aggressive Clang
Optimization Options

This section presents the performance results of MathWorks generated code and com-
piler’s scalarized generated code using aggressive optimization options of Clang. The op-
timizations concern the auto-vectorization and superword-level parallelism optimization
on scalarized code with fixed point and floating point data types. For the experiments,
the Raspberry PI 2 board and the desktop with i7-3770 processor has been deployed.
The results complement those presented at section 6.9.

Fig. 134,
Fig. 135

Fig. 136,
Fig. 137

Fig. 138,
Fig. 139

Fig. 140,
Fig. 141

Fig. 142,
Fig. 143

Fig. 144,
Fig. 145

Fig. 146,
Fig. 147

Fig. 148,
Fig. 149

fft32 15511.10 206.06 158.24 180.96 97138.83 2856.53 4097.93 2093.67
fft64-v1 4509.88 1011.16 1311.64 893.18 45648.50 14536.60 15641.83 11083.93
fft64-v2 14964.04 1029.02 643.36 1095.54 214133.03 13428.73 11191.77 11673.87
fft128 28139.46 2425.48 1995.08 2350.02 434562.00 33774.37 30419.47 25206.10
cfo-32 1073.54 766.08 1697.68 698.78 9264.93 8708.50 38467.57 18837.07
cfo-64 7782.40 1606.52 3686.50 6784.72 66805.30 17760.83 77349.33 38414.20

cfo-128 13726.14 2811.22 6604.64 12416.92 131323.13 36197.80 152719.80 82792.90
cordic-64 69999.22 10658.70 22038.66 8281.10 1207044.07 338458.00 719763.13 274729.33
fir-32x64 12952.80 5610.12 10403.78 7996.44 178774.67 123754.67 468978.93 207613.43

fir-32x128 23012.98 11356.58 22995.04 16334.70 402998.60 307584.17 1035533.17 421980.23
fir-32x256 41247.96 21871.46 38984.64 28365.70 810921.97 647600.73 2176108.23 964808.63
mean-32 67.88 37.95 36.19 25.46 698.13 622.70 563.50 592.43
mean-64 127.72 67.98 62.34 87.78 1364.57 1282.13 1041.13 1168.00
mean-128 381.40 130.35 256.68 169.96 2659.83 2475.37 2006.77 2281.20

mean-1024 2492.76 2436.86 1558.20 1795.46 21071.00 19405.57 16208.10 17735.03
qr-dec-32 181549.56 15240.52 13010.62 31638.96 3192630.97 272726.93 395732.97 188503.20
qr-dec-64 56056.00 28860.94 27635.04 61933.68 1433642.37 533290.40 792714.20 372267.57
qr-dec-128 102229.48 53411.56 47562.36 111648.84 2830109.40 1053708.07 1601364.40 744831.07

Table 45: Reference values (exec. time in µs) used for normalization of aggressive Clang
options examination

8.4.1 Results Compiling with Aggressive Clang Optimization
Options on Raspberry PI 2

8.4.2 Results Compiling with Aggressive Clang Optimization
Options on i7-3770

8.4 comprehensive results of aggressive clang optimization options 267

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks force SIMD=4 force SIMD=8 slp aggr + SIMD=8

Figure 134: Normalized execution times of MathWorks fixed point generated code on PI
2, compiled with aggressive Clang auto-vectorization options

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks slp no slp aggressive

Figure 135: Normalized execution times of MathWorks fixed point generated code on PI
2, compiled with aggressive superword-level parallelism Clang options

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks force SIMD=4 force SIMD=8 slp aggr + SIMD=8

Figure 136: Normalized execution times of compiler’s scalarized fixed point generated
code on PI 2, compiled with aggressive Clang auto-vectorization options

268 appendix

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks slp no slp aggressive

Figure 137: Normalized execution times of compiler’s scalarized fixed point generated
code on PI 2, compiled with aggressive superword-level parallelism Clang
options

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks force SIMD=4 force SIMD=8 slp aggr + SIMD=8

Figure 138: Normalized execution times of MathWorks floating point generated code on
PI 2, compiled with aggressive Clang auto-vectorization options

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks slp no slp aggressive

Figure 139: Normalized execution times of MathWorks floating point generated code on
PI 2, compiled with aggressive superword-level parallelism Clang options

8.4 comprehensive results of aggressive clang optimization options 269

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks force SIMD=4 force SIMD=8 slp aggr + SIMD=8

Figure 140: Normalized execution times of compiler’s scalarized floating point generated
code on PI 2, compiled with aggressive Clang auto-vectorization options

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks slp no slp aggressive

Figure 141: Normalized execution times of compiler’s scalarized floating point generated
code on PI 2, compiled with aggressive superword-level parallelism Clang
options

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks force SIMD=4 force SIMD=8 slp aggr + SIMD=8

Figure 142: Normalized execution times of MathWorks fixed point generated code on
i7-3770, compiled with aggressive Clang auto-vectorization options

270 appendix

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks slp no slp aggressive

Figure 143: Normalized execution times of MathWorks fixed point generated code on
i7-3770, compiled with aggressive superword-level parallelism Clang options

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks force SIMD=4 force SIMD=8 slp aggr + SIMD=8

Figure 144: Normalized execution times of compiler’s scalarized fixed point generated
code on i7-3770, compiled with aggressive Clang auto-vectorization options

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks slp no slp aggressive

Figure 145: Normalized execution times of compiler’s scalarized fixed point generated
code on i7-3770, compiled with aggressive superword-level parallelism Clang
options

8.4 comprehensive results of aggressive clang optimization options 271

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks force SIMD=4 force SIMD=8 slp aggr + SIMD=8

Figure 146: Normalized execution times of MathWorks floating point generated code on
i7-3770, compiled with aggressive Clang auto-vectorization options

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks slp no slp aggressive

Figure 147: Normalized execution times of MathWorks floating point generated code on
i7-3770, compiled with aggressive superword-level parallelism Clang options

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC-scalarized force SIMD=4 force SIMD=8 slp aggr + SIMD=8

Figure 148: Normalized execution times of compiler’s scalarized floating point generated
code on i7-3770, compiled with aggressive Clang auto-vectorization options

272 appendix

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC-scalarized slp no slp aggressive

Figure 149: Normalized execution times of compiler’s scalarized floating point generated
code on i7-3770, compiled with aggressive superword-level parallelism Clang
options

8.5 performance of vectorized code against compiler’s scalarized code 273

8.5 Performance of Vectorized Generated Code Against Com-
piler’s Scalarized Generated Code

This section presents the performance of vectorized generated code compared to that
of compiler’s scalarized generated code. The various results of the section concern the
different data types, C compilers and targeted architectures that have been used in the
experiments. The Tables following include the reference values used for the normalization
of the results.

8.5.1 Performance of Vectorized Code Against Compiler’s
Scalarized Code on Raspberry PI 2

Fig. 150,
Fig. 151

Fig. 152,
Fig. 153

Fig. 154,
Fig. 155

Fig. 156,
Fig. 157

Fig. 158,
Fig. 159

Fig. 160,
Fig. 161

fft32 3.34 2.57 2.31 2.24 2.50 2.70
fft64-v1 15.40 12.66 10.62 9.55 14.50 15.60
fft64-v2 16.94 11.33 12.78 8.10 12.20 13.30
fft128 30.09 26.07 26.22 22.72 32.13 31.77
cfo-32 7.95 18.79 7.41 14.64 6.10 12.23
cfo-64 15.76 38.41 15.00 29.34 12.03 24.23

cfo-128 35.18 80.78 31.90 62.09 24.77 48.17
cordic-64 579.10 511.13 274.82 213.83 486.70 565.30
fir-32x64 170.32 207.25 185.54 168.65 406.73 278.77

fir-32x128 373.03 430.18 409.12 367.39 889.23 619.00
fir-32x256 785.11 964.81 863.30 768.87 1855.93 1293.43
mean-32 1.28 0.94 2.41 1.09 1.83 1.53
mean-64 2.36 1.82 4.62 2.07 3.30 2.90
mean-128 4.53 3.51 9.04 4.06 6.37 6.17

mean-1024 35.61 27.23 70.75 32.02 48.63 46.40
qr-dec-32 192.52 161.09 229.31 164.60 243.20 168.17
qr-dec-64 384.00 325.87 454.52 325.12 498.33 344.10
qr-dec-128 764.73 653.59 912.01 650.94 1006.37 689.30

Table 46: Reference values (exec. time in µs) used for normalization of results on PI 2

274 appendix

0.5

1

2

4

8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC-scalar MC-s4 MC-s8 speed-up of s4 speed-up of s8

Figure 150: Performance of vectorized code compared to scalarized code using packed
fixed point data types, compiled with Clang on Raspberry PI 2

0.25

0.5

1

2

4

8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC-scalar MC-s4-unp MC-s8-unp speed-up of s4-unp speed-up of s8-unp

Figure 151: Performance of vectorized code compared to scalarized code using unpacked
fixed point data types, compiled with Clang on Raspberry PI 2

0.5

1

2

4

8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC-scalar MC-s4 speed-up of s4

Figure 152: Performance of vectorized code compared to scalarized code using packed
floating point data types, compiled with Clang on Raspberry PI 2

8.5 performance of vectorized code against compiler’s scalarized code 275

0.5

1

2

4

8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC-scalar MC-s4-unp speed-up of s4-unp

Figure 153: Performance of vectorized code compared to scalarized code using unpacked
floating point data types, compiled with Clang on Raspberry PI 2

0.5

1

2

4

8

16

32

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC-scalar MC-s4 MC-s8 speed-up of s4 speed-up of s8

Figure 154: Performance of vectorized code compared to scalarized code using packed
fixed point data types, compiled with GCC on Raspberry PI 2

0.125

0.25

0.5

1

2

4

8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC-scalar MC-s4-unp MC-s8-unp speed-up of s4-unp speed-up of s8-unp

Figure 155: Performance of vectorized code compared to scalarized code using unpacked
fixed point data types, compiled with GCC on Raspberry PI 2

276 appendix

0.5

1

2

4

8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC-scalar MC-s4 speed-up of s4

Figure 156: Performance of vectorized code compared to scalarized code using packed
floating point data types, compiled with GCC on Raspberry PI 2

0.5

1

2

4

8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC-scalar MC-s4-unp speed-up of s4-unp

Figure 157: Performance of vectorized code compared to scalarized code using unpacked
floating point data types, compiled with GCC on Raspberry PI 2

0.25

0.5

1

2

4

8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC-scalar MC-s4 MC-s8 speed-up of s4 speed-up of s8

Figure 158: Performance of vectorized code compared to scalarized code using packed
fixed point data types, compiled with MSVC on Raspberry PI 2

8.5 performance of vectorized code against compiler’s scalarized code 277

0.062

0.125

0.25

0.5

1

2

4

8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC-scalar MC-s4-unp MC-s8-unp speed-up of s4-unp speed-up of s8-unp

Figure 159: Performance of vectorized code compared to scalarized code using unpacked
fixed point data types, compiled with MSVC on Raspberry PI 2

0.25

0.5

1

2

4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC-scalar MC-s4 speed-up of s4

Figure 160: Performance of vectorized code compared to scalarized code using packed
floating point data types, compiled with MSVC on Raspberry PI 2

0.125

0.25

0.5

1

2

4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC-scalar MC-s4-unp speed-up of s4-unp

Figure 161: Performance of vectorized code compared to scalarized code using unpacked
floating point data types, compiled with MSVC on Raspberry PI 2

278 appendix

8.5.2 Performance of Vectorized Code Against Compiler’s
Scalarized Code on Raspberry PI 3

Fig. 162,
Fig. 163

Fig. 164,
Fig. 165

Fig. 166,
Fig. 167

Fig. 168,
Fig. 169

Fig. 170,
Fig. 171

Fig. 172,
Fig. 173

fft32 1.25 1.11 0.86 1.06 1.40 1.50
fft64-v1 5.03 4.69 3.95 3.61 7.47 8.10
fft64-v2 4.98 4.32 4.18 2.81 6.00 6.07
fft128 11.13 10.57 10.08 8.61 16.20 16.03
cfo-32 3.45 7.99 3.21 6.63 3.80 7.43
cfo-64 6.95 15.95 6.44 13.29 7.47 14.57

cfo-128 14.83 34.99 14.02 28.16 14.63 29.47
cordic-64 207.38 184.80 118.74 98.72 266.43 384.00
fir-32x64 99.55 84.97 67.22 74.62 245.53 208.50
fir-32x128 217.63 203.93 150.16 161.81 536.40 457.90
fir-32x256 453.46 388.39 307.68 338.12 1127.87 951.63
mean-32 0.62 0.49 0.90 0.40 1.10 0.90
mean-64 1.14 0.94 1.71 0.75 2.07 1.70

mean-128 2.20 1.83 3.40 1.45 3.90 3.50
mean-1024 16.85 14.80 26.66 12.88 29.13 26.97

qr-decomp-32 86.54 71.89 82.02 71.20 136.87 86.93
qr-decomp-64 171.83 148.39 159.70 141.07 274.93 185.63

qr-decomp-128 344.19 296.95 321.35 284.27 530.70 374.77

Table 47: Reference values (exec. time in µs) used for normalization of results on PI 3

8.5 performance of vectorized code against compiler’s scalarized code 279

0.5

1

2

4

8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC-scalar MC-s4 MC-s8 speed-up of s4 speed-up of s8

Figure 162: Performance of vectorized code compared to scalarized code using packed
fixed point data types, compiled with Clang on Raspberry PI 3

0.25

0.5

1

2

4

8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC-scalar MC-s4-unp MC-s8-unp speed-up of s4-unp speed-up of s8-unp

Figure 163: Performance of vectorized code compared to scalarized code using unpacked
fixed point data types, compiled with Clang on Raspberry PI 3

0.5

1

2

4

8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC-scalar MC-s4 speed-up of s4

Figure 164: Performance of vectorized code compared to scalarized code using packed
floating point data types, compiled with Clang on Raspberry PI 3

280 appendix

0.5

1

2

4

8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC-scalar MC-s4-unp speed-up of s4-unp

Figure 165: Performance of vectorized code compared to scalarized code using unpacked
floating point data types, compiled with Clang on Raspberry PI 3

0.5

1

2

4

8

16

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC-scalar MC-s4 MC-s8 speed-up of s4 speed-up of s8

Figure 166: Performance of vectorized code compared to scalarized code using packed
fixed point data types, compiled with GCC on Raspberry PI 3

0.125

0.25

0.5

1

2

4

8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC-scalar MC-s4-unp MC-s8-unp speed-up of s4-unp speed-up of s8-unp

Figure 167: Performance of vectorized code compared to scalarized code using unpacked
fixed point data types, compiled with GCC on Raspberry PI 3

