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Abstract 

Over the last 20 years Artificial Intelligence (AI) techniques have being accomplished 

a significant deployment and using in many aspects of human activity. 

By giving a definition we could say that Artificial intelligence (AI) systems are 

machine-based systems with varying levels of autonomy that can, for a given set of 

human-defined objectives, make predictions, recommendations or decisions. AI 

techniques are increasingly using massive amounts of alternative data sources and data 

analytics referred to as ‘big data’. Such data feed machine learning (ML) models which 

use these kind of data, to learn and improve predictability and performance 

automatically through experience, without being programmed to do so by humans. 
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The usage of such technologies offer competitive advantages for firms like improving 

firms’ efficiency through cost reduction, enhancing productivity which drives to higher 

profitability, improving the quality of services and products offered to consumers.    

In this thesis we are going to focus on the AI application and especially, on analytics 

with graphs in finance. 

The financial sector is one of the most prominent, significant and prone to technological 

advances which increased information exchange and the necessity to assess and 

evaluate these large amount of data effectively. 

During this master Thesis we are going to see graph use cases like Customer Experience 

with a 360-Degree View, Compliance Management, Data Lineage & Metadata 

Management, Financial Crime Types and Recommender Systems & Conversational AI. 

(1) 

In a next level we will dive into, how all these flooding of financial news sources 

reporting on companies, markets, currencies and stocks can be, conveniently, stored   in 

a graph which can be used to drive new insights through answering complex queries 

using high level declarative languages, what tools are utilized, making it possible to 

mine data in structured representational forms for strategic decision making.  

And lastly we will implement a graph and apply an evaluation in order to extract graph 

statistics and performing machine learning models for binary classification. 
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FIRST PART 

Use Cases 

1. Customer Experience with a 360-Degree View 

One of the main goals of companies, especially in the financial sector, is to become 

aware of their customers, the relationships their customers hold with each other, 

products, relationships between different products and much more to provide customers 

with what they want in a accurate, effective and personalized way.  

Customer expectations are rising. In today’s competitive landscape, especially in the 

financial sector, customer service has become a significant differentiator. Companies 

are striving to meet these heightened expectations as part of their primary goals.  

The massive use of technology have made possible the collection of large sum of 

information about customers, including: 

• Master data — name, age, gender, address  

• Transactions — purchases, types of items bought, purchase times  

• Big data — call center logs, traffic lines, web click streams, SNS activities  

• Predictions — classification, taste signatures (often created by different models) 

(2)     

All of these efforts require a 360-degree view of customers, and that’s something most 

financial services firms simply don’t have. Data tends to be locked away in silos across 

the organization without any way to leverage the connections between data and 

innovate based on those connections. Harnessing the power of connected data (i.e., data 

relationships) is essential to sustainable competitive advantage in today’s ever-more-

connected, ever-more competitive world. 

But these silos of data can be logically integrated on graphs and the graph users can 

simply view all of the surrounding information of one entity (the customer). With 

graphs, decision makers can gain a more comprehensive view of their customers—the 

relationships the customers hold with each other, the relationships between all the 

purchased products, and more. Then, graph users can run algorithms to discover even 

more fine-grained detail about the customer. 
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By inspecting all these knowledge about one particular customer is important to realize 

the customer and to execute customer `s total analysis, to discover which predictions 

(usually created through machine learning such as Enhanced Customer Relations) are 

authentic and why. 

(3) (4) 

 

1.1 Use Case  

The e-Commerce has become one of the most influential and substantial factor for the 

survival and prosperity of business in the contemporary global surrounding. As online 

competition becomes fiercer over time, online enterprises face increasingly more 

sophisticated e-Customers. On line enterprises have to meet e-Customers' expectations 

and to cause positive online shopping experience and satisfaction. Therefore, the design 

and construction of a 360-degree view of customers and their behavior must be 

prioritized, since "companies that make extensive use of customer analytics are more 

likely to have a considerable impact on corporate performance, outperforming its 

competitors".  

The part '360-degree' denotes 'complete' or 'all-around', whilst the part 'view' refers to 

the ability to see something from a particular place or angle. Therefore, the term '360-

degree view of a customer' suggests the ability to use the best available and most 

relevant information about each customer to enhance sales, marketing, and servicing 

decisions. 

The technological capacity of using streaming 360-degree videos in the customer 

virtual navigation, during e-shopping, will open a new era in the field of customer 

experience. However, streaming these videos requires larger bandwidth and less latency 

than what is found in conventional video streaming systems. Rate adaptation of tiled 

videos and view prediction techniques are used to solve this problem. 

A potential solution to this challenge could be use of the Navigation Graph, which 

models viewing behaviors in the temporal (segments) and the spatial (tiles) domains to 

perform the rate adaptation of tiled media associated with the view prediction. The 

Navigation Graph allows online enterprises to perform view prediction more easily by 

sharing the viewing model.   
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The server-client model is used. The server stores the video data as segments with 

multiple quality choices and uses the media presentation description file to provide 

video information to the clients. As the clients request the video data, the server 

provides them with information from the MPD file. The clients can then also request 

the video segments with the proper quality to allow for continuous play. The server can 

send the segments as soon as requests are received. The clients are responsible for rate 

adaptation. This allows the video to be viewed on various types of devices without 

changing the video. Initially, 360-degree video streaming services streamed the whole 

video to the viewers and the viewers extracted the viewports from the video they 

wanted. 

The Navigation Graph is a graph that consists of Vertices (set of tiles in a segment) and 

Edges (transition probabilities between vertices). 

360-degree videos are created by stitching together multiple videos taken by multiple 

outward looking cameras that capture the whole surrounding sphere. The sphere is then 

projected into the 2D plane to make the 360-degree video easier to process and store. 

Therefore, the original videos are cut into smaller videos, called tiles, and encoded 

independently with different qualities (representations). The encoded and stored video 

data are called segments, and they are delivered to clients upon request. 

A cross-user learning based system (CLS) [20] gathers the users’ fixation data on the 

server and gives more weight to the tiles with more fixations. It can also utilize prior 

viewers’ fixation data to optimize the weighting coefficients. It also performs the 

clustering of the fixations to classify clients and chooses the weighting coefficients that 

should be used for each client. A viewport prediction is critical for lowering the required 

bandwidth because prediction error leads to waste bandwidth. While the viewport 

predictions rely solely on viewport data from the viewer him/herself, a cross-user 

viewport prediction could further improve the prediction accuracy since the viewport 

trajectory of multiple viewers could be correlated. 

The Navigation Graph concept can be useful for both single-user view prediction and 

cross-user view prediction. Moreover, the Navigation Graph can be used to encode 

important trajectories in videos using a powerful computer on the video server side and 

can then share this information with clients. 
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The duration D of the segments is the basic unit of rate adaptation and is usually 

between 1 to 15 seconds long. 

 

 

 

 

Figure 1 Segments,Tiles,Viewports and View 

(Navigation Graph for Tiled Media Streaming, Jounsup Park, Klara Nahrstedt, 2019) 

Figure 1 shows the segments, tiles, viewports and views. The tiles cut the video into 

smaller spatial regions, and then, the viewport can span multiple tiles within a video 

frame. A video segment consists of multiple consecutive frames, and viewport can 

change every frame. We define a "view" as the union of all visible tiles within a segment 

duration D. Viewport usually means the visible part of the video, but the view is defined 

as a set of tiles in specific segment that is used for recovering viewports in the video 

segment. Since the viewers move continuously, the viewport can change within the 

duration of a segment. 

We define the view v as a tuple consisting of a segment index l and a set of visible tiles 

s, where s is the union of all visible tiles in the duration of a segment. The temporal 

variation of the view must be considered to perform the future view prediction and 

manage the playback buffer. Therefore, a model that describes the relationship between 

the views in series of segments is required. We introduce the Navigation Graph G, 

which is a directed graph describing view transitions. 

G = (V, E) 

The vertices are defined as  
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V = {v |v = (l, s),l ∈ {1, 2, ..., L} and s ∈ S} , 

 Where l is a segment index, L is the number of segments in a video and S is the set of 

s configuring the views that clients have seen at least once. E is a set of edges connecting 

the vertices, where at least one transition happens. 

E = { (vi , v j)| vi, j  ∈ V, w(vi , v j) = p(v j | vi), i , j ∈ 1, ..., N }, 

Where w (vi , v j) is a weight function. We also define the matrix Eˆ which consists of 

the transition probabilities from one vertex to other vertices connected by edges in E 

 

𝐸 = 𝑅𝑁𝑋𝑁 = (
𝑝(𝑣1|𝑣1), 𝑝(𝑣1|𝑣2), ⋯ , 𝑝(𝑣1|𝑣𝑛)

⋮ ⋱ ⋮
𝑝(𝑣𝑁|𝑣1), 𝑝(𝑣𝑁|𝑣2), ⋯ , 𝑝(𝑣𝑛|𝑣𝑛)

) 

 

Where N is the number of vertices. The maximum number of vertices is 2 T × L, where 

the T is the number of tiles and L denotes the number of segments. However, N counts 

only the vertices that have been visited at least once. The Navigation Graph is expended 

whenever it encounters a new view the and the number of vertices N will range between 

L and C × L depending on how various the viewing patterns of clients are, where C is 

the number of clients. 

 

 

Figure 2 view transitions 

(Navigation Graph for Tiled Media Streaming, Jounsup Park, Klara Nahrstedt, 2019) 

As we can see in Figure 2 each client also has a Navigation Graph generated from their 

own view information. Therefore, the client’s Navigation Graph learns the client’s 
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distinctive viewing patterns and the Navigation Graph on the server learns the viewing 

patterns of all of the clients watching the same video. 

Navigation Graph on Video Server 

The video server can generate a view transition model by collecting multiple viewers’ 

viewport feedback information. 

The server compares the current view v c received from the client with the vertices in a 

set V. If the same vertex exists in V that is the same as v c , then the server only updates 

the edges E and the transition matrix Eˆ which describes the transition probabilities. 

Otherwise, the Navigation Graph increases N by 1 and adds the vertex vc into V as a vN  

, and updates the edges E and the transition matrix E. 

The transition probability in Eˆ is updated as 

p (v c |v p) = number of clients moving their view from vp  to vc  / number of clients 

visiting vp 

Where the vp is a prior vertex that the client had visited before she moved to the current 

vertex vc. 

 

 

Figure 3 Navigation Graph in Video Server for Cross-User View prediction 

(Navigation Graph for Tiled Media Streaming, Jounsup Park, Klara Nahrstedt, 2019) 

Figure 3 shows a Navigation Graph made by three clients’ view data. 
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1.1.1 Navigation Graph on Clients 

The simplified Navigation Graph for clients is defined as Gc = (S, Ec) where the set S 

consists of sets of visible tiles s that are defined in the previous section (Figure 1). All 

vertices s m ∈ S,m = 1, ..., M are the vertices that a client has visited at least once. Ec 

consists of edges connecting all vertices in S and the transition probability matrix is 

defined as 

𝐸𝑐 = 𝑅𝑀𝑋𝑀 = (
𝑝(𝑠1|𝑠1), 𝑝(𝑠1|𝑠2), ⋯ , 𝑝(𝑠1|𝑠𝑚)

⋮ ⋱ ⋮
𝑝(𝑠𝑚|𝑠1), 𝑝(𝑠𝑚|𝑠2), ⋯ , 𝑝(𝑠𝑚|𝑠𝑚)

) 

 

Where M is the number of vertices and the difference between the original Navigation 

Graph G and the simplified version G c is the configuration of the vertices. The vertices 

for the simplified Navigation Graph consist of the set of tiles S and do not include a 

segment index. Eˆ c elements present the transition probabilities p(sc |sp) from vertices 

sp to vertices sc , where 

p (s c | s p) = number of transitions from s p to s c  / number of times visiting the set of 

visible tiles s p 

 

Figure 4 Navigation Graph in Clients for Single-User ViewPrediction 

(Navigation Graph for Tiled Media Streaming, Jounsup Park, Klara Nahrstedt, 2019) 

Figure 4 shows how the Navigation Graph is constructed by four consecutive video 

segments that a client has seen. 

1.1.2 Single-user View Prediction (SU) 

Clients can perform the prediction themselves using past view transition data encoded 

as a Navigation Graph Gc. The probability that a viewer will change his head position 

from the current set of visible tiles s c to another set of visible tiles sm for 1 ≤ m ≤ M is 



Master Thesis: << The use of Graph Databases in Financial Problems >> 

 

 18 

 

the column vector of the Eˆc , which is defined as a vector d1 = R 1xM whose elements 

are p(s m |s c ), for 1 ≤ m ≤ M. For example, Eˆ c is updated after the video started, and 

the viewer is currently (segment l) at the vertex s1. The first column of Eˆc is d1, which 

describes the probabilities that the viewer will have a set of tiles sm,, m = 1, ..., M, in 

segment l + 1. 

In general, we can define a kth  future transition probability as 

 d k  = Ecˆ 
(k-1)  d 1 

Since the vertices sm consist of many tiles, the probability pt,k of needing a specific tile 

t in future segment k is given as 

P t, ,k =  ∑  d m  k           V  m, t ∈  s m 

Where the t is the index of tile and dm k indicates the m th element of vector dk. 

We can generate a prediction matrix Ps = R TXK that the user’s current behavior is 

related to the video content, the CU will work better. 

 

1.1.3 Cross-user View Prediction (CU) 

The Navigation Graph in the media server is updated by all prior viewers’ view 

transitions. The Navigation Graph provides the statistics for how many times other 

viewers move from the current view to the subsequent views. The probability that a 

viewer will change his view from the current view vc to the next view vn is the column 

vector of Eˆ, which is defined as b1  = R 1xN , whose elements are p(vn |vc ), for 1 ≤ n ≤ 

N. We can also define a k th transition vector b k , which represents the transition 

probabilities from the current vertex to the vertices in the future segment l + k; the k = 

1, ...,K transition happens after the current segment l as follows: 

b k = Eˆ (k-1) b 1 

Since the vertices consist of many tiles, the probability of needing a specific tile t is 

given as 

P t, ,k =  ∑  b n  k           V  n, t ∈  V n 

Again, we can get a prediction matrix Pc = R TXK that has elements p t,k . 
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1.1.4 Performance  evaluation 

 

 

Figure 5 View Prediction with the Navigation Graph 

(a) Average Precision                                         (b) Average Prediction Error 

(Navigation Graph for Tiled Media Streaming, Jounsup Park, Klara Nahrstedt, 2019) 

Figure 5.a shows the mean precision of view prediction result for k segments, k = 1, ..., 

5. SU+CU outperforms the other schemes because it can opportunistically choose the 

better prediction scheme. 

Second, the prediction errors are also measured (Figure 5.b) to see whether the 

necessary tiles are requested on time. The prediction error is defined as the average of 

the number of tiles that has p t,k = 0 but g t,k  > 0 over the total number of tiles needed 

to render the view. Therefore, it represents the percentage of visible blank areas in the 

view. The prediction errors under each condition are less than 6%. Our system tends to 

have lower prediction error for distant future prediction because the higher uncertainty 

of distant future prediction causes the Navigation Graph to request more redundant tiles. 

The prediction precision of the proposed Navigation Graph based scheme (SU+CU) 

scheme is compared with existing solutions, which are Linear Regression (LR), Linear 

Regression with Gaussian distributed error (LR-G) , CLS-1, and CLS-2. 

Linear Regression with Gaussian distributed error (LR-G) is probabilistic model of 

viewport which leverage Linear Regression (LR) with the assumption of normally 

distributed errors (or “Gaussian distributed errors”).The particular model simplifies the 

mathematics and makes the parameters in the model easier to estimate, it leads to 

optimal properties of the estimators (like being unbiased with minimum variance) under 

the Gauss-Markov theorem. (5)  
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CLS is a Cross user Learning based System for viewport-adaptive 360-degree video 

streaming aiming at improving the prediction precision for tile-based 360-degree video 

which uses the Client – Server model. Without user classification is referred to as CLS-

1and with user classification is referred to as CLS-2. 

(6) 

  

 

 

 

Figure 6 CDFs of View Prediction Precision 

 (a) View Prediction of 1 sec after current segment   (b) View Prediction of 5 sec after  

                                                                                         current segment 

(Navigation Graph for Tiled Media Streaming, Jounsup Park, Klara Nahrstedt, 2019) 

Figure 6 shows that the proposed Navigation Graph based prediction has better 

precision results than CLS-2, which is a state-of the-art method. LR works well for 1 

second future view prediction, but the Navigation Graph based prediction has better 

precision than LR. The view prediction for 5 seconds in the future with LR does not 

work very well because the viewer usually does not keep the same viewing pattern for 

5 seconds. The Navigation Graph again shows the best precision performance in 

predicting the view for 5 seconds in the future. The Navigation Graph based prediction 

outperforms for near future prediction and distant future prediction. 

