

Пєрıєұо́ $\mu \varepsilon v \alpha$

Еıбаүตүท́ Eןүаб⿱ías 05

 11

 14
 17
 18

 19
 23
 24
 25

2.1 H Evvola tns Kotvaviкńs Подıtıкท́s 27
 28
2.3 Пعסí ${ }^{\circ}$ Пррє́ $\beta \alpha \sigma \eta \varsigma$ 29
 30
2.5 Н Еллбтпиоикпं $\Theta \varepsilon \mu \varepsilon \lambda i \omega \sigma \eta$ 32
2.6 МєӨободоү七кє́ऽ Пробєүүíбєıऽ 35
 38

Keqáдаго 3:

3.1 То ПП α íбо $\mathrm{A} \lambda \lambda \eta \lambda \varepsilon \pi i \delta \rho \alpha \sigma \eta \varsigma$ 39
 40
 42
 43
 45
$3.6 \Sigma v \mu \pi \varepsilon \rho \alpha ́ \sigma \mu \alpha \tau \alpha$ 47
Аєv์тєрос Мє́рос:
Eıбaүตүŋ́ $\Delta \varepsilon v ́ \tau \varepsilon \rho o v ~ M \varepsilon ́ \rho o v s ~$ 49

4.1 Фı $\lambda \varepsilon \lambda \varepsilon v \theta \varepsilon \rho ı \sigma \mu o ́ \varsigma$
 51
 53
4.2 इvvтпрптібио́s
 55
 56
 57
 59
 62
4.4 $\Sigma v \mu \pi \varepsilon \rho \alpha ́ \sigma \mu \alpha \tau \alpha$ 65

$М \alpha \rho \xi_{\imath} \sigma \mu o ́ \varsigma \kappa \alpha ı \Sigma о \sigma ı \alpha \lambda \delta \eta \mu о к \rho \alpha \tau i ́ \alpha$ бє Ало́к $\lambda ı \sigma \eta$
 66
 68

5.3.1 М $\alpha \rho \xi ı \sigma \mu o ́ \varsigma$ 70
 72
 73

5.4.1 इобוадঠпрократі́а 76
 77
 79
$5.5 \Sigma v \mu \pi \varepsilon \rho \alpha ́ \sigma \mu \alpha \tau \alpha$ 82
$\Sigma v \mu \pi \varepsilon \rho \alpha ́ \sigma \mu \alpha \tau \alpha$ 83
Bıрдıоүрачía

1. E $\lambda \lambda \eta \vee \delta ́ \gamma \lambda \omega \sigma \sigma \eta$ 88
2. Е $\varepsilon \vee o ́ \gamma \lambda \omega \sigma \sigma \eta$ 89

Eıбаү $\boldsymbol{\omega} \gamma \dot{\eta}$

[^0]

 $\alpha \pi \alpha ́ v \tau \eta \sigma \eta \tau \omega v$ олоí $\omega v \alpha \pi о \sigma к о \pi \varepsilon i ́ \eta ~ \pi \alpha \rho о v ́ \sigma \alpha ~ \varepsilon \rho \gamma \alpha \sigma \dot{\prime} \alpha ;$

 $\sigma \cup \mu \pi \varepsilon \rho \alpha \sigma \mu \alpha \tau \kappa \kappa \omega ́ v$ $\sigma к \varepsilon ́ \psi \varepsilon \omega v$.

 $\mu \varepsilon \theta$ ободоүкฑ́я тпऽ $\pi \rho \circ \sigma \varepsilon ́ \gamma \gamma 1 \sigma \eta \varsigma ;$

 тоv $\pi \varepsilon \rho เ \varepsilon \chi \circ \mu \varepsilon ́ v o v ~ \tau о v \varsigma ~ \mu \varepsilon ~ \sigma к о \pi о ́ ~ \tau \eta \nu ~ \varepsilon \xi \alpha \gamma \omega \gamma \eta ́ ~ \sigma v \mu \pi \varepsilon \rho \alpha \sigma \mu \alpha ́ \tau \omega \nu ~ \gamma i \alpha ~ \tau о v ~ \beta \alpha \theta \mu o ́ ~$

 кочข ω vıки́ π одıтькท่.

Ме́роя Прю́то:
Ot Evvoreऽ каı η A $\lambda \lambda \eta \lambda \varepsilon \pi i \delta \rho \alpha \sigma \eta$ тovs

 $\pi \rho о \sigma \varepsilon ́ \gamma \gamma \imath \sigma \eta$ tov Mannheim $\alpha \pi о \sigma к о \pi \varepsilon i ́ ~ \sigma \tau \eta ~ \delta ı \mu о ́ \rho \varphi \omega \sigma \eta ~ \sigma v v \theta \eta \kappa ळ ́ v ~ к \alpha \imath ~ к \rho ı \tau \eta \rho i ́ \omega v$

 $\varepsilon \pi i ́ \lambda о \gamma о \tau \eta \varsigma \varepsilon \vee о ́ \tau \eta \tau \alpha \varsigma$.

