

UNIVERSITY OF PELOPONNISOS

SCHOOL OF ENGINEERS

DEPARTMENT OF ELECTRICAL AND

COMPUTER ENGINEERS

MASTER THESIS

<< GRAPH DATABASES AND THEIR APPLICATION

TO FINANCIAL PROBLEMS >>

Nikolaos Livieratos

Registration Number: 9093202101014

SUPERVISOR: Vasilios T. Tampakas, Professor

PATRA 2023

Master Thesis: << The use of Graph Databases in Financial Problems >>

 2

It was approved by the three-member examination committee

Patras, Date

EVALUATION COMMITTEE

 1. Vasilios Tampakas

2. Ioannis Tsaknanis

 3. Sotirios Christodoulou

I certify that I am the author of this paper and that any help I had in its preparation of

her is fully recognized and referred to in the work. I have also cited any sources from

which I have used data, ideas or words, whether they are quoted exactly or paraphrased.

Also I certify that this assignment was prepared by me personally specifically for this

assignment. The approval of the thesis by the Department of Electrical and Computer

Engineering University of Peloponnese does not necessarily imply acceptance of the

views of the author part of the Department. This thesis is the intellectual property of

the student Nikolaou Livieratou who prepared it. In the framework of the open access

policy the author/creator assigns to the University Peloponnese, non-exclusive license

to use the right to reproduce, adapt, public lending, presenting to the public and digitally

disseminating them internationally, in electronic form and in any medium, for teaching

and research purposes, free of charge and for the whole year duration of intellectual

property rights. Open access to the full text for study and reading does not imply in any

way the granting of intellectual property rights author/creator nor allows to reproduce,

republish, copy, store, sell, commercial use, transmission, distribution, publication,

performance, "downloading", "posting" (uploading), translation, modification in any

Master Thesis: << The use of Graph Databases in Financial Problems >>

 3

way, partial or summary of the work, without the express prior written consent of the

author/creator. The author/creator retains the set of his moral and property rights.

Contents

Contents ... 3

Abstract .. 9

FIRST PART ... 11

Use Cases ... 11

1.Customer Experience with a 360-Degree View.. 11

1.1.1 Navigation Graph on Clients .. 17

1.1.2 Single-user View Prediction (SU) .. 17

1.1.3 Cross-user View Prediction (CU) ... 18

1.1.4 Performance evaluation ... 19

2. Compliance Management .. 21

2.1 Use Case... 21

2.1.1 Artifact 1: Building Knowledge Graph-Based on User Interaction............ 25

2.1.2 Artifact 2: Link Prediction with Neo4J Graph Machine Learning

Algorithms ... 26

2.1.3 Executive summary of node embedding algorithm Node2Vec 30

3. Data Lineage & Metadata Management .. 32

3.1 Use Case... 33

4. Financial Crime Types ... 41

4.1 STOCKS AND SECURITIES INVESTMENT FRAUD 41

4.2 FRAUD DETECTION AND ANTI-MONEY LAUNDERING (AML)........... 42

4.3 SIM-SWAPPING AND PHISHING ... 45

4.4 ROMANCE FRAUD ... 46

4.5 RANSOMWARE ... 47

Master Thesis: << The use of Graph Databases in Financial Problems >>

 4

4.6 DEEPFAKES AND GPT-2 ... 47

4.6 Use Case... 48

5. Recommender Systems & Conversational AI ... 55

5.1 Use Case... 56

5.1.1 CRS method .. 56

5.1.2 EAR method.. 60

5.1.3 CPR method .. 62

SECOND PART .. 69

6. Brief historical retrospective of databases ... 69

6.1 SQL Databases ... 70

6.2 NoSQL Databases .. 71

6.2.1 Key Value Stores .. 71

6.2.2 Document Store .. 72

6.2.3 Graph Database ... 72

6.2.4 Column Oriented Databases ... 72

6.2.5 Object Oriented Databases .. 73

6.3 Evaluation of differences between SQL and NoSQL Databases 73

6.3.A Scalability and performance... 73

6.3.B Flexibility ... 74

6.3.C Query language .. 74

6.3.D Security .. 75

6.3.E Data management - Storage and Access .. 75

6.4 Graphs .. 76

6.4.1 Types of Graph Algorithms ... 78

THIRD PART .. 82

7. Platforms .. 82

7.1 Selecting Platform .. 82

Master Thesis: << The use of Graph Databases in Financial Problems >>

 5

7.2 Apache Spark ... 83

7.2.1 Spark Graph Evolution ... 84

7.3 Neo4j Graph Platform .. 84

8. Forming – Operating – Evaluating a methology for AML 85

8.1 Choosing Data Set.. 85

8.2 Neo4j .. 87

8.2.1 Creating a graph data base in Neo4j ... 87

8.2.2 Adding files ... 88

8.2.3 Forming node alerts .. 89

8.2.4 Forming relationships between transactions and accounts 90

8.2.5 Forming relationships between transactions and alerts 91

8.2.6 First AML Query .. 92

8.2.7 Second AML Query .. 93

8.2.8 Third AML Query ... 95

8.2.9 Projection of graph in the graph catalogue of gds.library 96

8.2.10 DFS ALGORITHM .. 97

8.2.11 BFS ALGORITHM .. 99

8.2.12 DEGREE CENTALITY ALGORITHM .. 100

8.2.13 MACHINE LEARNING MODELS ... 100

8.2.13.A LOGISTIC REGRESSION MODEL DESCRIPTION 100

8.2.13.B RANDOM FORESTS MODEL DESCRIPTION 101

8.2.14 APPLICATION .. 102

8.2.14. A LOGISTIC REGRESSION MODEL ... 102

8.2.14.B RANDOM FORESTS MODEL .. 106

8.3 Apache Spark ... 109

8.3.1 PySpark and SparkSession ... 109

8.3.2 Forming a graph .. 111

Master Thesis: << The use of Graph Databases in Financial Problems >>

 6

8.3.3 Visualization of the graph ... 113

8.3.4 DFS ALGORITHM .. 115

8.3.5 BFS ALGORITHM .. 116

8.3.6 DEGREE CENTRALITY ALGORITHM .. 119

8.4 MACHINE LEARNING ... 120

8.4.1 LOGISTIC REGRESSION MODEL ... 120

8.4.2 RANDOM FORESTS MODEL ... 125

9. Conclusions .. 130

 Bibliography ... 132

Figure 1 Segments,Tiles,Viewports and View .. 14

Figure 2 view transitions .. 15

Figure 3 Navigation Graph in Video Server for Cross-User View prediction 16

Figure 4 Navigation Graph in Clients for Single-User ViewPrediction 17

Figure 5 View Prediction with the Navigation Graph ... 19

Figure 6 CDFs of View Prediction Precision .. 20

Figure 7 Data Model in Neo4j ... 24

Figure 8 Frequencies of Usr Interactions ... 25

Figure 9 Cypher Query <<who knows who>> .. 26

Figure 10 Process Diagram for Antifact 2 ... 27

Figure 11 Labelled Property Graph Visualized with neo4j Bloom(left) and Predicted

Relationships with Link Prediction(right). Screenshot from neo4j Bloom of the

USER-KNOWS-USER query. ... 28

Figure 12 BFS and DFS search strategies from node u (k=3) 30

Figure 13 Colt conceptual system architecture .. 35

Figure 14 data flows from producer to a consumer ... 35

Master Thesis: << The use of Graph Databases in Financial Problems >>

 7

Figure 15 A data flow is a complex structure containing concepts and their treatments

as well boundaries ... 36

Figure 16 Example network containing 9 nodes.. 36

Figure 17 Colt UI visualize and explore a network ... 37

Figure 18 Network tracing for System Z (with grayed/dashed serments determined to

be irrelevant for the trace) .. 38

Figure 19 Downstream trace result for System A .. 39

Figure 20 System W fails validation because p1 is onlt subset of p. System X passes

validation.. 40

Figure 21 Diagram of the illegal proccess ... 42

Figure 22 Diagram of ML .. 45

Figure 23Diagram of the SIM-Swap process ... 46

Figure 24 Diagram of romance fraud.. 47

Figure 25 System training overview .. 50

Figure 26 Schematic of graph(node) embedding ... 51

Figure 27 ROC curves and corresponding AUCs for all models consirered 53

Figure 28 UMAP visualization .. 55

Figure 29 The conversational recommender system overview.................................... 57

Figure 30 The structure of the proposed Conversational Recommender System 58

Figure 31 The workflow of our multi-roud conversational recommendation scenario

.. 61

Figure 32 An illustration of interactive path reasoning in CPR 63

Figure 33 CPR framework overview .. 66

Figure 34 Success Rate * of compared methods at different turns on LastFM and Yelp

(RQ1). .. 68

Figure 35 Graph Database on the market today ... 77

Figure 36 A high-level view of a typical graph compute engine deployment 78

Figure 37 Pathfinding and search algorithms .. 79

Figure 38 Representative centrality algorithms and the type of questions they answer

.. 80

Figure 39 Representative community algorithms ... 81

Figure 40 Spark is an open-source distributed and general-purpose clustercomputing

framework. It includes several modules for various workloads 84

Master Thesis: << The use of Graph Databases in Financial Problems >>

 8

Figure 41 The Neo4j Graph Platform is built around a native graph database that

supports transactionals applications and graph analytics ... 85

Figure 42 Creating a database and adding APOC and GDS libraries 87

Figure 43 Adding csv files .. 88

Figure 44 Creating vertex alerts ... 89

Figure 45 Creating vertex accounts ... 89

Figure 46 Creating relationships transactions-accounts .. 90

Figure 47 Creating relationships transactions-alerts .. 91

Figure 48 Schema visualization of the imported data .. 91

Figure 49 First AML Query ... 92

Figure 50 Results of the First AML Query ... 93

Figure 51 Second AML Query .. 94

Figure 52 Results of Second AML Query .. 94

Figure 53 Third AML Query .. 95

Figure 54 Results of Third AML Query .. 96

Figure 55 Graph projection ... 96

Figure 56 Results of DFS Algorithm ... 98

Figure 57 Results of BFS Algorithm ... 99

Figure 58 Results of Degree Centrality Algorithm .. 100

Figure 59 Logistic Regression Model ... 103

Figure 60 Results for f1_score,accuracy_score,precision_score,recall_score and the

ROC curve ... 104

Figure 61 Bar Chart for metrics ... 104

Figure 62 Random Forest Model ... 107

Figure 63 Results for f1_score,accuracy_score,precision_score,recall_score and

ROC curve area ... 107

Figure 64 Bar Chart for metrics .. 108

Figure 65 Starting SparkSession .. 109

Figure 66 Import modules, define variables and checking in the HDFS directory 110

Figure 67 Constructing a graph... 112

Figure 68 Visualization oof 0,0004 of nodes and edges of the graph 114

Figure 69 DFS Algorithm in Apache Spark ... 115

Figure 70 Results of DFS Algorithm ... 115

Figure 71 BFS Algorithm and results .. 116

Master Thesis: << The use of Graph Databases in Financial Problems >>

 9

Figure 72 BFS Algorithm with minimum,maximum and average 117

Figure 73 Results of BFS Algorithm ... 118

Figure 74 DEGREE CENTRALITY ALGORITHM and results 119

Figure 75 Logistic Regression Model and metrics results 121

Figure 76 Bar Chart for metrics .. 123

Figure 77 Code for AUC-ROC .. 123

Figure 78 Result and graphical representation of AUC-ROC 124

Figure 79 Random Forests Model and metrics results ... 126

Figure 80 Bar Chart for metrics ... 128

Figure 81 Code for AUC-ROC .. 128

Figure 82 Result and graphical representation of AUC-ROC 129

Table 1 Selected Variables Based on Data Model1 ... 24

Table 2 Train and Test Results of Link Prediction Model with neo4j Fast RP

Algorithm ... 29

Table 3 ROC AUC and average precision(AP) results on the test data for all methods

under consideration .. 53

Table 4 Success Rate and Average Turn ... 67

Abstract

Over the last 20 years Artificial Intelligence (AI) techniques have being accomplished

a significant deployment and using in many aspects of human activity.

By giving a definition we could say that Artificial intelligence (AI) systems are

machine-based systems with varying levels of autonomy that can, for a given set of

human-defined objectives, make predictions, recommendations or decisions. AI

techniques are increasingly using massive amounts of alternative data sources and data

analytics referred to as ‘big data’. Such data feed machine learning (ML) models which

use these kind of data, to learn and improve predictability and performance

automatically through experience, without being programmed to do so by humans.

Master Thesis: << The use of Graph Databases in Financial Problems >>

 10

The usage of such technologies offer competitive advantages for firms like improving

firms’ efficiency through cost reduction, enhancing productivity which drives to higher

profitability, improving the quality of services and products offered to consumers.

In this thesis we are going to focus on the AI application and especially, on analytics

with graphs in finance.

The financial sector is one of the most prominent, significant and prone to technological

advances which increased information exchange and the necessity to assess and

evaluate these large amount of data effectively.

During this master Thesis we are going to see graph use cases like Customer Experience

with a 360-Degree View, Compliance Management, Data Lineage & Metadata

Management, Financial Crime Types and Recommender Systems & Conversational AI.

(1)

In a next level we will dive into, how all these flooding of financial news sources

reporting on companies, markets, currencies and stocks can be, conveniently, stored in

a graph which can be used to drive new insights through answering complex queries

using high level declarative languages, what tools are utilized, making it possible to

mine data in structured representational forms for strategic decision making.

And lastly we will implement a graph and apply an evaluation in order to extract graph

statistics and performing machine learning models for binary classification.

Master Thesis: << The use of Graph Databases in Financial Problems >>

 11

FIRST PART

Use Cases

1. Customer Experience with a 360-Degree View

One of the main goals of companies, especially in the financial sector, is to become

aware of their customers, the relationships their customers hold with each other,

products, relationships between different products and much more to provide customers

with what they want in a accurate, effective and personalized way.

Customer expectations are rising. In today’s competitive landscape, especially in the

financial sector, customer service has become a significant differentiator. Companies

are striving to meet these heightened expectations as part of their primary goals.

The massive use of technology have made possible the collection of large sum of

information about customers, including:

• Master data — name, age, gender, address

• Transactions — purchases, types of items bought, purchase times

• Big data — call center logs, traffic lines, web click streams, SNS activities

• Predictions — classification, taste signatures (often created by different models)

(2)

All of these efforts require a 360-degree view of customers, and that’s something most

financial services firms simply don’t have. Data tends to be locked away in silos across

the organization without any way to leverage the connections between data and

innovate based on those connections. Harnessing the power of connected data (i.e., data

relationships) is essential to sustainable competitive advantage in today’s ever-more-

connected, ever-more competitive world.

But these silos of data can be logically integrated on graphs and the graph users can

simply view all of the surrounding information of one entity (the customer). With

graphs, decision makers can gain a more comprehensive view of their customers—the

relationships the customers hold with each other, the relationships between all the

purchased products, and more. Then, graph users can run algorithms to discover even

more fine-grained detail about the customer.

Master Thesis: << The use of Graph Databases in Financial Problems >>

 12

By inspecting all these knowledge about one particular customer is important to realize

the customer and to execute customer `s total analysis, to discover which predictions

(usually created through machine learning such as Enhanced Customer Relations) are

authentic and why.

(3) (4)

1.1 Use Case

The e-Commerce has become one of the most influential and substantial factor for the

survival and prosperity of business in the contemporary global surrounding. As online

competition becomes fiercer over time, online enterprises face increasingly more

sophisticated e-Customers. On line enterprises have to meet e-Customers' expectations

and to cause positive online shopping experience and satisfaction. Therefore, the design

and construction of a 360-degree view of customers and their behavior must be

prioritized, since "companies that make extensive use of customer analytics are more

likely to have a considerable impact on corporate performance, outperforming its

competitors".

The part '360-degree' denotes 'complete' or 'all-around', whilst the part 'view' refers to

the ability to see something from a particular place or angle. Therefore, the term '360-

degree view of a customer' suggests the ability to use the best available and most

relevant information about each customer to enhance sales, marketing, and servicing

decisions.

The technological capacity of using streaming 360-degree videos in the customer

virtual navigation, during e-shopping, will open a new era in the field of customer

experience. However, streaming these videos requires larger bandwidth and less latency

than what is found in conventional video streaming systems. Rate adaptation of tiled

videos and view prediction techniques are used to solve this problem.

A potential solution to this challenge could be use of the Navigation Graph, which

models viewing behaviors in the temporal (segments) and the spatial (tiles) domains to

perform the rate adaptation of tiled media associated with the view prediction. The

Navigation Graph allows online enterprises to perform view prediction more easily by

sharing the viewing model.

Master Thesis: << The use of Graph Databases in Financial Problems >>

 13

The server-client model is used. The server stores the video data as segments with

multiple quality choices and uses the media presentation description file to provide

video information to the clients. As the clients request the video data, the server

provides them with information from the MPD file. The clients can then also request

the video segments with the proper quality to allow for continuous play. The server can

send the segments as soon as requests are received. The clients are responsible for rate

adaptation. This allows the video to be viewed on various types of devices without

changing the video. Initially, 360-degree video streaming services streamed the whole

video to the viewers and the viewers extracted the viewports from the video they

wanted.

The Navigation Graph is a graph that consists of Vertices (set of tiles in a segment) and

Edges (transition probabilities between vertices).

360-degree videos are created by stitching together multiple videos taken by multiple

outward looking cameras that capture the whole surrounding sphere. The sphere is then

projected into the 2D plane to make the 360-degree video easier to process and store.

Therefore, the original videos are cut into smaller videos, called tiles, and encoded

independently with different qualities (representations). The encoded and stored video

data are called segments, and they are delivered to clients upon request.

A cross-user learning based system (CLS) [20] gathers the users’ fixation data on the

server and gives more weight to the tiles with more fixations. It can also utilize prior

viewers’ fixation data to optimize the weighting coefficients. It also performs the

clustering of the fixations to classify clients and chooses the weighting coefficients that

should be used for each client. A viewport prediction is critical for lowering the required

bandwidth because prediction error leads to waste bandwidth. While the viewport

predictions rely solely on viewport data from the viewer him/herself, a cross-user

viewport prediction could further improve the prediction accuracy since the viewport

trajectory of multiple viewers could be correlated.

The Navigation Graph concept can be useful for both single-user view prediction and

cross-user view prediction. Moreover, the Navigation Graph can be used to encode

important trajectories in videos using a powerful computer on the video server side and

can then share this information with clients.

Master Thesis: << The use of Graph Databases in Financial Problems >>

 14

The duration D of the segments is the basic unit of rate adaptation and is usually

between 1 to 15 seconds long.

Figure 1 Segments,Tiles,Viewports and View

(Navigation Graph for Tiled Media Streaming, Jounsup Park, Klara Nahrstedt, 2019)

Figure 1 shows the segments, tiles, viewports and views. The tiles cut the video into

smaller spatial regions, and then, the viewport can span multiple tiles within a video

frame. A video segment consists of multiple consecutive frames, and viewport can

change every frame. We define a "view" as the union of all visible tiles within a segment

duration D. Viewport usually means the visible part of the video, but the view is defined

as a set of tiles in specific segment that is used for recovering viewports in the video

segment. Since the viewers move continuously, the viewport can change within the

duration of a segment.

We define the view v as a tuple consisting of a segment index l and a set of visible tiles

s, where s is the union of all visible tiles in the duration of a segment. The temporal

variation of the view must be considered to perform the future view prediction and

manage the playback buffer. Therefore, a model that describes the relationship between

the views in series of segments is required. We introduce the Navigation Graph G,

which is a directed graph describing view transitions.