(7) 
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2. Compliance Management 

Today enterprises do business in a rapidly changing environment and it is crucial for 

their prosperity to remain compliant with ever-changing and growing universe of 

regulations, policies and internal contracts. 

Financial compliance orders companies to possess the technical ability and agility to 

screen, effectively, customer’s economic behavior and transactions something that 

imposes data quality and data availability challenges. It, also, requires companies to 

maintain sophisticated customer screening and transaction surveillance systems that 

pose data quality and data availability challenges. 

Current compliance systems are focusing mainly on data collection and data 

consolidation, leaving less time for in-depth analysis.  

 By using graphs is feasible to unify and interlink data from various sources and to 

apply complex rules and patterns for (semi-) automated compliance monitoring 

reaching an optimal level with the combination of contextual domain knowledge, 

Natural Language Processing (NLP) and Machine Learning such as regulatory 

compliance  (8) or customer screening (9). 

 

2.1 Use Case  

The General Data Protection Regulation (GDPR) is the toughest privacy and security 

law in the world. Though it was drafted and passed by the European Union (EU), it 

imposes obligations onto organizations anywhere, so long as they target or collect data 

related to people in the EU. The regulation was put into effect on May 25, 2018. The 

GDPR will levy harsh fines against those who violate its privacy and security standards, 

with penalties reaching into the tens of millions of euros and it is a very challenging 

task for companies to process data in a GDPR-compliant manner, extract information 

values, and use predictive analytics models. GDPR is laid out in 99 articles that describe 

its legal requirements, and 173 recitals that provide additional context and clarifications 

to these articles. GDPR is an expansive set of regulation that covers the entire lifecycle 

of personal data. As such, achieving compliance requires interfacing with infrastructure 

components (including compute, network, and storage systems) as well as operational 

components (processes, policies, and personnel) 
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(10) 

Beekeeper AG provides a GDPR-compliant platform for employees of an enterprise in 

order to form a social network for communicating and finding work-related 

information.  

Because of GDPR, analyzing the textual body of user interactions, such as posts, 

comments, and chats, is not allowed without consent. Therefore, it is impossible to gain 

insights from textual data across the spectrum of users. Exploring the network structure 

of employees provides data-driven insights into how information flows within an 

organization. Interpreting user interactions as a graph, where the nodes are users and 

elements, enables further extraction of user-user relationships. 

The company offers a mobile application for target groups to establish a high-quality 

communication solution for companies whose employees have limited access to 

computers and laptops, such as hotel workers, construction workers, and customer 

service personnel. The application acts as a social networking platform that enables 

online collaboration and communities within the customer’s organization. Due to 

GDRP rules, text data cannot be accessed, making text analytics for suggesting content 

to peer users impossible. However, anonymized metadata of user interactions can be 

used for analysis aiming at investigating whether modelling data in graph databases and 

applying graph mining can provide accurate results for extracting and predicting user 

relationships in enterprise social networks under the constraints of the GDPR. 

Beekeeper user activity dataset considered for the period between 2019–2020, which 

contains 204 different user events related to user interaction in the platform such as 

likes of the content, reading comments, chat activity, login activity, etc. 

Graph databases store data in a graph structure that consists of nodes and relationships, 

and both can have properties. They are considered NoSQL databases, and the 

information is stored in an entity-relationship model. It is the main difference between 

it and a relational database, as the data are not stored in tables. In the industry, graph 

databases are often used for fraud detection, recommendation systems, or social 

network modeling, to name a few examples. Neo4j has become one of the most popular 

and market-leading graph databases (The DB-Engines Ranking, which ranks database 

management systems according to their popularity, shows a positive trend for Neo4j or 
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Neo4j raised $325 million at a more than $2 billion evaluation in Series F deal led by 

Eurazeo, with additional capital from Alphabet s venture wing GV) (11) (12) 

When considering how nodes are connected in a network, there are two common 

approaches. One is called a “random network,” in which one node is connected to 

another with equal probability. The distribution of the degrees of a node follows the 

Poisson distribution, which means most nodes have the same number of connections. 

The other is a so-called scale-free network where node distribution follows the power 

law, meaning most nodes have fewer connections, and very few nodes have a high 

number of links to other nodes. 

Neo4j divides graph mining algorithms into four main categories: Centrality, 

Community detection, Similarity, and Pathfinding. 

Machine learning algorithms on graphs have attracted a lot of attention in both research 

and industry. There are three standard machine learning algorithms: unsupervised, 

supervised, and semi-supervised. They can all be applied to graphs depending on the 

use case. Neo4j offers in-database machine learning algorithms. The following 

algorithms, like Graph SAGE, Node2vec, Fast Random Projection (Fast RP), are 

considered node embedding algorithms, which compute a low dimensional vector 

representation of the nodes that can be used as features for further machine learning 

algorithms. 

Beekeeper provided the data in a CSV file format. The agreement with Beekeeper was 

that, the client cannot be named, only that they are in the transportation industry. The 

data were pre-cleaned by Beekeeper. The dataset included ~70 million rows with a size 

of 13 GB of data for a period from 1 January 2019 to 28 February 2020. 

The CSV file containing the data was loaded and converted using Python. The variables 

in Table 1 were selected to be loaded from the original dataset. Due to performance 

issues and hardware limitations, the number of rows in the original dataset was reduced 

to 10 million. 
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Table 1 Selected Variables Based on Data Model1 

(GDPR-Compliant Social Network Link Prediction in a Graph DBMS: The Case of 

Know-How Development at Beekeeper, Rita Korányi , José A. Mancera * and Michael 

Kaufmann, 2022) 

The data went through transformations and the resulting data frame was loaded with 

the binary values of the interactions into Neo4j as a CSV file, using various scripts to 

obtain the predefined data model, which is demonstrated in Figure 7. Due to slow 

performance in Neo4j during the load process, 750.000 rows were used to establish the 

data model. The properties and data types were set with the Cypher scripts. Weights 

can be calculated for the relationships between users. However relationship weights are 

not considered because the interest of the work is to extract and predict static 

relationships. 

 

 

 

 

Figure 7 Data Model in Neo4j 

Variable Name Description Data Type 

occured_at The time the user interaction happened Datetime 

user_id Anonymized ID of the user Integer 

Client Client of user device Integer 

Path API endpoint of interaction String 

normalized_path Normalized API endpoint String 
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(GDPR-Compliant Social Network Link Prediction in a Graph DBMS: The Case of 

Know-How Development at Beekeeper, Rita Korányi , José A. Mancera * and Michael 

Kaufmann, 2022) 

Figure 8 demonstrates that the most frequent user interaction is retrieving posts, as the 

distribution of the user interactions and the GET_posts is the most common type in the 

sample. This interaction type means that a user is loading a post. The users tend to 

behave passively in other words, they consume information rather than actively 

responding, sharing, or liking content. The x-axis represents the user interaction, and 

the y-axis the frequency of the interaction. Interactions starting with CUMSUM and 

OPTIONS_read, OPTIONS_likes, and OPTIONS_like are not relevant for this research 

and were further ignored. 

 

Figure 8 Frequencies of Usr Interactions 

(GDPR-Compliant Social Network Link Prediction in a Graph DBMS: The Case of 

Know-How Development at Beekeeper, Rita Korányi , José A. Mancera * and Michael 

Kaufmann, 2022) 

2.1.1 Artifact 1: Building Knowledge Graph-Based on User Interaction 

This artifact aims to extract the current relationships of users—who knows whom—

within Neo4j. The  who knows whom type of relationship is not explicitly present on 

the Beekeeper platform, and second, there is no baseline data to confirm the 

relationships. Due to the limitations of the GDPR, we do not attempt to label the 

relationship as professional or private between the users. Therefore, only the chat 

interactions were used. Τhe user node represents the user, the conversation represents 

the chat, and the three interactions represent what the user exactly did. The first 
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interaction with the chat item is always GET messages. A query was designed (Figure 

9) that resulted in a new relationship, KNOWS, which was written into the database. 

 

// Artifact_1_User_Knows_User_Query   

MATCH  (u1:User)<-[:GET_MESSAGES]-(Conversation)- 

[:GET_MESSAGES]->(u2:User)   

WITH u1, u2, Conversation   

WHERE NOT u1.ser_id = u2.user_id   

MATCH (u1)-[k: KNOWS]-(u2)  RETURN u1, u2, count(k) as weight; 

Figure 9 Cypher Query <<who knows who>> 

(GDPR-Compliant Social Network Link Prediction in a Graph DBMS: The Case of 

Know-How Development at Beekeeper, Rita Korányi , José A. Mancera * and Michael 

Kaufmann, 2022) 

2.1.2 Artifact 2: Link Prediction with Neo4J Graph Machine Learning 

Algorithms 

The designed artifact is used to predict user relationships by applying transductive 

learning and fitting logistic regression to predict probabilities for the user relationship. 

For prototyping, we used Neo4j’s Graph Data Science Library version 1.7 algorithms. 

Artifact 2 preserves the graph structure of the data. Training and testing of the models 

were executed internally in the database, i.e., every transaction happens in the database, 

and no external algorithms or programming languages were used. The design of the 

artifact can be divided into eight main steps. 

Figure 10 demonstrates the process steps described for prototype Artifact 2. The 

predicted positive relationships are written back into the database. These can be 

visualized with Neo4j Bloom or downloaded in a JSON or CSV format. The topN 

parameter defines the top 30 relationships, and the threshold determines the probability 

score above which the relationships are returned, in this case, 0.45. However, both topN 

and the threshold are arbitrary. 
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Figure 10 Process Diagram for Antifact 2 

(GDPR-Compliant Social Network Link Prediction in a Graph DBMS: The Case of 

Know-How Development at Beekeeper, Rita Korányi , José A. Mancera * and Michael 

Kaufmann, 2022) 

In the above mentioned diagram, we engineer a feature by using degree centrality. The 

algorithm uses Freeman’s formula to calculate the centrality of a graph. A single node 

in an undirected graph, is the number of neighbors with which there is a connection. 

The following equation is used to calculate the degree of nodes, where pk is a single 

node and a(pi , pk) = 1 if and only if pi and pk are connected by a line, 0 otherwise. 

CD(pK) =  ∑ i=1 a(pi , pk )  

The equation means the higher the number, the more connections a node has. A value 

of 0 means, the node is isolated from the network. 

We apply a node embedding algorithm, Fast Random Projection (Fast RP) algorithm 

which is 4000× faster in computational times than other state-of-the-art algorithms, 

such as Node2Vec* or Deep Walk. The above mentioned algorithm extracts the nodes 

with their features as vectors, optimizes the similarity matrix and utilizes a very sparse 

random. These algorithms perform two significant actions: first, the network is 

constructed as a similarity matrix, and second, a dimension reduction technique is 

applied. The extracted vectors will be used as numerical features to train the link 

prediction algorithms. 

The link prediction algorithm is applied using the node embeddings. The link prediction 

algorithm fits a logistic function and sigmoid function with values between 0 and 1. 

Logistic regression predicts the probability of the label for a given input variable. The 

threshold is 0.45 for a provided label, i.e., if the probability is less than 0.45, the label 
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is predicted to be 0. Otherwise, it is expected to be 1. Then the predicted positive 

relationships are written back into the database. 

 

 

Figure 11 Labelled Property Graph Visualized with neo4j Bloom(left) and Predicted Relationships with Link 

Prediction(right). Screenshot from neo4j Bloom of the USER-KNOWS-USER query. 

(GDPR-Compliant Social Network Link Prediction in a Graph DBMS: The Case of 

Know-How Development at Beekeeper, Rita Korányi , José A. Mancera * and Michael 

Kaufmann, 2022) 

The second resulting artifact (Figure 11) is a predictive machine learning model using 

Neo4j in databased algorithms. The database contains 2819 user nodes, which were 

used to build the model. Artifact 2 is a probabilistic model providing the 30 highest 

predicted probabilities. They are above the defined threshold of 0.45. In other words, 

the red lines in Figure 11 represent predicted relationships where the probability value 

is above 0.45, indicating that users know each other, and these are written as different 

relationships in the graph. 

Beekeeper was asked to provide feedback on the relationships sampled from Artifact 1, 

and the prediction results for Artifact 2. The validation sample included 3373 users, 

including the user pairs, depending on the artifact, the probability score, and predicted 

classes. 

The precision-recall area under the curve (AUCPR) displays the precision and recall 

variety at different thresholds, and the goal is to have the area under the PR curve 

maximized, which represents a good classifier model. Precision (P) is defined as the 

number of true positives (TP) over the number of true positives plus the number of false 

positives (FP): 
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P = TP / TP + FP 

Recall (R) is defined as the number of true positives (TP) over the number of true 

positives plus the number of false negatives (Fn): 

R = TP / TP + FΝ 

The so-called baseline average precision mean score (AP) has a value of 0.5, and the 

perfect classifier 1. Under 0.5, the classifier is not considered performant. The AP is 

calculated with the following equation: 

AP = Σn (Rn − Rn−1)Pn 

The sample included 300 users for Artifact 1, which was sent to Beekeeper to validate 

the user relationships, whether the users knew each other or not. The validation by 

Beekeeper confirmed that out of 300 relationships, 278 exist. Twenty two relationships 

could not be found in the system. 

Table 2 represents the results of the Link Prediction algorithm extracted from the Neo4j 

Desktop. TrainGraphScore here means the AUCPR score. 

 

Model Name Parameter Value 

 Winning Model

 TrainGraphScore TestGraphScore 

 Max Epochs Penalty  

myModel 1000  0.5 0.352 0.344 

 

Table 2 Train and Test Results of Link Prediction Model with neo4j Fast RP Algorithm 

(GDPR-Compliant Social Network Link Prediction in a Graph DBMS: The Case of 

Know-How Development at Beekeeper, Rita Korányi , José A. Mancera * and Michael 

Kaufmann, 2022) 

The test graph scores 0.344, indicating that the model performs moderately poorly 

overall, but it is considered acceptable due to the absence of the original features and 

although the predictive models have an average low AUCPR score, they are performing 
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well from a business domain perspective, as all the relationships exist, and there are no 

unknown labels. 

GDPR data has consistently added value to the Beekeeper business model since the 

company guarantees total privacy to its users. However, it also represents a limitation 

to improving user experience through simple recommendations or analyzing user 

behavior for the purpose of understanding the final users better because the company 

cannot openly analyze the user data without their consent. 

(13) 

 

 

2.1.3 Executive summary of node embedding algorithm Node2Vec 

Νode2vec is a semi-supervised algorithm for scalable feature learning in networks. A 

flexible notion of a node’s network neighborhood is established and with the use of 

random walk approach is possible to generate (sample) network neighborhoods for 

nodes, enabling node2vec to learn representations that organize nodes based on their 

network roles and/or communities they belong to. Experiments demonstrate that 

node2vec outperforms state-of-the-art methods by up to 26.7% on multi-label 

classification and up to 12.6% on link prediction. 

Generally, there are two extreme sampling strategies for generating neighborhood set(s) 

NS of k nodes: 

• Breadth-first Sampling (BFS) The neighborhood NS is restricted to nodes which are 

immediate neighbors of the source. For example, in Figure 1 for a neighborhood of size 

k = 3, BFS samples nodes s1, s2, s3. 

• Depth-first Sampling (DFS) The neighborhood consists of nodes sequentially sampled 

at increasing distances from the source node. In Figure 1, DFS samples s4, s5, s6. 

 

Figure 12 BFS and DFS search strategies from node u (k=3) 
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(node2vec: Scalable Feature Learning for Networks, Aditya Grover, Jure Leskovec, 

2016) 

The neighborhoods sampled by BFS lead to embedding’s that correspond closely to 

structural equivalence. By restricting search to nearby nodes, BFS achieves this 

characterization and obtains a microscopic view of the neighborhood of every node. 

In DFS, the sampled nodes more accurately reflect a macro-view of the neighborhood 

which is essential in inferring communities based on homophily. 

Adopting a flexible sampling strategy which allows a smooth interpolation between 

BFS and DFS is feasible to develop a flexible biased random walk procedure that can 

explore neighborhoods in a BFS as well as DFS way. 

Formally, given a source node u, we simulate a random walk of fixed length l. Let ci 

denote the ith node in the walk, starting with c0 = u. Nodes ci are generated by the 

following distribution: 

𝑃(𝑐𝑖 = 𝑥 |𝑐𝑖 − 1 = 𝑣) = {
𝜋𝑢𝑥

𝑧
 𝑖𝑓 (𝑣, 𝑥)  ∈   𝐸 , 0 otherwise} 

We define a 2nd order random walk with two parameters p and q which guide the walk 

and set the unnormalized transition probability to πv x = αp, q (t, x) · w v ,x, where 

and dt,x denotes the shortest path distance between nodes t and x. Note that dt,x must be 

one of {0, 1, 2}, and hence, the two parameters are necessary and sufficient to guide 

the walk having the privilege of being computationally efficient in terms of both space 

and time requirements.  