To $\delta \varepsilon v ́ \tau \varepsilon \rho о ~ к \varepsilon \varphi \alpha ́ \lambda \alpha ı ~ \varepsilon \pi ル к \varepsilon v \tau \rho \omega ́ v \varepsilon \tau \alpha ı ~ \sigma \tau о v ~ \pi \rho о \sigma \delta ı \rho ı \sigma \mu o ́ ~ к \alpha ı ~ \tau \eta \nu ~ \alpha v \alpha ́ \lambda v \sigma \eta ~$

 $\pi \rho о \sigma \tau \alpha \sigma i \alpha \varsigma ~ \mu \varepsilon ́ \sigma \omega ~ \tau \eta \varsigma ~ \varepsilon к \tau \varepsilon \tau \alpha \mu \varepsilon ́ v \eta \zeta ~ \mu \varepsilon \lambda \varepsilon ́ \tau \eta \zeta ~ \tau \omega v ~ к о \imath v \omega v ı к \omega ́ v ~ v \pi \eta \rho \varepsilon \sigma ı \omega ́ v . ~ H ~$

Keqádalo 1

H'Evvola tns Iסzodoरías

 $\tau \eta \varsigma \pi \rho o ́ v o l \alpha \varsigma$.

[^1]

[^2]

 (X $\rho 1 \sigma \tau 0 \delta o v \lambda i \delta \eta ~-~ М \alpha \zeta \alpha \rho \alpha ́ \kappa \eta ~ 2009: ~ 31) . ~ А \pi o ́ ~ \tau \eta v ~ \pi \rho ต ́ \tau \eta ~ \alpha v \tau \eta ~ \pi \rho о \sigma \varepsilon ́ \gamma \gamma ı \sigma \eta ~$

 סрáбๆ» (Heywood 2006: 102). Kató tov Andrew Heywood (2007: 33) «ot $\delta \varepsilon ́ \varepsilon \varsigma$

 $\sigma \tau \eta \vee$ ıбторí $\tau 0 v \pi \rho \alpha \gamma \mu \alpha \tau \iota к о v ́ ~ к о ́ \sigma \mu о v » . ~ Г \imath \alpha ~ \pi \alpha \rho \alpha ́ \delta \varepsilon \imath \gamma \mu \alpha ~ \eta ~ \pi \rho о ́ \sigma \lambda \eta \psi \eta ~ \tau \eta \varsigma ~ \imath \delta \varepsilon ́ \alpha \varsigma ~ \tau \eta \varsigma$

 о́ $\pi \omega \varsigma ~ \alpha v \tau \varepsilon ́ \varsigma ~ \pi \alpha \rho о v \sigma เ \alpha ́ \sigma \tau \eta \kappa \alpha v ~ \pi ぃ о ~ \pi \alpha ́ v \omega, ~ ß р i ́ \sigma \kappa о v \tau \alpha l ~ \sigma \varepsilon ~ \mu \varepsilon \gamma \alpha ́ \lambda \eta ~ \tau \alpha v ́ \tau ı \sigma \eta ~ \mu \varepsilon ~ \tau L \varsigma ~$

 «vÉa̧ коw ω vía̧».

 $\pi \alpha \rho \alpha ́ ~ v \alpha$ عival to $\alpha \pi о \tau \varepsilon ́ \lambda \varepsilon \sigma \mu \alpha ~ \tau \eta \varsigma ~ \pi \rho \alpha \kappa \tau \kappa \kappa \eta ́ s ~ \delta \rho \alpha ́ \sigma \eta \varsigma ~ \tau \omega v ~ \alpha \tau o ́ \mu \omega v . ~ Y \pi \alpha ́ \rho \chi \varepsilon \imath ~$
 $\sigma v v \varepsilon i ́ \delta \eta \sigma \eta$ т $\omega v \alpha v \theta \rho \omega ́ \pi \omega v$.

 $\mu \pi о \rho о v ́ \sigma \varepsilon v \alpha$ о $\eta \eta \gamma \eta \theta \varepsilon i \quad \pi \rho \circ \varsigma \tau \eta v \alpha \lambda \lambda \alpha \gamma \eta$.