G = (V, E)

The vertices are defined as

Master Thesis: << The use of Graph Databases in Financial Problems >>

 15

V = {v |v = (l, s),l ∈ {1, 2, ..., L} and s ∈ S} ,

 Where l is a segment index, L is the number of segments in a video and S is the set of

s configuring the views that clients have seen at least once. E is a set of edges connecting

the vertices, where at least one transition happens.

E = { (vi , v j)| vi, j ∈ V, w(vi , v j) = p(v j | vi), i , j ∈ 1, ..., N },

Where w (vi , v j) is a weight function. We also define the matrix Eˆ which consists of

the transition probabilities from one vertex to other vertices connected by edges in E

𝐸 = 𝑅𝑁𝑋𝑁 = (
𝑝(𝑣1|𝑣1), 𝑝(𝑣1|𝑣2), ⋯ , 𝑝(𝑣1|𝑣𝑛)

⋮ ⋱ ⋮
𝑝(𝑣𝑁|𝑣1), 𝑝(𝑣𝑁|𝑣2), ⋯ , 𝑝(𝑣𝑛|𝑣𝑛)

)

Where N is the number of vertices. The maximum number of vertices is 2 T × L, where

the T is the number of tiles and L denotes the number of segments. However, N counts

only the vertices that have been visited at least once. The Navigation Graph is expended

whenever it encounters a new view the and the number of vertices N will range between

L and C × L depending on how various the viewing patterns of clients are, where C is

the number of clients.

Figure 2 view transitions

(Navigation Graph for Tiled Media Streaming, Jounsup Park, Klara Nahrstedt, 2019)

As we can see in Figure 2 each client also has a Navigation Graph generated from their

own view information. Therefore, the client’s Navigation Graph learns the client’s

Master Thesis: << The use of Graph Databases in Financial Problems >>

 16

distinctive viewing patterns and the Navigation Graph on the server learns the viewing

patterns of all of the clients watching the same video.

Navigation Graph on Video Server

The video server can generate a view transition model by collecting multiple viewers’

viewport feedback information.

The server compares the current view v c received from the client with the vertices in a

set V. If the same vertex exists in V that is the same as v c , then the server only updates

the edges E and the transition matrix Eˆ which describes the transition probabilities.

Otherwise, the Navigation Graph increases N by 1 and adds the vertex vc into V as a vN

, and updates the edges E and the transition matrix E.

The transition probability in Eˆ is updated as

p (v c |v p) = number of clients moving their view from vp to vc / number of clients

visiting vp

Where the vp is a prior vertex that the client had visited before she moved to the current

vertex vc.

Figure 3 Navigation Graph in Video Server for Cross-User View prediction

(Navigation Graph for Tiled Media Streaming, Jounsup Park, Klara Nahrstedt, 2019)

Figure 3 shows a Navigation Graph made by three clients’ view data.

Master Thesis: << The use of Graph Databases in Financial Problems >>

 17

1.1.1 Navigation Graph on Clients

The simplified Navigation Graph for clients is defined as Gc = (S, Ec) where the set S

consists of sets of visible tiles s that are defined in the previous section (Figure 1). All

vertices s m ∈ S,m = 1, ..., M are the vertices that a client has visited at least once. Ec

consists of edges connecting all vertices in S and the transition probability matrix is

defined as

𝐸𝑐 = 𝑅𝑀𝑋𝑀 = (
𝑝(𝑠1|𝑠1), 𝑝(𝑠1|𝑠2), ⋯ , 𝑝(𝑠1|𝑠𝑚)

⋮ ⋱ ⋮
𝑝(𝑠𝑚|𝑠1), 𝑝(𝑠𝑚|𝑠2), ⋯ , 𝑝(𝑠𝑚|𝑠𝑚)

)

Where M is the number of vertices and the difference between the original Navigation

Graph G and the simplified version G c is the configuration of the vertices. The vertices

for the simplified Navigation Graph consist of the set of tiles S and do not include a

segment index. Eˆ c elements present the transition probabilities p(sc |sp) from vertices

sp to vertices sc , where

p (s c | s p) = number of transitions from s p to s c / number of times visiting the set of

visible tiles s p

Figure 4 Navigation Graph in Clients for Single-User ViewPrediction

(Navigation Graph for Tiled Media Streaming, Jounsup Park, Klara Nahrstedt, 2019)

Figure 4 shows how the Navigation Graph is constructed by four consecutive video

segments that a client has seen.

1.1.2 Single-user View Prediction (SU)

Clients can perform the prediction themselves using past view transition data encoded

as a Navigation Graph Gc. The probability that a viewer will change his head position

from the current set of visible tiles s c to another set of visible tiles sm for 1 ≤ m ≤ M is

Master Thesis: << The use of Graph Databases in Financial Problems >>

 18

the column vector of the Eˆc , which is defined as a vector d1 = R 1xM whose elements

are p(s m |s c), for 1 ≤ m ≤ M. For example, Eˆ c is updated after the video started, and

the viewer is currently (segment l) at the vertex s1. The first column of Eˆc is d1, which

describes the probabilities that the viewer will have a set of tiles sm,, m = 1, ..., M, in

segment l + 1.

In general, we can define a kth future transition probability as

 d k = Ecˆ
(k-1) d 1

Since the vertices sm consist of many tiles, the probability pt,k of needing a specific tile

t in future segment k is given as

P t, ,k = ∑ d m k V m, t ∈ s m

Where the t is the index of tile and dm k indicates the m th element of vector dk.

We can generate a prediction matrix Ps = R TXK that the user’s current behavior is

related to the video content, the CU will work better.

1.1.3 Cross-user View Prediction (CU)

The Navigation Graph in the media server is updated by all prior viewers’ view

transitions. The Navigation Graph provides the statistics for how many times other

viewers move from the current view to the subsequent views. The probability that a

viewer will change his view from the current view vc to the next view vn is the column

vector of Eˆ, which is defined as b1 = R 1xN , whose elements are p(vn |vc), for 1 ≤ n ≤

N. We can also define a k th transition vector b k , which represents the transition

probabilities from the current vertex to the vertices in the future segment l + k; the k =

1, ...,K transition happens after the current segment l as follows:

b k = Eˆ (k-1) b 1

Since the vertices consist of many tiles, the probability of needing a specific tile t is

given as

P t, ,k = ∑ b n k V n, t ∈ V n

Again, we can get a prediction matrix Pc = R TXK that has elements p t,k .

Master Thesis: << The use of Graph Databases in Financial Problems >>

 19

1.1.4 Performance evaluation

Figure 5 View Prediction with the Navigation Graph

(a) Average Precision (b) Average Prediction Error

(Navigation Graph for Tiled Media Streaming, Jounsup Park, Klara Nahrstedt, 2019)

Figure 5.a shows the mean precision of view prediction result for k segments, k = 1, ...,

5. SU+CU outperforms the other schemes because it can opportunistically choose the

better prediction scheme.

Second, the prediction errors are also measured (Figure 5.b) to see whether the

necessary tiles are requested on time. The prediction error is defined as the average of

the number of tiles that has p t,k = 0 but g t,k > 0 over the total number of tiles needed

to render the view. Therefore, it represents the percentage of visible blank areas in the

view. The prediction errors under each condition are less than 6%. Our system tends to

have lower prediction error for distant future prediction because the higher uncertainty

of distant future prediction causes the Navigation Graph to request more redundant tiles.

The prediction precision of the proposed Navigation Graph based scheme (SU+CU)

scheme is compared with existing solutions, which are Linear Regression (LR), Linear

Regression with Gaussian distributed error (LR-G) , CLS-1, and CLS-2.

Linear Regression with Gaussian distributed error (LR-G) is probabilistic model of

viewport which leverage Linear Regression (LR) with the assumption of normally

distributed errors (or “Gaussian distributed errors”).The particular model simplifies the

mathematics and makes the parameters in the model easier to estimate, it leads to

optimal properties of the estimators (like being unbiased with minimum variance) under

the Gauss-Markov theorem. (5)

0.6

0.7

0.8

0.9

SU
CU
SU+CU 0.02

0.04

0.06

0.08

0.1

SU
CU
SU+CU

Master Thesis: << The use of Graph Databases in Financial Problems >>

 20

CLS is a Cross user Learning based System for viewport-adaptive 360-degree video

streaming aiming at improving the prediction precision for tile-based 360-degree video

which uses the Client – Server model. Without user classification is referred to as CLS-

1and with user classification is referred to as CLS-2.

(6)

Figure 6 CDFs of View Prediction Precision

 (a) View Prediction of 1 sec after current segment (b) View Prediction of 5 sec after

 current segment

(Navigation Graph for Tiled Media Streaming, Jounsup Park, Klara Nahrstedt, 2019)

Figure 6 shows that the proposed Navigation Graph based prediction has better

precision results than CLS-2, which is a state-of the-art method. LR works well for 1

second future view prediction, but the Navigation Graph based prediction has better

precision than LR. The view prediction for 5 seconds in the future with LR does not

work very well because the viewer usually does not keep the same viewing pattern for

5 seconds. The Navigation Graph again shows the best precision performance in

predicting the view for 5 seconds in the future. The Navigation Graph based prediction

outperforms for near future prediction and distant future prediction.

(7)

0.2

0.4

0.6

0.8

1
LR
LR-G
CLS-1
CLS-2
SU+CU

0.2

0.4

0.6

0.8

1

LR
LR-G
CLS-1
CLS-2
SU+CU

Master Thesis: << The use of Graph Databases in Financial Problems >>

 21

2. Compliance Management

Today enterprises do business in a rapidly changing environment and it is crucial for

their prosperity to remain compliant with ever-changing and growing universe of

regulations, policies and internal contracts.

Financial compliance orders companies to possess the technical ability and agility to

screen, effectively, customer’s economic behavior and transactions something that

imposes data quality and data availability challenges. It, also, requires companies to

maintain sophisticated customer screening and transaction surveillance systems that

pose data quality and data availability challenges.

Current compliance systems are focusing mainly on data collection and data

consolidation, leaving less time for in-depth analysis.

 By using graphs is feasible to unify and interlink data from various sources and to

apply complex rules and patterns for (semi-) automated compliance monitoring

reaching an optimal level with the combination of contextual domain knowledge,

Natural Language Processing (NLP) and Machine Learning such as regulatory

compliance (8) or customer screening (9).

2.1 Use Case

The General Data Protection Regulation (GDPR) is the toughest privacy and security

law in the world. Though it was drafted and passed by the European Union (EU), it

imposes obligations onto organizations anywhere, so long as they target or collect data

related to people in the EU. The regulation was put into effect on May 25, 2018. The

GDPR will levy harsh fines against those who violate its privacy and security standards,

with penalties reaching into the tens of millions of euros and it is a very challenging

task for companies to process data in a GDPR-compliant manner, extract information

values, and use predictive analytics models. GDPR is laid out in 99 articles that describe

its legal requirements, and 173 recitals that provide additional context and clarifications

to these articles. GDPR is an expansive set of regulation that covers the entire lifecycle

of personal data. As such, achieving compliance requires interfacing with infrastructure

components (including compute, network, and storage systems) as well as operational

components (processes, policies, and personnel)

Master Thesis: << The use of Graph Databases in Financial Problems >>

 22

(10)

Beekeeper AG provides a GDPR-compliant platform for employees of an enterprise in

order to form a social network for communicating and finding work-related

information.

Because of GDPR, analyzing the textual body of user interactions, such as posts,

comments, and chats, is not allowed without consent. Therefore, it is impossible to gain

insights from textual data across the spectrum of users. Exploring the network structure

of employees provides data-driven insights into how information flows within an

organization. Interpreting user interactions as a graph, where the nodes are users and

elements, enables further extraction of user-user relationships.

The company offers a mobile application for target groups to establish a high-quality

communication solution for companies whose employees have limited access to

computers and laptops, such as hotel workers, construction workers, and customer

service personnel. The application acts as a social networking platform that enables

online collaboration and communities within the customer’s organization. Due to

GDRP rules, text data cannot be accessed, making text analytics for suggesting content

to peer users impossible. However, anonymized metadata of user interactions can be

used for analysis aiming at investigating whether modelling data in graph databases and

applying graph mining can provide accurate results for extracting and predicting user

relationships in enterprise social networks under the constraints of the GDPR.

Beekeeper user activity dataset considered for the period between 2019–2020, which

contains 204 different user events related to user interaction in the platform such as

likes of the content, reading comments, chat activity, login activity, etc.

Graph databases store data in a graph structure that consists of nodes and relationships,

and both can have properties. They are considered NoSQL databases, and the

information is stored in an entity-relationship model. It is the main difference between

it and a relational database, as the data are not stored in tables. In the industry, graph

databases are often used for fraud detection, recommendation systems, or social

network modeling, to name a few examples. Neo4j has become one of the most popular

and market-leading graph databases (The DB-Engines Ranking, which ranks database

management systems according to their popularity, shows a positive trend for Neo4j or

Master Thesis: << The use of Graph Databases in Financial Problems >>

 23

Neo4j raised $325 million at a more than $2 billion evaluation in Series F deal led by

Eurazeo, with additional capital from Alphabet s venture wing GV) (11) (12)

When considering how nodes are connected in a network, there are two common

approaches. One is called a “random network,” in which one node is connected to

another with equal probability. The distribution of the degrees of a node follows the

Poisson distribution, which means most nodes have the same number of connections.

The other is a so-called scale-free network where node distribution follows the power

law, meaning most nodes have fewer connections, and very few nodes have a high

number of links to other nodes.

Neo4j divides graph mining algorithms into four main categories: Centrality,

Community detection, Similarity, and Pathfinding.

Machine learning algorithms on graphs have attracted a lot of attention in both research

and industry. There are three standard machine learning algorithms: unsupervised,

supervised, and semi-supervised. They can all be applied to graphs depending on the

use case. Neo4j offers in-database machine learning algorithms. The following

algorithms, like Graph SAGE, Node2vec, Fast Random Projection (Fast RP), are

considered node embedding algorithms, which compute a low dimensional vector

representation of the nodes that can be used as features for further machine learning

algorithms.

Beekeeper provided the data in a CSV file format. The agreement with Beekeeper was

that, the client cannot be named, only that they are in the transportation industry. The

data were pre-cleaned by Beekeeper. The dataset included ~70 million rows with a size

of 13 GB of data for a period from 1 January 2019 to 28 February 2020.

The CSV file containing the data was loaded and converted using Python. The variables

in Table 1 were selected to be loaded from the original dataset. Due to performance

issues and hardware limitations, the number of rows in the original dataset was reduced

to 10 million.

Master Thesis: << The use of Graph Databases in Financial Problems >>

 24

Table 1 Selected Variables Based on Data Model1

(GDPR-Compliant Social Network Link Prediction in a Graph DBMS: The Case of

Know-How Development at Beekeeper, Rita Korányi , José A. Mancera * and Michael

Kaufmann, 2022)

The data went through transformations and the resulting data frame was loaded with

the binary values of the interactions into Neo4j as a CSV file, using various scripts to

obtain the predefined data model, which is demonstrated in Figure 7. Due to slow

performance in Neo4j during the load process, 750.000 rows were used to establish the

data model. The properties and data types were set with the Cypher scripts. Weights

can be calculated for the relationships between users. However relationship weights are

not considered because the interest of the work is to extract and predict static

relationships.

Figure 7 Data Model in Neo4j

Variable Name Description Data Type

occured_at The time the user interaction happened Datetime

user_id Anonymized ID of the user Integer

Client Client of user device Integer

Path API endpoint of interaction String

normalized_path Normalized API endpoint String

Master Thesis: << The use of Graph Databases in Financial Problems >>

 25

(GDPR-Compliant Social Network Link Prediction in a Graph DBMS: The Case of

Know-How Development at Beekeeper, Rita Korányi , José A. Mancera * and Michael

Kaufmann, 2022)

Figure 8 demonstrates that the most frequent user interaction is retrieving posts, as the

distribution of the user interactions and the GET_posts is the most common type in the

sample. This interaction type means that a user is loading a post. The users tend to

behave passively in other words, they consume information rather than actively

responding, sharing, or liking content. The x-axis represents the user interaction, and

the y-axis the frequency of the interaction. Interactions starting with CUMSUM and

OPTIONS_read, OPTIONS_likes, and OPTIONS_like are not relevant for this research

and were further ignored.

Figure 8 Frequencies of Usr Interactions

(GDPR-Compliant Social Network Link Prediction in a Graph DBMS: The Case of

Know-How Development at Beekeeper, Rita Korányi , José A. Mancera * and Michael

Kaufmann, 2022)

2.1.1 Artifact 1: Building Knowledge Graph-Based on User Interaction

This artifact aims to extract the current relationships of users—who knows whom—

within Neo4j. The who knows whom type of relationship is not explicitly present on

the Beekeeper platform, and second, there is no baseline data to confirm the

relationships. Due to the limitations of the GDPR, we do not attempt to label the

relationship as professional or private between the users. Therefore, only the chat

interactions were used. Τhe user node represents the user, the conversation represents

the chat, and the three interactions represent what the user exactly did. The first

Master Thesis: << The use of Graph Databases in Financial Problems >>

 26

interaction with the chat item is always GET messages. A query was designed (Figure

9) that resulted in a new relationship, KNOWS, which was written into the database.

// Artifact_1_User_Knows_User_Query

MATCH (u1:User)<-[:GET_MESSAGES]-(Conversation)-

[:GET_MESSAGES]->(u2:User)

WITH u1, u2, Conversation

WHERE NOT u1.ser_id = u2.user_id

MATCH (u1)-[k: KNOWS]-(u2) RETURN u1, u2, count(k) as weight;

Figure 9 Cypher Query <<who knows who>>

(GDPR-Compliant Social Network Link Prediction in a Graph DBMS: The Case of

Know-How Development at Beekeeper, Rita Korányi , José A. Mancera * and Michael

Kaufmann, 2022)

2.1.2 Artifact 2: Link Prediction with Neo4J Graph Machine Learning

Algorithms

The designed artifact is used to predict user relationships by applying transductive

learning and fitting logistic regression to predict probabilities for the user relationship.

For prototyping, we used Neo4j’s Graph Data Science Library version 1.7 algorithms.

Artifact 2 preserves the graph structure of the data. Training and testing of the models

were executed internally in the database, i.e., every transaction happens in the database,

and no external algorithms or programming languages were used. The design of the

artifact can be divided into eight main steps.

Figure 10 demonstrates the process steps described for prototype Artifact 2. The

predicted positive relationships are written back into the database. These can be

visualized with Neo4j Bloom or downloaded in a JSON or CSV format. The topN

parameter defines the top 30 relationships, and the threshold determines the probability

score above which the relationships are returned, in this case, 0.45. However, both topN

and the threshold are arbitrary.

Master Thesis: << The use of Graph Databases in Financial Problems >>

 27

Figure 10 Process Diagram for Antifact 2

(GDPR-Compliant Social Network Link Prediction in a Graph DBMS: The Case of

Know-How Development at Beekeeper, Rita Korányi , José A. Mancera * and Michael

Kaufmann, 2022)

In the above mentioned diagram, we engineer a feature by using degree centrality. The

algorithm uses Freeman’s formula to calculate the centrality of a graph. A single node

in an undirected graph, is the number of neighbors with which there is a connection.

The following equation is used to calculate the degree of nodes, where pk is a single

node and a(pi , pk) = 1 if and only if pi and pk are connected by a line, 0 otherwise.

CD(pK) = ∑ i=1 a(pi , pk)

The equation means the higher the number, the more connections a node has. A value

of 0 means, the node is isolated from the network.