8.5 performance of vectorized code against compiler’s scalarized code 281

0.5

1

2

4

8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC-scalar MC-s4 speed-up of s4

Figure 168: Performance of vectorized code compared to scalarized code using packed
floating point data types, compiled with GCC on Raspberry PI 3

0.5

1

2

4

8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC-scalar MC-s4-unp speed-up of s4-unp

Figure 169: Performance of vectorized code compared to scalarized code using unpacked
floating point data types, compiled with GCC on Raspberry PI 3

0.5

1

2

4

8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC-scalar MC-s4 MC-s8 speed-up of s4 speed-up of s8

Figure 170: Performance of vectorized code compared to scalarized code using packed
fixed point data types, compiled with MSVC on Raspberry PI 3

282 appendix

0.062

0.125

0.25

0.5

1

2

4

8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC-scalar MC-s4-unp MC-s8-unp speed-up of s4-unp speed-up of s8-unp

Figure 171: Performance of vectorized code compared to scalarized code using unpacked
fixed point data types, compiled with MSVC on Raspberry PI 3

0.5

1

2

4

8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC-scalar MC-s4 speed-up of s4

Figure 172: Performance of vectorized code compared to scalarized code using packed
floating point data types, compiled with MSVC on Raspberry PI 3

0.25

0.5

1

2

4

8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC-scalar MC-s4-unp speed-up of s4-unp

Figure 173: Performance of vectorized code compared to scalarized code using unpacked
floating point data types, compiled with MSVC on Raspberry PI 3

8.5 performance of vectorized code against compiler’s scalarized code 283

8.5.3 Performance of Vectorized Code Against Compiler’s
Scalarized Code on x86 Desktop with i7-3820 Processor

Fig. 174,
Fig. 175

Fig. 176,
Fig. 177

Fig. 178,
Fig. 179

Fig. 180,
Fig. 181

Fig. 182,
Fig. 183

Fig. 184,
Fig. 185

fft32 0.22 0.19 0.83 0.92 0.40 0.40
fft64-v1 1.78 1.19 2.39 2.06 1.32 1.60
fft64-v2 2.05 2.12 1.33 2.56 2.10 2.44
fft128 3.28 2.93 4.98 5.46 4.54 4.62
cfo-32 0.51 0.87 0.52 1.04 0.84 1.28
cfo-64 2.41 1.94 1.88 1.84 1.30 1.40

cfo-128 3.28 2.91 2.76 3.23 2.52 3.68
cordic-64 48.64 44.28 12.13 44.17 31.76 44.76
fir-32x64 15.74 15.66 8.93 20.97 22.96 15.64

fir-32x128 32.32 25.63 17.64 35.40 48.94 34.30
fir-32x256 59.88 49.34 28.01 70.25 102.38 71.84
mean-32 0.62 0.67 1.28 1.02 0.30 0.30
mean-64 0.86 0.86 2.26 1.49 0.50 0.50
mean-128 2.13 2.20 3.86 3.65 1.20 1.10

mean-1024 12.15 10.95 19.95 20.11 9.96 9.32
qr-dec-32 38.14 35.65 36.76 40.74 42.04 37.96
qr-dec-64 61.10 59.82 62.09 71.36 84.26 62.10
qr-dec-128 112.70 115.95 117.99 134.57 168.40 123.56

Table 48: Reference values (exec. time in µs) used for normalization of results on desktop
with i7-3820 processor

284 appendix

0.125

0.25

0.5

1

2

4

8

16

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC-scalar MC-s4 MC-s8 speed-up of s4 speed-up of s8

Figure 174: Performance of vectorized code compared to scalarized code using packed
fixed point data types, compiled with Clang on desktop with i7-3820
processor

0.125

0.25

0.5

1

2

4

8

16

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC-scalar MC-s4-unp MC-s8-unp speed-up of s4-unp speed-up of s8-unp

Figure 175: Performance of vectorized code compared to scalarized code using un-
packed fixed point data types, compiled with Clang on desktop with i7-3820
processor

0.062

0.125

0.25

0.5

1

2

4

8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC-scalar MC-s4 MC-s8 speed-up of s4 speed-up of s8

Figure 176: Performance of vectorized code compared to scalarized code using packed
floating point data types, compiled with Clang on desktop with i7-3820
processor

8.5 performance of vectorized code against compiler’s scalarized code 285

0.031

0.062

0.125

0.25

0.5

1

2

4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC-scalar MC-s4-unp MC-s8-unp speed-up of s4-unp speed-up of s8-unp

Figure 177: Performance of vectorized code compared to scalarized code using unpacked
floating point data types, compiled with Clang on on desktop with i7-3820
processor

0.25

0.5

1

2

4

8

16

32

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC-scalar MC-s4 MC-s8 speed-up of s4 speed-up of s8

Figure 178: Performance of vectorized code compared to scalarized code using packed
fixed point data types, compiled with GCC on on desktop with i7-3820
processor

0.031

0.062

0.125

0.25

0.5

1

2

4

8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC-scalar MC-s4-unp MC-s8-unp speed-up of s4-unp speed-up of s8-unp

Figure 179: Performance of vectorized code compared to scalarized code using unpacked
fixed point data types, compiled with GCC on on desktop with i7-3820
processor

286 appendix

0.125

0.25

0.5

1

2

4

8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC-scalar MC-s4 MC-s8 speed-up of s4 speed-up of s8

Figure 180: Performance of vectorized code compared to scalarized code using packed
floating point data types, compiled with GCC on on desktop with i7-3820
processor

0.031

0.062

0.125

0.25

0.5

1

2

4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC-scalar MC-s4-unp MC-s8-unp speed-up of s4-unp speed-up of s8-unp

Figure 181: Performance of vectorized code compared to scalarized code using unpacked
floating point data types, compiled with GCC on on desktop with i7-3820
processor

0.5

1

2

4

8

16

32

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC-scalar MC-s4 MC-s8 speed-up of s4 speed-up of s8

Figure 182: Performance of vectorized code compared to scalarized code using packed
fixed point data types, compiled with MSVC on on desktop with i7-3820
processor

8.5 performance of vectorized code against compiler’s scalarized code 287

0.25

0.5

1

2

4

8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC-scalar MC-s4-unp MC-s8-unp speed-up of s4-unp speed-up of s8-unp

Figure 183: Performance of vectorized code compared to scalarized code using unpacked
fixed point data types, compiled with MSVC on on desktop with i7-3820
processor

0.062

0.125

0.25

0.5

1

2

4

8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC-scalar MC-s4 MC-s8 speed-up of s4 speed-up of s8

Figure 184: Performance of vectorized code compared to scalarized code using packed
floating point data types, compiled with MSVC on on desktop with i7-3820
processor

0.031

0.062

0.125

0.25

0.5

1

2

4

8

16

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC-scalar MC-s4-unp MC-s8-unp speed-up of s4-unp speed-up of s8-unp

Figure 185: Performance of vectorized code compared to scalarized code using unpacked
floating point data types, compiled with MSVC on on desktop with i7-3820
processor

288 appendix

8.5.4 Performance of Vectorized Code Against Compiler’s
Scalarized Code on x86 Desktop with i7-3770 Processor

Fig. 186,
Fig. 187

Fig. 188,
Fig. 189

Fig. 190,
Fig. 191

Fig. 192,
Fig. 193

Fig. 194,
Fig. 195

Fig. 196,
Fig. 197

fft32 0.21 0.15 0.79 0.76 0.30 0.30
fft64-v1 1.84 1.67 1.26 2.08 1.00 1.30
fft64-v2 1.79 1.84 0.87 1.61 2.00 1.30
fft128 3.29 3.22 3.70 3.94 3.36 3.60
cfo-32 0.58 0.57 0.46 0.50 0.40 0.60
cfo-64 1.61 1.57 1.30 1.58 0.90 1.12

cfo-128 2.36 2.71 1.78 2.39 1.90 2.30
cordic-64 55.86 40.91 10.31 39.75 24.52 37.72
fir-32x64 15.74 14.76 7.18 14.91 19.66 15.22

fir-32x128 29.64 26.43 14.17 35.18 42.20 33.34
fir-32x256 52.55 47.27 26.62 61.01 88.04 69.50
mean-32 0.42 0.45 0.90 0.77 0.20 0.20
mean-64 0.60 0.59 1.52 1.27 0.40 0.40
mean-128 1.62 1.73 3.12 2.99 0.90 0.90

mean-1024 9.40 9.61 18.19 15.54 7.74 7.72
qr-dec-32 31.75 30.86 32.40 35.69 35.00 26.00
qr-dec-64 53.96 51.87 54.81 60.07 113.46 52.50
qr-dec-128 98.85 102.03 102.15 116.66 140.04 105.04

Table 49: Reference values (exec. time in µs) used for normalization of results on desktop
with i7-3770 processor

8.5 performance of vectorized code against compiler’s scalarized code 289

0.125

0.25

0.5

1

2

4

8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC-scalar MC-s4 MC-s8 speed-up of s4 speed-up of s8

Figure 186: Performance of vectorized code compared to scalarized code using packed
fixed point data types, compiled with Clang on desktop with i7-3770
processor

0.062

0.125

0.25

0.5

1

2

4

8

16

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC-scalar MC-s4-unp MC-s8-unp speed-up of s4-unp speed-up of s8-unp

Figure 187: Performance of vectorized code compared to scalarized code using un-
packed fixed point data types, compiled with Clang on desktop with i7-3770
processor

0.062

0.125

0.25

0.5

1

2

4

8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC-scalar MC-s4 MC-s8 speed-up of s4 speed-up of s8

Figure 188: Performance of vectorized code compared to scalarized code using packed
floating point data types, compiled with Clang on desktop with i7-3770
processor

290 appendix

0.031

0.062

0.125

0.25

0.5

1

2

4

8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC-scalar MC-s4-unp MC-s8-unp speed-up of s4-unp speed-up of s8-unp

Figure 189: Performance of vectorized code compared to scalarized code using unpacked
floating point data types, compiled with Clang on on desktop with i7-3770
processor

0.25

0.5

1

2

4

8

16

32

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC-scalar MC-s4 MC-s8 speed-up of s4 speed-up of s8

Figure 190: Performance of vectorized code compared to scalarized code using packed
fixed point data types, compiled with GCC on on desktop with i7-3770
processor

0.015

0.031

0.062

0.125

0.25

0.5

1

2

4

8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC-scalar MC-s4-unp MC-s8-unp speed-up of s4-unp speed-up of s8-unp

Figure 191: Performance of vectorized code compared to scalarized code using unpacked
fixed point data types, compiled with GCC on on desktop with i7-3770
processor

8.5 performance of vectorized code against compiler’s scalarized code 291

0.125

0.25

0.5

1

2

4

8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC-scalar MC-s4 MC-s8 speed-up of s4 speed-up of s8

Figure 192: Performance of vectorized code compared to scalarized code using packed
floating point data types, compiled with GCC on on desktop with i7-3770
processor

0.031

0.062

0.125

0.25

0.5

1

2

4

8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC-scalar MC-s4-unp MC-s8-unp speed-up of s4-unp speed-up of s8-unp

Figure 193: Performance of vectorized code compared to scalarized code using unpacked
floating point data types, compiled with GCC on on desktop with i7-3770
processor

0.062

0.125

0.25

0.5

1

2

4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC-scalar MC-s4 MC-s8 speed-up of s4 speed-up of s8

Figure 194: Performance of vectorized code compared to scalarized code using packed
fixed point data types, compiled with MSVC on on desktop with i7-3770
processor

292 appendix

0.031

0.062

0.125

0.25

0.5

1

2

4

8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC-scalar MC-s4-unp MC-s8-unp speed-up of s4-unp speed-up of s8-unp

Figure 195: Performance of vectorized code compared to scalarized code using unpacked
fixed point data types, compiled with MSVC on on desktop with i7-3770
processor

0.5

1

2

4

8

16

32

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC-scalar MC-s4 MC-s8 speed-up of s4 speed-up of s8

Figure 196: Performance of vectorized code compared to scalarized code using packed
floating point data types, compiled with MSVC on on desktop with i7-3770
processor

0.25

0.5

1

2

4

8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC-scalar MC-s4-unp MC-s8-unp speed-up of s4-unp speed-up of s8-unp

Figure 197: Performance of vectorized code compared to scalarized code using unpacked
floating point data types, compiled with MSVC on on desktop with i7-3770
processor

8.6 performance of mathworks and compiler’s scalarized code 293

8.6 Performance of MathWorks Generated Code, Compiler’s
Scalarized Generated Code and Non-vectorized Generated
Code

This section present the performance results of MathWorks generated code against
compiler’s scalarized generated (without intrinsics) code. The performance results of
auto-vectorized scalarized code compared to that disabling auto-vectorization are pre-
sented as well. The various experimental results concern the different data types, C com-
pilers and targeted architectures. The results complement those presented at section (6.8)
comparing the performance of MathWorks generated code with that of compiler’s scalar-
ized generated code and section (6.10) regarding the evaluation of auto-vectorization.