 То $\pi \rho \omega ́ \tau о ~ \alpha \xi ı \sigma \eta \mu \varepsilon i ́ \omega \tau о ~ \varepsilon \gamma \chi \varepsilon i ́ \rho \eta \mu \alpha ~ \pi \rho о \varepsilon ́ \rho \chi \varepsilon \tau \alpha ı ~ \alpha \pi o ́ ~ L e n i n ~(1902), ~ о ~ о \pi о i ́ o \varsigma ~$
 $\pi \rho о \sigma \delta о к о и ́ \sigma \varepsilon$ va $\delta 1 \alpha \mu о \rho \varphi \omega ́ \sigma \varepsilon \iota ~ \varepsilon \mu \pi \varepsilon \rho \iota \varepsilon i \chi \varepsilon ~ \sigma \tau \varepsilon v о v ́ \varsigma ~ \delta \varepsilon \sigma \mu о v ́ \varsigma ~ \alpha \lambda \lambda \eta \lambda \varepsilon \xi \dot{\alpha} \rho \tau \eta \sigma \eta \varsigma \mu \varepsilon$ тоטऽ

 то $\sigma ט ́ v o \lambda о ~ \tau \omega \vee \sigma v \mu \varphi \varepsilon \rho о ́ v \tau \omega v \tau \omega v \kappa v \rho ı \alpha \rho \chi о v ́ \mu \varepsilon v \omega v \tau \alpha ́ \xi \varepsilon \omega v$.

 $\lambda 0 \imath \pi o ́ v ~ \sigma \tau o ́ \chi o s ~ \gamma ı \alpha ~ \tau \eta ~ \mu \varepsilon \tau \alpha ́ \beta \alpha \sigma \eta ~ \sigma \tau о v ~ \sigma о \sigma ı \alpha \lambda ı \sigma \mu o ́ ~ \theta \alpha ~ \eta ́ \tau \alpha \nu ~ \eta ~ \delta ı \alpha ́ \pi \lambda \alpha \alpha \sigma \eta ~ к \alpha \imath ~$

 $\alpha \mu \varepsilon \rho о \lambda \eta \psi i ́ \alpha \varsigma ~ к \alpha \imath ~ о v \delta \varepsilon \tau \varepsilon \rho o ́ t \eta \tau \alpha \varsigma . ~ Г \imath \alpha ~ \tau о ~ \lambda o ́ \gamma o ~ \alpha v \tau o ́ ~ \eta ~ \alpha v \alpha ́ \lambda v \sigma \eta ~ \tau о v ~ v \pi \varepsilon v \theta v \mu i \zeta \varepsilon ı ~$

 $\sigma \varepsilon \alpha \varphi \alpha \rho \varepsilon \tau \kappa к о ́ \varepsilon \pi i ́ \pi \varepsilon \delta о$.

 гбєодоүюкй.

 $\kappa \alpha \tau \alpha v o ́ \eta \sigma \eta \varsigma ~ \tau \eta \varsigma ~ \delta \iota \alpha v o ́ \eta \sigma \eta \varsigma ~ к \alpha 1 ~ \tau о ~ \gamma \varepsilon \gamma о v o ́ s ~ \alpha v \tau o ́ ~ \alpha \pi о \tau \varepsilon \lambda \varepsilon i ́ ~ \varepsilon ́ v \alpha ~ \alpha к o ́ \mu \eta ~ \sigma \eta \mu \varepsilon i ́ o ~$

 $\alpha i ́ \sigma \theta \eta \sigma \eta \varsigma ~ \kappa \alpha l ~ \tau \eta \varsigma ~ \alpha \xi ı \lambda \lambda o ́ \gamma \eta \sigma \eta \varsigma ~ \omega \varsigma ~ \mu \varepsilon ́ \sigma o ~ \varepsilon \lambda \varepsilon ́ \gamma \chi \circ v . ~ \Sigma \tau \eta ~ \mu \varepsilon \lambda \varepsilon ́ \tau \eta ~ \tau о v ~ \pi \varepsilon \delta i ́ o v ~ \tau \eta \varsigma ~$

 $0 \varepsilon \omega \rho \varepsilon i ́ ~ \tau \eta ~ \delta ı \alpha \sigma \tau \rho \varepsilon ́ \beta \lambda \omega \sigma \eta ~ \tau \eta \varsigma ~ \pi \rho \alpha \gamma \mu \alpha \tau \kappa \eta ̆ \varsigma ~ \varphi v ́ \sigma \eta \varsigma ~ \tau о v ~ к о ́ \sigma \mu о v . ~ \Omega \varsigma ~ о \lambda ı к \eta ~ \varepsilon ́ v v o ı \alpha ~$

 ($\mathrm{N} \varepsilon о \varphi \iota \lambda \varepsilon \lambda \varepsilon v \theta \varepsilon \rho \iota \sigma \mu \circ ́ \varsigma, N \varepsilon о \mu \alpha \rho \xi \iota \sigma \mu$ о́ $\kappa \lambda \pi$).