We apply a node embedding algorithm, Fast Random Projection (Fast RP) algorithm

which is 4000× faster in computational times than other state-of-the-art algorithms,

such as Node2Vec* or Deep Walk. The above mentioned algorithm extracts the nodes

with their features as vectors, optimizes the similarity matrix and utilizes a very sparse

random. These algorithms perform two significant actions: first, the network is

constructed as a similarity matrix, and second, a dimension reduction technique is

applied. The extracted vectors will be used as numerical features to train the link

prediction algorithms.

The link prediction algorithm is applied using the node embeddings. The link prediction

algorithm fits a logistic function and sigmoid function with values between 0 and 1.

Logistic regression predicts the probability of the label for a given input variable. The

threshold is 0.45 for a provided label, i.e., if the probability is less than 0.45, the label

Master Thesis: << The use of Graph Databases in Financial Problems >>

 28

is predicted to be 0. Otherwise, it is expected to be 1. Then the predicted positive

relationships are written back into the database.

Figure 11 Labelled Property Graph Visualized with neo4j Bloom(left) and Predicted Relationships with Link

Prediction(right). Screenshot from neo4j Bloom of the USER-KNOWS-USER query.

(GDPR-Compliant Social Network Link Prediction in a Graph DBMS: The Case of

Know-How Development at Beekeeper, Rita Korányi , José A. Mancera * and Michael

Kaufmann, 2022)

The second resulting artifact (Figure 11) is a predictive machine learning model using

Neo4j in databased algorithms. The database contains 2819 user nodes, which were

used to build the model. Artifact 2 is a probabilistic model providing the 30 highest

predicted probabilities. They are above the defined threshold of 0.45. In other words,

the red lines in Figure 11 represent predicted relationships where the probability value

is above 0.45, indicating that users know each other, and these are written as different

relationships in the graph.

Beekeeper was asked to provide feedback on the relationships sampled from Artifact 1,

and the prediction results for Artifact 2. The validation sample included 3373 users,

including the user pairs, depending on the artifact, the probability score, and predicted

classes.

The precision-recall area under the curve (AUCPR) displays the precision and recall

variety at different thresholds, and the goal is to have the area under the PR curve

maximized, which represents a good classifier model. Precision (P) is defined as the

number of true positives (TP) over the number of true positives plus the number of false

positives (FP):

Master Thesis: << The use of Graph Databases in Financial Problems >>

 29

P = TP / TP + FP

Recall (R) is defined as the number of true positives (TP) over the number of true

positives plus the number of false negatives (Fn):

R = TP / TP + FΝ

The so-called baseline average precision mean score (AP) has a value of 0.5, and the

perfect classifier 1. Under 0.5, the classifier is not considered performant. The AP is

calculated with the following equation:

AP = Σn (Rn − Rn−1)Pn

The sample included 300 users for Artifact 1, which was sent to Beekeeper to validate

the user relationships, whether the users knew each other or not. The validation by

Beekeeper confirmed that out of 300 relationships, 278 exist. Twenty two relationships

could not be found in the system.

Table 2 represents the results of the Link Prediction algorithm extracted from the Neo4j

Desktop. TrainGraphScore here means the AUCPR score.

Model Name Parameter Value

 Winning Model

 TrainGraphScore TestGraphScore

 Max Epochs Penalty

myModel 1000 0.5 0.352 0.344

Table 2 Train and Test Results of Link Prediction Model with neo4j Fast RP Algorithm

(GDPR-Compliant Social Network Link Prediction in a Graph DBMS: The Case of

Know-How Development at Beekeeper, Rita Korányi , José A. Mancera * and Michael

Kaufmann, 2022)

The test graph scores 0.344, indicating that the model performs moderately poorly

overall, but it is considered acceptable due to the absence of the original features and

although the predictive models have an average low AUCPR score, they are performing

Master Thesis: << The use of Graph Databases in Financial Problems >>

 30

well from a business domain perspective, as all the relationships exist, and there are no

unknown labels.

GDPR data has consistently added value to the Beekeeper business model since the

company guarantees total privacy to its users. However, it also represents a limitation

to improving user experience through simple recommendations or analyzing user

behavior for the purpose of understanding the final users better because the company

cannot openly analyze the user data without their consent.

(13)

2.1.3 Executive summary of node embedding algorithm Node2Vec

Νode2vec is a semi-supervised algorithm for scalable feature learning in networks. A

flexible notion of a node’s network neighborhood is established and with the use of

random walk approach is possible to generate (sample) network neighborhoods for

nodes, enabling node2vec to learn representations that organize nodes based on their

network roles and/or communities they belong to. Experiments demonstrate that

node2vec outperforms state-of-the-art methods by up to 26.7% on multi-label

classification and up to 12.6% on link prediction.

Generally, there are two extreme sampling strategies for generating neighborhood set(s)

NS of k nodes:

• Breadth-first Sampling (BFS) The neighborhood NS is restricted to nodes which are

immediate neighbors of the source. For example, in Figure 1 for a neighborhood of size

k = 3, BFS samples nodes s1, s2, s3.

• Depth-first Sampling (DFS) The neighborhood consists of nodes sequentially sampled

at increasing distances from the source node. In Figure 1, DFS samples s4, s5, s6.

Figure 12 BFS and DFS search strategies from node u (k=3)

u

s
 3

s
 2

s
 1

s 4

s
 8

s
 9

s
 6

s
 7

s 5

BFS

DFS

Master Thesis: << The use of Graph Databases in Financial Problems >>

 31

(node2vec: Scalable Feature Learning for Networks, Aditya Grover, Jure Leskovec,

2016)

The neighborhoods sampled by BFS lead to embedding’s that correspond closely to

structural equivalence. By restricting search to nearby nodes, BFS achieves this

characterization and obtains a microscopic view of the neighborhood of every node.

In DFS, the sampled nodes more accurately reflect a macro-view of the neighborhood

which is essential in inferring communities based on homophily.

Adopting a flexible sampling strategy which allows a smooth interpolation between

BFS and DFS is feasible to develop a flexible biased random walk procedure that can

explore neighborhoods in a BFS as well as DFS way.

Formally, given a source node u, we simulate a random walk of fixed length l. Let ci

denote the ith node in the walk, starting with c0 = u. Nodes ci are generated by the

following distribution:

𝑃(𝑐𝑖 = 𝑥 |𝑐𝑖 − 1 = 𝑣) = {
𝜋𝑢𝑥

𝑧
 𝑖𝑓 (𝑣, 𝑥) ∈ 𝐸 , 0 otherwise}

We define a 2nd order random walk with two parameters p and q which guide the walk

and set the unnormalized transition probability to πv x = αp, q (t, x) · w v ,x, where

and dt,x denotes the shortest path distance between nodes t and x. Note that dt,x must be

one of {0, 1, 2}, and hence, the two parameters are necessary and sufficient to guide

the walk having the privilege of being computationally efficient in terms of both space

and time requirements.

Parameters p and q control how fast the walk explores and leaves the neighborhood of

starting node u. In particular, the parameters allow our search procedure to

(approximately) interpolate between BFS and DFS and thereby reflect an affinity for

different notions of node equivalences.

The node2vec algorithm

.

LearnFeatures (Graph G = (V,E,W), Dimensions d, Walks per

Master Thesis: << The use of Graph Databases in Financial Problems >>

 32

 node r, Walk length l, Context size k, Return p, In-out q)

π = PreprocessModifiedWeights (G, p, q)

G0 = (V,,E, π)

Initialize walks to Empty for iter = 1 to r do

for all nodes u ∈ V do

 walk = node2vecWalk(G0,u,l)

 Append walk to walks

 f = StochasticGradientDescent(k, d, walks)

 return f

node2vecWalk (Graph G0 = (V,E,π), Start node u, Length l)

 Initialize walk to [u]

 for walk_iter = 1 to l do

curr = walk[−1]

Vcurr = GetNeighbors (curr, G0)

 s = AliasSample(Vcurr,π)

Append s to walk

return walk

The three phases of node2vec, i.e., preprocessing to compute transition probabilities,

random walk simulations and optimization using SGD, are executed sequentially. Each

phase is parallelizable and executed asynchronously, contributing to the overall

scalability of node2vec.

(14)

3. Data Lineage & Metadata Management

Data lineage represents a detailed map of all direct and indirect dependencies between

data entities in the environment ,in other words, what sources the data comes from,

Master Thesis: << The use of Graph Databases in Financial Problems >>

 33

where it is flowing to in the environment, and—last but not least—what happens to it

along the way. A distinction is often made between horizontal and vertical lineage.

Horizontal lineage describes a physical lineage through a data warehouse: from a

landing area, through a staging area, via a core area into an outbound layer. A vertical

lineage, on the other hand, focuses on the design of a database. It includes a business

model, also known as a conceptual data model. This model is an abstract business view

of the data. This serves as a design layer for a physical implementation in the form of a

physical data model, which is a depiction of the physical artifacts on the database. These

models are often directly linked, or are linked through a logical model, forming a bridge

between business and IT. Horizontal and vertical lineage are therefore different

concepts and demand an entirely different approach to the documentation of the data

lineage. A vertical lineage revolves around the design process and thus relates abstract

objects, such as a business partner, to physical implementation, such as a part of a star

schema. A horizontal lineage shows the actual data flow and contains information about

where the data enters the system, flows through the system, and is consumed.

(15)

In addition, the main issue is that complex data on the one hand, is difficult to be

understood by human logical ability and on the other hand, do not explain their journey.

The pure positive value of it is proportionate to its interpretability to stakeholders so

data must be described with relevant metadata and be organized in a way that reflects

its meaning and fitness to use.

The combination of detailed metadata and relationships between data lifecycle phases

results in a semantic data layer. A semantic data layer (also known as data fabric)

enables both data experts and business stakeholders to take advantage of any data asset

to which they have access. Knowledge Graph, which is a collection of interlinked

descriptions of concepts, entities, relationships and events, provides a semantic layer

with full view of the data lifecycle all the way from the business to the most technical

component.

3.1 Use Case

GE Capital is the financial arm of the General Electric Company which primary focus

is on leasing and lending in the aviation, healthcare, and energy sectors where GE

Master Thesis: << The use of Graph Databases in Financial Problems >>

 34

manufactures and sells industrial equipment. To identify prospects, track customers,

and manage the overall risk exposure of the portfolio, GE Capital utilizes data from a

wide range of internal and external data sources, storing this data across over 2,000

internal repositories.

The GE Capital sub-businesses operated in silos, independently collecting and

managing the data relevant to their products and customers. Due to the disjoint nature

of this approach, it was difficult if not impossible to get a complete picture of where all

of GE Capital’s data resided, or how it flowed from system to system. This severely

impeded the ability to perform key data management activities, for example, to identify

duplicate data or processes, or find the point of origination of a particular data element.

In order to be able to capture the cohesive view of data flows and to interactively query

and perform ad hoc reporting for internal information sharing and oversight GE Capital

built a Concept Lineage Tool (‘Colt’) to address this challenge. With Colt, users can

capture information about different types of systems and metadata about the data

flowing between them, and answer questions about the lineage of those datasets. This

information is made available for interactive exploration in the form of a directed graph

(data flow network) where nodes represent data producers and/or consumers (hereafter

referred to more generally as ‘data stores’), and edges represent data flows between

those data stores. This way data flows can be characterized by using an extensible set

of hierarchical taxonomies, including many potential combinations of businesses,

products and concepts associated with data flowing between systems possessing the

ability to view the entire network, view only those systems upstream and/or

downstream of a single system or collection of systems, and/or view the network

filtered by terms selected from the data flow taxonomies.

Colt was designed and built to present complete metadata describing data flowing from

one system to another. As such, the data is characterized in terms of a collection of

taxonomies, including the data contents (“concepts”) and the context in which this data

exists (“boundaries”).It maintains lineage information at the concept level, with

metadata describing flows in the context of concepts, businesses, and products. Their

hierarchical organization enables rich queries—a key feature which is not readily

available in other graph-based provenance models.

Master Thesis: << The use of Graph Databases in Financial Problems >>

 35

The system based on the conceptual architecture shown in Figure 13 where the data

storage layer is comprised of a semantic triple store.

Figure 13 Colt conceptual system architecture

(Colt: Concept Lineage Tool for Data Flow Metadata Capture and Analysis, Kareem S.

Aggour, Jenny Weisenberg Williams, Justin McHugh, Vijay S. Kumar)

The use of semantic technologies was made because a store with intrinsic recursive

graph query capabilities enables the efficient network traversal functionality something

which is required in Colt and most important semantic models enable a high level of

expressivity for representing the hierarchical data flow metadata in an easily extensible

format.

A semantic model was built to represent data systems and data flows between them.

Figure 14 is a simplified depiction of how the model represents a producer system

sending data to a consumer system. The semantic model captures metadata about the

nodes, including a node name, type and a brief description.

Figure 14 data flows from producer to a consumer

(Colt: Concept Lineage Tool for Data Flow Metadata Capture and Analysis, Kareem S.

Aggour, Jenny Weisenberg Williams, Justin McHugh, Vijay S. Kumar)

Master Thesis: << The use of Graph Databases in Financial Problems >>

 36

The data flow itself is modeled as a potentially complex combination of concepts and

boundaries, as shown in Figure 15, with the asterisks representing one-to-many

relationships. A data flow is associated with one or more structures called boundary

groups, which in turn may contain one or more concepts and treatments and boundary

sets. Each boundary set is a combination of boundaries (business and product

boundaries, at present).

Figure 15 A data flow is a complex structure containing concepts and their treatments as well boundaries

(Colt: Concept Lineage Tool for Data Flow Metadata Capture and Analysis, Kareem S.

Aggour, Jenny Weisenberg Williams, Justin McHugh, Vijay S. Kumar)

A web-based user interface allows users to create, manage, view, and interactively

explore the lineage network. Each node in the visualized network represents a GE

Capital data system (or a relevant system external to GE Capital). Each edge in the

graph represents the data flow from one system to another. Figure 16 shows a sample

network wherein seven systems are sending data to a system called System H, which in

turn sends data to System I. Note that this is a small example—the application is capable

of displaying large networks with thousands of nodes and edges.

Figure 16 Example network containing 9 nodes

(Colt: Concept Lineage Tool for Data Flow Metadata Capture and Analysis, Kareem S.

Aggour, Jenny Weisenberg Williams, Justin McHugh, Vijay S. Kumar)

Master Thesis: << The use of Graph Databases in Financial Problems >>

 37

The user may explore the network in several ways, via the interface shown in Figure

17. Users may choose to view the entire network of data systems and data flows.

Alternatively, the user may select one or more systems and choose to display all systems

that feed the selected systems (“upstream” systems) and/or consume from the selected

systems (“downstream” systems). At any point, a user may click on an individual

system in the network and expand the graph to include systems upstream and/or

downstream of the selected node. The user may choose to display the concepts or

boundaries along the edges, as well.

Figure 17 Colt UI visualize and explore a network

(Colt: Concept Lineage Tool for Data Flow Metadata Capture and Analysis, Kareem S.

Aggour, Jenny Weisenberg Williams, Justin McHugh, Vijay S. Kumar)

GE Capital users need the ability to trace data concepts from a given point in the

network upstream to its points of origin (typically its point of creation), or downstream

to its final points of destination for impact assessment.

For example as we can see in Figure 18 an upstream trace is performed on System Z.

The first system to be considered is System Y. Next, Systems W and X are considered,

and so forth. When tracing the data, the algorithm must not only consider the concept,

but also the boundaries of interest. In this figure, concepts, businesses, and products are

represented in the form {c,b,p}, since the metadata to be traced is defined by the triples

Master Thesis: << The use of Graph Databases in Financial Problems >>

 38

{concept, business, product}. When tracing upward from System Y, note that System

W is determined to be included in the trace (since it sends the data of interest {c,b,p}),

but System X is excluded from the trace because it sends product q instead of product

p, and thus is not relevant to this trace. The tracing routine is recursive, with each

iteration dependent on the results from previous iterations. Each iteration evaluates a

single edge and determines if its data flows are relevant to the trace based on the data

that has been passed through the previous nodes.

Figure 18 Network tracing for System Z (with grayed/dashed serments determined to be irrelevant for the trace)

(Colt: Concept Lineage Tool for Data Flow Metadata Capture and Analysis, Kareem S.

Aggour, Jenny Weisenberg Williams, Justin McHugh, Vijay S. Kumar)

The evaluation of each edge can be expressed by the set equation:

SA1→A2 ∩ SA2→T ≠ ∅ → keep

Where:

SA2→T = SA2→A3 ∩ SA3→A4 ∩ … ∩ SAn→T

and SAx--> Ay = set of triples sent from node Ax to node Ay.

The algorithm used for the network tracing is as follows:

Identify concepts/boundaries feeding target system T

Convert all concepts/boundaries to concept-business-product triples at the lowest

hierarchy level

Get all systems that feed data to node T, concatenate with name of node T to form a

node trace path, and push those trace paths onto empty trace stack

Add T to traced network

While trace stack is not empty:

Pop trace path (“A”) from stack (will take the form

Master Thesis: << The use of Graph Databases in Financial Problems >>

 39

A1:::A2:::….:::T)

If path has a loop with one or more nodes between (e.g., A:::B:::C:::B:::D repeats node

B) discard path and return to (a) (to avoid recursive loops in paths)

Query for concept-business-product triples that flow from the single-node hop from A1

to A2 in path

Determine whether there is an intersection in the {c,b,p}

between A1 A2 and A2 T paths

If YES, add A1 to traced network

Store the resulting intersection of {c,b,p} triples that flow from A1 all the way to T

Get names of all systems that feed data to node A1, concatenate with previous node

path and push those trace paths onto stack (e.g., A0:::A1:::A2:::…:::T)

If NO, continue to evaluate next entry on stack

(16)

By using the above mentioned algorithm a user can quickly determine the origination

points for data feeding a particular system that intersect with the destination’s concepts

and boundaries. Figure 19 shows a sample trace result, for System A traced

downstream.

Figure 19 Downstream trace result for System A

Master Thesis: << The use of Graph Databases in Financial Problems >>

 40

(Colt: Concept Lineage Tool for Data Flow Metadata Capture and Analysis, Kareem S.

Aggour, Jenny Weisenberg Williams, Justin McHugh, Vijay S. Kumar)

Moreover GE Capital needs to perform validation checks to see whether the network is

incomplete or incorrect. The validation routine works on a per-system basis,

determining if the data that a given system sends is possible given the data that the

system creates or receives. Specifically, a system will fail the validation routine if it is

found to be sending data that it is neither creating nor receiving.

As an example, think (Figure 20), assuming that product p is comprised of subproducts

p1 and p2. System W will fail validation, because it only receives subproduct p1, which

is not enough for it to send product p. On the other hand, System X will pass validation

because it receives subproducts p1 and p2, which are sufficient to product p.

Figure 20 System W fails validation because p1 is onlt subset of p. System X passes validation.

Validation algorithm

For each node N to validate:

Retrieve all lowest-level concept-business-product triples sent by node N

Retrieve all lowest-level concept-business-product triples created or received by node

N

Perform an intersection of the triples sent and received and subtract the intersection

from the triples sent by N

If the set of remaining triples sent is not empty, node N fails validation, else passes

(16)

Colt has been used extensively by GE Capital since it was first put into production in

June 2015. At present, it contains a network of 2,200+ nodes and 1,047 edges (data

Master Thesis: << The use of Graph Databases in Financial Problems >>

 41

flows), which represent over 47,000 unique concept-business-product combinations

sent between data systems. Colt currently contains 64 concepts, 226 business

boundaries, and 125 product boundaries, each organized into 2- or 3-tier hierarchies.

The tool’s user base is currently at 50 and growing.