8.6.1 Performance of MathWorks Generated Code, Compiler’s
Scalarized Generated Code and Non-vectorized
Generated Code on Raspberry PI 2

0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks Mathworks-no-vec speed-up MW comp. to MW-no-vec

Figure 198: Performance of MathWorks fixed point generated code compared to Math-
Works non-vectorized code compiling with Clang on Raspberry PI 2

294 appendix

Fig. 198,
Fig. 199,
Fig. 200

Fig. 201,
Fig. 202,
Fig. 203

Fig. 204,
Fig. 205,
Fig. 206

Fig. 207,
Fig. 208,
Fig. 209

Fig. 210,
Fig. 211,
Fig. 212

Fig. 213,
Fig. 214,
Fig. 215

fft32 94.92 4.02 87.75 4.61 48.07 2.90
fft64-v1 31.48 15.25 27.06 15.84 52.33 10.23
fft64-v2 158.72 11.11 141.34 10.63 100.20 8.10
fft128 345.61 30.42 311.50 33.43 226.77 22.07
cfo-32 9.07 37.69 10.31 37.91 22.30 18.07
cfo-64 63.95 74.88 64.83 75.86 42.67 34.13

cfo-128 128.30 148.68 132.69 153.63 83.03 66.83
cordic-64 1182.32 719.76 2081.48 658.68 4106.57 632.87
fir-32x64 178.77 468.58 484.10 404.60 1695.80 396.20

fir-32x128 401.27 1035.53 1062.35 893.02 3694.17 863.70
fir-32x256 807.75 2176.11 2231.41 1879.36 7743.83 1806.10
mean-32 0.70 0.57 0.81 0.65 2.10 0.46
mean-64 1.36 1.13 1.37 1.28 3.40 0.97
mean-128 2.66 2.19 2.44 2.46 6.10 1.83

mean-1024 21.05 17.20 17.48 19.22 46.60 9.70
qr-dec-32 3148.17 353.98 2690.74 363.93 1388.73 167.27
qr-dec-64 812.29 708.34 832.95 734.44 730.57 343.57
qr-dec-128 1644.79 1459.01 1666.91 1490.86 1445.83 704.80

Table 50: Reference values (exec. time in µs) used for normalization of results on Rasp-
berry PI 2

0.98

0.985

0.99

0.995

1

1.005

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC-scalar MC-scalar-no-vec speed-up MC comp. to MC-no-vec

Figure 199: Performance of compiler’s scalarized fixed point code compared to compiler’s
non-vectorized code compiling with Clang on Raspberry PI 2

8.6 performance of mathworks and compiler’s scalarized code 295

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks MC-scalar speed-up MW comp. to MC

Figure 200: Performance of compiler’s scalarized fixed point code compared to Math-
Works fixed point generated code compiling with Clang on Raspberry PI
2

0.96

0.97

0.98

0.99

1

1.01

1.02

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Mathworks Mathworks-no-vec speed-up MW comp. to MW-no-vec

Figure 201: Performance of MathWorks floating point generated code compared to Math-
Works non-vectorized code compiling with Clang on Raspberry PI 2

0.95

0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC-scalar MC-scalar-no-vec speed-up MC comp. to MC-no-vec

Figure 202: Performance of compiler’s scalarized floating point code compared to com-
piler’s non-vectorized code compiling with Clang on Raspberry PI 2

296 appendix

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks MC-scalar speed-up MW comp. to MC

Figure 203: Performance of compiler’s scalarized floating point code compared to Math-
Works floating point generated code compiling with Clang on Raspberry PI
2

0

0.2

0.4

0.6

0.8

1

1.2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks Mathworks-no-vec speed-up MW comp. to MW-no-vec

Figure 204: Performance of MathWorks fixed point generated code compared to Math-
Works non-vectorized code compiling with GCC on Raspberry PI 2

0

0.5

1

1.5

2

2.5

3

3.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC-scalar MC-scalar-no-vec speed-up MC comp. to MC-no-vec

Figure 205: Performance of compiler’s scalarized fixed point code compared to compiler’s
non-vectorized code compiling with GCC on Raspberry PI 2

8.6 performance of mathworks and compiler’s scalarized code 297

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks MC-scalar speed-up MW comp. to MC

Figure 206: Performance of compiler’s scalarized fixed point code compared to Math-
Works fixed point generated code compiling with GCC on Raspberry PI
2

1

2

4

8

16

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks MC-s4 speed-up of s4

Figure 207: Performance of MathWorks floating point generated code compared to Math-
Works non-vectorized code compiling with GCC on Raspberry PI 2

0.25

0.5

1

2

4

8

16

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks MC-s4-unp speed-up of s4-unp

Figure 208: Performance of compiler’s scalarized floating point code compared to com-
piler’s non-vectorized code compiling with GCC on Raspberry PI 2

298 appendix

0.5

1

2

4

8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC-s4 MC-s4-unp speed-up s4 comp. s4-unp

Figure 209: Performance of compiler’s scalarized floating point code compared to Math-
Works floating point generated code compiling with GCC on Raspberry PI
2

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Mathworks generated code vs Mathworks non-vectorized code

Mathworks Mathworks-no-vec speed-up MW comp. to MW-no-vec

Figure 210: Performance of MathWorks fixed point generated code compared to Math-
Works non-vectorized code compiling with MSVC on Raspberry PI 2

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC-scalar MC-scalar-no-vec speed-up MC comp. to MC-no-vec

Figure 211: Performance of compiler’s scalarized fixed point code compared to compiler’s
non-vectorized code compiling with MSVC on Raspberry PI 2

8.6 performance of mathworks and compiler’s scalarized code 299

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks MC-scalar speed-up MW comp. to MC

Figure 212: Performance of compiler’s scalarized fixed point code compared to Math-
Works fixed point generated code compiling with MSVC on Raspberry PI
2

0

0.2

0.4

0.6

0.8

1

1.2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks Mathworks-no-vec speed-up MW comp. to MW-no-vec

Figure 213: Performance of MathWorks floating point generated code compared to Math-
Works non-vectorized code compiling with MSVC on Raspberry PI 2

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC-scalar MC-scalar-no-vec speed-up MC comp. to MC-no-vec

Figure 214: Performance of compiler’s scalarized floating point code compared to com-
piler’s non-vectorized code compiling with MSVC on Raspberry PI 2

300 appendix

0.5

1

2

4

8

16

32

64

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks MC-scalar speed-up MW comp. to MC

Figure 215: Performance of compiler’s scalarized floating point code compared to Math-
Works floating point generated code compiling with MSVC on Raspberry PI
2

8.6 performance of mathworks and compiler’s scalarized code 301

8.6.2 Performance of MathWorks Generated Code, Compiler’s
Scalarized Generated Code and Non-vectorized
Generated Code on Raspberry PI 3

Fig. 216,
Fig. 217,
Fig. 218

Fig. 219,
Fig. 220,
Fig. 221

Fig. 222,
Fig. 223,
Fig. 224

Fig. 225,
Fig. 226,
Fig. 227

Fig. 228,
Fig. 229,
Fig. 230

Fig. 231,
Fig. 232,
Fig. 233

fft32 38.50 1.85 34.35 1.79 27.97 1.77
fft64-v1 14.20 5.93 10.86 6.02 33.73 5.20
fft64-v2 61.00 4.32 50.62 3.60 62.37 4.57
fft128 132.02 11.72 110.65 12.37 137.77 10.70
cfo-32 4.00 20.38 8.01 17.45 13.00 9.57
cfo-64 26.21 37.66 25.60 31.73 25.07 18.97

cfo-128 52.25 76.59 50.90 64.78 49.90 38.27
cordic-64 827.56 313.81 864.14 296.64 2378.07 388.80
fir-32x64 90.90 206.20 208.31 219.40 1093.00 230.23

fir-32x128 216.64 450.65 456.20 480.07 2402.27 499.03
fir-32x256 454.00 935.71 948.89 998.51 5010.60 1050.93
mean-32 0.27 0.29 0.29 0.29 1.50 0.33
mean-64 0.51 0.56 0.49 0.56 2.60 0.63
mean-128 0.99 1.09 0.86 1.10 5.00 1.30

mean-1024 7.73 8.59 6.10 8.60 36.70 9.23
qr-dec-32 1250.31 137.20 1101.88 143.69 840.40 96.73
qr-dec-64 343.48 272.60 343.97 286.99 468.63 196.43
qr-dec-128 695.87 559.17 685.38 579.24 931.37 393.00

Table 51: Reference values (exec. time in µs) used for normalization of results on Rasp-
berry PI 3

302 appendix

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

1.005

1.01

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks Mathworks-no-vec speed-up MW comp. to MW-no-vec

Figure 216: Performance of MathWorks fixed point generated code compared to Math-
Works non-vectorized code compiling with Clang on Raspberry PI 3

0.97

0.975

0.98

0.985

0.99

0.995

1

1.005

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC-scalar MC-scalar-no-vec speed-up MC comp. to MC-no-vec

Figure 217: Performance of compiler’s scalarized fixed point code compared to compiler’s
non-vectorized code compiling with Clang on Raspberry PI 3

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks MC-scalar speed-up MW comp. to MC

Figure 218: Performance of compiler’s scalarized fixed point code compared to Math-
Works fixed point generated code compiling with Clang on Raspberry PI
3

8.6 performance of mathworks and compiler’s scalarized code 303

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks Mathworks-no-vec speed-up MW comp. to MW-no-vec

Figure 219: Performance of MathWorks floating point generated code compared to Math-
Works non-vectorized code compiling with Clang on Raspberry PI 3

0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

1.005

1.01

1.015

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC-scalar MC-scalar-no-vec speed-up MC comp. to MC-no-vec

Figure 220: Performance of compiler’s scalarized floating point code compared to com-
piler’s non-vectorized code compiling with Clang on Raspberry PI 3

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks MC-scalar speed-up MW comp. to MC

Figure 221: Performance of compiler’s scalarized floating point code compared to Math-
Works floating point generated code compiling with Clang on Raspberry PI
3

304 appendix

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks Mathworks-no-vec speed-up MW comp. to MW-no-vec

Figure 222: Performance of MathWorks fixed point generated code compared to Math-
Works non-vectorized code compiling with GCC on Raspberry PI 3

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC-scalar MC-scalar-no-vec speed-up MC comp. to MC-no-vec

Figure 223: Performance of compiler’s scalarized fixed point code compared to compiler’s
non-vectorized code compiling with GCC on Raspberry PI 3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks MC-scalar speed-up MW comp. to MC

Figure 224: Performance of compiler’s scalarized fixed point code compared to Math-
Works fixed point generated code compiling with GCC on Raspberry PI
3

8.6 performance of mathworks and compiler’s scalarized code 305

0.8

0.85

0.9

0.95

1

1.05

1.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks Mathworks-no-vec speed-up MW comp. to MW-no-vec

Figure 225: Performance of MathWorks floating point generated code compared to Math-
Works non-vectorized code compiling with GCC on Raspberry PI 3

0

0.5

1

1.5

2

2.5

3

3.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC-scalar MC-scalar-no-vec speed-up MC comp. to MC-no-vec

Figure 226: Performance of compiler’s scalarized floating point code compared to com-
piler’s non-vectorized code compiling with GCC on Raspberry PI 3

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks MC-scalar speed-up MW comp. to MC

Figure 227: Performance of compiler’s scalarized floating point code compared to Math-
Works floating point generated code compiling with GCC on Raspberry PI
3

306 appendix

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

0.94

0.95

0.96

0.97

0.98

0.99

1

Mathworks Mathworks-no-vec speed-up MW comp. to MW-no-vec

Figure 228: Performance of MathWorks fixed point generated code compared to Math-
Works non-vectorized code compiling with MSVC on Raspberry PI 3

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC-scalar MC-scalar-no-vec speed-up MC comp. to MC-no-vec

Figure 229: Performance of compiler’s scalarized fixed point code compared to compiler’s
non-vectorized code compiling with MSVC on Raspberry PI 3

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks MC-scalar speed-up MW comp. to MC

Figure 230: Performance of compiler’s scalarized fixed point code compared to Math-
Works fixed point generated code compiling with MSVC on Raspberry PI
3

8.6 performance of mathworks and compiler’s scalarized code 307

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks Mathworks-no-vec speed-up MW comp. to MW-no-vec

Figure 231: Performance of MathWorks floating point generated code compared to Math-
Works non-vectorized code compiling with MSVC on Raspberry PI 3

0.94

0.95

0.96

0.97

0.98

0.99

1

1.01

1.02

1.03

1.04

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC-scalar MC-scalar-no-vec speed-up MC comp. to MC-no-vec

Figure 232: Performance of compiler’s scalarized floating point code compared to com-
piler’s non-vectorized code compiling with MSVC on Raspberry PI 3

0.5

1

2

4

8

16

32

64

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks MC-scalar speed-up MW comp. to MC

Figure 233: Performance of compiler’s scalarized floating point code compared to Math-
Works floating point generated code compiling with MSVC on Raspberry PI
3

308 appendix

8.6.3 Performance of MathWorks Generated Code, Compiler’s
Scalarized Generated Code and Non-vectorized
Generated Code on Desktop with i7-3820 Processor

Fig. 234,
Fig. 235,
Fig. 236

Fig. 237,
Fig. 238,
Fig. 239

Fig. 240,
Fig. 241,
Fig. 242

Fig. 243,
Fig. 244,
Fig. 245

Fig. 246,
Fig. 247,
Fig. 248

Fig. 249,
Fig. 250,
Fig. 251

fft32 10.95 0.18 10.13 0.18 4.40 0.56
fft64-v1 6.13 1.40 5.33 1.40 3.80 224.60
fft64-v2 16.64 1.29 14.01 1.29 6.12 1.80
fft128 30.06 2.98 30.40 2.98 17.42 5.50
cfo-32 1.40 2.29 1.97 2.29 4.68 4.52
cfo-64 8.22 4.67 7.45 4.67 6.06 5.70

cfo-128 14.21 8.72 16.98 8.72 11.16 8.68
cordic-64 84.38 23.44 202.44 23.44 406.94 40.36
fir-32x64 13.70 11.23 26.23 11.23 104.44 15.64

fir-32x128 24.86 24.85 54.53 24.85 236.48 34.30
fir-32x256 41.15 41.98 108.55 41.98 492.94 71.84
mean-32 0.09 0.08 0.15 0.08 0.20 0.13
mean-64 0.15 0.15 0.16 0.15 0.40 0.20
mean-128 0.50 0.36 0.53 0.36 0.94 0.50

mean-1024 3.41 2.47 2.25 2.47 6.08 4.98
qr-dec-32 209.50 17.01 221.95 17.01 152.02 21.58
qr-dec-64 60.49 30.75 51.77 30.75 86.48 43.08
qr-dec-128 107.87 52.97 91.97 52.97 172.36 85.96

Table 52: Reference values (exec. time in µs) used for normalization of results on desktop
with i7-3820 processor

8.6 performance of mathworks and compiler’s scalarized code 309

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks Mathworks-no-vec speed-up MW comp. to MW-no-vec

Figure 234: Performance of MathWorks fixed point generated code compared to Math-
Works non-vectorized code compiling with Clang on desktop with i7-3820

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC-scalar MC-scalar-no-vec speed-up MC comp. to MC-no-vec

Figure 235: Performance of compiler’s scalarized fixed point code compared to compiler’s
non-vectorized code compiling with Clang on desktop with i7-3820

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks MC-scalar speed-up MW comp. to MC

Figure 236: Performance of compiler’s scalarized fixed point code compared to Math-
Works fixed point generated code compiling with Clang on desktop with
i7-3820

310 appendix

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks Mathworks-no-vec speed-up MW comp. to MW-no-vec

Figure 237: Performance of MathWorks floating point generated code compared to Math-
Works non-vectorized code compiling with Clang on desktop with i7-3820

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

MC-scalar MC-scalar-no-vec speed-up MC comp. to MC-no-vec

Figure 238: Performance of compiler’s scalarized floating point code compared to com-
piler’s non-vectorized code compiling with Clang on desktop with i7-3820

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks MC-scalar speed-up MW comp. to MC

Figure 239: Performance of compiler’s scalarized floating point code compared to Math-
Works floating point generated code compiling with Clang on desktop with
i7-3820

8.6 performance of mathworks and compiler’s scalarized code 311

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks Mathworks-no-vec speed-up MW comp. to MW-no-vec