 $\kappa \alpha \tau \alpha ́ ~ \tau o v ~ F u k u y a m a ~ \alpha \pi о \tau \varepsilon \lambda \varepsilon i ́ ~ \tau o ~ \tau \varepsilon \lambda \varepsilon v \tau \alpha i o ~ \sigma \tau \alpha ́ \delta ı o ~ \tau \eta \varsigma ~ \alpha v \theta \rho ต ́ \pi \tau v \eta \varsigma ~ \iota \sigma \tau о \rho i ́ \alpha \varsigma . ~ T \alpha ~$

 $\varphi \downharpoonright \lambda \varepsilon \lambda \varepsilon v ́ \theta \varepsilon \rho \circ \kappa \rho \alpha \dot{\alpha} \tau \circ \varsigma$.

 $\alpha \varphi \alpha i \rho \varepsilon \sigma \eta \varsigma$.

Kє甲́́ддıo 2

 $\delta \alpha \theta \varepsilon ́ \tau \varepsilon \iota \chi \alpha \rho \alpha \kappa \tau \tau \dot{\rho} \rho \alpha \mu \varphi \uparrow \lambda \varepsilon \gamma о ́ \mu \varepsilon \vee о$.

 סıкаıобט́vŋऽ.

 $\pi \rho о \varepsilon \kappa \tau \alpha ́ \sigma \varepsilon \iota \varsigma$.

 $\pi \varepsilon \imath \theta \dot{\alpha} \rho \chi \eta \sigma \eta \varsigma$ ($\varepsilon v \delta \varepsilon \iota \kappa \tau \iota \kappa \alpha ́$ Alcock 1998). $\Sigma \varepsilon \kappa \alpha ́ \theta \varepsilon \pi \varepsilon \rho i \pi \tau \omega \sigma \eta \eta \kappa \cup \rho i ́ \alpha \rho \chi \eta \pi \rho о \sigma \varepsilon ́ \gamma \gamma ı \sigma \eta$

 $\pi \alpha \rho \varepsilon \lambda \theta$ о́vтоऽ.

2.3 Пع $\delta i ́ \alpha ~ П \alpha \rho \varepsilon ́ \mu \beta \alpha \sigma \eta \varsigma$

 бט́voえo.

[^3]

 оıкоүह́v $\mathcal{L} \alpha \varsigma \sigma \tau \alpha \mu \varepsilon ́ \lambda \eta \tau \eta \varsigma$.

 $\mu \eta \chi \alpha v ı \mu \omega ́ v$.

 $\sigma \chi \varepsilon \delta i ́ o v ~ \tau o v ~ \Lambda o ́ \rho \delta o v ~ W . ~ B e v e r i d g e ~(1942) ~ \gamma ı \alpha ~ \tau \eta \nu ~ \sigma u \gamma к \rho o ́ \tau \eta \sigma \eta ~ \sigma u \sigma \tau \eta ́ \mu \alpha \tau о \varsigma ~$

 $\varepsilon \vee о ́ \varsigma ~ \varphi \alpha ́ \sigma \mu \alpha \tau о \varsigma ~ \pi о \lambda ı \tau ı \kappa \omega ́ v ~ \kappa \alpha \theta о \lambda ı \kappa о v ́ ~ \chi \alpha \rho \alpha \kappa \tau ท ́ \rho \alpha . ~ \Sigma v v \delta v \alpha \sigma \tau ı \kappa \alpha ́, ~ \tau о ~ \sigma \chi \varepsilon ́ \delta ı o ~ B e v e r i d g e ~$

 $\chi \rho о \vee о \lambda о \gamma \imath \kappa \alpha ́ ~ \pi \rho о \sigma \delta ı \rho ı \sigma \mu \varepsilon ́ v \eta$ каı ı $\delta \varepsilon о \lambda о \gamma \imath \kappa \alpha ́ ~ \varphi о \rho \tau \iota \sigma \mu \varepsilon ́ v \eta ~ \mu о \rho \varphi \eta ́ . ~ A v \alpha \varphi \varepsilon ́ \rho \varepsilon \tau \alpha ı ~ \sigma \tau \eta ~$

[^4]

2.5 Н Елıбтпиоvıк $\tau \tau \varsigma ~ \Theta \varepsilon \mu \varepsilon \lambda i \omega \sigma \eta$

 Ф人ßı $\alpha v o ́ \varsigma ~ R . ~ T i t m u s s ~(1907-1973) ~ \varepsilon \pi \chi \chi \varepsilon i p \eta \sigma \varepsilon ~ \tau \eta v ~ \mu \varepsilon \lambda \varepsilon ́ \tau \eta ~ к \alpha ı ~ \alpha v \alpha ́ \lambda v \sigma \eta ~ \tau \eta ร ~$

[^5]

 $\beta \alpha ́ \rho o \varsigma ~ \sigma \tau \eta v \dot{\alpha} \mu \varepsilon \sigma \eta$ بородоүía (Abel-Smith and Townsend 1955) ${ }^{9}$. Н $\lambda о \gamma \kappa \kappa \dot{\eta} \alpha v \tau \eta$,

[^6]

2.6 МєӨободоүıкŋ́ Пробє́ $\gamma \gamma \iota \sigma \eta$

 vүвías.