Overall, GE Capital estimates that Colt will result in a 50% reduction in time and cost

of the requirement-building phases of complex IT projects, leading to millions in

productivity savings alone. These estimated savings are attributable to Colt’s ability to

handle complex queries about data movement across the entirety of GE Capital,

enabling analysts to efficiently answer regulatory and operational inquiries without

having to elicit and fuse this information from a variety of personnel and other

potentially no computable sources.

(16)

4. Financial Crime Types

Financial crime, or economic crime, is defined by Europol as ‘‘illegal acts committed

by an individual or a group of individuals to obtain a financial or professional

advantage. The principal motive in such crimes is economic gain’’.

There are numerous methods being deployed by criminals to attack financial

institutions, corporations, public agencies, and individuals of the public.

(17)

4.1 STOCKS AND SECURITIES INVESTMENT FRAUD

The stock market and financial securities allow people to invest their money with the

ambition of making a positive return based on either performing research, or just a

hunch. However, it is known that a proportion of the market participants cheat, and by

doing so make huge profits at the cost of institutional and retail investors. Catching

these fraudulent actors is not easy, and typically requires a large workforce to gather

evidence over a long period of time, particularly in cases of insider trading.

 Market manipulation is considered an act of selling or buying a financial security with

the objective of purposefully manipulating the price of the underlying asset or security.

Illegal insider trading is when ‘insiders’, or people who are privy to private and non-

Master Thesis: << The use of Graph Databases in Financial Problems >>

 42

public company material use that information ahead of its public dissemination to

benefit monetarily. This includes not only the act of trading on securities, but also the

leaking of non-public information to third parties.

FIGURE 21. Diagram of the illegal insider trading process. Phase 1: Insiders with

access or knowledge of nonpublic information about a company which will impact the

share price. Phase 2 (Option 1): The insiders then buy or sell stock depending on

underlying information. Phase 2 (Option 2): The insiders can share this information to

a group of other malicious traders for monetary kickback or future insider information

in return. Phase 3: The consortium or individual insiders reap the monetary benefits of

the stock movements after nonpublic material is released to the wider investor public.

Figure 21 Diagram of the illegal proccess

(Financial Cybercrime: A Comprehensive Survey of Deep Learning Approaches to

Tackle the Evolving Financial Crime Landscape, JACK NICHOLLS , ADITYA

KUPPA , AND NHIEN-AN LE-KHAC , (Member, IEEE), 2021)

4.2 FRAUD DETECTION AND ANTI-MONEY LAUNDERING

(AML)

Money laundering is a method used by criminals and people in possession of ‘dirty’ or

illegally obtained funds through criminal activity to transform the money to a

‘clean’ or legitimate state in the eyes of the law and governments.

Master Thesis: << The use of Graph Databases in Financial Problems >>

 43

In the money laundering procedure we can distinguish three stages. The first is

placement which is the process of depositing criminal money into the financial system.

The second is layering which is moving the money within the financial system through

complex webs of transactions with the goal of obfuscation. Layering is typically

performed through offshore companies. Finally, integration is the criminal money being

absorbed or blended into the real economy, through investments like real estate, stock

purchases, and luxury items.

Financial Institutions have continued to heavily invest in suspicious transaction

monitoring solutions that target specific transaction behaviors primarily through rules

based triggers. These types of traditional transaction monitoring systems can process

millions of transactions daily but are often hamstrung by a lack of flexibility in rule

construction and can easily make use of rules that have become irrelevant or ineffective

as criminals adopt new techniques. As a result over 95% of system-generated alerts

from transaction monitoring systems are reported to be false positives. This staggering

statistic reflects just how difficult it has become for banks to predict money laundering,

as well as has become to predict as well as hinting at the inefficiencies in AML

operations that exist at present.

Modern bank data infrastructure is built primarily using relational databases. While the

reliance of storing data in rows and columns and linking data through primary and

foreign keys has made data easier to manage, model and visualize, it has its limitations.

Relational databases are often slow and rigid, requiring analysts to join multiple tables

to produce consolidated views. AML investigations are hindered as data must be

consolidated to determine payment trails and client networks across various datasets.

In order to refine TM and reduce false negatives, technology firms are promoting

graphical databases and graphs that are designed to align to the nature of money

laundering – networks and relationships.

In contrast, graph databases and the use of graph data models are entity orientated rather

than table orientated and therefore, allow for the modelling of numerous relationships

between entities (accounts, clients, customer details), as we would consider them in

real-life. Knowledge graphs (how data is modelled in a graph database) are built using

“triples” or “triplets”, consisting of nodes (the subject and the object) and edges (the

relationship between the subject and object). These models can be analyzed using

Master Thesis: << The use of Graph Databases in Financial Problems >>

 44

mathematical graph theory and graph algorithms to uncover relational insights. To

allow for additional dimensionality (and better machine readability), graph databases

make use of taxonomies and ontologies. Taxonomies include names for objects and

fundamental relationships, while ontologies define the types of nodes and relationships,

classify concepts into meaningful categories, ascribe attributes to nodes and edges and

define possible relationships between nodes (much like schemas). Using an ontology

as a framework and data together you create a graph which empowered by machine

learning and reasoning capabilities allow companies to better identify fraudulent

patterns by traversing many hops on very large amounts of interconnected data in real-

time.

This results in a polyhierarchical model, where entities are categorized multiple times

to produce a graph-view. This is one of the key advantages of graph technology in that

the data is represented in a way that makes sense to the human brain and is considered

a close representation of how we would “whiteboard” these data landscapes during

planning sessions. Furthermore, graphs do not rely on joins that can become tedious to

code as well as constrain memory and CPU resources to execute. From an AML

perspective, this is a problem as investigations are often slowed by the process of

consolidating disparate datasets when examining suspicious transaction events. Graph

technology allows for considerably faster ad-hoc querying to identify relationships that

would often be unattainable through SQL and relationship databases.

FIGURE 22. Diagram of money laundering example. Phase 1: Person has money

(typically cash) from the proceeds of criminal activities and places the money into the

financial system through bank deposits. This can be done through a business front that

is cash heavy (i.e., food business), Phase 2: Placement—Transactions are performed

with shell companies to obfuscate origin. Phase 3: Layering—Offshore company can

return the money to the original criminal through loan-back schemes to the cash heavy

food business fronting as an investor. Phase 4: Integration—The criminal proceeds are

now integrated into the economy and laundered.

Master Thesis: << The use of Graph Databases in Financial Problems >>

 45

Figure 22 Diagram of ML

(Financial Cybercrime: A Comprehensive Survey of Deep Learning Approaches to

Tackle the Evolving Financial Crime Landscape, JACK NICHOLLS , ADITYA

KUPPA , AND NHIEN-AN LE-KHAC , (Member, IEEE), 2021)

4.3 SIM-SWAPPING AND PHISHING

SIM-Swapping is an attack which allows a cybercriminal to gain unauthorized control

of a wireless customer’s mobile phone number. This gives an attacker access to the

SMS-based text messages which enable resetting of account passwords on websites that

rely on the security of a mobile phone number. A successful SIM-Swap attack requires

a malicious actor to have the target’s phone number, and depending on what account

they wish to access, their email. as well. The attackers will either contact a victim’s

service provider and imitate the victim in order to transfer the phone number to a new

SIM card, or the attackers have cooperating employees of a service provider which will

allow them to an easier route of access. Once the attacker has access to the victim’s

phone number on their own SIM, they can extract SMS messages, including One Time

Passwords sent by financial services such as Coin base. There are multiple aspects

including phishing and social engineering which surround SIM-Swapping, but the main

motivation for committing the act has been for the financial gain of the attacker.

Phishing is considered a social engineering technique with the interest of luring victims

to unwillingly hand over their personal information including passwords, email

addresses, phone numbers, addresses, usernames and financial information. There are

multiple aspects including phishing which surround SIM-Swapping, but the main

motivation for committing the act has been for the financial gain of the attacker.

FIGURE 23. Diagram of the SIM-Swap process. Phase 1: Attacker accesses victim’s

account credentials and mobile numbers. Phase 2: Attacker manipulates the service

provider to perform the SIM-Swap with the victim’s mobile number. Phase 3: Using

newly gained access, attacker can now use account credentials to initiate a login attempt

to a financial account. Phase 4: A One Time Password is sent from the financial service

provider to the victim’s mobile number. Phase 5: The victim’s financial account is

accessed, and funds are moved and laundered.

Master Thesis: << The use of Graph Databases in Financial Problems >>

 46

Figure 23Diagram of the SIM-Swap process

(Financial Cybercrime: A Comprehensive Survey of Deep Learning Approaches to

Tackle the Evolving Financial Crime Landscape, JACK NICHOLLS , ADITYA

KUPPA , AND NHIEN-AN LE-KHAC , (Member, IEEE), 2021)

4.4 ROMANCE FRAUD

Romance fraud as defined by the FBI as a scam that occurs when a criminal adopts a

fake online identity to gain a victim’s affection and trust. The scammers will use that

trust to build up an illusion of romance or close relationship and manipulate victims

with the ambition of illegal financial gain. This fraud has seen a rise in popularity with

scammers particularly through the global lockdown due to COVID-19 with reports of

up to 20% increase in bank transfer fraud linked to romance scams in 2020 when

compared with 2019. Romance fraud has reportedly been responsible for the theft of

over $362 million US dollars alone in 2018. Not only are victims scammed from their

own money but can be used as money laundering mules unassumingly by being asked

to transfer received money from the criminal to various accounts the criminal will

instruct.

FIGURE 24. Diagram of romance fraud example. Phase 1: Genuine users search

through online dating sites for matching profiles interested in starting a relationship.

Phase 2: A match is made with a profile that appears genuine. Conversation usually

attempts to build up trust and romance without physically meeting the person over

several months. Phase 3: Behind the account is a fraudster. These are skilled at

manipulating genuine users by portraying characters. They use fake profiles with stole

profile photos or mimicked identities. Phase 4 (Option 1): Victims can be used

unwittingly as launderers, cleaning criminals proceeds thinking they are doing favors

to their potential love interests by performing illegal transactions. Phase 4 (Option 2):

Master Thesis: << The use of Graph Databases in Financial Problems >>

 47

Over time the fraudsters ’borrow’ or are gifted funds from their victims. False promises

are used such as money tied in investments or incoming inheritance to which they will

repay their victims.

Figure 24 Diagram of romance fraud

(Financial Cybercrime: A Comprehensive Survey of Deep Learning Approaches to

Tackle the Evolving Financial Crime Landscape, JACK NICHOLLS , ADITYA

KUPPA , AND NHIEN-AN LE-KHAC , (Member, IEEE), 2021)

4.5 RANSOMWARE

Reference ransomware is a form of malware that has the ability to encrypt victim’s

computer systems and digital information, prohibiting access to it until a ransom is paid

to the attackers. Malware is malicious software, it is created with an intent for

criminality to gain access undetected into the computer systems of its victims. There

are various forms of malware including Trojan horses, rootkits, and viruses. Typical

payment demanded by the criminals is in the form of cryptocurrency due to the

anonymity surrounding the owner of wallets.

(17)

4.6 DEEPFAKES AND GPT-2

Deep fakes and advanced chat bots like GPT-2 are capable of spoofing and

manipulating staff at all levels of an organization. Deep fakes are not only audio

manipulation but also visual. Deep fake programs are capable of creating completely

fictitious identities of individuals. Websites such as <<Person Does Not Exist.

Accessed: Aug. 26, 2021. [Online]. Available: https://thispersondoesnotexist.com>>

uses a Generative Adversarial Network to create a ’person’ or even generate modified

images of a person without their consent. These images can also be used in online

Master Thesis: << The use of Graph Databases in Financial Problems >>

 48

profiles that can spoof genuine users of websites such as dating sites or social media

vendor sites.

GPT-2, an open-AI chat bot which is trained to predict the next word in a sentence and

has shown it can produce human-like passages of text such as news articles.GPT2 has

been used to create false reviews for vendor websites such as Amazon. False reviews

have the ability of fooling genuine customers into transacting with either illegitimate

suppliers or low-quality goods manufacturers or damaging a rival business’s total

review score and reputation. Manually doing this across vendor websites is a method

known as ‘‘crowdturfing’’ and is considered an attack on online review systems. A

developed AI method by << D. I. Adelani, H. Mai, F. Fang, H. H. Nguyen, J.

Yamagishi, and I. Echizen, ‘‘Generating sentiment-preserving fake online reviews

using neural language models and their human- and machine-based detection,’’ Jul.

2019, arXiv:1907.09177 >> implemented the GPT-2 system to create a bundle of false

reviews which were not distinguishable against genuine reviews.

(17)

4.6 Use Case

Global financial crime volume was estimated to be around 1.4-3.5 trillion USD per year

according to the latest industry reports, having negative effects on individuals and

financial institutions as well as systemic effects such as negative consequences on a

countries welfare through macroeconomic performance. Money laundering is estimated

to be around 2-5% of the global GDP (up to 1.87 trillion EU), a large percentage of

which is not detected.

 (18)

Financial Institutions in order to be compliant with the strict rules about AML employ

compliance experts that investigate suspicious activities alerted, usually, through a rule-

based system following a procedure that can take several days to complete, culminating

in a decision of flagging as suspicious activity or not. When the former is identified, a

suspicious activity report must be filed and delivered to a regulatory institution that

proceeds with due action. It is a process that requires the filtering of large bulk of

transactions into a smaller set of abnormal interactions that can be used to justify

suspicious activity.

Master Thesis: << The use of Graph Databases in Financial Problems >>

 49

With the intention to moderate all the above mentioned cumbersome and complex tasks

we present LaundroGraph, a novel fully self-supervised approach leveraging Graph

Neural Networks (GNNs) to encode representations of customers and transactions

within the context of AML reviewing. The network of financial interactions is

represented as a directed bipartite customer-transaction graph with the GNN trained

through a link prediction task between pairs of customer and transaction nodes,

essentially corresponding to an anomaly prediction task providing an analyst a starting

point of potentially suspicious movements and alleviating the effort required to filter

the bulk of transactions.

The goal is, for this mechanism, to be concluded within a larger system for AML

reviewing that handles the necessary workload of assessment creation. Within this

system, these insights will be digested and provided in an easy-to-understand manner

through tailor-made visualizations for AML as soon as the investigation starts.

We make use of a directed bipartite graph𝐺 = (𝑉 , 𝐸), with 𝑉 = 𝐶 ∪𝑇 denoting the set

of customer (𝐶) and transaction (𝑇) nodes, and 𝐸 = 𝐼 ∪ 𝑂 denoting the set of edges

between them, where 𝑂 represents outgoing transactions of the form 𝐶 → 𝑇 , and 𝐼

represents incoming transactions of the form 𝑇 → 𝐶. Each node type is associated with

a feature vector 𝑓c ∈ 𝑅dc and 𝑓t ∈ 𝑅dt , respectively representing the customer and

transaction node feature vectors. . Customer features, which we refer to as profiles,

characterize the customers’ transactional behavior within time windows of different

granularities, plus other relevant attributes about the customer, while transaction

features contain information about the transaction itself. Customer nodes are connected

to all transactions in which they are involved, and transaction nodes are connected to

their source and destination customer. As such, each customer has as many edges as

transactions performed in that time period and each transactions has, at most, two edges:

one incoming and one outgoing. A simplified illustration of this graph can be visualized

in Figure 25.

Figure 25: Proposed system training overview. Outgoing transactions are represented

with filled arrows, and incoming transactions with dashed arrows. First, the bipartite

graph is built from a dataset comprised of raw transactions. Then, positive pairs (green)

and negative pairs (red) together with their 𝐾-hop subgraphs (𝐾 = 2 in the figure) are

extracted and their embedding’s obtained through the encoder. Finally, the decoder uses

the aforementioned embeddings to generate the prediction for each sampled edge.

Master Thesis: << The use of Graph Databases in Financial Problems >>

 50

Figure 25 System training overview

(LaundroGraph: Self-Supervised Graph Representation Learning for Anti-Money

Laundering, Mário Cardoso, Pedro Saleiro, Pedro Bizarro, 2022)

Preliminaries. The objective is to jointly learn an encoder E (X, A) → RNcxdc×RNtxdt and

a decoder D (zc, zt) → R1 . The encoder receives a node feature matrix X :

RNcxdc× RNtxdt and an adjacency matrix A : RNcxNt× RNtxNc and produces a set of

embedding’s Z = [zi
c , z

j
t], ∀𝑖 ∈ {0, ..., 𝑁𝑐 }, 𝑗 ∈ {0, ..., 𝑁𝑡 }, with each embedding zi

c

∈ Rdc and zj
t ∈ Rdt denoting the representations for each customer node 𝑖 and transaction

node 𝑗, respectively. The decoder receives a pair of customer-transaction embedding’s

(zc, zt), and outputs the likelihood of that transaction existing for that customer.

By using the term customer-transaction embedding’s we imply the possibility of

presenting nodes that live in a sparse, high-dimensional non-Euclidean space to a low-

dimensional space (continuous dense vectors).

Fig. 26. Schematic of graph (node) embedding. For a simple graph G(V, E) consisting

of a node set V and an edge set E, using a graph embedding model f, different nodes

(e.g., v1 and v2) from the original graph in a high-dimensional irregular domain can be

Master Thesis: << The use of Graph Databases in Financial Problems >>

 51

mapped into a latent low-dimensional space as a L-dimensional dense and continuous

Figure 26 Schematic of graph(node) embedding

vector zi, L << |V |.

(19)

The node structure property can be also preserved in the latent space, i.e., similar nodes

in the original space will be close to each other in the latent space. Moreover, the

obtained latent variables zi, i ∈ V (i.e., features) can be readily used for diverse

downstream graph analytic tasks. (19)

Let ⊙ denote the Hadamard product and 𝜎 the sigmoid nonlinearity. The decoder is

comprised of a simple feed-forward, and the prediction for an edge with customer node

𝑐 and transaction node 𝑡 is defined as follows:

𝑦ˆc,t = 𝜎 (W[zc ⊙ zt])

A single decoder is used to predict both incoming and outgoing transactions and the

anomaly score is defined as 1 − 𝑦ˆc,t.

Algorithm 1 LaundroGraph forward propagation algorithm

Input: Graph 𝐺; number of layers 𝐿; neighborhood sampler N;

 mini-batch size 𝐵; edge sampling function S; edge direction 𝐷

𝐸𝑝 : (𝑐1, 𝑡1), ..., (𝑐B, 𝑡B) ← select 𝐵 edges from 𝐺 in direction 𝐷

𝐸𝑛 : (𝑐˜1,𝑡˜1), ..., (𝑐˜B,˜B) ← S (𝐺) ⊲ Sample random 𝑐 and 𝑡 as

Master Thesis: << The use of Graph Databases in Financial Problems >>

 52

 non-edges 𝐸 ← 𝐸𝑝 ∪ 𝐸𝑛

 if 𝐷 == outgoing then

 𝐺 ← 𝐺 \ (𝑐 → 𝑡), ∀𝑡 ∈ 𝐸 ⊲ Delete real outgoing edges

else

 𝐺 ← 𝐺 \ (𝑡 → 𝑐), ∀𝑡 ∈ 𝐸 ⊲ Delete real incoming edges

 end if

 z0
ci , z

0
t1 ← fci , fti , ∀(𝑐𝑖 , 𝑡𝑖) ∈ (𝑁(c) ∪ 𝑐, 𝑁(t) ∪ 𝑡), ∀(𝑐, 𝑡) ∈ 𝐸 ⊲

Input to the first layer is the raw features of all required nodes

 for 𝑙 ∈ 1, ...𝐿 do

 for (𝑐, 𝑡) ∈ 𝐸 do

 zl
c ← Convolve({zl-1

ci , ∀𝑐i ∈ N(c) ∪ 𝑐}) ⊲ Encode nodes

 zl
t ← Convolve({zl-1

ti , ∀𝑡i ∈ N(t) ∪ 𝑡 }) ⊲ Encode nodes

 end for

end for

𝑦ˆc,t ← 𝜎 (W[zL
c ⊙ zL

t]) , ∀(𝑐, 𝑡) ∈ 𝐸 ⊲ Decoder edge prediction

(20)

This usual behavior is dictated by the input graph 𝐺, and is leveraged by the decoder to

classify new transactions entering the system with the goal to identify anomalous

transactions within the context of a customer’s usual behavior.

