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Abstract

In the modern digital era, the creation and availability of new information has

increased exponentially. A plethora of information sources, such as news delivery

sites, knowledge bases, and social networks, constantly make new content available

at an overwhelming pace. To assist users in coping with the vast amount of newly

generated information the Information Filtering (IF) paradigm was introduced. IF

applications aim at assisting users in information discovery and enable users to

cope with the information avalanche and the cognitive overload associated with it.

In an IF scenario, users or services, express their information needs (implicitly or

explicitly) through appropriate interfaces, tools and languages and submit profiles

(or continuous queries) to a system or service. In this way, users create subscriptions

that are continuously matched (by the system or service) against a stream of

newly published content, and generate notifications whenever new items that match

users’ information needs are published. The filtering problem is of high importance

and needs to be solved efficiently, since servers are expected to handle millions

of queries and high rates of incoming content.

In our work, we examine the research problem of developing efficient and

effective algorithms that are able to capture the nature of information streams

through the form of continuous multi-query answering. To this end, we choose

to explore solutions under the domains of textual information filtering, ontology

publish/subscribe systems and evolving graph stream environments. Finally, we

design, implement and present a fully-functional information filtering system that

showcases the usefulness of the IF paradigm and provides the basis for developers

to build added-value IF services in a number of different information domains.

At first we examine the information filtering paradigm, under the scope of textual

information filtering while employing the Boolean data model. In this setup clients



subscribe to a server with continuous queries that express their information needs

and get notified every time appropriate information is published. To perform this

task in an efficient way, servers employ indexing schemes that support fast matches

of the incoming information with the query database. However, state-of-the-art

indexing schemes are sensitive to the query insertion order and cannot adapt to

an evolving query workload, degrading the filtering performance over time. In this

line of work, we present an adaptive trie-based algorithm that outperforms current

methods by relying on query statistics to reorganize the query database. In our

research, we explore query database reorganization techniques and demonstrate

that the nature of the constructed tries, rather than their compactness, is the

determining factor for efficient filtering performance. Our algorithm does not

depend on the order of insertion of queries in the database, manages to cluster

queries even when clustering possibilities are limited, and achieves two orders of

magnitude filtering time improvement over its state-of-the-art competitors. Finally,

we demonstrate that our solution is easily extensible to multi-core machines by

providing an implementation in a multi-core environment.

In the continuation of our work, we investigate publish/subscribe ontology

systems; we envision a publish/subscribe ontology system that is able to index

large numbers of expressive continuous queries and filter them against RDF data

that arrive in a streaming fashion. To this end, we propose a SPARQL extension

that supports the creation of full-text continuous queries and propose a family of

main-memory query indexing algorithms which perform matching at low complexity

and minimal filtering time. We experimentally compare our approach against a

state-of-the-art competitor (extended to handle indexing of full-text queries) both

on structural and full-text tasks using real-world data. The experimental results

demonstrate that our approach yields two orders of magnitude faster performance

than the competitor in all types of filtering tasks.

Subsequently, in our research we study the domain of evolving graphs that have a

wide range of applications involving social networks, knowledge bases and biological

interactions. The evolution of a graph in such scenarios can yield important insights

about the nature and activities of the underlying network, which can then be



utilized for applications such as news dissemination, network monitoring, and

content curation. Capturing the continuous evolution of a graph can be achieved

by long-standing sub-graph queries. Although, for many applications this can only

be achieved by a set of queries, state-of-the-art approaches focus on a single query

scenario. Therefore, in this line of work, we introduce the notion of continuous

multi-query processing over graph streams and discuss its application to a number

of use cases. To this end, we developed a novel algorithmic solution for efficient

multi-query evaluation against a stream of graph updates and experimentally

demonstrated its applicability. Our results against three baseline approaches and

the graph database Neo4j, using real-world and synthetic datasets, confirm a two

orders of magnitude improvement of the proposed solution.

Finally, we conclude our research with the design and development of a fully-

fledged textual information filtering system coined Ping. The Ping IF system is a

fully-functional content-based information filtering system aiming (i) to showcase

the realizability of information filtering and (ii) to explore and test the suitability

of the existing technological arsenal for information filtering tasks. The proposed

system is entirely based upon open-source tools and components, is customizable

enough to be adapted for different textual information filtering tasks, and puts

emphasis in user profile expressivity, intuitive UIs, and timely information delivery.

To assess the customizability of Ping, we deployed it in two distinct information

filtering scenarios, while to assess its performance we designed and conducted a

series of experiments for both scenarios.





Περίληψη

Στη σύγχρονη ψηφιακή εποχή, η δημιουργία και η διάθεση νέας πληροφορίας γίνεται

με ταχείς ρυθμούς. Η επιλεκτική διάχυση πληροφορίας (information dissemination,

publish/subscribe) έχει αναπτυχθεί ως το μέσο για την διευκόλυνση της αναζήτησης

και έγκαιρης διάδοσης πληροφορίας στους χρήστες, καθώς και της ανακάλυψης νέου

και ενδιαφέροντος περιεχομένου.

Τα τελευταία χρόνια, η επιστημονική έρευνα στον τομέα της διάχυσης πληροφορίας

έχει επικεντρωθεί στην αναπαράσταση των ενδιαφερόντων των χρηστών που εκφράζο-

νται μέσω της δημιουργίας προφίλ (π.χ., εγγραφές σε υπηρεσίες παροχής ειδήσεων,

δημιουργία προφίλ σε κοινωνικά δίκτυα κ.λ.π.) και στην αποτελεσματική και γρήγορη

διανομή της πληροφορίας στους χρήστες, όταν αυτή γίνει διαθέσιμη. Ο τεράστιος

όγκος δεδομένων όμως που γίνεται διαθέσιμος καθημερινά στον Παγκόσμιο Ιστό

απαιτεί αποτελεσματικούς αλγόριθμους τόσο για την αναπαράσταση και ευρετηρίαση

των προφίλ (profile creation, profile indexing), όσο και για το φιλτράρισμα της νέας

διαθέσιμης πληροφορίας (publication filtering, information dissemination, mutli-

query processing). Η παρούσα διατριβή στοχεύει στην επίλυση των παραπάνω προ-

βλημάτων χρησιμοποιώντας σύγχρονες μορφές αναπαράστασης δεδομένων (RDF data,

graph data), και προτείνοντας δομές δεδομένων και αλγόριθμους για την διαχείριση

του μεγάλου όγκου πληροφορίας.

Η παρούσα έρευνα μελέτησε λύσεις ευρετηρίασης και φιλτραρίσματος πληροφορίας

κειμένου βασισμένες σε δεντρικές δομές (trie-based profile indexing), σχεδίασε και

ανέπτυξε αλγορίθμους για την ευρετηρίαση δεδομένων μεγάλου όγκου που έχουν

ληφθεί από μια πληθώρα συλλογών κειμένων. Οι προτεινόμενοι αλγόριθμοι αξιο-

λογήθηκαν πειραματικά και τα αποτελέσματα που προκύπτουν από την αξιολόγηση

υποδεικνύουν βελτίωση έως και δυο τάξεις μεγέθους σε σύγκριση με υπάρχουσες

λύσεις της βιβλιογραφίας. Τα αποτελέσματα της έρευνας μας επισημαίνουν ως καίριο



παράγοντα βελτιστοποίησης της αποτελεσματικής απόδοσης του φιλτραρίσματος τις

δεντρικές δομές. Πιο συγκεκριμένα, τα αποτελέσματα υποδεικνύουν ότι η μορφολογία

και οργάνωση των δεντρικών δομών είναι ο καθοριστικός παράγοντας βελτιστοποίη-

σης, σε αντίθεση με την μέχρι έως τώρα πεποίθηση ότι το μέγεθος των δεντρικών

δομών (forest compactness) αποτελεί τον κύριο παράγοντα απόδοσης.

Σε συνέχεια της παρούσας έρευνας, σχεδιάσθηκαν και αναπτύχθηκαν αλγορίθμοι

για την ευρετηρίαση και το φιλτράρισμα δεδομένων που αναπαριστώνται στο μοντέλο

δεδομένων RDF. Επιπρόσθετα, προτείναμε μια καινοτόμα επέκταση της γλώσσας

ερωτήσεων SPARQL, η οποία στοχεύει στην αύξηση της εκφραστικότητας των ε-

ρωτήσεων των χρηστών μέσω της παροχής τελεστών κειμένου (full-text operators).

Οι αλγόριθμοι που σχεδιάστηκαν και αναπτύχθηκαν αξιολογήθηκαν πειραματικά, και

τα αποτελέσματα που προκύπτουν από την αξιολόγηση υποδεικνύουν βελτίωση έως και

δύο τάξεις μεγέθους σε σύγκριση με υπάρχουσες καινοτόμες λύσεις της βιβλιογραφίας.

Επιπλέον, η έρευνα μας στόχευσε στη σχεδίαση και ανάπτυξη αλγορίθμων για

την ευρετηρίαση και την αξιολόγηση ερωτήσεων σε ροές δεδομένων για γράφους. Η

παρούσα έρευνα είναι η πρώτη στη βιβλιογραφία η οποία εισάγει την συνεχή αξιολόγη-

ση πολλαπλών ερωτήσεων (mutli-query processing) πάνω από ροές δεδομένων για

γράφους. Πιο συγκεκριμένα, σχεδιάσαμε και αναπτύξαμε τέσσερις νέους αλγορίθμους

με σκοπό την μελέτη και αξιολόγηση της απόδοσης διαφορετικών προσεγγίσεων

ευρετηρίασης προφίλ. Η αξιολόγηση στόχευσε στην εκτίμηση της απόδοσης των

αλγορίθμων σε ένα ευρύ πεδίο εφαρμογών, όπως τα κοινωνικά δίκτυα (Social Net-

works), τα δίκτυα κίνησης οχημάτων σε αστικά κέντρα (Road Networks), και οι

γράφοι αλληλεπιδράσεων πρωτεϊνών (Protein-to-Protein Interaction Graphs), και

στην αξιολόγηση και στην σύγκριση των σχεδιασθέντων αλγορίθμων με υπάρχουσες

εμπορικές λύσεις. Τα αποτελέσματα της πειραματικής αξιολόγησης τονίζουν την

ανάγκη για ανάπτυξη εξιδεικευμένων λύσεων σχεδιασμένων για συνεχή αξιολόγηση

ερωτήσεων σε ροές δεδομένων γράφων, καθώς παρατηρήθηκε βελτίωση του χρόνου

φιλτραρίσματος κατά δυο τάξεις μεγέθους ανάμεσα στους προτεινόμενους αλγόριθ-

μους και στις πιο απλοϊκές προσεγγίσεις.

Τέλος, η έρευνα μας επικεντρώθηκε στην σχεδίαση και ανάπτυξη ενός καινοτόμου,

πλήρως λειτουργικού, συστήματος φιλτραρίσματος πληροφορίας κειμένου, με την ο-



νομασία Ping. Η ανάπτυξη του συστήματος Ping στόχευσε στη μελέτη υπαρχόντων

τεχνολογικών λύσεων υπό το φως της διάχυσης πληροφορίας, και στη δημιουργία

ενός πλήρως λειτουργικού συστήματος παροχής υπηρεσιών φιλτραρίσματος για τους

χρήστες. Η δημιουργία ενός τέτοιου συστήματος αναδεικνύει την εφαρμοσιμότητα

προηγμένων τεχνολογικών λύσεων στον τομέα της διάχυσης πληροφορίας.
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1
Introduction

I n this thesis, we examine the problem of efficient multi-query processing under

the scope of information filtering. We explore the problems of developing

efficient and effective algorithms that are able to capture the nature of information

streams through the form of continuous query answering. In this introductory

chapter, we define the problem and highlight our contributions.

1.1 Problem Statement

In the modern digital era, the creation and availability of new information has

increased exponentially. A plethora of information sources, such as news delivery

sites, knowledge bases, and social networks, constantly make new content available

at an overwhelming pace. To assist users in coping with the vast amount of newly

generated information the Information Filtering (IF) paradigm was introduced. IF

applications aim at assisting users in information discovery and enable them to

cope with the information avalanche and the cognitive overload associated with it.

In an IF scenario, users or services express their information needs (implicitly or

explicitly) through appropriate interfaces, tools and languages, and submit profiles

(or continuous queries) to a system or service. In this way, users create subscriptions

that are continuously matched (by the system or service) against a stream of newly

1
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published content, and generate notifications whenever new items that match users’

information needs are published. To this end, processing multiple queries is of high

importance and needs to be solved efficiently, since servers are expected to handle

millions of queries and high rates of incoming content.

When studying the problem of multi-query processing under gradually more

challenging domains, there is a plethora of open and interesting research questions

that arise. In this thesis, we address four interesting research questions in the

area of multi-query processing, and provide efficient algorithmic solutions to

each one of them:

• Can the current state-of-the-art multi-query processing solutions be pushed

forward in terms of efficiency? Does it make sense in the current multi-

processor landscape?

• Is it possible to enhance the expressiveness of current multi-query processing

solutions, without significant overhead in efficiency?

• Does multi-query processing fit as a computing paradigm to new emerging

domains, such as evolving graphs?

• Is the current technological arsenal mature enough to support the design of

a general-purpose open-source information filtering system across different

domains?

In this thesis, we choose to study the problem of multi-query answering under

the scope of information filtering and employ it over three interrelated information

domains. To this end, we study and propose efficient algorithmic solutions that

support the text-based Boolean data model, ontology-based systems and evolving

graphs. Each information domain bears its own distinct restrictions and challenges

posed by the nature of the query and data models. The research results reported

in this thesis highlight the importance of developing efficient algorithmic solutions

for multi-query answering in each information domain. Additionally, in our work

we present the design and development of a fully-functional information filtering
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system. Below, we present a brief overview of the research domains we choose

to study; we highlight the challenges and formulate the research questions that

arise in each domain.

Multi-Query Processing over Textual Data. Firstly, we choose to investigate

efficiency issues under the domain of textual IF. In this context, applications such

as news alerts, digital libraries, or RSS feeds, employ mostly textual information,

while users express their needs using information retrieval languages (e.g., Boolean

combinations of keywords [1] or text excerpts under the Vector Space Model – VSM

[1]) and submit continuous queries (or profiles) to a server, thus, subscribing to

newly appearing documents that will satisfy the query conditions. In the past,

efficiency issues were identified by many researchers that proposed tree and trie-

based algorithms for supporting fast filtering under various data models (e.g.,

flat attribute-based, semi-structured XML) and query languages (e.g., Boolean,

VSM), both for main-memory [2–4] and secondary storage [5]. However, all these

approaches use a greedy clustering method that is sensitive to the insertion order

of submitted queries and do not consider an evolving query workload, which

might require the reorganization of the query database to achieve efficient filtering

performance. To this end, it is important to investigate and develop algorithms

that alleviate the drawbacks of greedy clustering techniques, and thus delivering

significant improvements in the resource intensive information filtering process.

Having studied the domain of textual IF we transferred our findings to the more

complex domain of textual ontology-based systems.

Multi-Query Processing over Ontology-Based Systems. In the domain of

ontology-based information filtering research [6–9] has naturally focused more on

semantics and has delivered interesting results. What it currently lacks, though,

compared to the technological arsenal of the traditional IF research is the support

of a complete full-text filtering mechanism, beyond existing regular expression and

equality support, with sophisticated algorithms and data structures to minimize

processing and memory requirements. Providing a full-text filtering mechanism

over ontologies may complement many applications, in knowledge bases, triple
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stores, graph databases and LOD platforms such as Lotus1 by enabling users to get

notified for information of interest, or by providing a useful moderation/monitoring

tool for curators/editors of such systems. Having addressed the most interesting

challenges that arise in ontology-based systems under the IF paradigm, we extend

our research in a graph-based data model.

Multi-Query Processing over Evolving Graphs. In the domain of graphs, we

aim at gaining meaningful and up-to-date insights in frequently updated graphs.

It is essential to be able to monitor and detect continuous patterns of interest.

There are several applications from a variety of domains that may benefit from such

monitoring. In social networks, such applications may involve targeted advertising,

spam detection [10, 11], and fake news propagation monitoring based on specific

patterns [12, 13]. Similarly, other applications like (i) protein-to-protein interaction

patterns in biological networks [14, 15], (ii) traffic monitoring in transportation

networks, (iii) attack detection (e.g., distributed denial of service attacks in computer

networks), (iv) question answering in knowledge graphs [16, 17], and (v) reasoning

over RDF graphs may also benefit from such pattern detection. To this is end, it

is necessary to express the required patterns as continuous sub-graph queries over

(one or many) streams of graph updates and appropriately notify the subscribed

users for any patterns that match their subscription. Detecting these query patterns

is fundamentally a sub-graph isomorphism problem which is known to be NP-

complete due to the exponential search space resulting from all possible sub-graphs

[18, 19]. The typical solution to address this issue is to pre-materialize the necessary

sub-graph views for the queries and perform exploratory joins [20]; an expensive

operation even for a single query in a static setting. To this end, in our research we

focus on providing efficient algorithms that can capture patterns in large evolving

graphs. Capitalizing on our experience from all the previously examined information

domains, we finally aimed at building a functioning open-source IF system.

Realizing Information Filtering. Finally, we examine the problem of designing

and providing a fully-functional IF system, contrary to previous attempts in the
1http://lotus.lodlaundromat.org/

http://lotus.lodlaundromat.org/
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Figure 1.1: A roadmap of the research presented in this thesis.

literature that aimed at providing solely algorithmic solutions [2, 5, 21–24]. The

lack of IF tools that would integrate promising solutions and allow developers

to use them for building added-value IF services over textual sources or streams,

resulted in the lack of prominent IF systems that would act as demonstrators for the

usefulness of the IF paradigm. Thus, currently, the only prominent demonstrator of

the potential of IF is Google Alerts [25], a proprietary closed-source service built

upon the Google ecosystem. Although many users nowadays (mis-)use Google

Alerts to monitor the web for marketing (e.g., brand mentions), social listening

(e.g., comment follow-up), or even citation counting purposes (e.g., in the context of

GoogleScholar), there is clearly a need for an extensible, customizable open-source

IF system that could be modified to fit domain-specific IF tasks.

1.2 Solution Outline

In this section, we give an overview of the developed algorithmic solutions that

address the open problems of multi-query answering discussed in the previous section.

To this end, we present the solution outlines on information filtering when employed

under the domains of text processing, ontology systems, and the evolving graphs

domain. Finally, we give the outline for developing a fully functional and easily

customizable information filtering system. Figure 1.1 presents a short overview of

each gradually more challenging research domain that we present in this thesis.

Efficient Continuous Multi-Query Processing over Textual Data

In the domain of textual information filtering, clients subscribe to a server with

continuous queries that express their information needs and get notified every time

appropriate information is published. We concentrate on textual IF and present

a novel trie-based, main-memory algorithm for Boolean IF that is able to match
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incoming documents against millions of queries in a few milliseconds. Our methods

use linguistically motivated concepts, such as words, to support continuous queries

that are comprised of conjunctions of keywords and may be used as a basis for

query languages that support not only basic Boolean operators, but also more

complex constructs, such as proximity operators and attributes. We believe that

offering an efficient Boolean filtering service (possibly alongside a more popular

model like VSM) is a valuable addition to any text filtering setup. Boolean IR/IF

is still the model of choice of advanced users that want total control of their results

and is widely supported in systems of major stakeholders like Google’s advanced

search/alert mechanisms, Oracle’s text extender module, and in Apache’s text

search engine. Such systems, that are meant to cope with a high workload and

are designed for efficiency, are possible applications for our work.

The algorithm we developed, coined StaR (an acronym derived from Statistical

Reorganization) is based on the idea to use tries to capture common elements of

queries, similarly to [3–5]. However, the key differences with these approaches lie in:

• The collection and utilization of statistics on the importance of keywords in

the indexed queries.

• The reorganization of the query database according both to word and query

importance.

• The proposed solution is the first in the literature to consider database

reorganization, through appropriate word/query statistics, to achieve efficient

textual IF under the Boolean model.

• The demonstration that the nature of the trie forest is more important than

its compactness when it comes to filtering efficiency.

Interestingly, all previous works [3–5] were aiming at minimizing the size of

the trie forest, since there was an implicit conjecture that a small forest would

result in lower filtering times due to less node visits. Our findings demonstrate

that forest size is not the dominating optimization factor when it comes to filtering
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efficiency; contrary, the focus should be put on the nature of the tries and on

qualitative characteristics (expressed through heuristics). To this end, Algorithm

StaR overcomes the query insertion order problem caused by the greedy query

clustering techniques adopted by all other algorithmic solutions [2–5].

Efficient Continuous Multi-Query Processing over Textual and RDF
Data

In the continuation of our work, we aimed at studying modern ontology-based

pub/sub systems [6–9]. These works focused more on semantics and has delivered

interesting results in the domain of content-based information filtering. What they

currently lacked, though, compared to the technological arsenal of the traditional

pub/sub research was the support of a complete full-text filtering mechanism, beyond

existing regular expression and equality support, with sophisticated algorithms

and data structures to minimize processing and memory requirements. In order

to address the lack of a complete full-text filtering mechanism, we proposed an

extension of SPARQL with full-text operators, aiming at more expressive continuous

queries that are able to support versatile user needs in applications like digital

libraries or news filtering. To preserve the expressiveness of SPARQL, we view the

full-text operations as an additional filter of the query variables. In our approach,

publications are ontology data that contain RDF literals in their property elements.

A full-text expression is evaluated against a literal, and supported expressions

involve the usual Boolean operators (i.e., conjunction, disjunction, negation), as

well as word proximity and phrase matching as in Chang et al. [26].

In order to address the filtering problem in the context of ontology-based systems,

we developed Algorithm RTF (acronym for RDF Text Filtering), a family of trie-

based, main-memory, (continuous) query indexing algorithms that support SPARQL

queries with full-text constraints and are able to filter incoming publications in a

few milliseconds. We propose indexing methods that exploit the commonalities

between continuous queries at indexing time and leverage on the natural properties

of RDF during the filtering procedure. To the best of our knowledge, our work

is the first in the literature that:
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• Proposes an extension of SPARQL with full-text operators, aiming at more

expressive continuous queries.

• Proposes a family of algorithms that is able to support SPARQL queries with

full-text constraints.

• Studies and extends iBroker developed by Park et al. [9], a state-of-the-

art query indexing and RDF publication filtering algorithm, with full-text

capabilities and compare it against our approach both on structural and

full-text filtering.

Efficient Continuous Multi-Query Processing over Evolving Graphs

In the context of developing efficient multi-query processing algorithms and thus,

capturing interesting insights on the nature of data in large continuously-evolving

graphs, it is necessary to express the required restrictions in a concise manner.

We choose a query subscription language in the form of continuous sub-graph

queries that is able to capture information over (one or many) streams of graph

updates and appropriately notify the subscribed users for any patterns that match

their subscription. Detecting these query patterns is fundamentally a sub-graph

isomorphism problem which is known to be NP-complete due to the exponential

search space resulting from all possible sub-graphs [18, 19]. The typical solution

to address this issue is to pre-materialize the necessary sub-graph views for the

queries and perform exploratory joins [20]; an expensive operation even for a

single query in a static setting.

One simple approach to avoid processing all the (continuous) queries upon

receiving a graph update is to index the query graphs using an inverted-index at the

granularity of edges. While this approach may help us quickly detect all the affected

queries for a given graph update, we still need to perform several exploratory joins

to answer the affected queries. On the contrary, if we first identify the maximal

sub-graph patterns shared among the queries instead, we can minimize the number

of operations necessary to answer the queries and this will consequently reduce the
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query answering time. We address this gap in the literature by proposing a novel

algorithmic solution, coined Algorithm TriC (Trie-based Clustering) to index and

cluster continuous graph queries. In TriC, we first decompose queries into a set

of directed paths such that each vertex in the query graph pattern belongs to at

least one path (path covering problem [27]). However, obtaining such paths leads

to redundant query edges and vertices in the paths; this is undesirable since it

affects the performance of the query processing. Therefore, we are interested in

finding paths which are shared among different queries, with minimal duplication of

vertices. The paths obtained are then indexed using ‘tries’ that allow us to minimize

query answering time by (i) quickly identifying the affected queries, (ii) sharing

materialized views between common patterns, and (iii) efficiently ordering the joins

between materialized views affected from the update. To this end, in our work:

• We aim at providing a modern scalable solution (Algorithm TriC) which

groups queries based on their shared patterns and thus, expect to deliver

significant performance gains. To the best of our knowledge, none of the

existing works provide a solution that exploits common patterns for continuous

multi-query answering.

• We design and develop advanced baseline solutions that employ “inverted

indexing techniques” for capturing commonalities among query sets and utilize

them to study different approaches during the experimental evaluation time.

• We experimentally demonstrate that our proposed solution, Algorithm TriC,

provides a speedup of two orders of magnitude in query answering time,

compared against the advanced baselines, as well as when compared against

a production-ready graph database (Neo4j) that do not exploit the common

sub-graph patterns in the queries.
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Realising IF in an Open-Source System

In the last part of our research, we focused on providing a full-fledged, customizable,

open-source IF system, coined Ping, that makes use of state-of-the-art tools and

web technologies; we concentrate on providing an operational system that is designed

and implemented on IF-specific requirements. To this end, we present a system

equipped with profile administration (e.g., creation, modification, submission),

publication management capabilities (e.g., collection, filtering), different content

delivery options (e.g., email or on-site notifications), (interval- or batch-based)

monitoring of different types of textual data, and an intuitive user interface. The

front-end of the system is built upon modern Internet technologies, while the

back-end relies on the well-established Apache Solr2 platform. Ping is designed

with flexibility and customizability in mind; developers may use it to easily create

textual IF engines for different domains, parameterize and deploy it for IF-specific

tasks over their own textual information sources, or use it as a building block for

added-value services. To demonstrate the customizability of Ping, we deployed and

experimented with it in two different textual IF scenarios: the DBLP3 database for

scientific publications and the textual part of the DBpedia4 open-sourced knowledge

graph. Using Ping, we easily created an IF system that allows users to express

their information needs and stay notified for new and interesting publications. To

this end, our work on the Ping system can be summarized as follows:

• We present Ping, a novel, fully-functioning IF system build entirely upon

open-source components; the proposed system is able to support complex IF

tasks in a variety of domains.

• We showcase the realizability of the developed system on two different domains

(textual IF on scientific publications and crowd-sourced encyclopedia articles),

and experimentally assess its performance.
2http://lucene.apache.org/solr/
3https://dblp.uni-trier.de/
4https://wiki.dbpedia.org
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1.3 Contributions

Studying the problem of multi-query answering under gradually more challenging

information domains has yielded a plethora of interesting and novel research insights.

To this end, in this section we give an overview of our contributions, as well as

detailed lists of contributions for each information domain. In the context of

multi-query answering when designing algorithmic solutions for IF systems, our

research makes the following important contributions:

• It studies and proposes novel algorithmic solutions in the domain of text-

based IF, that surpass current state-of-the-art approaches. The research yields

important insights that challenge the status quo with regard to efficiency

optimization strategies and take into account multi-processor setups.

• It builds upon the groundwork conducted in text-based IF systems, and

introduces full-text support in ontology-based IF. The research proposes, a

full-text extension for the SPARQL query language, while it yields the first

multi-query processing algorithmic solution in the literature that supports

full-text operators over the RDF data model as a first class citizen.

• It is the first in the literature that breaks ground in multi-query processing

over evolving graphs. The research capitalizes on the knowledge gathered from

previous research insights and builds novel algorithmic solutions to efficiently

address the resource-demanding multi-query processing over graph streams.

• It exploits the important insights and research experience gathered, and

employs it in the development of a modern open-source IF solution that can

be deployed under multiple information domains.

Below, we further discuss the aforementioned high-level contributions and give

details in regard to the advances achieved in each information domain.

Initially in our research, we focus on the domain of textual information fil-

tering under the Boolean model, and highlight the drawbacks of greedy query
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indexing algorithms and their inability to scale under large and evolving query

sets. Additionally, our work identifies the importance of efficient data structure

construction and demonstrates the effect of different organization strategies in

filtering performance. In the context of textual Boolean information filtering, our

work makes the following advances in the current state-of-the art:

• It presents a novel trie-based query indexing and reorganization algorithm,

Algorithm StaR, that supports Boolean IF up to 96% faster than state-of-

the-art competitors. The query reorganization process is highly efficient and

takes less than a few seconds on a commodity PC to reorganize, as many as,

500K queries in a database comprised of millions of queries.

• It extensively studies and identifies different reorganization options for the

trie indexes and demonstrates the importance of query insertion order in the

construction of the indexing structure. It evaluates different reorganization

strategies and showcases their effect in filtering efficiency using two different

real-world datasets and both synthetic and real query sets. Through the

experimental process it is demonstrated that constructing tries with rare

words at the higher level of the trie leads to improved filtering performance

due to early pruning at filtering time.

• It proves through the experimental evaluation, contrary to previous works,

that the nature of the constructed tries, rather than their compactness, is the

determining optimization factor for efficient filtering performance, especially

in datasets with rare clustering opportunities.

• It provides parallelization of the filtering process to suit modern multi-core

processors, and identifies two different parallelization options and presents

the experimental evaluation results.

Subsequently, our research identified the importance of providing full-text

filtering capabilities under ontology-based systems. To this end, we proposed

a SPARQL extension with full-text operators, and developed a family of continuous
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query indexing algorithms that can complement existing application scenarios.

Thus, in the context of ontology-based system and multi-query answering, our

work makes the following contributions:

• It proposes a SPARQL extension with full-text operators that supports

Boolean, word proximity, and phrase matching operators. The SPARQL

extension aims at providing users with expressive tools through full-text

subscriptions beyond existing regular expression and equality support.

• It provides a family of continuous query indexing algorithms, coined RTF,

that can support the proposed full-text SPARQL extension and can efficiently

filter queries against incoming RDF publications.

• It extends a state-of-the-art competitor Algorithm iBroker [9], an ontology-

based pub/sub filtering solution and thus, enables it to support the full-text

operations.

• It identifies and evaluates different algorithmic alternatives for query indexing,

while it assesses their performance with a real-word data set against the

extended version of Algorithm iBroker.

• It demonstrates that Algorithm RTF is more than two orders of magnitude

faster for the structural and more than one order of magnitude faster for the

full-text filtering tasks, under different evaluation setups.

In continuation of our research, we studied and formalized the problem of

continuous multi-query answering over graph streams. Our research aimed at

providing algorithmic solutions that can capture insights on the nature of data

in large and continuously evolving graphs. Our work is the first approach in this

area that makes the following important advances:

• It studies and formalizes the problem of continuous multi-query answering

over graph streams. Furthermore, it identifies, presents and motivates

application scenarios from various domains, that could benefit from the

proposed continuous multi-query answering paradigm.
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• It proposes a novel trie-based query graph clustering algorithm, coined TriC,

that is able to efficiently handle large numbers of continuous graph queries

by resorting on (i) the decomposition of continuous query graphs to covering

paths and (ii) the utilization of tries for capturing the common parts of those

paths.

• It proposes two algorithmic solutions that utilize inverted indexes for the query

answering, since no prior work in the literature has considered continuous

multi-query answering.

• It identifies variations of the main algorithmic solution and the baseline

approaches, which utilize caching strategies and demonstrates the effect of

such solutions on the problem at hand.

• It deploys and extends the well-established graph database Neo4j [28], under

the mutli-query evaluation paradigm, and it utilizes Neo4j as a baseline

solution during the experimental evaluation time.

• It experimentally evaluates the proposed solution using three different datasets

from social networks, transportation, and biology domains, and compare the

performance against the three baselines. To this end, it demonstrates that the

trie-based solution can achieve up to two orders of magnitude improvement

in query processing time.

Concluding this thesis, we present Ping, a novel, fully-functioning IF system

build entirely upon open-source components; the proposed system is able to support

complex IF tasks in a variety of domains, while it highlights the need for and

the importance of developing efficient IF-specific machinery to facilitate higher-

level IF systems. To this end, our work and development of the Ping system

makes the following advancements:

• It presents a system that is flexible enough (i) to be deployed as a standalone

solution on different textual IF tasks and domains or (ii) to be used as a

building block for other added-value services.
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• It showcases the realizability of an IF system under two different domains

(textual IF on scientific publications and crowd-sourced encyclopedia articles),

while it experimentally assesses its performance.

• It provides an implementation of the information filtering functionality over

the Solr framework, which is primarily designed for information retrieval tasks,

and highlights the lack of native information filtering tools.

1.4 Thesis Outline

This thesis is formulated of eight distinct chapters, where the first is the current

introductory chapter. The rest of this thesis is organized as follows.

Chapter 2 presents the related research in the domains of textual and content-

based information filtering systems, as well as the literature regarding graph-based

solutions under the scope of multi-query evaluation. Chapter 3 presents our work

conducted in the domain of textual information filtering, identifies the importance

of efficient information filtering and presents the algorithmic solutions developed

to efficiently solve the problem at hand. Chapter 4 presents our work conducted

in the domain of content-based information filtering systems, where we identify

the importance of efficient and effective information filtering, and present the

algorithmic solutions developed to address these issues. Chapter 5 presents our work

conducted in the domain of evolving graphs and graph streams, where we introduce

the notion of continuous multi-query processing over graph streams and discuss

its applications to a number of use cases, while we present the novel algorithmic

solutions developed to address these applications. Chapter 6 presents Ping, a

fully-functional information filtering system for scientific publications, where we

showcase the realizability of information filtering and explore the suitability of the

existing technological arsenal for information filtering tasks. Finally, Chapter 7

summarizes the thesis and discusses future directions for this research.
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2
Related Research

I n this chapter, we present the work related to our research, the works discussed

span from a wide range of applications as the information filtering paradigm is

ubiquitous and ever present. In this thesis, we examine the information filtering

paradigm under three distinct application scenarios: (i) textual information filtering,

(ii) content-based information filtering, and (iii) graph-based information filtering.

2.1 Text-Based Information Filtering

In recent years, information filtering (IF) applications (also known as information

dissemination or publish/subscribe), such as news alerts, weather monitoring, and

stock quotes, have gained popularity. Such applications assist users to cope with

the information avalanche and the cognitive overload associated with it. For the

case of news alerts, digital libraries, or RSS feeds, where the data of interest is

mostly textual, users express their needs using information retrieval languages (e.g.,

Boolean combinations of keywords [1] or text excerpts under the Vector Space Model

– VSM [1]) and submit continuous queries (or profiles) to a server, thus, subscribing

to newly appearing documents that will satisfy the query conditions. The server

will then be responsible for notifying the subscribed users automatically whenever a

new document that matches their information needs is published. Publishers can be

17
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news feeds, digital libraries, or even users who post new items to blogs, social media,

and Internet communities. This functionality is very different from information

retrieval (IR) applications like search engines [1]. Specifically, in IR when a query is

posed, a single search is executed and the current matching data items are presented

to the user. Contrary, in IF the server indexes the user queries rather than the data

and evaluates newly published data items against the stored continuous queries.

In more detail, the problem of information filtering may be defined as follows:

given a database DB of continuous queries that reside on a server and an incoming

document d, retrieve all queries q∈DB that match d. The filtering problem is of high

importance and needs to be solved efficiently, since servers are expected to handle

millions of user queries and high rates of published documents. Efficiency issues

were identified by many researchers that proposed tree and trie-based algorithms for

supporting fast filtering under various data models (e.g., flat attribute-based, semi-

structured XML) and query languages (e.g., Boolean, VSM), both for main-memory

[2–4] and secondary storage [5].

In the following sections we present works that have focused on developing text-

based information filtering algorithmic solutions and data structures. We choose to

classify the research presented in two main sets, works that developed solutions for

centralized systems and works that focus on providing decentralized solutions.

2.1.1 Centralized Text-Based Information Filtering

Historically, work on selective dissemination of information started by a 1958 article

of Luhn [29], where a “Business Intelligence System” is described. In the proposed

concept, individual users would have their interests described in profiles, and a text

selection system would produce lists of new documents that would allow users to

choose between ordering a new document or not. At that day, the selection module

was described using the terms selective dissemination of new information.

One of the first filtering systems based on the Boolean model to address

performance was LMDS [30] that relied on least frequent trigrams for query indexing.

In LMDS, profiles are indexed under the least frequent trigram, whereas documents
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are represented as a sequence of trigrams. At filtering time a table lookup determines

which profiles match the incoming document. Since false positives may incur, a

second stage is necessary to determine the actual matches.

One of the first works to describe an IF system capable of scaling up to large

filtering tasks was presented by Bell and Moffat [31]. In this work, the authors

proposed an IF system that is able to scale up to thousands of queries, by combining

solutions already present in the literature and extending those works in order to

support the VSM model. The authors built upon their previous work in [32] that

proposed a document matrix for indexing incoming documents and subsequently

utilize said matrix during filtering time, while their work extended Algorithm SQI

of Yan and Garcia-Molina [21] with VSM functionalities. Finally, the proposed

approach was able to create a scalable information filtering system, that can

efficiently answer incoming publications against a high number of user profiles.

The work conducted by Yan et al. [5] was one of the first works to highlight the

importance of efficient Selective Dissemination of Information (SDI) systems. In

their work, the authors recognize and discuss data structures traditionally employed

for IR systems that are not deemed suitable for IF scenarios. The work asserts the

importance of developing efficient data structures and algorithms that can scale

for large Information Filtering scenarios. Bearing this in mind the authors propose

and study four indexing structures and document matching algorithms, that aim

at efficiently addressing the Information Filtering scenario. The four indexing

structures proposed at the time were: (i) a Brute-Force method that indexes the

continuous queries in the disk, (ii) a Counting method that utilizes an inverted index

to store the queries in order to reduce the number of queries to be examined, (iii) a

Key method that selects random words as keys for the profiles and thus reducing the

association of frequent words with queries, and finally (iv) a Trie-Based solution

that indexes the queries in a trie structure and aims at storing compactly the

query database by sharing the common prefixes of the queries. Furthermore, the

authors study the effect of ranking information in the data structures presented.
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The experimental evaluation yields that Brute-Force method as the worst performer,

while the Tree-Based solution is deemed as the fastest of the proposed solutions.