 $\pi \rho о \beta \lambda \eta{ }_{\eta} \mu \alpha \tau \alpha$.

 $\pi о \lambda v \delta \dot{\alpha} \sigma \tau \alpha \tau \eta$ каı $\mu \varepsilon v \psi \eta \lambda$ ó $\beta \alpha \theta \mu$ ó $\varepsilon \xi \alpha \tau о \mu i ́ \kappa \varepsilon v \sigma \eta \varsigma ~ \alpha v \alpha ́ \alpha ~ \pi \varepsilon \rho i ́ \pi \tau \omega \sigma \eta . ~$

 (industrial achievement performance) к $\alpha \iota$ то $\theta \varepsilon \sigma \mu \iota \kappa o ́ ~-~ \alpha v \alpha \delta \iota \alpha v \varepsilon \mu \eta \tau \iota к o ́ ~(i n s t i t u t i o n a l ~$

Ke¢́àalo 3

3.1 To П $\lambda \alpha$ írıo $\mathrm{A} \lambda \lambda \eta \lambda \varepsilon \pi i \delta \rho \alpha \sigma \eta \varsigma$

 $\mu \varepsilon ́ \sigma o$ в $\pi i \not \tau \varepsilon \cup \xi \eta \varsigma \tau \eta \varsigma$.

3.2 E $\lambda \varepsilon v \theta \varepsilon \rho i ́ \alpha ~ к \alpha 兀 ~ I \sigma o ́ \tau \eta \tau \alpha$

 Fitzpatrick 2001 кaı Alcock et al. 1998). Me ß $\dot{\alpha} \sigma \eta$ avtóv tov около́ $\pi \rho о к и ́ \pi \tau \varepsilon ı ~ \eta ~$

 $\alpha v ı \sigma o ́ \tau \eta \tau \alpha$.

 $\alpha v \alpha \delta \alpha v o \mu \eta$.

 $\pi \alpha \rho \alpha \mu \varepsilon ́ \tau \rho o v \varsigma$. To єлтхвíp $\eta \mu \alpha$ аvтó $\theta \alpha \alpha v \alpha \lambda v \theta \varepsilon i ́ ~ \alpha \mu \varepsilon ́ \sigma \omega \varsigma ~ \mu \varepsilon \tau \alpha ́ ~ \alpha \pi o ́ ~ \tau \eta \nu ~ \pi \alpha \rho \alpha ́ \theta \varepsilon \sigma \eta ~ \tau \omega \nu$

 Flora and Alber 1981).

 катаvонŋ́ тоv $\pi \alpha \rho \alpha \nsucc о ́ \mu \varepsilon v o v ~ \pi \lambda о v ́ \tau о v . ~$

 $\alpha \kappa о \lambda о v \theta \varepsilon i ́$.

 $\alpha \sigma \theta \varepsilon v \varepsilon ́ \sigma \tau \varepsilon \rho \omega v$ коıvตvルкळ́v $\sigma \tau \rho \omega \mu \alpha ́ \tau \omega v$. To $\alpha i ́ \tau \eta \mu \alpha$ аvтó $\alpha \pi o ́ ~ \mu ı \alpha ~ к \nu \beta \varepsilon ́ \rho v \eta \sigma \eta ~ \mu \varepsilon$

 $\sigma о \mu \varphi \varepsilon \rho о ́ v \tau \omega \nu$.

 $\pi \alpha \rho \varepsilon ́ \mu \beta \alpha \sigma \eta \varsigma$.

Mépos $\operatorname{\Delta \varepsilon vít\varepsilon \rho o:~}$

 ßрі́бкоvтаı $\sigma \varepsilon \alpha \pi о ́ к \lambda ı \sigma \eta$.

 $\delta 1 \alpha \pi \rho \alpha \gamma \mu \alpha \tau \varepsilon v \sigma \eta \varsigma$.