A real-world banking dataset is used in our experiments performing experimental

analysis with popular models of an MLP and LightGBM which predict the existence of

an edge, given only the raw features of the source customer, destination customer and

transaction.

Apart from the above mentioned models we experiment with another popular self-

supervised GNN objective, namely the Deep Graph Infomax (DGI) objective.

.

Method AUC AP

Master Thesis: << The use of Graph Databases in Financial Problems >>

 53

MLP 77.26 82.45

LightGBM 82.58 89.02

DGI 85.87 84.06

LaundroGraph𝑆𝐴𝐺𝐸 89.97 93.17

LaundroGraph𝐺𝐼𝑁 90.24 93.82

LaundroGraph𝐺𝐴𝑇 94.83 95.22

Table 3 ROC AUC and average precision(AP) results on the test data for all methods under consideration

Figure 27 ROC curves and corresponding AUCs for all models consirered

(LaundroGraph: Self-Supervised Graph Representation Learning for Anti-Money

Laundering, Mário Cardoso, Pedro Saleiro, Pedro Bizarro, 2022)

Master Thesis: << The use of Graph Databases in Financial Problems >>

 54

By considering table 3 we can see the MLP and LightGBM models that count upon raw

features manage to achieve quite competitive results but all graph-based baselines

achieved superior performance, showing the importance of leveraging the structural

information provided by the underlying graph.

Figure 27 shows the ROC curves of all the methods reported in Table 1. The ROC

curves show the trade-off between recall and specificity. Moreover, the area under the

curve (AUC) can be seen as a measure of separability, representing how much a model

is capable of distinguishing between classes. From observing Figure 27, we verify that

all graph-based models consistently outperform the models relying exclusively on raw

features. In particular, for very low false positive rates (FPRs), all graph-based variants

trained directly on the link prediction task already achieve a recall of > 80%, whereas

the MLP and DGI models achieve a recall of 40% or below, with the LightGBM model

being a middle-ground between them at ∼ 60% recall. As the FPR increases, the DGI

model approaches the performance of the remaining graph-based models, while the

MLP and LightGBM models continue to achieve consistently inferior results.

Figure 28: UMAP visualization of the customer embeddings produced by

LaundroGraph 𝐺𝐴𝑇 (left), together with corresponding cosine similarity heatmaps

(right), for 6 sampled customers across 3 snapshots of data. Colors represent the

different customers. On the left plot, the UMAP embeddings are shown, with each

customer providing 3 points, one for each snapshot (18 points in total), connected

through a dashed line of the same color. On the right plot, the cosine similarities on the

original embedding space are shown, for each customer and snapshot.

Master Thesis: << The use of Graph Databases in Financial Problems >>

 55

Figure 28 UMAP visualization

(LaundroGraph: Self-Supervised Graph Representation Learning for Anti-Money

Laundering, Mário Cardoso, Pedro Saleiro, Pedro Bizarro, 2022)

In figure 28 we can see a plot of the UMAP embeddings for the transactions of 5

different and randomly sampled customers with more than 10 transactions. The marker

represents the direction of each transaction, with "o" representing outgoing

transactions, and "x" representing incoming transactions. On the left side of the figure

transactions are colored according to their customer, and on the right side transactions

are colored according to their anomaly scor. For example the green customer, all

outgoing transactions except one were received by the same counterpart, resulting in

the left-most green cluster. The remaining outgoing transaction can be seen farther

away, near the right-most cluster.

Another interesting case is the purple customer where the cluster represents interactions

with several different counterparts whose behavior is very similar. More specifically,

almost all counterparts only received transactions from the purple customer. From the

right side of the figure we can observe that, generally, transactions farther away from

their respective non-anomalous clusters (i.e., the "expected" behavior) usually have a

higher anomaly score. This can be observed, for example, with the anomalous cluster

at the top, and with the scattered incoming transactions from the orange customer.

(20)

5. Recommender Systems & Conversational AI

Different from traditional one-shot recommendation systems conversational

recommender systems (CRS) obtain users’ interests through multi-turn conversation,

and make recommendations with responses. Typical CRS consists of two parts:

recommender and response generation. The recommender aims to understand users’

dynamic preference from contextual utterances to find the items matching the

preference best. Subsequently, the response generation aims to generate appropriate

sentences asking for more information or exhibiting the recommended items and related

explanation. Recommender and response generation are expected to be mutually

Master Thesis: << The use of Graph Databases in Financial Problems >>

 56

beneficial. However, contextual utterances are usually insufficient to understand users’

preference.

In order to provide recommendations that match user’s intent, preferences and interest,

a recommender system needs to know about the context of conversation and must be

capable of not only looking at structural similarity between items but also their semantic

similarity. For example the word “balance” might convey different meanings when

used in a financial conversation as opposed to a medical context.

A Knowledge Graph is built as a large semantic network of entities and their attributes.

Therefore, it allows finding the best matching entities based on semantic similarities

between the entities. Knowledge Graphs also allow enriching the context of data by

incorporating domain-specific knowledge vocabularies, taxonomies or ontologies.

Knowledge Graphs provide a personalized experience which enables conversational

banking tools to interact, more effectively, with customers on their financial needs.

5.1 Use Case

As a use case we exhibit Conversational Path Reasoning (CPR), a generic method that

models conversational recommendation as an interactive path reasoning problem on a

knowledge graph. It walks through the attribute vertices by following user feedback,

utilizing the user preferred attributes in an explicit way. By leveraging the knowledge

graph structure, CPR is able to eliminate many irrelevant candidate attributes, leading

to better chance of finding user preferred attributes. With the purpose of showing how

CPR works we make use of a simple, yet effective, application named SCPR (Simple

CPR).During the presentation of the above mentioned method and before we examine

its effectiveness comparing with others like CRS and EAR methods we will provide a

brief but comprehensive description of them.

5.1.1 CRS method

It is a conversational system that tries to collect user preferences by asking questions in

the form of semi-structured query with facet (attribute)-value pairs. Once enough user

preference is collected, a set of machine actions tailored for recommendation agents is

introduced and a deep policy network is trained, to decide which action (i.e. asking for

the value of a facet or making a recommendation) the agent should take at each step in

Master Thesis: << The use of Graph Databases in Financial Problems >>

 57

order to make personalized recommendations to the user. A main concern is to avoid

overwhelming users with too many facet (attribute)-value pair options per conversation

so a faceted search engine selects a small set of facet (attribute)-value pairs based on

the context and asking user to provide information about his preferences such as

"What’s the color you like?", "Which brand you prefer?", "Do you like small size,

middle size or large size.

The particular system has three major components. First, a natural language

understanding (NLU) module for analyzing each user utterance, keeping track of the

user’s dialogue history and constantly updating the user’s intention. This NLU module

focuses on extracting item specific meta data. Second, a dialogue management (DM)

module that decides which action to take given the current state. This DM module has

an action space defined specifically for this task. The third component is a natural

language generation module to generate response to the user. This conceptual

construction provides the capacity to build a conversational search and recommender

system that can decide when and how to gather information from users and make

recommendations based on a user’s past purchasing history and context information in

the current session.

We make use of Deep Reinforcement Learning which is based in deep neural networks

and has been applied for better sequential decision making in many domains. As above

mentioned our framework has three components: a belief tracker, a recommender

system and a policy network.

Figure 29 The conversational recommender system overview

(Conversational Recommender System, Yueming Sun, Yi Zhang, 2018)

Figure 29 presents the overview of our proposed framework. At a time step in the

dialogue, the user utters “I want to find a Bar”. The framework calls the belief tracker

Master Thesis: << The use of Graph Databases in Financial Problems >>

 58

to convert the utterance into a vector representation or “belief”; then the belief is sent

to the policy network to make a decision. For example, the policy network may decide

to request the city information next. Then the agent may respond with “Which city are

you in?”, and gets a reward, which is used to train the policy. A different decision is to

make a recommendation. Then the agent calls the recommender system to get a list of

items personalized for the user.

In Figure 30 the structure of the proposed conversational recommender model in the

bottom part is the belief tracker, the top left part is the recommendation model, and the

top right part is the deep policy network.

Figure 30 The structure of the proposed Conversational Recommender System

(Conversational Recommender System, Yueming Sun, Yi Zhang, 2018)

Belief Tracker module extracts facet-value pairs from user utterances during the

conversation, and maintain the facet-value pairs as the memory state (i.e. user query)

of the agent. The product facet (or attribute, metadata) f along with its specific value v

is a facet-value pair (f ,v). Each facet-value pair represents a constraint on the items.

For example, (color, red) is a facet-value pair which constrains that the items need to

be red in color. As we can see in Figure 30 the belief tracker takes the current and the

past user utterances as the input, and outputs a probability distribution across all the

possible values of a facet at the current time point. The dialogue system’s belief of the

session is constituted by the predicted values of different facets.

As the conversational system interacts with the users, at certain round, the

conversational system can decide to make a recommendation based on its current belief

of the user’s information need, which is interpreted as the dialogue state. The structure

of recommendation model is shown in the upper left part of Figure 30. Let U denote

Master Thesis: << The use of Graph Databases in Financial Problems >>

 59

the users and I the items. For M users and N items in the dataset, the users and items

are represented as the sets: {u1,u2, ...,uM } and {i1,i2, ...,iN }. The input feature x is the

concatenation of the 1-hot encoded user/item vector, where the only element that is not

zero in the vector corresponds to the index of the encoded info, and the dialogue belief:

x = um ⊕ in ⊕ st

um = {0, 0, ..., 1, ..., 0},with 1 at the mth element

in = {0, 0, ..., 1, ..., 0},with 1 at the nth element

where m and n denotes that in is rated by the um.

The output ym,n can be either a rating score for the explicit feedback or a 0-1 scalar for

the implicit feedback.

Then we portray the deep policy network where its structure is shown in the upper right

part in Figure 30. The reinforcement learning has the basic components of state S,

action A, reward R and policy π(a|s).

State: The state st is the current description of the environment from the viewpoint of

the agent. In our case, it is the description of the conversation context, which is the

belief tracker’s output, st = {f1 ⊕ f2... ⊕ ft }.

Action: An action at is the decision the agent needs to make at time step t. Here we have

mainly two kinds of actions. One is to request the value of a facet, which is further

divided into l actions {a1, a2,..., at }, one per each facet. The other is to make a

personalized recommendation arec , in which case the recommendation module

described above would be called.

Reward: The reward is the benefit/penalty the agent gets from interacting with its

environment. At each turn, according to the current state st , the agent selects an action

at following the policy, and it gets an immediate reward rt , denoting how good the

current decision is. The state st transits to a new state s′.

Policy: This is the target the model tries to learn. Usually denoted as π (at | st), the

policy represents the score, such as the probability, of taking action at when the agent

is in state st .

(21)

Master Thesis: << The use of Graph Databases in Financial Problems >>

 60

5.1.2 EAR method

The aforementioned method is a multi-round CRS model which in each round, is

allowed to choose two types of actions — either explicitly asking whether a user likes

a certain item attribute or recommending a list of items. In a session, the model may

alternate between these actions multiple times, with the goal of finding desirable items

while minimizing the number of interactions. It is made of three stages to better

converse with users.

(a) Estimation, which builds predictive models to estimate user preference on both

items and item attributes. In particular we train a factorization machine (FM) using user

profiles and item attributes as input features. Our Estimation stage builds in two novel

advances: 1) the joint optimization of FM on the two tasks of item prediction and

attribute prediction exerting positive influence on EAR, where the first directly

contributes to success rate of recommendation, and the second guides the CC to choose

better attributes to ask users so as to shorten the conversation. 2) the adaptive training

of conversation data with online user feedback on attributes.

(b) Action, which learns a dialogue policy to determine whether to ask attributes or

recommend items, based on Estimation stage and conversation history. Our focus is on

conversational recommendation strategy, as opposed to fluent dialogue (the language

part) we use templates as wrappers to handle user utterances and system response

generation. We train a policy network with reinforcement learning, optimizing the

reward of shorter turns and successful recommendations based on the FM’s estimation

of user preferred items and attributes, and the dialogue history. In EAR, we design four

kinds of rewards, namely: (1) rsuc , a strongly positive reward when the recommendation

is successful, (2) rask , a positive reward when the user gives positive feedback on the

asked attribute, (3) rquit , a strongly negative reward if the user quits the conversation,

(4) rprev , a slightly negative reward on every turn to discourage overly lengthy

conversations. The intermediate reward rt at turn t is the sum of the above four rewards,

rt = rsuc + rask + rquit + rprev. We denote the policy network as π (at | st), which returns the

probability of taking action at given the state st

(c) Reflection, which updates the recommender model when a user rejects the

recommendations made by the Action stage and adapts the CRS model with user’s

online feedback. Specifically, when a user rejects the recommended items, we construct

Master Thesis: << The use of Graph Databases in Financial Problems >>

 61

new training triplets by treating the items as negative instances and update the FM in

an online manner.

In Figure 31 in the workflow of our multi-round conversational recommendation

scenario, the system may recommend items multiple times, and the conversation ends

only if the user accepts the recommendation or chooses to quit.

Figure 31 The workflow of our multi-roud conversational recommendation scenario

(Estimation–Action–Reflection: Towards Deep Interaction Between Conversational

and Recommender Systems, Wenqiang Lei , Xiangnan He , Yisong Miao , Qingyun

Wu , Richang Hong , Min-Yen Kan, Tat-Seng Chua, 2020)

Let u ∈ U denote a user u from the user set U and v ∈ V denote an item v from the item

set V. Each item v is associated with a set of attributes Pv which describe its properties,

such as music genre “classical” or “jazz” for songs or tags such as “nightlife”, “serving

burgers”, or “serving wines” for businesses. We denote the set of all attributes as P and

use p to denote a specific attribute. A CRS session is started with u’s specification of a

preferred attribute p0 , then the CRS filters out candidate items that contain the preferred

attribute p0.

Then in each turn t (t = 1, 2, ...,T ; T denotes the last turn of the session), the CRS needs

to choose an action: recommend or ask:

If the action is recommend, we denote the recommended item list Vt ⊂ V and the action

as arec . Then the user examines whether Vt contains his desired item. If the feedback is

Master Thesis: << The use of Graph Databases in Financial Problems >>

 62

positive, this session succeeds and can be terminated. Otherwise, we mark Vt as rejected

and move to the next round.

If the action is ask (where the asked attribute is denoted as pt ∈ P and the action as aask

(pt)), the user states whether he prefers items that contain the attribute pt or not. If the

feedback is positive, we add pt into Pu to denote the preferred attributes the user in the

current session. Otherwise, we mark pt as rejected; regardless of rejection or not, we

move to the next turn.

This whole procedure forms an interaction loop (Figure 31) where the CRS model may

ask zero too many questions before making recommendations. A session finishes

whether a user accepts the recommendations or leaves due to his impatience.

(22)

5.1.3 CPR method

In this method we model conversational recommendation as the process of finding a

path in user-item-attribute knowledge graph interactively. Figure 32 shows an

illustrative example. The vertices in the right graph represent users, items and attributes

as well as other relevant entities. An edge between two vertices represent their relation,

for example, a user item edge indicates that the user has interacted with the item, and a

user attribute edge indicates that the user has affirmed an attribute in a conversation

session. A conversation session in our CPR is expressed as a walking in the knowledge

graph. It starts from the user vertex, and travels in the graph with the goal to reach one

or multiple item vertices the user likes as the destination. Note that the walking is

navigated by users through conversation. This means, at each step, a system needs to

interact with the user to find out which vertex to go and takes actions according to user’s

response.

In Figure 32 an illustration of interactive path reasoning in CPR. As the convention of

this paper, light orange, light blue, and light gold vertices represents the user, attribute

and items respectively. For example, the artiest Michael Jackson is an item and and the

attributes are rock, dance etc.

Master Thesis: << The use of Graph Databases in Financial Problems >>

 63

Figure 32 An illustration of interactive path reasoning in CPR

(Interactive Path Reasoning on Graph for Conversational Recommendation, Wenqiang

Lei1 , Gangyi Zhang , Xiangnan He, Yisong Miao, Xiang Wang, Liang Chen, Tat-Seng

Chua, 2020)

The immediate gain of such a method is that it models conversational recommendation

as an interactive path reasoning problem on the graph with each step confirmed by the

user, limits the candidate attributes to the adjacent attributes of the current vertex

resulting in the reduction of the candidate space and offer an aesthetically appealing

framework which demonstrates the natural combination and mutual promotion of

conversation system and recommendation system.

In the course of the validation procedure about the effectiveness of CPR method we

make use of multi-round conversational recommendation (MCR) scenario conducting

experiments on the Yelp and Last FM datasets, comparing SCPR with CRS and EAR

methods which also use the information of user, item and attribute but does not use

knowledge graph. In MCR scenario, as it is the most realistic setting in research, the

system is free to ask attributes or make recommendation multiple times.

Specifically, an item v is associated with a set of attributes Pv .The attributes broadly

cover various descriptions as long as it can describe certain properties of an item. A

conversation session starts on the user side, which initializes the attribute p0 by

specifying an attribute the user likes (e.g., I like some dance music). Next, the CRS is

free to ask his preference on an attribute selected from the candidate attribute set Pcand

or recommend items from the candidate item set Vcand . Then, the user needs to give

feedback accordingly, either accepting or rejecting them. The CRS makes use of such

feedback from the user — if the user accepts the asked attribute, the CRS puts it in the

preferred attribute set Pu and removes it from Pcand . Then the CRS updates Vcand to

Vcand ∩ Vp , representing the items containing all attribute confirmed by the user in

Master Thesis: << The use of Graph Databases in Financial Problems >>

 64

the session. Vp denote the items containing the attribute p. If he rejects the asked

attribute, the CRS removes it from Pcand . Based on the updated sets, the CRS takes

the next action, i.e., asking or recommending, and repeats the above process. The

conversation session ends until the CRS hits the user preferred items or reaches the

maximum number of turns T. This process is detailed in Algorithm 1.

Table 1: Main notations used in the paper

u,v, p User, item, and attribute

P An active attribute path in the graph

aat An adjacent attribute of the attribute pt

AAt The set of adjacent attributes of the attribute pt

Pu The set of attributes confirmed by u in a session

Pcand The set of candidate attributes

Vp The set of items that contain the attribute p

Vcand The set of candidate items

a The action of CPR, either aask or arec

Algorithm 1 The MCR Scenario

Input: user u, all attributes P, all items V, the number of items

 to recommend k, the maximum number of turns T ;

Output: recommendation result: success or fail;

1: User u specifies an attribute p0;

2: Update: Pu = {p0}; Pcand = P \ p0; Vcand = Vp0

3: for turn t = 1, 2, 3...T do

4: Select an action a

5: if a == aask then

6: Select the top attribute p from Pcand

7: if u accepts pt then

Master Thesis: << The use of Graph Databases in Financial Problems >>

 65

8: Update: Pu = Pu ∪ p; Vcand = Vcand ∩ Vp

9: Update: Pcand = Pcand \ p

10: else [a == arec]

11: Select the top-k items Vk from Vcand

12: if User accepts Vk then

13: Recommendation succeeds; Exit.