The work conducted by Callan et al. [33] was on one of the first that highlighted

and tried to address the key design differences of IF systems when compared against

traditional IR approaches. Thus, the authors designed and developed an IF system,

coined InRoute, that utilized inference networks [34] in a similar manner as the

IR system INQUERY [35]. In InRoute, query sets and incoming documents were

represented by inference networks, while the filtering process was executed by

employing belief propagation techniques. Additionally, the authors developed a

profile selection technique, coined MinTerm, which estimated the minimum number

of terms (of a given query) that has to match before an incoming document can

be considered for evaluation. Moreover, a technique for incrementally calculating

corpus statistics was proposed, as opposed to existing IR techniques that required

an a priori calculation of the statistics. InRoute was able to outperform existing

solutions in the literature that utilized index-less or inverted-index solutions, that

primarily excel in information retrieval scenarios.

In the same spirit, Franklin and Zdonik [36] highlighted the importance of

IF-tailored solutions and aimed at recognizing and clearly define distinct aspects of

the IF paradigm. In their work, the authors study the IF paradigm during its pick

(i.e., during the decade of the 90’s), while they bring into spotlight the limitations of

current technologies, where solutions traditionally used by pull-based systems (IR)

are applied on push-based (IF) applications. The authors advocate that information

dissemination is only a part of a greater picture of the information delivery realm and

define three core aspects of the problem: (i) the information push when compared

against the information pull nature of information discovery, (ii) the aperiodic and

periodic nature of information delivery, and (iii) the unicast and the one-to-many

approaches employed for delivery of information. That are three characteristics

of information delivery systems that need to be addressed efficiently in order to

develop a robust and fast information dissemination system. However, the authors

assert that current technologies (e.g. the HTTP protocol) are designed around
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pull-based principles, and when applied on the push-based paradigm (through

polling techniques) render them unsuitable for the problem at hand. This work

solidifies the importance of information delivery technologies specifically designed

for the IF paradigm with performance and scalability as its main targets.

In the same manner, Altinel et al. [37] assert that the modern information

dissemination applications suffer from scalability issues due to the asymmetric

data flow generated from request-response protocols (e.g. the HTTP protocol).

Thus, the proposed request-response based solutions are deemed inappropriate for

serving as information dissemination mechanisms. To address these challenges,

the authors develop a Dissemination-Based-Information System (DBIS) that acts

as a middleware layer on information delivery networks. Altinel et al. were the

first to provide an information dissemination system equipped with a plethora of

information delivery mechanisms through a unified solution. These information

delivery mechanisms, included information brokers responsible for query answering,

services that were responsible for profile indexing and information filtering services,

notifications delivery solutions, as well as, tools for managing the content and

topology of the network.

In continuation of their work, Yan et al. developed the Stanford Information

Filtering Service (SIFT) [38]; an IF service that aimed at providing users with

long-term subscription capabilities. The SIFT service would index the user sub-

scriptions and evaluate them continuously against incoming publications, while it

would forward appropriate notifications when new publications that satisfied user

subscriptions emerged. In this work, the authors describe the underlying research

conducted in order to develop the SIFT information system. To this end, the authors

discuss and analyze the query indexing data structures and workload distribution

techniques that were developed and evaluated to address the high computational

needs of SIFT. Additionally, the authors demonstrate the importance of utilizing

data structures that are specifically designed for information dissemination and

highlight that traditional IR approaches are not deemed suitable for information
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dissemination scenarios. Yan and Garcia-Molina, achieved in presenting a real-

world system that is able to scale to thousands of profiles and handle thousands

of incoming documents on a daily basis.

Publish/subscribe (pub/sub) in the database field focused on the performance of

systems with data models based on attribute-value pairs and query languages based

on attributes with arithmetic/string comparison operators (e.g., [2, 39–41]). The

main focus of the work conducted by Fabret and Jacobsen [39] was on providing

efficient filtering solutions for the information filtering problem. Inspired by the work

in the field of database systems, they propose main-memory data-structures that

aim at optimizing trigger execution functions in relational database systems. To this

end, the authors focused on providing efficient data structures, caching techniques

and query answering algorithms for enhancing trigger execution. Their solution was

aimed at enhancing processor caching strategies in order to minimize the cost of

evaluating incoming events against query sets. Additionally, the authors proposed

and developed a schema-based clustering technique to minimize the number of

subscriptions examined during event processing.

In the spirit of improving information filtering performance Fischer and Koss-

mann [2] developed and evaluated two distinct batching techniques for clustering and

reordering incoming publication events in order to achieve high filtering throughput.

The key idea presented in their work focuses on identifying messages with a degree

of similarity and clustering them in batches. Subsequently these message batches

are evaluated together, resulting in reducing the number of hits performed on the

underlying index and eventually the filtering time. The proposed solution exhibits

significant reduction in evaluation times but increases significantly the time required

during the post-filtering phase. To this end, the authors proposed an additional

mini-batching solution that aimed at generating smaller groups of akin messages

in order to alleviate the setbacks of the first batching technique. The developed

solutions demonstrate an improvement of up to one order of magnitude against

solutions in the literature that do not employ any batching strategy.
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Campailla et al. [41] focus on providing efficient information filtering algorithms

through the utilization of Binary Decision Trees. In their approach, the authors,

define each subscription as a set of atomic boolean formulas, while they utilize Binary

Decision Diagrams (BDDs) to index the boolean formulas. The key idea behind

the utilization of BDDs is to capture common sub-expressions present in atomic

boolean formulas of the query set, evaluate these common elements in bulk, and thus

provide a fast filtering execution time. Finally, the utilization of the query clustering

technique demonstrates scaling capabilities of up to half a million user subscriptions.

The research conducted by Sadoghy et al. [42, 43] is a work in the area of

IF that focuses on subscriptions expressed as boolean predicates. In their works,

the authors designed and developed a novel boolean expression tree indexing

structure, coined BE-Tree. The BE-Tree data structure aims at solving the problem

of efficient boolean expression answering, over a high dimensional space. The

solution employs space partitioning techniques based on the attributes present in

predicates of subscriptions. Additionally, BE-Tree generates subsumption hierarchies

of continuous boolean expressions and filters them against incoming events. The

BE-Tree solution is coupled with a self-adjustment technique, that adapts the tree

data structure based on the workload present at the system. The main focus of

this data structure, which lies on arithmetic and string operations, is not directly

applicable on the textual IF paradigm.

Overall, in the context of textual information filtering, works have focused on

efficiency issues where many researchers proposed tree and trie-based algorithms

for supporting fast filtering under various data models and query languages (e.g.,

Boolean, VSM), both for main-memory [2–4] and secondary storage [5]. Additionally,

other works have focused on providing efficient solutions under less expressive data

models [2, 39–43]. The majority of these approaches rely on greedy clustering

methods that are sensitive to the insertion order of submitted queries and do not

consider an evolving query workload, which might require the reorganization of

the query database to achieve efficient filtering performance. To this end, it is

important to investigate and develop algorithms that alleviate the drawbacks of



24 2.1. Text-Based Information Filtering

greedy clustering techniques, and thus delivering significant improvements in the

resource intensive information filtering process.

2.1.2 Decentralized Text-Based Information Filtering

In their work, Koubarakis et al. [44] adopt the information dissemination paradigm

over a peer-to-peer (P2P) network. In such a scenario, the users utilize middle-agents

to post their continuous profiles, while publishers make use of the aforementioned

agents to push out new content. Agents are responsible for indexing the profiles,

routing them to other agents, as well as, filtering the incoming publications against

the profile database and sending appropriate notifications to the users. This work

highlights and addresses the importance of data models that are designed for

decentralized textual information dissemination. To this end, the authors propose

three distinct data models namely WP, AWP and AWPS for textual information

dissemination, while they highlight two important aspects of the problem at hand,

firstly the satisfiability of profiles (i.e., deciding if a document satisfies a profile)

and secondly the efficiency problem (where agents must be able to handle millions

of profiles and thousands of incoming publications efficiently).

In order to address the efficiency problem of information dissemination, the

authors extend their previous work ([44]) by developing algorithms designed for

fast textual information filtering. Tryfonopoulos et al. [3] focused on developing

information filtering algorithms for the AWP data model. In their work they

describe a new algorithm coined BestFitTrie and LCWTrie that was able to index

long standing queries by organizing them under a trie data structure. BestFitTrie

was able to provide IF capabilities for incoming publications with text and attribute

fields. The solution proposed was one of the first in the literature that was able

to perform information filtering while supporting equality operators and word

proximity operators in the same manner as IR-based models.

Tryfonopoulos et al. [4] investigate the importance of query clustering and the

effect of query organization in trie structures. The authors quantify the quality

of query clustering by proposing a metric that is able to capture and characterize



2. Related Research 25

queries with discreet values. This metric can be utilized in order to determine

if a query that is below or over a certain threshold is “properly-clustered” or

“well-clustered” respectively. In addition to this metric, the authors develop a

reorganization algorithm that is able to relocate poorly clustered queries in better

positions inside the trie structure. Their solution coined ReTrie is build upon

the existing solution in the literature BestFitTrie [3] and is able to outperform

it along other state-of-the-arts works by up to 20%. This work is the first in the

literature that investigates clustering quality and highlights its importance as an

optimization factor in the data structures, as well as to demonstrate its effects

on the performance of the filtering process.

2.1.3 Personalization and Effectiveness

Many IF efforts focused more on appropriate representations of user interests [45,

46] and on improving filtering effectiveness [47, 48]. In [45], behavior monitoring

and substring indexing are used to decide which documents match user interests.

Moreover, [47, 48] explores an ensemble of methods from machine learning, aiming

at increasing filtering effectiveness in an IF setup. Other approaches included

statistical filtering systems, such as [49] that uses Latent Semantic Indexing to filter

incoming documents and [50] that utilizes network-based profile representations to

better identify user interests and cope with the curse of dimensionality in VSM.

Adaptive filtering [51, 52] focuses also on profile effectiveness and considers the

adaptation of VSM queries and their dissemination thresholds. In order to enhance

user information discovery, [53] developed a novel statistical latent class model that

applies user/item grouping to deliver better content recommendations/predictions.

Moreover, sophisticated user profiling has also been used to promote personalized

IR systems (e.g., [54]) that focus on improving retrieval effectiveness. While

recently, works have focussed in improving recommendations and predictions inside

social networks [55–57] .
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Morita and Shinoda [45] advocate the importance of recognizing users’ needs

through the formation of accurate profiles and determining which pieces of infor-

mation are important to the users, thus classifying them useful or not. In their

research the authors propose two techniques in order to improve information delivery

effectiveness. The first technique requires users to annotate publications delivered

to them as interesting or not, while the second proposed technique employs user

behavior monitoring. In this scenario, user monitoring takes into account user

engagement factors, such as time spent reading an information piece normalized by

the its size, readability of information articles (denseness) and total count of articles

left for the user to read. Finally, the authors demonstrate that the combination

of the two developed techniques can improve the effectiveness of the system and

thus, deliver more relevant information to the end users. However, a drawback

of this approach lies in the fact that it can not effectively determine information

needs that are not previously expressed by the users.

In [47] the authors try to solve the problem of estimating the probability of

relevance of a document against a query. Their efforts lie on providing combinations

of statistical classifiers that can effectively determine the relevance probability

of an incoming document, as well as improve the filtering time. Li et al. [48]

try to increase the effectiveness of information filtering systems by reducing the

mismatch and overload issues. Thus, they develop a two-stage approach that

aims primarily to utilize topic filtering in order to reduce the size of the incoming

document set, while the second stage of the solution employs taxonomy matching

in order to locate relevant documents.

Rao et al. [24] aim at providing personalized information delivery through

continuous information filtering. In their work, the authors propose a solution that

can effectively and efficiently determine the top-k most relevant publications that

arrive in an IF system within a sliding time window. The proposed solution was

designed to solve the problem of continuous top-k query answering over documents

by capturing the subsumption relationships present in the query set. To this end, the

authors propose a graph-based indexing structure responsible to capture the common



2. Related Research 27

relations of VSM queries, and subsequently share the filtering results among similar

queries. Additionally, the solution is coupled with a document indexing structure

that serves as an archive of already filtered documents. The main purpose of the

document archive lies on locating similarities among new incoming publications and

previously satisfied ones, resulting in faster location of affected queries and pruning

of the query search space. The two proposed data structures are combined into a

unified solution, while the experimental evaluation demonstrates that it outperforms

existing suggestions in the literature [38, 58] that employ inverted index solutions.

Chang et al. [46] focus on improving the time needed to update query graph

indexing structure proposed in [59]. The authors utilize data mining methods

that take into account the weight of the keywords in a profile and determine if

a query represents a long-term or short-term interest of the user. By making

such distinction they are able to index appropriately the short-term queries and

provide faster query updates.

2.2 Content-Based Information Filtering

In a pub/sub system, users (or services that act on users’ behalf) express their

interests by submitting a continuous query and wait to be notified whenever a

new event of interest occurs. The vast majority of modern pub/sub services and

systems are typically content-based (contrary to previous decades, where they used

to be topic/channel based); subscribers express their interest on the content of

the publication (be it structure or data/text values) by appropriately specifying

constraints in the submitted continuous queries.

In the early days of content-based pub/sub the structure of a publication was

nothing more than a (usually static) collection of named attributes with values of

different types (e.g., text) [4, 38]. As XML gained popularity and started becoming

the standard for data/information representation and exchange on the web, various

XML-based pub/sub systems have, naturally, arised [22, 60–63]. In those systems,

publications were expressed in XML and extensions of XPath/XQuery were used

to express continuous queries. All research in the field focused mainly on the
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structural/value matching between (indexed) continuous queries and incoming

publications, but has largely ignored semantics. This gave rise to ontology-based

pub/sub systems [6–9] that typically used RDF [64] for representing publications

and SPARQL [65] extensions/modifications for expressing user interests through

continuous queries. While other works have focused on increasing the effectiveness

of retrieval and data exploration [66–68].

Ontology-based pub/sub systems research [6–9] has naturally focused more on

semantics and has delivered interesting results. What it currently lacks, though,

compared to the technological arsenal of the traditional pub/sub research is

the support of a complete full-text retrieval mechanism, beyond existing regular

expression and equality support, with sophisticated algorithms and data structures

to minimize processing and memory requirements.

In the following sections, we present influential work from the information

filtering domain that focused on developing algorithmic and data structure solutions

for content-based and ontology-based systems.

2.2.1 Centralized Content-Based Information Filtering

Current state-of-the-art solutions proposed in information dissemination systems

employ approaches and techniques that utilized simple key word matching and

“bag of words” techniques. These approaches mainly focused on efficiency and

scalability rather than providing users with expressive tools and relevant results

(information delivery effectiveness). In order to address these issues, Altinel et

al. [23] developed the XFilter information filtering system that aimed at enhancing

the expressiveness of long standing user profiles. The XFilter system supported user

profiles expressed in the XPath query language, while the incoming publications

were expressed in the XML markup language. To this end, the authors developed a

novel indexing mechanism for representing XPath queries by making use of Finite

State Automatons (FSA) coupled with an XML filtering algorithm. The proposed

solutions were able to support expressive queries while the experimental evaluation

demonstrated high effectiveness under various workloads.
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In continuation of the work done in XFilter, the authors capitalize on the high

probability that the elements of a query set share common structural restrictions

among each other. The approach employed by the XFilter system does not exploit

these commonalities and thus, it leads to redundant processing and increased

filtering time. In order to alleviate this problem the authors developed the YFilter

system [22]. The YFilter system, similarly to XFilter, aims at efficiently filtering

incoming XML documents against user queries while reducing redundant calculations

during filtering time. YFilter builds a unified Nondeterministic Finite Automaton

(NFA) for the entirety of the query database, as opposed to XFilter approach, where

each query is represented under its corresponding FSA. The authors demonstrate

that YFilter improved filtering time by orders of magnitude compared to the single

NFA per query approach that is employed by XFilter. Additionally, the authors

address the issue of processing value-based predicate restrictions under NFA data

structures and explore two techniques namely “InLine” and “Selection Postponed”.

The former evaluation technique, follows a classic Relation Database approach that

aims at evaluating the value-based restrictions earlier in the query plan, while the

latter aims at evaluating the value-based restrictions after a final state is reached on

the FSM. Finally, the experimental evaluation asserts that the “Selection Postponed”

can yield significant performance improvement. This work conducted in YFilter

highlights the importance of locating and clustering common elements of the query

set as this approach yields great improvements in the filtering throughput.

Similarly to the works presented before, Green et al. [69] aim at providing efficient

continuous XPath answering over incoming XML Documents. The proposed solution,

in a similar fashion to YFilter, employs a single Deterministic Finite Automatons

(DFAs) approach to index the entirety of the query database at hand. Subsequently

the constructed DFA is probed, during the filtering phase, to locate and evaluate

the indexed queries against the incoming XML document. However, the main

bottleneck when evaluating a DFA lies on the exponential growth of its size and the

main memory requirements when constructing it under an “eager” approach. In

order to alleviate this drawback the authors propose a novel approach that “lazily”
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calculates the DFA states. The latter approach differs the calculation of DFA

states up until they are necessary. While on the other hand, the “eager” approach

constantly updates the entirety of the DFAs states. As it is natural, the “lazy”

DFA approach proposed reduces the memory requirements, when compared against

the “eager” approach. Finally, the experimental evaluation demonstrated that this

approach outperforms the XFilter algorithm by 4 orders of magnitude.

Chan et al. [60, 70] aim at providing efficient XML document filtering while

enabling users with expressive query formulation through XPath queries. In the

research conducted, the authors developed an indexing trie structure, coined XTrie,

that supports complex XPath expressions, while the XTrie indexing structure is

able to support matching of XML data in ordered and unordered formats. The

key idea behind their approach lies in indexing parts (substrings) of the XPath

queries during the indexing phase and thus reducing the search space during the

filtering phase. The proposed research demonstrates high filtering throughput but

its main drawback lies in the fact that the performance gains are heavily dependent

on selecting the appropriate substring that is going to represent the query.

The S-ToPSS [6] system was among the first solutions that supported pub/-

sub functionality in an ontological context. S-ToPSS was designed to enhance

the matching process aiming at semantically similar but syntactically different

information present in publications and user subscriptions. This was achieved by

identifying synonyms and utilizing concept taxonomies and hierarchies. Additionally,

S-ToPSS utilizes mapping functions to determine relations between attribute-value

pairs. These methods can be applied separately or as a whole for better semantic

matching results. The successor of S-ToPSS, G-ToPSS [8], focused on information

dissemination of RDF data on ontologies, emphasizing on scalability and fast filtering

of RDF data. G-ToPSS represented publications as directed labeled graphs, while

a two-level hash table was used for the subscriptions. The system was employed to

filter incoming publications in the form of RDF metadata (e.g. RSS). The matching

algorithm was based on the traversal of the publication and subscription graphs.
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In the same spirit, the Ontology-based Pub/Sub (OPS) system [7] supported

events with complex data structures and aimed for a uniform representation.

Subsequently, user subscriptions and publication events were processed into RDF

graphs and thereafter indexed or filtered respectively. OPS utilized graph matching

algorithms that traversed publication and subscription graphs. Finally, OPS

examined the matching trees that emerged from the graph traversal to determine the

matching subscriptions. The extension of OPS [71] focused on matching accuracy

by utilizing concept models to enhance the publication filtering semantically.

Nguyen et al. [40] consider the problem of filtering incoming documents expressed

in XML format. More specifically the authors develop a solution for discovering

changes that occur in XML and HTML pages, which constantly evolve and are

indexed by the Xyleme [72] system. To this end, the authors propose a subscription

language that is aimed at capturing changes inside the XML and HTML documents.

The users of the system can make use of the developed language and pose queries

(subscriptions) that can capture the changes of the document database. Finally,

an algorithmic solution that utilizes hash-trees is provided for processing the

subscriptions against the incoming new or updated publications.

Although all these works focus on the problem of supporting pub/sub functional-

ity in ontology systems, none has considered supporting any form of text extension.

Park et al. [9] developed iBroker, an OWL-based pub/sub mediator focused

in filtering publications from OWL ontologies against a set of stored SPARQL

queries. iBroker matched incoming events generated from an ontology against

user queries by resorting on an inverted index to represent the graph that indexed

user subscriptions. Although there is no text support, iBroker is able to perform

string matching using the inverted index mentioned above.

Additionally, the need for indexing and querying RDF data efficiently led to the

development of RDF-3X [73]. RDF-3X engine focused on efficient triple indexing,

presented a SPARQL execution engine coupled with a query optimizer that utilized

statistics in order to recognize frequent paths. However, the aforementioned tools
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are applicable in an IR context as opposed to our approach that is designed

for a pub/sub scenario.

Finally, during the last decade a variety of information push technologies

that enhance IF services with content-based capabilities have emerged. The

sparqlPuSH [74] system presented an architecture for monitoring update in RDF

stores, whereas pushing notifications of real-time data changes through RSS/Atom

feeds to subscribed users. The Sparkwave [75] system was built to perform

continuous pattern matching over RDF streams by supporting expressive pattern

definitions, sliding windows and schema-entailed knowledge. The C-SPARQL [17]

extension enabled the registration of continuous SPARQL queries over RDF streams,

thus, bridging data streams with knowledge bases and enabling stream reasoning.

Moreover, works have focused on visualization techniques for ontology-based

systems [76–79].

In the domain of ontology-based information filtering research has naturally

focused on developing solutions that enhance the discovery of new information.

However, there is an evident lack of a complete full-text filtering mechanism, beyond

existing regular expression and equality support, with sophisticated algorithms

and data structures to minimize processing and memory requirements. Providing

such a full-text filtering mechanism over ontologies can potentially complement

applications in knowledge bases, triple stores, and LOD platforms 1.

2.2.2 Decentralized Content-Based Information Filtering

With the advent of distributed and P2P computing, decentralized ontology pub/sub

systems naturally emerged. The first P2P pub/sub system based on RDF data was

build by Chirita et al. [80]; they provided language L, a language that aimed for both

publication and subscription creation. The system utilized a super-peer architecture

where super-peers were responsible for the routing of content determined by the

RDF schema, property or value, while peers were responsible for specific schemas

and properties. At publication time, super peers routed the data to the responsible
1http://lotus.lodlaundromat.org/

http://lotus.lodlaundromat.org/
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peers for the filtering process; the performance gain was achieved by utilizing the

content similarities present in subscriptions.

Similarly, Liarou et al. [81] studied the problem of evaluating multi-predicate

conjunctive queries in pub/sub systems; the aim of the system was to distribute

the load of the matching process into a P2P network. The speed of the matching

process was achieved by distributing efficiently the triples in the network nodes;

where multiple peers were responsible for the indexing and matching of a single

subscription while being organized in a chain-like manner.

In the same spirit, an RDF-based pub/sub P2P network was build by Pelegrino

et al. [82] to study the messaging paradigm. The system supported the creation

of queries by making use of SPARQL and publications by using RDF data. Users’

subscriptions were indexed into a peer, determined by the CAN protocol. Data

from a publication event that concerned a peer was stored while the event was

forwarded to other peers. Although the filtering process became resource intensive

faster notifications were achieved.

Kaoudi et al. [83] presented a study for distributed RDF reasoning and query

answering. The work in [83] focused on implementing, optimizing, and evaluating

forward and backward chaining over a distributed hash-table for a subset of SPARQL,

managing to draw conclusions about performance and scalability over Internet-

sized P2P networks.

Jacobsen et al. [84] proposed and developed PADRES, a distributed content-

based publish/subscribe system that aimed at high availability and performance.

The authors recognized and addressed three characteristics of an efficient content-

based publish/subscribe system: (i) the routing technologies, (ii) the robustness

of the network, and finally (iii) the management and deployment tools. To this

end, PADRES leverages content-based routing techniques to alleviate restrictions

posed by the topology of the network, coupled with a dynamic routing strategy

that utilizes alternative routes to evenly balance traffic among the nodes of the

network, similar to the approach in [85]. The subscription language employed by

PADRES, utilizes simple predicates that express the users queries, advertisements
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and publications. An interesting feature of PADRES was the support of both historic

and future data through employing partitioned databases. PADRES was designed

for fault-tolerance, thus it collected information regarding the broker topology and

the subscriptions routes in order to improve connectivity and decide on alternate

routing paths, thus, enabling to select alternate routes when node failures occur.

Furthermore, the proposed solution employed load estimation methodologies for

load balancing of the network. Finally, the authors developed a set of tools for

PADRES that included monitoring, deployment and administrative tools in order to

ensure the apt operation of the distributed network. In the same spirit, [86] propose

an architecture for scalable P2P pub/sub networks, while in [87] the authors study

the deployment of a pub/sub system over cloud services. Furthermore, the work

presented in [88] addresses the problem of increasing the efficiency of the pub/sub

system and satisfiability of users. Finally, in [89] the authors study and analyse the

underlying pub/sub mechanism of the commercial music platform Spotify.

2.2.3 Commercial Content-Based Information Filtering

There is a plethora of influential content-based systems that were developed in

order to assist information extraction, discovery and management.

The most prominent example is the Apache Jena framework2 that provides

capabilities for indexing, managing, and querying RDF data sets. The Jena

framework provides RDF APIs for creating and managing RDF graphs, as well

as OWL APIs that enable semantic extension of the indexed RDF data. Apache

Jena enables information access through its querying mechanism that supports the

SPARQL query language, while it aims at providing high throughput through

its scalable triple store.

An other influential system, is the Virtuoso server3 a middleware and database

engine that aims at providing a unified solution for traditional databases and

triplestores. Notably the Virtuoso server supports RDF, XML, free-text and

Relational database management system (RDBMS) under a single database engine.
2http://jena.apache.org/
3http://virtuoso.openlinksw.com/

http://jena.apache.org/
http://virtuoso.openlinksw.com/
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In the context of content-based systems, Virtuoso supports the indexing and

management of RDF and Linked data, while it provides users with SPARQL,

XQuery and XPath quering capabilites.

Finally, two notable examples of content-based commercial systems is the

AllegroGraph4 and the OntoText GraphDB5. AllegroGraph is a triplestore, that

supports the storage and manage of RDF triples, while OntoText GraphDB is

a semantic graph database, that provides indexing, querying and visualization

tools over RDF data.

2.3 Graph-Based Systems

In recent years, graphs have emerged as prevalent data structures to model

information networks in several domains such as social networks, knowledge bases,

communication networks, biological networks and the World Wide Web. These

graphs are massive in scale and evolve constantly due to frequent updates. For

example, Facebook has over 1.49 billion daily active users who generate over 500K

posts/comments every 60 seconds and 4 million likes every minute resulting in

massive updates to the Facebook social graph6.

To gain meaningful and up-to-date insights in such frequently updated graphs,

it is essential to be able to monitor and detect continuous patterns of interest.

There are several applications from a variety of domains that may benefit from such

monitoring. In social networks, such applications may involve targeted advertising,

spam detection [10, 11], and fake news propagation monitoring based on specific

patterns [12, 13]. Similarly, other applications like (i) protein interaction patterns in

biological networks [14, 15], (ii) traffic monitoring in transportation networks, (iii)

attack detection (e.g., distributed denial of service attacks in computer networks),

(iv) question answering in knowledge graphs [17], and (v) reasoning over RDF

graphs [90] may also benefit from such pattern detection.
4http://franz.com/agraph/allegrograph/
5http://ontotext.com/products/graphdb/
6Facebook quarterly update http://bit.ly/2BIM30d

http://franz.com/agraph/allegrograph/
http://ontotext.com/products/graphdb/
http://bit.ly/2BIM30d
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In the following section, we present works that have focused on graph matching,

be it applied on the information retrieval paradigm or the information filter-

ing perspective.

Structural graph pattern search using graph isomorphism has been studied in

the literature before [18, 19]. In [91], the authors propose a solution that aims at

reducing the search space for a single query graph. The solution identifies candidate

regions in the graph that can contain query embeddings, while it is coupled with a

neighborhood equivalence locating strategy to generate enumerations. In the same

spirit [92] aims at reducing the search space in the graph by exploiting syntactic

similarities present on vertex relationships. In [93], the authors consider the sub-

graph isomorphism problem when multiple queries are answered simultaneously.

However, these techniques are designed for static graphs and are not suitable for

processing continuous graph queries on evolving graphs.

The problem of continuous sub-graph matching has been considered in [94] but

the authors (i) assume a static set of sub-graphs to be matched against update

events, (ii) use approximate methods that generate false positives, and (iii) apply

the solutions on small (evolving) graphs. An extension to this work considers

the problem of uncertain graph streams [95], targeting applications like wireless

sensor networks and protein-protein interactions. These solutions are not suitable

for answering large number of continuous queries on graphs with high update

rates. Moreover, to address the difficulty of sub-graph isomorphism they resort to

approximate matching, which results in undesirable false positives. An extension

to this work considers the problem of uncertain graph streams [95], targeting

applications like wireless sensor networks and protein-protein interactions.

There are a few publish/subscribe solutions on ontology graphs proposed in [7,

8], but they are limited to the RDF graphs and RDF subscriptions. Distributed

pub/sub middleware for graphs has recently been proposed in [96], but the authors

do not consider graph structure (they limit subscriptions to node attributes and node

distance constraints). Finally, in [97] the problem of evaluating graph constraints
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between publishers and subscribers is presented and applied to a distributed Web

advertising scenario.

Another relevant area of research is graph streams; in [98, 99], algorithms to

identify correlated graphs from a graph stream are proposed. This differs from our

setup since (i) a sliding window that covers a number of consecutive batches of

stream data records is used and (ii) the authors target at identifying subgraphs

with Pearson correlation coefficients higher than a given threshold. In [100], the

authors propose a continuous pattern detection in graph streams with snapshot

isolation. However, this solution considers only single queries at a time and the

patterns detected are also approximate, without considering the existing graph.

The work in [101] provides an exact subgraph search algorithm that exploits the

temporal characteristics of representative queries for online news or social media

monitoring. This algorithm exploits the structural and semantic characteristics

of the graph through a specialized data structure coined the Subgraph Join Tree.

While this is similar to the pub/sub scenario, the emphasis is on efficient search

mechanisms for time-stamped events, rather than filtering of streaming graph data.

An extension of this work, considers continuous query answering with graph patterns

over dynamic multi-relation graphs [102]. In this work a query is decomposed into

smaller sub-graphs by the Subgraph Join Tree data structure, while the selectivity

distribution of the subgraphs is taken into account when generating the Join

Tree. Subsequently, by utilizing the selectivity of each subgraph, the data graph

is searched in order to determine if the query graph has been satisfied. This

approach varies from our setting, as it aims at efficiently answering each query

individually, while the criteria of selectivity is utilized to develop a enhance the

search mechanism to explore the data graph.

Finally, in [20] the authors try to perform subgraph matching over a billion

node graph by proposing graph exploration methods in the distributed memory

cloud of Trinity [103]. The proposed methodologies for processing the query does

not require an indexing structure, while the graph exploration techniques allow

for minimal joining operations. The aforementioned works although they provide
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efficient work while the approach falls under the category of graph exploration

and not the pub/sub nor the streaming category.

While the aforementioned works are similar to the query evaluation scenario,

the emphasis is on efficient search mechanisms, rather than continuous answering

over streaming graph data. Sub-graph properties such as clustering coefficient and

density have been considered with respect to evolving graphs before (e.g., top-k

densest sub-graph maintenance [104] and dynamic community detection based

on clustering coefficient [105]). Finally, there are works in graph evolutionary

network analysis [106], but in pub/sub the focus is not on maintenance/ analysis

of the (evolving) graph.

Gillani et al. [107], propose a solution for continuous graph pattern matching over

knowledge graph streams is presented. The proposed data model contains continuous

subgraph patterns that pose structural constraints into evolving graphs, while the

graph model is based on knowledge graph events, i.e. sets of triples published in

knowledge bases. The proposed solution utilizes finite automatons to represent the

continuous query graph patterns and to perform the filtering process. However, [107]

uses a sliding window approach that misses matching events, while each continuous

query graph pattern is evaluated separately. To the best of our knowledge none of

the existing works exploit the common sub-graph patterns to scale up to thousands

of simultaneous continuous queries. The automatons generated for each query graph

pattern are utilized during the publication filtering time in order to determine which

queries have matched and generate the subgraphs that have satisfied the patterns.

Additionally, the algorithm implements a join-and-explore approach to answer the

queries graphs. The proposed solution supports event-based evaluation, as well

as, incremental evaluation of the query graph patterns. Similarly to previously

discussed approaches each query graph is answered separately. More specifically,

a query plan (i.e. an automaton) is generated for each query graph pattern and

executed separately during publication filtering. Thus, the commonalities of the

query graph patterns are not taken into account and are not explored. As a result

the number of continuous graph patterns answered simultaneously is extremely
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low. Although the solution is dependent on the window size when incrementally

evaluating a query graph pattern results are missed when the window overflows.

In the domain of graphs, there is an evident lack of solutions that aim at

continuously monitoring graph streams and locate, in a timely-fashion, patterns of

interest that form during the evolution of the graph. In the literature, research has

focused on providing solutions under the assumption of static graphs [91–93], or when

considering the simultaneous detection of a few distinct patterns [103, 107]. To this

end, it is necessary to develop a solution that efficiently matches multiple continuous

patterns over (one or many) streams of graph updates and appropriately notify the

subscribed users for any patterns that match their subscription. In this work we focus

on providing efficient algorithms that can capture patterns in large evolving graphs.

2.4 Conclusions

This chapter surveys related literature under three distinct research domains: (i)

textual information filtering, (ii) content-based information filtering, and (iii) graph-

based multi-query answering. In the following chapters, we present our solutions

and contributions to each problem described in Section 1.1.
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3
Efficient Continuous Multi-Query

Processing over Textual Data

I n the previous chapters we described the paradigm of multi-query answering in

the context of information filtering and presented a variety of its application

scenarios. Additionally, we highlighted two important aspects of the information

filtering problem, commonly studied in the literature, its efficiency and its effective-

ness. In this chapter, we focus on the case of textual information filtering, where we

identify the importance of efficient information filtering. To this end, we present a

novel algorithmic solution developed for efficient query indexing and reorganization.

We identify different reorganization strategies applied on the query database and

demonstrate their effect on the performance efficiency factor. We demonstrate

that, contrary to previous literature works, the nature of the constructed tries,

rather than their compactness, is the determining optimization factor. Finally, we

examine the parallelization process of the information filtering process, identify

different parallelization scenarios and present our findings and conclusions. The

results of this chapter have been published in [108].

The rest of this chapter is formed of six distinct sections. Section 3.1 provides

the motivation for this work, as well as, the description of the research problem

addressed. Section 3.2 presents the data model under which we choose to solve
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the problem. Section 3.3 presents our proposed solution, Algorithm StaR and

discusses possible extensions. Section 3.4 presents state-of-the-art algorithms in the

literature that were utilized as competitors in our experimental evaluation scenarios.

Section 3.6 presents our experimental evaluation and comparison against existing

approaches. Finally, Section 3.7 concludes this chapter by discussing the results,

provides the outlook, and presents future directions of this research.

3.1 Motivation

In recent years, information filtering applications (also known as information

dissemination or publish/subscribe), such as news alerts, weather monitoring, and

stock quotes, have gained popularity. Such applications assist users to cope with

the information avalanche and the cognitive overload associated with it. For the

case of news alerts, digital libraries, or RSS feeds, where the data of interest is

mostly textual, users express their needs using information retrieval languages (e.g.,

Boolean combinations of keywords [1] or text excerpts under the Vector Space Model

– VSM [1]) and submit continuous queries (or profiles) to a server, thus, subscribing

to newly appearing documents that will satisfy the query conditions. The server

will then be responsible for notifying the subscribed users automatically whenever

a new document that matches their information needs is published. Publishers

can be news feeds, digital libraries, or even users who post new items to blogs,

social media, and Internet communities. This functionality is very different from

information retrieval applications like search engines [1]. Specifically, in information

retrieval when a query is posed, a single search is executed and the current matching

data items are presented to the user. Contrary, in information filtering the server

indexes the user queries rather than the data and evaluates newly published data

items against the stored continuous queries.

In more detail, the problem of information filtering may be defined as follows:

Definition 3.1 Problem Definition

Given a database DB of continuous text-based queries that reside on a server and

an incoming document d, retrieve all queries q ∈ DB that match d.
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The filtering problem is of high importance and needs to be solved efficiently,

since servers are expected to handle millions of user queries and high rates of

incoming published documents. Efficiency issues were identified by many researchers

that proposed tree and trie-based algorithms for supporting fast filtering under

various data models (e.g., flat attribute-based, semi-structured XML) and query

languages (e.g., Boolean, VSM), both for main-memory [2–4] and secondary storage

[5]. However, all these approaches use a greedy clustering method that is sensitive

to the insertion order of submitted queries and do not consider that an evolving

query workload might require the reorganization of the query database to achieve

efficient filtering performance.

In our work, we concentrate on textual IF and present a novel trie-based, main-

memory algorithm for Boolean IF that is able to match incoming documents against

millions of queries in a few milliseconds. Our method uses linguistically motivated

concepts, such as words, to support continuous queries that are comprised of

conjunctions of keywords and may be used as a basis for query languages that

support not only basic Boolean operators, but also more complex constructs, such

as proximity operators and attributes. We believe that offering an efficient Boolean

filtering service (possibly alongside a more popular model like VSM) is a valuable

addition to any text filtering setup. Boolean IR/IF is still the model of choice of

advanced users that want total control of their results and is widely supported

in systems of major stakeholders like Google’s advanced search/alert mechanisms,

Oracle’s text extender module, and in Apache’s text search engine. Such systems,

that are meant to cope with a high workload and are designed for efficiency, are

possible applications for our work.

The algorithm we developed, coined StaR (an acronym derived from Statistical

Reorganization), is the first solution in the literature to consider database reorganiza-

tion (through appropriate word/query statistics) to achieve efficient textual IF under

the Boolean model. The main idea behind the proposed algorithm is to use tries to

capture common elements of queries, similarly to [3–5]. However, the key differences

with these approaches lie in (i) the collection and utilization of statistics on the
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importance of keywords in the indexed queries, (ii) the reorganization of the query

database according both to word and query importance, and (iii) the demonstration

that the nature of the trie forest is more important than its compactness when it

comes to filtering efficiency. Interestingly, all previous works [3–5] were aiming at

minimizing the size of the trie forest, since there was an implicit conjecture that

a small forest would result in lower filtering times due to less node visits. Our

findings demonstrate that forest size is not the dominating optimization factor when

it comes to filtering efficiency; contrary, the focus should be put on the nature of

the tries and on qualitative characteristics (expressed through heuristics). To this

end, Algorithm StaR overcomes the query insertion order problem caused by the

greedy query clustering techniques adopted by all other algorithmic solutions [2–5].