Figure 240: Performance of MathWorks fixed point generated code compared to Math-
Works non-vectorized code compiling with GCC on desktop with i7-3820

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC-scalar MC-scalar-no-vec speed-up MC comp. to MC-no-vec

Figure 241: Performance of compiler’s scalarized fixed point code compared to compiler’s
non-vectorized code compiling with GCC on desktop with i7-3820

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks MC-scalar speed-up MW comp. to MC

Figure 242: Performance of compiler’s scalarized fixed point code compared to Math-
Works fixed point generated code compiling with GCC on desktop with
i7-3820

312 appendix

0

1

2

3

4

5

6

7

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks Mathworks-no-vec speed-up MW comp. to MW-no-vec

Figure 243: Performance of MathWorks floating point generated code compared to Math-
Works non-vectorized code compiling with GCC on desktop with i7-3820

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC-scalar MC-scalar-no-vec speed-up MC comp. to MC-no-vec

Figure 244: Performance of compiler’s scalarized floating point code compared to com-
piler’s non-vectorized code compiling with GCC on desktop with i7-3820

0

1

2

3

4

5

6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks MC-scalar speed-up MW comp. to MC

Figure 245: Performance of compiler’s scalarized floating point code compared to Math-
Works floating point generated code compiling with GCC on desktop with
i7-3820

8.6 performance of mathworks and compiler’s scalarized code 313

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks Mathworks-no-vec speed-up MW comp. to MW-no-vec

Figure 246: Performance of MathWorks fixed point generated code compared to Math-
Works non-vectorized code compiling with MSVC on desktop with i7-3820

0

0.5

1

1.5

2

2.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC-scalar MC-scalar-no-vec speed-up MC comp. to MC-no-vec

Figure 247: Performance of compiler’s scalarized fixed point code compared to compiler’s
non-vectorized code compiling with MSVC on desktop with i7-3820

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks MC-scalar speed-up MW comp. to MC

Figure 248: Performance of compiler’s scalarized fixed point code compared to Math-
Works fixed point generated code compiling with MSVC on desktop with
i7-3820

314 appendix

0

0.2

0.4

0.6

0.8

1

1.2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks Mathworks-no-vec speed-up MW comp. to MW-no-vec

Figure 249: Performance of MathWorks floating point generated code compared to Math-
Works non-vectorized code compiling with MSVC on desktop with i7-3820

0.5

1

2

4

8

16

32

64

128

256

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC-scalar MC-scalar-no-vec speed-up MC comp. to MC-no-vec

Figure 250: Performance of compiler’s scalarized floating point code compared to com-
piler’s non-vectorized code compiling with MSVC on desktop with i7-3820

0.00

1.00

2.00

3.00

4.00

5.00

6.00

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Mathworks MC-scalar speed-up MW comp. to MC

Figure 251: Performance of compiler’s scalarized floating point code compared to Math-
Works floating point generated code compiling with MSVC on desktop with
i7-3820

8.6 performance of mathworks and compiler’s scalarized code 315

8.6.4 Performance of MathWorks Generated Code, Compiler’s
Scalarized Generated Code and Non-vectorized
Generated Code on Desktop with i7-3770 Processor

Fig. 252,
Fig. 253,
Fig. 254

Fig. 255,
Fig. 256,
Fig. 257

Fig. 258,
Fig. 259,
Fig. 260

Fig. 261,
Fig. 262,
Fig. 263

Fig. 264,
Fig. 265,
Fig. 266

Fig. 267,
Fig. 268,
Fig. 269

fft32 8.33 0.13 8.68 0.13 3.50 0.30
fft64-v1 4.51 1.09 3.89 1.09 3.10 195.54
fft64-v2 14.59 0.90 12.69 0.90 4.80 1.40
fft128 27.82 2.33 27.91 2.33 13.70 4.70
cfo-32 1.07 1.51 1.53 1.51 4.14 1.90
cfo-64 6.70 3.45 8.68 3.45 4.03 3.80

cfo-128 13.44 6.31 15.36 6.31 8.00 7.52
cordic-64 69.40 19.55 158.71 19.55 326.98 35.46
fir-32x64 12.23 10.01 24.87 10.01 85.03 15.22

fir-32x128 22.11 22.75 49.88 22.75 190.35 33.34
fir-32x256 37.27 38.26 100.46 38.26 395.15 69.50
mean-32 0.07 0.04 0.11 0.04 0.10 0.11
mean-64 0.09 0.08 0.10 0.08 0.20 0.20
mean-128 0.38 0.21 0.40 0.21 0.50 0.40

mean-1024 2.42 1.59 2.31 1.59 5.33 4.14
qr-dec-32 181.55 12.47 189.53 12.47 126.48 18.34
qr-dec-64 50.05 25.26 44.66 25.26 71.50 36.62
qr-dec-128 87.38 42.23 78.12 42.23 142.78 73.20

Table 53: Reference values (exec. time in µs) used for normalization of results on desktop
with i7-3770 processor

316 appendix

0

0.2

0.4

0.6

0.8

1

1.2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks Mathworks-no-vec speed-up MW comp. to MW-no-vec

Figure 252: Performance of MathWorks fixed point generated code compared to Math-
Works non-vectorized code compiling with Clang on desktop with i7-3770

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC-scalar MC-scalar-no-vec speed-up MC comp. to MC-no-vec

Figure 253: Performance of compiler’s scalarized fixed point code compared to compiler’s
non-vectorized code compiling with Clang on desktop with i7-3770

0

0.2

0.4

0.6

0.8

1

1.2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks MC-scalar speed-up MW comp. to MC

Figure 254: Performance of compiler’s scalarized fixed point code compared to Math-
Works fixed point generated code compiling with Clang on desktop with
i7-3770

8.6 performance of mathworks and compiler’s scalarized code 317

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks Mathworks-no-vec speed-up MW comp. to MW-no-vec

Figure 255: Performance of MathWorks floating point generated code compared to Math-
Works non-vectorized code compiling with Clang on desktop with i7-3770

0

0.2

0.4

0.6

0.8

1

1.2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC-scalar MC-scalar-no-vec speed-up MC comp. to MC-no-vec

Figure 256: Performance of compiler’s scalarized floating point code compared to com-
piler’s non-vectorized code compiling with Clang on desktop with i7-3770

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks MC-scalar speed-up MW comp. to MC

Figure 257: Performance of compiler’s scalarized floating point code compared to Math-
Works floating point generated code compiling with Clang on desktop with
i7-3770

318 appendix

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks Mathworks-no-vec speed-up MW comp. to MW-no-vec

Figure 258: Performance of MathWorks fixed point generated code compared to Math-
Works non-vectorized code compiling with GCC on desktop with i7-3770

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC-scalar MC-scalar-no-vec speed-up MC comp. to MC-no-vec

Figure 259: Performance of compiler’s scalarized fixed point code compared to compiler’s
non-vectorized code compiling with GCC on desktop with i7-3770

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks MC-scalar speed-up MW comp. to MC

Figure 260: Performance of compiler’s scalarized fixed point code compared to Math-
Works fixed point generated code compiling with GCC on desktop with
i7-3770

8.6 performance of mathworks and compiler’s scalarized code 319

0

0.5

1

1.5

2

2.5

3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks Mathworks-no-vec speed-up MW comp. to MW-no-vec

Figure 261: Performance of MathWorks floating point generated code compared to Math-
Works non-vectorized code compiling with GCC on desktop with i7-3770

0

1

2

3

4

5

6

7

8

9

10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC-scalar MC-scalar-no-vec speed-up MC comp. to MC-no-vec

Figure 262: Performance of compiler’s scalarized floating point code compared to com-
piler’s non-vectorized code compiling with GCC on desktop with i7-3770

0

0.5

1

1.5

2

2.5

3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks MC-scalar speed-up MW comp. to MC

Figure 263: Performance of compiler’s scalarized floating point code compared to Math-
Works floating point generated code compiling with GCC on desktop with
i7-3770

320 appendix

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks Mathworks-no-vec speed-up MW comp. to MW-no-vec

Figure 264: Performance of MathWorks fixed point generated code compared to Math-
Works non-vectorized code compiling with MSVC on desktop with i7-3770

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC-scalar MC-scalar-no-vec speed-up MC comp. to MC-no-vec

Figure 265: Performance of compiler’s scalarized fixed point code compared to compiler’s
non-vectorized code compiling with MSVC on desktop with i7-3770

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks MC-scalar speed-up MW comp. to MC

Figure 266: Performance of compiler’s scalarized fixed point code compared to Math-
Works fixed point generated code compiling with MSVC on desktop with
i7-3770

8.6 performance of mathworks and compiler’s scalarized code 321

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks Mathworks-no-vec speed-up MW comp. to MW-no-vec

Figure 267: Performance of MathWorks floating point generated code compared to Math-
Works non-vectorized code compiling with MSVC on desktop with i7-3770

0.5

1

2

4

8

16

32

64

128

256

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC-scalar MC-scalar-no-vec speed-up MC comp. to MC-no-vec

Figure 268: Performance of compiler’s scalarized floating point code compared to com-
piler’s non-vectorized code compiling with MSVC on desktop with i7-3770

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks MC-scalar speed-up MW comp. to MC

Figure 269: Performance of compiler’s scalarized floating point code compared to Math-
Works floating point generated code compiling with MSVC on desktop with
i7-3770

322 appendix

8.7 Performance of Generated Code on x86 Architectures Us-
ing Alternative Compilations Options of MSVC

The section shows the performance of MathWorks generated code and compiler’s vec-
torized generated code for x86 architectures using alternative compilation options of
MSVC compiler. Subsection 8.7.1 shows results of the generated code performance pro-
ducing x64 executable code, subsection 8.7.2 show results of x86 output code which
have been compiled with SSE options (auto-vectorization using only SSE extension) and
subsection 8.7.3 shows performance results compiling with x64 and SSE options.

8.7.1 Performance of Generated Code on x86 Architectures
Producing x64 Code

Fig. 270,
Fig. 271,
Fig. 272

Fig. 273,
Fig. 274,
Fig. 275

Fig. 276,
Fig. 277,
Fig. 278

Fig. 279,
Fig. 280,
Fig. 281

fft32 3.30 0.72 2.70 0.30
fft64-v1 4.80 1.98 3.42 1.10
fft64-v2 6.10 1.94 5.28 1.10
fft128 17.80 4.10 14.42 3.16
cfo-32 4.66 1.72 3.46 1.36
cfo-64 5.24 2.74 3.86 2.00
cfo-128 9.72 3.32 7.60 2.62

cordic-64 313.24 75.50 253.12 37.70
fir-32x64 107.78 15.06 90.24 12.70
fir-32x128 235.30 32.08 197.70 27.80
fir-32x256 471.46 66.78 392.42 57.90
mean-32 0.30 0.30 0.20 0.20
mean-64 0.50 0.50 0.40 0.40
mean-128 1.24 1.18 0.80 0.90
mean-1024 8.16 9.30 6.82 7.00

qr-decomp-32 139.96 33.54 117.76 23.00
qr-decomp-64 86.48 67.22 72.52 46.46
qr-decomp-128 173.66 134.62 143.74 92.88

Table 54: Reference values (exec. time in µs) used for normalization of aggressive Clang
options examination

8.7 performance of generated code on x86 using alternative options 323

8.7.1.1 Performance of Generated Code on Intel i7-3820
Producing x64 Code

1

2

4

8

16

32

64

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks MC-s4 MC-s8 speed-up of s4 speed-up of s8

Figure 270: Performance of vectorized generated code (x64) with packed fixed point data
types compared to MathWorks generated code on i7-3820

0.5

1

2

4

8

16

32

64

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks MC-s4-unp MC-s8-unp speed-up of s4-unp speed-up of s8-unp

Figure 271: Performance of vectorized generated code (x64) with unpacked fixed point
data types compared to MathWorks generated code on i7-3820

0.25

0.5

1

2

4

8

16

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC-s4 MC-s4-unp MC-s8 MC-s8-unp speed-up s4 comp. s4-unp speed-up s8 comp. s8-unp

Figure 272: Performance of vectorized code (x64) with unpacked fixed point data types
versus packed fixed point data types on desktop with i7-3820

324 appendix

0.125

0.25

0.5

1

2

4

8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks MC-s4 MC-s8 speed-up of s4 speed-up of s8

Figure 273: Performance of vectorized generated code (x64) with packed floating point
data types compared to MathWorks generated code on i7-3820

0.062

0.125

0.25

0.5

1

2

4

8

16

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks MC-s4-unp MC-s8-unp speed-up of s4-unp speed-up of s8-unp

Figure 274: Performance of vectorized generated code (x64) with unpacked floating point
data types compared to MathWorks generated code on i7-3820

0.125

0.25

0.5

1

2

4

8

16

32

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC-s4 MC-s4-unp MC-s8 MC-s8-unp speed-up s4 comp. s4-unp speed-up s8 comp. s8-unp

Figure 275: Performance of vectorized code (x64) with unpacked floating point data
types versus packed floating point data types on desktop with i7-3820

8.7 performance of generated code on x86 using alternative options 325

8.7.1.2 Performance of Generated Code on Intel i7-3770
Producing x64 Code

1

2

4

8

16

32

64

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks MC-s4 MC-s8 speed-up of s4 speed-up of s8

Figure 276: Performance of vectorized generated code (x64) with packed fixed point data
types compared to MathWorks generated code on i7-3770

0.5

1

2

4

8

16

32

64

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks MC-s4-unp MC-s8-unp speed-up of s4-unp speed-up of s8-unp

Figure 277: Performance of vectorized generated code (x64) with unpacked fixed point
data types compared to MathWorks generated code on i7-3770

0.25

0.5

1

2

4

8

16

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC-s4 MC-s4-unp MC-s8 MC-s8-unp speed-up s4 comp. s4-unp speed-up s8 comp. s8-unp

Figure 278: Performance of vectorized code (x64) with unpacked fixed point data types
versus packed fixed point data types on desktop with i7-3770

326 appendix

0.125

0.25

0.5

1

2

4

8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks MC-s4 MC-s8 speed-up of s4 speed-up of s8

Figure 279: Performance of vectorized generated code (x64) with packed floating point
data types compared to MathWorks generated code on i7-3770

0.062

0.125

0.25

0.5

1

2

4

8

16

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks MC-s4-unp MC-s8-unp speed-up of s4-unp speed-up of s8-unp

Figure 280: Performance of vectorized generated code (x64) with unpacked floating point
data types compared to MathWorks generated code on i7-3770

0.25

0.5

1

2

4

8

16

32

64

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC-s4 MC-s4-unp MC-s8 MC-s8-unp speed-up s4 comp. s4-unp speed-up s8 comp. s8-unp