 

Parameters p and q control how fast the walk explores and leaves the neighborhood of 

starting node u. In particular, the parameters allow our search procedure to 

(approximately) interpolate between BFS and DFS and thereby reflect an affinity for 

different notions of node equivalences.  

The node2vec algorithm 

. 

LearnFeatures (Graph G = (V,E,W), Dimensions d, Walks per 
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 node r, Walk length l, Context size k, Return p, In-out q) 

π = PreprocessModifiedWeights (G, p, q) 

G0 = (V,,E, π) 

Initialize walks to Empty for iter = 1 to r do 

for all nodes u ∈ V do  

       walk = node2vecWalk(G0,u,l) 

    Append walk to walks 

 f = StochasticGradientDescent(k, d, walks) 

 return f 

 

node2vecWalk (Graph G0 = (V,E,π), Start node u, Length l) 

   Initialize  walk to [u] 

  for walk_iter = 1 to l do 

curr = walk[−1]  

Vcurr = GetNeighbors (curr, G0) 

 s = AliasSample(Vcurr,π) 

Append s to walk  

return walk 

 

The three phases of node2vec, i.e., preprocessing to compute transition probabilities, 

random walk simulations and optimization using SGD, are executed sequentially. Each 

phase is parallelizable and executed asynchronously, contributing to the overall 

scalability of node2vec. 

(14) 

3. Data Lineage & Metadata Management  

Data lineage represents a detailed map of all direct and indirect dependencies between 

data entities in the environment ,in other words, what sources the data comes from, 
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where it is flowing to in the environment, and—last but not least—what happens to it 

along the way. A distinction is often made between horizontal and vertical lineage. 

Horizontal lineage describes a physical lineage through a data warehouse: from a 

landing area, through a staging area, via a core area into an outbound layer. A vertical 

lineage, on the other hand, focuses on the design of a database. It includes a business 

model, also known as a conceptual data model. This model is an abstract business view 

of the data. This serves as a design layer for a physical implementation in the form of a 

physical data model, which is a depiction of the physical artifacts on the database. These 

models are often directly linked, or are linked through a logical model, forming a bridge 

between business and IT. Horizontal and vertical lineage are therefore different 

concepts and demand an entirely different approach to the documentation of the data 

lineage. A vertical lineage revolves around the design process and thus relates abstract 

objects, such as a business partner, to physical implementation, such as a part of a star 

schema. A horizontal lineage shows the actual data flow and contains information about 

where the data enters the system, flows through the system, and is consumed. 

(15) 

In addition, the main issue is that complex data on the one hand, is difficult to be 

understood by human logical ability and on the other hand, do not explain their journey. 

The pure positive value of it is proportionate to its interpretability to stakeholders so 

data must be described with relevant metadata and be organized in a way that reflects 

its meaning and fitness to use. 

The combination of detailed metadata and relationships between data lifecycle phases 

results in a semantic data layer. A semantic data layer (also known as data fabric) 

enables both data experts and business stakeholders to take advantage of any data asset 

to which they have access. Knowledge Graph, which is a collection of interlinked 

descriptions of concepts, entities, relationships and events, provides a semantic layer 

with full view of the data lifecycle all the way from the business to the most technical 

component. 

 

3.1 Use Case  

GE Capital is the financial arm of the General Electric Company which primary focus 

is on leasing and lending in the aviation, healthcare, and energy sectors where GE 
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manufactures and sells industrial equipment. To identify prospects, track customers, 

and manage the overall risk exposure of the portfolio, GE Capital utilizes data from a 

wide range of internal and external data sources, storing this data across over 2,000 

internal repositories.  

The GE Capital sub-businesses operated in silos, independently collecting and 

managing the data relevant to their products and customers. Due to the disjoint nature 

of this approach, it was difficult if not impossible to get a complete picture of where all 

of GE Capital’s data resided, or how it flowed from system to system. This severely 

impeded the ability to perform key data management activities, for example, to identify 

duplicate data or processes, or find the point of origination of a particular data element. 

In order to be able to capture the cohesive view of data flows and to interactively query 

and perform ad hoc reporting for internal information sharing and oversight GE Capital 

built a Concept Lineage Tool (‘Colt’) to address this challenge. With Colt, users can 

capture information about different types of systems and metadata about the data 

flowing between them, and answer questions about the lineage of those datasets. This 

information is made available for interactive exploration in the form of a directed graph 

(data flow network) where nodes represent data producers and/or consumers (hereafter 

referred to more generally as ‘data stores’), and edges represent data flows between 

those data stores. This way data flows can be characterized by using an extensible set 

of hierarchical taxonomies, including many potential combinations of businesses, 

products and concepts associated with data flowing between systems possessing the 

ability to view the entire network, view only those systems upstream and/or 

downstream of a single system or collection of systems, and/or view the network 

filtered by terms selected from the data flow taxonomies. 

Colt was designed and built to present complete metadata describing data flowing from 

one system to another. As such, the data is characterized in terms of a collection of 

taxonomies, including the data contents (“concepts”) and the context in which this data 

exists (“boundaries”).It maintains lineage information at the concept level, with 

metadata describing flows in the context of concepts, businesses, and products. Their 

hierarchical organization enables rich queries—a key feature which is not readily 

available in other graph-based provenance models. 
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The system based on the conceptual architecture shown in Figure 13 where the data 

storage layer is comprised of a semantic triple store. 

 

       

Figure 13 Colt conceptual system architecture                                                

(Colt: Concept Lineage Tool for Data Flow Metadata Capture and Analysis, Kareem S. 

Aggour, Jenny Weisenberg Williams, Justin McHugh, Vijay S. Kumar) 

The use of semantic technologies was made because a store with intrinsic recursive 

graph query capabilities enables the efficient network traversal functionality something 

which is required in Colt and most important semantic models enable a high level of 

expressivity for representing the hierarchical data flow metadata in an easily extensible 

format. 

 

A semantic model was built to represent data systems and data flows between them. 

Figure 14 is a simplified depiction of how the model represents a producer system 

sending data to a consumer system. The semantic model captures metadata about the 

nodes, including a node name, type and a brief description. 

 

 

Figure 14 data flows from producer to a consumer 

(Colt: Concept Lineage Tool for Data Flow Metadata Capture and Analysis, Kareem S. 

Aggour, Jenny Weisenberg Williams, Justin McHugh, Vijay S. Kumar) 
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The data flow itself is modeled as a potentially complex combination of concepts and 

boundaries, as shown in Figure 15, with the asterisks representing one-to-many 

relationships. A data flow is associated with one or more structures called boundary 

groups, which in turn may contain one or more concepts and treatments and boundary 

sets. Each boundary set is a combination of boundaries (business and product 

boundaries, at present). 

 

Figure 15 A data flow is a complex structure containing concepts and their treatments  as well  boundaries 

(Colt: Concept Lineage Tool for Data Flow Metadata Capture and Analysis, Kareem S. 

Aggour, Jenny Weisenberg Williams, Justin McHugh, Vijay S. Kumar) 

A web-based user interface allows users to create, manage, view, and interactively 

explore the lineage network. Each node in the visualized network represents a GE 

Capital data system (or a relevant system external to GE Capital). Each edge in the 

graph represents the data flow from one system to another. Figure 16 shows a sample 

network wherein seven systems are sending data to a system called System H, which in 

turn sends data to System I. Note that this is a small example—the application is capable 

of displaying large networks with thousands of nodes and edges. 

 

 

Figure 16 Example network containing 9 nodes 

(Colt: Concept Lineage Tool for Data Flow Metadata Capture and Analysis, Kareem S. 

Aggour, Jenny Weisenberg Williams, Justin McHugh, Vijay S. Kumar) 
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The user may explore the network in several ways, via the interface shown in Figure 

17. Users may choose to view the entire network of data systems and data flows. 

Alternatively, the user may select one or more systems and choose to display all systems 

that feed the selected systems (“upstream” systems) and/or consume from the selected 

systems (“downstream” systems). At any point, a user may click on an individual 

system in the network and expand the graph to include systems upstream and/or 

downstream of the selected node. The user may choose to display the concepts or 

boundaries along the edges, as well.  

 

Figure 17 Colt UI visualize and explore a network 

(Colt: Concept Lineage Tool for Data Flow Metadata Capture and Analysis, Kareem S. 

Aggour, Jenny Weisenberg Williams, Justin McHugh, Vijay S. Kumar) 

GE Capital users need the ability to trace data concepts from a given point in the 

network upstream to its points of origin (typically its point of creation), or downstream 

to its final points of destination for impact assessment. 

For example as we can see in Figure 18 an upstream trace is performed on System Z. 

The first system to be considered is System Y. Next, Systems W and X are considered, 

and so forth. When tracing the data, the algorithm must not only consider the concept, 

but also the boundaries of interest. In this figure, concepts, businesses, and products are 

represented in the form {c,b,p}, since the metadata to be traced is defined by the triples 
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{concept, business, product}. When tracing upward from System Y, note that System 

W is determined to be included in the trace (since it sends the data of interest {c,b,p}), 

but System X is excluded from the trace because it sends product q instead of product 

p, and thus is not relevant to this trace. The tracing routine is recursive, with each 

iteration dependent on the results from previous iterations. Each iteration evaluates a 

single edge and determines if its data flows are relevant to the trace based on the data 

that has been passed through the previous nodes. 

 

Figure 18 Network tracing for System Z (with grayed/dashed serments determined to be irrelevant for the trace) 

(Colt: Concept Lineage Tool for Data Flow Metadata Capture and Analysis, Kareem S. 

Aggour, Jenny Weisenberg Williams, Justin McHugh, Vijay S. Kumar) 

The evaluation of each edge can be expressed by the set equation: 

SA1→A2 ∩ SA2→T ≠ ∅ → keep 

Where:  

SA2→T = SA2→A3 ∩ SA3→A4 ∩ … ∩ SAn→T 

and  SAx--> Ay = set of triples sent from node Ax to node Ay. 

The algorithm used for the network tracing is as follows:  

 

Identify concepts/boundaries feeding target system T  

Convert all concepts/boundaries to concept-business-product triples at the lowest 

hierarchy level  

Get all systems that feed data to node T, concatenate with name of node T to form a 

node trace path, and push those trace paths onto empty trace stack  

Add T to traced network  

While trace stack is not empty:  

Pop trace path (“A”) from stack (will take the form  
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A1:::A2:::….:::T)  

If path has a loop with one or more nodes between (e.g., A:::B:::C:::B:::D repeats node 

B) discard path and return to (a) (to avoid recursive loops in paths)  

Query for concept-business-product triples that flow from the single-node hop from A1 

to A2 in path  

Determine whether there is an intersection in the {c,b,p}  

between A1 A2 and A2 T paths  

If YES, add A1 to traced network  

Store the resulting intersection of {c,b,p} triples that flow from A1 all the way to T  

Get names of all systems that feed data to node A1, concatenate with previous node 

path and push those trace paths onto stack (e.g., A0:::A1:::A2:::…:::T)  

If NO, continue to evaluate next entry on stack  

  

(16) 

By using the above mentioned algorithm a user can quickly determine the origination 

points for data feeding a particular system that intersect with the destination’s concepts 

and boundaries. Figure 19 shows a sample trace result, for System A traced 

downstream.  

 

 

Figure 19 Downstream trace result for System A 
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(Colt: Concept Lineage Tool for Data Flow Metadata Capture and Analysis, Kareem S. 

Aggour, Jenny Weisenberg Williams, Justin McHugh, Vijay S. Kumar) 

Moreover GE Capital needs to perform validation checks to see whether the network is 

incomplete or incorrect. The validation routine works on a per-system basis, 

determining if the data that a given system sends is possible given the data that the 

system creates or receives. Specifically, a system will fail the validation routine if it is 

found to be sending data that it is neither creating nor receiving.    

As an example, think (Figure 20), assuming that product p is comprised of subproducts 

p1 and p2. System W will fail validation, because it only receives subproduct p1, which 

is not enough for it to send product p. On the other hand, System X will pass validation 

because it receives subproducts p1 and p2, which are sufficient to product p. 

 

 

Figure 20 System W fails validation because p1 is onlt subset of p. System X passes  validation. 

Validation algorithm 

For each node N to validate:  

 

Retrieve all lowest-level concept-business-product triples sent by node N  

Retrieve all lowest-level concept-business-product triples created or received by node 

N  

Perform an intersection of the triples sent and received and subtract the intersection 

from the triples sent by N  

If the set of remaining triples sent is not empty, node N fails validation, else passes  

  

 

(16) 

Colt has been used extensively by GE Capital since it was first put into production in 

June 2015. At present, it contains a network of 2,200+ nodes and 1,047 edges (data 
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flows), which represent over 47,000 unique concept-business-product combinations 

sent between data systems. Colt currently contains 64 concepts, 226 business 

boundaries, and 125 product boundaries, each organized into 2- or 3-tier hierarchies. 

The tool’s user base is currently at 50 and growing. 

Overall, GE Capital estimates that Colt will result in a 50% reduction in time and cost 

of the requirement-building phases of complex IT projects, leading to millions in 

productivity savings alone. These estimated savings are attributable to Colt’s ability to 

handle complex queries about data movement across the entirety of GE Capital, 

enabling analysts to efficiently answer regulatory and operational inquiries without 

having to elicit and fuse this information from a variety of personnel and other 

potentially no computable sources. 

(16) 

 

4. Financial Crime Types  

Financial crime, or economic crime, is defined by Europol as ‘‘illegal acts committed 

by an individual or a group of individuals to obtain a financial or professional 

advantage. The principal motive in such crimes is economic gain’’. 

There are numerous methods being deployed by criminals to attack financial 

institutions, corporations, public agencies, and individuals of the public. 

(17) 

4.1 STOCKS AND SECURITIES INVESTMENT FRAUD 

The stock market and financial securities allow people to invest their money with the 

ambition of making a positive return based on either performing research, or just a 

hunch. However, it is known that a proportion of the market participants cheat, and by 

doing so make huge profits at the cost of institutional and retail investors. Catching 

these fraudulent actors is not easy, and typically requires a large workforce to gather 

evidence over a long period of time, particularly in cases of insider trading. 

 Market manipulation is considered an act of selling or buying a financial security with 

the objective of purposefully manipulating the price of the underlying asset or security. 

Illegal insider trading is when ‘insiders’, or people who are privy to private and non-
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public company material use that information ahead of its public dissemination to 

benefit monetarily. This includes not only the act of trading on securities, but also the 

leaking of non-public information to third parties. 

FIGURE 21. Diagram of the illegal insider trading process. Phase 1: Insiders with 

access or knowledge of nonpublic information about a company which will impact the 

share price. Phase 2 (Option 1): The insiders then buy or sell stock depending on 

underlying information. Phase 2 (Option 2): The insiders can share this information to 

a group of other malicious traders for monetary kickback or future insider information 

in return. Phase 3: The consortium or individual insiders reap the monetary benefits of 

the stock movements after nonpublic material is released to the wider investor public. 

 

 

 

 

 

 

Figure 21 Diagram of the illegal proccess 

(Financial Cybercrime: A Comprehensive Survey of Deep Learning Approaches to 

Tackle the Evolving Financial Crime Landscape, JACK NICHOLLS , ADITYA 

KUPPA , AND NHIEN-AN LE-KHAC , (Member, IEEE), 2021) 

4.2 FRAUD DETECTION AND ANTI-MONEY LAUNDERING 

(AML) 

Money laundering is a method used by criminals and people in possession of ‘dirty’ or 

illegally obtained funds through criminal activity to transform the money to             a 

‘clean’ or legitimate state in the eyes of the law and governments.  
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In the money laundering procedure we can distinguish three stages. The first is 

placement which is the process of depositing criminal money into the financial system. 

The second is layering which is moving the money within the financial system through 

complex webs of transactions with the goal of obfuscation. Layering is typically 

performed through offshore companies. Finally, integration is the criminal money being 

absorbed or blended into the real economy, through investments like real estate, stock 

purchases, and luxury items.  

Financial Institutions have continued to heavily invest in suspicious transaction 

monitoring solutions that target specific transaction behaviors primarily through rules 

based triggers. These types of traditional transaction monitoring systems can process 

millions of transactions daily but are often hamstrung by a lack of flexibility in rule 

construction and can easily make use of rules that have become irrelevant or ineffective 

as criminals adopt new techniques. As a result over 95% of system-generated alerts 

from transaction monitoring systems are reported to be false positives. This staggering 

statistic reflects just how difficult it has become for banks to predict money laundering, 

as well as has become to predict as well as hinting at the inefficiencies in AML 

operations that exist at present.  

Modern bank data infrastructure is built primarily using relational databases. While the 

reliance of storing data in rows and columns and linking data through primary and 

foreign keys has made data easier to manage, model and visualize, it has its limitations. 