4.1 Фìع $\lambda \varepsilon \cup \theta \varepsilon \rho \iota \sigma \mu o ́ \varsigma$

Ot $\varepsilon \xi \varepsilon \lambda i \xi \varepsilon \varepsilon \varsigma ~ \alpha v \tau \varepsilon ́ \zeta ~ \sigma \alpha \varphi \varepsilon ́ \sigma \tau \alpha \tau \alpha ~ v \pi о v o o v ́ v ~ \tau \eta \nu ~ \varepsilon \pi \kappa \kappa \varepsilon i ́ \mu \varepsilon v \eta ~ \sigma ט ́ v о \psi \eta ~ \tau \omega \nu$

 то λ ıткко́ тонє́ α.

 $\sigma \varphi \alpha i ́ \rho \alpha \mu \varepsilon \alpha v \alpha \delta v o ́ \mu \varepsilon v o ~ \alpha \pi о \tau \varepsilon ́ \lambda \varepsilon \sigma \mu \alpha ~ \tau \eta \nu ~ \varepsilon \mu \varphi \alpha ́ v ı \sigma \eta ~ \tau \eta \varsigma ~ \mu \varepsilon ́ \chi \rho ı ~ \pi \rho o ́ \tau \tau v o \varsigma ~ \alpha \varphi \alpha v o v ́ \varsigma ~$ Évvolas rov ató μ оv.

 $\sigma \cup \mu \beta$ одaíov Hobbes, Locke, Rousseau).

 סıкаlơóvins.

 $\alpha v \tau o ́ v o \mu \eta ~ \alpha \xi ́ a$.

 $\kappa \alpha \theta \varepsilon \sigma \tau \omega \tau \omega v$.

[^7]

 $\kappa \alpha _\varepsilon \xi$ оибía.

 $v \alpha \delta \alpha \tau \eta \rho \varepsilon i \tau \alpha ı ~ \kappa \alpha ı ~ v \alpha ~ \mu \eta \nu ~ \mu \varepsilon \tau \alpha \rho \rho v \theta \mu i \zeta \varepsilon \tau \alpha 1 . ~ Е \pi о \mu \varepsilon ́ v \omega \varsigma ~ \eta ~ \pi \alpha \rho \alpha ́ \delta о \sigma \eta ~ \alpha \pi о \tau \varepsilon \lambda \varepsilon i ́ ~$

 $\varepsilon \pi \iota \delta \dot{́} \kappa \varepsilon \tau \alpha \iota \mu \varepsilon \kappa \alpha ́ \theta \varepsilon \delta$ бvаато́ тоо́то.

[^8]

 - 35, $\alpha \lambda \lambda \dot{\alpha} \kappa \alpha \imath \varepsilon v \mu \varepsilon ́ \rho \varepsilon t ~ A l c o c k ~ e t ~ a l l ~ 1998, ~ T a y l o r ~ 2007) . ~ . ~$

 $\pi \rho о к \alpha \lambda \varepsilon ́ \sigma \varepsilon \iota ~ \pi \varepsilon \rho ı \sigma \sigma o ́ \tau \varepsilon \rho о ~ \delta v \sigma \lambda \varepsilon ı \tau о \cup \rho \gamma i ́ \alpha, \pi \alpha \rho \alpha ́ \quad \varepsilon \cup \eta \mu \varepsilon \rho i \alpha$.

[^9]

 ávev аvтıкрі́бцатоร.

 $\alpha \tau о \mu \iota \kappa o ́ ~ \sigma \vartheta \mu \varphi \varepsilon ́ \rho o v ~ \alpha \pi о \tau \varepsilon \lambda \varepsilon i ́ ~ \beta \alpha \sigma \iota \kappa o ́ ~ к i ́ v \eta \tau \rho о ~ \tau \omega v ~ \sigma \tau \varepsilon \lambda \varepsilon \chi ळ ́ v ~ к \alpha ́ \theta \varepsilon ~ \delta \eta \mu o ́ \sigma ı \alpha \varsigma ~ v \pi \eta \rho \varepsilon \sigma i \alpha \varsigma ~$ (Niskanen 1973).

 $\tau \omega \vee \alpha \tau о \mu \kappa \kappa ́ v \varepsilon \varepsilon \notin \cup v \omega ́ v$.

 $\mu \varepsilon \mu \circ v \omega \mu \varepsilon ́ v \omega v ~ \sigma \nu \mu \varphi \varepsilon \rho o ́ v \tau \omega v$.

 $\tau i \theta \varepsilon v \tau \alpha \iota ~ \alpha \pi o ́ ~ \tau о \cup \varsigma ~ \kappa \alpha \tau \alpha v \alpha \lambda \omega \tau \varepsilon ́ \varsigma$.

 котט曰viкó кри́то̧.

 $\tau \alpha ́ \xi \eta \varsigma^{15}$.