In the light of the above, our contributions may be summarized as follows:

• We present a novel query indexing and reorganization algorithm that supports

Boolean IF up to 96% faster than state-of-the-art competitors. The query

reorganization process is highly efficient and takes less than a few seconds

on a commodity PC to reorganize, as many as, 500K queries in a database

comprised of millions of queries.

• We identify different reorganization options for the trie indexes and demon-

strate the importance of query insertion order in the construction of the

indexing structure. We also show that constructing tries with rare words at

the higher level of the trie leads to improved filtering performance due to

early pruning at filtering time.

• We demonstrate, contrary to previous works, that the nature of the constructed

tries, rather than their compactness, is the determining factor for efficient

filtering performance, especially in datasets with rare clustering opportunities.

• We experimentally evaluate different reorganization strategies and showcase

their effect in filtering efficiency using two different real-world datasets and

both synthetic and real query sets.
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• We extend the presented algorithm implementation by parallelizing the filtering

process to suit modern multi-core processors. We identify two different

parallelization options and experimentally evaluate their performance.

In this section, we presented the motivation behind our work and gave a brief

overview of the algorithmic solutions we developed in order to solve the efficiency

problem of information filtering. In the following section, we present the data

model we employed in our approach.

3.2 Data Model

The Boolean model is still widely adopted in Information Retrieval and Information

Filtering applications, as it is the model of choice for advanced users. In the Boolean

model, users can pose queries (or profiles) comprised of Boolean expressions. In text-

based IR and IF systems, users utilize terms coupled with Boolean operators (AND,

OR and NOT ) to formulate their queries and thus express their information needs.

In this paradigm, each document is represented as a set of words [1]. To this end,

the users can capitalize on the Boolean Model and achieve high control of the results

delivered to them. The Boolean model, is widely supported in commercial systems

developed by major stakeholders, like Google’s Advanced Search [109] and Alerts [25]

mechanisms; Oracle’s text extender module [110]; and in Apache’s Lucene [111] and

Solr [112] text search engines. Such systems, that are meant to cope with a high

workload and are designed for efficiency, are possible applications for our work.

The Query Model. In our query model we support two distinct categories of

keywords, simple textual terms and complex terms. Simple textual terms are single

words utilized to pose constraints on incoming publications, while complex textual

terms (often referred as phrases) are ordered sets of terms that explicitly define

the order of the terms that should appear in an incoming publication. To this

end In our approach, we choose to support user queries that are formulated by

simple textual terms and complex terms with conjunction operators. To this end,

a user query qi is formally defined as follows:
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qi = kwrd1 ∧ kwrd2 ∧ · · · ∧ kwrdn

The Publication Model. In the context of our approach, an incoming publication

pi is a document comprised of simple words. Thus, a publication is represented

as an ordered set of simple terms. To this end, an incoming publication pi is

formally defined as follows:

pi = {term1, term2, . . . , termm}

In our information filtering model, we utilize simple terms to describe the data

publications, while the information filtering algorithms, presented in the following

section, can match an incoming publication expressed in simple terms, against

a query database.

In this section, we described the data model we adopted in our approach. In

the following sections we describe the algorithmic solutions developed to solve the

information filtering problem. Finally, in order to accommodate the interested user,

we provide an effectiveness comparison of the Boolean model compared against

the VSM model later in Section 3.6.7.

3.3 The Algorithm StaR

In this section, we describe the algorithmic solution developed in order to efficiently

solve the information filtering problem. We consider queries that comprise of

conjunctions (i.e., sets) of keywords, as described in Section 3.2, and present

Algorithm StaR that relies on the reorganization of the query database to achieve

low filtering times. Subsequently, we outline existing trie-based solutions and discuss

extensions of our algorithm to support more expressive queries.

The key idea of Algorithm StaR is to collect statistics on the importance of

keywords in the indexed queries and reorganise the query database according both

to keyword and query importance. This results in four variations of the algorithm

that are described later in this section. Algorithm StaR operates in two phases:
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Query Identifier Query Terms

q1 {olympic, games}
q2 {olympic, games, rio}
q3 {olympic}
q4 {olympic, rio}
q5 {olympic, committee}
q6 {olympic, committee, president}
q7 {olympic, rio, stadium}
q8 {olympic, congress, rio}
q9 {euro, cup, france, paris}
q10 {olympic, committee}

Table 3.1: Set of conjunctive user queries.

• The indexing phase, where the initial query indexing takes place, presented in

Section 3.3.1. The Pseudocode for the indexing phase of Algorithm StaR is

performed by Algorithm Index and is presented in Figure 3.2.

• The reorganization phase, where only the newly indexed queries in the database

are reorganized by utilizing the statistics collected during the indexing phase,

presented in Section 3.3.2.

Note that during the indexing phase new queries are stored only temporarily

waiting for the reorganization phase; thus, no statistical information is used during

the initial query placement (indexing phase) as the final placement of queries based

on query statistics will be decided later (reorganization phase). For scalability

reasons, Algorithm StaR does not reorganize the complete query database, but,

only a tunable amount of newly indexed queries.

3.3.1 Query Indexing Phase

Initially, we will consider queries that comprise of conjunctions (i.e., sets) of keywords

like the ones presented in Table 3.1. Subsequently in Section 3.5, we will also

consider more expressive query languages. To index queries, Algorithm StaR
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Figure 3.1: The Forest data structure during the indexing phase of Algorithm StaR.

uses two data structures: a forest of tries that organizes the keywords of queries

and a hash table that provides efficient access to the roots of the tries in the

forest. For instance, the queries of Table 3.1 are organized in the trie structures

of Figure 3.1. Each trie node n:

• Stores a keyword of a query, denoted by kwrd(n).

• If the keywords in a path from the root to node n spell out a query q then

n also stores a reference to q. The list of all references stored in node n is

denoted by id(n).

• If n is a leaf node then n also stores one list for each query q, denoted by

uexp(n, q), containing the keywords of query q that are not already included

in the path from the root to n.

For instance consider Figure 3.1, where kwrd(n1) = olympic and id(n1) = [q1], i.e.

node n1 stores also a reference to query q1. Consider also node n2 of trie T3 that

stores query q9 = {euro, cup, france, paris}. Notice that kwrd(n2) = {france}, and

that uexp(n2, q9) = {euro, cup, paris}. Finally, note that n2 contains all keywords of

q9 (since q9 = kwrd(n2) ∪ uexp(n2, q9)), thus, it also maintains a reference to q9.

The purpose of list uexp(n, q) is to allow for the delayed creation of nodes in a

trie; this allows us to choose which keywords from the uexp(n, q) list will become the

child of current node n depending on the queries that will arrive (and be indexed
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in this trie) later on. Note that the intersection of all uexp lists stored at a node n

is the empty set, since if there was a common keyword among them it would have

been expanded to a new node. Additionally, for all uexp lists |uexp(n, q)| > 1 holds,

i.e., lists with exactly one keyword are automatically expanded to trie nodes.

The forest of tries is populated in order to store queries compactly by exploiting

their common keywords. When a new query q arrives, Algorithm StaR considers

its keywords and inserts them in a (new or existing) trie in the forest. For this

task, StaR selects the best trie T in the forest and the best node n in that trie

to insert q (the insertion process is described later in the section). To this end,

StaR uses the concept of node reusability, denoted by nr(q, T ), that quantifies the

percentage of q’s keywords that are stored in a path starting from the root of T

and also used by other queries. More formally, nr(q, T ) = |path|
|q| , where |path| is

the size of the longest path from the root of trie T that contains only keywords

of q participating to other queries and |q| is the number of keywords in q. It

follows that 0 ≤ nr(q, T ) ≤ 1, and generally when nr(q, T ) is close to 0, trie T is

considered as a poor candidate for q because only a small fraction of terms in q

will be stored in existing nodes of T . Contrary when nr(q, T ) is close to 1, trie

T is considered as a good candidate, because a large fraction of terms in q will

be stored in existing nodes of T . Node reusability extends the clustering ratio

concept [4] with the constraint that keywords should be present in other queries

and promotes the frequent or rare keywords towards trie roots, depending on the

configuration of Algorithm StaR (discussed in Section 3.3.2).

Example 3.1 Let us consider the queries and their organization illustrated in

Figure 3.1. We have nr(q1, T1) = 2
2 , since the 2 keywords of q1 are both stored in a

path starting from the root of T1 and also used in a different query (i.e., q2). We

also have nr(q2, T1) = 2
3 , since only 2 keywords of q2 (out of 3) are stored in a path

starting form the root of T1 and also used in a different query (i.e., q1), as keyword

rio is used solely for q2. Similarly, nr(q3, T2) = 1
1 , nr(q4, T2) = 2

2 , nr(q5, T2) = 2
2 ,

nr(q6, T2) = 2
3 , nr(q7, T2) = 2

3 , nr(q8, T2) = 2
3 , nr(q9, T3) = 0

4 , and nr(q10, T2) = 2
2 .
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Algorithm: Index
Input: A query q = {k1, . . . , kt}
Result: Store q in Forest

1 currentNR← 0;
2 position← Null;
// For all candidate tries T

3 foreach trie T with root(T ) = k ∈ q do
// DFS traversal for all possible storage positions

4 foreach node n ∈ T such as kwd(n) ∈ q do
5 calculate (nr(q, T ));

// If a better position is found store it
6 if currentNR < nr(q, T ) then
7 currentNR← nr(q, T );
8 position← n;

// If q cannot be indexed in any existing trie
9 if position = Null then

10 create trie T ′ with root(T ′) such as kwrd(T ′) ∈ q;
// Index q in root(T ′)

11 id(root(T ′))← q;
// Put the rest in uexp(T ′, q)

12 uexp(T ′, q)← q \ kwrd(T ′);
13 else

// If there are no common keywords
14 if uexp(position, p) ∩ q = ∅ then

// Index q in position
15 id(position)← id(position) ∪ q;

// Put the rest in uexp(position, q)
16 uexp(position, q)← q \ {k1, ..., ky};
17 else // Else expand the common keywords
18 expand uexp(position, p) ∩ q \K;

// Index q and p at the leaf node
19 id(m)← q ∪ p;

// Remove p from id(position)
20 id(position)← id(position) \ p;

// Put the rest in two new uexp lists
21 uexp(m, q)← q \ {k1, ..., kx};
22 uexp(m, p)← p \ {k1, ..., kx};

// Gather statistics for query reorganisation
23 gatherStats(q);

Figure 3.2: Pseudocode for the query indexing phase (Algorithm Index) performed by
Algorithm StaR.
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The algorithm for inserting a new query proceeds as follows. The first query that

arrives, creates a trie with a randomly chosen keyword as the root; the remaining

keywords are stored at the uexp list of the root (Figure 3.2, lines 10 − 12). The

second query will consider being stored at the existing trie or create a new trie

(Figure 3.2, lines 9−21). In general, to insert a new query q, StaR iterates through

its keywords and utilizes the hash table to find all candidate tries; i.e., tries having

a root storing a keyword of q (Figure 3.2, lines 3− 8). To compactly store q, StaR

then chooses the trie T among the candidates for which q insertion maximizes

nr(q, T ) (Figure 3.2, lines 5− 8). To compute nr(q, T ), StaR performs a depth-

limited search with depth limit |q| − 1 in all candidate tries. This search finds node

n in T where q should be inserted (Figure 3.2, lines 4− 8). Note that the chosen

path from the root to n is the longest path in T that exclusively contains keywords

of q. If more than one tries maximize nr(q, T ), StaR randomly chooses one.

To complete insertion, the path from the root of trie T to node n, that already

stores the identifier of a query p and the set of keywords K, is then extended

with new child nodes having as keywords the intersection of uexp(n, p) and q \K

(Figure 3.2, line 18). If all keywords in q are contained in K ∪ uexp(n, p) then (a)

the keywords in q \K are expanded to trie nodes to create a path from node n to a

trie node m (Figure 3.2, line 19), (b) node m becomes a new leaf in trie T , (c) id(m)

will contain the reference to query p (previously stored in id(n)) plus a reference to

q (Figure 3.2, line 20), and (d) reference to p is removed from id(n). In this way,

list uexp(n, p) is fully expanded to trie nodes, query q is indexed in this subtrie

under all its keywords, and node m now indexes two query identifiers, namely q and

p. Otherwise, if some keywords of q are not contained in K ∪ uexp(n, p), then the

common keywords are expanded to trie nodes to create a path from node n to node

m, and node m will store two new uexp lists, namely uexp(m, p) and uexp(m, q)

(Figure 3.2, line 21). Additionally, id(m) will contain references to both p and q,

while p is removed from id(n). Notice that uexp(m, p) will contain the remaining

set of keywords of K ∪ uexp(n, p) that are not contained in q and uexp(m, q) will

contain the remaining set of keywords of q that are not contained in K ∪ uexp(n, p).
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Keyword k sprt(k) Keyword k sprt(k)

olympic 9 president 1
games 2 euro 1

rio 4 cup 1
committee 3 france 1
stadium 1 paris 1
congress 1

Table 3.2: Statistics of keywords gathered from the queries in Figure 3.1.

Also due to this node expansion process, uexp(m, p)∩ uexp(m, q) = ∅. Finally, if no

keywords of q are contained in uexp(n, p), then a new uexp(n, q) list is created in

node n and a reference to q is added in id(n). The complete pseudocode for the

query indexing phase of Algorithms StaR is presented in Figure 3.2.

Example 3.2 Figure 3.1(b) shows the forest of tries created when inserting the

queries q1, . . . , q10 (shown in Figure 3.1) in that order. The first query q1 creates

trie T1 and is indexed under the (randomly chosen) keyword games. The second

query q2 does not create a new trie, but, is indexed under T1, since this maximizes

its node reusability nr(q2, T1). The third query q3 cannot be indexed in T1, since it

does not contain the keyword games, thus, a new trie T2 is created and q3 is indexed

under the keyword olympic. Similarly, StaR inserts the remaining queries.

The time complexity of Algorithm StaR when indexing a new query q with

t distinct words is O(tt), since StaR uses a depth-first search strategy (with the

maximum depth bound by the number of distinct query words) and visits only

sub-tries that have one of the query words as root.

Finally, during the indexing phase, Algorithm StaR collects statistics about

the frequency of occurrence of keywords in queries, which are then utilized in the

reorganization phase (described in the following section). Table 3.2 presents the

statistics collected by Algorithm StaR.
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3.3.2 Query Reorganization Phase

Reorganization is a periodic procedure that initiates at given time intervals, after a

given number of query insertions, or when a criterion is met (e.g., when a certain

percentage of queries have low node utilization). Any of the above options may be

implemented in the context of Algorithm StaR; for simplicity we have selected to

reorganize the query database after the insertion ofQ new queries. It should be noted

that, contrary to Algorithm ReTrie [4] which relocates only poorly indexed queries,

StaR reorganizes only those queries inserted since the last database reorganization.

To reorganize queries, Algorithm StaR utilizes a scoring mechanism to modify

the order of insertion of queries in the database and to favor the indexing of queries

under frequent or infrequent keywords in the tries. It utilizes the support of a keyword

k (denoted by sprt(k)), which represents the number of queries in the forest that

contain the keyword k, to identify the frequent and infrequent keywords among the

queries indexed in the forest. Using the support of its keywords, we define the score

of a query q = {k1, . . . , kt}, denoted by score(q), as score(q) = ∑t
i=1 sprt(ki). As we

show later on, the score of a query plays an important role to the reorganization

phase. Note that we do not normalize score(q), as the size of a query q plays an

important role in the reorganization phase since it affects trie construction.

Example 3.3 Let us consider the queries and the index of Figure 3.1, and assume

that Algorithm StaR collected the frequencies illustrated in Table 3.2. According to

these frequencies, we have score(q1) = sprt(olympic) + sprt(games) = 9 + 2 = 11. Ta-

ble 3.3 presents the total scores of queries q1, ..., q10 as calculated by Algorithm StaR.

Query Identifier score(qi) Query Identifier score(qi)

q1 11 q6 13
q2 15 q7 14
q3 9 q8 14
q4 13 q9 4
q5 12 q10 12

Table 3.3: Query scores as calculated by Algorithm StaR.
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To maintain sprt (resp. score), Algorithm StaR utilizes a hash table, denoted

by statSprt (resp. statSco), that contains keywords k (resp. queries q) as keys and

support of keywords sprt(k) (resp. scores of queries score(q)) as values (similarly to

Tables 3.2 and 3.3). StaR employs these statistics to reorganize newly inserted

queries in the query database as follows. StaR re-indexes the newly inserted

queries {q1, . . . , qs} from the existing forest by sorting them in descending order

according to score(qi), where score(q1) ≥ score(qi) ≥ score(qs). Thus, queries

with the highest score are inserted first in the forest; this variation of StaR is

identified as StaR-H. Respectively, Algorithm StaR could re-index all the newly

inserted queries by sorting them in ascending order according to score(qi), where

score(q1) ≤ score(qi) ≤ score(qs). Thus, queries with the lowest score are inserted

first in the forest; this variation of StaR is identified as StaR-L. According to

StaR-H, the new order of insertion will be q2, q7, q8, q4, q6, q5, q10, q1, q3, q9, while

StaR-L uses the inverse order. As we will show in Section 3.6, the problem of query

insertion order is important; the first queries to be indexed define the clustering

opportunities for the subsequent ones.

Apart from defining the insertion order of queries, StaR also utilizes the support

of a keyword sprt to influence the construction of tries in the following way. The

query insertion algorithm described in the previous section is modified so that when

a query q = {k1, . . . , kt} is indexed in a new trie T ′ (because there is no other

trie having a root with a keyword in {k1, . . . , kt}), the most frequent keyword in

q is chosen as the root of T ′, while the rest of the keywords remain in the uexp

list. Additionally, when a query q is indexed under a node n of trie T because it

maximizes its node reusability nr(q, T ), the path from the root to n is extended

with nodes containing the most frequent keyword from the uexp(n, q) list. In this

way, StaR creates tries that index the most frequent keywords near the roots,

while the rare keywords are pushed deeper in the trie. It is important to note

that node reusability is still the criterion for deciding where to index a query, while

keyword support is used to solve ties between equally good (or poor) positions

in existing tries and to enforce roots of new tries. This indexing scheme creates
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Figure 3.3: The Forest data structure after the reorganization phase of Algorithm
StaR-LR for the queries of Figure 3.1.

a new variation for Algorithm StaR, identified as StaR-F. In the same spirit,

Algorithm StaR is modified to influence the insertion of query q based on its

most rare keywords. In this case, the most rare keyword of a query q is chosen

as the root of a new trie T ′ and new paths with nodes containing the most rare

keywords from the uexp lists are created. The last variation of Algorithm StaR, is

identified as StaR-R. As we will show in Section 3.6, the frequency of keywords

plays an important role in filtering time.

Words near
Query score and
insertion order

the roots High-to-low Low-to-high

Frequent StaR-HF StaR-LF
Rare StaR-HR StaR-LR

Table 3.4: Variations for Algorithm StaR

The above options that define the indexing order of the queries and influence the

construction of tries by using keyword frequency, provide four distinct variations for

Algorithm StaR, identified as StaR-HF, StaR-HR, StaR-LF, and StaR-LR.

Each variation has its own characteristics, which are summarized in Table 3.4, and

requires a different parameter setting. All these options, along with the filtering

performance of each variation are discussed in Section 3.6.
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Figure 3.3 shows the Forest data structure after the reorganization phase of

Algorithm StaR-LR is executed. Notice that compared to the previous forest

(shown in Figure 3.1), all queries are now indexed under two tries and utilise one trie

node less (10 trie nodes in the initial forest vs. 9 trie nodes in the reorganized one).

Finally, notice that node reusability of q1 is reduced from nr(q1, T1) = 2
2 (Figure 3.1)

to nr(q1, T2) = 1
2 (Figure 3.3), while it remained the same for the rest of the queries.

As we will demonstrate in Section 3.6, the most important factor for the filtering

performance of the algorithms is the nature of the created forest and the way it is

constructed, rather than the trie compactness and the high node reusability values.

The time complexity of Algorithm StaR, when reorganizing a set of newly

indexed queries Q with at most t distinct words each, is bound by O(QlogQ+Qtt),

since StaR has to sort the queries according to their score and reinsert them

in the trie forest.

3.3.3 Filtering Incoming Documents

When a document d is published, the filtering procedure for Algorithm StaR is

performed by Algorithm Filter illustrated in Figure 3.4. For each distinct keyword

kj of d maintained in a linked list created at the preprocessing step of d (Figure 3.4,

line 2), the trie of Forest that has keyword kj as root is traversed in a depth-first

search manner (Figure 3.4, line 3). Notice that only subtrees having as root the

keyword kj contained in document d are examined (since only these may contain

potentially matching queries), and a hash table (also created at the preprocessing

step of d) that indexes all distinct keywords of d is used to identify them quickly.

At each node n of a trie, the id(n) list gives implicitly all queries that match the

incoming document d (Figure 3.4, lines 5− 8). To identify all qualifying queries,

this procedure is repeated for all the keywords of d.

The time complexity of filtering for Algorithm StaR is O(tt) for a document

d with t distinct words, since StaR uses a depth-first search strategy (with the

maximum depth bound by the number of distinct words in the document) and

visits only sub-tries that have one of the document words as root. For this traversal,
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Algorithm: Filter
Input: A document d = {k1, . . . , kt}
Output: A list of queries match = {qi, . . . , qj}

1 match← Null;
// Use a linked list for distinct keywords of d

2 foreach distinct keyword k ∈ d do
3 foreach trie T with root(T ) = k ∈ d do
4 foreach node n ∈ T do

// Use a hash table representation of d to check this
5 if kwrd(n) ∈ d then
6 if uexp(n, q) ⊆ d then

// The queries stored here match d
7 match← match ∪ id(n);

// Traverse trie in DFS
8 n← children(n);
9 else

// Else do not search in sub-tries
10 prune n;

// Return list of matched queries
11 return match;

Figure 3.4: Pseudocode for the document filtering phase (Algorithm Filter) performed
by Algorithm StaR.

StaR performs O(tt) probes to the hash table representation of document d; this

leads to an overall filtering time complexity of O(tt).

In a pub/sub system the publication events are more frequent compared to

the subscription events, i.e., the information flow is constantly high, contrary to

subscriptions that are updated at a lower rate. Additionally, the filtering procedure

is a process that does not affect the structure of the Forest and is executed

in a serialized manner. In the following section, we present and investigate two

parallelization variations of StaR that speedup filtering.

3.3.4 Parallelization of the Filtering Process

An elegant way of enhancing the performance of Algorithm StaR is by parallelizing

the filtering process. Such an improvement is critical as filtering algorithms are
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expected to process high volumes of incoming information as efficiently as possible.

Here we identify two proof-of-concept parallelization variations of Algorithm StaR.

Document parallelization (DocPar) is a straightforward solution where a

free thread Thf of the processor is assigned to execute the filtering process for

an incoming document di. Thread Thf executes the filtering process for di as

described in Algorithm Filter; if a new document dn arrives at the system it

is assigned to another unoccupied thread. Thereby, every available thread in

the system can be utilized to improve the filtering performance. In this way, we

avoid the sequential filtering of a queue of incoming publications and significantly

reduce their service time.

Contrary to the document parallelization approach, root parallelization (RootPar)

assigns a set of available threads {Thi , . . . ,Thn} to serve the Forest during

the filtering time. Each thread Thd is dedicated to a random sub-set of roots

{Tj, . . . , Tm} of the Forest. When a document di is published the filtering

procedure is executed as described in Algorithm Filter, while the only difference

is that when a trie T with root(T ) = k ∈ di is located the traversal of that trie is

handled by the thread that is assigned to trie T (Figure 3.4, line 3). Thus, the

Forest can be searched simultaneously by more than one threads.

Both approaches extend StaR to multi-core environments and allow it to exploit

shared memory capabilities of modern hardware to perform faster filtering, opposed

to the sequential approach where a single thread traverses all the matching tries

T in order to examine possible matching queries.

3.4 Competitors

To evaluate our algorithm (presented in the previous sections), we implemented two

trie-based competitors from the existing state-of-the-art solutions in the literature:

(i) Algorithm ReTrie [4] that employs partial query reorganization for poorly

clustered queries and (ii) Algorithm Tree [5] that does not employ any form

of query reorganization and indexes queries in a deterministic way (i.e., based

on the order of insertion).
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3.4.1 Algorithm ReTrie

Algorithm ReTrie [4] organizes queries into tries and maintains a data structure

that monitors the number of poorly clustered queries in the system (i.e., queries with

only a few words clustered in the trie). When a certain threshold of poorly clustered

queries is reached, the reorganization process is triggered and all poorly indexed

queries are examined and re-indexed. By choosing to reposition only poorly indexed

queries, Algorithm ReTrie misses many available reorganization options and is

bound to use the existing tries (new trie creation is very rare). Time complexity

for Algorithm ReTrie is O(tt) for the query indexing phase and O(Qtt) for query

reorganization, where Q is the number of queries to be reorganized and t is the

number of distinct query words. Similarly the time complexity of filtering is O(tt),

where t is the number of distinct words in the document.

The main differences between Algorithms StaR and ReTrie are as follows.

Algorithm StaR (i) uses a query indexing mechanism that builds tries based on

statistical information about query words, (ii) destroys poorly performing tries and

creates new ones based on query scores, (iii) repositions newly inserted queries

only, and (iv) emphasizes trie shape rather than trie compactness. Following our

running example, Algorithm ReTrie would not reposition any query in the forest

of Figure 3.1, although better alternatives are available as presented in Figure 3.3.

3.4.2 Algorithm Tree

Algorithm Tree [5] organizes queries in tries by relying on common subsets of

queries, without employing frequency information or resorting to query reorgani-

zation. Contrary to both ReTrie and StaR algorithms, that seek for the best

position in the available tries to index a new query, Algorithm Tree places the

query in deterministic fashion, by sorting query words alphabetically in an effort

to increase the common subsets of words. This deterministic query placement

misses many good indexing positions for the queries, as it emphasizes insertion

time over query clustering. Time complexity for Algorithm Tree is O(tlogt) for
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the query indexing phase and O(tt) for the filtering phase, where t is the number

of distinct query and document words respectively.

The implemented competitors highlight the different aspects examined by our

research work. Compared to Algorithm ReTrie, Algorithm StaR demonstrates

the difference between partial and extensive query reorganization, and emphasizes

the importance of statistics in the reorganization process. Additionally, Algorithm

Tree is implemented to demonstrate the difference between deterministic and

non-deterministic query placement, and its lack of reorganization in the filter-

ing efficiency.

3.5 Supporting Richer Query Languages

Algorithm StaR is easily extendible to more sophisticated data models and query

languages by adding appropriate data structures and modifying the filtering process

accordingly. In this section, we outline the necessary additions and modifications

to support attributes and proximity operators.

Attributes may be introduced by creating a hash table (that will use the attribute

name as key) and a forest of tries (like the ones presented in Figures 3.1 and 3.3)

for each attribute A in the data model. Access to each data structure will then

be provided by a hash table that will use the attribute name as key. Similarly, we

may use one table per attribute to maintain statistics of words in each attribute.

Reorganization will then be executed independently for each attribute; when a

document d is published, the filtering procedure for Algorithm StaR is modified

so that for each attribute A in the document and for each keyword k in A, the

trie in the forest of A that has the word k as root is traversed using the filtering

algorithm of Section 3.3.3. Finally, list id(n) in each trie node n gives implicitly

all queries that match d for attribute A; thus, a query q will match a document

d if q matches all attributes of d.

Different types of proximity formulas (e.g., operators near of Lycos and

Altavista, ‘*’ operator of Google, or proximity formulas of arbitrary distance intervals

as in [113]) may also be easily supported by StaR. The words that are operands in
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proximity formulas are stored in the forest of tries (since proximity is a stricter form

of conjunctive queries), while the distance intervals are stored in a separate data

structure. Proximity formulas are initially evaluated as conjunctive queries, and the

satisfaction of word order and distance is evaluated separately using an algorithm

like [44]. Other useful query components, like equality, disjunction, and negation, are

also straightforward to support in the current indexing scheme. Finally, notice that

handling more complex semantics is possible through semi/fully-automated query

generation as in recommender systems, or through query expansion/augmentation

techniques with the aid of taxonomies or dictionaries.

3.6 Experimental Evaluation

In this section, we proceed in presenting a series of experiments that aim at

providing a quantified efficiency comparison of our proposed solutions against

state-of-the-art competitors. To this end, we compare the filtering performance of

Algorithm StaR, described in Section 3.3, to efficiently solve the IF problem against

the trie-based Algorithm ReTrie [4] and Algorithm Tree [5]; both solutions were

described in detail in Section 3.4.

Since we are examining an information filtering scenario, it is important to

investigate the behavior of the algorithms when varying both the query database

and the document data sets. Thus, we choose to simulate four distinct experimental

setups, that aim at providing a detailed performance evaluation. Specifically,

we carefully designed two experimental setups that examine the performance of

the proposed algorithms under two different query databases, each with different

properties; these setups allow us to test the behavior of the algorithms under varying

queries and a constant document set. The third experimental setup examines the

proposed algorithms when varying the document set, but, considering a specific

query database. Finally, the fourth experimental setup examines the performance of

our solutions under a real-world query set, the Million Query Track [114] and

the ClueWeb09 corpus.



62 3.6. Experimental Evaluation

Description Value

Vocabulary size 3.14M
Average document size (words) 53
Maximum document size (words) 14, 425
Minimum document size (words) 1
Maximum word size (letters) 57
Minimum word size (letters) 1

Table 3.5: Characteristics of the DBpedia corpus.

3.6.1 Experimental Setup

In this section we present the data sets and discuss the way we proceeded in

generating the query sets. Furthermore, we present the underlying algorithmic

configuration, since each algorithm is dependent on different parameters. Finally, we

provide the technical configuration as well as, the metrics employed in our evaluation.

Data and Query Sets

For the evaluation we used two different real-world datasets and both synthetic

and real query sets as described below.

The DBpedia Corpus. The first dataset used in our experiments is based on

the DBpedia corpus, which consists of a wide and thematically unfocused set

of documents; it contains more than 3.7M documents, has a total vocabulary

of 3.14M words, and its average document size is 53 words. Each document is

an extended Wikipedia abstract downloaded from the DBpedia website (http:

//wiki.dbpedia.org/Downloads39). Table 3.5 summarizes some key characteristics

of the DBpedia corpus.

The Clue Web 09 Corpus. The second dataset used of our experimental setup

is the ClueWeb09 corpus, a collection of web pages crawled form the World Wide

Web. ClueWeb09 contains approximately a billion web pages and constitutes a

wide and thematically unfocused set of documents.

Continuous Query Sets

http://wiki.dbpedia.org/Downloads39
http://wiki.dbpedia.org/Downloads39
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As no database of real-life continuous queries was available to us, except by

obtaining proprietary data (e.g., by a news alerting system), we constructed three

query sets with different properties discussed below, similarly to [4, 5]. In an

information filtering scenario it is important to investigate the performance of the

proposed algorithms under varying query sets as much as varying document sets.

Specifically our first two experimental setups were based on a single document

set, taken from DBpedia corpus, but utilized two query databases with different

properties. These two setups, namely the general query collection and the focused

query collection, will allow as to test the behavior of the examined Algorithms

under varying queries. The third experimental setup was based on documents

from DBpedia corpus, where the query database maintains its properties but the

documents nature changes allowing us to examine varying document sets. Finally,

the fourth experimental setup was based on the real-world query set, Million Query

Track [114] and the ClueWeb09 corpus.

The general query collection

The general query collection contains queries formed by conjunctions of different

terms; each term conjunct is selected equiprobably among the set of words forming

the DBpedia corpus vocabulary (3.14M) and the set of wikipedia document titles.

Due to the nature of the DBpedia corpus and the corresponding vocabulary size,

the constructed queries are expected to cover a wide variety of topics and, thus,

share few common words between them. This restricts clustering opportunities and

makes this setting a stress test for the filtering performance of the algorithms, as

they are forced to identify and exploit the few commonalities between the indexed

queries. For this query set, we select 50K documents’ extended abstracts from

DBpedia and use them as the incoming documents.

The focused query collection

The focused query collection is constructed by selecting 50K thematically related

extended abstracts from DBpedia and using the 46K distinct words appearing in

those documents. As these queries become more focused and the vocabulary of the

query database is restricted, more clustering opportunities appear. In this setting,



64 3.6. Experimental Evaluation

Collection

Description General Focused

Vocabulary size 762K 46K
Average query length 3− 5 3− 5
Complex terms size 2.8M 0
Average complex term 2.47 0
length (words)
Complex terms per 50% 0%
query length

Table 3.6: Characteristics of general and focused query collections.

the performance of the different algorithms is expected to be similar, as all will exploit

the many clustering opportunities offered. Notice that the 50K incoming documents

utilized in this section are the same ones used in the general query collection, since

we aim to study the behavior of our algorithms when varying the query set.

Table 3.6 summarizes some key characteristics of the general and focused query

collections. More specifically the vocabulary size of the general query collection

is 726K unique terms, while the vocabulary size of the focused query collection

is much more restricted at 46K terms. Additionally, each query set, has three

subsets of queries, each subset has an average length of 3, 4, and 5 terms. The

general query collection contains 2.8M complex terms of an average length of 2.47

simple terms, while the focused query collection does not contain any complex

terms. Finally, 50% of the terms that formulate a query, in the general focused

collection, are complex terms.

Algorithm Configuration

There is a number of system parameters, which affect the performance of the

presented algorithms that have to be determined and set. For our evaluation, we

use a clustering ratio of 0.8 for ReTrie (selected after an exhaustive scan of all

possible parameter values), while query reorganization for under-clustered queries is

invoked every IQ = 125K query insertions. Regarding StaR, the reorganization of
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Parameter Description Baseline value

QL Average number of words 5
per query

DL Average number of words 53
per document

IQ Number of incoming queries 500K
ID Number of incoming documents 50K
DB Number of queries indexed 3M

in the database
Th Number of threads used for 1

the filtering process

Table 3.7: Parameters’ description and their baseline values.

each variant is invoked when IQ = 500K new queries are indexed for StaR-LF and

StaR-LR, and when IQ = 125K and IQ = 250K for StaR-HF and StaR-HR

respectively. To measure the performance of the filtering process, we utilise the

general query collection in our experimental setup to compare the performance

of the two proposed approaches.

Finally, for the parallelization of the filtering process we utilized a set of 6

threads available in the processor. The baseline values for each tunable parameter

in the experimental evaluation are: (i) average query length QL = 5, (ii) average

document length DL = 53, (iii) number of incoming queries IQ = 500K, (iv) number

of incoming documents ID = 50K, (v) query database size DB = 3M , and (vi)

threads used in the filtering process Th = 1. Table 3.7 summarizes the parameters

examined in our experimental evaluation. For more details about the parameter

setting we refer the interested reader to [4, 5].

Metrics Employed

In our evaluation, we use the number of nodes in the forest of tries to measure

the quality of clustering for each algorithm. As all algorithms index the same

query database, a lower number of trie nodes indicates a more compact clustering.
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Additionally, we use filtering time to measure the filtering performance of each

algorithm, i.e., the amount of time needed to locate all continuous queries satisfied

by an incoming document. We also present the algorithms’ throughput to study

their performance as the query database size increases, i.e., the amount of filtered

data per second. Finally, we measure insertion and reorganization time to identify

the time needed to index and reorganize queries, and give the memory requirements

for each algorithm.

Technical Configuration

All the algorithms shown in the experiments of this section were implemented in

C++. For the parallelization of the filtering process, C++ library <thread> was

used. An off-the-shelf PC with a Core i7 3.6GHz processor and 8GB RAM running

Ubuntu Linux 14.04 was used. The time shown in the graphs is wall-clock time

and the results of each experiment are averaged over 10 executions to eliminate any

fluctuations in time measurements. All algorithms under consideration index the

same query database, and filter the same set of incoming documents.

3.6.2 Results for the General Query Collection

In this section, we present the results of the evaluation process for the general

query collection described earlier and highlight the most significant findings for

the proposed algorithms.

Comparing Filtering Time

This section discusses the results concerning the filtering time required to match

an incoming document against a database of queries. The time shown in the

graphs represents the average time spend to filter a collection of ID = 50K

documents with DL = 53 words.

Figure 3.5 shows the average time in milliseconds needed to filter a collection

of ID = 50K documents with DL = 53 words against a database of different size

when indexing queries with QL = 5 terms. Observe that filtering time increases

for all algorithms as the query database size increases. Algorithms StaR-LR and
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Figure 3.5: Comparing the filtering time efficiency, of all algorithms, when varying the
size of query database DB.

StaR-HR (that store rare words near the roots of tries) achieve the lowest filtering

times, suggesting better performance than their counterparts Algorithms StaR-

HF and StaR-LF (that store frequent words near the roots) and competitor

Algorithms ReTrie and Tree. Additionally, Algorithms StaR-HF, StaR-LF,

and Tree are more sensitive to query database size changes than the rest of

their competitors since frequent words are stored near trie roots, which requires

traversing more tries at filtering time.

In more detail, Algorithm StaR-LR filters incoming documents 74.75% faster,

when compared against Algorithm ReTrie and 147% faster than Algorithm Tree.

Moreover, StaR-HR outperforms ReTrie by 96.14% and Tree by 178.15%. On

the other hand, Algorithms StaR-HF and StaR-LF are slower than Algorithms

ReTrie and Tree. More specifically, Algorithm StaR-HF needs 61.5% more

time to filter an incoming document than ReTrie and 45.46% more time than

Tree. Finally, StaR-LF shows similar performance, executing the filtering process

57.22% slower than ReTrie and 39.33% slower than Tree.