Relational databases are often slow and rigid, requiring analysts to join multiple tables 

to produce consolidated views. AML investigations are hindered as data must be 

consolidated to determine payment trails and client networks across various datasets. 

In order to refine TM and reduce false negatives, technology firms are promoting 

graphical databases and graphs that are designed to align to the nature of money 

laundering – networks and relationships. 

In contrast, graph databases and the use of graph data models are entity orientated rather 

than table orientated and therefore, allow for the modelling of numerous relationships 

between entities (accounts, clients, customer details), as we would consider them in 

real-life. Knowledge graphs (how data is modelled in a graph database) are built using 

“triples” or “triplets”, consisting of nodes (the subject and the object) and edges (the 

relationship between the subject and object). These models can be analyzed using 
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mathematical graph theory and graph algorithms to uncover relational insights. To 

allow for additional dimensionality (and better machine readability), graph databases 

make use of taxonomies and ontologies. Taxonomies include names for objects and 

fundamental relationships, while ontologies define the types of nodes and relationships, 

classify concepts into meaningful categories, ascribe attributes to nodes and edges and 

define possible relationships between nodes (much like schemas). Using an ontology 

as a framework and data together you create a graph which empowered by machine 

learning and reasoning capabilities allow companies to better identify fraudulent 

patterns by traversing many hops on very large amounts of interconnected data in real-

time. 

This results in a polyhierarchical model, where entities are categorized multiple times 

to produce a graph-view. This is one of the key advantages of graph technology in that 

the data is represented in a way that makes sense to the human brain and is considered 

a close representation of how we would “whiteboard” these data landscapes during 

planning sessions. Furthermore, graphs do not rely on joins that can become tedious to 

code as well as constrain memory and CPU resources to execute. From an AML 

perspective, this is a problem as investigations are often slowed by the process of 

consolidating disparate datasets when examining suspicious transaction events. Graph 

technology allows for considerably faster ad-hoc querying to identify relationships that 

would often be unattainable through SQL and relationship databases. 

FIGURE 22. Diagram of money laundering example. Phase 1: Person has money 

(typically cash) from the proceeds of criminal activities and places the money into the 

financial system through bank deposits. This can be done through a business front that 

is cash heavy (i.e., food business), Phase 2: Placement—Transactions are performed 

with shell companies to obfuscate origin. Phase 3: Layering—Offshore company can 

return the money to the original criminal through loan-back schemes to the cash heavy 

food business fronting as an investor. Phase 4: Integration—The criminal proceeds are 

now integrated into the economy and laundered. 
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Figure 22 Diagram of ML 

(Financial Cybercrime: A Comprehensive Survey of Deep Learning Approaches to 

Tackle the Evolving Financial Crime Landscape, JACK NICHOLLS , ADITYA 

KUPPA , AND NHIEN-AN LE-KHAC , (Member, IEEE), 2021) 

4.3 SIM-SWAPPING AND PHISHING 

SIM-Swapping is an attack which allows a cybercriminal to gain unauthorized control 

of a wireless customer’s mobile phone number. This gives an attacker access to the 

SMS-based text messages which enable resetting of account passwords on websites that 

rely on the security of a mobile phone number. A successful SIM-Swap attack requires 

a malicious actor to have the target’s phone number, and depending on what account 

they wish to access, their email. as well. The attackers will either contact a victim’s 

service provider and imitate the victim in order to transfer the phone number to a new 

SIM card, or the attackers have cooperating employees of a service provider which will 

allow them to an easier route of access. Once the attacker has access to the victim’s 

phone number on their own SIM, they can extract SMS messages, including One Time 

Passwords sent by financial services such as Coin base. There are multiple aspects 

including phishing and social engineering which surround SIM-Swapping, but the main 

motivation for committing the act has been for the financial gain of the attacker. 

Phishing is considered a social engineering technique with the interest of luring victims 

to unwillingly hand over their personal information including passwords, email 

addresses, phone numbers, addresses, usernames and financial information. There are 

multiple aspects including phishing which surround SIM-Swapping, but the main 

motivation for committing the act has been for the financial gain of the attacker. 

FIGURE 23. Diagram of the SIM-Swap process. Phase 1: Attacker accesses victim’s 

account credentials and mobile numbers. Phase 2: Attacker manipulates the service 

provider to perform the SIM-Swap with the victim’s mobile number. Phase 3: Using 

newly gained access, attacker can now use account credentials to initiate a login attempt 

to a financial account. Phase 4: A One Time Password is sent from the financial service 

provider to the victim’s mobile number. Phase 5: The victim’s financial account is 

accessed, and funds are moved and laundered. 
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Figure 23Diagram of the SIM-Swap process 

(Financial Cybercrime: A Comprehensive Survey of Deep Learning Approaches to 

Tackle the Evolving Financial Crime Landscape, JACK NICHOLLS , ADITYA 

KUPPA , AND NHIEN-AN LE-KHAC , (Member, IEEE), 2021) 

4.4 ROMANCE FRAUD 

Romance fraud as defined by the FBI as a scam that occurs when a criminal adopts a 

fake online identity to gain a victim’s affection and trust. The scammers will use that 

trust to build up an illusion of romance or close relationship and manipulate victims 

with the ambition of illegal financial gain. This fraud has seen a rise in popularity with 

scammers particularly through the global lockdown due to COVID-19 with reports of 

up to 20% increase in bank transfer fraud linked to romance scams in 2020 when 

compared with 2019. Romance fraud has reportedly been responsible for the theft of 

over $362 million US dollars alone in 2018. Not only are victims scammed from their 

own money but can be used as money laundering mules unassumingly by being asked 

to transfer received money from the criminal to various accounts the criminal will 

instruct. 

FIGURE 24. Diagram of romance fraud example. Phase 1: Genuine users search 

through online dating sites for matching profiles interested in starting a relationship. 

Phase 2: A match is made with a profile that appears genuine. Conversation usually 

attempts to build up trust and romance without physically meeting the person over 

several months. Phase 3: Behind the account is a fraudster. These are skilled at 

manipulating genuine users by portraying characters. They use fake profiles with stole 

profile photos or mimicked identities. Phase 4 (Option 1): Victims can be used 

unwittingly as launderers, cleaning criminals proceeds thinking they are doing favors 

to their potential love interests by performing illegal transactions. Phase 4 (Option 2): 
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Over time the fraudsters ’borrow’ or are gifted funds from their victims. False promises 

are used such as money tied in investments or incoming inheritance to which they will 

repay their victims. 

 

Figure 24 Diagram of  romance fraud 

(Financial Cybercrime: A Comprehensive Survey of Deep Learning Approaches to 

Tackle the Evolving Financial Crime Landscape, JACK NICHOLLS , ADITYA 

KUPPA , AND NHIEN-AN LE-KHAC , (Member, IEEE), 2021) 

4.5 RANSOMWARE 

Reference ransomware is a form of malware that has the ability to encrypt victim’s 

computer systems and digital information, prohibiting access to it until a ransom is paid 

to the attackers. Malware is malicious software, it is created with an intent for 

criminality to gain access undetected into the computer systems of its victims. There 

are various forms of malware including Trojan horses, rootkits, and viruses. Typical 

payment demanded by the criminals is in the form of cryptocurrency due to the 

anonymity surrounding the owner of wallets. 

(17) 

 

4.6 DEEPFAKES AND GPT-2 

Deep fakes and advanced chat bots like GPT-2 are capable of spoofing and 

manipulating staff at all levels of an organization. Deep fakes are not only audio 

manipulation but also visual. Deep fake programs are capable of creating completely 

fictitious identities of individuals. Websites such as <<Person Does Not Exist. 

Accessed: Aug. 26, 2021. [Online]. Available: https://thispersondoesnotexist.com>> 

uses a Generative Adversarial Network to create a ’person’ or even generate modified 

images of a person without their consent. These images can also be used in online 
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profiles that can spoof genuine users of websites such as dating sites or social media 

vendor sites. 

GPT-2, an open-AI chat bot which is trained to predict the next word in a sentence and 

has shown it can produce human-like passages of text such as news articles.GPT2 has 

been used to create false reviews for vendor websites such as Amazon. False reviews 

have the ability of fooling genuine customers into transacting with either illegitimate 

suppliers or low-quality goods manufacturers or damaging a rival business’s total 

review score and reputation. Manually doing this across vendor websites is a method 

known as ‘‘crowdturfing’’ and is considered an attack on online review systems. A 

developed AI method by << D. I. Adelani, H. Mai, F. Fang, H. H. Nguyen, J. 

Yamagishi, and I. Echizen, ‘‘Generating sentiment-preserving fake online reviews 

using neural language models and their human- and machine-based detection,’’ Jul. 

2019, arXiv:1907.09177  >> implemented the GPT-2 system to create a bundle of false 

reviews which were not distinguishable against genuine reviews. 

(17) 

4.6 Use Case 

Global financial crime volume was estimated to be around 1.4-3.5 trillion USD per year 

according to the latest industry reports, having negative effects on individuals and 

financial institutions as well as systemic effects such as negative consequences on a 

countries welfare through macroeconomic performance. Money laundering is estimated 

to be around 2-5% of the global GDP (up to 1.87 trillion EU), a large percentage of 

which is not detected. 

 (18) 

Financial Institutions in order to be compliant with the strict rules about AML employ 

compliance experts that investigate suspicious activities alerted, usually, through a rule-

based system following a procedure that can take several days to complete, culminating 

in a decision of flagging as suspicious activity or not. When the former is identified, a 

suspicious activity report must be filed and delivered to a regulatory institution that 

proceeds with due action. It is a process that requires the filtering of large bulk of 

transactions into a smaller set of abnormal interactions that can be used to justify 

suspicious activity.  
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With the intention to moderate all the above mentioned cumbersome and complex tasks 

we present LaundroGraph, a novel fully self-supervised approach leveraging Graph 

Neural Networks (GNNs) to encode representations of customers and transactions 

within the context of AML reviewing. The network of financial interactions is 

represented as a directed bipartite customer-transaction graph with the GNN trained 

through a link prediction task between pairs of customer and transaction nodes, 

essentially corresponding to an anomaly prediction task providing an analyst a starting 

point of potentially suspicious movements and alleviating the effort required to filter 

the bulk of transactions. 

The goal is, for this mechanism, to be concluded within a larger system for AML 

reviewing that handles the necessary workload of assessment creation. Within this 

system, these insights will be digested and provided in an easy-to-understand manner 

through tailor-made visualizations for AML as soon as the investigation starts. 

We make use of a directed bipartite graph𝐺 = (𝑉 , 𝐸), with 𝑉 = 𝐶 ∪𝑇 denoting the set 

of customer (𝐶) and transaction (𝑇 ) nodes, and 𝐸 = 𝐼 ∪ 𝑂 denoting the set of edges 

between them, where 𝑂 represents outgoing transactions of the form 𝐶 → 𝑇 , and 𝐼 

represents incoming transactions of the form 𝑇 → 𝐶. Each node type is associated with 

a feature vector 𝑓c ∈ 𝑅dc and 𝑓t ∈ 𝑅dt , respectively representing the customer and 

transaction node feature vectors. . Customer features, which we refer to as profiles, 

characterize the customers’ transactional behavior within time windows of different 

granularities, plus other relevant attributes about the customer, while transaction 

features contain information about the transaction itself. Customer nodes are connected 

to all transactions in which they are involved, and transaction nodes are connected to 

their source and destination customer. As such, each customer has as many edges as 

transactions performed in that time period and each transactions has, at most, two edges: 

one incoming and one outgoing. A simplified illustration of this graph can be visualized 

in Figure 25. 

Figure 25: Proposed system training overview. Outgoing transactions are represented 

with filled arrows, and incoming transactions with dashed arrows. First, the bipartite 

graph is built from a dataset comprised of raw transactions. Then, positive pairs (green) 

and negative pairs (red) together with their 𝐾-hop subgraphs (𝐾 = 2 in the figure) are 

extracted and their embedding’s obtained through the encoder. Finally, the decoder uses 

the aforementioned embeddings to generate the prediction for each sampled edge. 
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Figure 25 System training overview 

(LaundroGraph: Self-Supervised Graph Representation Learning for Anti-Money 

Laundering, Mário Cardoso, Pedro Saleiro, Pedro Bizarro, 2022) 

Preliminaries. The objective is to jointly learn an encoder E (X, A) → RNcxdc×RNtxdt and 

a decoder D (zc, zt) → R1 . The encoder receives a node feature matrix                 X : 

RNcxdc× RNtxdt and an adjacency matrix A : RNcxNt× RNtxNc and produces a set of 

embedding’s Z = [zi
c , z

j
t], ∀𝑖 ∈ {0, ..., 𝑁𝑐 }, 𝑗 ∈ {0, ..., 𝑁𝑡 }, with each embedding      zi

c 

∈ Rdc and zj
t ∈ Rdt denoting the representations for each customer node 𝑖 and transaction 

node 𝑗, respectively. The decoder receives a pair of customer-transaction embedding’s 

(zc, zt), and outputs the likelihood of that transaction existing for that customer. 

By using the term customer-transaction embedding’s we imply the possibility of 

presenting nodes that live in a sparse, high-dimensional non-Euclidean space to a   low-

dimensional space (continuous dense vectors). 

Fig. 26. Schematic of graph (node) embedding. For a simple graph G(V, E) consisting 

of a node set V and an edge set E, using a graph embedding model f, different nodes 

(e.g., v1 and v2) from the original graph in a high-dimensional irregular domain can be 
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mapped into a latent low-dimensional space as a L-dimensional dense and continuous 

 

Figure 26 Schematic of graph(node) embedding 

vector zi, L << |V |.  

(19) 

The node structure property can be also preserved in the latent space, i.e., similar nodes 

in the original space will be close to each other in the latent space. Moreover, the 

obtained latent variables zi, i ∈ V (i.e., features) can be readily used for diverse 

downstream graph analytic tasks.  (19)   

 

Let ⊙ denote the Hadamard product and 𝜎 the sigmoid nonlinearity. The decoder is 

comprised of a simple feed-forward, and the prediction for an edge with customer node 

𝑐 and transaction node 𝑡 is defined as follows: 

𝑦ˆc,t = 𝜎 (W[zc ⊙ zt]) 

A single decoder is used to predict both incoming and outgoing transactions and the 

anomaly score is defined as 1 − 𝑦ˆc,t. 

 

Algorithm 1 LaundroGraph forward propagation algorithm  

Input: Graph 𝐺; number of layers 𝐿; neighborhood sampler N; 

 mini-batch size 𝐵; edge sampling function S; edge direction 𝐷  

𝐸𝑝 : (𝑐1, 𝑡1), ..., (𝑐B, 𝑡B) ← select 𝐵 edges from 𝐺 in direction 𝐷  

𝐸𝑛 : (𝑐˜1,𝑡˜1), ..., (𝑐˜B,˜B) ← S (𝐺) ⊲ Sample random 𝑐 and 𝑡 as 
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 non-edges 𝐸 ← 𝐸𝑝 ∪ 𝐸𝑛 

 if 𝐷 == outgoing then 

      𝐺 ← 𝐺 \ (𝑐 → 𝑡), ∀𝑡 ∈ 𝐸 ⊲ Delete real outgoing edges  

else 

      𝐺 ← 𝐺 \ (𝑡 → 𝑐), ∀𝑡 ∈ 𝐸 ⊲ Delete real incoming edges 

 end if 

 z0
ci , z

0
t1 ← fci , fti , ∀(𝑐𝑖 , 𝑡𝑖) ∈ (𝑁(c) ∪ 𝑐, 𝑁(t) ∪ 𝑡), ∀(𝑐, 𝑡) ∈ 𝐸 ⊲  

Input to the first layer is the raw features of all required nodes 

 for 𝑙 ∈ 1, ...𝐿 do  

      for (𝑐, 𝑡) ∈ 𝐸 do  

            zl
c ← Convolve({zl-1

ci , ∀𝑐i ∈ N(c) ∪ 𝑐}) ⊲ Encode nodes  

            zl
t ← Convolve({zl-1

ti , ∀𝑡i ∈ N(t) ∪ 𝑡 }) ⊲ Encode nodes  

      end for  

end for  

𝑦ˆc,t ← 𝜎 ( W[zL
c ⊙ zL

t]) , ∀(𝑐, 𝑡) ∈ 𝐸 ⊲ Decoder edge prediction 

(20) 

This usual behavior is dictated by the input graph 𝐺, and is leveraged by the decoder to 

classify new transactions entering the system with the goal to identify anomalous 

transactions within the context of a customer’s usual behavior. 

A real-world banking dataset is used in our experiments performing experimental 

analysis with popular models of an MLP and LightGBM which predict the existence of 

an edge, given only the raw features of the source customer, destination customer and 

transaction.  