Figure 281: Performance of vectorized code (x64) with unpacked floating point data
types versus packed floating point data types on desktop with i7-3770

8.7 performance of generated code on x86 using alternative options 327

8.7.2 Performance of Generated Code on x86 Architectures
Producing x86 Code with SSE

Fig. 282,
Fig. 283,
Fig. 284

Fig. 285,
Fig. 286,
Fig. 287

Fig. 288,
Fig. 289,
Fig. 290

Fig. 291,
Fig. 292,
Fig. 293

fft32 4.40 0.40 3.50 0.30
fft64-v1 3.84 1.20 3.10 1.10
fft64-v2 5.76 2.00 4.80 1.30
fft128 17.46 4.18 13.70 2.90
cfo-32 4.80 1.66 3.78 1.42
cfo-64 5.12 2.70 4.06 1.80
cfo-128 10.26 3.70 8.00 2.32

cordic-64 406.82 45.40 326.68 37.38
fir-32x64 104.34 14.96 84.52 12.30
fir-32x128 236.12 31.14 189.78 26.90
fir-32x256 492.16 64.90 395.08 56.10
mean-32 0.20 0.30 0.20 0.20
mean-64 0.50 0.60 0.40 0.40
mean-128 1.02 1.10 0.90 0.90
mean-1024 8.10 9.26 7.34 7.40

qr-decomp-32 151.34 31.78 126.60 26.04
qr-decomp-64 78.56 63.34 70.00 52.52
qr-decomp-128 157.34 126.84 139.88 104.96

Table 55: Reference values (exec. time in µs) used for normalization of aggressive Clang
options examination

328 appendix

8.7.2.1 Performance of Generated Code on Intel i7-3820
Producing x86 with SSE Extension

1

2

4

8

16

32

64

128

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks MC-s4 MC-s8 speed-up of s4 speed-up of s8

Figure 282: Performance of vectorized generated code (x86-SSE) with packed fixed point
data types compared to MathWorks generated code on i7-3820

0.5

1

2

4

8

16

32

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks MC-s4-unp MC-s8-unp speed-up of s4-unp speed-up of s8-unp

Figure 283: Performance of vectorized generated code (x86-SSE) with unpacked fixed
point data types compared to MathWorks generated code on i7-3820

0.25

0.5

1

2

4

8

16

32

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC-s4 MC-s4-unp MC-s8 MC-s8-unp speed-up s4 comp. s4-unp speed-up s8 comp. s8-unp

Figure 284: Performance of vectorized code (x86-SSE) with unpacked fixed point data
types versus packed fixed point data types on desktop with i7-3820

8.7 performance of generated code on x86 using alternative options 329

0.125

0.25

0.5

1

2

4

8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks MC-s4 MC-s8 speed-up of s4 speed-up of s8

Figure 285: Performance of vectorized generated code (x86-SSE) with packed floating
point data types compared to MathWorks generated code on i7-3820

0.031

0.062

0.125

0.25

0.5

1

2

4

8

16

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks MC-s4-unp MC-s8-unp speed-up of s4-unp speed-up of s8-unp

Figure 286: Performance of vectorized generated code (x86-SSE) with unpacked floating
point data types compared to MathWorks generated code on i7-3820

0.031

0.062

0.125

0.25

0.5

1

2

4

8

16

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks MC-s4-unp MC-s8-unp speed-up of s4-unp speed-up of s8-unp

Figure 287: Performance of vectorized code (x86-SSE) with unpacked floating point data
types versus packed floating point data types on desktop with i7-3820

330 appendix

8.7.2.2 Performance of Generated Code on Intel i7-3770
Producing x86 with SSE Extension

1

2

4

8

16

32

64

128

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks MC-s4 MC-s8 speed-up of s4 speed-up of s8

Figure 288: Performance of vectorized generated code (x86-SSE) with packed fixed point
data types compared to MathWorks generated code on i7-3770

0.5

1

2

4

8

16

32

64

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks MC-s4-unp MC-s8-unp speed-up of s4-unp speed-up of s8-unp

Figure 289: Performance of vectorized generated code (x86-SSE) with unpacked fixed
point data types compared to MathWorks generated code on i7-3770

0.25

0.5

1

2

4

8

16

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC-s4 MC-s4-unp MC-s8 MC-s8-unp speed-up s4 comp. s4-unp speed-up s8 comp. s8-unp

Figure 290: Performance of vectorized code (x86-SSE) with unpacked fixed point data
types versus packed fixed point data types on desktop with i7-3770

8.7 performance of generated code on x86 using alternative options 331

0.125

0.25

0.5

1

2

4

8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks MC-s4 MC-s8 speed-up of s4 speed-up of s8

Figure 291: Performance of vectorized generated code (x86-SSE) with packed floating
point data types compared to MathWorks generated code on i7-3770

0.062

0.125

0.25

0.5

1

2

4

8

16

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks MC-s4-unp MC-s8-unp speed-up of s4-unp speed-up of s8-unp

Figure 292: Performance of vectorized generated code (x86-SSE) with unpacked floating
point data types compared to MathWorks generated code on i7-3770

0.25

0.5

1

2

4

8

16

32

64

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC-s4 MC-s4-unp MC-s8 MC-s8-unp speed-up s4 comp. s4-unp speed-up s8 comp. s8-unp

Figure 293: Performance of vectorized code (x86-SSE) with unpacked floating point data
types versus packed floating point data types on desktop with i7-3770

332 appendix

8.7.3 Performance of Generated Code on x86 architectures
Producing x64 Code with SSE

Fig. 294,
Fig. 295,
Fig. 296

Fig. 297,
Fig. 298,
Fig. 299

Fig. 300,
Fig. 301,
Fig. 302

Fig. 303,
Fig. 304,
Fig. 305

fft32 4.40 0.40 3.50 0.30
fft64-v1 3.84 1.20 3.10 1.10
fft64-v2 5.76 2.00 4.80 1.30
fft128 17.46 4.18 13.70 2.90
cfo-32 4.80 1.66 3.78 1.42
cfo-64 5.12 2.70 4.06 1.80
cfo-128 10.26 3.70 8.00 2.32

cordic-64 406.82 45.40 326.68 37.38
fir-32x64 104.34 14.96 84.52 12.30
fir-32x128 236.12 31.14 189.78 26.90
fir-32x256 492.16 64.90 395.08 56.10
mean-32 0.20 0.30 0.20 0.20
mean-64 0.50 0.60 0.40 0.40
mean-128 1.02 1.10 0.90 0.90
mean-1024 8.10 9.26 7.34 7.40

qr-decomp-32 151.34 31.78 126.60 26.04
qr-decomp-64 78.56 63.34 70.00 52.52
qr-decomp-128 157.34 126.84 139.88 104.96

Table 56: Reference values (exec. time in µs) used for normalization of aggressive Clang
options examination

8.7 performance of generated code on x86 using alternative options 333

8.7.3.1 Performance of Generated Code on Intel i7-3820
Producing x64 with SSE Extension

1

2

4

8

16

32

64

128

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks MC-s4 MC-s8 speed-up of s4 speed-up of s8

Figure 294: Performance of vectorized generated code (x64-SSE) with packed fixed point
data types compared to MathWorks generated code on i7-3820

0.5

1

2

4

8

16

32

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks MC-s4-unp MC-s8-unp speed-up of s4-unp speed-up of s8-unp

Figure 295: Performance of vectorized generated code (x64-SSE) with unpacked fixed
point data types compared to MathWorks generated code on i7-3820

0.25

0.5

1

2

4

8

16

32

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC-s4 MC-s4-unp MC-s8 MC-s8-unp speed-up s4 comp. s4-unp speed-up s8 comp. s8-unp

Figure 296: Performance of vectorized code (x64-SSE) with unpacked fixed point data
types versus packed fixed point data types on desktop with i7-3820

334 appendix

0.125

0.25

0.5

1

2

4

8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks MC-s4 MC-s8 speed-up of s4 speed-up of s8

Figure 297: Performance of vectorized generated code (x64-SSE) with packed floating
point data types compared to MathWorks generated code on i7-3820

0.031

0.062

0.125

0.25

0.5

1

2

4

8

16

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks MC-s4-unp MC-s8-unp speed-up of s4-unp speed-up of s8-unp

Figure 298: Performance of vectorized generated code (x64-SSE) with unpacked floating
point data types compared to MathWorks generated code on i7-3820

0.031

0.062

0.125

0.25

0.5

1

2

4

8

16

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks MC-s4-unp MC-s8-unp speed-up of s4-unp speed-up of s8-unp

Figure 299: Performance of vectorized code (x64-SSE) with unpacked floating point data
types versus packed floating point data types on desktop with i7-3820

8.7 performance of generated code on x86 using alternative options 335

8.7.3.2 Performance of Generated Code on Intel i7-3770
Producing x64 with SSE Extension

1

2

4

8

16

32

64

128

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks MC-s4 MC-s8 speed-up of s4 speed-up of s8

Figure 300: Performance of vectorized generated code (x64-SSE) with packed fixed point
data types compared to MathWorks generated code on i7-3770

0.5

1

2

4

8

16

32

64

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks MC-s4-unp MC-s8-unp speed-up of s4-unp speed-up of s8-unp

Figure 301: Performance of vectorized generated code (x64-SSE) with unpacked fixed
point data types compared to MathWorks generated code on i7-3770

0.25

0.5

1

2

4

8

16

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC-s4 MC-s4-unp MC-s8 MC-s8-unp speed-up s4 comp. s4-unp speed-up s8 comp. s8-unp

Figure 302: Performance of vectorized code (x64-SSE) with unpacked fixed point data
types versus packed fixed point data types on desktop with i7-3770

336 appendix

0.125

0.25

0.5

1

2

4

8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks MC-s4 MC-s8 speed-up of s4 speed-up of s8

Figure 303: Performance of vectorized generated code (x64-SSE) with packed floating
point data types compared to MathWorks generated code on i7-3770

0.062

0.125

0.25

0.5

1

2

4

8

16

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mathworks MC-s4-unp MC-s8-unp speed-up of s4-unp speed-up of s8-unp

Figure 304: Performance of vectorized generated code (x64-SSE) with unpacked floating
point data types compared to MathWorks generated code on i7-3770

0.25

0.5

1

2

4

8

16

32

64

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

MC-s4 MC-s4-unp MC-s8 MC-s8-unp speed-up s4 comp. s4-unp speed-up s8 comp. s8-unp

Figure 305: Performance of vectorized code (x64-SSE) with unpacked floating point data
types versus packed floating point data types on desktop with i7-3770

Publications
[Latifis et al., 2017] Latifis, I., Parashar, K., Dimitroulakos, G., Cappelle, H., Lezos, C.,

Masselos, K., and Catthoor, F. (2017). A MATLAB Vectorizing Compiler Targeting
Application-Specific Instruction Set Processors, ACM Trans. Des. Autom. Electron.
Syst. (TODAES), vol. 22, no. 2, p. 32:1–32:28, Jan. 2017.

[Latifis et al., 2016] Latifis, I., Parashar, K., Dimitroulakos, G., Cappelle, H., Lezos,
C., Masselos, K., and Catthoor, F. (2016). MATLAB-to-C compilation targeting
Application Specific Instruction Set Processors. In Proceedings of the 2016 Design,
Automation & Test in Europe Conference & Exhibition (DATE), pages 1453–1456,
Dresden, Germany.

[Lezos et al., 2016a] Lezos, C., Latifis, I., Dimitroulakos, G., and Masselos, K. (2016b).
Compiler-directed data locality optimization in MATLAB. In Proceedings of the
19th International Workshop on Software and Compilers for Embedded Systems
(SCOPES), pages 6–9, Sankt Goar, Germany.

[Lezos et al., 2016b] Lezos, C., Dimitroulakos, G., Latifis, I., and Masselos, K. (2016a).
Automatic generation of code analysis tools: The CastQL approach. In Proceedings of
the 1st International Workshop on Real World Domain Specific Languages (RWDSL),
pages 3.1–3.10, Barcelona, Spain.

[Lezos et al., 2016c] Christakis Lezos, Grigoris Dimitroulakos, Ioannis Latifis, Konstanti-
nos Masselos, “MAFE: An Environment for MATLAB-to-C Compilation Supporting
Static and Dynamic Memory Allocation and Multi-Level User Interactive Code Opti-
mization”, International Symposium on Code Generation and Optimization (CGO),
Barcelona, Spain, March 12-18, 2016, [Poster session].

337

Bibliography
[3GPP-LTE, 2016] 3GPP-LTE (2016). Ieee standard association - ieee get program.

http://www.3gpp.org/specifications/releases.

[Allen, 2005] Allen, R. (2005). Compiling high-level languages to DSPs: automating the
implementation path. IEEE Signal Processing Magazine, 22(3):47–56.

[Allen and Johnson, 1988] Allen, R. and Johnson, S. (1988). Compiling C for Vector-
ization, Parallelization, and Inline Expansion. In Proceedings of the ACM SIGPLAN
1988 Conference on Programming Language Design and Implementation, PLDI ’88,
pages 241–249, New York, NY, USA. ACM.

[Allen and Kennedy, 2001] Allen, R. and Kennedy, K. (2001). Optimizing Compilers
for Modern Architectures: A Dependence-based Approach. Morgan Kaufmann, San
Francisco, 1 edition edition.

[Almer et al., 2012] Almer, O., Bennett, R., Böhm, I., Murray, A., Qu, X., Zuluaga,
M., Franke, B., and Topham, N. (2012). An End-to-End Design Flow for Automated
Instruction Set Extension and Complex Instruction Selection based on GCC.

[Almási and Padua, 2002] Almási, G. and Padua, D. (2002). MaJIC: Compiling MAT-
LAB for Speed and Responsiveness. In Proceedings of the ACM SIGPLAN 2002
Conference on Programming Language Design and Implementation, PLDI ’02, pages
294–303, New York, NY, USA. ACM.

[Altera, 2016] Altera (2016). Overview.

[Anderson et al., 1992] Anderson, E., Bai, Z., and Dongarra, J. (1992). Generalized QR
factorization and its applications. Linear Algebra and its Applications, 162:243–271.

[Andraka, 1998] Andraka, R. (1998). A Survey of CORDIC Algorithms for FPGA Based
Computers. In Proceedings of the 1998 ACM/SIGDA Sixth International Symposium
on Field Programmable Gate Arrays, FPGA ’98, pages 191–200, New York, NY, USA.
ACM.

[ARM, 2016] ARM (2016). Arm processor architecture - arm.
http://www.arm.com/products/processors/instruction-set-architectures/index.php.

[ARM markets, 2016] ARM markets (2016). Markets – arm.
http://www.arm.com/markets/.