Figure 3.6 shows the filtering time for queries of different length. It is worth

noting, that all algorithms (except Algorithm Tree that remains unaffected)

improve their filtering performance when the query size is increased, as longer
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Figure 3.6: Comparing the filtering time efficiency, of all algorithms, when varying the
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# of queries Algorithm

StaR-LR StaR-HR StaR-LF StaR-HF

Time Increase Time Increase Time Increase Time Increase
(msec/doc) (times) (msec/doc) (times) (msec/doc) (times) (msec/doc) (times)

1M 0.20 – 0.087 – 0.16 – 0.33 –
10M 0.28 0.4x 0.34 2.9x 0.81 4x 11.56 34x
100M 2.31 10x 3.66 41x 5.24 32x 39.72 119x

Table 3.8: Filtering scalability in a big data setup for all variations of Algorithm StaR.

queries provide better indexing alternatives and more opportunities for pruning of

tries at filtering time. In addition, Algorithms StaR-HF and StaR-LF present a

high decrease in filtering time which is attributed to their poor filtering performance

that has more margin for improvement. On the other hand, Algorithms StaR-

HR, StaR-LR, and ReTrie exhibit a smaller decrease in filtering time when

the query length is increased.

Comparing Filtering Time in a Big Data Setup

Table 3.8 reports the results for a stress test of the proposed algorithms under a

big data setup. To do so, we conducted a filtering experiment in an Intel Xeon
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Figure 3.7: Comparing the number of trie nodes, when varying the average query length
QL and the query database size DB.

2.7GHz server with 264GB RAM, using up to two orders of magnitude more

queries and the whole DBpedia document collection as the stream of documents to

be filtered. The resulting experiment ended up filtering a stream of 3.7M documents

(totaling an uncompressed size of 5.5GB) against a query database of 100M queries

(totaling a size of 7GB) for all variations of our algorithms. In the “Time” column

of each algorithm we report the average filtering time per document for each query

database, while in the “Increase” column we report the increase (in number of

times) for the 10M and 100M queries against the base case of 1M queries. Our

findings show that our solution is scalable: for a 10 (resp. 100) times increase in

the query database size, the corresponding increase in filtering time of our best

solution is no more than 0.4 (resp. 10) times.

Comparing Trie Compactness

Studying the number of new trie nodes created by each algorithm will demonstrate

the compactness of the created tries and consequently, the query clustering achieved.

In this section, we aim at examining the relationship between the compactness of

the forest and the filtering performance of each algorithm.

Figure 3.7 shows the number of nodes created by each algorithm for databases

containing 1, 2 and 3 millions queries of different average lengths. Observe that
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StaR-LR, StaR-HR and Tree create relatively larger forests, while StaR-HF

and StaR-LF create relatively smaller ones. Also, increasing the number of query

length, from 3 to 5 terms on average, results in an increase in the forest size.

Interestingly, the difference in trie nodes between the algorithms remains unchanged.

This can be explained as follows. StaR-LR and StaR-HR create relatively large

forests as they index rare words towards the roots of tries and frequent words

towards the leaves. In this way, the lower levels of tries tend to repeat words

with high frequency of occurrence, thus, creating many tries with higher fanout

and lower node reusability. Contrary, Algorithms StaR-HF and StaR-LF create

relatively small forests as they push the most frequent words towards the roots of

the tries. This, creates more compact tries as many repeated words are indexed

in the same trie node, thus, resulting in high node utilization. Algorithm Tree

creates large forests as it utilizes a naive query placement technique and implements

no reorganization. Finally, Algorithm ReTrie creates an average-sized forest, as it

focuses on query clustering rather than word statistics to index queries.

The results in Figure 3.7 suggest that StaR-HF creates 4.94% (948K) less nodes

than ReTrie and 12.88% (2.474M) less nodes than Tree. Similarly, StaR-LF

creates 5.46% less nodes than ReTrie and 13.44% less nodes than Tree. On

the other hand, StaR-HR creates 7.5% more nodes than ReTrie and 0.5% more

nodes than Tree. Additionally, StaR-LR creates a larger forest by 8.86% nodes

compared to ReTrie and by 1.96% nodes compared to Tree.

Figure 3.8 shows the increase in forest size after the insertion and reorganization

of 500K queries with QL = 5. As expected, results are similar to those of Figure 3.7,

as all algorithms demonstrate the behavior discussed above and rank with regard

to node increase. One important finding emanating from this comparison is that

the rate of node creation is decreasing as new queries arrive, since all algorithms

use existing trie nodes to index the new queries. Additionally, Algorithms StaR-

HF, StaR-LF and ReTrie are less sensitive to query insertion, demonstrating

a continuously decreasing number of newly created nodes compared to StaR-LR

and StaR-HR. This is due to the exploitation of frequent words between queries
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Figure 3.8: Comparing newly created trie nodes, when inserting queries in a query
database of varying size DB.

and the construction of more compact tries compared to Algorithms StaR-LR and

StaR-HR, where query clustering is affected by infrequent words.

All the above observations lead us to the conclusion that the algorithms which

store frequent words near the roots of the tries (i.e., StaR-HF and StaR-LF) tend

to create smaller forests compared to their counterparts and competitors. In the

next section, we will demonstrate that the creation of compact tries is not always

a clear indicator for filtering performance, as filtering time is also affected by the

shape of tries and the words contained in the incoming documents.

Comparing Efficiency Against Compactness

Comparing the results of node creation and filtering time, we can infer that the

nature of the forest and the way it is constructed has a more significant effect on

filtering performance than trie compactness, since it is shown (Figures 3.5, 3.6, 3.7

and 3.8) that the algorithms creating the less compact forests result in the lowest

filtering times. This can be explained as follows. Algorithms ReTrie, StaR-HF,

and StaR-LF tend to locate and group queries under common words and create

compact forests with frequent words near the trie roots. At filtering time, incoming

documents match many trie roots, thus, needing to traverse more tries to examine
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Figure 3.9: Comparing filtering throughput, when varying the query database size DB.

all possible query matches. Additionally, for each trie, the filtering process cannot

prune many subtries, as the infrequent words are stored near the trie leaves. This

results in the traversal of the whole trie structure all the way to the leaves of every

subtrie to determine whether a query is relevant to the incoming document or not.

Contrary, Algorithms StaR-LR and StaR-HR locate and store rare words in

nodes closer to trie roots, thus, organizing queries in subtries under their common

(rare) words. This organization of queries, prevents the filtering process to visit

many tries, and prunes subtries much earlier, due to the low probability of a rare

word being present in an incoming document.

Notice also that the utilization of query score allows us to enforce at indexing

time a query order based on query importance. In this way, queries consisting of

many words ordered from rare to frequent (i.e., Algorithm StaR-HR) are inserted

first during the reorganization phase allowing the creation of more tries. Those

tries are then used as the guides that push frequent words further down the trie

structure. This approach causes StaR-HR to be 10.9% more efficient in terms

of filtering time when compared to StaR-LR.
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Figure 3.10: Comparing filtering throughput, when varying the query database size
DB for 2M till 3M (Enhanced view of Figure 3.9).

Comparing Filtering Throughput

In this section, we present the findings of the algorithms throughput and their

performance as the database of queries increases. Figures 3.9 and 3.10 shows the

throughput in KB/sec needed to filter ID = 50K incoming documents against

a query database of different size indexing queries with 5 terms. Notice that

throughput decreases for all algorithms rather rapidly as the query database size

increases. Algorithms StaR-HR and StaR-LR achieve higher throughput than

the other variants of StaR (i.e., StaR-HF and StaR-LF) and their competitors

Tree and ReTrie. Observe that Figure 3.10 is an enhanced view of Figure 3.9

for a clearer presentation of throughput results for [2M, 3M ] queries.

Figure 3.11 shows the filtering throughput for queries of different lengths. As

expected all algorithms (except Tree) exhibit an increase in filtering throughput

as longer queries provide better indexing opportunities. Algorithms StaR-HR

and StaR-LR present higher increase in terms of filtering throughput, which is

attributed to the nature of tries they create, namely the pruning of tries at filtering

time due to the existence of rare words near trie roots.

Notice that the throughput of all algorithms decreases with the increase in the
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Figure 3.11: Comparing filtering throughput, when varying the average query length
QL, for a database size of DB = 3M queries.

database size, since each incoming document has to be matched against more queries

indexed in the data structures of the algorithms. Moreover, the throughput of all

algorithms (apart from StaR-HR and StaR-LR) remains relatively unaffected

by the increase in the average query length, since these algorithms focus on forest

compactness and thus their filtering throughput is not affected by the number of

query words. Contrary, Algorithms StaR-HR and StaR-LR (that place rare

words at the top of the tries) benefit from longer queries, since they may exploit

more pruning opportunities.

Comparing insertion time

In this section, we discuss the time needed to insert a query and reorganize databases

of different sizes. Figure 3.12 shows the time in seconds required to insert IQ = 500K

queries with QL = 5 terms in databases of varying size. We observe that the insertion

time of all algorithms increases with the query database size. Algorithms StaR-HF

and StaR-LF need more time to insert new queries in the existing database since

they need to examine more tries as possible indexing locations. This happens due

to the nature of the tries, which index frequent words near the trie roots, thus,

create more indexing opportunities. Algorithm ReTrie requires less time to insert
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Figure 3.12: Comparing insertion time, when varying the query database size DB, for
a query set of average length QL = 5 terms.

new queries in the database than StaR-HF and StaR-LF, as it has less indexing

opportunities. Next, Algorithm Tree requires less time to insert queries in the

database as it places queries deterministically in the tries. Finally, Algorithms

StaR-LR and StaR-HR tend to explore less candidate tries as rare words in

trie roots exclude many clustering possibilities.

Comparing Reorganization Time

In this section, we measure the time needed to reorganize IQ = 500K for varying

database sizes. Figure 3.13 presents the time needed to reorganize a query database

for each of the presented algorithms (except Tree that does not consider any

query index reorganization). Algorithms ReTrie, StaR-LF and StaR-HF need

more time to reorganize IQ = 500K queries compared to the rest of the examined

algorithms, and the time needed increases as the query database increases. This

can be explained as follows. As the database indexes new queries the clustering

opportunities for queries increase. Algorithm ReTrie that aims at reorganizing

poorly clustered queries has to scan the whole query database to locate them and

subsequently identify better indexing positions. Similarly, Algorithms StaR-LF

and StaR-HF are affected by frequent words in the higher levels of the forest
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Figure 3.13: Comparing the reorganization time, when varying the query database size
DB, for a query set of average length QL = 5 terms.

resulting in an extensive search on the query database at reorganization time.

Notice that, as the database grows in size, the re-indexing options increase, thus,

resulting in increased reorganization time. Contrary, Algorithms StaR-LR and

StaR-HR are slightly affected by the increase in database size, due to the use

of infrequent words near trie roots.

To test the efficacy of full query database reorganization we have considered

such a scenario for Algorithms ReTrie and StaR-LR (our fastest performing

solution); in our setup both algorithms executed a complete reorganization for a

query database of 3M queries with QL = 5 terms. The total reorganization times

obtained were 68 minutes (a three orders of magnitude or 2626 times increase from

the partial reorganization solution) for Algorithm ReTrie and 24 minutes (a four

orders of magnitude or 11673 times increase from the partial reorganization solution)

for Algorithm StaR-LR. The respective gain in filtering time was a 96% decrease

for Algorithm ReTrie and a 95% decrease for Algorithm StaR-LR in filtering time.

These results suggest that choosing a complete database reorganization provide a

substantial gain in filtering time, however a full query database reorganization is an

expensive choice, when taking into consideration the three (Algorithm ReTrie)

and four (Algorithm StaR-LR) orders of magnitude increase in reorganization time.
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Figure 3.14: Comparing memory requirements, for a query database of size DB = 3M
and average query length QL = 5 terms.

Thus, when employing this approach (in a real world scenario) this substantial

trade-off should be taken into consideration.

In order to assess the memory requirements of the presented algorithms, we

have also designed and executed suitable experiments. Figure 3.14 exhibits a good

overview of the results for DB = 3M queries and varying QL terms. For a database

of DB = 3M and QL = 5, Algorithm ReTrie has the lowest memory requirements

needing 981 MB for storing the query database and all indexing components, while

Algorithms StaR-LF and StaR-HF need approximately 1 GB of memory to

store this information. Algorithms StaR-LR and StaR-HR need more than 1.1

GB of main memory due to the non-compact forests they create, and Algorithm

Tree needs around 1.5 GB memory to store the query database. The excessive

memory requirements of Algorithm Tree (compared to StaR and ReTrie) are

explained as follows. Algorithm Tree creates a new node for every term that

can not be indexed into an existing trie. In contrary, StaR makes use of the

uexp structure (as described in Section 3.3.1), which allows the delay of the node

creation, thus, sorting the word in a list of strings and resulting to less indexing

memory requirements. Notice also, that StaR’s variants and ReTrie have extra

memory requirements in order to keep the appropriate data in auxiliary structures
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Figure 3.15: Comparing the number of trie nodes, when varying the average query
length QL and the query database size DB, for the focused query collection.

for their reorganization phase; Algorithm ReTrie requires 150 MB and StaR’s

variants 50 MB extra (shown in Figure 3.14).

3.6.3 Results for the Focused Query Collection

In this set of experiments, we examine the performance of the algorithms under the

focused query collection, as described in Section 3.6. To this end, we present the

most interesting results and insights that arise in this experimental setup.

Figure 3.15 shows the number of nodes created by each algorithm for databases

containing 1, 2 and 3M queries of different lengths. Observe that all algorithms

behave similarly in terms of nodes created; the differences in the sizes of the

resulting forest among the examined algorithms did not exceed 1%. This was

expected as the small vocabulary of the focused collection created many clustering

opportunities for all algorithms. In such a setting it is not important where to

index a given query, as most queries will eventually be well-clustered. Naturally,

the differences in filtering time (shown in Figure 3.16) are not significant (notice

the small scale of the y-axis) with Algorithms Tree and ReTrie performing

slightly better than the StaR variants.
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Figure 3.16: Comparing the filtering time efficiency, of all algorithms, when varying
the average query length QL, for a query database of DB = 3M queries, for the focused
query collection.

The most interesting conclusions concerning the performance of the algorithms

are extracted from the cross-comparison results of the examined query collections

in Figures 3.6 and 3.16 . By comparing the filtering performance of the examined

algorithms, we observe that Tree, ReTrie, StaR-HF, and StaR-LF are very

sensitive to vocabulary variations; the increase in filtering time is 122%, 46%,

229%, and 196% respectively when increasing the vocabulary size, for the same

query database size and query length. On the other hand, Algorithms StaR-

LR and StaR-HR present a decrease in filtering time, since word statistics for

bigger vocabularies contain more information to be exploited. Finally, comparing

the absolute filtering times for the two collections, we conclude that Algorithms

StaR-LR and StaR-HR deliver a steady filtering efficiency independently of

the vocabulary size used.

3.6.4 Results for the Varying Document Length Collections

A key characteristic of the documents selected for the previous evaluations is their

average length, which is 53 words for the DBpedia corpus. As we also want to
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Figure 3.17: Comparing the filtering time efficiency, of all algorithms, when varying the
average document length DL, for a query database of DB = 3M queries, for the varying
document length collection.

examine the behavior of the algorithms when filtering larger documents, we select

100 documents with average length of 200, 400, 600, 800, and 1, 000 words and

present the most interesting results regarding the observed filtering times by the

examined algorithms. Notice that, documents with a high number of words are

expected to increase the probability of matching with the stored queries, resulting

to a deeper search at our trie-based data structures. The query database used in

this setup is the general query collection described in Section 3.6.1.

Figure 3.17 shows the time in milliseconds needed to filter documents with

varying average length, when storing DB = 3M queries with average length of

QL = 5 words. As expected, the filtering time increases with the increase in incoming

documents length. All algorithms though, present the same behavior discussed

earlier in this section, except ReTrie that exhibits higher sensitivity to document

size variation; as the average length of the incoming documents increases Algorithm

ReTrie gradually needs more filtering time compared to Tree. This happens

because Algorithms ReTrie, StaR-HF, and StaR-LF tend to group queries

under common words and create forests with the majority of common words near

the roots. Thus, due to larger document length, Algorithms ReTrie, StaR-HF,

and StaR-LF are forced to visit the lower levels of the trie, i.e., near the leaves
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Figure 3.18: Comparing the filtering time efficiency, of all algorithms, when varying the
query database DB, for the Million Query Track dataset.

where the fan out is greater due to poor clustering. The presented results suggest

that StaR-LR and StaR-HR perform 70% better in filtering time compared to

ReTrie and Tree. These differences in filtering times hold for all sizes of document

collections, allowing us to conclude that StaR-HR and StaR-LR present a steady

filtering efficiency that remains relatively unaffected from the document size.

3.6.5 Results for the Million Query Track Dataset

In this section, we present the most interesting results concerning the Million Query

Track dataset (as described in Section 3.6.1).

Figure 3.18 presents the average time in milliseconds needed to filter a collection

of ID = 50K incoming documents against a query database of increasing size. In this

scenario, all algorithms exhibit a similar behavior as in the general query collection

presented earlier. Although, Algorithms StaR-HR and StaR-LR maintain their

low filtering time in this query collection, Algorithm ReTrie preforms slightly

worse, while Algorithm StaR-LR is faster compared to StaR-HR. More specifically,

StaR-HR filters incoming documents 16.7% faster than ReTrie and 4.1% faster

than Tree. Moreover, StaR-LR outperforms ReTrie by 21.6% and Tree by
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Figure 3.19: Comparing the filtering time efficiency of DocPar, of all variations of
StaR, when varying the size of query database DB.

8.5%. Finally, we observe that Algorithms StaR-HR and StaR-LR maintain

their high filtering efficiency under real-life data and query sets (that are very

different from the previous experimental setup).

The close performance of the StaR variants in the Million Query Track dataset

is due to the small vocabulary of the queries and is in line with our previous findings

(for the focused query collection) on how query vocabulary affects filtering time

(see Figure 3.16 and the explanation for this in Section 3.6.3). Moreover, the fact

that ReTrie performs worse than Tree is attributed to the document length

of the ClueWeb09 corpus, which is much larger (1506 words) than the average

document length in the DBpedia corpus. This ReTrie sensitivity to document

size verifies our previous findings for the DBpedia corpus which are presented and

discussed in Figure 3.17 and Section 3.6.4 respectively.

3.6.6 Results for the Parallelization of Filtering

In this section, we present the results concerning the two parallel filtering imple-

mentations of the four variations of Algorithm StaR, as described in Section 3.3.4.

Figures 3.19 and 3.21 present the results for the DocPar approach. In this

approach, each document that arrives at the system is assigned to an unoccupied
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Figure 3.20: Comparing the filtering time efficiency of RootPar, of all variations of
StaR, when varying the size of query database DB.

thread. In our assessments we utilized 6 threads, thus allowing 6 documents to

be filtered concurrently by the same processor. Figure 3.19 shows the average

time in milliseconds needed to filter the general query collection of ID = 50K

documents with DL = 53 words against database of different size when indexing

queries with QL = 5 terms. Figure 3.21 presents the filtering time for queries of

different length; the variations of Algorithm StaR are significantly faster compared

to their non-parallel counterparts (Figures 3.5 and 3.6).

Figures 3.20 and 3.21 present the results for the RootPar approach. In this

approach, each thread is responsible for a set of roots present in the Forest.

Thus, each root traversal is executed from a different thread during the filtering

of a document. In our assessments we utilized 6 threads, allowing us to split the

total number of roots into 6 even parts and assign each part to a single thread.

Figure 3.20 shows the average time in milliseconds needed to filter the general

query collection of ID = 50K documents with DL = 53 words against database of

different size when indexing queries with QL = 5 terms. In Figure 3.21 we give the

filtering time for queries of different length; the variations of Algorithm StaR are

significantly faster compared to their non-parallel counterparts (Figures 3.5 and

3.6). In more detail, algorithms StaR-LR and StaR-HR need 78.15% and 88.64%
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Figure 3.21: Comparing the filtering time efficiency of DocPar and RootPar, of all
variations of StaR, for a query database of size DB = 3M , when varying the average
query length QL.

less time respectively. Moreover, algorithms StaR-HF and StaR-LF reduce their

filtering time by 94.49% and 97.33% respectively.

Comparing the two approaches, we can see that the DocPar is more efficient.

Overall, in the DocPar approach all threads are continuously occupied by the

stream of incoming documents that have to be filtered, as each incoming document

is directed to the first available thread. Contrary, in the RootPar approach, due

to the splitting of the trie roots to different threads the filtering tasks are unevenly

distributed between the assigned threads as a result of the word distribution and

word order in the incoming document. This leads to fully utilizing only a fraction

of the available threads for each incoming document while the rest of the threads

may stay inactive for long periods of time.

Comparing the two approaches, we can see that the first approach, DocPar, is

the most efficient. Where, every incoming document is assigned to an unoccupied

thread of the system. Thus, all threads of the system are continuously occupied

by the stream of incoming documents that have to be filtered, as each incoming

document is directed to the first available thread. On the other hand, the second

approach RootPar, assigns all available threads on the filtering process of a single
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Figure 3.22: Comparing the effectiveness of Boolean and VSM models

document. This is achieved, by distributing the roots of the Forest to the available

threads of the system. However, due to the splitting of the trie roots to different

threads the filtering tasks are unevenly distributed between the assigned threads as

a result of the word distribution and word order in the incoming document. This

leads to fully utilizing only a fraction of the available threads for each incoming

document while the rest of the threads may stay inactive for long periods of time.

3.6.7 Effectiveness Comparison

Figure 3.22 presents a proof-of-concept effectiveness evaluation and cross-comparison

for the Boolean and VSM models. Our intention here is not to perform a full-scale

study for the effectiveness of the two models, but rather to highlight that important

publications are delivered to the users despite the crude nature of Boolean semantics.

To do so, we relied on the relevance judgments between queries and documents

available at the TREC website, on official TREC tools (e.g., trec_eval), and the

publicly available Lemur/Lucene libraries for parsing and preprocessing ClueWeb09

WARC files. To derive the plots of Figure 3.22 we analyzed the notifications

produced under each model, and set the cut-off threshold θ = 5, θ = 50 and θ = 500

to consider the top-5, top-50 and top-500 most relevant notifications respectively. We
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used the typical (log normalization) tf.idf weighting scheme and vector normalization

for VSM for both documents and queries (usually referred to as ltc.ltc [1]). For the

Boolean model we utilized term frequencies (i.e., word counts) as a score function

to make the notification lists of the two models comparable. Figure 3.22 presents

the 11-point interpolated precision/recall graph, micro-averaged for the 686 TREC

queries that had relevance judgments against 34013 different ClueWeb09 documents.

Notice that the effectiveness between the two models is very similar when recall

is low and comparable for high recall values, whereas an increase in θ results

in better effectiveness. The reported Mean Average Precision values for θ = 5

was 0.082, for θ = 50 was 0.2763, and for θ = 500 was 0.2972 for the Boolean

model, and 0.0785, 0.2821, and 0.3055 for VSM respectively. Similarly, the reported

NDCG values for θ = 5, θ = 50, and θ = 500 were 0.1427, 0.4332, and 0.4695

(Boolean model) and 0.1380, 0.4508, and 0.4976 respectively (VSM). For more

details on the effectiveness of the Boolean model and on how it compares against

other alternatives the interested reader is referred to [115].

3.6.8 Summary of Results

Our extensive experimentation demonstrated the filtering efficiency of Algorithm

StaR-HR when compared to the rest of the variants presented, as well as to other

state-of-the-art algorithms. Algorithm StaR-HR achieves over 90% improvement

in filtering time compared to state-of-the-art Algorithms ReTrie and Tree, while

presenting low sensitivity to query database size, query length, and document size.

Although Algorithm StaR-HR is designed for query databases that are unfocused

and cover thematically a wide variety of topics, it performs well in terms of filtering

time both for focused query databases with restricted vocabularies and real-life query

logs. In addition, our experiments showed that Algorithm StaR-HR outperforms

its competitors in terms of filtering time for various document sizes. Insertion and

re-organisation times for StaR-HR are also efficient as it proves faster than its

competitors due to the placement of rare words near trie roots. Finally, memory

requirements for Algorithm StaR-HR are as much as 53% lower compared to all
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other examined algorithms, due to the delay in node creation; this strategy results

in utilising each newly created node by as many queries as possible.

Overall, Algorithm StaR-HR is a versatile query reorganisation solution that

outperforms competitors in demanding query clustering tasks, while presenting a

steadily efficient performance in many versatile scenarios.

Limitations of the proposed family of algorithms include (i) reduced efficiency

on limited query vocabularies and/or very short continuous queries, (ii) increased

memory usage for indexing queries with disjunctions as the different disjuncts

need to be split and indexed at different tries, and (iii) corpus-dependent pa-

rameter/algorithm setup.

3.7 Outlook and Future Directions

In this chapter, we identified different reorganization options and showed their

effects on filtering efficiency. The presented variants of Algorithm StaR build upon

the decoupling of query indexing and query insertion to (i) showcase the benefits

and necessity of reorganization in the filtering performance and (ii) demonstrate

the importance of word statistics incorporated appropriately in the reorganization

process. As it was demonstrated, compact clustering is not always the best approach

especially when words statistics are available. Thus, reorganization should be done

in a careful and principled way, as false indexing objectives may lead in sub-standard

filtering performance and lower than expected results. Finally, we investigated

the usage of multi threaded solutions to enhance the filtering performance of

the proposed Algorithm StaR. We identified and assessed two proof-of-concept

parallelization scenarios, demonstrating the best approach to increase the filtering

performance in our system.

Interesting directions for future research involve (i) the adaptation of automata/graph-

based techniques as in [24, 50] to Boolean IF and their comparison against trie-based

approaches, (ii) the extension of RDF-based data and SPARQL-based query models

with text capabilities, and (iii) the construction of IF ontology systems that will

be able to filter ontology data in a streaming fashion.



88



4
Efficient Continuous Multi-Query

Processing over Textual and RDF Data

I n the previous chapter, we dealt with the problem of efficiency in the context

of textual information filtering. In this chapter, we focus on content-based

information filtering systems, where we identify the importance of efficient and

effective information filtering. To this end, we propose an extension of SPARQL

with full-text operators, aiming at more expressive continuous queries that are able

to support versatile user needs. Additionally, we propose efficient main-memory

query indexing algorithms that support SPARQL queries with full-text constraints

and are able to filter incoming publications in a few milliseconds. The results of

this chapter have been published in [116].

The rest of this chapter is organized in six distinct sections. Section 4.1 provides

the motivation for this work as well as the description of the research problems

addressed. Section 4.2 presents the description of our data and query models

employed to solve the problem at hand. Section 4.3 presents RTF, a family of

algorithms developed to support the proposed data and query models, while focusing

on efficiency. Section 4.4 presents Algorithm iBroker, a state-of-the-art solution,

which serves as a baseline solution. Section 4.5 presents the experimental evaluation

89
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of the developed algorithms with a real-world data set. Finally, Section 4.6 concludes

this chapter by discussing our findings, and presents future directions of our research.

4.1 Motivation

As the Web is growing continuously, a great amount of data is available to users,

making it more difficult for them to discover interesting information by searching.

For this reason, publish/subscribe (pub/sub) systems have emerged as a promising

paradigm that enables the user to cope with the high rate of information production

and avoid the cognitive overload of repeated searches. In a pub/sub system,

users (or services that act on users’ behalf) express their interests by submitting

a continuous query and wait to be notified whenever a new event of interest

occurs. The vast majority of modern pub/sub services and systems are typically

content-based (contrary to previous decades, where they used to be topic/channel

based); subscribers express their interest on the content of the publication (be

it structure or data/text values) by appropriately specifying constraints in the

submitted continuous queries.

In the early days of content-based pub/sub the structure of a publication was

nothing more than a (usually static) collection of named attributes with values

of different types (e.g., text) [4, 38]. As XML gained popularity and started

becoming the standard for data/information representation and exchange on the

web, various XML-based pub/sub systems have, naturally, arised [22, 23, 60–63,

117, 118]. In those systems, publications were expressed in XML and extensions of

XPath/XQuery were used to express continuous queries. All research in the field

focused mainly on the structural/value matching between (indexed) continuous

queries and incoming publications, but has largely ignored semantics. This gave

rise to ontology-based pub/sub systems [6–9] that typically used RDF [64] for

representing publications and SPARQL [65] extensions/modifications for expressing

user interests through continuous queries.

Ontology-based pub/sub systems research [6–9] has naturally focused more on

semantics and has delivered interesting results. What it currently lacks, though,
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compared to the technological arsenal of the traditional pub/sub research is

the support of a complete full-text retrieval mechanism, beyond existing regular

expression and equality support, with sophisticated algorithms and data structures

to minimize processing and memory requirements.

In this work, we initially propose an extension of SPARQL with full-text

operators, aiming at more expressive continuous queries that are able to support

versatile user needs in applications like digital libraries or news filtering. To preserve

the expressiveness of SPARQL, we view the full-text operations as an additional

filter of the query variables. In our setup, publications are ontology data that

contain RDF literals in their property elements. A full-text expression is evaluated

against a literal, and supported expressions involve the usual Boolean operators

(i.e., conjunction, disjunction, negation), as well as word proximity and phrase

matching as in Chang et al. [26]. To efficiently filter the incoming publications

against the stored queries, we present RTF (acronym for RDF Text Filtering), a

family of trie-based, main-memory, (continuous) query indexing algorithms that

support SPARQL queries with full-text constraints and are able to filter incoming

publications in a few milliseconds. We propose indexing methods that exploit

the commonalities between continuous queries at indexing time and leverage on

the natural properties of RDF during the filtering procedure. To the best of our

knowledge, our family of algorithms is the first in the literature that is able to

support SPARQL queries with full-text constraints. To demonstrate the efficiency

of our approach we extend iBroker, developed by Park et al. [9], a state-of-the-art

query indexing and RDF publication filtering algorithm, with full-text capabilities

and compare it against our approach both on structural and full-text filtering tasks;

our approach proves more than two orders of magnitude faster for the structural

and more than one order of magnitude faster for the full-text filtering tasks.

In the light of the above, our contributions may be summarized as follows:

• We extend SPARQL with full-text operators and support Boolean, word

proximity, and phrase matching operators.
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• We develop a family of continuous query indexing algorithms that support

full-text SPARQL queries and are able to filter the incoming RDF publications

efficiently.

• We extend iBroker [9], a third party algorithm for ontology pub/sub, to

offer full-text support and use it as a state-of-the-art competitor.

• We identify algorithmic alternatives for query indexing and assess their

performance with a real-world data set against the extended version of

iBroker.

In this section, we presented the motivation behind our work and gave a brief

overview of the data model, our proposed SPARQL extension and our algorithmic

solutions. In the following section, we present the data model and the proposed

SPARQL extension we employed in our approach.

4.2 Data Model

In this section, we present the data model defined for the publication and profile

model utilized in our system. Additionally, we present an extension of SPARQL

with full-text operators, aiming at more expressive continuous queries that are

able to support versatile user needs.

4.2.1 Profile and Data model

The Resource Description Framework (RDF) constitutes a conceptual model and a

formal language for representing resources in the Semantic Web; it is the building

block of a metadata layer on top of the current structured information layer of

the World Wide Web, which enables interoperability between different systems

and facilitate the exchange of machine-understandable information. Furthermore,

the streaming fashion of RDF makes it a perfect candidate for modern pub/sub

ontology systems, which demand sophisticated filtering mechanisms for matching

massive ontology data against thousands of user profiles.
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Constraint ::= FTexpression
FTexpression ::= ftcontains()
FTexpression ::= FTmain (“ftand” FTmain)*
FTmain ::= String

Table 4.1: The proposed SPARQL extension syntax.

The SPARQL query language is currently the W3C recommendation for querying

the Semantic Web; the graph model, over which it operates, naturally joins data

together and supports several query forms for querying RDF datasets. However,

it still lacks the support of a complete full-text mechanism, which uses sophisti-

cated algorithms and data structures to minimize processing load and memory

requirements, for filtering purposes.

Since we focus our attention on full-text filtering of ontology data we are

interested only in property elements with a plain RDF literal as their content. A

literal in an RDF graph can be either plain or typed. Plain literals have a lexical

form and an optional language tag, whereas typed literals have a lexical form and

a datatype URI. In this context, the subject of an RDF triple is always a node

element and the predicate denotes the relation to the literal. The object is the

literal, which is expressed as a string.

The equivalent extension for XML publications [119] uses a concrete boolean

model to capture the semantics of full text querying, where the atoms of the model

are decomposed into basic queries representing both single word and context queries.

Profile Model

In the spirit of [119], we propose an extension to the SPARQL syntax to support

full-text continuous queries in RDF datasets. To preserve SPARQL expressibility

we view the full-text operations as an additional filter of the (continuous) query

variables. Notice that SPARQL supports different query forms that affect only the

form of the answers returned and not the graph matching process itself. In this

context, we define a new binary operator ftcontains (full-text contains), that takes

as input a variable of the continuous SPARQL query and a full-text expression
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that operates on the values of this variable. The query signature of the operator

is expressed as the following function:

xsd : boolean : ftcontains(var, ftexpression)

In this context, a full-text expression is evaluated only against a literal, so var

is always the object of the SPARQL tuple pattern; the subject and/or predicate

of the tuple pattern may be constants. The expressions supported involve the

usual Boolean operators (denoted by ftAND, ftOR, etc.), as well as proximity

(denoted by ftNEAR) and phrase matching as in [26]. The rules for the extended

SPARQL syntax are listed in Table 4.1. To this end, we carefully designed a

new set of full-text queries which currently can not be efficiently evaluated by

existing pub/sub ontology systems.

In Figure 4.1, we present a set of SPARQL continuous queries that utilize the

proposed extended syntax. SPARQL Query 1 will match all publications that

are of type article and have an attribute title with a string literal. The title of

the publications must contain the terms “olympic” and “games”. Additionally,

the publications that match must have an attribute body that contains the terms

“olympic”, “games” and “rio”, and the term “rio” is at least 0 and at most 2 words

after the term “games” (due to the word proximity constraint).

In the same spirit, SPARQL Query 2, presented in Figure 4.1, requests for

publications that are of type article. The publication must have an attribute title

that contains the term “olympic”, an attribute abstract that contains the terms

“olympic” and “rio”. Additionally, the same publication must bare a body attribute

that contains the terms “olympic” and “committee”. Finally the publication must

have a publisher with a name that includes the terms “the”, “wall”, “street” and

“journal” at any given order.

Users may be unfamiliar with the structure of publications to be made available

in a system, when submitting a continuous query. Thus, applying specific restrictions

to the publications may result in missing notifications that may match a users’

interest. The need for a more flexible subscription scheme seems necessary in order
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SPARQL Query 1

1 SELECT ?publication
2 WHERE {? publication type article.
3 ?publication title ?title.
4 ?publication body ?body.
5 FILTER ftcontains (?title , "olympic" ftAND "games")
6 FILTER ftcontains (?body , "olympic" ftAND "games"

ftNEAR [0,2] "rio")
7 }

SPARQL Query 2

1 SELECT ?publication
2 WHERE {? publication type article.
3 ?publication title ?title.
4 ?publication abstract ?abstract.
5 ?publication body ?body.
6 ?publication publisher ?publisher.
7 ?publisher name ?name.
8 FILTER ftcontains (?title , "olympic ")
9 FILTER ftcontains (?abstract , "olympic" ftAND "rio")
10 FILTER ftcontains (?body , "olympic" ftAND "committee ")
11 FILTER ftcontains (?name , "the" ftAND "wall" ftAND "

street" ftAND "journal ")
12 }

SPARQL Query 3

1 SELECT ?publication
2 WHERE {? publication type *.
3 ?publication title ?title.
4 ?publication body ?body.
5 FILTER ftcontains (?title , "olympic" ftAND "committee"

ftAND "president ")
6 FILTER ftcontains (?body , "olympic" ftAND "rio" ftAND "

stadium ")
7 }

Figure 4.1: SPARQL Queries presenting the proposed extended syntax.
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to better describe users’ interests. Additionally when less restrictions are applied to

the published data a better quality of information delivery can be achieved. This

flexibility results to better content delivery as the description of interests is more

expressive and effective. Thus, in addition to the full-text extension of SPARQL

we also support the wildcard (*) operator applied in RDF triples, i.e., queries

where the subject, predicate and/or object of a triple may match any value of the

publication. Such a combination of full-text and wildcard operations allows us to

offer the users a rich set of tools that allow them to specify expressive continuous

queries that will match their information needs.

An example query, where the wildcard operator is utilized, is given in SPARQL

Query 3 (Figure 4.1). In this example, publications can be of any type. While,

the publication must have an attribute title that contains the terms “olympic”

and “committee” and an attribute body that contains the terms “olympic”, “rio”

and “stadium”.

4.2.2 The Publication Model

In the context of our system, a publication is defined as a set of triples that are

expressed using RDF/XML [120]. Hence, the underlying model is a directed graph

which contains a set of nodes that may serve as the subject or the object in a

triple statement. The nodes are connected via properties that are expressed as

the predicate in the triple statement.

In Figure 4.2 we present an example of an incoming publication that arrives

in our system. Please observe, that the publication is represented in RDF form.

The publication concerns the olympic games of 2016 in Rio, it bears three distinct

attributes, namely type, title and abstract, while the title and abstract attributes

bare a text field.

In our information filtering model, we utilize the RDF data language to describe

the data publications. A publication pub is described in a structured manner using

RDF-triples containing additional fields where needed to store the text parts. The

usage of RDF data language renders our system flexible to publication input. The
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1 <?xml version ="1.0" encoding ="utf -8" ?>
2 <rdf:RDF
3 xmlns:rdf="http :// www.w3.org /1999/02/22 -rdf -syntax -

ns#"
4 xmlns:dbp="http :// dbpedia.org/property /"
5 xmlns:dbo="http :// dbpedia.org/ontology/">
6 <rdf:Description rdf:about="http :// dbpedia.org/

resource /2016 _Summer_Olympics">
7 <rdf:type rdf:resource ="http :// schema.org/Article"

/>
8 <dbp:title rdf:datatype ="http ://www.w3.org

/1999/02/22 -rdf -syntax -ns#langString " >2016
Summer Olympic Games </dbp:title >

9 <dbo:abstract xml:lang="en">The 2016 Summer
Olympics (Portuguese: Jogos Olímpicos de Verão
de 2016), officially known as the Games of the
XXXI Olympiad and commonly known as Rio 2016,
was a major international multi -sport event
held in Rio de Janeiro , Brazil , from 5 August
to 21 August 2016. More than ...</dbo:abstract >

10 </rdf:Description >
11 </rdf:RDF >
12

Figure 4.2: An example of an incoming publication.

information filtering algorithms, presented in the following section, can match an

incoming publication expressed into a RDF-structured manner, against the profile

database by translating each publication into a series of RDF-triples.