Apart from the above mentioned models we experiment with another popular self-

supervised GNN objective, namely the Deep Graph Infomax (DGI) objective.  

.  

Method AUC AP 
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MLP 77.26 82.45 

LightGBM 82.58 89.02 

DGI 85.87 84.06 

LaundroGraph𝑆𝐴𝐺𝐸 89.97 93.17 

LaundroGraph𝐺𝐼𝑁 90.24 93.82 

LaundroGraph𝐺𝐴𝑇 94.83 95.22 

Table 3 ROC AUC and average precision(AP) results on the test data for all methods under consideration 

 

 

 

 

 

 

 

 

 

Figure 27 ROC curves and corresponding AUCs for all models consirered 

 

(LaundroGraph: Self-Supervised Graph Representation Learning for Anti-Money 

Laundering, Mário Cardoso, Pedro Saleiro, Pedro Bizarro, 2022) 
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By considering table 3 we can see the MLP and LightGBM models that count upon raw 

features manage to achieve quite competitive results but all graph-based baselines 

achieved superior performance, showing the importance of leveraging the structural 

information provided by the underlying graph. 

Figure 27 shows the ROC curves of all the methods reported in Table 1. The ROC 

curves show the trade-off between recall and specificity. Moreover, the area under the 

curve (AUC) can be seen as a measure of separability, representing how much a model 

is capable of distinguishing between classes. From observing Figure 27, we verify that 

all graph-based models consistently outperform the models relying exclusively on raw 

features. In particular, for very low false positive rates (FPRs), all graph-based variants 

trained directly on the link prediction task already achieve a recall of > 80%, whereas 

the MLP and DGI models achieve a recall of 40% or below, with the LightGBM model 

being a middle-ground between them at ∼ 60% recall. As the FPR increases, the DGI 

model approaches the performance of the remaining graph-based models, while the 

MLP and LightGBM models continue to achieve consistently inferior results.  

Figure 28: UMAP visualization of the customer embeddings produced by 

LaundroGraph 𝐺𝐴𝑇 (left), together with corresponding cosine similarity heatmaps 

(right), for 6 sampled customers across 3 snapshots of data. Colors represent the 

different customers. On the left plot, the UMAP embeddings are shown, with each 

customer providing 3 points, one for each snapshot (18 points in total), connected 

through a dashed line of the same color. On the right plot, the cosine similarities on the 

original embedding space are shown, for each customer and snapshot. 
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Figure 28 UMAP visualization 

(LaundroGraph: Self-Supervised Graph Representation Learning for Anti-Money 

Laundering, Mário Cardoso, Pedro Saleiro, Pedro Bizarro, 2022) 

In figure 28 we can see a plot of the UMAP  embeddings for the transactions of 5 

different and randomly sampled customers with more than 10 transactions. The marker 

represents the direction of each transaction, with "o" representing outgoing 

transactions, and "x" representing incoming transactions. On the left side of the figure 

transactions are colored according to their customer, and on the right side transactions 

are colored according to their anomaly scor. For example the green customer, all 

outgoing transactions except one were received by the same counterpart, resulting in 

the left-most green cluster. The remaining outgoing transaction can be seen farther 

away, near the right-most cluster. 

Another interesting case is the purple customer where the cluster represents interactions 

with several different counterparts whose behavior is very similar. More specifically, 

almost all counterparts only received transactions from the purple customer. From the 

right side of the figure we can observe that, generally, transactions farther away from 

their respective non-anomalous clusters (i.e., the "expected" behavior) usually have a 

higher anomaly score. This can be observed, for example, with the anomalous cluster 

at the top, and with the scattered incoming transactions from the orange customer. 

(20) 

 

 

5. Recommender Systems & Conversational AI 

Different from traditional one-shot recommendation systems conversational 

recommender systems (CRS) obtain users’ interests through multi-turn conversation, 

and make recommendations with responses. Typical CRS consists of two parts: 

recommender and response generation. The recommender aims to understand users’ 

dynamic preference from contextual utterances to find the items matching the 

preference best. Subsequently, the response generation aims to generate appropriate 

sentences asking for more information or exhibiting the recommended items and related 

explanation. Recommender and response generation are expected to be mutually 
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beneficial. However, contextual utterances are usually insufficient to understand users’ 

preference. 

In order to provide recommendations that match user’s intent, preferences and interest, 

a recommender system needs to know about the context of conversation and must be 

capable of not only looking at structural similarity between items but also their semantic 

similarity. For example the word “balance” might convey different meanings when 

used in a financial conversation as opposed to a medical context. 

A Knowledge Graph is built as a large semantic network of entities and their attributes. 

Therefore, it allows finding the best matching entities based on semantic similarities 

between the entities. Knowledge Graphs also allow enriching the context of data by 

incorporating domain-specific knowledge vocabularies, taxonomies or ontologies. 

Knowledge Graphs provide a personalized experience which enables conversational 

banking tools to interact, more effectively, with customers on their financial needs. 

5.1 Use Case  

As a use case we exhibit Conversational Path Reasoning (CPR), a generic method that 

models conversational recommendation as an interactive path reasoning problem on a 

knowledge graph. It walks through the attribute vertices by following user feedback, 

utilizing the user preferred attributes in an explicit way. By leveraging the knowledge 

graph structure, CPR is able to eliminate many irrelevant candidate attributes, leading 

to better chance of finding user preferred attributes. With the purpose of showing how 

CPR works we make use of a simple, yet effective, application named SCPR (Simple 

CPR).During the presentation of the above mentioned method and before we examine 

its effectiveness comparing with others like CRS and EAR methods we will provide a 

brief but comprehensive description of them.   

 

5.1.1 CRS method 

It is a conversational system that tries to collect user preferences by asking questions in 

the form of semi-structured query with facet (attribute)-value pairs. Once enough user 

preference is collected, a set of machine actions tailored for recommendation agents is 

introduced and a deep policy network is trained, to decide which action (i.e. asking for 

the value of a facet or making a recommendation) the agent should take at each step in 
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order to make personalized recommendations to the user. A main concern is to avoid 

overwhelming users with too many facet (attribute)-value pair options per conversation 

so a faceted search engine selects a small set of facet (attribute)-value pairs based on 

the context and asking user to provide information about his preferences such as 

"What’s the color you like?", "Which brand you prefer?", "Do you like small size, 

middle size or large size. 

The particular system has three major components. First, a natural language 

understanding (NLU) module for analyzing each user utterance, keeping track of the 

user’s dialogue history and constantly updating the user’s intention. This NLU module 

focuses on extracting item specific meta data. Second, a dialogue management (DM) 

module that decides which action to take given the current state. This DM module has 

an action space defined specifically for this task. The third component is a natural 

language generation module to generate response to the user. This conceptual 

construction provides the capacity to build a conversational search and recommender 

system that can decide when and how to gather information from users and make 

recommendations based on a user’s past purchasing history and context information in 

the current session. 

We make use of Deep Reinforcement Learning which is based in deep neural networks 

and has been applied for better sequential decision making in many domains. As above 

mentioned our framework has three components: a belief tracker, a recommender 

system and a policy network. 

 

 

 

 

Figure 29 The conversational recommender system overview 

(Conversational Recommender System, Yueming Sun, Yi Zhang, 2018) 

Figure 29 presents the overview of our proposed framework. At a time step in the 

dialogue, the user utters “I want to find a Bar”. The framework calls the belief tracker 
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to convert the utterance into a vector representation or “belief”; then the belief is sent 

to the policy network to make a decision. For example, the policy network may decide 

to request the city information next. Then the agent may respond with “Which city are 

you in?”, and gets a reward, which is used to train the policy. A different decision is to 

make a recommendation. Then the agent calls the recommender system to get a list of 

items personalized for the user. 

In Figure 30 the structure of the proposed conversational recommender model in the 

bottom part is the belief tracker, the top left part is the recommendation model, and the 

top right part is the deep policy network. 

 

Figure 30 The structure of the proposed Conversational Recommender System 

(Conversational Recommender System, Yueming Sun, Yi Zhang, 2018) 

Belief Tracker module extracts facet-value pairs from user utterances during the 

conversation, and maintain the facet-value pairs as the memory state (i.e. user query) 

of the agent. The product facet (or attribute, metadata) f along with its specific value v 

is a facet-value pair (f ,v). Each facet-value pair represents a constraint on the items. 

For example, (color, red) is a facet-value pair which constrains that the items need to 

be red in color. As we can see in Figure 30 the belief tracker takes the current and the 

past user utterances as the input, and outputs a probability distribution across all the 

possible values of a facet at the current time point. The dialogue system’s belief of the 

session is constituted by the predicted values of different facets. 

As the conversational system interacts with the users, at certain round, the 

conversational system can decide to make a recommendation based on its current belief 

of the user’s information need, which is interpreted as the dialogue state. The structure 

of recommendation model is shown in the upper left part of Figure 30. Let U denote 
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the users and I the items. For M users and N items in the dataset, the users and items 

are represented as the sets: {u1,u2, ...,uM } and {i1,i2, ...,iN }. The input feature x is the 

concatenation of the 1-hot encoded user/item vector, where the only element that is not 

zero in the vector corresponds to the index of the encoded info, and the dialogue belief: 

x = um ⊕ in ⊕ st 

um = {0, 0, ..., 1, ..., 0},with 1 at the mth element 

in = {0, 0, ..., 1, ..., 0},with 1 at the nth element 

where m and n denotes that in is rated by the um. 

The output ym,n can be either a rating score for the explicit feedback or a 0-1 scalar for 

the implicit feedback. 

Then we portray the deep policy network where its structure is shown in the upper right 

part in Figure 30. The reinforcement learning has the basic components of state S, 

action A, reward R and policy π(a|s). 

State: The state st is the current description of the environment from the viewpoint of 

the agent. In our case, it is the description of the conversation context, which is the 

belief tracker’s output, st = {f1 ⊕ f2... ⊕ ft }. 

Action: An action at is the decision the agent needs to make at time step t. Here we have 

mainly two kinds of actions. One is to request the value of a facet, which is further 

divided into l actions {a1, a2,..., at }, one per each facet. The other is to make a 

personalized recommendation arec , in which case the recommendation module 

described above would be called. 

Reward: The reward is the benefit/penalty the agent gets from interacting with its 

environment. At each turn, according to the current state st , the agent selects an action 

at following the policy, and it gets an immediate reward rt , denoting how good the 

current decision is. The state st transits to a new state s′. 

Policy: This is the target the model tries to learn. Usually denoted as π (at | st ), the 

policy represents the score, such as the probability, of taking action at when the agent 

is in state st . 

(21) 
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5.1.2 EAR method 

The aforementioned method is a multi-round CRS model which in each round, is 

allowed to choose two types of actions — either explicitly asking whether a user likes 

a certain item attribute or recommending a list of items. In a session, the model may 

alternate between these actions multiple times, with the goal of finding desirable items 

while minimizing the number of interactions. It is made of three stages to better 

converse with users.  

(a) Estimation, which builds predictive models to estimate user preference on both 

items and item attributes. In particular we train a factorization machine (FM) using user 

profiles and item attributes as input features. Our Estimation stage builds in two novel 

advances: 1) the joint optimization of FM on the two tasks of item prediction and 

attribute prediction exerting positive influence on EAR, where the first directly 

contributes to success rate of recommendation, and the second guides the CC to choose 

better attributes to ask users so as to shorten the conversation. 2) the adaptive training 

of conversation data with online user feedback on attributes. 

(b) Action, which learns a dialogue policy to determine whether to ask attributes or 

recommend items, based on Estimation stage and conversation history. Our focus is on 

conversational recommendation strategy, as opposed to fluent dialogue (the language 

part) we use templates as wrappers to handle user utterances and system response 

generation. We train a policy network with reinforcement learning, optimizing the 

reward of shorter turns and successful recommendations based on the FM’s estimation 

of user preferred items and attributes, and the dialogue history. In EAR, we design four 

kinds of rewards, namely: (1) rsuc , a strongly positive reward when the recommendation 

is successful, (2) rask , a positive reward when the user gives positive feedback on the 

asked attribute, (3) rquit , a strongly negative reward if the user quits the conversation, 

(4) rprev , a slightly negative reward on every turn to discourage overly lengthy 

conversations. The intermediate reward rt at turn t is the sum of the above four rewards, 

rt = rsuc + rask + rquit + rprev. We denote the policy network as π (at | st ), which returns the 

probability of taking action at given the state st  

(c) Reflection, which updates the recommender model when a user rejects the 

recommendations made by the Action stage and adapts the CRS model with user’s 

online feedback. Specifically, when a user rejects the recommended items, we construct 
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new training triplets by treating the items as negative instances and update the FM in 

an online manner. 

 

 

 

In Figure 31 in the workflow of our multi-round conversational recommendation 

scenario, the system may recommend items multiple times, and the conversation ends 

only if the user accepts the recommendation or chooses to quit. 

 

Figure 31 The workflow of our multi-roud conversational recommendation scenario 

(Estimation–Action–Reflection: Towards Deep Interaction Between Conversational 

and Recommender Systems, Wenqiang Lei , Xiangnan He , Yisong Miao , Qingyun 

Wu , Richang Hong , Min-Yen Kan, Tat-Seng Chua, 2020) 

Let u ∈ U denote a user u from the user set U and v ∈ V denote an item v from the item 

set V. Each item v is associated with a set of attributes Pv which describe its properties, 

such as music genre “classical” or “jazz” for songs or tags such as “nightlife”, “serving 

burgers”, or “serving wines” for businesses. We denote the set of all attributes as P and 

use p to denote a specific attribute. A CRS session is started with u’s specification of a 

preferred attribute p0 , then the CRS filters out candidate items that contain the preferred 

attribute p0. 

Then in each turn t (t = 1, 2, ...,T ; T denotes the last turn of the session), the CRS needs 

to choose an action: recommend or ask: 

If the action is recommend, we denote the recommended item list Vt ⊂ V and the action 

as arec . Then the user examines whether Vt contains his desired item. If the feedback is 
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positive, this session succeeds and can be terminated. Otherwise, we mark Vt as rejected 

and move to the next round. 

If the action is ask (where the asked attribute is denoted as pt ∈ P and the action as aask 

(pt )), the user states whether he prefers items that contain the attribute pt or not. If the 

feedback is positive, we add pt into Pu to denote the preferred attributes the user in the 

current session. Otherwise, we mark pt as rejected; regardless of rejection or not, we 

move to the next turn. 

This whole procedure forms an interaction loop (Figure 31) where the CRS model may 

ask zero too many questions before making recommendations. A session finishes 

whether a user accepts the recommendations or leaves due to his impatience.  

(22) 

5.1.3 CPR method 

In this method we model conversational recommendation as the process of finding a 

path in user-item-attribute knowledge graph interactively. Figure 32 shows an 

illustrative example. The vertices in the right graph represent users, items and attributes 

as well as other relevant entities. An edge between two vertices represent their relation, 

for example, a user item edge indicates that the user has interacted with the item, and a 

user attribute edge indicates that the user has affirmed an attribute in a conversation 

session. A conversation session in our CPR is expressed as a walking in the knowledge 

graph. It starts from the user vertex, and travels in the graph with the goal to reach one 

or multiple item vertices the user likes as the destination. Note that the walking is 

navigated by users through conversation. This means, at each step, a system needs to 

interact with the user to find out which vertex to go and takes actions according to user’s 

response. 

In Figure 32 an illustration of interactive path reasoning in CPR. As the convention of 

this paper, light orange, light blue, and light gold vertices represents the user, attribute 

and items respectively. For example, the artiest Michael Jackson is an item and and the 

attributes are rock, dance etc. 
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Figure 32 An illustration of interactive path reasoning in CPR 

(Interactive Path Reasoning on Graph for Conversational Recommendation, Wenqiang 

Lei1 , Gangyi Zhang , Xiangnan He, Yisong Miao, Xiang Wang, Liang Chen, Tat-Seng 

Chua, 2020) 

The immediate gain of such a method is that it models conversational recommendation 

as an interactive path reasoning problem on the graph with each step confirmed by the 

user, limits the candidate attributes to the adjacent attributes of the current vertex 

resulting in the reduction of the candidate space and offer an aesthetically appealing 

framework which demonstrates the natural combination and mutual promotion of 

conversation system and recommendation system. 

In the course of the validation procedure about the effectiveness of CPR method we 

make use of multi-round conversational recommendation (MCR) scenario conducting  

experiments on the Yelp and Last FM datasets, comparing SCPR with CRS and EAR 

methods which also use the information of user, item and attribute but does not use 

knowledge graph. In MCR scenario, as it is the most realistic setting in research, the 

system is free to ask attributes or make recommendation multiple times. 