14: else [User rejects Vk]

15: Update: Vcand = Vcand \ Vk

16: Recommendation fails; Exit

(23)

A graph uses vertices to represent entities and edges to represent the relationships

between entities. Specifically, a graph G is defined as a set of triplets {(h,r,t)},

indicating a certain relation r exists between the head entity h and the tail entity t. The

relations between each types of entities can vary a lot depending on specific datasets.

CPR maintains an active path P, comprising the attributes confirmed by a user (i.e., all

attributes in Pu) in the chronological order, and exploring on the graph for the next

adjacent attribute vertex to walk. CPR does not visit the attributes that have been visited

before and does not perform the walking over all types of vertices. As a result it

emphasizes the importance of the attributes as explicit reasons for recommendation and

it makes the walking process more concise, eliminating the uncertainty in an

unnecessarily long reasoning path which might lead to error.

In Figure 33 CPR framework overview. It starts from the user u0 and walks over

adjacent attributes, forming a path (the red arrows) and eventually leading to the desired

item. The policy network (left side) determines whether to ask an attribute or

recommend items in a turn. Two reasoning functions f and д score attributes and items,

respectively.

Master Thesis: << The use of Graph Databases in Financial Problems >>

 66

Figure 33 CPR framework overview

(Interactive Path Reasoning on Graph for Conversational Recommendation, Wenqiang

Lei1 , Gangyi Zhang , Xiangnan He, Yisong Miao, Xiang Wang, Liang Chen, Tat-Seng

Chua, 2020)

In Figure 33 when a user initializes his preferred attribute p0 (i.e., P = p0), the CPR

propagates messages from p0 to its directly connected items (i.e., v0, v1 v4, v5) to score

these items. The scoring function for each item is sv = f (v,u, Pu) where sv is a scalar

indicating the recommendation score of item v in the current conversation session, and

Pu denotes the attributes confirmed by u in the session. Then the candidate items in turn

propagate messages to the candidate attributes (the light blue arrows) with each

candidate attribute scoring function (p ∈ Pcand) to be sp = g(u, p, Vcand)

Then the output action space of the policy function contains two choices: aask or arec ,

indicating whether to perform top-k recommendations or to ask an attribute in this turn.

If the decision is aask , we directly take highest-scored attribute from Pcand , where the

score is sp. Otherwise, we recommend top-k items from Vcand according to the score

of sv and the transition step will be triggered after the user confirms an asked attribute

pt.

We make use of two datasets LastFM and Yelp, splitting each one of them for training,

validation and testing in a ratio of 7:1.5:1.5 and the rewards to train the policy network

are: rrec_suc=1, rrec_fail =-0.1, rask_suc=0.01, rask_fail =-0.1, rquit =- 0.3

For our validation experiment we use, except CRM method, four additional models:

Max Entropy. This method follows a rule-based protocol to ask and recommend. When

asking question, it always chooses an attribute with the maximum entropy within the

current candidate item set.

Master Thesis: << The use of Graph Databases in Financial Problems >>

 67

Abs Greedy. This method serves as a baseline where the model only recommends items

and updated itself, until it finally makes successful recommendation.

CRM. This is a CRS model which records user’s preference into a belief tracker, and

uses reinforcement learning (RL) to find the policy to interact with the user.

EAR. This is the state-of-the-art method on MCR setting and proposed a three stage

solution called Estimation–Action– Reflection which emphasizes on the interaction

between conversation component and recommendation component.

We use success rate (SR@t) to measure the cumulative ratio of successful

recommendation by turn t. We also use average turns (AT) to record the average

number of turns for all session (if a session still fails in the last turn T, we count the

turn for that session as T). Therefore, the higher SR@t indicates a higher performance

at a specific turn t, while the lower AT means an overall higher efficiency

.

In Table 4 the Success Rate @ 15 and Average Turn. Bold number represents the

improvement of SCPR over existing models is statistically significant (p < 0.01) (RQ1)

 LastFM Yelp

 SR@15 AT SR@15 AT

Abs

Greedy

0.222 13.48 0.264 12.57

Max

Entropy

0.283 13.91 0.921 6.59

CRM 0.325 13.75 0.923 6.25

EAR 0.429 12.88 0.967 5.74

SCPR 0.465 12.86 0.973 5.67

Table 4 Success Rate and Average Turn

Master Thesis: << The use of Graph Databases in Financial Problems >>

 68

Figure 34 Success Rate * of compared methods at different turns on LastFM and Yelp (RQ1).

(Interactive Path Reasoning on Graph for Conversational Recommendation, Wenqiang

Lei1 , Gangyi Zhang , Xiangnan He, Yisong Miao, Xiang Wang, Liang Chen, Tat-Seng

Chua, 2020)

By noticing table 2 SCPR model achieves significantly higher SR and less AT than the

rest models, demonstrating SCPR method’s superior performance in usage. It utilizes

the graph adjacent attribute constraint to extinguish many irrelevant attributes to ask,

something that becomes especially helpful when there are a large number of attribute

and has a more dedicated RL model with smaller action space. Looking Figure 3 CRM,

in Yelp dataset, may outperform SCPR on first few rounds, but it falls behind in future

rounds. Abs Greedy can achieve the best results on the first few turns but immerses in

further turns.

(23)

Master Thesis: << The use of Graph Databases in Financial Problems >>

 69

SECOND PART

6. Brief historical retrospective of databases

The term database appeared in the early 1960s and was used to denote the collections

of data managed by large time-sharing computing systems, replacing the term

<<integrated data processing>> that had been in use since the previous decade. In 1970

E. F. Codd, with his pioneering work, founded the relational database model which was

going to change immediately and dramatically the way of managing and usability of

databases. By the use of the above mentioned term we mean a collection of logically

related items together with their description, designed to meet the information needs of

an organization. Databases therefore make it possible to organize and store data in the

computer, enabling this way, the processing and extraction of the desired information.

The model of a database describes the structure of the database and how it can be used,

including the basic operations of retrieving and updating data.

Data models can be categorized, according to the form of concepts they contain for

description, to:

 The high-level or conceptual models contain a level of abstraction that

approximates the way a layman perceives the data

 The low-level or physical data models describe how data is stored in the

computer.

 The logical or representational data models contain concepts of a medium level

of abstraction, so that they are not too far from the way the user thinks, nor from

the way are they stored in the computer.

Historically, three basic logical database models have been proposed. The first is the

hierarchical model which considers records as nodes in trees. The tree offers the

prioritization of data required by the specific model. The second is the network model

which is an improved version of the hierarchical one. The main difference with the first

one is that there is no restriction that each record has only one parent. Each record can

have one or more parents. In this way, a network is created that connects the database

records. The latter is the relational model which represents the database as an unordered

Master Thesis: << The use of Graph Databases in Financial Problems >>

 70

collection of relations where each relation is an unordered collection of tuples and each

tuple is an unordered collection of attributes or predicates.

The main feature of the 80s was the dominance of relational database management

systems, something that continues to this day. (24)

With the advent of the new millennium and the subsequent development of the Internet

which resulted in the genesis of Big Data, existing databases have been forced to deal

with new issues of managing and effectively exploiting this kind of data.

6.1 SQL Databases

Every relational database management system consists of a storage and a management

component. The storage component stores both data and the relationships between

pieces of information in tables. In addition to tables with user data from various

applications, it contains the predefined system tables necessary for database operation.

These contain descriptive information and can be queried but not manipulated by users.

The management component’s most important part is the relational data definition,

selection, and manipulation language SQL. This component also contains service

functions for data restoration after errors, for data protection, and for backup. (25). The

two most extensively used relational databases are MySQL and Oracle. MySQL is more

popular with the websites. It is a light weight system which is extremely fast but Oracle

is majorly used in case of large database requirement like Banking, Insurance, ERP and

finance companies. It is used to solve complex problems and supports large OLTP

environments. (26). These databases have to be refined periodically to remove any kind

of redundant, inconsistent or dirty data so as to perform effectively, also their data

structure follow the ACID properties (Atomicity, Consistency, Isolation, Durability)

and use vertical scalability, which means that when the volume of data is being

expanded, there could be expand just the storage capacity and computing power of

existing node, for example, the capacity of CPU, the RAM and the SSD of the database

server.

With the explosion of data volume, SQL-based data querying lose efficiency, and in

particular, managing larger databases has become a major challenge. In addition,

relational databases exhibit a variety of limitations in meeting the recent Big Data

analytics requirement in businesses. While clusters-based architecture has emerged as

a solution for large databases, SQL is not designed to suit clusters and this miss match

Master Thesis: << The use of Graph Databases in Financial Problems >>

 71

has led to think of alternate solutions. There are miss matches between persistent data

model and in memory data structures, and servers based on SQL standards are now

prone to memory footprint, security risks and performance issues. (27) (28)

6.2 NoSQL Databases

The term NoSQL was first used in 1998 for a database that (although relational) did not

have an SQL interface. It became of growing importance during the 2000s, especially

with the rapid expansion of the internet. The growing popularity of global web services

saw an increase in the use of web-scale databases, since there was a need for data

management systems that could handle the enormous amounts of data (sometimes in

the petabyte range and up) generated by web services. Although NoSQL primarily reads

as databases that provide no SQL access, the acronym is commonly defined as “not

only SQL”. (Book, SQL & NoSQL Databases, 2019, Andreas Meier Michael

Kaufmann) The major challenge with the growing data is its no uniformity. Due to this

problem, in recent years, a nonrelation database is needed to scale the growing need of

industry and at the same time, must be highly efficient. This gave rise to NoSQL

databases which are highly scalable, efficient and can store large amount of data. To

deal with this non-uniformity of data a fresh thought was given to the storage of data,

leading to the creation of NoSQL. They do not follow the general table/row/column

approach which is practiced by all RDBMSs. NoSQLs are primarily called distributed

or non-relational databases. They support horizontal scalability, so to scale number of

servers are increased rather than upgrading hardware of the system which happens in

RDBMS where vertical scalability is performed. (28)

Non-relational databases may primarily be classified on the basis of way of organizing

data as follows:

6.2.1 Key Value Stores

It allows the app-developer to store schema-less data. This data consists of a key which

is represented by a string and the actual data which is the value in key-value pair. The

data can be any primitive of programming language, which may be a string, an integer

or an array or it can be an object. Thus it loosens the requirement of formatted data for

storage, eliminating the need for fixed data model. Key-value model is a schema-less

database which is implemented using a hash table where keys are stored as indexes and

a pointer that holds the actual data. This structure creates the 'key-value' pair as the

Master Thesis: << The use of Graph Databases in Financial Problems >>

 72

model itself is named. The hash tables are suitable for lookups for simple or complex

values in extremely large datasets. The data in the key-value database are stored in the

form of rows as structured data but also can be stored as JSON or some other self-

describing data format as semi structured data.

6.2.2 Document Store

 Document Store, also commonly known as “Document Oriented Database”, is

basically a computer program used for storing, retrieving, updating data stored in

database. The underlying storage structure used in such databases is a ‘document’. Each

document is represented by a unique key which is a string (URI or path). An API or a

query language is provided for fast retrieval of documents on the basis of its content.

The document based model perfectly handles all types of data including structured,

semi-structured and unstructured data. The documents in a collection should be similar,

but a document can contain attributes that are not necessarily need to have other

documents in that collection.

6.2.3 Graph Database

Graph databases are schema-less databases which use graph data structures along with

nodes, edges and certain properties to represent data. Nodes may represent entities like

people, business or any other item similar to what objects represent in any programming

language. Properties designate any pertinent information related to nodes. On the other

hand; edges relate a node to other node or a node to some property. One can obtain

some meaningful pattern or behavior after studying the interconnection between all

three viz. nodes, properties and edges. This model can support complex data queries for

a relatively short period of time, also can support ACID properties and the rollback

feature which ensures the consistency of data. This type of database is used when the

importance is given on the relationships between data than the data itself.

6.2.4 Column Oriented Databases

Column Store Databases, unlike Row Databases, store their data in the form of

columns. It serializes all the values of one column together and so on. Column-oriented

databases are comparatively efficient than row oriented one’s when new values for a

column are entered for all rows at once as column data can be written efficiently and

replace old data without altering any other columns for the rows. Column-oriented

Master Thesis: << The use of Graph Databases in Financial Problems >>

 73

model is a wider concept of key value architecture, organized by columns. This model

is a composite approach to relational databases and key-value model schema. The data

are stored in column families and rows. Every row has a row-key and a row may contain

many columns. A row can have a different number of columns and in case of nested

columns inside another column, those columns are called super columns. This database

type works very well with complex datasets as a result of its scalability.

6.2.5 Object Oriented Databases

Object Oriented Databases also commonly known as OODBMS), is a database system.

It stores its data in the form of objects. This feature supports inheritance and hence

reusability similar as in object oriented programming. Object oriented database can be

considered as a combination of object oriented programming (OOP) and database

principles. Object data store offers all the features of OOP such as data encapsulation,

polymorphism and inheritance. The class, objects, and class attributes in such databases

are comparable to a table, tuple and columns in a tuple in RDBMS respectively. Each

object has an object identifier which can be used to uniquely represent that object

(26) (29) (30)

6.3 Evaluation of differences between SQL and NoSQL Databases

6.3.A Scalability and performance

On the one hand Relational databases (SQL databases) use vertical scalability, which

means that when the volume of data is being expanded, there could be expand just the

storage capacity and computing power of existing node, for example, the capacity of

CPU, the RAM and the SSD of the database server. This kind of scalability is expensive

because of grater hardware failure risk, hardware costs in means of future upgradability

(hardware became older and the support is less, vendors may have some requests,

hardware and software limitations, etc.), so the overall implementation cost will

increase with data growth. On the other hand NoSQL databases use horizontal

scalability which means that when the volume of data is rapidly growing and the

volume of data is large the system expand by adding more nodes for data storage and

processing power. By following this procedure, the horizontal scalability of the system

is a cheaper solution than the vertical scalability. Inherently the NoSQL databases

support the auto – sharding feature by distributing data on different servers, which

Master Thesis: << The use of Graph Databases in Financial Problems >>

 74

increases the performance of the database. NoSQL databases are, therefore, fit in the

current world, where outward scalability is replacing upward scalability. Additionally,

NoSQL databases are used for handling big data applications, which RDBMSs cannot

manage (31)

6.3.B Flexibility

The SQL databases have a static database schema that should be pre-defined before

data injection and should support structured data. If there is a need to change the

schema, with pre-existing data, there is a huge problem and a modification of the

database schema or tables should be considered precisely, because that modification

can cause service failure, decrease performance, or may need maintenance and further

investments to modify application modules. While on the other hand, NoSQL databases

have a dynamic schema and not necessarily need to be pre-defined. NoSQL databases

can easily accommodate changes in data type / structure due to its dynamic schema

design. The NoSQL databases because of their data modeling are used for agile and

scalable environments which will be continuously developing and evolving. One more

important point is that SQL databases handle just well – structured data but NoSQL

databases handle every kind of data including their well – structured, semi – structured

and unstructured data.

6.3.C Query language

Relational databases use a standard query language known as Structured Query

Language (SQL). This query language is a powerful one and can handle complex

queries through a standardized interface. SQL databases have portability since SQL is

compatible with a broad range of computer programs and can be used for quick

communication with other databases. On the other side, the NoSQL databases do not

have a standardized language to query and manage data. However, every NoSQL

database management system vendor has created their own query language but there is

a lack of creating complex queries such as aggregation on NoSQL databases. Many

NoSQL systems do not provide join operation as part of their query language, so the

joins need to be implemented on the application side. There is a need for a common

query language like SQL which can be used for all NOSQL databases.

Master Thesis: << The use of Graph Databases in Financial Problems >>

 75

6.3.D Security

The security is an important issue for a DBMS. The relational databases have very

secure mechanisms which ensure the security of the services and support parameterized

queries and prepared statements to prevent SQL injection attacks. By separating SQL

code from user-supplied input, databases can protect against malicious SQL commands.

Since the feature of sharding is considered the key to success of NoSQL databases by

distributing data over servers this probably has impact in data security as the most

difficult challenge for NoSQL databases. There is a concern, how the confidentiality,

privacy and the security of the data are guaranteed from these systems. Most of the

NoSQL databases do not have secure client-server communication and do not provide

these mechanisms that can ensure security. There are some key factors that should be

considered when dealing with the security of databases. Those factors are

authentication, access control, secure configurations, data encryption, and auditing. To

ensure the authentication, authorization, and auditing there should be external methods

to perform the operation and should be implemented based on the NoSQL database

used. It is the same way in defining the access control of the users, some of the NoSQL

databases provide access control from the system, but some of them do not ensure this

kind of mechanism and need to implement it from the third party. NoSQL databases

are less mature compared to RDBMSs, which have been existing for an extended

period, thus becoming more stable and richly functional.

6.3.E Data management - Storage and Access

In relational databases, data stored are highly normalized and very clean. The data

redundancy is avoided in a remarkable way using normalization by slicing data in small

logical tables and preventing duplication. In this way, happens the improvement and

usage of storage in a reasonable manner.

NoSQL database are stored in collections without relationships and normalization

between each other so this could contain data redundancy. NoSQL databases practice

the data replication of the database between clustered servers, in order to prevent data

loss and to guarantee the security of data. The replication process is done in two ways:

master-slave and master-master. Master-slave replication allows the slave to take a

copy of the data just for read, while the master holds the permission to write and read

the data, so this way guarantees the consistency of data. While master – master

Master Thesis: << The use of Graph Databases in Financial Problems >>

 76

replication allows reads and writes to any of the copies and this may lose the

consistency. In the relational databases, a replication is when the whole database is

replicated in every site of the distributed system and as a result the availability of data

is improved but the performance of the database operations will be decreased obviously.

Most of the Non-Relational databases are open source software and though well

appreciated, it compromises in reliability as nobody is responsible in times of failures.

Many Non-relational databases provide BASE properties and sacrifice conventional

ACID properties as a step to increase performance. This could mean than non-relational

databases compromise on consistency within the database.

(29)

6.4 Graphs

Formally, a graph is just a collection of vertices and edges—or, in less intimidating

language, a set of nodes and the relationships that connect them. Graphs represent

entities as nodes and the ways in which those entities relate to the world as relationships.

This general-purpose, expressive structure allows us to model all kinds of scenarios,

from the construction of a space rocket, to a system of roads, and from the supply chain

or provenance of foodstuff, to medical history for populations, and beyond.

A graph database management system (henceforth, a graph database) is an online

database management system with Create, Read, Update, and Delete (CRUD) methods

that expose a graph data model. Graph databases are generally built for use with

transactional (OLTP) systems. Accordingly, they are normally optimized for

transactional performance, and engineered with transactional integrity and operational

availability in mind.

There are two properties of graph databases we should consider when investigating

graph database technologies:

The underlying storage

Some graph databases use native graph storage that is optimized and designed for

storing and managing graphs. Not all graph database technologies use native graph

storage, however. Some serialize the graph data into a relational database, an object-

oriented database, or some other general-purpose data store.

Master Thesis: << The use of Graph Databases in Financial Problems >>

 77

The processing engine

Some definitions require that a graph database use index-free adjacency, meaning that

connected nodes physically “point” to each other in the database. Here we take a

slightly broader view: any database that from the user’s perspective behaves like a

graph database (i.e., exposes a graph data model through CRUD operations) qualifies

as a graph database. We do acknowledge, however, the significant performance

advantages of index-free adjacency, and therefore use the term native graph processing

to describe graph databases that leverage index-free adjacency.

Relationships are first-class citizens of the graph data model. This is not the case in

other database management systems, where we have to infer connections between

entities using things like foreign keys or out-of-band processing such as map-reduce.