Definition 4.1 We define a publication pub as a series of RDF-triples (also known

as statements). Each triple has three attributes, namely subject (S), predicate (P)

and object (O). In this context, the object of a triple Oi ∈ ti may have a property

value, and more specifically in our approach a text field. Alternatively, the value of

Oi can be another resource. To this end, a publication in our system is represented

as follows:

pub = t1(S1,P1,O1) ∧ t2(S1,P2,O2) ∧ ... ∧ tn(S1,Pn,On)
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Example 4.1 By applying Definition 4.1, on the publication presented in Figure 4.2

we receive the following set of three distinct triples:

pub = t1(2016_Summer_Olympics, type, Article) ∧

t2(2016_Summer_Olympics, title, “2016 Summer Olympic Games”) ∧

t3(2016_Summer_Olympics, abstract, “The 2016 Summer Olympics...”)

Please note that for presentation purposes, the URIs, properties and property

values have been shortened.

In this section, we described the data model and a full-text extension on SPARQL

adopted in our approach. In the following sections, we describe the algorithmic

solutions developed to solve the information filtering problem.

4.3 Query Indexing Algorithms

In this section, we present RTF, a family of query indexing algorithms that

utilise trie structures to exploit commonalities between continuous queries to

achieve faster filtering times. Initially, we elaborate on the indexing algorithm

RTFm1(Section 4.3.1), discuss its variation RTFs (Section 4.3.2), and provide

details for the common filtering procedure (Section 4.3.3).

4.3.1 Algorithm RTFm

Algorithm RTFm is indexing each continuous query by executing the follow-

ing three steps:

1. Transforming the continuous query to conjunctions of tuples (quadruples or

triples depending on the existence of a text constraint or not) and assigning a

unique identifier to each tuple.

2. Registering all the discrete tuples produced from the previous step in a table

that associates each continuous query with the tuple identifiers it contains.

3. Indexing of all the query tuples at the trie structure described below.
1No connection to the infamous initialism – https://en.wikipedia.org/wiki/RTFM
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In the following, we analyze each step and provide details on the data structures

and algorithms utilized. The pseudocode for the indexing phase of Algorithm RTFm

is performed by Algorithm Index and is presented in Figure 4.4.

Step 1: Tuple Representation

Users express their interests in a defined manner by making use of the SPARQL query

language and the full-text extension we supply. While Algorithm RTFm operates

on tuples; in this section we define continuous queries as conjunctions of tuples,

and, in the following sections, we illustrate how we exploit commonalities between

those tuples to achieve better query indexing and thus faster filtering performance.

SPARQL is a standardized language that users (or service that act on behalf of

users) can employ to define their interests. Nevertheless, SPARQL is a querying

language that can be transformed in a series of conjuncts by making use of RDF

triples. This transformation in RDF triples provides us with great advantages,

as a SPARQL query can retain its restrictions, while being easier to manage

and index each individual triple efficiently. Additionally, full-text constraints in

SPARQL queries can be applied in every triple by employing an additional field

that contains these constraints. To this end, we provide below the formal definition

for a continuous query that is utilized in our approach.

Definition 4.2 We define a continuous query q as a series of i, where i ∈ 1, . . . , n

tuple conjuncts. Each tuple has three mandatory attributes, namely subject (Si),

predicate (Pi) and object (Oi). There is an additional, non-mandatory, attribute

Fi that facilitates the representation of the full-text operators and their textual

constraints. Thus, a continuous query may be represented as:

q = t1(S1,P1,O1{,F1}) ∧ · · · ∧ tn(Sn,Pn,On{,Fn})

Example 4.2 By applying Definition 4.2 to the continuous SPARQL Query 1 (q1)

in the example of Figure 4.1 we receive the following set of tuples:

q1 = (?publication, type, article) ∧
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(?publication, title, ?title, ftcontains(“olympic” ftAND “games”)) ∧

(?publication, body, ?body, ftcontains(“olympic” ftAND “games” ftNEAR[0,2] “rio”))

Moving from a SPARQL query to a tuple-based representation is achieved by

applying appropriate parsing on the continuous query with a tool like Sesame2.

Example 4.3 In the same manner as in Example 4.2, SPARQL Query 2 (q2)

(Figure 4.1) is processed into a set of tuple conjuncts:

q2 = (?publication, type, article) ∧

(?publication, title, ?title, ftcontains(“olympic”)) ∧

(?publication, abstract, ?abstract, ftcontains(“olympic” ftAND “rio”)) ∧

(?publication, body, ?body, ftcontains(“olympic” ftAND “committee”)) ∧

(?publication, publisher, ?publisher) ∧

(?publisher, name, ?name,

ftcontains(“the” ftAND “wall” ftAND “street” ftAND “journal”))

Example 4.4 In the same manner as in Example 4.2, SPARQL Query 3 (q3)

(Figure 4.1) is processed into a set of tuple conjuncts:

q3 = (?publication, type, *) ∧

(?publication, title, ?title,

ftcontains(“olympic” ftAND “commitee” ftAND “president”)) ∧

(?publication, body, ?body, ftcontains(“olympic” ftAND “rio” ftAND “stadium”))

In this step, we have demonstrated how we move from a SPARQL-based query

representation to a tuple-based (Figure 4.4, Line 1). This query transformation

enables us to have more flexibility in the way queries are handled, indexed and

eventually answered during filtering time. In the next two steps, we present how

Algorithm RTFm handles the tuples generated in this step.
2http://rdf4j.org

http://rdf4j.org


4. Efficient Continuous Multi-Query Processing over Textual and RDF Data 101

t2 t3 t1 

t2 t3 t1 

Tuple Identifier Lists 

Q
ue

ry
 T

ab
le

 
t2 t3 t4 t5 t1 t6 

q1 

q2 

q3 

Figure 4.3: Query Table QT after during the indexing phase of RTFm.

Step 2: Associating Queries With Tuple Identifiers

Following Step 1, Algorithm RTFm receives a query q that consists of two fields, a

unique query identifier and a set of tuples, that denote the constraints posed by

the query. During the indexing phase of q, Algorithm RTF assigns every tuple

that forms q a unique identifier ts...tn. The identifiers ts...tn serve as a link between

every query and its corresponding set of tuples. In continuation, Algorithm RTFm

proceeds by storing each continuous query along with the tuple identifiers into the

Query Table (QT ). QT is comprised of two fields: the unique identifier of each

query q and a linked list that stores the unique identifiers of the continuous query

tuples (Figure 4.4, Lines 2-3). For instance, for the continuous SPARQL Query 1

(Figure 4.1), Algorithm RTFm will add three tuple identifiers into QT (as they

are shown in the previous section). RTFm proceeds in a similar way to insert

every new continuous query that is submitted in QT .

Figure 4.3 presents the query table QT indexing of all three continuous queries

shown in Figure 4.1. The first cell of QT stores the identifier q1, coupled with a

linked list that contains the unique tuple identifiers {t1, t2, t3} generated in the

second step of Algorithm RTFm. In the same manner, the rest of the cells of QT

represent the indexing of queries q2 and q3 of Figure 4.1.
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Algorithm: Index
Input: A query qi

Result: Store qi

// Extract a set of tuples from incoming query qi

1 {t1, . . . , tn} ← extractTuples(qi);
// Assign a unique identifier to ti and index it to QT

2 foreach ti ∈ {t1, . . . , tn} do
3 QT [id(qi)]← QT [id(qi)] ∪ id(ti);

4 position← Null;
// For all tuples in SPARQL Query q

5 foreach ti ∈ {t1, . . . , tn} do
// For each field fl of ti

6 foreach fi ∈ ti do
7 nk ← DFS(forest);

// If a node nk is found that can index fl

8 if content(nk) = fi then
// Store the node’s position

9 position← nk;

// If no indexing position has been found
10 if position = NULL then

// Create nodes ns, np, no for the subject, predicate and
object of ti respectively

11 content(ns)← subj(ti);
12 content(np)← pred(ti);
13 content(no)← obj(ti);

// Create a new tree with children nodes ns, np and no

14 create tree T ′ with root(T ′) = ns;
15 children(ns)← np;
16 children(np)← no;
17 else

// For all remaining fields of ti create new nodes to index
them

18 foreach fr ∈ ti do
19 content(nj)← fr;

// Assign each new node to the previous one as child
20 children(position)← nj ;
21 position← nj ;

// If tuple ti contains a full-text operator
22 if ti has FT then
23 ftIDs(no)← id(ti);
24 indexText(ti);
25 else // Else store ti in the tuples list
26 tIDs(no)← ti;

Figure 4.4: Pseudocode for the query indexing phase (Algorithm Index) performed by
Algorithm RTFm.



4. Efficient Continuous Multi-Query Processing over Textual and RDF Data 103

Step 3: Indexing Tuples in the Trie Forest

The trie forest is populated in order to store the tuples compactly by exploiting

their common elements. Thus, every trie forest consists of a collection of tries,

which in turn contain a number of trie nodes; in each node N the following

information is stored:

• The node content, denoted by content(N), that may represent either an RDF

attribute/variable or a word contained in a text constraint of a query.

• The list of children nodes of N , denoted children(N).

• The list of tuple identifiers, denoted by tIDs(N), that are indexed under N .

When a new query qi arrives AlgorithmRTFm iterates through the set of

all query tuples and indexes every tuple in the trie forest. During the indexing

phase RTFm searches the trie forest for a suitable place to index each tuple as

follows (Figure 4.4, Lines 6-9).

The first tuple of the first continuous query that is submitted will naturally arrive

in an empty trie forest and will create a number of nodes that depend on the form of

the tuple (Figure 4.4, Lines 10-21) . Specifically, for the structural constraints of the

tuple, RTFm creates three new trie nodes one for each attribute specified (Figure 4.4,

Lines 11-16). If the tuple contains also a full-text constraint with k distinct words,

RTFm will create k more nodes (one for each distinct word) (Figure 4.4, Lines 22-

26). For illustration purposes, we use a pseudo-node “FT” to separate the structural

from the word constraints and highlight the difference between the different RTF

variants (i.e., RTFm discussed here and RTFs discussed later in the section).

In general, when inserting a new tuple, RTFm considers storing it at an existing

trie or creating a new trie. To insert a new tuple t(S,P,O), RTFm examines the

subject S of the tuple and utilizes the trie structure to find if there is a candidate

trie which has a root node R such that content(R) = S (Figure 4.4, Lines 6-9). If

such a trie is found, the indexing algorithm proceeds to examine children(R) in

order to determine if there is a child C such that content(C) = P. The same applies
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Figure 4.5: Trie forest during the indexing phase of RTFm.

for the object O of the tuple. Notice that variables (in subject/predicate/object)

and wildcards in tuples are mapped onto the corresponding variable/wildcard nodes.

If the new tuple contains full-text constraints, the trie is expanded with the distinct

words contained in these tuple constraints in a similar manner.

If, during the indexing phase, RTFm fails to locate an appropriate trie position

to store a new tuple, it proceeds in creating a new set of nodes that will index the

remaining tuple fields (Figure 4.4, Lines 10-21). After locating (or creating) the

appropriate trie that will store a tuple t, RTFm stores also the tuple id at tIDs(N)

of node N of this trie, so as to be able to identify the tuple at filtering time. Notice

that different query insertion order will, naturally, give different tries, since query

organization is greedy, and depends on the already stored queries.

Indexing of proximity formulas and phrases in the trie forest of RTFm is

performed in the same way as described above, since proximity is a more constrained

case of conjunction. To accommodate the word distance in the proximity/phrase

expression, we use an extra data structure that stores the proximity constraints in

the spirit of [4]. Disjunctions are handled by creating separate queries (that have

the same user as the notification recipient) for the different word operands.

Figure 4.5 shows the resulting trie after inserting three continuous queries, q1,

q2 and q3 of Figure 4.1. Additionally, the three tuples of q1 (shown in Example 4.2
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above) are assigned ids q1.t1, q1.t2, q1.t3 respectively. From the indexing performed

by RTFm in these queries notice that:

• Query q1 shares the same tuple ((?publication, type, article)) with

query q2, as two different tuple identifiers (namely q1.t1 and q2.t1) are stored

in the same leaf node. Moreover, this tuple contains only structural constraints.

• Query q1 contains tuple q1.t3 that specifies both structural and full-text

constraints.

• Query q1 (with tuple q1.t3) shares the same structural constraints and also

has the word “olympic” in common for the textual constraints part with

query q2 (with tuple q2.t4).

• Query q3 contain a tuples with a wildcard operator (q3.t1).

Finally, note that Figure 4.5 shows just one of the tries that would be created;

typically, because of different query structure the resulting indexing structure is

a forest of tries. Thus, a hash table (not shown in Figure 4.5 to avoid cluttering)

is used to provide fast access to trie roots.

4.3.2 Algorithm RTFs

Indexing of word constraints in the context of RTF may be performed in two

different ways: (i) using multiple tries (hence the name RTFm) for indexing the

word constraints depending on the structural part of the continuous queries as

described in the previous section (and shown in Figure 4.5), and (ii) using a

single trie forest (hence the name RTFs) that is dedicated to all text components,

regardless of the structural part of the continuous queries shown in Figure 4.6.

In the former case, namely Algorithm RTFm, the textual constraints are consid-

ered as a natural expansion of the structural ones, but there exist fewer clustering

opportunities for words. Contrary, in the latter case, namely Algorithm RTFs, the

word constraints are considered as a different type of constraint and are clustered

together regardless of the structural constraints of the query.
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Figure 4.6: Trie forest during the indexing phase of RTFs.

Algorithm RTFs is a variation that allows us to construct a more compact forest

of tries since this organization creates more clustering opportunities for the words.

Notice that the trie of Figure 4.6 has less nodes compared to that of Figure 4.5

for the same queries and the same query insertion order. As we will demonstrate

in Section 4.5, Algorithm RTFs is better suited for cases where queries with text

constraints are relatively sparse, whereas Algorithm RTFm is better suited for

cases where many queries contain text constraints.

4.3.3 Filtering algorithm

The filtering algorithm is common for the two variants (RTFm and RTFs) of

Algorithm RTF. In this section, we present the filtering algorithm that allows

RTF to filter incoming RDF publications and issue notifications to subscribed

users. The pseudocode for the filtering phase of Algorithm RTFm is performed

by Algorithm Filter and is presented in Figure 4.7.

The filtering process operates on triples; new RDF publications are parsed and

transformed to a set of triples that are subsequently used to guide the traversal

of the trie forest in search for matching continuous queries.

Definition 4.3 We define a publication p as a series of i, where i ∈ 1, . . . , n

conjuncts of RDF triples. Each triple has three attributes, namely subject (Si),
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Algorithm: Filter
Input: A publication p
Output: A list of queries match = {qi, . . . , qj}

1 Procedure filterPublication(p)
2 matchedTuples← Null
3 foreach tuple t in publication p do
4 foreach trie root R do
5 traverseTrie(R,t)

6 isSatisfied ← TRUE
7 foreach query q in QT do
8 foreach tuple t ∈ q do
9 if t is not marked as matched then

10 isSatisfied ← FALSE
11 break

12 if isSatisfied==TRUE then
13 notify subscriber

14 Procedure traverseTrie(node N , tuple t)
15 if content(N) is satisfied by t then
16 matchedTuples← matchedTuples ∪ tIDs(N)
17 traverseTrie(C,t), where C ∈ children(N)

Figure 4.7: Pseudocode for the publication filtering (Algorithm Filter) performed by
Algorithms RTFm and RTFs.

predicate (Pi) and object (Oi) or text field (Ti) that represents the textual content

of an attribute. Thus, a publication may be represented as:

p = t1(S1,P1,O1|T1) ∧ · · · ∧ tn(Sn,Pn,On|Tn)

The filtering process proceeds as follows. For every triple t(S,P,O), in the

newly arrived publication p, the trie forest is examined and the root R for which

content(R) = S is visited (Figure 4.7, Lines 3 - 5). Thereafter, RTF begins

traversing the trie in a depth first manner and examines the nodes children(R) in

order to determine if there are matching tuples. In order to reach from the root node

R to a leaf node, every node N in the path must fulfill the following requirements:

content(N) = P and content(N) = O, or content(N) = $variable. If, at any point
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of the trie traversal a node N with a wildcard field (content(N) = ∗) is visited the

traversal continues to children(N), as this is considered a match for N (Figure 4.7,

Lines 14 - 17). The traversal of the trie finishes when a leaf is reached.

For every triple t(S,P,T), in the newly arrived publication p, the trie forest is

examined as above. When a node N that represents a word constraint is visited,

the traversal continues as follows. For every node C,C ∈ children(N), for which

content(C) is contained in T the sub-trie that has C as a root is examined in a

depth-first manner. The traversal of the trie continues recursively for as long as

common words between the children of a visited node and T exist.

Notice that, independently of the structural or full-text constraints, the tIDs(N)

list at each node N gives implicitly all query tuples that match the incoming

publication tuple. Thus, all tIDs(N) of all traversed trie nodes are marked as

matched in QT . Word distance constraints in phrase/proximity operations are

checked for satisfaction after the trie traversal. In the end of the processing of

publication p (i.e., after processing all its tuples), a scan of QT allows us to determine

the queries that have matched the incoming publication.

In this section, we presented a family of query indexing algorithms that utilize

trie structures to capture common elements between continuous queries, namely

Algorithms RTFm and RTFs. In the following section, we present Algorithm iBro-

ker, a state-of-the-art competitor that uses an inverted index to store submitted

SPARQL queries.

4.4 Algorithm iBroker

In this section, we present Algorithm iBroker [9], a state-of-the-art competitor

that uses an inverted index to store submitted SPARQL queries. Additionally, we

describe its extension with full-text capabilities.

In order to evaluate the efficiency of RTF we have implemented iBroker [9] as

a baseline competitor. Algorithm iBroker is a continuous query indexing algorithm

that supports SPARQL queries with structural and string matching constraints,

and is currently the only state-of-the-art algorithm that is able to handle RDF
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queries with both structure and (some form of) text. In this section, we present the

basic idea behind iBroker and the data structures upon which it operates and

show how we extended its functionality to support full-text constraints.

Algorithm iBroker utilizes an inverted index to store the continuous queries.

Its indexing structure consists of a hash table that is used to index the unique

attributes of all triples that correspond to the submitted SPARQL queries. iBroker

uses the unique attribute names as hash keys to access the corresponding hash

buckets, and each hash bucket contains references to lists of stored queries. These

lists store: (i) the unique identifier ID of query q, (ii) a reference to a hash bucket,

named NextToMatch, that contains the next attribute in q, (iii) the string that

might be present in q named Value, and (iv) any possible variables in q. Figure 4.8

presents the inverted index structure of iBroker after indexing queries q1, q2

and q3 presented in Figure 4.1.

This inverted index stores the queries in a chain-like manner. Every query may be

recomposed by following the NextToMatch references to hash buckets until an empty

NextToMatch field is visited. This procedure is applied by the algorithm iBroker

during the filtering of a publication event. As there is no defined hierarchy that

outlines the filtering sequence, an incoming publication may need to examine many

hash buckets looking for the beginning of a query. The result is that iBroker must,

in this case, examine all the continuous queries in the corresponding bucket list, and

then proceed to examine their NextToMatch entries until there is none left to match.

In the case that iBroker starts from fields that belong to a profile p, but, are

not part of the first triples that form it, we can not be sure if it’s a complete or

partial match for the profile. Subsequently, without additional matching techniques

the query q can not be determined as positive, resulting into false positives for

iBroker. This problem can be solved by utilizing the query table QT as described

in Section 4.3.1. As the RDF triples that form a query q are assigned unique

identifiers and indexed in QT create a streamlined sequence for every triple identifier,

thus, each triple identifier must match sequentially in order to satisfy a query. By

enhancing Algorithms iBroker with this technique we have achieved to eliminate
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Figure 4.8: Inverted index structure during the indexing phase of Algorithm iBroker.
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the majority of false positives, but, extreme cases where the first triple of a profile

matches partially can not be solved efficiently and are out of the scope of our research.

Finally, Algorithm iBroker implements string matching, but has no support

for full-text operators. To evaluate it against RTF we have extended iBroker

with full-text subscriptions by replacing the Value field with the list of words that

appear in a full-text constraint. This modification enables iBroker to support

both string and full-text constraints. Finally, for comparison purposes, we have

also extended the functionality of iBroker to index and filter SPARQL queries

that contain wildcard operators. For a more detailed description of iBroker and

the specifics of its algorithms the interested reader is referred to [9].

In this section, we presented Algorithm iBroker, a solution in the literature

that supports continuous query answering. To this end, we have extended iBroker

to support our proposed full-text extension, while we aimed at addressing its design

problem of false positive generation. In the following section, we present the experi-

mental evaluation results when comparing iBroker against Algorithms RTFm

and RTFs described in Section 4.3.1.

4.5 Experimental Evaluation

In this section, we present a series of experiments that compare RTF against

iBroker under a series of different scenarios, since in a pub/sub scenario we

investigate the behavior of algorithms when varying the profile set. By capturing

and studying the most common scenarios that emerge in the pub/sub paradigm,

we achieve a better understanding of the algorithms’ performance. To this end,

we designed and simulated three distinct experimental scenarios, which we present

in the following sections.

4.5.1 Experimental Setup

In this section, we present the data sets we choose for the experimental evaluation

as well as we elaborate on the generations of query sets. Additionally, we present
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the underlying algorithmic and technical configuration. Finally, we present the

metrics under which, the experimental evaluation was designed and executed.

Data and Query Sets

For the experimental evaluation we utilized, the DBpedia corpus3 extracted from

the Wikipedia domain that forms a structured knowledge database of more than

4 million items. A major part, namely 3.22 millions publications, of the DBpedia

corpus has been classified into an ontology resulting to 529 different classes which are

described by 2.3 thousand properties. Additionally, publications bare textual infor-

mation that originates from human generated content published at the Wikipedia

domain. These characteristics give an additional advantage to the DBpedia corpus

as it provides a solid source of textual information.

The vocabulary extracted from theDBpedia publications consists of 3.14 millions

unique words. The maximum textual information present in a publication is

14, 254 words, while the average is 53 words. The diversity in content of the

DBpedia corpus, accompanied with the information on structural and textual

level, renders it as the perfect candidate for evaluating our algorithms in terms

of indexing and filtering efficiency.

Table 4.2 summarizes some key characteristics of the DBpedia corpus. The data

collected in the DBpedia corpus cover a wide variety of topics. This diversity in

topics and structural data is providing a plethora of publications that are represented

in a RDF manner making DBpedia corpus the perfect candidate for evaluating our

algorithms. As we need to evaluate our algorithms both on their structural and

text matching capabilities, we utilise textual information provided by DBpedia.

Query Set

The queries were constructed by utilizing classes and properties extracted from

the DBpedia corpus. Each query, contains at most 4 tuples. The query set

is formed by sets of tuples containing full-text operators with probabilities of

FTpr = 0%, 50% or 100%. The full-text operators contain conjunctive terms
3http://dbpedia.org/Downloads2015-04

http://dbpedia.org/Downloads2015-04
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Description Value

Items 4M
Classes 529
Properties 2, 333
Average publication size (words) 53
Maximum publication size (words) 14, 425
Minimum publication size (words) 1

Table 4.2: Characteristics of the DBpedia corpus.

that are selected equiprobably among the multi-set of words from the DBpedia

vocabulary. Additionally, the full-text operators contain at most 3 terms. Queries

with FTpr = 0% examine the performance of the algorithms for structural matching

only. For queries with FTpr = 50%, we examine a mixed filtering scenario where

half of the queries contain also textual constraints apart from the structural ones.

Finally, for queries with FTpr = 100%, we demonstrate the scaling capabilities of

the algorithms as all the indexed queries contain full-text constraints.

The Main Query Collection. More specifically, the main query collection, where

FTpr = 50%, aims at evaluating the algorithms under an average filtering scenario,

where the database is filled with profiles consisting of approximately the same

percentage of structural and textual restrictions. A subscription usually bears

more structural constraints in order to focus on specific types of publications,

while the textual constraints refine the publication selection by utilizing a small

amount of keywords.

The Second Query Collection. The second query collection is formed by sets of

RDF triples baring no full-text operators, i.e. FTpr = 0%. In this filtering scenario,

triples match at a higher percentage with an incoming publication as there is no

full-text restriction to purge out irrelevant publications based on their textual

information. This experimental setup gives a good overview at the structural

matching performance of the algorithms under investigation. Intuitively, the
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Parameter Description Baseline value

Iq Number of incoming queries 20K
Ipub Number of incoming publications 5K
DB Number of queries indexed 100K

in the database
FTpr Percent of tuples that contain 50%

full-text restrictions in a query

Table 4.3: Parameters’ description and their baseline values.

algorithms should be able to perform equally or better compared to the main

profile collection.

The Third Query Collection. The third query collection aims at examining the

algorithms on their textual filtering capabilities and demonstrates the importance

of solutions that support natively full-text filtering. In this filtering scenario,

each tuple present in a query, contains a full-text operator with a probability of

FTpr = 100% (when this is applicable). As all tuples contain full-text operators,

the algorithms that we evaluate will demonstrate their scaling capabilities when

the indexing structures contains the maximum percentage of full-text restrictions.

To this end, this experimental setup serves as a stress-test for the full-text filtering

capabilities of the proposed algorithms.

Publication Set

In order to evaluate the query collections, described above, we selected Ipub =

5K publications from the DBpedia corpus. The set selected had structural and

textual information as extracted and processed from the Wikipedia domain. The

publications contain human-generated, real-life data, thus providing a realistic

overview of the performance of the algorithm. The selected publications are used

in every filtering event during the algorithm evaluation. We maintain the same

publication set through the evaluation process against different query collections.

Thus, it is asserted that the algorithms are evaluated based on their indexing

capabilities and the nature of queries they index.
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Metrics Employed

In our evaluation, we present and discuss the filtering time and throughput of each

algorithm, i.e., the amount of time needed to locate all continuous queries satisfied

by an incoming publication. We present and compare the memory requirements of

the algorithm. As all algorithms index the same query databases, a lower memory

requirement indicates a more compact clustering of data while a higher memory

footprint indicates a less compact database. Additionally, we present the algorithms

differences in filtering time and demonstrate how they differentiated during the

size increase of the profile database.

Finally, we present the insertion time of each algorithm, i.e., the amount of time

needed to index a set of queries Iq = 20K into the database. Table 4.3 summarizes

the parameters examined in our experimental evaluation with their baseline values.

Technical Configuration

All algorithms shown, were implemented in C++, and an of-the-shelf PC with a

Core i7 3.6GHz processor and 8GB RAM running Ubuntu Linux 14.04 was used.

The time shown in the graphs is wall-clock time and the results of each experiment

are averaged over 10 runs to eliminate any fluctuations in time measurements.

4.5.2 Results when Varying the Query Database Size

In this section, we present the most significant findings for the proposed algorithms,

when varying the query database size DB for queries of FTpr = 50%. The time

reported in the graphs represents the average time needed to filter a collection

of Ipub = 5K publications.

Comparing Filtering Time

This section presents results concerning the filtering time required to match an

incoming publication, when the DB size is increasing. Figure 4.9 presents the time

in milliseconds needed to filter an incoming publication for Ipub = 5K publications.

Please notice that the y-axis is split into two parts due to high differences in the
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Figure 4.9: Comparing the filtering time, when varying the query database size DB,
for a query set of FTpr = 50%.

performance of RTF variants (RTFm and RTFs) and iBroker. We observe that

filtering time increases for all algorithms as the DB size grows. Algorithms RTFs

and RTFm achieve the lowest filtering times, suggesting better performance.

Please note that both Algorithms RTFs and RTFm exhibit relatively the same

performance, with Algorithm RTFm being the fastest. Algorithm iBroker is

more sensitive to DB size changes compared to RTF due to the data structures it

utilizes to index the queries, e.g., an inverted index that does not implement any

clustering techniques. More specifically, the results indicate that Algorithm RTFm

filters incoming publications 92 times faster compared to iBroker, for a query

database size of DB = 100K. Algorithm RTFs achieves the lowest filtering

time, namely 2.5% faster than RTFm and 94 times faster than iBroker, and

more specifically it achieves 36 msec/publication of filtering time, for a query

database size of DB = 100K.

Comparing Filtering Throughput

This section presents the results concerning the algorithms’ filtering throughput,

when the query database size remains constant DB = 100K, for Ipub = 5K incoming

publications, while the average publication size (KB) is increasing.
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Figure 4.10: Comparing the filtering throughput, for a query database size DB = 100K,
for a query set of FTpr = 50%, when varying the average publication size (KB).

Figure 4.10 presents the throughput that all algorithms achieve during the

filtering of Ipub = 5K incoming publications. We observe that the throughput

remains steady throughout the publication events. This is attributed to the nature

of the algorithms, as their filtering capability is not affected by the publications’

size but from the indexing structures that store the queries. Algorithms RTFs

and RTFm achieve the highest throughput, thus the best performance, compared

to Algorithm iBroker. More specifically algorithms RTFs and RTFm achieve a

throughput of more than 17 KB/sec that corresponds to more than 27 pubs/sec.

On the other hand, iBroker accomplishes a throughput of 0.18 KB/sec that

corresponds to 0.28 pubs/sec. To this end, both Algorithms RTFs and RTFm

achieve a higher throughput rate of two orders of magnitude, when compared

to Algorithm iBroker.

Comparing Memory Usage

In Figure 4.11, we present the results for the memory requirements of each algorithm

when increasing the query database DB by Iq = 20K new continuous queries in

each iteration. We observe that both RTF’s variations exhibit similar memory

requirements, where Algorithm RTFs has the lowest memory requirements using 183
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Figure 4.11: Comparing the memory usage, when varying the query database size DB,
for a query set of FTpr = 50%.

MB for storing the whole query database, while Algorithm RTFm occupies 190 MB

for the same DB = 100K. RTFm’s additional memory requirements is attributed

to the fact that, RTFm maintains multiple forests of trees for the indexing of textual

constraints. We observe that RTF’s variations reserve the majority of their memory

when indexing the first Iq = 20K to an empty database. This behavior is attributed

to the creation of many new tries due to the index structure initialization. Namely,

RTFs reserves 73 MB when indexing the first Iq = 20K queries and RTFm reserves

75 MB. For every new Iq = 20K inserted into the database RTFs and RTFm do

not require more than 28MB to facilitate the indexing of new queries due to the

accommodation of new queries mostly in existing tries. Finally, algorithm iBroker

occupies 313 MB of memory to index a database of DB = 100K queries. iBroker

reserves 84 MB for the first Iq = 20K queries, while it requires more than 60 MB

of memory to index every set of Iq = 20K new queries.

The variations of RTF namely Algorithms RTFs and RTFm, exhibit low

memory requirements as they utilize clustering techniques to capture the common

elements of queries (both on a structural and textual level). Algorithm RTFs

has lower memory requirements, when compared against RTFm, as it utilizes a

single text indexing structure, thus, achieving higher clustering and generating a
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Figure 4.12: Comparing the insertion time, when varying the query database size DB,
for a query set of FTpr = 50%.

highly compact forest. On the other hand, Algorithm RTFm employs multiple text

indexing structures and thus, misses clustering opportunities as displayed by the

higher memory requirements. Finally, Algorithm iBroker does not employ any

text clustering techniques, thus, requiring more memory to index the same query set.

Comparing Insertion Time

In this section, we discuss the query indexing time required of all algorithms, when

the query database size DB is increasing.

Figure 4.12 shows the insertion time in milliseconds required to insert Iq = 20K

queries when the DB size increases. We observe that the algorithms require more

time to index new queries as the database size increases. Algorithms RTFs and

RTFm need more time to index the same number of queries Iq = 20K compared

to iBroker. This can be explained as follows. The variations of RTF utilise

trie-based data structures to capture and index the common structural and textual

constraints of the queries. Trie traversal results to high insertion time during

the indexing phase. On the other hand, insertion in an inverted index (as done

by Algorithm iBroker) is faster. Notice that insertion time is not critical in
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Figure 4.13: Comparing the filtering time, when varying the query database size DB,
for a query set of FTpr = 0%.

a pub/sub scenario; the most important dimension is filtering time/throughput

that defines the processing rate of publications.

4.5.3 Results when Varying the Full-Text Percentage

In this section, we present the most interesting results concerning the RTF variants

when varying the percentage of full-text constraints in the tuples. We evaluate

the structural matching performance of RTFm and RTFs when FTpr = 0% , and

stress-test the algorithms when the query database contains the highest number

of full-text constraints possible, i.e., when FTpr = 100%.

Comparing Filtering Time

Figure 4.13 presents the time in milliseconds needed to filter an incoming publication,

for Ipub = 5K publications, against a query database of FTpr = 0% (second

query collection). Please notice, that the y-axis is split into two parts due to

high differences in the performance of RTF variants (RTFm and RTFs) and

iBroker. We observe that the filtering time increases for all algorithms as the

query database size increases. Algorithms RTFs and RTFm achieve the lowest

filtering times, suggesting better performance, while Algorithm iBroker exhibits
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Figure 4.14: Comparing the filtering time, when varying the query database size DB,
for a query set of FTpr = 100%.

higher increases. Algorithm iBroker is more sensitive to DB size changes when

compared to RTF due to the data structures it utilizes to index the queries i.e.

an inverted index that does not employ any clustering techniques. Additionally,

notice that both RTF variants exhibit identical filtering time, this is attributed

to the fact that in this experimental setup (where FTpr = 0%) we evaluate the

structural matching performance of the algorithms. As both RTF variants share the

same underlying mechanism for structural matching their performance is identical.

More specifically, the results indicate that Algorithms RTFm and RTFs filter an

incoming publication 99.55% faster when indexing a database size of DB = 20K and

FTpr = 0, compared to Algorithm iBroker. Finally, the difference in performance

is consistent for all database sizes DB.

Figure 4.14 presents the time in milliseconds needed to filter an incoming

publication, for Ipub = 5K publications, against a query database of FTpr = 100%

(third query collection). Please notice, that the y-axis is split into two parts due

to to high differences in performance of RTF variants (RTFm and RTFs) and

Algorithm iBroker. We observe that the filtering time increases for all algorithm

as the query database size DB increases. Algorithms RTFs and RTFm achieve the

lowest filtering times, suggesting better performance, while Algorithms iBroker
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Figure 4.15: Comparing RTF’s filtering time, when varying the query database size
DB and the percent of full-text constraints FTpr.

exhibits higher filtering times. As discussed in Section 4.5.2, this performance

difference can be attributed to the nature of data structures employed by each

algorithmic solution. More specifically, Algorithms RTFs and RTFm employ

trie-based data structures that aim at clustering together common query parts,

while Algorithm iBroker employs an inverted index that does not employ any

clustering techniques. Finally, the results indicate that Algorithms RTFs and

RTFm filter an incoming publication 98.4% and 98.5% respectively compared to

iBroker , when DB = 100K and FTpr = 100K.

Finally, Figure 4.15 presents a comprehensive presentation of the filtering results

for the three distinct query collections (Section 4.5.1). To this end, Figure 4.15 shows

the time needed to filter an incoming publication when increasing the query database

size DB and the percent of full-text constraints with FTpr = 0%, 50% and 100%.

As expected, RTFs and RTFm achieve the lowest filtering times when FTpr = 0%,

and exhibit the same performance as they utilise the same indexing structure for the

structural constraints of the queries. Finally, RTFs and RTFm show an increase in

their filtering times when FTpr = 100% with RTFm achieving better performance

(i.e., lowest filtering time) when all queries contain full-text constraints.
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Figure 4.16: Comparing the insertion time, when varying the query database size DB,
for a query set of FTpr = 0%.

Comparing Insertion Time

Figure 4.16 presents the time in milliseconds that Algorithms RTFm, RTFs and

iBroker require to insert Iq = 20K queries when DB size is increasing and

FTpr = 0% (second query collection). We observe that the algorithms increase the

time needed to index new queries as the database size DB increases. Algorithms

RTFs and RTFm need more time to index the same number of queries Iq = 20K

compared against iBroker. Additionally, the two variations of RTF increase their

time requirements faster compared to iBroker. The performance exhibited by the

algorithms under study can be explained as follows: Algorithms RTFs and RTFm

utilize trie-based data structures in order to index the structural restrictions of the

queries and capture their common elements. The traversal of the trie-structures

and search for existing tries to cluster an incoming query results in slower indexing

performance as opposed to iBroker. Comparing the results of Figure 4.12 that

demonstrate the insertion times for the main query collection against Figure 4.16,

we observe that Algorithms RTFm and RTFs reduce in half their time requirements

when there are no full-text restrictions to be indexed. While iBroker exhibits

little time deviations when there are no full-text restrictions to be indexed.
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Figure 4.17: Comparing the insertion time, when varying the query database size DB,
for a query set of FTpr = 100%.

Figure 4.17 presents the time in milliseconds that Algorithms RTFs, RTFm and

iBroker require to insert Iq = 20K new queries when DB size is increasing and

FTpr = 100% (third query collection). We observe that the algorithms increase the

time needed to index new queries as the database size DB increases. Algorithms

RTFs and RTFm need more time to index the same number of queries Iq = 20K

compared against iBroker. Additionally, the two variations of RTF increase their

time requirements faster compared to iBroker. The performance exhibited by

the algorithms under study can be explained as follows: Algorithms RTFs and

RTFm (as discussed in previous sections) utilize trie-based data structures in order

to index the structural and full-text restrictions of the queries and capture their

common elements. The traversal of the trie-structures and search for existing tries

to cluster an incoming query results in slower indexing performance, as opposed

to Algorithm iBroker that does not employ any clustering technique.

Finally, Figure 4.18 presents a comprehensive presentation of the insertion

time for the three distinct query collections. To this end, Figure 4.18 shows

the time required to insert Iq = 20K queries when the query database size DB

is increasing and when varying the percent of full-text constraints FTpr = 0%,

50% and 100%. As expected, Algorithms RTFs and RTFm increase their time
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Figure 4.18: Comparing RTF’s insertion time, when varying the query database size
DB and the percent of full-text constraints FTpr.

requirements, when more textual constraints (i.e. FTpr = 100%) are included

in the continues queries (third query collection). Finally, Algorithms RTFs and

RTFm reduce their time requirements, when no textual constraints (FTpr = 0%)

are present (second query collection).