Specifically, an item v is associated with a set of attributes Pv .The attributes broadly 

cover various descriptions as long as it can describe certain properties of an item. A 

conversation session starts on the user side, which initializes the attribute p0 by 

specifying an attribute the user likes (e.g., I like some dance music). Next, the CRS is 

free to ask his preference on an attribute selected from the candidate attribute set Pcand 

or recommend items from the candidate item set Vcand . Then, the user needs to give 

feedback accordingly, either accepting or rejecting them. The CRS makes use of such 

feedback from the user — if the user accepts the asked attribute, the CRS puts it in the 

preferred attribute set Pu and removes it from Pcand . Then the CRS updates Vcand to 

Vcand ∩ Vp , representing the items containing all attribute confirmed by the user in 
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the session. Vp denote the items containing the attribute p. If he rejects the asked 

attribute, the CRS removes it from Pcand . Based on the updated sets, the CRS takes 

the next action, i.e., asking or recommending, and repeats the above process. The 

conversation session ends until the CRS hits the user preferred items or reaches the 

maximum number of turns T. This process is detailed in Algorithm 1. 

Table 1: Main notations used in the paper 

u,v, p User, item, and attribute 

P An active attribute path in the graph 

aat An adjacent attribute of the attribute pt 

AAt The set of adjacent attributes of the attribute pt 

Pu The set of attributes confirmed by u in a session 

Pcand The set of candidate attributes 

Vp The set of items that contain the attribute p 

Vcand The set of candidate items 

a The action of CPR, either aask or arec 

 

Algorithm 1 The MCR Scenario  

Input: user u, all attributes P, all items V, the number of items  

    to recommend k, the maximum number of turns T ;  

Output: recommendation result: success or fail; 

1: User u specifies an attribute p0;  

2: Update: Pu = {p0}; Pcand = P \ p0; Vcand = Vp0 

3: for turn t = 1, 2, 3...T do 

4:      Select an action a  

5:      if a == aask  then  

6:           Select the top attribute p from Pcand  

7:           if u accepts pt then  
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8:                 Update: Pu = Pu ∪ p; Vcand = Vcand ∩ Vp  

9:           Update: Pcand = Pcand \ p  

10:    else [a == arec ]  

11:         Select the top-k items Vk from Vcand  

12:         if  User accepts Vk then  

13:               Recommendation succeeds; Exit.  

14:         else [User rejects Vk ]  

15:               Update: Vcand = Vcand \ Vk  

16: Recommendation fails; Exit 

(23) 

A graph uses vertices to represent entities and edges to represent the relationships 

between entities. Specifically, a graph G is defined as a set of triplets {(h,r,t)}, 

indicating a certain relation r exists between the head entity h and the tail entity t. The 

relations between each types of entities can vary a lot depending on specific datasets.  

CPR maintains an active path P, comprising the attributes confirmed by a user (i.e., all 

attributes in Pu ) in the chronological order, and exploring on the graph for the next 

adjacent attribute vertex to walk. CPR does not visit the attributes that have been visited 

before and does not perform the walking over all types of vertices. As a result it 

emphasizes the importance of the attributes as explicit reasons for recommendation and 

it makes the walking process more concise, eliminating the uncertainty in an 

unnecessarily long reasoning path which might lead to error. 

In Figure 33 CPR framework overview. It starts from the user u0 and walks over 

adjacent attributes, forming a path (the red arrows) and eventually leading to the desired 

item. The policy network (left side) determines whether to ask an attribute or 

recommend items in a turn. Two reasoning functions f and д score attributes and items, 

respectively. 
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Figure 33 CPR framework  overview 

(Interactive Path Reasoning on Graph for Conversational Recommendation, Wenqiang 

Lei1 , Gangyi Zhang , Xiangnan He, Yisong Miao, Xiang Wang, Liang Chen, Tat-Seng 

Chua, 2020) 

In Figure 33 when a user initializes his preferred attribute p0 (i.e., P = p0), the CPR 

propagates messages from p0 to its directly connected items (i.e., v0, v1 v4, v5) to score 

these items. The scoring function for each item is sv = f (v,u, Pu ) where sv is a scalar 

indicating the recommendation score of item v in the current conversation session, and 

Pu denotes the attributes confirmed by u in the session. Then the candidate items in turn 

propagate messages to the candidate attributes (the light blue arrows) with each 

candidate attribute scoring function (p ∈ Pcand) to be sp = g(u, p, Vcand ) 

Then the output action space of the policy function contains two choices: aask or arec , 

indicating whether to perform top-k recommendations or to ask an attribute in this turn. 

If the decision is aask , we directly take highest-scored attribute from Pcand , where the 

score is sp. Otherwise, we recommend top-k items from Vcand according to the score 

of sv and the transition step will be triggered after the user confirms an asked attribute 

pt. 

We make use of two datasets LastFM and Yelp, splitting each one of them for training, 

validation and testing in a ratio of 7:1.5:1.5 and the rewards to train the policy network 

are: rrec_suc=1, rrec_fail =-0.1, rask_suc=0.01, rask_fail =-0.1, rquit =- 0.3  

For our validation experiment we use, except CRM method, four additional models: 

Max Entropy. This method follows a rule-based protocol to ask and recommend. When 

asking question, it always chooses an attribute with the maximum entropy within the 

current candidate item set. 
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Abs Greedy. This method serves as a baseline where the model only recommends items 

and updated itself, until it finally makes successful recommendation. 

CRM. This is a CRS model which records user’s preference into a belief tracker, and 

uses reinforcement learning (RL) to find the policy to interact with the user. 

EAR. This is the state-of-the-art method on MCR setting and proposed a three stage 

solution called Estimation–Action– Reflection which emphasizes on the interaction 

between conversation component and recommendation component. 

We use success rate (SR@t) to measure the cumulative ratio of successful 

recommendation by turn t. We also use average turns (AT) to record the average 

number of turns for all session (if a session still fails in the last turn T, we count the 

turn for that session as T). Therefore, the higher SR@t indicates a higher performance 

at a specific turn t, while the lower AT means an overall higher efficiency 

.  

 

In Table 4 the Success Rate @ 15 and Average Turn. Bold number represents the 

improvement of SCPR over existing models is statistically significant (p < 0.01) (RQ1) 

 

 LastFM Yelp 

 SR@15 AT SR@15 AT 

Abs 

Greedy 

0.222 13.48 0.264 12.57 

Max 

Entropy 

0.283 13.91 0.921 6.59 

CRM 0.325 13.75 0.923 6.25 

EAR 0.429 12.88 0.967 5.74 

SCPR 0.465 12.86 0.973 5.67 

 

Table 4 Success Rate and Average Turn 

 



Master Thesis: << The use of Graph Databases in Financial Problems >> 

 

 68 

 

 

Figure 34 Success Rate * of compared methods at different turns on LastFM and Yelp (RQ1). 

(Interactive Path Reasoning on Graph for Conversational Recommendation, Wenqiang 

Lei1 , Gangyi Zhang , Xiangnan He, Yisong Miao, Xiang Wang, Liang Chen, Tat-Seng 

Chua, 2020) 

By noticing table 2 SCPR model achieves significantly higher SR and less AT than the 

rest models, demonstrating SCPR method’s superior performance in usage. It utilizes 

the graph adjacent attribute constraint to extinguish many irrelevant attributes to ask, 

something that becomes especially helpful when there are a large number of attribute 

and has a more dedicated RL model with smaller action space. Looking Figure 3 CRM, 

in Yelp dataset, may outperform SCPR on first few rounds, but it falls behind in future 

rounds. Abs Greedy can achieve the best results on the first few turns but immerses in 

further turns. 

(23) 
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SECOND PART 

6. Brief historical retrospective of databases 

The term database appeared in the early 1960s and was used to denote the collections 

of data managed by large time-sharing computing systems, replacing the term 

<<integrated data processing>> that had been in use since the previous decade. In 1970 

E. F. Codd, with his pioneering work, founded the relational database model which was 

going to change immediately and dramatically the way of managing and usability of 

databases. By the use of the above mentioned term we mean a collection of logically 

related items together with their description, designed to meet the information needs of 

an organization. Databases therefore make it possible to organize and store data in the 

computer, enabling this way, the processing and extraction of the desired information. 

The model of a database describes the structure of the database and how it can be used, 

including the basic operations of retrieving and updating data. 

Data models can be categorized, according to the form of concepts they contain for 

description, to: 

 The high-level or conceptual models contain a level of abstraction that 

approximates the way a layman perceives the data 

 The low-level or physical data models describe how data is stored in the 

computer. 

 The logical or representational data models contain concepts of a medium level 

of abstraction, so that they are not too far from the way the user thinks, nor from 

the way are they stored in the computer. 

Historically, three basic logical database models have been proposed. The first is the 

hierarchical model which considers records as nodes in trees. The tree offers the 

prioritization of data required by the specific model. The second is the network model 

which is an improved version of the hierarchical one. The main difference with the first 

one is that there is no restriction that each record has only one parent. Each record can 

have one or more parents. In this way, a network is created that connects the database 

records. The latter is the relational model which represents the database as an unordered 
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collection of relations where each relation is an unordered collection of tuples and each 

tuple is an unordered collection of attributes or predicates. 

The main feature of the 80s was the dominance of relational database management 

systems, something that continues to this day. (24)   

With the advent of the new millennium and the subsequent development of the Internet 

which resulted in the genesis of Big Data, existing databases have been forced to deal 

with new issues of managing and effectively exploiting this kind of data.  

6.1 SQL Databases 

Every relational database management system consists of a storage and a management 

component. The storage component stores both data and the relationships between 

pieces of information in tables. In addition to tables with user data from various 

applications, it contains the predefined system tables necessary for database operation. 

These contain descriptive information and can be queried but not manipulated by users. 

The management component’s most important part is the relational data definition, 

selection, and manipulation language SQL. This component also contains service 

functions for data restoration after errors, for data protection, and for backup. (25). The 

two most extensively used relational databases are MySQL and Oracle. MySQL is more 

popular with the websites. It is a light weight system which is extremely fast but Oracle 

is majorly used in case of large database requirement like Banking, Insurance, ERP and 

finance companies. It is used to solve complex problems and supports large OLTP 

environments. (26). These databases have to be refined periodically to remove any kind 

of redundant, inconsistent or dirty data so as to perform effectively, also their data 

structure follow the ACID properties (Atomicity, Consistency, Isolation, Durability) 

and use vertical scalability, which means that when the volume of data is being 

expanded, there could be expand just the storage capacity and computing power of 

existing node, for example, the capacity of CPU, the RAM and the SSD of the database 

server. 

With the explosion of data volume, SQL-based data querying lose efficiency, and in 

particular, managing larger databases has become a major challenge. In addition, 

relational databases exhibit a variety of limitations in meeting the recent Big Data 

analytics requirement in businesses. While clusters-based architecture has emerged as 

a solution for large databases, SQL is not designed to suit clusters and this miss match 
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has led to think of alternate solutions. There are miss matches between persistent data 

model and in memory data structures, and servers based on SQL standards are now 

prone to memory footprint, security risks and performance issues. (27) (28) 

6.2 NoSQL Databases 

The term NoSQL was first used in 1998 for a database that (although relational) did not 

have an SQL interface. It became of growing importance during the 2000s, especially 

with the rapid expansion of the internet. The growing popularity of global web services 

saw an increase in the use of web-scale databases, since there was a need for data 

management systems that could handle the enormous amounts of data (sometimes in 

the petabyte range and up) generated by web services. Although NoSQL primarily reads 

as databases that provide no SQL access, the acronym is commonly defined as “not 

only SQL”. (Book, SQL & NoSQL Databases, 2019, Andreas Meier Michael 

Kaufmann) The major challenge with the growing data is its no uniformity. Due to this 

problem, in recent years, a nonrelation database is needed to scale the growing need of 

industry and at the same time, must be highly efficient. This gave rise to NoSQL 

databases which are highly scalable, efficient and can store large amount of data. To 

deal with this non-uniformity of data a fresh thought was given to the storage of data, 

leading to the creation of NoSQL. They do not follow the general table/row/column 

approach which is practiced by all RDBMSs. NoSQLs are primarily called distributed 

or non-relational databases. They support horizontal scalability, so to scale number of 

servers are increased rather than upgrading hardware of the system which happens in 

RDBMS where vertical scalability is performed. (28)  

Non-relational databases may primarily be classified on the basis of way of organizing 

data as follows: 

6.2.1 Key Value Stores 

It allows the app-developer to store schema-less data. This data consists of a key which 

is represented by a string and the actual data which is the value in key-value pair. The 

data can be any primitive of programming language, which may be a string, an integer 

or an array or it can be an object. Thus it loosens the requirement of formatted data for 

storage, eliminating the need for fixed data model. Key-value model is a schema-less 

database which is implemented using a hash table where keys are stored as indexes and 

a pointer that holds the actual data. This structure creates the 'key-value' pair as the 
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model itself is named. The hash tables are suitable for lookups for simple or complex 

values in extremely large datasets. The data in the key-value database are stored in the 

form of rows as structured data but also can be stored as JSON or some other self-

describing data format as semi structured data. 

6.2.2 Document Store 

 Document Store, also commonly known as “Document Oriented Database”, is 

basically a computer program used for storing, retrieving, updating data stored in 

database. The underlying storage structure used in such databases is a ‘document’. Each 

document is represented by a unique key which is a string (URI or path). An API or a 

query language is provided for fast retrieval of documents on the basis of its content. 

The document based model perfectly handles all types of data including structured, 

semi-structured and unstructured data. The documents in a collection should be similar, 

but a document can contain attributes that are not necessarily need to have other 

documents in that collection. 

6.2.3 Graph Database 

Graph databases are schema-less databases which use graph data structures along with 

nodes, edges and certain properties to represent data. Nodes may represent entities like 

people, business or any other item similar to what objects represent in any programming 

language. Properties designate any pertinent information related to nodes. On the other 

hand; edges relate a node to other node or a node to some property. One can obtain 

some meaningful pattern or behavior after studying the interconnection between all 

three viz. nodes, properties and edges. This model can support complex data queries for 

a relatively short period of time, also can support ACID properties and the rollback 

feature which ensures the consistency of data. This type of database is used when the 

importance is given on the relationships between data than the data itself. 

6.2.4 Column Oriented Databases 

Column Store Databases, unlike Row Databases, store their data in the form of 

columns. It serializes all the values of one column together and so on. Column-oriented 

databases are comparatively efficient than row oriented one’s when new values for a 

column are entered for all rows at once as column data can be written efficiently and 

replace old data without altering any other columns for the rows. Column-oriented 
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model is a wider concept of key value architecture, organized by columns. This model 

is a composite approach to relational databases and key-value model schema. The data 

are stored in column families and rows. Every row has a row-key and a row may contain 

many columns. A row can have a different number of columns and in case of nested 

columns inside another column, those columns are called super columns. This database 

type works very well with complex datasets as a result of its scalability. 

6.2.5 Object Oriented Databases  

Object Oriented Databases also commonly known as OODBMS), is a database system. 

It stores its data in the form of objects. This feature supports inheritance and hence 

reusability similar as in object oriented programming. Object oriented database can be 

considered as a combination of object oriented programming (OOP) and database 

principles. Object data store offers all the features of OOP such as data encapsulation, 

polymorphism and inheritance. The class, objects, and class attributes in such databases 

are comparable to a table, tuple and columns in a tuple in RDBMS respectively. Each 

object has an object identifier which can be used to uniquely represent that object 

(26) (29) (30) 

6.3 Evaluation of differences between SQL and NoSQL Databases  

6.3.A Scalability and performance 

On the one hand Relational databases (SQL databases) use vertical scalability, which 

means that when the volume of data is being expanded, there could be expand just the 

storage capacity and computing power of existing node, for example, the capacity of 

CPU, the RAM and the SSD of the database server. This kind of scalability is expensive 

because of grater hardware failure risk, hardware costs in means of future upgradability 

(hardware became older and the support is less, vendors may have some requests, 

hardware and software limitations, etc.), so the overall implementation cost will 

increase with data growth. On the other hand NoSQL databases use horizontal 

scalability which means that when the volume of data is rapidly growing and the 

volume of data is large the system expand by adding more nodes for data storage and 

processing power. By following this procedure, the horizontal scalability of the system 

is a cheaper solution than the vertical scalability. Inherently the NoSQL databases 

support the auto – sharding feature by distributing data on different servers, which 
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increases the performance of the database. NoSQL databases are, therefore, fit in the 

current world, where outward scalability is replacing upward scalability. Additionally, 

NoSQL databases are used for handling big data applications, which RDBMSs cannot 

manage (31)  

6.3.B Flexibility 

The SQL databases have a static database schema that should be pre-defined before 

data injection and should support structured data. If there is a need to change the 

schema, with pre-existing data, there is a huge problem and a modification of the 

database schema or tables should be considered precisely, because that modification 

can cause service failure, decrease performance, or may need maintenance and further 

investments to modify application modules. While on the other hand, NoSQL databases 

have a dynamic schema and not necessarily need to be pre-defined. NoSQL databases 

can easily accommodate changes in data type / structure due to its dynamic schema 

design. The NoSQL databases because of their data modeling are used for agile and 

scalable environments which will be continuously developing and evolving. One more 

important point is that SQL databases handle just well – structured data but NoSQL 

databases handle every kind of data including their well – structured, semi – structured 

and unstructured data. 