338

Bibliography 339

[ARM reference manual, 2016] ARM reference manual (2016). Arm information center.
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0406c/index.html.

[ARMv8 reference manual, 2016] ARMv8 reference manual (2016). Arm information
center.
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.set.architecture/index.html.

[Arnold and Corporaal, 2001] Arnold, M. and Corporaal, H. (2001). Designing Domain-
specific Processors. In Proceedings of the Ninth International Symposium on Hard-
ware/Software Codesign, CODES ’01, pages 61–66, New York, NY, USA. ACM.

[ASIP Designer, 2016] ASIP Designer (2016). Synopsys - asip designer.
http://www.synopsys.com/dw/ipdir.php?ds=asip-designer.

[Aslam and Hendren, 2010] Aslam, A. and Hendren, L. (2010). McFLAT: A Profile-
Based Framework for MATLAB Loop Analysis and Transformations. In Cooper, K.,
Mellor-Crummey, J., and Sarkar, V., editors, Languages and Compilers for Parallel
Computing, number 6548 in Lecture Notes in Computer Science, pages 1–15. Springer
Berlin Heidelberg. DOI: 10.1007/978-3-642-19595-2_1.

[Aslam et al., 2010] Aslam, T., Doherty, J., Dubrau, A., and Hendren, L. (2010). As-
pectMatlab: An Aspect-oriented Scientific Programming Language. In Proceedings
of the 9th International Conference on Aspect-Oriented Software Development, AOSD
’10, pages 181–192, New York, NY, USA. ACM.

[AVX, 2016] AVX (2016). Introduction to Intel® Advanced Vector Extensions | Intel®
Software. https://software.intel.com/en-us/articles/introduction-to-intel-advanced-
vector-extensions.

[Banerjee, 2003] Banerjee, P. (2003). An overview of a compiler for mapping MATLAB
programs onto FPGAs. In Design Automation Conference, 2003. Proceedings of the
ASP-DAC 2003. Asia and South Pacific, pages 477–482.

[Banerjee et al., 2003] Banerjee, P., Bagchi, D., Haldar, M., Nayak, A., Kim, V., and
Uribe, R. (2003). Automatic Conversion of Floating Point MATLAB Programs into
Fixed Point FPGA Based Hardware Design. In Proceedings of the 11th Annual IEEE
Symposium on Field-Programmable Custom Computing Machines, FCCM ’03, pages
263–, Washington, DC, USA. IEEE Computer Society.

[Banerjee et al., 2004] Banerjee, P., Haldar, M., Nayak, A., Kim, V., Saxena, V., Parkes,
S., Bagchi, D., Pal, S., Tripathi, N., Zaretsky, D., Anderson, R., and Uribe, J. (2004).
Overview of a compiler for synthesizing MATLAB programs onto FPGAs. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 12(3):312–324.

340 Bibliography

[Banerjee et al., 1999] Banerjee, P., Shenoy, N., Choudhary, A., Hauck, S., Bachmann,
C., Chang, M., Haldar, M., Joisha, P., Jones, A., Kanhare, A., Nayak, A., Periy-
acheri, S., and Walkden, M. (1999). MATCH: A MATLAB Compiler for Configurable
Computing Systems. Technical report.

[Banerjee et al.,] Banerjee, P., Shenoy, N., Choudhary, A., Hauck, S., Bachmann, C.,
Haldar, M., Joisha, P., Jones, A., Kanhare, A., Nayak, A., Periyacheri, S., Walkden,
M., and Zaretsky, D. A MATLAB compiler for distributed, heterogeneous, reconfig-
urable computing systems. In FCCM ’00.

[Becker et al., 2012] Becker, J., Stripf, T., Oey, O., Huebner, M., Derrien, S., Menard,
D., Sentieys, O., Rauwerda, G., Sunesen, K., Kavvadias, N., Masselos, K., Goulas, G.,
Alefragis, P., Voros, N. S., Kritharidis, D., Mitas, N., and Goehringer, D. (2012). From
Scilab to High Performance Embedded Multicore Systems: The ALMA Approach. In
2012 15th Euromicro Conference on Digital System Design (DSD), pages 114–121.

[Benincasa et al., 1998] Benincasa, M., Besler, R., Brassaw, D., and Kohler, R. L. (1998).
Rapid development of real-time systems using RTExpressTM. In Parallel Processing
Symposium, 1998. IPPS/SPDP 1998. Proceedings of the First Merged International
Parallel Processing Symposium and Symposium on Parallel and Distributed Processing
1998, pages 594–599.

[Bhatt and McCain, 2005] Bhatt, T. M. and McCain, D. (2005). Matlab As a Devel-
opment Environment for FPGA Design. In Proceedings of the 42Nd Annual Design
Automation Conference, DAC ’05, pages 607–610, New York, NY, USA. ACM.

[Bik, 2004] Bik, A. J. C. (2004). Software Vectorization Handbook, The: Applying Intel
Multimedia Extensions for Maximum Performance. Intel Press, Hillsboro, Or.

[Birkbeck et al., 2007] Birkbeck, N., Levesque, J., and Amaral, J. N. (2007). A Dimen-
sion Abstraction Approach to Vectorization in Matlab. In International Symposium
on Code Generation and Optimization (CGO’07), pages 115–130.

[Bispo et al., 2014] Bispo, J., Reis, L., and Cardoso, J. M. P. (2014). Multi-Target
C Code Generation from MATLAB. In Proceedings of ACM SIGPLAN Interna-
tional Workshop on Libraries, Languages, and Compilers for Array Programming,
ARRAY’14, pages 95:95–95:100, New York, NY, USA. ACM.

[Bispo et al., 2015] Bispo, J., Reis, L., and Cardoso, J. M. P. (2015). Techniques for
Efficient MATLAB-to-C Compilation. In Proceedings of the 2Nd ACM SIGPLAN In-
ternational Workshop on Libraries, Languages, and Compilers for Array Programming,
ARRAY 2015, pages 7–12, New York, NY, USA. ACM.

[BoT, 2014] BoT (2014). Bot - a low power processor for wireless baseband.
http://tinyurl.com/olasdj6.

Bibliography 341

[Burrus and Parks, 1991] Burrus, C. S. and Parks, T. W. (1991). DFT/FFT and Convo-
lution Algorithms: Theory and Implementation. John Wiley & Sons, Inc., New York,
NY, USA, 1st edition.

[Cardoso et al., 2012] Cardoso, J. M., Carvalho, T., Coutinho, J. G., Luk, W., Nobre, R.,
Diniz, P., and Petrov, Z. (2012). LARA: An Aspect-oriented Programming Language
for Embedded Systems. In Proceedings of the 11th Annual International Conference
on Aspect-oriented Software Development, AOSD ’12, pages 179–190, New York, NY,
USA. ACM.

[Cardoso et al., 2010] Cardoso, J. M. P., Diniz, P. C., Monteiro, M. P., Fernandes, J. M.,
and Saraiva, J. (2010). A Domain-Specific Aspect Language for Transforming MAT-
LAB Programs. In Domain-Specific Aspect Language Workshop (DSAL’2010), part
of AOSD’10, March 2010.

[Cardoso et al., 2006] Cardoso, J. M. P., Fernandes, J. M., and Monteiro, M. P. (2006).
Adding Aspect-Oriented Features to MATLAB. In Software Engineering Properties
of Languages and Aspect Technologies, Workshop affiliated with AOSD March 2006,
Germany.

[Cardoso et al., 2013] Cardoso, J. M. P., Fernandes, J. M., Monteiro, M. P., Carvalho,
T., and Nobre, R. (2013). Enriching MATLAB with Aspect-oriented Features for
Developing Embedded Systems. J. Syst. Archit., 59(7):412–428.

[Casey et al., 2010] Casey, A., Li, J., Doherty, J., Chevalier-Boisvert, M., Aslam, T.,
Dubrau, A., Lameed, N., Aslam, A., Garg, R., Radpour, S., Belanger, O. S., Hendren,
L., and Verbrugge, C. (2010). McLab: An Extensible Compiler Toolkit for MATLAB
and Related Languages. In Proceedings of the Third C* Conference on Computer
Science and Software Engineering, C3S2E ’10, pages 114–117, New York, NY, USA.
ACM.

[Chauhan and Kennedy, 2003] Chauhan, A. and Kennedy, K. (2003). Slice-Hoisting
for Array-Size Inference in MATLAB. In Rauchwerger, L., editor, Languages and
Compilers for Parallel Computing, number 2958 in Lecture Notes in Computer Science,
pages 495–508. Springer Berlin Heidelberg. DOI: 10.1007/978-3-540-24644-2_32.

[Chauhan et al., 2003] Chauhan, A., McCosh, C., Kennedy, K., and Hanson, R. (2003).
Automatic Type-Driven Library Generation for Telescoping Languages. In Proceedings
of the 2003 ACM/IEEE Conference on Supercomputing, SC ’03, pages 51–, New York,
NY, USA. ACM.

[Chauveau and Bodin, 1999] Chauveau, S. and Bodin, F. (1999). Menhir: An Environ-
ment for High Performance MATLAB. Sci. Program., 7(3-4):303–312.

342 Bibliography

[Chevalier-Boisvert et al., 2010] Chevalier-Boisvert, M., Hendren, L., and Verbrugge, C.
(2010). Optimizing MATLAB Through Just-in-time Specialization. In Proceedings
of the 19th Joint European Conference on Theory and Practice of Software, Interna-
tional Conference on Compiler Construction, CC’10/ETAPS’10, pages 46–65, Berlin,
Heidelberg. Springer-Verlag.

[Clark et al., 2006] Clark, N., Hormati, A., Mahlke, S., and Yehia, S. (2006). Scalable
Subgraph Mapping for Acyclic Computation Accelerators. In Proceedings of the 2006
International Conference on Compilers, Architecture and Synthesis for Embedded Sys-
tems, CASES ’06, pages 147–157, New York, NY, USA. ACM.

[Cooper and Torczon, 2012] Cooper, K. and Torczon, L. (2012). Engineering a Compiler
(Second Edition). Morgan Kaufmann, Boston.

[De Rose and Padua, 1996] De Rose, L. and Padua, D. (1996). A MATLAB to Fortran
90 Translator and Its Effectiveness. In Proceedings of the 10th International Confer-
ence on Supercomputing, ICS ’96, pages 309–316, New York, NY, USA. ACM.

[De Rose and Padua, 1999] De Rose, L. and Padua, D. (1999). Techniques for the Trans-
lation of MATLAB Programs into Fortran 90. ACM Trans. Program. Lang. Syst.,
21(2):286–323.

[De Rose and Padua, 2003] De Rose, L. and Padua, D. (2003). Benchmarking FAL-
CON’s MATLAB-to-Fortran 90.

[D’Elia and Demetrescu, 2016] D’Elia, D. C. and Demetrescu, C. (2016). Flexible On-
stack Replacement in LLVM. In Proceedings of the 2016 International Symposium on
Code Generation and Optimization, CGO 2016, pages 250–260, New York, NY, USA.
ACM.

[DeRose et al., 1995] DeRose, L., Gallivan, K., Gallopoulos, E., Marsolf, B., and Padua,
D. (1995). A MATLAB Compiler and Restructurer for the Development of Scientific
Libraries and Applications.

[DeRose, L. A., 1996] DeRose, L. A. (1996). Compiler techniques for MATLAB pro-
grams. Ph.D dissertion, University of Illinois at Urbana-Champaign.

[Eichenberger et al., 2004] Eichenberger, A. E., Wu, P., and O’Brien, K. (2004). Vec-
torization for SIMD Architectures with Alignment Constraints. In Proceedings of the
ACM SIGPLAN 2004 Conference on Programming Language Design and Implemen-
tation, PLDI ’04, pages 82–93, New York, NY, USA. ACM.

[Fasthuber et al., 2013] Fasthuber, R., Catthoor, F., Raghavan, P., and Naessens, F.
(2013). Energy-Efficient Communication Processors. Springer New York, New York,
NY.

Bibliography 343

[Fixed-Point Designer, 2016] Fixed-Point Designer (2016). Fixed-Point Designer - MAT-
LAB. http://www.mathworks.com/products/fixed-point-designer/.

[Floc’h et al., 2013] Floc’h, A., Yuki, T., El-Moussawi, A., Morvan, A., Martin, K.,
Naullet, M., Alle, M., L’Hours, L., Simon, N., Derrien, S., Charot, F., Wolinski,
C., and Sentieys, O. (2013). Gecos: A framework for prototyping custom hardware
design flows. In Source Code Analysis and Manipulation (SCAM), 2013 IEEE 13th
International Working Conference on, pages 100–105.

[Furber, 2000] Furber, S. (2000). ARM System-on-Chip Architecture. Addison-Wesley
Professional, Harlow, England; New York, 2 edition edition.

[Garg and Hendren, 2014] Garg, R. and Hendren, L. (2014). Velociraptor: An Embed-
ded Compiler Toolkit for Numerical Programs Targeting CPUs and GPUs. In Proceed-
ings of the 23rd International Conference on Parallel Architectures and Compilation,
PACT ’14, pages 317–330, New York, NY, USA. ACM.

[GCC, 2016] GCC (2016). GCC, the GNU Compiler Collection. https://gcc.gnu.org/.

[Guelton et al., 2014] Guelton, S., Falcou, J., and Brunet, P. (2014). Exploring the
Vectorization of Python Constructs Using Pythran and Boost SIMD. In Proceedings
of the 2014 Workshop on Programming Models for SIMD/Vector Processing, WPMVP
’14, pages 79–86, New York, NY, USA. ACM.

[Haldar et al., 2001a] Haldar, M., Nayak, A., Choudhary, A., and Banerjee, P. (2001a).
A System for Synthesizing Optimized FPGA Hardware from MATLAB. In Proceedings
of the 2001 IEEE/ACM International Conference on Computer-aided Design, ICCAD
’01, pages 314–319, Piscataway, NJ, USA. IEEE Press.

[Haldar et al., 2001b] Haldar, M., Nayak, A., Shenoy, N., Choudhary, A., and Banerjee,
P. (2001b). FPGA hardware synthesis from MATLAB. In Fourteenth International
Conference on VLSI Design, 2001, pages 299–304.

[HDL Coder,] HDL Coder.

[Hendren, 2011] Hendren, L. (2011). Typing Aspects for MATLAB. In Proceedings of
the Sixth Annual Workshop on Domain-specific Aspect Languages, DSAL ’11, pages
13–18, New York, NY, USA. ACM.

[Hendren et al., 2011] Hendren, L., Doherty, J., Dubrau, A., Garg, R., Lameed, N., Rad-
pour, S., Aslam, A., Aslam, T., Casey, A., Chevalier Boisvert, M., Li, J., Verbrugge, C.,
and Savary Belanger, O. (2011). McLAB: Enabling Programming Language, Compiler
and Software Engineering Research for Matlab. In Proceedings of the ACM Interna-
tional Conference Companion on Object Oriented Programming Systems Languages
and Applications Companion, OOPSLA ’11, pages 195–196, New York, NY, USA.
ACM.