 $\tau \eta \varsigma ~ \delta \varepsilon v ́ \tau \varepsilon \rho \eta \varsigma ~ \beta ı \rho \mu \eta \chi \alpha v ı \kappa \eta ́ \varsigma ~ \varepsilon \pi \alpha v \alpha ́ \sigma \tau \alpha \sigma \eta \varsigma ~ о \delta \eta \gamma \varepsilon i ́ ~ \sigma \tau \eta \nu ~ \pi \varepsilon \rho \alpha ı \tau \varepsilon ́ \rho \omega ~ \varepsilon v \delta v v \alpha ́ \mu \omega \sigma \eta ~ \tau о v$

[^10]

 $\pi \rho о \varepsilon ́ к \tau \alpha \sigma \eta$ бтоv концоиขлоцо́.

[^11] $\mu \alpha \rho \xi \iota \sigma \mu \circ v ́$, ó $\tau \omega \varsigma ~ \theta \alpha \alpha v \alpha \pi \tau \cup \chi \theta \varepsilon i ́ ~ \sigma \tau \iota \varsigma ~ \varepsilon \pi o ́ \mu \varepsilon v \varepsilon \varsigma ~ \varepsilon v o ́ \tau \eta \tau \varepsilon \varsigma ~ t o u ~ к \varepsilon \varphi а \lambda \alpha i ́ o v . ~$

 вıпиєрía.

5.3.1 $\mathrm{M} \alpha \rho \xi ı \sigma \mu o ́ \varsigma$

 $\alpha \pi o ́ ~ \sigma o ́ \gamma \chi \rho o v o u \varsigma ~ M \alpha \rho \xi ̌ \imath \sigma \tau \varepsilon ́ \zeta ~(G o u g h, ~ G i n s b u r g, ~ O f f e, ~ O ' C i n n n o r, ~ Q u a d a g n o) . ~ \Sigma \varepsilon ~ \kappa \alpha ́ \theta \varepsilon ~$

 $\varepsilon \pi \alpha v \alpha \sigma \tau \alpha \tau \kappa ŋ ́ ~ к \alpha \tau \varepsilon v ́ \theta \cup v \sigma \eta$.

 $\mu \propto к р о л \rho о ́ \theta \varepsilon \sigma \mu о ~ \sigma \tau о ́ \chi о . ~$

 1984).

 vонцолоі́ךопร (O' Connor 1973).

 $\pi \alpha \rho \alpha \gamma \omega \gamma \kappa \kappa ́ \tau \eta \tau \alpha \varsigma$.

 $\varepsilon \rho \gamma \alpha \sigma \dot{\alpha} \alpha \varsigma ~ \sigma v \mu \pi \varepsilon \rho \imath \lambda \mu \beta \alpha ́ v o v \tau \alpha \varsigma ~ v \varepsilon ́ \varepsilon \varsigma ~ \pi \alpha \rho \alpha \mu \varepsilon ́ \tau \rho o v \varsigma, ~ o ́ \pi \omega \varsigma ~ \alpha v \tau \varepsilon ́ \varsigma ~ \tau о v ~ \varphi v ́ \lambda о v, ~ \tau ๆ \varsigma ~ \varphi v \lambda \eta ́ \varsigma, ~$

 $\kappa \lambda \alpha \sigma ı \kappa о и ́ \mu \alpha \rho \xi \imath \sigma \mu \circ v$.

5.4.1 гобн $\alpha \lambda \delta \eta \mu о к р а т і а ~_{\text {人 }}$

 $\kappa \alpha \theta \varepsilon \sigma \tau \omega ́ \tau \alpha$.

 2007: 59).

 краткю́я ларе́ц $\beta \alpha \sigma \eta \varsigma$.

 $\chi \alpha \rho \alpha \kappa \tau \eta \dot{\rho} \alpha \alpha \nu \sigma о \tau \dot{\tau} \tau \omega v$.

[^12]

 $\varepsilon є \sigma о \delta \eta \mu \alpha \tau \kappa \omega ́ v \pi o ́ \rho \omega v$ (means-tested basis).

 $\beta \alpha \theta \mu o ́ ~ \delta ı \alpha \pi v \varepsilon ́ \varepsilon \tau \alpha \iota ~ \alpha \pi o ́ ~ \tau ı \varsigma ~ \mu \varepsilon \lambda \varepsilon ́ \tau \varepsilon \varsigma ~ \tau о v ~ C r o s l a n d, ~ \tau \omega v ~ о \pi о i ́ \omega v ~ \beta \alpha \sigma ı \kappa \eta ́ ~ \delta ı \alpha \pi i \sigma \tau \omega \sigma \eta ~ \eta ́ \tau \alpha \nu$

 єлтхвір $\eta \mu \alpha$.