6.3.C Query language 

Relational databases use a standard query language known as Structured Query 

Language (SQL). This query language is a powerful one and can handle complex 

queries through a standardized interface. SQL databases have portability since SQL is 

compatible with a broad range of computer programs and can be used for quick 

communication with other databases. On the other side, the NoSQL databases do not 

have a standardized language to query and manage data. However, every NoSQL 

database management system vendor has created their own query language but there is 

a lack of creating complex queries such as aggregation on NoSQL databases. Many 

NoSQL systems do not provide join operation as part of their query language, so the 

joins need to be implemented on the application side. There is a need for a common 

query language like SQL which can be used for all NOSQL databases. 
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6.3.D Security 

The security is an important issue for a DBMS. The relational databases have very 

secure mechanisms which ensure the security of the services and support parameterized 

queries and prepared statements to prevent SQL injection attacks. By separating SQL 

code from user-supplied input, databases can protect against malicious SQL commands.  

Since the feature of sharding is considered the key to success of NoSQL databases by 

distributing data over servers this probably has impact in data security as the most 

difficult challenge for NoSQL databases. There is a concern, how the confidentiality, 

privacy and the security of the data are guaranteed from these systems. Most of the 

NoSQL databases do not have secure client-server communication and do not provide 

these mechanisms that can ensure security. There are some key factors that should be 

considered when dealing with the security of databases. Those factors are 

authentication, access control, secure configurations, data encryption, and auditing. To 

ensure the authentication, authorization, and auditing there should be external methods 

to perform the operation and should be implemented based on the NoSQL database 

used. It is the same way in defining the access control of the users, some of the NoSQL 

databases provide access control from the system, but some of them do not ensure this 

kind of mechanism and need to implement it from the third party. NoSQL databases 

are less mature compared to RDBMSs, which have been existing for an extended 

period, thus becoming more stable and richly functional.  

6.3.E Data management - Storage and Access 

In relational databases, data stored are highly normalized and very clean. The data 

redundancy is avoided in a remarkable way using normalization by slicing data in small 

logical tables and preventing duplication. In this way, happens the improvement and 

usage of storage in a reasonable manner. 

NoSQL database are stored in collections without relationships and normalization 

between each other so this could contain data redundancy. NoSQL databases practice 

the data replication of the database between clustered servers, in order to prevent data 

loss and to guarantee the security of data. The replication process is done in two ways: 

master-slave and master-master. Master-slave replication allows the slave to take a 

copy of the data just for read, while the master holds the permission to write and read 

the data, so this way guarantees the consistency of data. While master – master 
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replication allows reads and writes to any of the copies and this may lose the 

consistency. In the relational databases, a replication is when the whole database is 

replicated in every site of the distributed system and as a result the availability of data 

is improved but the performance of the database operations will be decreased obviously. 

Most of the Non-Relational databases are open source software and though well 

appreciated, it compromises in reliability as nobody is responsible in times of failures. 

Many Non-relational databases provide BASE properties and sacrifice conventional 

ACID properties as a step to increase performance. This could mean than non-relational 

databases compromise on consistency within the database. 

(29) 

6.4 Graphs 

Formally, a graph is just a collection of vertices and edges—or, in less intimidating 

language, a set of nodes and the relationships that connect them. Graphs represent 

entities as nodes and the ways in which those entities relate to the world as relationships. 

This general-purpose, expressive structure allows us to model all kinds of scenarios, 

from the construction of a space rocket, to a system of roads, and from the supply chain 

or provenance of foodstuff, to medical history for populations, and beyond. 

A graph database management system (henceforth, a graph database) is an online 

database management system with Create, Read, Update, and Delete (CRUD) methods 

that expose a graph data model. Graph databases are generally built for use with 

transactional (OLTP) systems. Accordingly, they are normally optimized for 

transactional performance, and engineered with transactional integrity and operational 

availability in mind. 

There are two properties of graph databases we should consider when investigating 

graph database technologies: 

 

The underlying storage 

Some graph databases use native graph storage that is optimized and designed for 

storing and managing graphs. Not all graph database technologies use native graph 

storage, however. Some serialize the graph data into a relational database, an object-

oriented database, or some other general-purpose data store. 
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The processing engine 

Some definitions require that a graph database use index-free adjacency, meaning that 

connected nodes physically “point” to each other in the database. Here we take a 

slightly broader view: any database that from the user’s perspective behaves like a 

graph database (i.e., exposes a graph data model through CRUD operations) qualifies 

as a graph database. We do acknowledge, however, the significant performance 

advantages of index-free adjacency, and therefore use the term native graph processing 

to describe graph databases that leverage index-free adjacency. 

Relationships are first-class citizens of the graph data model. This is not the case in 

other database management systems, where we have to infer connections between 

entities using things like foreign keys or out-of-band processing such as map-reduce. 

By assembling the simple abstractions of nodes and relationships into connected 

structures, graph databases enable us to build arbitrarily sophisticated models that map 

closely to our problem domain. The resulting models are simpler and at the same time 

more expressive than those produced using traditional relational databases and the other 

NOSQL (Not Only SQL) stores. (32) 

 

Figure 35 Graph Database on the market today 

(Ian Robinson, Jim Webber & Emil Eifrem. Graph Databases. Menlo Park, 

California  : O'REILLY, 2013) 

A graph compute engine is a technology that enables global graph computational 

algorithms to be run against large datasets. Graph compute engines are designed to do 

things like identify clusters in your data, or answer questions such as, “how many 

relationships, on average, does everyone in a social network have?” 
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Because of their emphasis on global queries, graph compute engines are normally 

optimized for scanning and processing large amounts of information in batches, and in 

that respect they are similar to other batch analysis technologies, such as data mining 

and OLAP, in use in the relational world. Whereas some graph compute engines include 

a graph storage layer, others (and arguably most) concern themselves strictly with 

processing data that is fed in from an external source, and then returning the results for 

storage elsewhere. 

 

Figure 36 A high-level view of a typical graph  compute engine deployment 

(Ian Robinson, Jim Webber & Emil Eifrem. Graph Databases. Menlo Park, 

California  : O'REILLY, 2013) 

 

A variety of different types of graph compute engines exist. Most notably there are in 

memory/ single machine graph compute engines like Cassovary and distributed graph 

compute engines like Pegasus  or Giraph. Most distributed graph compute engines are 

based on the Pregel white paper, authored by Google, which describes the graph 

compute engine Google uses to rank pages. 

(32) (33) (34)  

6.4.1 Types of Graph Algorithms 

6.4.1.1 Pathfinding and Graph Search Algorithms 

Graph search algorithms explore a graph either for general discovery or explicit search. 

These algorithms carve paths through the graph, but there is no expectation that those 

paths are computationally optimal. We will cover Breadth First Search and Depth First 

Search because they are fundamental for traversing a graph and are often a required 

first step for many other types of analysis. Pathfinding algorithms build on top of graph 

search algorithms and explore routes between nodes, starting at one node and traversing 

through relationships until the destination has been reached. These algorithms are used 

http://www.cs.cmu.edu/~pegasus/
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to identify optimal routes through a graph for uses such as logistics planning, least cost 

call or IP routing, and gaming simulation. Specifically, the pathfinding algorithms we’ll 

cover are:  

• Shortest Path, with two useful variations (A* and Yen’s): finding the shortest path or 

paths between two chosen nodes  

• All Pairs Shortest Path and Single Source Shortest Path: for finding the shortest paths 

between all pairs or from a chosen node to all others  

• Minimum Spanning Tree: for finding a connected tree structure with the smallest cost 

for visiting all nodes from a chosen node  

•   Random Walk: because it’s a useful preprocessing/sampling step for machine 

learning workflows and other graph algorithms. 

 

Figure 37 Pathfinding and search algorithms 

(35) (36) 

6.4.1.2 Centrality Algorithms 

Centrality algorithms are used to understand the roles of particular nodes in a graph and 

their impact on that network. They’re useful because they identify the most important 

nodes and help us understand group dynamics such as credibility, accessibility, the 

speed at which things spread, and bridges between groups. Although many of these 



Master Thesis: << The use of Graph Databases in Financial Problems >> 

 

 80 

 

algorithms were invented for social network analysis, they have since found uses in a 

variety of industries and fields. We’ll cover the following algorithms: 

Degree Centrality as a baseline metric of connectedness 

Closeness Centrality for measuring how central a node is to the group, including two 

variations for disconnected groups 

Betweenness Centrality for finding control points, including an alternative for 

approximation 

PageRank for understanding the overall influence, including a popular option for 

personalization 

 

Figure 38 Representative centrality algorithms and the type of questions they answer 

(35) (37) 

6.4.1.3 Community Detection Algorithms 

Community formation is common in all types of networks, and identifying them is 

essential for evaluating group behavior and emergent phenomena. The general prin‐ 

ciple in finding communities is that its members will have more relationships within 

the group than with nodes outside their group. Identifying these related sets reveals 
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clusters of nodes, isolated groups, and network structure. This information helps infer 

similar behavior or preferences of peer groups, estimate resiliency, find nested 

relationships, and prepare data for other analyses. Community detection algorithms are 

also commonly used to produce network visualization for general inspection. We’ll 

provide details on the most representative community detection algorithms:  

• Triangle Count and Clustering Coefficient for overall relationship density  

• Strongly Connected Components and Connected Components for finding con‐ nected 

clusters  

• Label Propagation for quickly inferring groups based on node labels  

• Louvain Modularity for looking at grouping quality and hierarchies 

 

Figure 39  Representative community algorithms 

(35) (38) 
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THIRD PART 

7. Platforms 

Traditionally there was a separation between graph compute engines and graph 

databases, which required users to move their data depending on their process needs: 

Graph compute engines 

These are read-only, nontransactional engines that focus on efficient execution of 

iterative graph analytics and queries of the whole graph. Graph compute engines 

support different definition To address the requirements of graph processing, several 

platforms have emerged. and processing paradigms for graph algorithms, like node-

centric (e.g., Pregel, Gather-Apply-Scatter) or MapReduce-based approaches (e.g., 

PACT). Examples of such engines are Giraph, GraphLab, Graph-Engine, and Apache 

Spark. 

Graph databases 

From a transactional background, these focus on fast writes and reads using smaller 

queries that generally touch a small fraction of a graph. Their strengths are in 

operational robustness and high concurrent scalability for many users. 

7.1 Selecting Platform 

Choosing a production platform involves many considersations, such as the type of 

analysis to be run, performance needs, the existing environment, and team preferences. 

We use Apache Spark and Neo4j to showcase graph algorithms in this book because 

they both offer unique advantages. 

Spark is an example of a scale-out and node-centric graph compute engine. Its popular 

computing framework and libraries support a variety of data science workflows. Spark 

may be the right platform when our: 

• Algorithms are fundamentally parallelizable or partitionable. 

• Algorithm workflows need “multilingual” operations in multiple tools and 

languages. 

• Analysis can be run offline in batch mode. 

• Graph analysis is on data not transformed into a graph format. 
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• Team needs and has the expertise to code and implement their own algorithms. 

• Team uses graph algorithms infrequently. 

• Team prefers to keep all data and analysis within the Hadoop ecosystem. 

The Neo4j Graph Platform is an example of a tightly integrated graph database and 

algorithm-centric processing, optimized for graphs. It is popular for building 

graphbased applications and includes a graph algorithms library tuned for its native 

graph database. Neo4j may be the right platform when our: 

• Algorithms are more iterative and require good memory locality. 

• Algorithms and results are performance sensitive. 

• Graph analysis is on complex graph data and/or requires deep path traversal. 

• Analysis/results are integrated with transactional workloads. 

• Results are used to enrich an existing graph. 

• Team needs to integrate with graph-based visualization tools. 

• Team prefers prepackaged and supported algorithms. 

Finally, some organizations use both Neo4j and Spark for graph processing: Spark for 

the high-level filtering and preprocessing of massive datasets and data integration, and 

Neo4j for more specific processing and integration with graph-based applications. 

7.2 Apache Spark 

Apache Spark (henceforth just Spark) is an analytics engine for large-scale data 

processing. It uses a table abstraction called a DataFrame to represent and process data 

in rows of named and typed columns. The platform integrates diverse data sources and 

supports languages such as Scala, Python, and R. Spark supports various analytics 

libraries, as shown in Figure 40. Its memory-based system operates by using efficiently 

distributed compute graphs. 

GraphFrames is a graph processing library for Spark that succeeded GraphX in 2016, 

although it is separate from the core Apache Spark. GraphFrames is based on GraphX, 

but uses DataFrames as its underlying data structure. GraphFrames has support for the 

Java, Scala, and Python programming languages. In spring 2019, the “Spark Graph: 

Property Graphs, Cypher Queries, and Algorithms” proposal was accepted (see “Spark 

Graph Evolution” on page 33). We expect this to bring a number of graph features using 

the DataFrame framework and Cypher query language into the core Spark project. 
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However, in this book our examples will be based on the Python API (PySpark) because 

of its current popularity with Spark data scientists. 

 

Figure 40 Spark is an open-source distributed  and general-purpose clustercomputing framework. It includes several 

modules for various workloads 

(35) (39) (40) (41)  

 

7.2.1 Spark Graph Evolution 

The Spark Graph project is a joint initiative from Apache project contributors in 

Databricks and Neo4j to bring support for DataFrames, Cypher, and DataFramesbased 

algorithms into the core Apache Spark project as part of the 3.0 release. 

Cypher started as a declarative graph query language implemented in Neo4j, but 

through the openCypher project it’s now used by multiple database vendors and an 

opensource project, Cypher for Apache Spark (CAPS). 

In the very near future, we look forward to using CAPS to load and project graph data 

as an integrated part of the Spark platform. We’ll publish Cypher examples after the 

Spark Graph project is implemented. 

This development does not impact the algorithms covered in this book but may add new 

options to how procedures are called. The underlying data model, concepts, and 

computation of graph algorithms will remain the same. 

7.3 Neo4j Graph Platform 

The Neo4j Graph Platform supports transactional processing and analytical processing 

of graph data. It includes graph storage and compute with data management and 

analytics tooling. The set of integrated tools sits on top of a common protocol, API, and 
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query language (Cypher) to provide effective access for different uses, as shown in 

Figure 41. 

 

Figure 41 The Neo4j Graph Platform  is built around a native graph database that supports transactionals 

applications and graph analytics 

 

The graph algorithm library includes parallel versions of algorithms supporting graph 

analytics and machine learning workflows. The algorithms are executed on top of a task 

-based parallel computation framework and are optimized for the Neo4j platform. For 

different graph sizes there are internal implementations that scale up to tens of billions 

of nodes and relationships. 

Results can be streamed to the client as a tuples stream and tabular results can be used 

as a driving table for further processing. Results can also be optionally written back to 

the database efficiently as node properties or relationship types. 

(35) (42) (43)  

 

8. Forming – Operating – Evaluating a methology for AML 

8.1 Choosing Data Set 

In this master thesis is used as IBM AMLSim Example Dataset which is located in 

kaggle platform. 

The AMLSim project is intended to provide a multi-agent based simulator that 

generates synthetic banking transaction data together with a set of known money 
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laundering patterns - mainly for the purpose of testing machine learning models and 

graph algorithms. 

This dataset is an example dataset generated from IBM AMLSim. 

Content 

There are 3 datasets mentioned here: alerts, transactions and accounts. 

1. Accounts dataset: Contains the information about all the bank accounts whose 

transactions are monitored. 

2. Alerts dataset: Contains the transactions which triggered an alert according to 

AML guidelines. 

3. Transactions dataset: Contains the list of all the transactions with information 

about sender and receiver accounts. 
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8.2 Neo4j  

8.2.1 Creating a graph data base in Neo4j 

 

Figure 42 Creating a database and adding APOC and GDS libraries 

The APOC library consists of many (about 450) procedures and functions to help with 

many different tasks in areas like data integration, graph algorithms or data conversion. 

The Neo4j Graph Data Science (GDS) library provides extensive analytical capabilities 

centered around graph algorithms. The library includes algorithms for community 

detection, centrality, node similarity, path finding, and link prediction, as well as graph 

catalog procedures designed to support data science workflows and machine learning 

tasks over your graphs. All operations are designed for massive scale and 

parallelization, with a custom and general API tailored for graph-global processing, and 

highly optimized compressed in-memory data structures. 