344 Bibliography

[i7-3770 Processor, 2016] i7-3770 Processor (2016). Intel® Core™ i7-3770 Processor (8M
Cache, up to 3.90 GHz) Specifications. http://ark.intel.com/products/65719/Intel-
Core-i7-3770-Processor-8M-Cache-up-to-3_90-GHz.

[i7-3820 Processor, 2016] i7-3820 Processor (2016). Intel® Core™ i7-
3820 Processor (10M Cache, up to 3.80 GHz) Specifications.
http://ark.intel.com/products/63698/Intel-Core-i7-3820-Processor-10M-Cache-
up-to-3_80-GHz.

[IEEE-802.11, 2009] IEEE-802.11 (2009). Ieee standard association - ieee get program.
http://standards.ieee.org/getieee802/download/802.11n-2009.pdf.

[Intel, 2016] Intel (2016). Intel | data center solutions, iot, and pc innovation.
http://www.intel.com/content/www/us/en/homepage.html.

[Jahanzeb et al., 2014] Jahanzeb, M., Palanisamy, A., Sjölund, M., and Fritzson, P.
(2014). A MATLAB to Modelica Translator. pages 1285–1294.

[Joisha and Banerjee, 2003a] Joisha, P. G. and Banerjee, P. (2003a). The MAGICA
Type Inference Engine for MATLAB ®. In Proceedings of the 12th Interna-
tional Conference on Compiler Construction, CC’03, pages 121–125, Berlin, Heidel-
berg. Springer-Verlag.

[Joisha and Banerjee, 2003b] Joisha, P. G. and Banerjee, P. (2003b). Static Array Stor-
age Optimization in MATLAB. In Proceedings of the ACM SIGPLAN 2003 Confer-
ence on Programming Language Design and Implementation, PLDI ’03, pages 258–268,
New York, NY, USA. ACM.

[Joisha and Banerjee, 2006] Joisha, P. G. and Banerjee, P. (2006). An Algebraic Array
Shape Inference System for MATLAB®. ACM Trans. Program. Lang. Syst., 28(5):848–
907.

[Joisha and Banerjee, 2007] Joisha, P. G. and Banerjee, P. (2007). A Translator System
for the MATLAB Language: Research Articles. Softw. Pract. Exper., 37(5):535–578.

[Joisha et al., 2001] Joisha, P. G., Shenoy, U. N., and Banerjee, P. (2001). Computing
Array Shapes in MATLAB. In Dietz, H. G., editor, Languages and Compilers for
Parallel Computing, number 2624 in Lecture Notes in Computer Science, pages 395–
410. Springer Berlin Heidelberg. DOI: 10.1007/3-540-35767-X_26.

[Jones et al., 1993] Jones, N. D., Gomard, C. K., and Sestoft, P. (1993). Partial Eval-
uation and Automatic Program Generation. Peter Sestoft. Google-Books-ID: 7rPP-
ScYo8w8C.

Bibliography 345

[Kawabata et al., 2004] Kawabata, H., Suzuki, M., and Kitamura, T. (2004). A
MATLAB-Based Code Generator for Sparse Matrix Computations. In Chin, W.-
N., editor, Programming Languages and Systems, number 3302 in Lecture Notes in
Computer Science, pages 280–295. Springer Berlin Heidelberg. DOI: 10.1007/978-3-
540-30477-7_19.

[Kennedy and Allen, 2002] Kennedy, K. and Allen, J. R. (2002). Optimizing Compilers
for Modern Architectures: A Dependence-based Approach. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA.

[Kennedy and McKinley, 1990] Kennedy, K. and McKinley, K. S. (1990). Loop Distribu-
tion with Arbitrary Control Flow. In Proceedings of the 1990 ACM/IEEE Conference
on Supercomputing, Supercomputing ’90, pages 407–416, Los Alamitos, CA, USA.
IEEE Computer Society Press.

[Khoury et al., 2011] Khoury, R., Burgstaller, B., and Scholz, B. (2011). Accelerating
the Execution of Matrix Languages on the Cell Broadband Engine Architecture. IEEE
Transactions on Parallel and Distributed Systems, 22(1):7–21.

[Krukowski and Kale, 1999] Krukowski, A. and Kale, I. (1999). Simulink/matlab-tovhdl
route for full-custom/fpga rapid prototyping. In of DSP Algorithms, Matlab DSP
Conference (DSP’99, pages 16–17.

[Kumar and Hendren, 2014] Kumar, V. and Hendren, L. (2014). MIX10: Compiling
MATLAB to X10 for High Performance. In Proceedings of the 2014 ACM Interna-
tional Conference on Object Oriented Programming Systems Languages & Applications,
OOPSLA ’14, pages 617–636, New York, NY, USA. ACM.

[Lameed and Hendren, 2011] Lameed, N. and Hendren, L. (2011). Staged Static Tech-
niques to Efficiently Implement Array Copy Semantics in a MATLAB JIT Compiler. In
Knoop, J., editor, Compiler Construction, number 6601 in Lecture Notes in Computer
Science, pages 22–41. Springer Berlin Heidelberg. DOI: 10.1007/978-3-642-19861-8_3.

[Lameed and Hendren, 2013a] Lameed, N. A. and Hendren, L. J. (2013a). A Modular
Approach to On-stack Replacement in LLVM. In Proceedings of the 9th ACM SIG-
PLAN/SIGOPS International Conference on Virtual Execution Environments, VEE
’13, pages 143–154, New York, NY, USA. ACM.

[Lameed and Hendren, 2013b] Lameed, N. A. and Hendren, L. J. (2013b). Optimizing
MATLAB Feval with Dynamic Techniques. In Proceedings of the 9th Symposium on
Dynamic Languages, DLS ’13, pages 85–96, New York, NY, USA. ACM.

[Larsen and Amarasinghe, 2000] Larsen, S. and Amarasinghe, S. (2000). Exploiting Su-
perword Level Parallelism with Multimedia Instruction Sets. In Proceedings of the
ACM SIGPLAN 2000 Conference on Programming Language Design and Implemen-
tation, PLDI ’00, pages 145–156, New York, NY, USA. ACM.

346 Bibliography

[Leupers and Marwedel, 1996] Leupers, R. and Marwedel, P. (1996). Instruction Selec-
tion for Embedded DSPs with Complex Instructions. In Proceedings of the Conference
on European Design Automation, EURO-DAC ’96/EURO-VHDL ’96, pages 200–205,
Los Alamitos, CA, USA. IEEE Computer Society Press.

[Leupers and Bashford, 2000] Leupers, R. L. and Bashford, S. (2000). Graph-based
Code Selection Techniques for Embedded Processors. ACM Trans. Des. Autom. Elec-
tron. Syst., 5(4):794–814.

[Levine, 2009] Levine, J. (2009). flex & bison. O’Reilly Media, Sebastopol, CA, 1 edition
edition.

[Lezos et al., 2015] Lezos, C., Dimitroulakos, G., and Masselos, K. (2015). Reuse Dis-
tance Analysis for Locality Optimization in Loop-dominated Applications. In Pro-
ceedings of the 2015 Design, Automation & Test in Europe Conference & Exhibition,
DATE ’15, pages 1237–1240, San Jose, CA, USA. EDA Consortium.

[Lezos et al., 2016] Lezos, C., Latifis, I., Dimitroulakos, G., and Masselos, K. (2016).
Compiler-Directed Data Locality Optimization in MATLAB. In Proceedings of
the 19th International Workshop on Software and Compilers for Embedded Systems,
SCOPES ’16, pages 6–9, New York, NY, USA. ACM.

[Li et al., 2006] Li, J., Zhang, Q., Xu, S., and Huang, B. (2006). Optimizing Dynamic
Binary Translation for SIMD Instructions. In Proceedings of the International Sym-
posium on Code Generation and Optimization, CGO ’06, pages 269–280, Washington,
DC, USA. IEEE Computer Society.

[Li et al., 2009] Li, T., Jigang, W., Lam, S. K., Srikanthan, T., and Lu, X. (2009).
Efficient Heuristic Algorithm for Rapid Custom-Instruction Selection. In Eighth
IEEE/ACIS International Conference on Computer and Information Science, 2009.
ICIS 2009, pages 266–270.

[Li and Hendren, 2014] Li, X. and Hendren, L. (2014). Mc2for: A tool for automat-
ically translating MATLAB to FORTRAN 95. In 2014 Software Evolution Week -
IEEE Conference on Software Maintenance, Reengineering and Reverse Engineering
(CSMR-WCRE), pages 234–243.

[Linux, 2016] Linux (2016). The leading os for pc, tablet, phone and cloud | ubuntu.
http://www.ubuntu.com/.

[Lopes and Auler, 2014] Lopes, B. C. and Auler, R. (2014). Getting Started with LLVM
Core Libraries. Packt Publishing.

[Maleki et al., 2011] Maleki, S., Gao, Y., Garzarán, M. J., Wong, T., and Padua, D. A.
(2011). An Evaluation of Vectorizing Compilers. In Proceedings of the 2011 Interna-

Bibliography 347

tional Conference on Parallel Architectures and Compilation Techniques, PACT ’11,
pages 372–382, Washington, DC, USA. IEEE Computer Society.

[Manilov et al., 2015] Manilov, S., Franke, B., Magrath, A., and Andrieu, C. (2015).
Free Rider: A Tool for Retargeting Platform-Specific Intrinsic Functions. In Proceed-
ings of the 16th ACM SIGPLAN/SIGBED Conference on Languages, Compilers and
Tools for Embedded Systems 2015 CD-ROM, LCTES’15, pages 5:1–5:10, New York,
NY, USA. ACM.

[Mathematica, 2014] Mathematica (2014). Wolfram Mathematica: Modern Technical
Computing. https://www.wolfram.com/mathematica/.

[MathWorks Coder, 2016] MathWorks Coder (2016). MATLAB Coder.
http://www.mathworks.com/products/matlab-coder/.

[MathWorks Embedded Coder, 2016] MathWorks Embedded Coder (2016). Code Gen-
eration - Embedded Coder - Simulink.

[MATLAB, 2016] MATLAB (2016). MATLAB - the Language of Technical Computing.
http://www.mathworks.com/products/matlab.

[MATLAB compiler, 2016] MATLAB compiler (2016). Matlab com-
piler - build standalone applications from matlab programs.
http://www.mathworks.com/products/compiler/index.html.

[MATLAB fi, 2016] MATLAB fi (2016). Construct fixed-point numeric object - MAT-
LAB fi. http://www.mathworks.com/help/fixedpoint/ref/fi.html.

[McFarlin and Chauhan, 2007] McFarlin, D. and Chauhan, A. (2007). Library Function
Selection in Compiling Octave. In 2007 IEEE International Parallel and Distributed
Processing Symposium, pages 1–8.

[Mei et al., 2003] Mei, B., Vernalde, S., Verkest, D., Man, H. D., and Lauwereins, R.
(2003). ADRES: An Architecture with Tightly Coupled VLIW Processor and Coarse-
Grained Reconfigurable Matrix. In Cheung, P. Y. K. and Constantinides, G. A.,
editors, Field Programmable Logic and Application, number 2778 in Lecture Notes in
Computer Science, pages 61–70. Springer Berlin Heidelberg. DOI: 10.1007/978-3-540-
45234-8_7.

[Menon and Pingali, 1999] Menon, V. and Pingali, K. (1999). A Case for Source-level
Transformations in MATLAB. In Proceedings of the 2Nd Conference on Domain-
specific Languages, DSL ’99, pages 53–65, New York, NY, USA. ACM.

[Micheli, 1994] Micheli, G. D. (1994). Synthesis and Optimization of Digital Circuits.
McGraw-Hill Higher Education, 1st edition.

348 Bibliography

[MSVC, 2016] MSVC (2016). Visual C++ in Visual Studio 2015.
https://msdn.microsoft.com/en-us/library/60k1461a.aspx.

[Murray and Franke, 2012] Murray, A. and Franke, B. (2012). Compiling for Automati-
cally Generated Instruction Set Extensions. In Proceedings of the Tenth International
Symposium on Code Generation and Optimization, CGO ’12, pages 13–22, New York,
NY, USA. ACM.

[Naishlos, 2004] Naishlos, D. (2004). Autovectorization in GCC. In Proceedings of the
GCC Developers’ Summit, pages 105–117.

[NEON, 2016] NEON (2016). NEON - ARM.
http://www.arm.com/products/processors/technologies/neon.php.

[NEON reference manual, 2016] NEON reference manual (2016). Arm information
center.
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.den0018a/index.html.

[Nuzman et al., 2011] Nuzman, D., Dyshel, S., Rohou, E., Rosen, I., Williams, K., Yuste,
D., Cohen, A., and Zaks, A. (2011). Vapor SIMD: Auto-vectorize Once, Run Every-
where. In Proceedings of the 9th Annual IEEE/ACM International Symposium on
Code Generation and Optimization, CGO ’11, pages 151–160, Washington, DC, USA.
IEEE Computer Society.

[Nuzman and Henderson, 2006] Nuzman, D. and Henderson, R. (2006). Multi-platform
Auto-vectorization. In Proceedings of the International Symposium on Code Gen-
eration and Optimization, CGO ’06, pages 281–294, Washington, DC, USA. IEEE
Computer Society.

[Nuzman et al., 2006] Nuzman, D., Rosen, I., and Zaks, A. (2006). Auto-vectorization of
Interleaved Data for SIMD. In Proceedings of the 27th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’06, pages 132–143, New
York, NY, USA. ACM.

[Nuzman and Zaks, 2008] Nuzman, D. and Zaks, A. (2008). Outer-loop Vectorization:
Revisited for Short SIMD Architectures. In Proceedings of the 17th International
Conference on Parallel Architectures and Compilation Techniques, PACT ’08, pages
2–11, New York, NY, USA. ACM.

[Prasad et al., 2011] Prasad, A., Anantpur, J., and Govindarajan, R. (2011). Automatic
Compilation of MATLAB Programs for Synergistic Execution on Heterogeneous Pro-
cessors. In Proceedings of the 32Nd ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’11, pages 152–163, New York, NY, USA.
ACM.

Bibliography 349

[Prieto et al., 2005] Prieto, M., Pinuel, L., Catthoor, F., Tirado, F., and Tenllado, C.
(2005). Improving superword level parallelism support in modern compilers. In 2005
Third IEEE/ACM/IFIP International Conference on Hardware/Software Codesign
and System Synthesis (CODES+ISSS’05), pages 303–308.