Comparing Memory Usage

Figure 4.19 presents the memory requirements in megabytes that Algorithms RTFs,

RTFm and iBroker require to insert Iq = 20K queries when the query database

size DB is increasing and FTpr = 0% (second query collection). We observe that

Algorithms RTFs and RTFm have the lowest and identical memory requirements

and more specifically 168MB of main memory. Algorithm iBroker occupies

the highest amount of main memory, requiring 291MB to index a database of

DB = 100K queries. RTF’s variations exhibit low memory requirements as they

utilize clustering techniques to capture the common structural elements of the

profiles. As in this experimental setup there are no full-text constraint present in

the query set (second query collection), both algorithms present the same memory

usage when indexing the same query collection. Finally, we observe that the RTF

variations reserve the majority of their memory when indexing the first incoming
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Figure 4.19: Comparing the memory usage, when varying the query database size DB,
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Iq = 20K queries (i.e. when DB = 0 − 20K). This behavior can be attributed

to the initialization of the indexing structures that the algorithms use. Namely

both RTFs and RTFm reserve 68MB of memory during the first insertion of

Iq = 20K, while the algorithms do not require more than 25MB to facilitate the

indexing of the rest of new queries. On the other hand, Algorithm iBroker reserves

82MB of memory to index the first Iq = 20K profiles into an empty database

while it requires at most 68MB of memory to index every set of Iq = 20K new

queries. Comparing the results against the finding for first query collection where

FTpr = 50% (Figure 4.11) we observe that algorithms RTFs and RTFm decrease

significantly their memory requirements, thus demonstrating high scalability.

Figure 4.20 presents the memory requirements in megabytes that Algorithms

RTFs, RTFm and iBroker require to insert Iq = 20K queries when the query

database size DB is increasing and FTpr = 100% (third query collection). We

observe that Algorithm RTFs has the lowest memory requirements using 196MB

for indexing the entirety of the query set DB = 100K. Algorithm RTFm’s

memory usage is at 203MB for indexing the same query set. Algorithm iBroker

occupies the highest amount of main memory, i.e. 326MB, to index a database

of DB = 100K queries. The variations of RTF exhibit low memory requirements
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as they utilize clustering techniques to capture the common elements of the

queries both on structural and full-text constraints. Algorithm RTFs exhibits

the lowest requirements as it utilizes a single full-text indexing structure, thus,

capturing more common elements and generating a compacter forest. On the other

hand, Algorithm RTFm by utilizing multiple forests misses important clustering

opportunities, thus, requiring more memory to index the same query set.

4.5.4 Summary of Results

Our experimental evaluation demonstrated the filtering effectiveness of algorithm

RTFs for cases where queries with text constraints are not very often, whereas

algorithm RTFm is better suited for cases where a high percentage or queries

contain text constraints. Both algorithms RTFs and RTFm are over two orders

of magnitude faster than iBroker on average.

4.6 Outlook and Future Directions

In this chapter, we have studied the problem of full-text support on ontology-based

pub/sub systems. In this context, we proposed a full-text extension for SPARQL
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continuous queries and a family of query indexing algorithms that are two orders

of magnitude faster at filtering tasks than a state-of-the-art competitor.

Future directions of this work include: (i) extending our indexing solution to

other Boolean operators, (ii) supporting vector space queries and text representation

in SPARQL, and (iii) adapting our algorithms to multi-processor environments.



5
Efficient Continuous Multi-Query

Processing over Evolving Graph Data

I n the previous chapter, we dealt with the problem of efficiency in the domain of

context-based information filtering. In this chapter, we focus on evolving graphs

and graph streams, we introduce the notion of continuous multi-query processing

over graph streams and discuss its applications to a number of use cases. Capturing

the continuous evolution of a graph can be achieved by long-standing sub-graph

queries and can yield important insights about the nature and activities of the

underlying network. To this end, we designed and developed a novel algorithmic

solution for efficient multi-query evaluation against a stream of graph updates and

experimentally demonstrated its applicability. Our results against two baseline

approaches using either real-world or synthetic datasets confirm a two orders of

magnitude improvement of the proposed solution. The initial steps of this research

have been published in [121], while the complete results and extended research have

been submitted to a journal and are currently under review.

The rest of this chapter is formed of seven sections. Section 5.1 provides

the motivation for this work, as well as the description of the research problem

addressed. Section 5.2 presents the adopted data and query model. Section 5.3

presents our proposed solution Algorithm TriC and an extension that employs

129
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a caching strategy. Section 5.4 presents Algorithms Inv and Inc, two advanced

baselines that utilize inverted index data structures, as well as a third baseline that

is based on the well-established graph database Neo4j [28]. Subsequently, Section 5.5

presents our experimental results using real-world and synthetic datasets. Finally,

Section 5.6 discusses several application scenarios for our solution, and Section 5.7

concludes the chapter by discussing the results, provides the outlook, and presents

future directions of this research.

5.1 Motivation

In recent years, graphs have emerged as prevalent data structures to model

information networks in several domains such as social networks, knowledge bases,

communication networks, biological networks and the World Wide Web. These

graphs are massive in scale and evolve constantly due to frequent updates. For

example, Facebook has over 1.52 billion daily active users who generate over 500K

posts/comments and 4 million likes every minute resulting in massive updates

to the Facebook social graph [122].

To gain meaningful and up-to-date insights in such frequently updated graphs,

it is essential to be able to monitor and detect continuous patterns of interest.

There are several applications from a variety of domains that may benefit from such

monitoring. In social networks, such applications may involve targeted advertising,

spam detection [10, 11], and fake news propagation monitoring based on specific

patterns [12, 13]. Similarly, other applications like (i) protein-to-protein interaction

patterns in biological networks [14, 15], (ii) traffic monitoring in transportation

networks, (iii) attack detection (e.g., distributed denial of service attacks in computer

networks), (iv) question answering in knowledge graphs [16, 17], and (v) reasoning

over RDF graphs may also benefit from such pattern detection.

For the applications mentioned above it is necessary to express the required

patterns as continuous sub-graph queries over (one or many) streams of graph

updates and appropriately notify the subscribed users for any patterns that match

their subscription. Detecting these query patterns is fundamentally a sub-graph
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(a) (b)

Figure 5.1: Spam detection: Users sharing and liking content with links to flagged
domains. (a) A clique of users who know each other, and (b) Users sharing the same IP
address.

isomorphism problem which is known to be NP-complete due to the exponential

search space resulting from all possible sub-graphs [18, 19]. The typical solution

to address this issue is to pre-materialize the necessary sub-graph views for the

queries and perform exploratory joins [20]; an expensive operation even for a

single query in a static setting.

Nevertheless, the applications described above deal with graph streams in such

a setup that is often essential to be able to support hundreds or thousands of

continuous queries simultaneously. This leads to several challenges that require:

• Quickly detecting the affected queries for each update.

• Maintaining a large number of materialized views.

• Avoiding the expensive join and explore approach for large sets of queries.

To better illustrate the remarks above, consider the application of spam detection

in social networks. Figure 5.1 shows an example of two graph patterns that

may emerge from malicious user activities, i.e., users posting links to domains

that have been flagged as fraudulent. Notice that malicious behavior could be

caused either because a group of users that know each other share and like each

other’s posts containing content from a flagged domain (Figure 5.1(a)), or because

the group of users shared the same flagged post several times from the same IP
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(Figure 5.1(b)). Even though these two queries are fundamentally different and

produce different matching patterns, they share a common sub-graph pattern, i.e.,

“User1 shares−−−→Post1 links−−→Domain1”. If these two queries are evaluated independently,

all the computations for processing the common pattern have to be executed

twice. However, by identifying common patterns in query sets (shared by multiple

continuous queries), we can amortize the costs of processing and answering them.

One simple approach to avoid processing all the (continuous) queries upon

receiving a graph update is to index the query graphs using an inverted-index at the

granularity of edges. While this approach may help us quickly detect all the affected

queries for a given graph update, we still need to perform several exploratory joins

to answer the affected queries. For example, in Figure 5.1, we would need to join and

explore the edges matching the pattern “User1 Shares−−−→Post1 and Post1 Links−−−→Domain1”

upon each update to process the two queries. On the contrary, if we first identify

the maximal sub-graph patterns shared among the queries, we can minimize the

number of operations necessary to answer the queries and this will consequently,

reduce the query answering time. Therefore, a solution which groups queries based

on their shared patterns would be expected to deliver significant performance gains.

To the best of our knowledge, none of the existing works provide a solution that

exploits common patterns for continuous multi-query answering.

In this paper, we address this gap by proposing a novel algorithmic solution,

coined TriC (Trie-based Clustering) to index and cluster continuous graph queries.

In TriC, we first decompose queries into a set of directed paths such that each vertex

in the query graph pattern belongs to at least one path (path covering problem [27]).

However, obtaining such paths leads to redundant query edges and vertices in the

paths; this is undesirable since it affects the performance of the query processing.

Therefore, we are interested in finding paths which are shared among different queries,

with minimal duplication of vertices. The paths obtained are then indexed using

‘tries’ that allow us to minimize query answering time by (i) quickly identifying the

affected queries, (ii) sharing materialized views between common patterns, and (iii)

efficiently ordering the joins between materialized views affected from the update.
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Figure 5.2: Log-log plot comparing query answering time for the SNB dataset from
the LDBC benchmark, when varying the number of queries exponentially.

Figure 5.2 shows the potential for improvement in query answering time with

our query clustering solution TriC, for the LDBC graph benchmark [123]. We

can observe that TriC provides a speedup of two orders of magnitude in query

answering time, compared against the two advanced baselines using the “inverted

indexing technique" (Inv, Inc) and the graph database Neo4j that do not exploit the

common sub-graph patterns in the queries. The overall evaluation and comparison

of the algorithms is presented in detail in Section 5.5.

In the light of the above, our contributions can be summarized as follows:

• We formalize the problem of continuous multi-query answering over graph

streams (Section 5.2).

• We propose a novel query graph clustering algorithm that is able to efficiently

handle large numbers of continuous graph queries by resorting on (i) the

decomposition of continuous query graphs to minimum covering paths and

(ii) the utilization of tries for capturing the common parts of those paths. We

identify different variations of the main algorithmic solution and the baseline

approaches, which utilize caching strategies and demonstrate the effect of

such solutions on the problem at hand. (Section 5.3).
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• Since no prior work in the literature has considered continuous multi-query

answering, we designed and developed two algorithmic solutions that utilize

inverted indexes for the query answering. Additionally, we deploy and

extend Neo4j [28], a well-established graph database solution, to support

our proposed paradigm. To this end, the proposed solutions will serve as

baselines approaches during the experimental evaluation. (Section 5.4).

• We experimentally evaluate the proposed solution using three different datasets

from social networks, transportation, and biology domains, and compare the

performance against the three baselines. In this context, we show that our

solution can achieve up to two orders of magnitude improvement in query

processing time (Section 5.5).

• Finally, we identify and present application scenarios from various domains,

that could benefit from the proposed continuous multi-query answering

paradigm (Section 5.6).

In this section, we presented the motivation behind our work and gave a brief

overview of the algorithmic solutions we developed in order to solve the continuous

multi-query processing over graph streams problem. In the following section, we

present the data model we employed in our approach.

5.2 Data Model and Problem Definition

In this section, we present the data model that defines the evolving graph, as

well as the stream of changes that arrive at the evolving graph (Section 5.2.1).

Additionally, we present the query model that users can utilize to capture certain

patterns that emerge in an evolving graph (Section 5.2.2).

5.2.1 Graph Model

In our approach, we employ attribute graphs [124] (Definition 5.1) as our data

model, as they are used natively in a wide variety of applications, such as social

network graphs, traffic network graphs, and citation graphs. Datasets in other
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data models can be mapped to attribute graphs in a straightforward manner so

that our approach can be applied to them as well.

Definition 5.1 An attribute graph G is defined as a directed labeled multigraph:

G = (V,E, lV , lE,ΣV ,ΣE)

where V is the set of vertices and E the set of edges. An edge e ∈ E is an ordered pair

of vertices e : (s, t), where s, t ∈ V represent source and target vertices. lV : V → ΣV

and lE : E → ΣE are labeling functions assigning labels to vertices and edges from

the label sets ΣV and ΣE.

For ease of presentation we adopt the following notation: We denote an edge

e as e = (s, t), where e, s and t are the labels of the edge(lE(e)), source vertex

(lV (s)) and target vertex (lV (t)) respectively.

As our goal is to facilitate efficient continuous multi-query processing over

graph streams, we also provide formal definitions for updates (Definition 5.2) and

graph streams (Definition 5.3).

Definition 5.2 An update ut on graph G is defined as an addition (e) of an edge e

at time t. An addition leads to new edges between vertices and possibly the creation

of new vertices.

Definition 5.3 A graph stream S = (u1, u2, . . . , ut) of graph G is an ordered

sequence of updates.

Figure 5.3(a) presents an update stream S consisting of three graph updates u1,

u2, and u3 generated from social network events. While, Figure 5.3 (b) shows

the initial state of graph G and its evolution after inserting sequentially the

three updates.
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Figure 5.3: (a) An update stream S and (b) the evolution of graph G after inserting
ui ∈ S.

5.2.2 Query Model

In the proposed model, a user (or service that operates on behalf of the user)

subscribes into subgraphs or motifs (i.e., subgraphs with a fixed number of vertices

commonly found in a graph) that emerge through the evolution of the graph and

match a given set of attribute restrictions. These structural and attribute constraints

are expressed by the user (or service), while their native structure is similar to

the evolving graph. During the graph evolution, subgraphs emerge that match the

restrictions (i.e., query graphs are satisfied), while the respective users are notified.

In order to enable users with this functionality we define query graph patterns that

are used to capture the subgraph and attribute restrictions of an evolving graph.

For our query model we assume that users (or services operating on their

behalf) are interested to learn when certain patterns emerge in an evolving graph.

Definition 5.4 formalizes query graph patterns that define structural and attribute

constraints on graphs.

Definition 5.4 A query graph pattern Qi is defined as a directed labeled multigraph:

Qi = (VQi
, EQi

, vars, lV , lE,ΣV ,ΣE)
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Figure 5.4: An example query graph pattern capturing activities that occur, within a
social network.

where VQi
is a set of vertices, EQi

a set of edges, and vars a set of variables.

lV : V → {ΣV ∪ vars} and lE : E → ΣE are labeling functions assigning labels (and

variables) to vertices and edges.

Example 5.1 Let us consider an example where a user wants to be notified when

his friends visit places nearby. Figure 5.4 shows the corresponding query graph

pattern that will result in a user notification when two people check in at the same

place/location in Rio.

Based on the above definitions, let us now define the problem of multi-query

processing over graph streams, which is the main focus of this work.

Definition 5.5 Problem Definition. Given a set of query graph patterns QDB =

{Q1, Q2, . . . , Qk}, an initial attribute graph G, and a graph stream S with continuous

updates ut ∈ S, the problem of multi-query processing over graph streams consists of

continuously identifying all satisfied query graph patterns Qi ∈ QDB when applying

incoming updates.

The query answering problem is of high importance as servers are expected to

handle hundreds of thousands of query graph patterns, and high rates of incoming

updates through graph streams.



138 5.3. Trie-Based Clustering

Query Set and Graph Modifications

A set of query graph patterns QDB is subject to modifications (i.e., additions and

deletions). In this work, we focus on streamlining the query indexing phase, while

developing techniques that allow processing each incoming query graph pattern

separately, thus supporting continuous additions in QDB. In the same manner,

a graph G is subject to edge additions and deletions, our main objective is to

efficiently determine the queries satisfied by an edge addition. The proposed model

does not require indexing the entire graph G and retains solely the necessary parts

of G for the query answering. To this end, we do not further discuss deletions on

QDB and G, as we focus on providing high performance query answering algorithms.

Nonetheless, we provide concise information on how graph deletions can be handled

by our proposed solutions.

In this section, we described the graph and stream model, as well as presented

the query model that employs query graph patterns. In the following sections,

we describe the algorithmic solutions developed to provide efficient multi-query

evaluation over graph streams.

5.3 Trie-Based Clustering

In order to solve the problem defined in the previous section, we propose Algo-

rithm TriC (Trie-based Clustering), which uses clustering techniques to capture

common parts in a given set of continuous query subgraph patterns. We aim

at efficiently solving the multi-query evaluation problem by utilizing clustering

techniques in order to capture the common parts of the continuous query subgraph

patterns. In this section we present Algorithm TriC, a solution we designed and

implemented to efficiently solve the problem.

As motivated in Section 5.1, the key idea behind Algorithm TriC lies in the

fact that query graph patterns overlap in their structural and attribute restrictions.

After identifying and indexing these shared characteristics (Section 5.3.1), they
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can be exploited to batch-answer the indexed query set and in this way reduce

query response time (Section 5.3.2).

5.3.1 Query Indexing Phase

Algorithm TriC indexes each query graph pattern Qi by applying the follow-

ing two steps:

1. Transforming the original query graph pattern Qi into a set of path conjuncts,

that cover all vertices and edges of Qi, and when combined can effectively

re-compose Qi.

2. Indexing all paths in a trie-based structure along with unique query identifiers,

while clustering all paths of all indexed queries by exploiting commonalities

among them.

In the following, we present each step of the query indexing phase of Algo-

rithm TriC and give details about the data structures utilized. The pseudocode

of the query indexing phase of TriC is provided in Figure 5.5.

Extracting the Covering Paths (Step 1)

In the first step of the query indexing process, Algorithm TriC decomposes a query

graph pattern Qi and extracts a set of paths CP(Qi) (Figure 5.5, line 1). This set of

paths, covers all vertices V ∈ Qi and edges E ∈ Qi. At first, we give the definition

of a path and subsequently define and discuss the covering path set problem.

Definition 5.6 A path Pi ∈ Qi is defined as a list of vertices Pi = {v1
e1−→ v2

e2−→

. . . vk
ek−→ vk+1} where vi ∈ Qi, such that two sequential vertices vi, vi+1 ∈ Pi have

exactly one edge ei ∈ Qi connecting them, i.e., ek = (vk, vk+1).

Definition 5.7 The covering path problem (CP ) of a query graph Qi is defined

as a set of paths CP (Qi) = {P1, P2, . . . , Pk} that cover all vertices and edges of

Qi. In more detail, we are interested in the least number of paths while ensuring
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Algorithm: Index
Input: Query Qi = (VQi , EQi , vars, lV , lE ,ΣV ,ΣE)
Result: Store Qi in QDB (QDB ← QDB ∪ Qi)
Step 1 :
// Obtain the set of covering paths

1 Paths← CP(Qi)
Step 2 :
// For each covering path Pi of query graph Qi

2 foreach Pi ∈ Paths do
3 foreach trie Ti with root(Ti) = e1 : e1 ∈ Pi do

// Get reference to trie Ti

4 &Ti ← rootInd(Ti)
// Traverse trie in DFS

5 depthFirstSearch(&Ti)
// If there exists a trie that can store Pi

6 if ∃{n0 → . . . ni → . . . nk} ⊆ Pi then
// Store the trie path positions

7 positions← {n0 → . . . ni → . . . nk}

// If all edges ei ∈ Pi cannot be indexed, create additional trie
nodes to index them

8 if positions ∩ Pi 6= ∅ then
9 create_nodes(Pi \ positions)

// Store the query identifier in the last trie node
10 last(positions)← id(Qi)

// Keep a reference to the last trie node
11 pathPositions→ pathPositions ∪ last(positions)

// Store tries Ti under which, edge ei is indexed
12 foreach ei ∈ Pi do
13 edgeInd[ei]← Ti

// Store the nodes that Qi was indexed under
14 queryInd[id(Qi)]← pathPositions

Figure 5.5: Pseudocode for the query indexing phase (Algorithm Index), performed by
Algorithm TriC.
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that for every vertex vi ∈ Qi there is at least one path Pj that contains vi, i.e.,

∀i∃j : vi ∈ Pj, vi ∈ Qi. In the same manner, for every edge ei ∈ Qi there is at least

one path Pj that contains ei, i.e., ∀i∃j : ei ∈ Pj.

Obtaining the Set of Covering Paths

The problem of obtaining a set of paths that covers all vertices and edges is a

graph optimization problem that has been extensively studied, in the domains of

software and circuit testing [125]. In the domain of software testing it is used to

model all possible execution states of source code, where, the execution flow is

modeled as a graph. In this context, all possible execution paths of the graph

should be covered, i.e., visiting all vertices and edges of the graph and obtaining

the minimum set of paths that cover the graph, while a path can not be a sub-path

of an already existing path. The set of covering path set is commonly known, in

the software testing domain, as prime paths.

In our approach, we choose to solve the problem by applying a greedy algorithm,

as follows: For all vertices vi in the query graph Qi execute a depth-first walk until

a leaf vertex (no outgoing edge) of the graph is reached, or there is no new vertex to

visit. Subsequently, repeat this step until all vertices and edges of the query graph

Qi have been visited at least once and a list of paths has been obtained. Finally,

for each path in the obtained list, check if it is a sub-path of an already discovered

path, and remove it from the list of covering paths. Please note that in queries that

contain a cycle, a random vertex is chosen as the initial vertex of the dept-first

walk. The end result of this procedure yields the set of covering paths.

Example 5.2 In Figure 5.6(a) we present four query graph patterns, namely Q1,

Q2, Q3 and Q4. These query graph patterns capture activities of users inside a

social network. Those activities include users posting new content and receiving

comments on their posts (Q1, Q3), users creating new forums (Q2), and posting

content inside the forums they moderate (Q4).

By applying Definition 5.7 on the four query graph patterns presented, Algo-

rithm TriC extracts four sets of covering paths, presented in Figure 5.6(b).



142 5.3. Trie-Based Clustering

Q3

Q4Q2

Q1

?f1
hasMod posted

pst1

pst2

?p1

posted

reply

?com1

has
Mo

d

?f2

?f1 ?p1 posted
pst1

containedIn

hasCreator

com1

hasMod
?f1 ?p1

?f1 ?p1
posted

pst1

containedIn

hasMod

(a)

Query ID Set of Covering Paths

Q1

P1 = {?var hasMod−−−−→?var posted−−−→ “pst1”}
P2 = {?var hasMod−−−−→?var posted−−−→ “pst2”}
P3 = {?var reply−−−→ “pst2”}

Q2 P1 = {?var hasMod−−−−→?var}

Q3
P1 = {“com1” hasCreator−−−−−−→?var posted−−−→
“pst1” containedIn−−−−−−−→?var}

Q4
P1 = {?var hasMod−−−−→?var posted−−−→ “pst1”
containedIn−−−−−−−→?var}

(b)

Figure 5.6: (a) Four query graph patterns that capture events generated inside a social
network and (b) their covering paths.

Obtaining a set of paths serves two purposes: (a) it gives a less complex

representation of the query graph that is easier to manage, index and cluster, as

well as (b) it provides a streamlined approach on how to perform the materialization

of the subgraphs that match a query graph pattern, i.e., the query answering

during the evolution of the graph.

The time complexity, of obtaining the minimum set of covering paths of a query

graph pattern Qi is calculated as: (i) The complexity of obtaining a set of paths

that can cover Qi, is O(|VQi
|+ |EQi

|), where |VQi
| and |EQi

| denote the cardinality

of the vertex and edge sets respectively. (ii) The complexity of obtaining the
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minimum set of paths out of a path set P , where each path is not a subset of an

other path, is O(|P |2 ∗ |Pmax|), where |P | is the cardinality of set P and |Pmax|

is the cardinality of the longest path Pmax. Thus, the total time complexity is

O((|VQi
| + |EQi

|) + (|P |2 ∗ |Pmax|)).

Materialization

Each edge ei that is present in the query set has a materialized view that corresponds

to its matV [ei]. The materialized view of ei stores all the updates ui that contain

ei. In order to obtain the subgraphs that satisfy a query graph pattern Qi, all

edges ei ∈ Qi must have a non-empty materialized view (i.e., matV 6= ∅) and the

materialized views should be joined as defined by the query graph pattern.

In essence, the query graph pattern determines the execution plan of the query.

However, given that a query pattern itself is a graph, there is a high number of

possible execution plans available. A path Pi = {v1
e1−→ v2

e2−→ . . . vk} serves as a

model that defines the order in which the materialization should be performed.

Thus, starting from the source vertex v1 ∈ Pi and joining all the materialized views

from v1 to the leaf vertex vk ∈ Pi : |P | = k yields all the subgraphs that satisfy

the path Pi. After all paths Pi that belong in Qi have been satisfied, a final join

operation must be performed between all the paths. This join operation will produce

the subgraphs that satisfy the query graph Qi. To achieve this path joining set,

additional information is kept about the intersection of the paths Pi ∈ Qi. The

intersection of two paths Pi and Pj are their common vertices, defined as the set

of vertices that are common between them.

Example 5.3 Figure 5.7 presents some possible materialized views that correspond

to the covering paths of query graph Q1 (Figure 5.6 (b)). In order to locate

all subgraphs that satisfy the structural and attribute restrictions posed by paths

P1, P2 and P3 their materialized views should be calculated. More specifically,

path P1 = {?var hasMod−−−−→?var posted−−−→ “pst1”}, is formulated by two edges, edges

hasMod = (?var, ?var) and posted = (?var, pst1), thus, their materialized views

matV [hasMod = (?var, ?var)] and matV [posted = (?var, pst1)] must be joined.
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Q1

=
matV[hasMod = (?var, ?var)]

?var ?var

matV[posted = (?var, pst1)]

?var pst1

f1 p1
f2 p1 p2 pst1

p1 pst1

matV[hasMod = (?var, ?var)]

?var ?var

f1 p1
f2 p1

matV[posted = (?var, pst2)]

?var pst2

p1 pst2 =

P1 :

?var ?var pst1

matV[hasMod = (?var, ?var), 
posted = (?var, pst1)]

f2 p1 pst1
f1 p1 pst1

P2 :

matV[hasMod = (?var, ?var), 
posted = (?var, pst2)]

?var ?var pst2

f2 p1 pst2
f1 p1 pst2

matV[reply = (?var, pst2)]

?var pst2

com1 pst2P3 :

Figure 5.7: Materialized views of query graph pattern Q1, as generated by Algo-
rithm TriC.

These two views contains all updates ui that correspond to them, while the re-

sult of their join operation will be a new materialized view matV [hasMod =

(?var, ?var), posted = (?var, pst1)] as shown in Figure 5.7. In a similar manner,

the subgraphs that satisfy path P2 are calculated, while P3 that is formulated by a

single edge does not require any join operations. Finally, in order to calculate the

subgraphs that match Q1 all materialized views that correspond to paths P1, P2 and

P3 must be joined.

Finally, the time complexity, of joining two materialized views matV 1 and matV 2,

where N and M denote their respective cardinalities, is O(N ∗M), since each tuple

of matV 1 must be compared against each tuple of matV 2.

Indexing the Covering Paths (Step 2)

Subsequently, Algorithm TriC proceeds into indexing all the paths, extracted

in Step 1, into a trie-based data structure. For each path Pi ∈ CP(Qi), TriC

examines the forest for trie roots that can index the first edge e1 ∈ Pi (Figure 5.5,

lines 3− 7). To access the trie roots, TriC utilizes a hash table (namely rootInd)

that indexes the values of the root-nodes (keys) and the references to the root

nodes (values), Figure 5.5, line 4. If such trie Ti is located, Ti is traversed in a

DFS manner to determine in which sub-trie path Pi can be indexed (Figure 5.5,



5. Efficient Continuous Multi-Query Processing over Evolving Graph Data 145

rootInd Data Structure

Root
Index hasMod = (?var, ?var) reply = (?var, pst2) hasCreator = (com1, ?var)

hasMod = (?var, ?var)

posted = (?var, pst1)

containedIn = (pst1, ?var)

posted = (?var, pst2)
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posted = (?var, pst1) 

containedIn = (pst1, ?var) 

T1 T2 T3

{Q2}

{Q1}

{Q4}

{Q1}

{Q1}

{Q3}

reply = (?var, pst2) 

n1 

n2  n4 

n3 
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n8 

queryInd Data Structure 

Query
Identifier  Node Positions 

Q1 &n2 &n4  &n5

Q2 &n1

Q3 &n8

edgeInd Data Structure 

hasMod = (?var, ?var) 

Edges 

&T1

posted = (?var, pst1) 

posted = (?var, pst2)  &T1

reply = (?var, pst2)  &T2

hasCreator = (com1, ?var)  &T3

containedIn = (pst1, ?var)  &T3 &T1

Trie Positions 

&T1 &T3

Figure 5.8: The data structures utilized by Algorithm TriC to index the set of query
graph patterns.

line 5). Thus, Algorithm TriC traverses the forest to locate an existing trie-path

{n1 → . . . ni → . . . nk} that can index the ordered set of edges {e1, . . . , ek} ∈ Pi. If

the discovered trie-path can index Pi partially (Figure 5.5, line 8), TriC proceeds

into creating a set of new nodes under nk that can index the remaining edges

(Figure 5.5, line 9). Finally, the algorithm stores the identifier of Qi at the last

node of the trie path (Figure 5.5, line 10).

Algorithm TriC makes use of two additional data structures, namely edgeInd

and queryInd. The former data structure is a hash table that stores each edge

ei ∈ Pi (key) and a collection of trie roots Ti which index ei as the hash table’s

value (Figure 5.5, lines 12 − 13). Finally, TriC utilizes a matrix queryInd that

indexes the query identifier along side the set of nodes under which its covering

paths Pi ∈ CP (Qi) were indexed (Figure 5.5, line 14).

Example 5.4 Figure 5.8 presents an example of rootInd, queryInd and edgeInd of
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Algorithm TriC when indexing the set of covering paths of Figure 5.6 (b). Notice,

that TriC indexes paths P1, P2 ∈ Q1, path P1 ∈ Q2 and path P1 ∈ Q4 under the

same trie T1, thus, clustering together their common structural restrictions (all the

aforementioned paths) and their attribute restrictions. Additionally, note that the

queryInd data structure keeps references to the last node where each path Pi ∈ Qi is

stored, e.g. for Q1 it keeps a set of node positions {&n2,&n4,&n5} that correspond

to its original paths P1, P2 and P3 respectively. Finally, edgeInd stores all the

unique edges present in the path set of Figure 5.6 (b), with references to the trie

roots under which they are indexed, e.g. edge posted = (?var, pst1) that is present

in P1 ∈ Q1, P1 ∈ Q3 and P1 ∈ Q4, is indexed under both tries T1 and T3, thus this

information is stored in set {&T1,&T3}.

The time complexity of Algorithm TriC when indexing a path Pi, where

|Pi| = M is the number of edges and B is the branching factor of the forest, is

O(M ∗B), since TriC uses a DFS strategy, with the maximum depth bound by

the number of edges. Thus, for a new query graph pattern Qi with N covering

paths, the total time complexity is O(N ∗M ∗B). Finally, the space complexity of

Algorithm TriC when indexing a query Qi is O(N ∗M), where M is the number

of edges in a path and N is the cardinality of Qi’s covering paths.

Variable Handling

A query graph pattern Qi contains vertices that can either be literals (specific

entities in the graph) identified by their label, or variables denoted as “?var”. This

approach alleviates restrictions posed by naming conventions and thus leverages

on the common structural constraints of paths.

However, by substituting the variable vertices with the generic “?var” requires

to keep information about the joining order of each edge ei ∈ Pi, as well as, how

each Pi ∈ CP (Qi) intersects with the rest of the paths in CP (Qi). In order

to calculate the subgraphs that satisfy each covering path Pi ∈ CP (Qi), each

matV [ei] : ei ∈ Pi must be joined. Each path Pi that is indexed under a trie path

{n1 → . . . ni → . . . nk} maintains the original ordering of its edges and vertices,
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while the order under which each edge of a node ni is connected with its children

nodes (chn(ni)) is determined as follows: the target vertex t ∈ ei (where ei is

indexed under ni) is connected with the source node s ∈ ei+1 : ei+1 ∈ chn(ni) of

the parent node ni. Finally, for each covering path Pi ∈ CP (Qi) TriC maintains

information about the vertices that intersected in the original query graph pattern

Qi, while this information is utilized during the query answering phase.

5.3.2 Query Answering Phase

During the evolution of the graph, a constant stream of updates S = (u1, u2, . . . , uk)

arrives at the system. Each update ui can affect a query graph pattern Qi and

potentially answer it. The query answering process of Algorithm TriC commences

by locating all the tries that are affected by update ui and updates them by indexing

ui under them. Updating the tries, generated during the query indexing phase

(Section 5.3.1), and locating which ones are affected, indicates the covering paths

that have been affected by update ui. Subsequently, each affected covering path

is then utilized in the final phase of query answering, where it is determined if

Qi has matched. To this end, for each update ui ∈ S Algorithm TriC performs

the following distinct steps:

1. Determines which tries are affected by update ui and proceeds in examining

them.

2. While traversing the affected tries, performs the materialization and prunes

sub-tries that are not affected by ui.

In the following, we describe each step of the query answering phase of Algo-

rithm TriC. While, the pseudocode for each step of the query answering phase

is provided in Figures 5.9 and 5.11.
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Locate and Traverse Affected Tries (Step 1)

When an update ui arrives at the system, Algorithm TriC utilizes the edge

ei ∈ ui to locate the tries that are affected by ui. To achieve this, TriC uses the

hash table edgeInd to obtain the list of tries that contain ei in their children set.

Thus, Algorithm TriC receives a list (affectedTries) that contains all the tries

that were affected by ui and must be examined (Figure 5.9, line 1). Subsequently,

Algorithm TriC proceeds into examining each trie Ti ∈ affectedTries by traversing

each Ti in order to locate the node ni that indexes edge ei ∈ ui. When node ni is

located, the algorithm stores all the corresponding positions of the indexed edges

(Figure 5.9, lines 3 − 6) and proceeds in Step2 of the query answering process

described below (Figure 5.9, line 8).

Example 5.5 Let us consider the data structures presented in Figure 5.8, the

materialized views in Figure 5.10, and an update u1 = (posted = (p2, pst1)) that

arrives into the evolving graph (Figure 5.10(a)). Algorithm TriC prompts hash

table edgeInd and obtains list {&T1,&T3}. Subsequently, TriC will traverse tries

T1 and T3. When traversing trie T1 TriC locates node n2 that matches update

e1 ∈ u1 and proceeds in Step2 (described below). Finally, when traversing T3

TriC will stop the traversal at root node n6 as its materialized view is empty

matV [hasCreator = (pst1, ?var)] = ∅ (Figure 5.10 (b)), thus all sub-tries will yield

empty materialized views.

Trie Traversal and Materialization (Step 2)

Intuitively, a trie path {n0 → . . . ni → . . . nk} represents a series of joined

materialized views matV s = {matV 1, matV 2 , . . . , matV k}. Each materialized view

matV i ∈ matV s corresponds to a node ni that stores edge ei and the materialized

view matV i. The materialized view contains the results of the join operation between

the matV [ei] and the materialized view of the parent node ni (matV (prnt(ni)]),

i.e., matV i = matV [prnt(ni)] on matV [ei]. Thus, when an update ui affects a node

ni in this “chain” of joins, ni’s and its children’s (chn(ni)) materialized views must
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Algorithm: Answer
Input: Update ui = (ei) : ei = (s, t)
Output: Locate matched queries
Step 1 :
// Get affected tries

1 affectedTries← edgeInd[ei]
2 foreach Ti ∈ affectedTries do

// Traverse trie Ti in a DFS manner
3 foreach node ni ∈ Ti do

// If the current node indexes edge ei

4 if edge(nc) = ei then
// Store the position

5 fndPos← n
// Terminate the traversal

6 break

// Update matVs of fndPos and its children
7 affectedQueries← Trie Traversal & Materialization (fndPos)

8 foreach query Qi ∈ affectedQueries do
9 results← ∅

// For the covering paths of Qi

10 foreach Pi ∈ Qi do
11 results← results on matV [Pi]

12 if results 6= ∅ then
13 mark_Matched(Qi)

Figure 5.9: Pseudocode of the query answering phase (Step 1), performed by Algo-
rithm TriC.

be updated with ui. Based on this, TriC searches for and locates node ni inside

Ti that is affected by ui and updates ni’s sub-trie.

After locating node ni ∈ Ti that is affected by ui, Algorithm TriC continues

the traversal of ni’s sub-trie and prunes the remaining sub-tries of Ti (Figure 5.9,

line 7). Subsequently, TriC updates the materialized view of ni by performing

a join operation between its parent’s node materialized view matV [prnt(ni)] and

the update ui, i.e., results = matV [prnt(ni)] on ui. Notice, that Algorithm TriC

calculates the subgraphs formulated by the current update solely based on the
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(a)

(c)

(b) pst1 ?var
matV[hasCreator = (pst1, ?var)]

=
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f2 p2 pst1
f2 p1 pst1
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Figure 5.10: Updating materialized views.

update u1 and does not perform a full join operation between matV [prnt(ni)] and

matV [edge(ni)], the updated results are then stored in the corresponding matV [ni].

For each child node nj ∈ chn(ni), TriC updates its corresponding materialized

view by joining its view matV [nj ] that corresponds to the edge that it stores (given

by matV [edge(nj)]) with its parent node materialized view matV [ni] (Figure 5.11,

lines 1− 7). If at any point the process of joining the materialized views returns

an empty result set the specific sub-trie is pruned, while the traversal continues

in a different sub-trie of Ti (Figure 5.11, lines 5− 6). Subsequently, for each trie

node nj in the trie traversal, when there is a successful join operation among

matV [ej] : ej ∈ nj and matV [ni], the query identifiers indexed under nj are stored

in affectedQueries list (Figure 5.11, lines 4 and 7). Note that similarly to before,

only the updated part of a materialized view is utilized as the parent’s materialized

view, an approach applied on database-management system [126].