Parameter settings  

dbms.directories.import=import 

dbms.security.allow_csv_import_from_file_urls=true 



Master Thesis: << The use of Graph Databases in Financial Problems >> 

 

 88 

 

dbms.security.procedures.unrestricted=jwt.security.*,apoc.*,gds.*,dbms.components.* 

8.2.2 Adding files 

 

Figure 43 Adding  csv files 
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8.2.3 Forming node alerts 

 

Figure 44 Creating vertex alerts 

7.2.4 Forming node accounts 

 

Figure 45 Creating vertex accounts 
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8.2.4 Forming relationships between transactions and accounts 

 

Figure 46 Creating relationships transactions-accounts 
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8.2.5 Forming relationships between transactions and alerts 

 

Figure 47 Creating relationships transactions-alerts 

 

Figure 48   Schema visualization of the imported data 
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8.2.6 First AML Query 

 

Figure 49 First AML Query 

The query matches the sender and receiver accounts and returns their account IDs, 

customer IDs, countries, transfer count, total transfer amount, and transfer amount 

standard deviation, ordered by the transfer amount standard deviation in descending 

order. We are using standard deviation as a mean to spot suspicious transactions.  

Outliers are extreme values that differ significantly from other data points in a dataset. 

They can have a big impact on statistical analyses and skew the results of any 

hypothesis tests. When outliers are present in a data set, they significantly affect the 

standard deviation. Outliers tend to increase the standard deviation because they are far 

from the mean, making the sum of the squared deviations larger. Standard deviation is 

sensitive to outliers. A single outlier can raise the standard deviation and in turn, distort 

the picture of spread. For data with approximately the same mean, the greater the 

spread, the greater the standard deviation. 
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Figure 50  Results of the First AML Query 

We are going to use the first pair with senderAccountId “9183” and receiverAccountId 

“4062” to examine their connection by using graph algorithms as they have the highest 

score in transferAmountStdDev with value 852.646 

8.2.7 Second AML Query 
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Figure 51 Second AML Query 

 

Figure 52 Results of Second AML  Query 

 

The first column shows that a very small percentage (0.02%) of all transactions under 

these conditions triggered an alert. The second column shows that 40% of all alerts 

under these conditions were triggered by transactions that meet these conditions. The 

third column shows that 15.373% of the total amount of alerts under these conditions 

were triggered by transactions that meet these conditions. 
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8.2.8 Third AML Query 

 

Figure 53  Third AML Query 
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Figure 54 Results of Third AML Query 

The query searches for transactions of type “TRANSFER” and then creates a rolling 

window of transactions based on a specified window size and step. Within each 

window, the query calculates various statistical indicators, such as the sum, maximum, 

minimum, and average of the transaction amounts, as well as the maximum and 

minimum timestamps. The query then filters the windows based on certain conditions 

to identify potentially suspicious activity. Finally, the query returns information about 

the suspicious transactions, including the sender and receiver account IDs, the total, 

maximum, minimum, and average amounts in the window, and the maximum and 

minimum timestamps in the window. 

 

8.2.9 Projection of graph in the graph catalogue of gds.library 

 

Figure 55  Graph projection 

A named graph projection called myGraph is created. This procedure allows the 

creation of a graph projection, using Cypher queries to define the nodes and 

relationships that should be included in the graph. Once the named graph projection has 

been created, it can be used as input for various GDS algorithms or for further analysis 

using other GDS procedures. The GDS library provides a wide range of graph 

algorithms and analytics that can be used to gain insights from your data, such as 

community detection, centrality measures, pathfinding, and similarity algorithms. 
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8.2.10 DFS ALGORITHM 

As we mentioned before in page 90 we are going to take the first pair with 

senderAccountId “9183” and receiverAccountId “4062” to examine their connection 

by using graph algorithms as they have the highest score in transferAmountStdDev with 

value 852.646 
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Figure 56 Results of DFS Algorithm 

 

The algorithm found a path between the source node with accountId: '9183' and the 

target node with accountId: '4062'. The nodeIds field lists all the nodes that were visited 

during the traversal, and the path field contains a path object representing the 

traversal.The source node with accoundId : ‘9183’  has id: ‘9187’. 
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8.2.11 BFS ALGORITHM 

 

 

 Figure 57 Results of BFS Algorithm 

The algorithm found a path between the source node with accountId: '9183' and the 

target node with accountId: '4062'. The nodeIds field lists all the nodes that were visited 

during the traversal and the path field contains a path object representing the traversal. 
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8.2.12 DEGREE CENTALITY ALGORITHM 

 

Figure 58  Results of  Degree Centrality Algorithm 

This algorithm shows the degree centrality of nodes in a graph. Degree centrality 

measures the number of incoming or outgoing (or both) relationships from a node, 

depending on the orientation of a relationship projection. The algorithm can be applied 

to either weighted or unweighted graphs, and can be used to find popular nodes within 

a graph.  

8.2.13 MACHINE LEARNING MODELS 

8.2.13.A  LOGISTIC REGRESSION MODEL DESCRIPTION 

Logistic regression is a statistical analysis method that constructs a statistical model to 

describe the relationship between a binary or dichotomous (yes/no type) outcome 

(dependent or response variable) and a set of independent predictor or explanatory 

variables. Regression modeling is a popular and useful approach in statistics that is used 

to explore and describe the relationship between an outcome or dependent/response 

variable and a set of independent predictors. Logistic regression is concerned with the 
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special situation in regression modeling, where the outcome is of a binary or 

dichotomous (yes/no) nature. Linear regression, where the outcome is continuous, 

cannot be used for binary outcomes because the probabilistic distribution of a binary or 

dichotomous variable is very different from that of a continuous variable (e.g., in the 

former case, the variance is usually a function of the mean, which is not the case for the 

latter). In addition, modeling a binary outcome entails modeling the probability of that 

event, which cannot be negative – a restriction that does not apply to linear regression. 

The logistic regression model uses a logit link function to model the probability of a 

binary event. Suppose our binary outcome or “event” is Y, which can only be 0 (“No”) 

or 1 (“Yes”). Interpretation of the regression coefficients from a logistic regression 

model entails exponentiating these coefficients so that they can be expressed in terms 

of odds ratios. (44) (45)   

8.2.13.B  RANDOM FORESTS MODEL DESCRIPTION 

Random forests or random decision forests is an ensemble learning method for 

classification, regression and other tasks that operates by constructing a multitude of 

decision trees at training time. For classification tasks, the output of the random forest 

is the class selected by most trees. For regression tasks, the mean or average prediction 

of the individual trees is returned. Random decision forests correct for decision trees' 

habit of overfitting to their training set.  Random forests generally outperform decision 

trees, but their accuracy is lower than gradient boosted trees. However, data 

characteristics can affect their performance.  

The first algorithm for random decision forests was created in 1995 by Tin Kam Ho 

using the random subspace method, which, in Ho's formulation, is a way to implement 

the "stochastic discrimination" approach to classification proposed by Eugene 

Kleinberg.  

An extension of the algorithm was developed by Leo Breiman and Adele Cutler, who 

registered "Random Forests" as a trademark in 2006 (as of 2019, owned by Minitab, 

Inc.). The extension combines Breiman's "bagging" idea and random selection of 

features, introduced first by Ho and later independently by Amit and Geman in order to 

construct a collection of decision trees with controlled variance. 

(46) (47) (48) 
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8.2.14 APPLICATION 

8.2.14. A  LOGISTIC REGRESSION MODEL 

In order to perform the above mentioned model we are going to create a new graph 

database consisting of nodes with label account and convert the string values of features 

into numerical. 

Additionally the GraphDatabase.driver method is used to create a driver object, which 

is then used to establish a connection to the database. The session.run method is used 

to execute a Cypher query on the database and retrieve the data. The data is then 

processed and used to train a machine learning model.   
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Figure 59  Logistic Regression Model 
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Figure 60 Results for f1_score,accuracy_score,precision_score,recall_score  and the ROC curve 

 

Figure 61 Bar Chart for metrics 
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 Accuracy measures the proportion of correct predictions made by the model.  

The accuracy score is 0.832, which means that the model correctly predicted 

whether an account is fraudulent or not in 83.2% of the cases. 

 Precision measures the proportion of true positive predictions among all 

positive predictions made by the model. The precision score is 0.0, which means 

that none of the accounts predicted as fraudulent by the model were actually 

fraudulent. 

 Recall measures the proportion of true positive predictions among all actual 

positive cases. The recall score is 0.0, which means that the model failed to 

identify any of the fraudulent accounts. 

 F1 score is the harmonic mean of precision and recall and provides a balanced 

measure of the model’s performance. The F1 score is 0.7557 but it could be 

improved. 

The area under the ROC curve (AUC-ROC) is a measure of the model’s ability to 

distinguish between the two classes. An AUC-ROC of 1.0 indicates a perfect classifier, 

while an AUC-ROC of 0.5 indicates a random classifier. Our logistic regression model 

achieved an ROC curve area of 0.64. This means that the model has some ability to 

distinguish between fraudulent and non-fraudulent accounts, but it is not perfect. 

(49) (50) (51) 



Master Thesis: << The use of Graph Databases in Financial Problems >> 

 

 106 

 

8.2.14.B   RANDOM FORESTS MODEL 
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Figure 62 Random Forest Model 

 

Figure 63 Results for f1_score,accuracy_score,precision_score,recall_score  and  ROC curve  area 
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Figure 64 Bar Chart  for metrics 

 

The model achieved an accuracy of 0.8045 and an F1 score of 0.7689, which are decent 

results. The precision score is 0.3475, which means that about 34.75% of the accounts 

predicted as fraudulent by the model were actually fraudulent. The recall score is 

0.1408, which means that the model was able to identify about 14.08% of the fraudulent 

accounts. 

The random forest model achieved an ROC curve area of 0.60. The model shows some 

ability to distinguish between fraudulent and non-fraudulent accounts, but it is not 

perfect. An AUC-ROC of 0.60 is considered to be fair, but there is still room for 

improvement. 
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8.3 Apache Spark 

8.3.1 PySpark  and SparkSession 

 

Figure 65 Starting SparkSession 

 Initialize PySpark and create a SparkSession 
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Figure 66 Import  modules, define variables and  checking in the HDFS  directory 

We import some modules and define some variables for your file paths and names. 

Then, we use the sub process module to execute some HDFS commands to check if the 

files exist in the HDFS directory. 
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8.3.2 Forming a graph 
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Figure 67 Constructing  a graph 

We form a Python function that creates a graph using the GraphFrame library from 

three CSV files: transactions_path, alerts_path, and accounts_path. The function reads 

the CSV files using the SparkSession object and creates a GraphFrame object from the 

data. The graph has vertices representing accounts, transactions, and alerts, and edges 

representing the relationships between them. Then we call this function and the 

GraphFrame object is being assigned to the variable g. 
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8.3.3 Visualization of the graph 
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Figure 68  Visualization oof 0,0004 of nodes  and edges of the graph 

We randomly sample  0.0004% of its vertices and edges to create a smaller graph. The 

sampled graph is then converted to a NetworkX graph object and visualized using 

the Matplotlib library. The visualization shows the nodes and edges of the sampled 

graph, with the nodes labeled by their IDs and the edges colored in red. 
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8.3.4 DFS ALGORITHM 

 

Figure 69  DFS Algorithm in Apache Spark 

 

Figure 70 Results  of  DFS Algorithm 
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There are four paths from vertex 9183 to vertex 4062 following the specified edge 

sequence. Each row in the results represents one path, with columns a, b, 

and c representing the vertices along the path, and columns e and e2 representing the 

edges between them. 

8.3.5 BFS ALGORITHM 

 

Figure 71 BFS Algorithm and results 

As we can observe the results of BFS algorithm is the same with the results of DFS 

Algorithm. 
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Figure 72 BFS Algorithm with minimum,maximum and average 
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Figure 73 Results of BFS Algorithm 

It appears that there are eight paths from vertex 9183 to vertex 4062. Each row in the 

results represents one path, with columns from, v1, and to representing the vertices 

along the path, and columns e0 and e1 representing the edges between them.  Also we 

can see the sum, minimum, maximum, and average of the INIT_BALANCE attribute 

for the starting and ending vertices along each path.  
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8.3.6 DEGREE CENTRALITY ALGORITHM 

 

Figure 74 DEGREE  CENTRALITY ALGORITHM and results 

Here we calculate the degree of each vertex in a GraphFrame object g using 

the degrees property. The degree of a vertex is the number of edges connected to it. The 

results are then filtered to only include vertices with IDs '9183' and '4062'. 
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8.4 MACHINE LEARNING  

8.4.1 LOGISTIC REGRESSION MODEL 

 

 



Master Thesis: << The use of Graph Databases in Financial Problems >> 

 

 121 

 

 

 

Figure 75  Logistic Regression  Model  and  metrics results 
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According to our model the accuracy of 0.62 means that 62% of the predictions made 

by the model were correct, the precision of 0.77 means that 77% of the instances 

predicted as fraud by the model were actually fraud, the recall of 0.56 means that the 

model correctly identified 56% of all fraud instances and the f1 score of 0.62 indicates 

that the model has a good balance between precision and recall. 
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Figure 76 Bar  Chart for metrics 

 

Figure 77 Code for AUC-ROC 
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Figure 78 Result and graphical representation of AUC-ROC 

According to the result AUC-ROC: 0.620265573936455 our model has moderate 

predictive power. 
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8.4.2 RANDOM FORESTS MODEL 
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Figure 79 Random Forests Model and metrics results 
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According to the above mentioned results of four metrics the accuracy of 0.54 means 

that 54% of the predictions made by the model were correct, the precision of 0.68 means 

that 68% of the instances predicted as fraud by the model were actually fraud, the recall 

of 0.82 means that the model correctly identified 82% of all fraud instances and the f1 

score of 0.74 indicates that the model has a good balance between precision and recall. 
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Figure 80 Bar Chart for metrics 

 

Figure 81 Code for AUC-ROC 
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Figure 82 Result and graphical representation of AUC-ROC 
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The AUC-ROC of our model is 0.54, which means that the model has moderate 

predictive power. 

9. Conclusions 

In the first part of this master thesis we examined the range use of graph databases in 

the financial sector, one of the most promising area from the scope of technology. The 

strength of a database can be measured using four principal factors: Integrity, 

performance, efficiency and scalability. The data query ought to become quicker and 

simpler – the main purpose of graph databases can be roughly summarized in this way. 

Where relational databases reach their capacity limits, the graph-based model is 

particularly agile, because complexity and the quantity of data don’t negatively 

influence the query process in this model. 

Also, with the graph database model, real facts can be stored in a natural way. The 

structure used is very similar to human thinking, and this is why the links are so clear 

to human perception. 

Graph databases are not a complete solution, though. They are limited, for example, 

where scalability is concerned. As they are principally designed for one-tier 

architecture, growth represents a (mathematical) challenge. Plus, there is still no 

uniform query language. 

One of the difficulties we came across, was the lack of banking data about their 

transactions over a period of time. So, as a result we were forced to resort to synthetic 

banking transaction data.  

Next we provide a brief historical review about SQL and NoSQL databases and 

continue by proposing an AML methology which is divided into three stages: 

Firstly we make use of standard deviation or a rolling window of transactions based on 

a specified window size and step with the purpose of forming a list of suspicious 

transactions without based on rules, like prior AML procedures, by combining it with 

Neo4j database and Cypher. 

Secondly, as examined case, we choose the suspicious transaction with the highest 

standard deviation score and by performing graph algorithms like DFS, BFD or 

DEGREE CENTRALITY we examine the nodes and relationships that included in the 

structure of this transaction with the use of Neo4j and Apache Spark. 
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The results show that Neo4j, in comparison to Apache Spark, provide a better and more 

understandable and detailed graphical visualization of the transaction construction but 

in Apache Spark the CENTRALITY DEGREE ALGORITHM provides a more 

enlightening result.  

Lastly we train and test for prediction two machine learning models LOGISTIC 

REHRESSION and RANDOM FORESTS in Neo4j and in Apache Spark. 

In Apache Spark, both models succeeded a better overall scoring about accuracy_score, 

precision_score, recall_score  and f1_score than in Neo4j something that reversed 

concerning the AUC-COV score. 

To sum up, this master thesis has demonstrated the potential of graph databases in the 

financial sector, particularly in the field of anti-money laundering. By leveraging the 

natural and intuitive structure of graph databases, combined with advanced machine 

learning techniques, it is possible to develop sophisticated methodologies for detecting 

suspicious transactions. The results of this study highlight the strengths and limitations 

of different technologies, including Neo4j, Cypher, Graphs, Apache Spark, and Python, 

and provide valuable insights into their potential applications in the financial sector. 

Future research could build on these findings by exploring new approaches to 

scalability and developing more advanced query languages for graph databases. 

Ultimately, this thesis represents a small contribution to the field of financial 

technology and has the potential to drive innovation and progress in the industry. 
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