By assembling the simple abstractions of nodes and relationships into connected

structures, graph databases enable us to build arbitrarily sophisticated models that map

closely to our problem domain. The resulting models are simpler and at the same time

more expressive than those produced using traditional relational databases and the other

NOSQL (Not Only SQL) stores. (32)

Figure 35 Graph Database on the market today

(Ian Robinson, Jim Webber & Emil Eifrem. Graph Databases. Menlo Park,

California : O'REILLY, 2013)

A graph compute engine is a technology that enables global graph computational

algorithms to be run against large datasets. Graph compute engines are designed to do

things like identify clusters in your data, or answer questions such as, “how many

relationships, on average, does everyone in a social network have?”

Master Thesis: << The use of Graph Databases in Financial Problems >>

 78

Because of their emphasis on global queries, graph compute engines are normally

optimized for scanning and processing large amounts of information in batches, and in

that respect they are similar to other batch analysis technologies, such as data mining

and OLAP, in use in the relational world. Whereas some graph compute engines include

a graph storage layer, others (and arguably most) concern themselves strictly with

processing data that is fed in from an external source, and then returning the results for

storage elsewhere.

Figure 36 A high-level view of a typical graph compute engine deployment

(Ian Robinson, Jim Webber & Emil Eifrem. Graph Databases. Menlo Park,

California : O'REILLY, 2013)

A variety of different types of graph compute engines exist. Most notably there are in

memory/ single machine graph compute engines like Cassovary and distributed graph

compute engines like Pegasus or Giraph. Most distributed graph compute engines are

based on the Pregel white paper, authored by Google, which describes the graph

compute engine Google uses to rank pages.

(32) (33) (34)

6.4.1 Types of Graph Algorithms

6.4.1.1 Pathfinding and Graph Search Algorithms

Graph search algorithms explore a graph either for general discovery or explicit search.

These algorithms carve paths through the graph, but there is no expectation that those

paths are computationally optimal. We will cover Breadth First Search and Depth First

Search because they are fundamental for traversing a graph and are often a required

first step for many other types of analysis. Pathfinding algorithms build on top of graph

search algorithms and explore routes between nodes, starting at one node and traversing

through relationships until the destination has been reached. These algorithms are used

http://www.cs.cmu.edu/~pegasus/

Master Thesis: << The use of Graph Databases in Financial Problems >>

 79

to identify optimal routes through a graph for uses such as logistics planning, least cost

call or IP routing, and gaming simulation. Specifically, the pathfinding algorithms we’ll

cover are:

• Shortest Path, with two useful variations (A* and Yen’s): finding the shortest path or

paths between two chosen nodes

• All Pairs Shortest Path and Single Source Shortest Path: for finding the shortest paths

between all pairs or from a chosen node to all others

• Minimum Spanning Tree: for finding a connected tree structure with the smallest cost

for visiting all nodes from a chosen node

• Random Walk: because it’s a useful preprocessing/sampling step for machine

learning workflows and other graph algorithms.

Figure 37 Pathfinding and search algorithms

(35) (36)

6.4.1.2 Centrality Algorithms

Centrality algorithms are used to understand the roles of particular nodes in a graph and

their impact on that network. They’re useful because they identify the most important

nodes and help us understand group dynamics such as credibility, accessibility, the

speed at which things spread, and bridges between groups. Although many of these

Master Thesis: << The use of Graph Databases in Financial Problems >>

 80

algorithms were invented for social network analysis, they have since found uses in a

variety of industries and fields. We’ll cover the following algorithms:

Degree Centrality as a baseline metric of connectedness

Closeness Centrality for measuring how central a node is to the group, including two

variations for disconnected groups

Betweenness Centrality for finding control points, including an alternative for

approximation

PageRank for understanding the overall influence, including a popular option for

personalization

Figure 38 Representative centrality algorithms and the type of questions they answer

(35) (37)

6.4.1.3 Community Detection Algorithms

Community formation is common in all types of networks, and identifying them is

essential for evaluating group behavior and emergent phenomena. The general prin‐

ciple in finding communities is that its members will have more relationships within

the group than with nodes outside their group. Identifying these related sets reveals

Master Thesis: << The use of Graph Databases in Financial Problems >>

 81

clusters of nodes, isolated groups, and network structure. This information helps infer

similar behavior or preferences of peer groups, estimate resiliency, find nested

relationships, and prepare data for other analyses. Community detection algorithms are

also commonly used to produce network visualization for general inspection. We’ll

provide details on the most representative community detection algorithms:

• Triangle Count and Clustering Coefficient for overall relationship density

• Strongly Connected Components and Connected Components for finding con‐ nected

clusters

• Label Propagation for quickly inferring groups based on node labels

• Louvain Modularity for looking at grouping quality and hierarchies

Figure 39 Representative community algorithms

(35) (38)

Master Thesis: << The use of Graph Databases in Financial Problems >>

 82

THIRD PART

7. Platforms

Traditionally there was a separation between graph compute engines and graph

databases, which required users to move their data depending on their process needs:

Graph compute engines

These are read-only, nontransactional engines that focus on efficient execution of

iterative graph analytics and queries of the whole graph. Graph compute engines

support different definition To address the requirements of graph processing, several

platforms have emerged. and processing paradigms for graph algorithms, like node-

centric (e.g., Pregel, Gather-Apply-Scatter) or MapReduce-based approaches (e.g.,

PACT). Examples of such engines are Giraph, GraphLab, Graph-Engine, and Apache

Spark.

Graph databases

From a transactional background, these focus on fast writes and reads using smaller

queries that generally touch a small fraction of a graph. Their strengths are in

operational robustness and high concurrent scalability for many users.

7.1 Selecting Platform

Choosing a production platform involves many considersations, such as the type of

analysis to be run, performance needs, the existing environment, and team preferences.

We use Apache Spark and Neo4j to showcase graph algorithms in this book because

they both offer unique advantages.

Spark is an example of a scale-out and node-centric graph compute engine. Its popular

computing framework and libraries support a variety of data science workflows. Spark

may be the right platform when our:

• Algorithms are fundamentally parallelizable or partitionable.

• Algorithm workflows need “multilingual” operations in multiple tools and

languages.

• Analysis can be run offline in batch mode.

• Graph analysis is on data not transformed into a graph format.

Master Thesis: << The use of Graph Databases in Financial Problems >>

 83

• Team needs and has the expertise to code and implement their own algorithms.

• Team uses graph algorithms infrequently.

• Team prefers to keep all data and analysis within the Hadoop ecosystem.

The Neo4j Graph Platform is an example of a tightly integrated graph database and

algorithm-centric processing, optimized for graphs. It is popular for building

graphbased applications and includes a graph algorithms library tuned for its native

graph database. Neo4j may be the right platform when our:

• Algorithms are more iterative and require good memory locality.

• Algorithms and results are performance sensitive.

• Graph analysis is on complex graph data and/or requires deep path traversal.

• Analysis/results are integrated with transactional workloads.

• Results are used to enrich an existing graph.

• Team needs to integrate with graph-based visualization tools.

• Team prefers prepackaged and supported algorithms.

Finally, some organizations use both Neo4j and Spark for graph processing: Spark for

the high-level filtering and preprocessing of massive datasets and data integration, and

Neo4j for more specific processing and integration with graph-based applications.

7.2 Apache Spark

Apache Spark (henceforth just Spark) is an analytics engine for large-scale data

processing. It uses a table abstraction called a DataFrame to represent and process data

in rows of named and typed columns. The platform integrates diverse data sources and

supports languages such as Scala, Python, and R. Spark supports various analytics

libraries, as shown in Figure 40. Its memory-based system operates by using efficiently

distributed compute graphs.

GraphFrames is a graph processing library for Spark that succeeded GraphX in 2016,

although it is separate from the core Apache Spark. GraphFrames is based on GraphX,

but uses DataFrames as its underlying data structure. GraphFrames has support for the

Java, Scala, and Python programming languages. In spring 2019, the “Spark Graph:

Property Graphs, Cypher Queries, and Algorithms” proposal was accepted (see “Spark

Graph Evolution” on page 33). We expect this to bring a number of graph features using

the DataFrame framework and Cypher query language into the core Spark project.

Master Thesis: << The use of Graph Databases in Financial Problems >>

 84

However, in this book our examples will be based on the Python API (PySpark) because

of its current popularity with Spark data scientists.

Figure 40 Spark is an open-source distributed and general-purpose clustercomputing framework. It includes several

modules for various workloads

(35) (39) (40) (41)

7.2.1 Spark Graph Evolution

The Spark Graph project is a joint initiative from Apache project contributors in

Databricks and Neo4j to bring support for DataFrames, Cypher, and DataFramesbased

algorithms into the core Apache Spark project as part of the 3.0 release.

Cypher started as a declarative graph query language implemented in Neo4j, but

through the openCypher project it’s now used by multiple database vendors and an

opensource project, Cypher for Apache Spark (CAPS).

In the very near future, we look forward to using CAPS to load and project graph data

as an integrated part of the Spark platform. We’ll publish Cypher examples after the

Spark Graph project is implemented.

This development does not impact the algorithms covered in this book but may add new

options to how procedures are called. The underlying data model, concepts, and

computation of graph algorithms will remain the same.

7.3 Neo4j Graph Platform

The Neo4j Graph Platform supports transactional processing and analytical processing

of graph data. It includes graph storage and compute with data management and

analytics tooling. The set of integrated tools sits on top of a common protocol, API, and

Master Thesis: << The use of Graph Databases in Financial Problems >>

 85

query language (Cypher) to provide effective access for different uses, as shown in

Figure 41.

Figure 41 The Neo4j Graph Platform is built around a native graph database that supports transactionals

applications and graph analytics

The graph algorithm library includes parallel versions of algorithms supporting graph

analytics and machine learning workflows. The algorithms are executed on top of a task

-based parallel computation framework and are optimized for the Neo4j platform. For

different graph sizes there are internal implementations that scale up to tens of billions

of nodes and relationships.

Results can be streamed to the client as a tuples stream and tabular results can be used

as a driving table for further processing. Results can also be optionally written back to

the database efficiently as node properties or relationship types.

(35) (42) (43)

8. Forming – Operating – Evaluating a methology for AML

8.1 Choosing Data Set

In this master thesis is used as IBM AMLSim Example Dataset which is located in

kaggle platform.

The AMLSim project is intended to provide a multi-agent based simulator that

generates synthetic banking transaction data together with a set of known money

Master Thesis: << The use of Graph Databases in Financial Problems >>

 86

laundering patterns - mainly for the purpose of testing machine learning models and

graph algorithms.

This dataset is an example dataset generated from IBM AMLSim.

Content

There are 3 datasets mentioned here: alerts, transactions and accounts.

1. Accounts dataset: Contains the information about all the bank accounts whose

transactions are monitored.

2. Alerts dataset: Contains the transactions which triggered an alert according to

AML guidelines.

3. Transactions dataset: Contains the list of all the transactions with information

about sender and receiver accounts.

Master Thesis: << The use of Graph Databases in Financial Problems >>

 87

8.2 Neo4j

8.2.1 Creating a graph data base in Neo4j

Figure 42 Creating a database and adding APOC and GDS libraries

The APOC library consists of many (about 450) procedures and functions to help with

many different tasks in areas like data integration, graph algorithms or data conversion.

The Neo4j Graph Data Science (GDS) library provides extensive analytical capabilities

centered around graph algorithms. The library includes algorithms for community

detection, centrality, node similarity, path finding, and link prediction, as well as graph

catalog procedures designed to support data science workflows and machine learning

tasks over your graphs. All operations are designed for massive scale and

parallelization, with a custom and general API tailored for graph-global processing, and

highly optimized compressed in-memory data structures.

Parameter settings

dbms.directories.import=import

dbms.security.allow_csv_import_from_file_urls=true

Master Thesis: << The use of Graph Databases in Financial Problems >>

 88

dbms.security.procedures.unrestricted=jwt.security.*,apoc.*,gds.*,dbms.components.*

8.2.2 Adding files

Figure 43 Adding csv files

Master Thesis: << The use of Graph Databases in Financial Problems >>

 89

8.2.3 Forming node alerts

Figure 44 Creating vertex alerts

7.2.4 Forming node accounts

Figure 45 Creating vertex accounts

Master Thesis: << The use of Graph Databases in Financial Problems >>

 90

8.2.4 Forming relationships between transactions and accounts

Figure 46 Creating relationships transactions-accounts

Master Thesis: << The use of Graph Databases in Financial Problems >>

 91

8.2.5 Forming relationships between transactions and alerts

Figure 47 Creating relationships transactions-alerts

Figure 48 Schema visualization of the imported data

Master Thesis: << The use of Graph Databases in Financial Problems >>

 92

8.2.6 First AML Query

Figure 49 First AML Query

The query matches the sender and receiver accounts and returns their account IDs,

customer IDs, countries, transfer count, total transfer amount, and transfer amount

standard deviation, ordered by the transfer amount standard deviation in descending

order. We are using standard deviation as a mean to spot suspicious transactions.

Outliers are extreme values that differ significantly from other data points in a dataset.

They can have a big impact on statistical analyses and skew the results of any

hypothesis tests. When outliers are present in a data set, they significantly affect the

standard deviation. Outliers tend to increase the standard deviation because they are far

from the mean, making the sum of the squared deviations larger. Standard deviation is

sensitive to outliers. A single outlier can raise the standard deviation and in turn, distort

the picture of spread. For data with approximately the same mean, the greater the

spread, the greater the standard deviation.

Master Thesis: << The use of Graph Databases in Financial Problems >>

 93

Figure 50 Results of the First AML Query

We are going to use the first pair with senderAccountId “9183” and receiverAccountId

“4062” to examine their connection by using graph algorithms as they have the highest

score in transferAmountStdDev with value 852.646

8.2.7 Second AML Query

Master Thesis: << The use of Graph Databases in Financial Problems >>

 94

Figure 51 Second AML Query

Figure 52 Results of Second AML Query

The first column shows that a very small percentage (0.02%) of all transactions under

these conditions triggered an alert. The second column shows that 40% of all alerts

under these conditions were triggered by transactions that meet these conditions. The

third column shows that 15.373% of the total amount of alerts under these conditions

were triggered by transactions that meet these conditions.

Master Thesis: << The use of Graph Databases in Financial Problems >>

 95

8.2.8 Third AML Query

Figure 53 Third AML Query

Master Thesis: << The use of Graph Databases in Financial Problems >>

 96

Figure 54 Results of Third AML Query

The query searches for transactions of type “TRANSFER” and then creates a rolling

window of transactions based on a specified window size and step. Within each

window, the query calculates various statistical indicators, such as the sum, maximum,

minimum, and average of the transaction amounts, as well as the maximum and

minimum timestamps. The query then filters the windows based on certain conditions

to identify potentially suspicious activity. Finally, the query returns information about

the suspicious transactions, including the sender and receiver account IDs, the total,

maximum, minimum, and average amounts in the window, and the maximum and

minimum timestamps in the window.

8.2.9 Projection of graph in the graph catalogue of gds.library

Figure 55 Graph projection

A named graph projection called myGraph is created. This procedure allows the

creation of a graph projection, using Cypher queries to define the nodes and

relationships that should be included in the graph. Once the named graph projection has

been created, it can be used as input for various GDS algorithms or for further analysis

using other GDS procedures. The GDS library provides a wide range of graph

algorithms and analytics that can be used to gain insights from your data, such as

community detection, centrality measures, pathfinding, and similarity algorithms.

Master Thesis: << The use of Graph Databases in Financial Problems >>

 97

8.2.10 DFS ALGORITHM

As we mentioned before in page 90 we are going to take the first pair with

senderAccountId “9183” and receiverAccountId “4062” to examine their connection

by using graph algorithms as they have the highest score in transferAmountStdDev with

value 852.646

Master Thesis: << The use of Graph Databases in Financial Problems >>

 98

Figure 56 Results of DFS Algorithm

The algorithm found a path between the source node with accountId: '9183' and the

target node with accountId: '4062'. The nodeIds field lists all the nodes that were visited

during the traversal, and the path field contains a path object representing the

traversal.The source node with accoundId : ‘9183’ has id: ‘9187’.

Master Thesis: << The use of Graph Databases in Financial Problems >>

 99

8.2.11 BFS ALGORITHM

 Figure 57 Results of BFS Algorithm

The algorithm found a path between the source node with accountId: '9183' and the

target node with accountId: '4062'. The nodeIds field lists all the nodes that were visited

during the traversal and the path field contains a path object representing the traversal.

Master Thesis: << The use of Graph Databases in Financial Problems >>

 100

8.2.12 DEGREE CENTALITY ALGORITHM

Figure 58 Results of Degree Centrality Algorithm

This algorithm shows the degree centrality of nodes in a graph. Degree centrality

measures the number of incoming or outgoing (or both) relationships from a node,

depending on the orientation of a relationship projection. The algorithm can be applied

to either weighted or unweighted graphs, and can be used to find popular nodes within

a graph.

8.2.13 MACHINE LEARNING MODELS

8.2.13.A LOGISTIC REGRESSION MODEL DESCRIPTION

Logistic regression is a statistical analysis method that constructs a statistical model to

describe the relationship between a binary or dichotomous (yes/no type) outcome

(dependent or response variable) and a set of independent predictor or explanatory

variables. Regression modeling is a popular and useful approach in statistics that is used

to explore and describe the relationship between an outcome or dependent/response

variable and a set of independent predictors. Logistic regression is concerned with the

Master Thesis: << The use of Graph Databases in Financial Problems >>

 101

special situation in regression modeling, where the outcome is of a binary or

dichotomous (yes/no) nature. Linear regression, where the outcome is continuous,

cannot be used for binary outcomes because the probabilistic distribution of a binary or

dichotomous variable is very different from that of a continuous variable (e.g., in the

former case, the variance is usually a function of the mean, which is not the case for the

latter). In addition, modeling a binary outcome entails modeling the probability of that

event, which cannot be negative – a restriction that does not apply to linear regression.

The logistic regression model uses a logit link function to model the probability of a

binary event. Suppose our binary outcome or “event” is Y, which can only be 0 (“No”)

or 1 (“Yes”). Interpretation of the regression coefficients from a logistic regression

model entails exponentiating these coefficients so that they can be expressed in terms

of odds ratios. (44) (45)

8.2.13.B RANDOM FORESTS MODEL DESCRIPTION

Random forests or random decision forests is an ensemble learning method for

classification, regression and other tasks that operates by constructing a multitude of

decision trees at training time. For classification tasks, the output of the random forest

is the class selected by most trees. For regression tasks, the mean or average prediction

of the individual trees is returned. Random decision forests correct for decision trees'

habit of overfitting to their training set.  Random forests generally outperform decision

trees, but their accuracy is lower than gradient boosted trees. However, data

characteristics can affect their performance.

The first algorithm for random decision forests was created in 1995 by Tin Kam Ho

using the random subspace method, which, in Ho's formulation, is a way to implement

the "stochastic discrimination" approach to classification proposed by Eugene

Kleinberg.

An extension of the algorithm was developed by Leo Breiman and Adele Cutler, who

registered "Random Forests" as a trademark in 2006 (as of 2019, owned by Minitab,

Inc.). The extension combines Breiman's "bagging" idea and random selection of

features, introduced first by Ho and later independently by Amit and Geman in order to

construct a collection of decision trees with controlled variance.

(46) (47) (48)

Master Thesis: << The use of Graph Databases in Financial Problems >>

 102

8.2.14 APPLICATION

8.2.14. A LOGISTIC REGRESSION MODEL

In order to perform the above mentioned model we are going to create a new graph

database consisting of nodes with label account and convert the string values of features

into numerical.