Example 5.6 Let us consider the data structures presented in Figures 5.8 and

5.10, and an update u1 = (posted = (p2, pst1)) that arrives into the evolving

graph. After locating the affected trie node n2 (described in Example 5.5), TriC

proceeds in updating the materialized view of n2, i.e., matV [n2], by calculating the

join operation between its parents materialized view, i.e., matV [n1] and the update
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Function: Trie Traversal & Materialization
Input: Node ni

Output: Locate matched queries
// Update the current materialized view by joining the parent

materialized view with the materialized view of the edge in
node ni

1 result← matV [prnt(ni)] on matV [edge(ni)];
2 if result = ∅ then
3 return;

// Store the query identifiers of node ni

4 affectedQueries← affectedQueries ∪ qIDs(ni);
// Recursively update the matVs of ni’s children

5 foreach nc ∈ chn(ni) do
6 Trie Traversal & Materialization (nc);

// Return the affected qIDs
7 return affectedQueries;

Figure 5.11: Pseudocode of the query answering phase (Step 2), performed by
Algorithm TriC.

u1. Figure 5.10, demonstrates the operations of joining matV [n2] with update u1,

the result of the operation is tuple (f2, p2, pst1), which is added into matV [n2],

presented in Figure 5.10(a). While the query identifiers of n2 (i.e., Q1) are indexed

in affectedQueries. Finally, TriC proceeds by updating the sub-trie of n2, that

is node n3, where the updated tuple (f2, p2, pst1) is joined with matV [edge(n3)]

(i.e., matV [containedIn = (pst1, ?var)]). This operation yields an empty result

(Figure 5.10(c)), thus terminating the traversal.

Finally, to complete the answering phase Algorithm TriC iterates through the

affected list of queries and performs the join operations among the paths that form

a query, thus, yielding the final answer (Figure 5.9, lines 8 − 13).

The time complexity of Algorithm TriC when filtering an update ui is calculated

as follows: The traversal complexity is O(T ∗(Pm∗B)), where T denotes the number

of tries that contain ei ∈ ui, Pm denotes the size of the longest trie path, and B is

the branching factor. The time complexity of joining two materialized views matV 1
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and matV 2, where |matV 1| = N and |matV 2| = M , is O(N ∗M). Finally, the

total time complexity is calculated as O((T ∗ (Pm ∗ B)) ∗ (N ∗M)).

5.3.3 Query Set and Graph Modifications

In this section, we briefly discuss how query set and graph modifications can

potentially be handled by Algorithm TriC.

Algorithm TriC indexes a set of query graph patterns denoted as QDB, where

|QDB| = k (i.e., the number of query graph patterns indexed). Set QDB is subject

to modifications, more specifically, query additions, deletions and updates. When a

new query graph pattern Qi is added in QDB the same indexing process is followed

as described previously in Steps 1 and 2 , since the process of indexing a query

graph patterns is independent of the existing query set.

When a query graph pattern Qi is removed from the query set QDB, each

covering path Pi ∈ Qi must be removed from the trie forest. The removal of the

covering paths is achieved by gaining access to the corresponding nodes through

the queryInd data structure. Subsequently, all nodes that correspond to path Pi

are traversed and examined for removal. In addition, Algorithm TriC examines all

affected nodes that do not facilitate the indexing of other paths (nodes rendered

redundant) and thus removes them from forest, while it updates all edge entries

ei ∈ Qi in the edgeInd data structure. Furthermore, the queryInd table is updated

and Qi is removed. Finally, query updates can be handled in straightforward fashion,

in the following two stages: (i) the removal of the original query Qi from QDB,

and (ii) the re-insertion of the updated query Qi.

Algorithm TriC can support edge deletions in the same fashion as edge additions

are handled during the query answering phase (as discussed above). More specifically,

when an update ud arrives at the system, Algorithm TriC can utilize the edge

ed ∈ ud and probe the hash table edgeInd to locate the tries that are affected by

ud and thus, receiving a list of affected tries (affectedTries). Subsequently, TriC

can examine each affected trie (as described in Step1, Figure 5.9) and locate

the node ni that indexes ed ∈ ud. After locating node ni that is affected by ud,
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Algorithm TriC continues the traversal of the remaining sub-tries (similarly to

Step2, Figure 5.11), and updates the affected materialized views, by removing

all the tuples that contain ud.

5.3.4 Implementing a Caching Approach

During the trie traversal and materialization (Step2, Figure 5.11), of the query

answering phase, two materialized views are joined using a typical hash join operation

with a build and a probe phase. In the build phase, a hash table for the smallest

(in the number of tuples) table is constructed, while in the probe phase the largest

table is scanned and the hash table is probed to perform the join. Algorithm TriC

discards all the data structures and intermediate results after the join operation

commences. In order to enhance this resource intensive operation, we cache and

reuse the data structures generated during the build and probe phases as well as

the intermediate results whenever possible. This approach constitutes an extension

of our proposed solution, Algorithm TriC, and it is coined Algorithm TriC+.

In this section, we presented two novel query graph pattern indexing algorithms

that utilize trie structures to cluster continuous graph pattern queries, namely

Algorithms TriC and TriC+. In the following section, we present two advanced

baseline solutions that use inverted index data structures, and a baseline solution

that employs the well-established Neo4j graph database.

5.4 Advanced Baselines

Since no prior work in the literature considers the problem of continuous multi-query

evaluation, we designed and implemented Algorithms Inv and Inc, two advanced

baselines that utilize inverted index data structures. Finally, we provide a third

baseline that is based on the well-established graph database Neo4j [28].

5.4.1 Algorithm INV

Algorithm Inv (Inverted Index), utilizes inverted index data structures to index

the query graph patterns. The inverted index data structure is able to capture and
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index common elements of the graph patterns at the edge level during indexing

time, as opposed to the more sophisticated clustering imposed by the use of tries.

Subsequently, the inverted index is utilized during filtering time to determine

which queries have been satisfied. In the following, we describe the query indexing

and answering phase of Inv.

The Query Indexing Phase

The Query Indexing Phase of Algorithm Inv, for each query graph pattern Qi,

is performed in two steps:

1. Transforming the original query graph pattern Qi into a set of path conjuncts,

that cover all vertices and edges of Qi and when combined can effectively

re-compose Qi, and indexing those covering paths in a matrix along the unique

query identifier.

2. Indexing all edges ei ∈ Qi into an inverted index data structure, as well as

indexing all covering paths in a matrix, thus, maintaining a close representation

of the original query.

In the following, we present each step of the query indexing phase of Algo-

rithm Inv and give details about the data structures utilized. The complete

pseudocode of the query indexing phase is provided in Figure 5.12.

Extracting the Covering Paths (Step 1)

In the first step of the query indexing phase, Algorithm Inv decomposes a query

graph Qi into a set of paths CP , a process described in detail in Section 5.3.1,

(Figure 5.12, line 1). Thus, given the query set presented in Figure 5.6 (a), Inv

yields the same set of covering paths CP (Figure 5.6 (b)). Finally, the covering

path set CP is indexed into an array (queryInd) with the query identifier of

Qi (Figure 5.12, line 2).
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Algorithm: Index
Input: Query Qi = (VQi

, EQi
, vars, lV , lE,ΣV ,ΣE)

Result: Store Qi in QDB (QDB ← QDB ∪ Qi)
Step 1 :
// Extract all paths that cover the query graph

1 Paths← CP(Qi)
// Store all paths that cover the query graph

2 queryInd[id(Qi)]← CP(Qi)
Step 2 :
// For all edges of Qi

3 foreach edge ei ∈ Qi do
// Keep an entry

4 edgeInd[ei]← id(Qi)
5 sourceInd[src(ei)]← ei

6 targetInd[trg(ei)]← ei

Figure 5.12: Pseudocode for the query indexing phase (Algorithm Index), performed
by Algorithm Inv.

Indexing the Query Graph (Step 2)

Algorithm Inv builds three inverted indexes, where it stores all edges and vertices

that formulate the query graph patterns, thus storing the structural and attribute

constrains of the query graph pattern Qi. Hash table edgeInd indexes all edges

ei ∈ QDB (keys) and the respective query identifiers as values, (Figure 5.12, line

4), hash table sourceInd indexes the source vertices of each edge (key), where

the edges are indexed as values (Figure 5.12, line 5), and hash table targetInd

indexes the target vertices of each edge (key), where the edges are indexed as

values (Figure 5.12, line 6).

In Figure 5.6(a), we present four query graph patterns and in Figure 5.13 we show

the data structures of Inv when indexing those queries. Finally, Inv applies the same

techniques of handling variables as Algorithm TriC, as described in Section 5.3.1.

The Query Answering Phase

During the evolution of the graph a constant stream of updates S = (u1, u2, . . . , uk)

arrives at the system. For each update ui ∈ S Algorithm Inv performs the
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Figure 5.13: Index structures utilized by Algorithm Inv.

following three steps:

1. Determines which queries are affected by update ui.

2. Prompts the inverted index data structures sourceInd and targetInd and

determines which paths have been affected by update ui.

3. Performs the materialization while querying the inverted index data structures.

In the following, we describe each step of the query answering phase of Algo-

rithm Inv. The pseudocode for each step of the query answering phases is provided

in Figures 5.14 (Steps1&2) and 5.15 (Steps2&3).
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Algorithm: Answer
Input: Update ui = (ei) : ei = (s, t)
Output: Locate matched queries
Step 1 :
// Get affected queries

1 affectedQueries← edgeInd[ei]
// For all affected queries

2 foreach Qi ∈ affectedQueries do
// If there exists at least one edge that does not have a

matterialised view
3 if ∃ej ∈ Qi that matV [ej] = ∅ then

// Remove Qi from the candidate list
4 affectedQueries← affectedQueries \ {Qi}

Step 2 :
// Visit all edges ei that are affected by update ui

5 foreach ei ∈ sourceInd[s] ∪ targetInd[t] do
6 ExaminePath(ei)

7 foreach query Qi ∈ affectedQueries do
8 results← ∅

// For each covering path pi ∈ Qi

9 foreach pi ∈ Qi do
10 results← results on matV [pi]

11 if results 6= ∅ then
12 mark_Matched(Qi)

Figure 5.14: Pseudocode of the query answering phase (Steps 1 & 2), performed by
Algorithm Inv.

Locate the Affected Queries (Step 1)

When a new update ui arrives at the system, Algorithm Inv utilizes the edge

ei ∈ ui to locate the queries that are affected, by querying the hash table edgeInd to

obtain the query identifier qIDs that contain ei (Figure 5.14, line 1). Subsequently,

the algorithm iterates through the list of affectedQueries and checks each query

Qi ∈ qIDs. For each query Qi the algorithm checks ∀ei ∈ Qi if matV [ei] 6= ∅,

i.e., each ei should have a non empty materialized view. The check is performed
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Function: ExaminePath
Input: Edge ec

Output: Locate matched queries
Steps 2 & 3 :
// Mark edge as visited

1 visited← visited ∪ ec

// Keep the current path
2 currentPath.push(ec)
// If the current edge ec is not part of the affected queries

set, terminate the traversal
3 if qIDs ∩ edgeInd[ec] = ∅ then
4 return

// Join the result with materiliased view of the current edge
5 result← result on matV [ec]
// If the results are not empty

6 if (result 6= ∅) then
// For each query that contains the current edge ec mark the

path that this edge is contained as matched
7 ∀Qi contains currentPath, mark_Matched(Qi, currentPath)

// Visit all edges ei adjacent to ec

8 foreach ei ∈ sourceInd[src(ec)] ∪ targetInd[trg(ec)] do
9 ExaminePath(ei)

// Update the current path
10 currentPath.pop(ec)

Figure 5.15: Pseudocode of the query answering phase (Steps 2 & 3), performed by
Algorithm Inv.

by iterating through the edge list that is provided by queryInd and a hash table

that keeps all materialized views present in the system. Intuitively, a query Qi is

candidate to match, as long as, all materialized views that correspond to its edges

can be used in the query answering process (Figure 5.14, lines 2 − 4).

Locate the Affected Paths (Step 2)

Algorithm Inv proceeds to examine the inverted index structures sourceInd and

targetInd by making use of ei ∈ ui to determine which edges are affected by the
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update, by utilizing the source and target vertices of update ui. Subsequently,

Algorithm Inv examines each edge of the affected edge set (Figure 5.14, lines 5− 6).

Algorithm Inv examines each current edge ec of the affected edge set and

recursively visits all edges connected to ec, which are determined by querying the

sourceInd and targetInd (Figure 5.15, lines 8 − 9). While examining the current

edge ec, Inv checks if ec is part of affectedQueries, if not, the examination of

the specific path is pruned (Figure 5.15, lines 3 − 4). For efficiency reasons, the

examination is bound by the maximum length of a path present in affectedQueries,

which is calculated by utilizing the queryInd data structure.

Path Examination and Materialization (Step 3)

While Algorithm Inv examines the paths affected by update ui (Step 2), it

performs the materialization on the currently examined path, (Figure 5.15, line

5). More specifically, while Inv searches through the paths formulated by the

visits of edge sets determined by targetInd and sourceInd, it maintains a path

Pc = {v1
e1−→ v2

e2−→ . . . vk
ek−→ vk+1} that corresponds to the edges already visited

(Figure 5.15, lines 2, 10).

While, visiting each edge ec, Inv accesses the materialized view that corre-

sponds to it (i.e., matV [ec]) and updates the set of materialized views matV s =

{matV 1,matV 2, . . . ,matV k} that correspond to the current path. For example,

given an already visited path P = {v1
e1−→ v2

e2−→ v3} its materialized view matV [P ]

will be generated by matV [P ] = matV [e1] on matV [e2]. When visiting the next edge

en, a new path P ′ is generated and its materialized view matV [P ′] = matV [P ] on

matV [en] will be generated. If at any point, the process of joining the materialized

views yields an empty result set the examination of the edge is terminated (pruning),

while the examination continues in different directions (Figure 5.15, lines 6−7). This

allows us to prune paths that are not going to satisfy any Qi ∈ affectedQueries

and avoid unnecessary edge visits. If a path Pi yields a successful series of join

operations (i.e., matV [Pi] 6= ∅), it is marked as matched (Figure 5.15, line 7).
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Finally, to produce the final answer subgraphs Algorithm Inv iterates through

the affected list of queries qIDs ∈ affectedQueries and performs the final join

operation among all the paths that comprise the query, thus producing the final

answer subgraphs that satisfied the query (Figure 5.14, lines 7 − 12).

The time complexity of Algorithm Inv, when filtering an update ui, is calculated

as follows: The path examination complexity is O(V ∗BD), where E denotes the

number of vertices connected by ei ∈ ui, B is the size of the edge set reachable when

initiating the path examination, and D denotes the size of the longest path in the

graph. Finally, taking into consideration the time complexity of the materialization

process, the total time complexity is calculated as O((V ∗ BD) ∗ (N ∗M)), since

the materialization occurs in each edge visit.

Query Set and Graph Modifications

Similarly to Algorithm TriC (described in detail in Section 5.3.1), the indexed query

set QDB can be subject to modifications, i.e., insertions, deletions and updates.

In the case of inserting a new query Qi in QDB, the same indexing process is

followed as described in Steps 1 and 2. When a query Qi is removed from QDB the

covering paths are removed from the queryInd data structure, while these paths are

utilized to locate the edge and vertex entries of Qi present in edgeInd, sourceInd

and targetInd that are updated accordingly. Finally, when updating a query graph

Qi, the operation is handled in two stages: (i) the removal of Qi from Inv’s data

structures, and (ii) the insertion of a new Qi.

Algorithm Inv can support edge deletions, in the same fashion as edge additions

are handled during the query answering phase. More specifically, when an update

ud arrives at the system, Algorithm Inv can utilize the sourceInd and targetInd

indexes to determine which edges are affected by the update, as described in

Step 2. Subsequently, Inv can traverse each affected path (Step 3) and locate

all the paths that contain ed ∈ ud. While visiting each edge ec Algorithm Inv

accesses the materialized view that corresponds to ec and removes the tuples

affected by update ud.
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Implementing a Caching Approach

In the spirit of Algorithm TriC+ (described in Section 5.3.4), we developed an

extension of Algorithm Inv, namely Algorithm Inv+, that caches and reuses the

calculated data structures of the hash join phase.

5.4.2 Algorithm INC

Based on Algorithm Inv we developed an algorithmic extension, namely Algo-

rithm Inc. Algorithm Inc utilizes the same inverted index data structures to index

the covering paths, edges, source and target vertices as Algorithm Inv, while the

examination of a path affected during query answering remains similar. The key

difference lies in executing the joining operations between the materialized views

that correspond to edges belonging to a path. More specifically, when Algorithm Inv

executes a series of joins between the materialized views (that formulate a path) to

determine which subgraphs match a path, it utilizes all tuples of each materialized

view that participate in the joining process. On the other hand, Algorithm Inc

makes use only of the update ui and thus, reduces the number of tuples examined

throughout the joining process of the paths.

Implementing a Caching Approach

In the spirit of Algorithm TriC+ (described in Section 5.3.2), we developed an

extension of Algorithm Inc, namely Algorithm Inc+, that caches and reuses the

calculated data structures of the hash join phase.

5.4.3 Neo4j

To evaluate the efficiency of the proposed algorithm against a real-world approach, we

implemented a solution based on the well-established graph database Neo4j [28]. In

this approach, we extend Neo4j’s native functionality with auxiliary data structures

to efficiently store the query set. These data structures are used during the

answering phase to efficiently locate affected queries and execute them on the

Neo4j’s query execution engine.



162 5.4. Advanced Baselines

The Query Indexing Phase

To address the continuous multi-query evaluation scenario, we designed main-

memory data structures to facilitate indexing of query graph patterns. Initially, in

the preprocessing phase, we convert each incoming query Qi into Neo4j’s native

query language Cypher [127]. Subsequently, the query indexing phase of Neo4j

commences as follows: (1) indexing each Cypher query in the queryInd data

structure and (2) indexing all edges ei ∈ Qi in the edgeInd data structure, where

ei is used as key and a collection of query identifiers as values. The queryInd

structure is defined as matrix, while the edgeInd is an inverted index, similarly

to the data structures described in Section 5.4.1.

The Query Answering Phase

Each update that is received as part of an incoming stream of updates S =

(u1, u2, . . . , uk) is processed in the following steps: (1) an incoming update ui is

applied to Neo4j through the graph database service, (2) the inverted index edgeInd

is queried with ei ∈ ui, to determine which queries are affected, (3) all affected

queries are retrieved from matrix queryInd, (4) the affected queries are executed.

To enhance the query answering performance, the following configurations are

applied: (1) the graph database builds indexes on all labels of the schema allowing

for faster look up times of nodes, (2) the execution of Cypher queries employs

the parameters syntax [128] as it enables the execution planner of Neo4j to cache

the query plans for future use, (3) the number of writes per transaction [129] in

the database and the allocated memory were optimized based on the hardware

configuration (see Section 5.5.1).

In this section, we presented three advanced baseline solution, two of which

employ inverted index data structures (Algorithms Inv and Inc) and one based on

the graph database Neo4j. In the following section, we present the experimental

evaluation results when comparing Algorithm TriC against Algorithms Inv,

Inc and Neo4j.
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5.5 Experimental Evaluation

In this section, we present a series of experiments that compare Algorithm TriC

against Algorithms Inv, Inc and the Neo4j approach. To this end, we present

the data and query sets, the algorithmic and technical configuration, and the

metrics employed and finally, we present and extensively discuss the experimental

evaluation results.

5.5.1 Experimental Setup

In this section, we present the data and query sets, the algorithmic and technical

configuration, and the metrics employed in our experimental evaluation.

Data and Query Sets

For the experimental evaluation we used a synthetic and two real-world datasets,

which we proceed to describe below.

The SNB Dataset

The first dataset we utilized is the LDBC Social Network Benchmark (SNB) [123].

SNB is a synthetic benchmark designed to accurately simulate the evolution of a

social network through time (i.e., vertex and edge sets labels, event distribution etc).

This evolution is modeled using activities that occur inside a social network (i.e.,

user account creation, friendship linking, content creation, user interactions etc).

In this synthetic benchmark, chosen as it fits the proposed paradigm, the network

evolves naturally through time with the addition of new information generated from

activities of the users, while the changes occur in a streaming fashion. Based on the

SNB generator, we simulated the evolution of a graph consisting of user activities

over a time period of 2 years. From this dataset, we derived 3 query loads and

configurations: (i) a set with a graph size of |GE| = 100K edges and |GV | = 57K

vertices, (ii) a set with a graph size of |GE| = 1M edges and |GV | = 463K vertices,

and (iii) a set with a graph size of |GE| = 10M edges and |GV | = 3.5M vertices.
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Figure 5.16: Examples of the query graph pattern classes.

The NYC Dataset

The second dataset we utilized is a real world set of taxi rides performed in New

York City[130] (NY C) in 2013 utilized in DEBS 2015 Grand Challenge [debs2015].

NY C contains more that 160M entries of taxi rides with information about the

license, pickup and drop-off location, the trip distance, the date and duration of

the trip, and the fare. We utilized the available data to generate a stream of

updates that result in a graph of |GE| = 1M edges and |GV | = 280K, accompanied

by a set of 5K query graph patterns.

The BioGRID Dataset

The third dataset we utilized is BioGRID [131], a real world dataset that represents

protein to protein interactions. The BioGRID repository is a dataset that contains

entries that describe interaction between protein pairs. In this scenario, proteins

are modeled as vertices while the relations model the interactions observed. As

only a single type of relation between vertices is present (interacts), and the type

of each vertex is solely one (a protein), this dataset serves as a stress test for

the algorithms developed, as each update affects the whole query database, thus

triggering a search of query answered in the entire database. To this end, we used

BioGRID to generate a stream of updates that result in a graph size of |GE| = 1M

edges and |GV | = 63K vertices, with a set of 5K query graph patterns.
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Query Set Configuration

In order to construct the set of query graph patterns QDB we identified three distinct

query classes that are typical in the relevant literature: chains, stars, and cycles

[107, 132], presented in Figure 5.16. Each type of query graph pattern was chosen

equiprobably during the generation of the query set. The baseline values for the

query set are: (i) an average size l of 5 edges/query graph pattern, a value derived

from the query workloads presented in SNB [123], (ii) a query database |QDB| size

of 5K graph patterns, (iii) a factor that denotes the percentage of the query set QDB

that will ultimately be satisfied, denoted as selectivity σ = 25%, and (iv) a factor

o = 35% that denotes the percentage of overlap between the queries in the set.

Metrics

In our evaluation, we present and discuss the filtering time of each algorithm, that is

the amount of time needed to locate all continuous graph patterns that are satisfied

by an incoming update ui. We also, present and compare the memory requirements

of the algorithms. Finally, we present the indexing time of each algorithm, i.e., the

amount of time needed to index a set of query graph patterns into the database.

Technical Configuration

All algorithms were implemented in Java 8 while for the materialization implemen-

tation the Stream API was employed. The Neo4j-based approach was implemented

using the embedded version of Neo4j 3.4.7. Extensive experimentation evaluation

concluded that a transaction [129] can perform up to 20K writes in the database

without degrading Neo4j’s performance, while in order to guarantee indexes are

cached in main memory 55GB of main memory were allocated. A machine with

Intel(R) Xeon(R) Processor E5-2650 at 2.00GHz, 64GB RAM, and Ubuntu Linux

14.04 was used. The time shown in the graphs is wall-clock time and the results of

each experiment are averaged over 10 runs to eliminate fluctuations in measurements.
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Figure 5.17: Examining the influence of graph size, while comparing the query answering
time, when varying the graph size from |GE | = 10K to |GE | = 100K edges.

5.5.2 Results for the SNB Dataset

In this section, we present the evaluation for the SNB benchmark and highlight

the most significant findings.

Query Answering Time.

Figure 5.17 presents the results regarding the query answering time, i.e., the average

time in milliseconds needed to determine which queries are satisfied by an incoming

update, against a query set of QDB = 5K. Please notice that the y-axis is split

due to the high differences in the performance of Algorithms TriC/TriC+ and

its competitors. We observe that the answering time increases for all algorithms

as the graph size increases. Algorithms TriC and TriC+ achieve the lowest

answering times suggesting better performance. Contrary, the competitors are more

sensitive in graph size changes, with Algorithm Inv performing the worst (highest

query answering time). When comparing Algorithm TriC to Algorithms Inv, Inc

and Neo4j, the query answering time is improved by 99.15%, 98.14% and 91.86%

respectively, while the improvement between Inc and Inv is 54.33%. Finally,

comparing Algorithm TriC+ to Inv+, Inc+ and Neo4j, TriC+ demonstrates a
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Figure 5.18: Examining the influence of σ, while comparing the query answering time,
for a graph size |GE | = 100K edges.

performance improvement of 99.62%, 99.17% and 96.74% respectively, while the

difference of Inc+ and Inv+ is 54.6%.

The results (Figure 5.17) suggest that all solutions that implement caching are

faster compared to the versions without it. In more detail, Algorithms TriC+,

Inv+, and Inc+ are consistently faster than their non-caching counterparts,

by 59.95%, 9.36% and 9.91% respectively. This is attributed to the fact that

Algorithms TriC, Inv, and Inc, have to recalculate the probe and build structures

required for the joining process, in contrast to Algorithms TriC+, Inv+, and

Inc+ that store these structures and incrementally update them, thus providing

better performance.

In Figure 5.18 we present the results when varying the selectivity parameter σ,

for 10%, 15%, 20%, 25% and 30% of a query set for |QDB| = 5K and |GE| = 100K.

Varying σ affects the percentage of queries that match during the evolution of the

graph; a higher number of queries satisfied, increases the number of calculations

performed by each algorithm. The results show that all algorithms behave in a

similar manner as previously described. In more detail, Algorithm TriC+ is the

most efficient of all, and thus the fastest among the extensions that utilize caching,

while TriC is the most efficient solution among the solutions that do not employ
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Figure 5.19: Examining the influence of the query database size, while comparing the
query answering time, for a graph size |GE | = 100K edges.

a caching strategy. Finally, the percentage differences between the algorithmic

solutions remain the same as before in most cases.

In Figure 5.19 we give the results of the experimental evaluation when varying the

size of the query database |QDB|. More specifically, we present the answering time

per triple when |QDB| = 1K, 3K and 5K, and |GE| = 100K. Please notice the y-axis

is in logarithmic scale. The results demonstrate that the behavior of all algorithms

is aligned with our previous observations. More specifically, Algorithms TriC+

and TriC exhibit the highest performance (i.e., lowest answering time), throughout

the increase of |QDB|, and thus determine faster which queries of |QDB| have

matched given an update ui. Similarly to the previous setups, the competitors

have lower performance, while Algorithms Inc and Inc+ perform better compared

to Algorithms Inv and Inv+.

In Figure 5.20 we give the results of the experimental evaluation when varying

the average query size l. More specifically, we present the answering time per

triple when l = 3, 5, 7 and 9 of a query set for |QDB| = 5K and |GE| = 100K.

We observe that the answering time increases for all algorithms as the average

query length increases. More specifically, Algorithms TriC+ and TriC exhibit the

highest performance (i.e., lowest answering time), throughout the increase of ls, and
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Figure 5.20: Examining the influence of l, while comparing the query answering time,
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0.0
0.5
1.0
1.5
2.0
2.5
3.0

25% 35% 45% 55% 65%

20
50

100

150

200

250

A
ns
we

rin
g
tim

e
(m

se
c/
up

da
te
)

Varying o

TriC
TriC+

Inv
Inv+
Inc
Inc+
Neo4j

Parameter Value

|QDB | 5K
|GE | 100K
l 5
σ 25%
o 25%− 65%

Figure 5.21: Examining the influence of o, while comparing the query answering time,
for a graph size |GE | = 100K edges.

thus determine faster which queries have been satisfied. Similarly to the previous

evaluation setups, the Algorithms Inv, Inv+, Inc, Inc+, and Neo4j have the

lowest performance, and increase significantly their answering time when l increases,

while Algorithms Inc and Inc+ perform better compared to Algorithms Inv,

Inv+ and Neo4j when l = 9.

In Figure 5.21 we give the results of the experimental evaluation when varying
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the overlapping factor o, for 25%, 35%, 45%, 55% and 65% of a query set for

|QDB| = 5K and |GE| = 100K edges. A higher number of query overlap should

decrease the number of calculations performed by algorithms designed to exploit

commonalities among the query set. The results show that all algorithm behave in

a similar manner as previously described, while Algorithms Inv, Inv+, Inc, and

Inc+ observe higher performance gains. Algorithm TriC+ is the most efficient of

all, and thus the fastest among the extensions that utilize caching techniques, while

TriC is the most efficient solution among the solutions that do not employ caching.

Figure 5.22 presents the results regarding the query answering time for all

algorithms when indexing a query set of |QDB| = 5K and a final graph of |GE| = 1M

and |GV | = 463K. Given the extremely slow performance of some algorithms we

have set an execution time threshold of 24 hours for all algorithms under evaluation,

thus, when the threshold was crossed the evaluation was terminated. We again

observe that the answering time increases for all algorithms as the graph size

increases. Algorithms TriC and TriC+ achieve the lowest answering times,

suggesting better performance, while Algorithms Inv, Inv+, Inc, and Inc+ are

more sensitive in graph size changes and thus fail to terminate within the time

threshold. More specifically, Algorithms Inv and Inv+ time out at |GE| = 210K,

while Algorithms Inc and Inc+ time out at |GE| = 310K as denoted by the

asterisks in the plot. When comparing Algorithms TriC and TriC+ to Neo4j the

query answering is improved by 77.01% and 92.86% respectively.

Figure 5.23 presents the results regarding the query answering time for Algo-

rithms TriC, TriC+ and Neo4j when indexing a query set of QDB = 5K and a

final graph size of |GE| = 10M and |GV | = 3.5M . Again, we have set an execution

time threshold of 24 hours for all the algorithms under evaluation. Algorithm TriC+

achieves the lowest answering times, suggesting better performance, while Algo-

rithms TriC and Neo4j fail to terminate within the given time threshold. More

specifically, Algorithm TriC times out at |GE| = 5.47M , while Algorithm Neo4j

times out at |GE| = 4.3M as denoted by the asterisks in the plot.
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Figure 5.23: Examining the influence of graph size, while comparing the query answering
time, when varying the graph size from |GE | = 1M to |GE | = 10M edges.

Overall, Algorithms TriC+ and TriC, the two solutions that utilize trie

structures to capture and index the common structural and attribute restrictions of

query graphs, achieve the lowest query answering times compared to Algorithms Inv,

Inv+, Inc, and Inc+ that employ no clustering techniques, as well as when

compared with commercial solutions such as Neo4j. Adopting the incremental

joining techniques (found in Algorithm TriC) into Algorithm Inc does not seem
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to significantly improve its performance when compared to Algorithm Inv. Addi-

tionally, it is evident that the usage of only the updated results during the joining

operations of algorithms, a technique designed originally for Algorithm TriC

and applied on Algorithm Inv through its extension Algorithm Inc, changes

significantly the performance of Algorithm TriC+. Taking all the above into

consideration, we conclude that the algorithms that utilize trie-based indexing

capture the common elements of query graph patterns during the indexing phase,

and exploit this overlap during the query answering phase, thus resulting in extremely

low query answering times compared to the baseline solutions, i.e., Algorithms Inv,

Inv+, Inc, and Inc+.

Indexing Time

Figure 5.24 presents the indexing time in milliseconds required to insert 1K query

graph patterns when the query database size increases. We observe that the time

required to go from an empty query database to a query database of size 1K is

higher compared to the time required for the next iterations. Please notice the

y-axis is in logarithmic scale. This can be explained as follows: All algorithms

utilize data structures that need to be initialized during the initial stages of query

indexing phase, i.e. when inserting queries in an empty database, while, as the

queries share common restrictions, less time is required for creating new entries

in the existent data structures. Additionally, the time required to index a query

graph pattern in the database does not vary significantly for all algorithms. Notice

that query indexing time is not a critical performance parameter in the proposed

paradigm, since the most important dimension is query answering time.

5.5.3 Results for the NYC and BioGRID Dataset

In this section, we present the evaluation for the NY C and BioGRID dataset

and highlight the most significant findings.
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Figure 5.24: Comparing the insertion time, when varying the query database size QDB,
for a query graph pattern set of l = 5, σ = 25%, and o = 35%.

The NY C Dataset

Figure 5.25 presents the results from the evaluation of the algorithms for the NY C

dataset. More specifically, we present the results regarding the query answering

performance of all algorithms when QDB = 5K, l = 5, o = 35%, σ = 25% and an

execution time threshold of 24 hours. Please notice that the y-axis is split due to high

differences in the performance of the algorithms. Algorithms Inv and Inv+ fail to

terminate within the time threshold and time out at |GE| = 210K and |GE| = 300K

respectively. Similarly, Algorithms Inc and Inc+ time out at |GE| = 220K and

360K respectively. When comparing Algorithms TriC and TriC+ to Neo4j the

query answering is improved by 59.68% and 81.76% respectively. These results

indicate again that an algorithmic solution that exploits and indexes together

the common parts of query graphs (i.e., Algorithms TriC and TriC+) achieves

significantly lower query answering time compared to approaches that do not apply

any clustering techniques (i.e., Algorithms Inv, Inv+, Inc, Inc+, and Neo4j).

The BioGRID Dataset

Figures 5.26 and 5.27 present the results from the evaluation of the algorithms for

the BioGRID dataset. In Figure 5.26 we present the results regarding the query
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Figure 5.25: Examining the influence of graph size, while comparing the query answering
time, when varying the graph size from |GE | = 100K to |GE | = 1M edges, for the NY C
dataset.
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Figure 5.26: Examining the influence of graph size, while comparing the query answering
time, when varying the graph size from |GE | = 10K to |GE | = 100K edges, for the
BioGRID dataset.

answering performance of the algorithms, when QDB = 5K, σ = 25% for a final

graph size of |GE| = 100K and |GV | = 17.2K. Additionally, we set an execution

time threshold of 24 hours due to the high differences in the performance of the

algorithms. The BioGRID dataset serves as a stress test for our algorithms, since

it contains only one type of edge and vertex, thus each incoming update will affect
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Figure 5.27: Examining the influence of graph size, while comparing the query answering
time, when varying the graph size from |GE | = 100K to |GE | = 1M edges, for the
BioGRID dataset.

(but not necessarily satisfy) the entire query database. To this end, Algorithms Inv,

Inv+, and Inc exceed the time threshold and time out at |GE| = 50K, while

Algorithm Inc+ times out at |GE| = 60K as denoted by the asterisks in the plot.

Finally, Figure 5.27 presents the results for the BioGRID dataset for a final

graph size of |GE| = 1M and |GV | = 63K. We again observe that Algorithms TriC

and TriC+ achieve the lowest answering time, while Neo4j exceeds the time

threshold and times out at |GE| = 550K. As it is demonstrated from the results

yielded by the evaluation, Algorithms TriC and TriC+ are the most efficient of all;

this is attributed to the fact that both algorithms create a combined representation of

the query graph patterns that can efficiently be utilized during query answering time.

Comparing Memory Requirements

Table 5.1 presents the memory requirements of each algorithm, for the SNB, NY C

and BioGRID datasets when indexing |QDB| = 5K and a graph of |GE| = 100K.

We observe that across all datasets, Algorithms TriC, Inv and Inc have the

lowest main memory requirements, while, Algorithms TriC+, Inv+, Inc+ and

Neo4j exhibit higher memory requirements. The higher memory requirements
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Algorithm
Dataset

SNB NY C BioGRID

TriC 201MB 257MB 233MB
TriC+ 248MB 273MB 262MB
Inv 205MB 273MB 271MB50K

Inv+ 228MB 381MB 301MB50K

Inc 206MB 273MB 270MB50K

Inc+ 228MB 378MB 310MB60K

Neo4j 443MB 590MB 314MB

Table 5.1: Examining memory usage for |QDB| = 5K, l = 5, σ = 25%, o = 35% and
|GE | = 100K, for the SNB, NY C and BioGRID datasets.

of algorithms that employ a caching strategy, (i.e., Algorithms TriC+, Inv+,

and Inc+) is attributed to the fact that all structures calculated during the

materialization phase are kept in memory for future usage; this results in higher

memory requirements compared to algorithms that do not apply this caching

technique (i.e., Algorithms TriC, Inv, and Inc). Finally, Algorithm Neo4j is

a full fledged database management system, thus it occupies more memory to

support the required specifications.

In this section, we presented the experimental evaluation using three different

datasets from social networks, transportation, and biology domains. We compared

the performance of Algorithms TriC and TriC+ against the baseline solutions

(i.e. Algorithms Inv, Inv+, Inc, Inc+and Neo4j), and demonstrated that our

solution can achieve up to orders of magnitude improvements in processing time.

In the next section, we present application scenarios from various domains that

could benefit the proposed multi-query answering paradigm.

5.6 Applications

Capturing the myriad of emerging patterns, through real-time graph changes, inside

graphs could increase the quality of the network content and have applications
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in a plethora of domains, such as in content discovery and delivery, network

monitoring and graph curation. In this section, we discuss additional application

scenarios to highlight the importance of supporting continuous query evaluation

over graph streams.

5.6.1 Social Networks

Social network graphs emerge naturally from the evolving social interactions and

activities of the users. Many applications such as advertising, recommendation

systems, and information discovery can benefit from continuous pattern matching.

Prompt identification of influential users and active monitoring of content propaga-

tion inside the network could increase the effectiveness in those applications. In

such scenarios, applications may leverage on sub-graph matching where patterns

already observed in social networks can be utilized [133–135].

Moreover, social networks may provide a plethora of user-oriented services by

leveraging on continuous subgraph matching. These services could provide users

with querying capabilities and thus assist them in information discovery and trending

topic exploration. Given that trending topics emerge in real-time and at a rapid

pace, viral content could be captured in the form of retweet-trees [136] and message

flows [137, 138], which commonly denote high information diffusion and breaking

news events. Such applications, could notify users about trending topics that match

their interests, or even emergencies such as earthquakes [139]. Finally, real-time

monitoring of the social network and timely identification of fraudulent content

publication could aid both users and network curators in preventing its spread. The

proposed paradigm, could improve the overall content quality of social network

platforms, by capturing subgraph patterns related to fake news dissemination [12,

13], user spamming patterns [102, 140, 141], and bot accounts [10].

5.6.2 Knowledge Bases

Knowledge bases have become a major asset behind many products spanning search,

analytics, and recommendation. Quite naturally, knowledge graphs evolve over
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time, with the most common modification being the addition of new entities and

facts (corresponding to edges), either because of new relationships that emerge in

the real-world, or because of better harvesting methods and richer data repositories

that become available. However, relationships and entities may also be subject

of deletion, either because the knowledge graph is edited to remove noise (wrong

facts) or because of duplicate entries for a single entity.

Given that knowledge graphs are dynamic and often manually curated by human

users, monitoring their quality over the period of time becomes essential. In the past,

focus has been given on solving the problem of query answering [17, 107, 142] and

reasoning [143] over RDF streams and linked data. However, these aforementioned

works consider a single query set, thus making these approaches unsuitable for large

query sets. A pub/sub system where graph moderators/editors subscribe to and

are notified about spurious and/or unusual connections in the knowledge graph,

evolution of different structures, patterns, and subgraphs, and trending of news

items would be an invaluable tool that would greatly simplify graph moderation.