[Quinn et al., 1998a] Quinn, M., Malishevsky, A., and Seelam, N. (1998a). Otter: bridg-
ing the gap between MATLAB and ScaLAPACK. In The Seventh International Sympo-
sium on High Performance Distributed Computing, 1998. Proceedings, pages 114–121.

[Quinn et al., 1998b] Quinn, M., Malishevsky, A., Seelam, N., and Zhao, Y. (1998b).
Preliminary results from a parallel MATLAB compiler. In Parallel Processing Sympo-
sium, 1998. IPPS/SPDP 1998. Proceedings of the First Merged International Parallel
Processing Symposium and Symposium on Parallel and Distributed Processing 1998,
pages 81–87.

[Rasbian, 2016] Rasbian (2016). Frontpage - raspbian. https://www.raspbian.org/.

[Raspberry Pi, 2016] Raspberry Pi (2016). Raspberry pi products.
https://www.raspberrypi.org/products/.

[Raspberry Pi 2, 2016] Raspberry Pi 2 (2016). Raspberry pi 2 model b.
https://www.raspberrypi.org/products/raspberry-pi-2-model-b/.

[Raspberry Pi 3, 2016] Raspberry Pi 3 (2016). Raspberry pi 3 model b.
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/.

[Ren et al., 2003] Ren, G., Wu, P., and Padua, D. (2003). A Preliminary Study on
the Vectorization of Multimedia Applications for Multimedia Extensions. In In 16th
International Workshop of Languages and Compilers for Parallel Computing, pages
420–435.

[Ren et al., 2005] Ren, G., Wu, P., and Padua, D. (2005). An Empirical Study On the
Vectorization of Multimedia Applications for Multimedia Extensions. In 19th IEEE
International Parallel and Distributed Processing Symposium, pages 89b–89b.

[Ren et al., 2006] Ren, G., Wu, P., and Padua, D. (2006). Optimizing Data Permuta-
tions for SIMD Devices. In Proceedings of the 27th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’06, pages 118–131, New
York, NY, USA. ACM.

[Rose et al., 1995] Rose, L. D., Gallivan, K., Gallopoulos, E., Marsolf, B., and Padua, D.
(1995). FALCON: A MATLAB interactive restructuring compiler. In Huang, C.-H.,
Sadayappan, P., Banerjee, U., Gelernter, D., Nicolau, A., and Padua, D., editors, Lan-
guages and Compilers for Parallel Computing, number 1033 in Lecture Notes in Com-
puter Science, pages 269–288. Springer Berlin Heidelberg. DOI: 10.1007/BFb0014205.

350 Bibliography

[Roy and Banerjee, 2004] Roy, S. and Banerjee, P. (2004). An algorithm for converting
floating-point computations to fixed-point in MATLAB based FPGA design. In Design
Automation Conference, 2004. Proceedings. 41st, pages 484–487.

[Scharwaechter et al., 2007] Scharwaechter, H., Leupers, R., Ascheid, G., Meyr, H.,
Youn, J. M., and Paek, Y. (2007). A code-generator generator for Multi-Output
Instructions. In 2007 5th IEEE/ACM/IFIP International Conference on Hardware/-
Software Codesign and System Synthesis (CODES+ISSS), pages 131–136.

[Shei et al., 2009] Shei, C. Y., Chauhan, A., and Shaw, S. (2009). Compile-time disam-
biguation of MATLAB types through concrete interpretation with automatic run-time
fallback. In 2009 International Conference on High Performance Computing (HiPC),
pages 264–273.

[Shei et al., 2011] Shei, C.-Y., Yoga, A., Ramesh, M., and Chauhan, A. (2011). MAT-
LAB Parallelization through Scalarization. In 2011 15th Workshop on Interaction
between Compilers and Computer Architectures (INTERACT), pages 44–53.

[Shin, 2007] Shin, J. (2007). Introducing Control Flow into Vectorized Code. In Proceed-
ings of the 16th International Conference on Parallel Architecture and Compilation
Techniques, PACT ’07, pages 280–291, Washington, DC, USA. IEEE Computer Soci-
ety.

[Shin et al., 2005] Shin, J., Hall, M., and Chame, J. (2005). Superword-level parallelism
in the presence of control flow. In International Symposium on Code Generation and
Optimization, pages 165–175.

[Simulink Coder, 2016] Simulink Coder (2016). Automatic Code Generation - Simulink
Coder.

[Smith, 1991] Smith, L. L. (1991). Vectorizing C compilers: how good are they? In
Proceedings of the 1991 ACM/IEEE Conference on Supercomputing, 1991. Supercom-
puting ’91, pages 544–553.

[SoC Embedded Design Suite, 2016] SoC Embedded Design Suite (2016). SoC EDS -
Overview.

[SSE, 2016] SSE (2016). SSE - ISA Extensions | Intel® Software.
https://software.intel.com/en-us/isa-extensions.

[Stripf et al., 2013] Stripf, T., Oey, O., Bruckschloegl, T., Becker, J., Rauwerda, G.,
Sunesen, K., Goulas, G., Alefragis, P., Voros, N. S., Derrien, S., Sentieys, O., Kavva-
dias, N., Dimitroulakos, G., Masselos, K., Kritharidis, D., Mitas, N., and Perschke, T.
(2013). Compiling Scilab to high performance embedded multicore systems. Micro-
processors and Microsystems, 37(8, Part C):1033–1049.

Bibliography 351

[Stripf et al., 2012] Stripf, T., Oey, O., Bruckschloegl, T., Koenig, R., Huebner, M.,
Becker, J., Rauwerda, G., Sunesen, K., Kavvadias, N., Dimitroulakos, G., Masse-
los, K., Kritharidis, D., Mitas, N., Goulas, G., Alefragis, P., Voros, N. S., Derrien,
S., Menard, D., Sentieys, O., Goehringer, D., and Perschke, T. (2012). A flexible
approach for compiling scilab to reconfigurable multi-core embedded systems. In
2012 7th International Workshop on Reconfigurable Communication-centric Systems-
on-Chip (ReCoSoC), pages 1–8.

[Stuber et al., 2004] Stuber, G. L., Barry, J. R., McLaughlin, S. W., Li, Y., Ingram,
M. A., and Pratt, T. G. (2004). Broadband MIMO-OFDM wireless communications,
volume 92.

[Sui et al., 2016] Sui, Y., Fan, X., Zhou, H., and Xue, J. (2016). Loop-oriented Array-
and Field-sensitive Pointer Analysis for Automatic SIMD Vectorization. In Proceedings
of the 17th ACM SIGPLAN/SIGBED Conference on Languages, Compilers, Tools,
and Theory for Embedded Systems, LCTES 2016, pages 41–51, New York, NY, USA.
ACM.

[Thoma et al., 2012] Thoma, Y., Messerli, E., Starkier, M., Molla, D., Masle, S., Bianchi,
C., Gubler, O., Magliocco, C., Crausaz, P., Tâche, S., Prêtre, D., and Trolliet, G.
(2012). Math2mat: From Octave/Matlab to VHDL. In 2012 NASA/ESA Conference
on Adaptive Hardware and Systems (AHS), pages 264–271.

[Trifunovic et al., 2009] Trifunovic, K., Nuzman, D., Cohen, A., Zaks, A., and Rosen,
I. (2009). Polyhedral-Model Guided Loop-Nest Auto-Vectorization. In Proceedings
of the 2009 18th International Conference on Parallel Architectures and Compilation
Techniques, PACT ’09, pages 327–337, Washington, DC, USA. IEEE Computer Soci-
ety.

[Weijers et al., 2006] Weijers, J.-W., Derudder, V., Janssens, S., Petré, F., and Bour-
doux, A. (2006). From MIMO-OFDM Algorithms to a Real-Time Wireless Prototype:
A Systematic Matlab-to-Hardware Design Flow. EURASIP Journal on Advances in
Signal Processing, 2006(1):039297.

[Windows IoT, 2016] Windows IoT (2016). Develop windows 10 iot apps on raspberry
pi 3 and arduino - windows iot. https://developer.microsoft.com/en-us/windows/iot.

[Wu et al., 2005] Wu, P., Eichenberger, A. E., and Wang, A. (2005). Efficient SIMD
Code Generation for Runtime Alignment and Length Conversion. In Proceedings of
the International Symposium on Code Generation and Optimization, CGO ’05, pages
153–164, Washington, DC, USA. IEEE Computer Society.

[x86 reference manual, 2016] x86 reference manual (2016). In-
tel® 64 and IA-32 Architectures Optimization Reference Manual.

352 Bibliography

http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-
32-architectures-optimization-manual.html.

[XILINX, 2016] XILINX (2016). Programmable Devices.

[Zhang et al., 2013] Zhang, J., Xiang, D., Li, T., and Pan, Y. (2013). M2m: A simple
Matlab-to-MapReduce translator for cloud computing. Tsinghua Science and Tech-
nology, 18(1):1–9.

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Listings
	Introduction
	Need for Applications Development in High Level Languages
	Field of Application
	Advantage of Generating C Code Exploiting Custom Instructions
	Tools and Methodologies That Do Not Exploit Custom Instructions of Targeted Processors
	An Example of MATLAB Code That Cannot Be Automatically Vectorized

	Brief Review of Related Work
	Brief Presentation of the Developed Compiler/Innovative Features
	Presentation of Compiler's Infrastructure
	Innovations and Contributions of the Compiler

	Thesis Organization

	Related work
	Type Inference Approaches
	MATLAB-to-C Compilation
	MATLAB Compilation to Hardware
	MathWorks Commercial Tools
	Auto-vectorization
	Auto-vectorizing C compilers
	Limitations of Auto-vectorization
	Auto-vectorization Evaluation
	Comparison against auto-vectorizing C compilers

	Comparison of the Proposed Compiler Against State-of-the-art
	MATLAB to FORTRAN
	MATLAB Just-in-time Compilation
	Aspect oriented Approaches

	Compiling MATLAB to Other Efficient Execution Environments

	Compiler's Front-end
	MATLAB Input Code
	MATLAB Language Subset That Is Not Supported
	Built-in functions
	Annotations

	Parametrized Processor Model
	Description of Customized Instructions in XML

	Front-end
	Conclusion

	Compiler's Middle-layer
	Abstract Syntax Tree Representation
	Type Inference
	Function Calls Type Inference
	Intrinsics Type Inference
	Intrinsics Type Inference Example
	Key Contribution of Type Inference

	Instruction Selection
	Instruction Selection Example
	Generated Custom Instructions of benchmark

	Support for Data Parallel Execution - AST Decomposition
	AST Decomposition
	Packing/Unpacking statements Introduction

	Redundant Packing/Unpacking Elimination
	Inserted/Removed Packing and Unpacking Statements of Benchmark

	Conclusion

	Compiler's Back-end (Code generation)
	Structure of Generated C Code
	Code Generation For Control Flow Statements
	Fixed Point Code Generation
	Code Generation of Derived Data Types
	Code Generation For MATLAB Operations - customized instructions
	Scalarized Code Generation
	Code Generation of Packing/Unpacking Statements
	Vectorized Code Generation
	Code Generation statistics of benchmark
	Conclusion

	Evaluation of the Compiler
	Executive Summary
	Executive Summary of Performance on the ARM Architectures
	Executive Summary of Performance on the x86 Architectures
	 Executive Summary of Performance on Application Specific Instruction Set Processors

	Experimental Setup
	Experimental Environment and Configurations
	Abbreviations of Diagrams and Tables
	Benchmark Characteristics
	Architectures Selection

	Results from ARM Architectures
	Presentation of ARM Architectures
	Performance of Generated Code on Raspberry PI 2
	Performance of Generated Code on Raspberry PI 3

	Results from x86 Architectures
	Presentation of x86 Architectures
	Performance of Generated Code on Intel Sandy Bridge (i7-3820)
	Performance of Generated Code on Intel Ivy Bridge (i7-3770)

	Results from BoT ASIP
	Presentation of BoT Architecture
	Presentation and Discussion of Results on BoT Architecture

	Results from tinyBoT ASIP
	Presentation and Discussion of Results on TinyBoT Architecture

	Comparison of the Proposed Compiler at the Different Architectures
	Comparison of Generated Code by MathWorks and Proposed Compiler on ARM Processors
	Comparison of Generated Code by MathWorks and Proposed Compiler on x86 Processors
	Comparison of the Proposed Compiler on TinyBoT and BoT ASIPs

	Comparison Against MathWorks Coder
	Comparison of Generated Code Without Intrinsics Against MathWorks Coder on ARM and x86 Processors
	Comparison of Generated Code Without Intrinsics Against MathWorks Coder on TinyBoT ASIP

	Examination of Clang/LLVM Aggressive Auto-vectorization Options
	Auto-vectorization Evaluation for C compilers
	Report of Successfully Auto-vectorized Loops by C Compilers
	Comparison of Auto-vectorizing C Compilers

	Comparison of C Compilers on the Generated Code
	Compilation Times
	Conclusion

	Conclusion and Future Work
	Contribution of Dissertation
	Future Work

	Appendix
	Compiler Options
	Compilation Options Used in The Experiments
	XML description examples of the target architectures
	XML description of Bot Processor
	XML description of tinyBot Processor
	XML description of ARM and x86 Architectures

	Comprehensive Results of Aggressive Clang Optimization Options
	Results Compiling with Aggressive Clang Optimization Options on Raspberry PI 2
	Results Compiling with Aggressive Clang Optimization Options on i7-3770

	Performance of Vectorized Code Against Compiler's Scalarized Code
	Performance of Vectorized Code Against Compiler's Scalarized Code on Raspberry PI 2
	Performance of Vectorized Code Against Compiler's Scalarized Code on Raspberry PI 3
	Performance of Vectorized Code Against Compiler's Scalarized Code on x86 Desktop with i7-3820 Processor
	Performance of Vectorized Code Against Compiler's Scalarized Code on x86 Desktop with i7-3770 Processor

	Performance of MathWorks and Compiler's Scalarized Code
	Performance of MathWorks Generated Code, Compiler's Scalarized Generated Code and Non-vectorized Generated Code on Raspberry PI 2
	Performance of MathWorks Generated Code, Compiler's Scalarized Generated Code and Non-vectorized Generated Code on Raspberry PI 3
	Performance of MathWorks Generated Code, Compiler's Scalarized Generated Code and Non-vectorized Generated Code on Desktop with i7-3820 Processor
	Performance of MathWorks Generated Code, Compiler's Scalarized Generated Code and Non-vectorized Generated Code on Desktop with i7-3770 Processor

	Performance of Generated Code on x86 Using Alternative Options
	Performance of Generated Code on x86 Architectures Producing x64 Code
	Performance of Generated Code on x86 Architectures Producing x86 Code with SSE
	Performance of Generated Code on x86 architectures Producing x64 Code with SSE