Additionally the GraphDatabase.driver method is used to create a driver object, which

is then used to establish a connection to the database. The session.run method is used

to execute a Cypher query on the database and retrieve the data. The data is then

processed and used to train a machine learning model.

Master Thesis: << The use of Graph Databases in Financial Problems >>

 103

Figure 59 Logistic Regression Model

Master Thesis: << The use of Graph Databases in Financial Problems >>

 104

Figure 60 Results for f1_score,accuracy_score,precision_score,recall_score and the ROC curve

Figure 61 Bar Chart for metrics

Master Thesis: << The use of Graph Databases in Financial Problems >>

 105

 Accuracy measures the proportion of correct predictions made by the model.

The accuracy score is 0.832, which means that the model correctly predicted

whether an account is fraudulent or not in 83.2% of the cases.

 Precision measures the proportion of true positive predictions among all

positive predictions made by the model. The precision score is 0.0, which means

that none of the accounts predicted as fraudulent by the model were actually

fraudulent.

 Recall measures the proportion of true positive predictions among all actual

positive cases. The recall score is 0.0, which means that the model failed to

identify any of the fraudulent accounts.

 F1 score is the harmonic mean of precision and recall and provides a balanced

measure of the model’s performance. The F1 score is 0.7557 but it could be

improved.

The area under the ROC curve (AUC-ROC) is a measure of the model’s ability to

distinguish between the two classes. An AUC-ROC of 1.0 indicates a perfect classifier,

while an AUC-ROC of 0.5 indicates a random classifier. Our logistic regression model

achieved an ROC curve area of 0.64. This means that the model has some ability to

distinguish between fraudulent and non-fraudulent accounts, but it is not perfect.

(49) (50) (51)

Master Thesis: << The use of Graph Databases in Financial Problems >>

 106

8.2.14.B RANDOM FORESTS MODEL

Master Thesis: << The use of Graph Databases in Financial Problems >>

 107

Figure 62 Random Forest Model

Figure 63 Results for f1_score,accuracy_score,precision_score,recall_score and ROC curve area

Master Thesis: << The use of Graph Databases in Financial Problems >>

 108

Figure 64 Bar Chart for metrics

The model achieved an accuracy of 0.8045 and an F1 score of 0.7689, which are decent

results. The precision score is 0.3475, which means that about 34.75% of the accounts

predicted as fraudulent by the model were actually fraudulent. The recall score is

0.1408, which means that the model was able to identify about 14.08% of the fraudulent

accounts.

The random forest model achieved an ROC curve area of 0.60. The model shows some

ability to distinguish between fraudulent and non-fraudulent accounts, but it is not

perfect. An AUC-ROC of 0.60 is considered to be fair, but there is still room for

improvement.

Master Thesis: << The use of Graph Databases in Financial Problems >>

 109

8.3 Apache Spark

8.3.1 PySpark and SparkSession

Figure 65 Starting SparkSession

 Initialize PySpark and create a SparkSession

Master Thesis: << The use of Graph Databases in Financial Problems >>

 110

Figure 66 Import modules, define variables and checking in the HDFS directory

We import some modules and define some variables for your file paths and names.

Then, we use the sub process module to execute some HDFS commands to check if the

files exist in the HDFS directory.

Master Thesis: << The use of Graph Databases in Financial Problems >>

 111

8.3.2 Forming a graph

Master Thesis: << The use of Graph Databases in Financial Problems >>

 112

Figure 67 Constructing a graph

We form a Python function that creates a graph using the GraphFrame library from

three CSV files: transactions_path, alerts_path, and accounts_path. The function reads

the CSV files using the SparkSession object and creates a GraphFrame object from the

data. The graph has vertices representing accounts, transactions, and alerts, and edges

representing the relationships between them. Then we call this function and the

GraphFrame object is being assigned to the variable g.

Master Thesis: << The use of Graph Databases in Financial Problems >>

 113

8.3.3 Visualization of the graph

Master Thesis: << The use of Graph Databases in Financial Problems >>

 114

Figure 68 Visualization oof 0,0004 of nodes and edges of the graph

We randomly sample 0.0004% of its vertices and edges to create a smaller graph. The

sampled graph is then converted to a NetworkX graph object and visualized using

the Matplotlib library. The visualization shows the nodes and edges of the sampled

graph, with the nodes labeled by their IDs and the edges colored in red.

Master Thesis: << The use of Graph Databases in Financial Problems >>

 115

8.3.4 DFS ALGORITHM

Figure 69 DFS Algorithm in Apache Spark

Figure 70 Results of DFS Algorithm

Master Thesis: << The use of Graph Databases in Financial Problems >>

 116

There are four paths from vertex 9183 to vertex 4062 following the specified edge

sequence. Each row in the results represents one path, with columns a, b,

and c representing the vertices along the path, and columns e and e2 representing the

edges between them.

8.3.5 BFS ALGORITHM

Figure 71 BFS Algorithm and results

As we can observe the results of BFS algorithm is the same with the results of DFS

Algorithm.

Master Thesis: << The use of Graph Databases in Financial Problems >>

 117

Figure 72 BFS Algorithm with minimum,maximum and average

Master Thesis: << The use of Graph Databases in Financial Problems >>

 118

Figure 73 Results of BFS Algorithm

It appears that there are eight paths from vertex 9183 to vertex 4062. Each row in the

results represents one path, with columns from, v1, and to representing the vertices

along the path, and columns e0 and e1 representing the edges between them. Also we

can see the sum, minimum, maximum, and average of the INIT_BALANCE attribute

for the starting and ending vertices along each path.

Master Thesis: << The use of Graph Databases in Financial Problems >>

 119

8.3.6 DEGREE CENTRALITY ALGORITHM

Figure 74 DEGREE CENTRALITY ALGORITHM and results

Here we calculate the degree of each vertex in a GraphFrame object g using

the degrees property. The degree of a vertex is the number of edges connected to it. The

results are then filtered to only include vertices with IDs '9183' and '4062'.

Master Thesis: << The use of Graph Databases in Financial Problems >>

 120

8.4 MACHINE LEARNING

8.4.1 LOGISTIC REGRESSION MODEL

Master Thesis: << The use of Graph Databases in Financial Problems >>

 121

Figure 75 Logistic Regression Model and metrics results

Master Thesis: << The use of Graph Databases in Financial Problems >>

 122

According to our model the accuracy of 0.62 means that 62% of the predictions made

by the model were correct, the precision of 0.77 means that 77% of the instances

predicted as fraud by the model were actually fraud, the recall of 0.56 means that the

model correctly identified 56% of all fraud instances and the f1 score of 0.62 indicates

that the model has a good balance between precision and recall.

Master Thesis: << The use of Graph Databases in Financial Problems >>

 123

Figure 76 Bar Chart for metrics

Figure 77 Code for AUC-ROC

Master Thesis: << The use of Graph Databases in Financial Problems >>

 124

Figure 78 Result and graphical representation of AUC-ROC

According to the result AUC-ROC: 0.620265573936455 our model has moderate

predictive power.

Master Thesis: << The use of Graph Databases in Financial Problems >>

 125

8.4.2 RANDOM FORESTS MODEL

Master Thesis: << The use of Graph Databases in Financial Problems >>

 126

Figure 79 Random Forests Model and metrics results

Master Thesis: << The use of Graph Databases in Financial Problems >>

 127

According to the above mentioned results of four metrics the accuracy of 0.54 means

that 54% of the predictions made by the model were correct, the precision of 0.68 means

that 68% of the instances predicted as fraud by the model were actually fraud, the recall

of 0.82 means that the model correctly identified 82% of all fraud instances and the f1

score of 0.74 indicates that the model has a good balance between precision and recall.

Master Thesis: << The use of Graph Databases in Financial Problems >>

 128

Figure 80 Bar Chart for metrics

Figure 81 Code for AUC-ROC

Master Thesis: << The use of Graph Databases in Financial Problems >>

 129

Figure 82 Result and graphical representation of AUC-ROC

Master Thesis: << The use of Graph Databases in Financial Problems >>

 130

The AUC-ROC of our model is 0.54, which means that the model has moderate

predictive power.

9. Conclusions

In the first part of this master thesis we examined the range use of graph databases in

the financial sector, one of the most promising area from the scope of technology. The

strength of a database can be measured using four principal factors: Integrity,

performance, efficiency and scalability. The data query ought to become quicker and

simpler – the main purpose of graph databases can be roughly summarized in this way.

Where relational databases reach their capacity limits, the graph-based model is

particularly agile, because complexity and the quantity of data don’t negatively

influence the query process in this model.

Also, with the graph database model, real facts can be stored in a natural way. The

structure used is very similar to human thinking, and this is why the links are so clear

to human perception.

Graph databases are not a complete solution, though. They are limited, for example,

where scalability is concerned. As they are principally designed for one-tier

architecture, growth represents a (mathematical) challenge. Plus, there is still no

uniform query language.

One of the difficulties we came across, was the lack of banking data about their

transactions over a period of time. So, as a result we were forced to resort to synthetic

banking transaction data.

Next we provide a brief historical review about SQL and NoSQL databases and

continue by proposing an AML methology which is divided into three stages:

Firstly we make use of standard deviation or a rolling window of transactions based on

a specified window size and step with the purpose of forming a list of suspicious

transactions without based on rules, like prior AML procedures, by combining it with

Neo4j database and Cypher.

Secondly, as examined case, we choose the suspicious transaction with the highest

standard deviation score and by performing graph algorithms like DFS, BFD or

DEGREE CENTRALITY we examine the nodes and relationships that included in the

structure of this transaction with the use of Neo4j and Apache Spark.

Master Thesis: << The use of Graph Databases in Financial Problems >>

 131

The results show that Neo4j, in comparison to Apache Spark, provide a better and more

understandable and detailed graphical visualization of the transaction construction but

in Apache Spark the CENTRALITY DEGREE ALGORITHM provides a more

enlightening result.

Lastly we train and test for prediction two machine learning models LOGISTIC

REHRESSION and RANDOM FORESTS in Neo4j and in Apache Spark.

In Apache Spark, both models succeeded a better overall scoring about accuracy_score,

precision_score, recall_score and f1_score than in Neo4j something that reversed

concerning the AUC-COV score.

To sum up, this master thesis has demonstrated the potential of graph databases in the

financial sector, particularly in the field of anti-money laundering. By leveraging the

natural and intuitive structure of graph databases, combined with advanced machine

learning techniques, it is possible to develop sophisticated methodologies for detecting

suspicious transactions. The results of this study highlight the strengths and limitations

of different technologies, including Neo4j, Cypher, Graphs, Apache Spark, and Python,

and provide valuable insights into their potential applications in the financial sector.

Future research could build on these findings by exploring new approaches to

scalability and developing more advanced query languages for graph databases.

Ultimately, this thesis represents a small contribution to the field of financial

technology and has the potential to drive innovation and progress in the industry.

Master Thesis: << The use of Graph Databases in Financial Problems >>

 132

 Bibliography

1. Deloitte. Knowledge Graphs for Financial Services.

2. ORACLE. 17 Use Cases for Graph Databases and Graph Analytics . 2021.

3. GRAPH DATABASE MODELING OF A 360-DEGREE E-CUSTOMER VIEW IN

B2C E-COMMERCE. Ilija Hristoski1, Tome Dimovski. 2021. International May

Conference on Strategic Management.

4. Springer US, US Bureau of Labor Statistics (BLS),Zippia. Machine Learning in

Finance: 10 Applications and Use Cases. PLATFORM/Coursera. 2023.

5. L. Xie, Z. Xu, Y. Ban, X. Zhang, and Z. Guo. 360ProbDASH: Improving QoE of

360 Video Streaming Using Tile-based HTTP Adaptive Streaming. 2017.

6. CLS: A Cross-user Learning Based System for Improving QoE in 360-degree Video

Adaptive Streaming. L. Xie, X. Zhang, and Z. Guo. NY USA : 26th ACM

International Conference on Multimedia (MM ’18). ACM, New York,, 2018.

7. Nahrstedt, Jounsup Park Klara. Navigation Graph for Tiled Media Streaming.

Session 1D: Live Multimedia Applications & Streaming. 2019.

8. Kumar, Anjani. AI and ML in Financial Services Compliance Management: Use

Cases for FIs. 2018.

9. Platform/Coursera. Machine Learning in Finance: 10 Applications and Use

Cases. 2023.

10. Aashaka Shah, Vinay Banakar, Supreeth Shastri, Melissa Wasserman, Vijay

Chidambaram. Analyzing the Impact of GDPR on Storage Systems.

11. DB-ENGINES. DB-Engines Ranking - Trend of Neo4j Popularity / Ranking

Neo4j > Trend.

12. Crichton, Danny. Neo4j raises $325M as graph-based data analysis takes hold

in enterprise. 2021.

13. Rita Korányi, José A. Mancera, Michael Kaufmann. GDPR-Compliant Social

Network Link Prediction in a Graph DBMS: The Case of Know-How Development at

Beekeeper. knowledge. 2022.

Master Thesis: << The use of Graph Databases in Financial Problems >>

 133

14. Aditya Grover, Jure Leskovec. node2vec: Scalable Feature Learning for

Networks. 2016.

15. Stegmann, Volker Liermann & Claus. THE DIGITAL JOURNEY OF

BANKING AND INSURANCE. 2021. p. 39.

16. Kareem S. Aggour, Jenny Weisenberg Williams, Justin McHugh, Vijay S.

Kumar. Colt: Concept Lineage Tool for Data Flow Metadata Capture and Analysis.

17. JACK NICHOLLS, ADITYA KUPPA , AND NHIEN-AN LE-KHAC ,

(Member, IEEE). Financial Cybercrime: A Comprehensive Survey of Deep Learning

Approaches to Tackle the Evolving Financial Crime Landscape. 2021.

18. Eren Kurshan, Hongda Shen. Graph Computing for Financial Crime and Fraud

Detection: Trends, Challenges and Outlook.

19. XU, MENGJIA. UNDERSTANDING GRAPH EMBEDDING METHODS AND

THEIR APPLICATIONS.

20. Mário Cardoso, Pedro Saleiro, Pedro Bizarro. LaundroGraph: Self-Supervised

Graph Representation Learning for Anti-Money Laundering. 2022.

21. Yueming Sun, Yi Zhang. Conversational Recommender System. 2018.

22. Wenqiang Lei, Xiangnan He , Yisong Miao , Qingyun Wu , Richang Hong ,

Min-Yen Kan, Tat-Seng Chua. Estimation–Action–Reflection: Towards Deep

Interaction Between Conversational and Recommender Systems. 2020.

23. Wenqiang Lei1, Gangyi Zhang , Xiangnan He, Yisong Miao, Xiang Wang,

Liang Chen, Tat-Seng Chua. Interactive Path Reasoning on Graph for

Conversational Recommendation. 2020.

24. VASILIOS TAMPAKAS. Introduction to Databases. PATRA GREECE :

GOTSIS, 2021.

25. Andreas Meier, Michael Kaufmann. SQL & NoSQL Databases. Fribourg,

Switzerland : Springer Vieweg, 2019.

26. Nishtha Jatana, Sahil Puri, Mehak Ahuja, Ishita Kathuria, Dishant Gosain.

A Survey and Comparison of Relational and Non-Relational Database. International

Journal of Engineering Research & Technology (IJERT). 2012.

Master Thesis: << The use of Graph Databases in Financial Problems >>

 134

27. Sitalakshmi Venkatraman, Kiran Fahd, Samuel Kaspi, Ramanathan

Venkatraman. SQL Versus NoSQL Movement with Big Data Analytics. I.J.

Information Technology and Computer Science. December 2016.

28. Adity Gupta, Swati Tyagi, Nupur Panwar, Shelly Sachdeva. NoSQL

Databases: Critical Analysis and Comparison. Upaang Saxena Minjar Cloud Services

Private Limited. October 2017.

29. Kosovare Sahatqija, Jaumin Ajdari, Xhemal Zenuni, Bujar Raufi, Florije

Ismaili. Comparison between relational and NOSQL databases. Tetovo :

Contemporary Sciences and Technologies, South East European University, 2018.

30. Ameya Nayak, Anil Poriya, Dikshay Poojary. Type of NOSQL Databases and

its Comparison with Relational Databases. International Journal of Applied

Information Systems (IJAIS). March 2013.

31. Sudhakar, Kalyan. Difference between SQL and NoSQL Databases.

International Journal of Management, IT & Engineering. June 2018.

32. Ian Robinson, Jim Webber & Emil Eifrem. Graph Databases. Menlo Park,

California : O'REILLY, 2013.

33. Negro, Alessandro. Graph-Powered Machine Learning. August 2021.

9781617295645.

34. Tang, Jiliang. Deep Learning on Graphs. s.l. : Cambridge University Press,

2021. 9781108924184.

35. Hodler, Mark Needham & Amy E. Graph Algorithms. Booz Allen Hamilton :

O'REILLY, 2019.

36. See, Steve Mussmann and Abi. Algorithms Graph Search.

37. Riko Jacob, Dirk Koschützki, Katharina Anna Lehmann, Leon Peeters &

Dagmar Tenfelde-Podehl. Algorithms for Centrality Indices.

38. Bhatia, Ruchi Mittal & M. P. S. Classification and Comparative Evaluation of

Community Detection Algorithms.

39. Holden Karau, Andy Konwinski, Patrick Wendell, and Matei Zaharia.

Learning Spark: Lightning-Fast Big Data Analysis.

40. Aven, Jeffrey. Apache Spark in 24 Hours, Sams Teach Yourself. 2016.

Master Thesis: << The use of Graph Databases in Financial Problems >>

 135

41. Warren, Holden Karau and Rachel. High Performance Spark: Best Practices

for Scaling and Optimizing Apache Spark .

42. Lyon, William. Fullstack GraphQL Applications with React, Node.js, and Neo4j.

s.l. : Manning.

43. Anthapu, Ravindranatha. Graph Data Processing with Cypher. s.l. : Packt.

44. Das, Abhik. Encyclopedia of Quality of Life and Well-Being Research,.

Rockville, MD, USA : F. Maggino, 2021.

45. Klein, David G. Kleinbaum and Mitchel. Logistic Regression: A Self-Learning

Text .

46. Wikipedia. Random Forests.

47. Louppe, Gilles. U N D E R S TA N D I N G R A N D O M F O R E S T S.

48. Hartshorn, Scott. Machine Learning With Random Forests And Decision. s.l. :

Kindle Edition.

49. Zheng, Alice. Evaluating Machine Learning Models. s.l. : O'Reilly Media, 2015.

50. Burkov, Andriy. The Hundred-Page Machine Learning Book.

51. Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of

Statistical Learning.

52. Theobald, Oliver. Machine Learning for Absolute Beginners.

53. Burkov, Andriy. The Hundred-Page Machine Learning Book.

54. Scifo, Estelle. Graph Data Science with Neo4j. s.l. : Packt.

55. Frisendal, Thomas. Visual Design of GraphQL Data: A Practical Introduction

with Legacy Data and Neo4j. s.l. : Apress.

56. Perrin, Jean-Georges. Spark in Action. 2020.

57. Nabi, Zubair. Pro Spark Streaming: The Zen of Real-Time Analytics Using

Apache Spark. 2016.

58. Martin, Daniel Jurafsky & James H. Speech and Language Processing .

59. Murphy, Kevin P. Machine Learning: A Probabilistic Perspective.

Master Thesis: << The use of Graph Databases in Financial Problems >>

 136

60. Riko Jacob, Dirk Koschützki, Katharina Anna Lehmann, Leon Peeters &

Dagmar Tenfelde-Podeh. Algorithms for Centrality Indices.

Master Thesis: << The use of Graph Databases in Financial Problems >>

 137