5.6.3 Protein Interaction Graphs

Protein-protein interaction (PPI) graphs are important data repositories in which

proteins are represented as vertices and identified interactions between them are

represented as edges. The PPI graphs are typically stored in central repositories such

as the BioGRID [131] and The Universal Protein Resource [15] repositories. PPI

repositories are constantly updated due to: (i) the addition of new vertices/edges

through the identification of new proteins/interactions, (ii) the deletion of edges due

to false positives in the interaction identification methods, and (iii) the modification

of edge weights through the verification (or invalidation) of already discovered

interactions. Scientists are typically forced to manually query these repositories on

a regular basis to discover new patterns they are interested in, since the existing

tools are unable to capture new patterns in the evolving graphs. Therefore, there

is a clear need for an efficient solution that provides the continuous subgraph

matching functionality over PPI graphs.
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5.6.4 Other Domains

The techniques proposed in this work can also be applied in a wide range of domains

such as cybersecurity, road network monitoring, and co-authorship graphs. In

cybersecurity, subgraph pattern matching could be applied to monitor the network

traffic and capture denial of service and exfiltration attacks [144]. In road network

monitoring, subgraph pattern matching could be applied to capture traffic congestion

events and taxi route pricing [130]. In the domain of co-authorship graphs, users

may utilize the continuous query evaluation algorithms in services similar to Google

Scholar Alerts, when requesting to be notified about newly published content, by

making use of appropriate graphical user interface tools.

5.7 Outlook and Future Directions

In this chapter, we proposed a new paradigm to efficiently capture the evolving

nature of graphs through query graph pattern. We aim at efficiently solving the

problem of efficient continuous pattern detection on graph streams while supporting

a high number of continuous graph patterns and large graph streams. To this end, we

proposed a novel method that indexes and continuously evaluates queries over graph

streams, by leveraging on the shared restrictions present in query sets. We evaluated

our solution using three different datasets from social networks, transportation and

biological interactions domains, and demonstrated that our approach is up to two

orders of magnitude faster when compared to typical join-and-explore inverted index

solutions and the well-established graph database Neo4j. We plan on extending

our methods to support graph deletions and increase expressiveness through query

classes that aim at clustering coefficient, shortest path, and betweenness centrality.
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6
Realizing Information Filtering:

The Case of Ping

I n this chapter, we present a reference architecture and an operational, open-

source information filtering system. Initially, we give the architecture employed

by traditional IF systems, and subsequently we present and analyse its distinct

operational components. Next, we put forward Ping, a fully-functional information

filtering system for scientific publications aiming: (i) to showcase the realizability

of information filtering and (ii) to explore and test the suitability of the existing

technological arsenal for information filtering tasks. The proposed system is entirely

based upon open-source tools and components, is customizable enough to be

adapted for different textual information filtering tasks, and puts emphasis on user

profile expressivity, intuitive UIs, and timely information delivery. To assess the

customizability of Ping we deployed it in two distinct information filtering scenarios,

while to assess its performance we designed and conducted a series of experiments

for both scenarios. The results concerning Ping have been published in [145].

The rest of the chapter is organized as follows. In Section 6.1, we give the

motivation for this work and we elaborate on the importance of creating a fully-

functional information filtering system. Section 6.2 presents a textbook example

of a typical IF system architecture. Section 6.3 presents the Ping system and
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its supported functionality, and provides details on the different modules of the

system. Subsequently, Section 6.4 presents our experimental evaluation for the

two different deployment scenarios, the DBLP and DBpedia domains. Finally,

Section 6.5 concludes the chapter by discussing the results and provides the outlook

and future directions for the Ping system.

6.1 Motivation

In the modern digital era, the creation and availability of new information has

increased exponentially. A plethora of information sources, such as news delivery

sites, weather reporting services, and digital libraries, constantly make new content

available at an overwhelming pace. Tools and technologies developed within the

field of information retrieval (IR) have made it possible for users to explore the

richness of the content, but have always lacked to provide them with machinery

to stay on top of the generated information avalanche. To assist users in coping

with the vast amount of newly generated information and the cognitive overload

associated with it, the Information Filtering (IF) paradigm was introduced. In an

IF scenario, users are asked to (implicitly or explicitly) express their information

needs through appropriate interfaces, tools and languages and submit profiles (or

continuous queries) to a system or service. In this way, users create subscriptions

that are continuously matched (by the system/service) against newly published

content, and generate notifications whenever new content that matches users’

information needs is published.

Over the past decades, IF research has mainly focused on providing efficient

and effective algorithmic solutions [2, 4, 5, 21–24, 108] that worked well in the

controlled research environment, but were never actually used “in the battlefield”

as components of a larger IF system. This lack of IF tools that would integrate

promising solutions and allow developers to use them for building added-value

IF services over textual sources or streams, resulted in the lack of prominent IF

systems that would act as demonstrators for the usefulness of the IF paradigm.

Thus, currently, the only prominent demonstrator of the potential of IF is Google
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Alerts [25], a proprietary closed-source service built upon the Google ecosystem.

Although many users nowadays (mis-)use Google Alerts to monitor the web for

marketing (e.g., brand mentions), social listening (e.g., comment follow-up), or

even citation counting purposes (e.g., in the context of GoogleScholar), there is

clearly a need for an extensible, customizable open-source IF system that could be

modified to fit domain-specific IF tasks. Such a system, would act in favor of IF

research in multiple ways by (i) showcasing the usefulness of the IF paradigm to

end-users, (ii) providing a basis for developers to build added-value IF services in a

number of different domains, (iii) testing the current technological arsenal in IF,

and (iv) providing data (that are scarce in the IF domain) regarding system

usage or user profiling.

Initially, in the following sections, we present a reference architecture of an

IF system, where we present and analyse the components that formulate such a

system. Subsequently, we instantiate the presented architecture in a fully-fledged,

customizable, open-source IF system, coined Ping. Ping makes use of state-of-the-

art tools and web technologies, while we concentrate on providing an operational

system that is designed and implemented on IF-specific requirements. To this

end, the presented system is equipped with profile administration (e.g., creation,

modification, submission), publication management capabilities (e.g., collection,

filtering), different content delivery options (e.g., email or on-site notifications),

(interval- or batch-based) monitoring of different types of textual data, and an

intuitive user interface. The front-end of the system is built upon modern Internet

technologies, while the back-end relies on the well-established Apache Solr1 platform.

Ping is designed with flexibility and customizability in mind; developers may use

it to easily create textual IF engines for different domains, parameterize and deploy

it for IF-specific tasks over their own textual information sources, or use it as a

building block for added-value services. To demonstrate the customizability of

Ping, we deployed and experimented (see Section 6.4) with it in two different

textual IF scenarios: the DBLP2 database for scientific publications and the textual
1http://lucene.apache.org/solr/
2https://dblp.uni-trier.de/
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part of the DBpedia3 open-sourced knowledge graph. Using Ping, we easily created

an IF system that allows users to express their information needs and stay notified

for new and interesting publications.

To this end, our contributions may be summarized as follows:

• We present Ping, a novel, fully-functioning IF system build entirely upon

open-source components; the proposed system is able to support complex IF

tasks in a variety of domains. To the best of our knowledge, this is the first

open-source textual IF system that is flexible enough (i) to be deployed as a

standalone solution on different textual IF tasks and domains or (ii) to be

used as a building block for other added-value services.

• We showcase the realizability of the developed system on two different domains

(textual IF on scientific publications and crowd-sourced encyclopedia articles),

and experimentally assess its performance.

More information about the system, along with a fully-functional working deploy-

ment over DBLP publications may be found at: http://195.251.39.222/pingsys.

In this section, we presented the motivation behind our work and gave a brief-

overview of the Ping’s functionalities. In the following section, we present a

reference architecture for IF systems.

6.2 An Information Filtering System Architec-
ture

In this section, we present the architecture of an information filtering system and

analyze the various components that formulate a functional and operating service.

More specifically, we present a textbook example of an architecture design employed

by traditional IF systems. Figure 6.1 gives the system outline, a visual model, of

an IF and its distinct components. The visual model, represents three distinct

functionalities of a typical IF system, user subscriptions indexing, publication

filtering and notification delivery.
3https://wiki.dbpedia.org

http://195.251.39.222/pingsys
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Figure 6.1: Architecture of an Information Filtering System.

User Subscription Indexing. The first functionality presented in Figure 6.1, is

the user subscription process, which is denoted by the users (actors) interacting

with the system by posing continuous queries (subscriptions) in it. While, the

query indexing component is responsible for receiving the user subscriptions and

indexing them into the query database.

Publication Filtering. The second functionality supported by an IF system

(Figure 6.1), is the publication filtering process, which is represented by the content

providers interacting with the system by continuously publishing new content. The

IF system is responsible for receiving and filtering those incoming publications

against the query database, a functionality implemented by the publication fil-

tering component.

Notification Delivery. Finally, the third functionality demonstrated (Figure 6.1),

is the user notification delivery process (depicted by the publication filtering

component), which determines the set of queries that have been satisfied, and

the notification generator that delivers appropriate notifications to the end users.

In the rest of this section, we give an abstract overview of each component of the

system, the functional requirements, actors and relationships presented in Figure 6.1.
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Figure 6.2: Interface for posing long-standing queries, as implemented by the Google
Alerts system.

System Users and Subscriptions

In the information filtering paradigm, users can capitalize on the filtering capabilities

of the system by posing long standing queries, also referred as subscriptions. These

queries can express long-standing information needs of the users and essentially

constitute their personally tailored profiles [38, 49]. The process of formulating

these profiles can be achieved by providing users with interfaces and tools similar

to the ones present in modern search engines. Figure 6.2 presents an interface from

a real-world service, Google Alerts4, that is designed to assist users in posing long-

standing queries. The users can make use of this interface to pose their personalized

queries by employing keywords coupled with IR operators, such as phrase matching,

wildcard matching and the OR operator. Figure 6.3 demonstrates how a user can

formulate a query by making use of the boolean operator OR, as well as a preview

of the results that can be (potentially) returned in the form of alerts.

An alternative approach to formulating long-standing queries is services that

monitor user behavior and generate profiles on behalf of the users. In such a

scenario, services can make use of profiling techniques that automatically determine

the user’s interests based on several attributes. There is a wide range of research in
4https://www.google.com/alerts

https://www.google.com/alerts
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Figure 6.3: Interface for posing long-standing queries and notifications preview, as
implemented by the Google Alerts system.

recommendation systems that aim at providing personalized information discovery

in a wide range of a applications, which include e-commerce, stock monitoring, news

delivery etc. Profiling attributes that are commonly employed in such application

scenarios can include user activity on the World Wide Web, interactions on social

media [146], user feedback both explicit [147–150] and implicit [45, 151–155],

repeated searches on search engines, demographic data [156], and shopping patterns.

The Query Indexing Component and the Query Database

The query indexing component is responsible for receiving and handling new

incoming subscriptions posted by users or services. The query indexing component,

presented in Figure 6.1, is composed by three distinct subcomponents the query

parser, the query preprocessor, and the query indexing mechanism. The query parser

aims at receiving the incoming subscriptions, parsing their content, and converting

plain text into name/value mappings. Subsequently, the query preprocessor makes

use of data structures that can capture the query restrictions on keywords, attributes

and fields of the incoming query. Thus, the mappings of the query are indexed under

data structures that can be directly utilized by the query indexing mechanism. The
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query indexing mechanism is responsible for organizing and indexing the incoming

subscriptions inside the query database, by employing specific algorithmic solutions.

Finally, the query database can store the subscriptions on main memory, secondary

memory, or employ a hybrid solution where subscriptions reside both in main and

secondary memory and are swapped on-demand.

The Content Providers and Publications

In the context of IF systems content providers, also referred as information

publishers/producers, denote a set of information sources that publish new content.

The process of providing content is a decoupled and asynchronous procedure,

where providers constantly push new items into the IF system through direct

delivery mechanisms or dissemination services (e.g. RSS feeds). An alternative

approach to receiving new content can be achieved by employing IR (also known

as information pull) techniques. In such a scenario, the IF system bares the

responsibility of collecting the new content by constantly monitoring information

sources for changes. Monitoring information sources can be achieved by making

use of webpage crawlers, real-time streaming APIs, monitoring tools, and periodic

searches on online databases.

The type of content published, by the content providers, can range from a

plethora of online application. Such applications can include news websites, social

network interactions, sensor networks, IoT enabled devices, knowledge bases, traffic

networks, protein-to-protein interaction databases, web databases etc. Given this

wide range of applications, an efficient IF system must be designed based on

the data model that is going to support in order to be able to provide efficient

information delivery services.

The Publication Filtering Component

The publication processing component is responsible for receiving and handling

incoming publications and events that arrive at the system. The publication indexing

component, presented in Figure 6.1, is composed by three distinct subcomponents

the publication parser, the publication preprocessor, and the publication filtering
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mechanism. In such a scenario, the publication parser receives incoming publications

and parses their content into name/value mappings. Subsequently, the publication

parser hands over the publication into the preprocessor, where only the required

fields of the publication are kept, and the publication is stored into specialized data

structures that are able to be utilized by the publication filtering mechanism.

The publication filtering component is responsible for receiving an incoming

publication and determining if it satisfies the queries indexed inside the query

database. The publication filtering component is at the heart of the information

filtering system and is designed in order to support the data model under which

the information filtering system operates. Information filtering functionality can

be achieved through various existing algorithmic and commercial tools , as well

as research oriented algorithmic solutions.

Finally, the IF system can additionally employ a message queue, inside which

all incoming events arrive and are being stacked for processing. In such a scenario,

the component parses the incoming events as they come and keeps the ones that

can potentially satisfy the queries indexed under the query database. The formal

definition of the information filtering problem follows.

Definition 6.1 The problem of information filtering is defined as follows: given

a database DB of continuous queries that reside on a server and an incoming

publication p, retrieve all queries q∈DB that match the incoming p.

User Notifications

The notification component, presented in Figure 6.1, is responsible for providing users

with notifications concerning the publications that match their interests and have

been made available in the system. To this end, the notification component receives

a list of profiles from the publication filtering mechanism and delivers appropriate

notifications, usually coupled with the respective content, to the end users.

In this section, we gave a textbook example of a typical IF system architecture.

Each component of the IF system described is dependent on the underlying data

model employed to represent, capture, and satisfy information needs. In the
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following section, we present the Ping system, the functionalities we implemented,

as well as it’s underlying architecture.

6.3 Ping: A Customizable, Open-Source Infor-
mation Filtering System for Textual Data

The main idea behind Ping is to enable users to stay updated in a timely fashion,

with new and interesting content that satisfies their needs. The Ping system achieves

this objective by: (i) providing users with profile submission, (ii) information

filtering, and (iii) notification delivery capabilities. In the following, we discuss

the underlying functionalities of Ping, overview the system architecture and

implementation details, and present how Ping may be deployed over different

sources along with the main parameterization options.

6.3.1 Supported Functionality
Profile Submission

Ping enables users to express their information needs using several profiles. Each

profile is formed by a set of constraints involving terms (expressed in any attribute of

the incoming information) combined with textual operators. Profiles are submitted

using a simple and intuitive user interface. For example, in Figure 6.4 a user of

the Ping system submits a profile expressing her interest in receiving new content

that contain in their title the terms “retrieval” and “information” or “data” and

“mining”. The user may also specify additional constraints on the authors and venue

attributes. Before submitting the profile to Ping for indexing, the user receives

a projection of the average notifications that will be produced (per month) based

on the constraints presented in the profile. This projection is an estimate from

existing data and is used to help users assess the generality of their profiles. If

needed, the user may refine the profile constraints; when, the profile submission

is finalized, Ping indexes the profile in the data store.
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Figure 6.4: The profile submission page, as presented to the end-user by the Ping
system.

Information Filtering

The information filtering process is triggered every time new content becomes

available by the monitored repository. In order to locate the newly produced

information, Ping resides on periodically monitoring the source and retrieving

all new published content that becomes available in XML format. When new

publications arise, the Ping system commences the filtering process. At first, Ping

retrieves and indexes all new content by making use of the Apache Solr framework.

Subsequently, Ping retrieves all user profiles from its profile store and prepares

them for execution under Solr. Finally, Ping executes each profile against the

Solr framework that indexes the newly available content, thus determining which

profiles match the new publication set. When the information filtering process
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Figure 6.5: The notification center page, as presented to the end-user by the Ping
system.

terminates, Ping sends appropriate notifications to the users.

We chose to implement Ping’s information filtering functionality over the Solr

framework, which is primarily designed for information retrieval tasks, as there are

no publicly available frameworks that natively support information filtering tasks.

To this end, Ping implements the information filtering functionality by executing

each profile separately against the newly published content that is indexed by the

Solr framework. This fact alone highlights the need for and the importance of

developing efficient IF-specific machinery to facilitate higher-level IF systems.

Notification Delivery

When a profile is satisfied by an incoming publication, Ping delivers an appropriate

notification to the user. This is achieved by the notification center presented

in Figure 6.5. In the notification center, users may find notifications about
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Figure 6.6: The system architecture of Ping.

information that matched their profiles and have the ability to evaluate them

and refine their profiles. Additionally, the notifications are coupled with direct links

to the corresponding information, while the notification center provides notification

management capabilities (e.g., storage, dismissal) and advanced visualization

capabilities (e.g., notification timeline).

6.3.2 System Architecture

The Ping system has been entirely designed on and developed using open-source

software; it employs the Linux, Apache, MySQL and PHP (LAMP) stack as the

back-end infrastructure, while the front-end modules have been developed using

HTML, CSS and JavaScript. The information filtering capabilities of Ping are

supported by the Apache Solr framework. Figure 6.6 presents a high-level view of

the Ping architecture and the different modules that comprise the system.

The Source Monitoring module is responsible for extracting new available content

from information sources; this procedure is implemented through either continuous

or periodic (i.e., at predefined intervals) monitoring by means of a wide range of
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data parsers that are able to accommodate different types of data sources. Thus,

the module may either monitor textual streams or extract the newly published

information from whole repositories (e.g., provided as monolithic XML files) by

parsing the data based on the date attribute and the set interval.

The Apache Solr search framework lies at the heart of the Information Filtering

module of Ping. This module receives all new content and indexes it under the

Solr server. Additionally, the module retrieves all user profiles from the database

and submits them trough appropriate service calls (using a REST API) to the

Solr server for execution. Finally, this module receives the results from the Solr

server and generates the appropriate notifications which are then handed over

to the System Database module.

The System Database module is responsible for all the necessary storage and

retrieval operations at the system back-end; it stores and manages all user account

credentials, user profiles and associated notifications, relevant publications and

other user-related data.

The UI Controller module is responsible for coordinating the operations of

the Ping system and enabling a seamless communication between the UI and the

underlying architectural elements. Thus, the UI Controller serves as a mediator

that receives and passes on data to various other modules. This module is also

responsible for visualizing all user interactions including (i) user registration and

account management activities, (ii) profile creation, submission and editing, and

(iii) notification delivery and management.

Deployment over Different Sources

The Ping system offers a variety of customizability options for its deployment

over different data sources. The system administrator may easily set several

information filtering parameters tailored for better monitoring of the data source of

choice. Such parameters include (i) the type of the monitored data source, (ii) the

source monitoring rate, (iii) the attributes that will correspond to the monitored

data, (iv) the data manipulation rules (e.g., the employment of tokenization or
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stemming) for the different data types of interest, and (v) restrictions on the

generated notifications and preferred delivery method. The deployed online5 version

of Ping (shown in the screenshots of Figures 6.4 and 6.5) is set up to work with

scientific publications from DBLP, with the following parameter setup: (i)monolithic

XML files, (ii) a monitoring rate of 24 hours, (iii) attributes corresponding to

the title, authors, and venue type, (iv) tokenization and stemming enabled, and

(v) on-site notifications only.

In this section, we presented the functionalities supported by the Ping system,

as well as it’s underlying architecture. In the following section, we present the

experimental evaluation results that we obtained when deploying Ping under the

DBpedia and DBLP information domains.

6.4 Experimental Evaluation

In this section, we present a series of experiments that assess Ping over two

distinct deployment scenarios.

6.4.1 Data and Profile Sets

In order to evaluate the filtering performance of Ping and demonstrate its real-

world capabilities (and ease of customizability), we designed and experimented

with two deployment scenarios. In the first scenario, we deploy Ping over the

DBLP database for scientific publications. Thus, we utilize the DBLP corpus

that contains all entries published during 2018 and consists of 786K publications,

with a vocabulary size of 162K unique terms. As DBLP is a focused domain,

we designed an additional deployment scenario that assesses the performance of

Ping under a more general domain. To this end, we deployed and evaluated Ping

also over the textual part of DBpedia, which covers a wide range of topics, with

a total vocabulary of 3.2M unique terms.

Since no databases of profiles for neither scenarios were available to us, we

synthetically generated one for each deployment scenario (according to previously
5Available at: http://195.251.39.222/pingsys

http://195.251.39.222/pingsys
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Parameter Value

PL 5
IQ 500K
ID 50K
DB 0.5M − 3M

Figure 6.7: Examining the influence of the profile database size, when comparing the
filtering throughput, for PL = 5.

used methodologies [4, 5, 108]). These two profile databases are formed by conjuncts

of different terms; each term conjunct is selected equiprobably among the multi-set

of words forming DBLP and DBpedia respectively. Finally, for each profile set we

randomly selected 50K publications and used them for the filtering task.

6.4.2 Technical Configuration

A machine with Intel Xeon CPU E5-2650 2.00GHz, 32GB RAM, and Ubuntu Linux

18.04 was used to host the two deployment scenarios of Ping. The Apache Solr

server was assigned 2GB of main memory. Time measurement report wall-clock

time and the results of each experiment is averaged over 10 runs, to eliminate

fluctuations in time measurements.

6.4.3 Evaluation Results

Figures 6.7, 6.8 and 6.9 present the most interesting results regarding the deployment

and evaluation of Ping under the two deployment scenarios.

Figure 6.7 shows the throughput in KB/sec needed to filter 50K incoming

publications against a profile database of different sizes for an average number of 5

terms in the profile (PL = 5), under both deployment scenarios. We observe that

the throughput of Ping is consistent across the increasing profile databases for
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Parameter Value

PL 3− 5
IQ −
ID 50K
DB 3M

Figure 6.8: Examining the influence of the average profile length, when comparing the
filtering time, for a database size of DBP = 3M .

both cases. Moreover, the lower throughput of Ping under the DBLP domain, is

attributed to the restricted vocabulary (126K terms) of the topic-specific domain.

A restricted profile vocabulary increases the probability to match a user profile

against an incoming publication; these matches increase filtering time and hence

reduce throughput.

Figure 6.8 shows the time (in milliseconds) that Ping requires to filter an

incoming document in a database storing DBP = 3M profiles, when the average

number of terms in the profile PL varies. We observe that the performance of the

system (slightly) improves as the average profile size increases since longer profiles

(i.e., profiles with more constraints) exhibit a lower probability to match an incoming

publication (high selectivity), and thus require less time to be evaluated by Ping.

Finally, Figure 6.9 presents the (primary and secondary) memory requirements of

Ping for different sizes of the profile database. We observe that, in both deployment

scenarios Ping exhibits low memory requirements, while transitioning from a topic-

specific to a more general domain has minimum impact on memory needs. Ping

indexes solely the incoming publication set during filtering time and executes each

profile against it, while after the filtering phase completes intermediate results and

publications are discarded. This approach allows Ping to exhibit constant memory



198 6.5. Outlook and Future Directions

Parameter Value

PL 5
IQ 500K
ID 50K
DB 0.5M − 3M

Figure 6.9: Examining the influence of the profile database size, when comparing
memory usage, for PL = 5.

requirements at filtering time, and allows it to efficiently support both topic-specific

and general domains with low memory requirements.

The performance evaluation results reported in Figures 6.7, 6.8 and 6.9 suggest

that Ping may be utilized to efficiently support different textual IF tasks with

high throughput and a relatively small memory footprint. The demonstrated

efficiency, alongside the inherent profile expressivity delivered from the Solr engine,

the different customization options, and the open-source nature of the system, make

it a promising solution for complex textual IF tasks in many domains.

6.5 Outlook and Future Directions

In this chapter, we presented Ping, a customizable textual IF system built entirely

over open source software, and experimentally assessed its performance in two

different deployment scenarios. In what follows, our work involves extending

the system by implementing a version for multi-core and cluster environments,

integrating more formats for source monitoring, and incorporating non-textual IF

(e.g., structural or graph constraints). Apart from the source code that will be

released upon publication, we also plan to openly provide the research community
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with any (anonymized) profile dataset that may be constructed by the end-usage

of Ping, in an effort towards realistic benchmarks for IF research.
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7
Conclusions

I n this chapter we conclude our work by providing a short summary of the

research conducted (Section 7.1), we highlight the contributions of our work

(Section 7.2) and finally discuss possible directions for future research (Section 7.3).

7.1 Summary

In this thesis, we studied the problem of multi-query answering under the scope

of information filtering where we applied it over three interrelated information

domains. The filtering problem is of high importance and to this end, we designed

and developed novel algorithms solutions that aim at efficiently capturing the nature

of information streams. Finally, our research concluded with the implementation

of an information filtering system that aims at can be deployed as a stand-alone

solution, as well as, as a building block for other added-value services. In this

section, we give a summary of our work.

Efficient Continuous Multi-Query Processing over Textual Data

Initially, we explored efficiency issues under the scope of Boolean text-based IF.

Although previous solutions in the literature had focused on providing efficient

filtering under various data models and query languages, they were mainly designed

under a static query workload assumption. Adopting a static query workload

201
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approach may cause a degradation in answering times over time, as the query

database is bound to frequent modifications. In our approach, we chose to tackle the

performance degradation issues through the proposal of a main-memory algorithmic

solution, coined StaR, that employs database reorganization techniques and achieves

efficient textual IF under the Boolean model. The key idea of our approach was

to utilize trie data structures and capture the common elements of the query set.

Capturing common elements of the query set, was previously studied in the literature

[3–5]. However, these works focused on minimizing the size of the trie forest, as

there was an implicit conjecture that a small forest would result in high filtering

performance. To this end, our solution aimed at collecting and utilizing statistics

based on the keyword importance, while it employed reorganization of the query

database based on those statistic insights. Finally, our findings prove that the forest

size is not the domination optimization factor when aiming to achieve high filtering

throughput, on the contrary we demonstrate that the nature of the tries and their

qualitative characteristics (based on heuristics) are a better optimization factor.

Efficient Continuous Multi-Query Processing over Textual and RDF
Data

In the domain of ontology-based IF research, we aimed at addressing the lack of

a complete full-text filtering mechanism, beyond existing regular expression and

equality support. We proposed a SPARQL extension with full-text operators that

was designed to provide expressive continuous queries and address the versatile user

needs in applications like digital libraries and news filtering. Aiming to support the

proposed extension and providing efficient filtering under ontology-based systems,

we developed a family of main-memory Algorithms coined RTF. Our solution can

support SPARQL queries with full-text constraints and is able to filter incoming

RDF publications in a few milliseconds. We presented indexing methods and

solutions that capture and exploit commonalities between continuous queries at

indexing time and leverage on the natural proprieties of RDF during the filtering

phase. Our family of algorithms, is the first in the literature that is able to support
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SPARQL queries with full-text constraints, while we experimentally demonstrated

its efficiency against existing state-of-the-art solutions.

Efficient Continuous Multi-Query Processing over Evolving Graph Data

Subsequently, our research focused at capturing patterns of interest that emerge in

evolving graphs. Monitoring and finding patterns that emerge on graph streams

can have several applications in the domains of social networks, protein-to-protein

interaction graphs, network monitoring and knowledge graphs. To this end, we

proposed a query subscription language in the form of continues sub-graph queries

that can be utilized to express sub-graph constraints and thus capture the emerging

patterns over streams of graph updates. In our research, we developed a novel

algorithmic solution, coined TriC to index and cluster continuous graph queries.

Our solution is the first in the literature that considers thousands of continuous

graph queries, contrary to previous approaches that considered only a hand-full of

continuous queries. We experimentally demonstrated that by identifying shared

patterns among the query workload we can minimize the number of operations

necessary to answer continuous sub-graph queries and thus achieve high throughput.

Realizing Information Filtering: The Case of Ping

Concluding our research, we presented a novel full-functioning IF system build

entirely upon open-source components. The proposed system, coined Ping, is

able to support complex IF tasks in a variety of domains. The presented system

is equipped with profile administration (e.g., creation, modification, submission),

publication management capabilities (e.g., collection, filtering), different content

delivery options (e.g., email or on-site notifications), (interval- or batch-based)

monitoring of different types of textual data, and an intuitive user interface. To

demonstrate the customizability of Ping, we deployed and experimented with it in

two different textual IF scenarios: the DBLP database for scientific publications

and the textual part of the DBpedia knowledge graph.
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7.2 Contributions

In this section, we present an overview of the contributions of our research. Initially

we highlight our four major research contributions, while subsequently we present

a detailed discussion and contribution lists for each information domain. To this

end, our research makes the following four important contributions:

• It studies and proposes novel algorithmic solutions in the domain of text-based

IF, that surpass current state-of-the-art approaches. The research yielded

important insights that challenge the status quo with regard to efficiency

optimization strategies.

• It builds upon the groundwork conducted in text-based IF systems, and

introduces full-text support in ontology-based IF. The research proposes, a

full-text extension for the SPARQL query language, while it yields the first

multi-query processing algorithmic solution in the literature that supports

full-text operators over the RDF data model as a first class citizen.

• It is the first in the literature that breaks ground in multi-query processing

over evolving graphs. The research capitalizes on the knowledge gathered from

previous research insights and builds novel algorithmic solutions to efficiently

address the resource-demanding multi-query processing over graph streams.

• It exploits the important insights and research experience gathered, and

employs it in the development of a modern open-source IF solution that can

be deployed under multiple information domains.

In our research, we presented an algorithmic solution under the text-based

Boolean IF paradigms, where we identified the importance of query insertion order

in the construction of the indexing data structures that facilitate the query workload.

To this end, our research makes the following improvements:
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• It demonstrates that contrary to previous research works, the nature of the

constructed tries, rather than their compactness is the key optimization factor

for efficient filtering, especially in datasets with rare clustering opportunities.

• It proves, through experimental evaluation, that constructing trie data struc-

tures with rare words at the higher level of the tries leads to improve filtering

performance.

• It presents different reorganization strategies, while it showcases their effect

in filtering efficiency using both real-world and synthetic datasets.

• It provides extensions of the proposed algorithmic solutions under modern

multi-core processors.

In the domain of ontology-based and RDF data, we proposed a SPARQL

extension with full-text operators that was designed to provide expressive continuous

queries and address the versatile user needs in applications like digital libraries

and news filtering. Thus, in this context, our research makes the following

important advancements:

• It proposes a SPARQL extension that can support full-text operators under the

Boolean model, coupled with word proximity and phrase matching capabilities.

• It provides a family of continuous query indexing algorithms that support

SPARQL full-text queries and are able to filter incoming publications effi-

ciently.

• It extends a third party algorithm for ontology pub/sub, to offer full-text

support and utilizes it under the experimental evaluation scenarios.

Subsequently, we aimed at capturing patterns of interest that emerge in evolving

graphs. We motivated our work by identifying and presenting application scenarios

from various domains, that could benefit from the proposed continuous multi-query

answering paradigm. In the context of multi-query processing over evolving graph

streams, our research makes the following important advancements:
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• It studies and formalizes the problem of continuous multi-query answering

over graph streams.

• It presents a novel query graph clustering algorithm that is able to efficiently

handle large numbers of continuous graph queries by resorting on (i) the

decomposition of continuous query graphs to covering paths and (ii) the

utilization of tries for capturing the common parts of those paths.

• Since no prior work in the literature had considered continuous multi-query

answering, it presents two algorithmic solutions that utilize inverted indexes

for the query answering, as well as we deployed and extended Neo4j to support

our proposed paradigm.

• It identifies different variations of the main algorithmic solution and the

baseline approaches, which utilized caching strategies, and experimentally

evaluates the effect of such solutions on the problem at hand.

• It assesses the performance, of the proposed solutions using three different

datasets from social networks, transportation, and biology domains, and

compared the performance against the developed baseline solutions. The

experimental evaluation demonstrates that the main algorithmic solution can

achieve up to two orders of magnitude improvement in query processing time.

Finally, we presented Ping, a novel, fully-functioning IF system build entirely

upon open-source components; the proposed system is able to support complex

IF tasks in a variety of domains. To the best of our knowledge, this is the first

open-source textual IF system is flexible enough that:

• Can be deployed as a standalone solution on different textual IF tasks and

domains or to be used as a building block for other added-value services.

• Showcases the realizability of the developed system on two different domains

(textual IF on scientific publications and crowd-sourced encyclopedia articles),

and experimentally assess its performance.
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• It provides an implementation of the information filtering functionality over

the Solr framework, which is primarily designed for information retrieval tasks,

and highlights the lack of native information filtering tools.

7.3 Open Problems

In this section we discuss of open problems related to our research. This list of

problems is directly related to our research findings and serves as a guideline for

future potential extensions of our work.

In the domain of textual based IF filtering we aimed at providing efficient

algorithms under the Boolean model. An interesting direction would be to extend

our algorithmic solution to other data models such as the VSM model. Future

research, can also include the adaptation of automata and graph-based techniques

as in [24, 50] to facilitate the Boolean IF paradigm while comparing it against

our trie-based approaches.

In our research we proposed a SPARQL extension with full-text operators that

was designed to provide expressive continuous queries and address the versatile

user needs. The proposed SPARQL extension can be extended to support more

Boolean operators, as well as to be extended to support VSM queries for text

representation in SPARQL. Additionally, an interesting approach would be to

adapt our algorithms under modern computer cluster architectures such as Apache

Hadoop and Apache Spark.

In the context of multi-query answering over graph streams we motivated the

importance of capturing patterns that emerge in evolving graphs. In this thesis

we identified and presented application scenarios that could benefit under the

proposed continuous sub-graph matching paradigm. To this end, there is a plethora

of graph metrics that could be adopted in the proposed continuous multi-query

answering paradigm and further enhance the usefulness of the proposed paradigm.

These metrics could potentially include clustering coefficient, shortest paths, k-

motifs, betweenness centrality and node degree measurements. In the following,
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we give a brief overview of how these metrics can be utilized under a continuous

multi-query answering setup.

In the case of clustering coefficient, users or service can subscribe to emerging

subgraphs with average clustering coefficient above a certain threshold Cth with

at least κ nodes in it. Thus, when Ci is the local clustering coefficient of a

node ni, then notify whenever a subgraph G′ with clustering coefficient of at

least Cth emerges. Continuous queries that specify a clustering coefficient (or any

similar) measure will be useful to identify communities that form dynamically

for targeted advertising, predict/validate PPI interactions, and track trending

entities/items in knowledge graphs.

The shortest path between two nodes u and v is defined as the path from node

u to node v such that the sum of weights of the constituent edges in the path is

minimized. Shortest path continuous queries are especially useful on PPI graphs as

they enable biologists to perform functional correlations and structural annotations

between (closely located) proteins. In this scenario, biologists want to get notified

when the shortest path between two given proteins drops below a provided threshold;

tracking shortest paths between nodes can be beneficial for several other continuous

queries such as betweenness centrality and Steiner tree computation discussed below.

Continuous queries that are used to subscribe for certain thresholds or top-K

style statistics for given cliques and motifs are particularly useful in PPI graphs

for detecting functionally related proteins and protein complexes. In this scenario,

a user would like to be notified when a given clique or motif becomes frequent

(i.e., its number of instances exceeds a predefined threshold or is within the top-k

most frequent patterns) in the PPI graph.

Betweenness centrality is defined as the fraction of shortest paths passing through

a node. Intuitively, nodes with higher betweenness centrality in social graphs have

higher visibility and injecting promoted content at those nodes would increase the

advertising effect. Similarly, betweenness centrality is a key measure for identifying

important proteins in a PPI network since proteins that demonstrate high between-

ness centrality are more likely to be essential proteins with interesting functional
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and dynamic properties. Betweenness centrality may be used as an additional

constraint in continuous queries once a subgraph of interest (e.g., a subgraph with

specific attribute values or above a certain clustering coefficient) is identified.

Even though node degree is a simple metric, together with betweenness centrality

constitute the two key characteristics for identifying important proteins in PPI

graphs, while continuous queries with node degree constraints could be used (in

conjunction with other metrics) to notify knowledge graph curators of new/trending

entities/items. The node degree is a key measure for identifying important proteins

in a PPI network. Proteins that demonstrate high betweenness centrality are more

likely to be essential proteins with interesting functional and dynamic properties.

In this setting the user wants to get notified whenever a given protein has a node

degree above a certain threshold. Additionally tracking nodes with high degree

could be a valuable tool in detecting emerging topics in co-authorship graphs (e.g.

DBLP), knowledge bases, and social networks.

Trending story/topic detection is an important area where dense subgraphs are

known to be of benefit [104]. Contrary to [104], where the focus is on identifying

the top-k densest subgraphs in a social media stream, our focus is on providing

dense subgraph as a threshold constraint in continuous queries (in conjunction with

attribute/structural matching) to allow monitoring of developing stories/users in

social graphs or trending items/entities in knowledge graphs.

In knowledge graphs, continuous queries could be used to notify graph curators

when a new Steiner tree is formed between given entities consisting of specifically

labeled edges, in the spirit of [157] but modified for pub/sub in evolving graphs.

Subscription to Steiner tree formation between nodes (or to Steiner points) could

be used to monitor knowledge graph quality or emergence of interesting links.

Finally, in our research we designed and presented the Ping IF system, a fully-

functioning system capable to support complex IF tasks in a variety of information

domains. An interesting direction for the development of Ping would be its

deployment over multi-core and computer cluster architecture, thus achieving

greater scalability, availability, and facilitating more resource-demanding operations.
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Furthermore, a promising approach would be incorporating more formats for source

monitoring, as well as incorporating non-textual IF (e.g., structural or graph

constraints). Providing a plethora of information sources would increase Ping’s

effectiveness and thus make it a lucrative option for the end-users.
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