$5.5 \Sigma v \mu \pi \varepsilon \rho \alpha ́ \sigma \mu \alpha \tau \alpha$

 $\pi о \lambda ı \tau เ \kappa \omega ́ v ~ เ \delta \varepsilon \propto ் ้ . ~$

 $\pi \rho о \varepsilon ́ \tau \alpha \xi \varepsilon \kappa \alpha \tau \alpha ́ \tau \varsigma \pi \rho \omega \dot{\tau} \varepsilon \varsigma \mu \varepsilon \tau \alpha \pi \circ \lambda \varepsilon \mu \iota \kappa \varepsilon ́ \varsigma \delta \varepsilon \kappa \alpha \varepsilon \tau i \varepsilon \varsigma$.

 $\alpha \tau o ́ \mu \circ v \gamma \alpha \alpha \tau \eta v \varepsilon \pi i ́ \lambda v \sigma \eta \tau \omega v \pi \rho \circ \beta \lambda \eta \mu \alpha ́ \tau \omega v \tau 0 v$.

 $\varepsilon \lambda \varepsilon u ́ \theta \varepsilon \rho \eta \upharpoonleft$ аүора́ৎ.

 кош ω vía.

 $\pi \lambda о \cup \rho \lambda 1 \sigma \mu \circ v ์)$.

 тๆร $\varepsilon \lambda \varepsilon v ́ \theta \varepsilon \rho \eta \varsigma ~ \alpha \gamma о \rho \alpha ́ \varsigma . ~$

A. E $\lambda \lambda \eta \geqslant o ́ \gamma \lambda \omega \sigma \sigma \eta$ Bıp $\lambda ı \gamma \rho \alpha, \varphi i ́ \alpha$

 $\Delta i \kappa \alpha \iota \omega ́ \mu \alpha \tau \alpha$. To Tह̇̇

4. Подávvı K. (2001), O Мє $\gamma \dot{\lambda} \lambda о \varsigma ~ М \varepsilon \tau \alpha \sigma \chi \eta \mu \alpha \tau \imath \sigma \mu o ́ \varsigma, ~ \Theta \varepsilon \sigma \sigma \alpha \lambda о v i к \eta: ~ N \eta \sigma i ́ \delta \varepsilon \varsigma . ~$

 То́ $\mu \circ \varsigma \mathrm{A}^{\prime}, ~ \Theta \varepsilon \sigma \sigma \alpha \lambda о v i к \eta: ~ П \alpha \rho \alpha т п \rho \eta \tau \eta ์ \varsigma$.

8. Fukujama F. (2005) (Мєт: $\Delta . B o v ́ \beta \alpha \lambda \eta)$, Oıкобó $\eta \eta \sigma \eta ~ K \rho \alpha \tau \dot{v} v . \Delta ı \alpha \kappa v \beta \varepsilon ́ \rho v \eta \sigma \eta ~$ $\kappa \alpha l ~ \pi \alpha \gamma \kappa o ́ \sigma \mu \imath \alpha ~ \tau \alpha ́ \zeta \eta ~ \sigma \tau o v ~ 21 o ~ \alpha ı \omega ́ v o . ~ A \theta \eta ́ v \alpha: ~ \Lambda ı \beta \alpha ́ v \eta . ~$

 бтo Abendroth W. - Lenk K. (1983) ($\varepsilon \pi \tau \mu$.$) , Eı \sigma \alpha \gamma \omega \gamma \eta \dot{\eta} \sigma \tau \eta v$ Подı兀ıкク́

 Єєбоадоviкп: Паратпрптŋ́s.
 Х $\bar{\eta} \mu \alpha \tau o \varsigma, ~ A \theta \eta \dot{\eta} \alpha \alpha$ (2001): П $\alpha \pi \alpha \zeta \check{\eta} \sigma \eta$.
 Katóбтабף, Aө̣́̆va: Гvต́oŋ.

18. Weber М. (1997), Н Протєбтаv七ıкй НӨıкй каı то Пvєv́ца тоv Калıтадıбцоv́, Aөŋ́va: Gutenberg.

1. Abel-Smith B. (1958), "Whose Welfare State" oto Mackenzie N. (ed.), Conviction, London: McGibbon and Kee.
2. Abel-Smith B. and Townsend P. (1955), New Pensions for the Old, Fabian Research Series no. 171, London: Fabian Publications Ltd., March.
3. Alcock P., Erskine A., and May M. (1998) (eds), The Student's Companion to Social Policy, Oxford: Blackwell.
4. Barry N. (1987), The New Right, London: Croom Helm.
5. Bell D. (1960), The End of Ideology: On the Exhaustion of Political Ideas in the Fifties, New York: Free Press.
6. Beveridge Report (1942), Social Insurance and Allied Services, London: HMSO.
7. Crosland T. (1956), The Future of Socialism, London: Jonathan Cape.
8. Easton D. (1981), The Political System, Chicago: University of Chicago Press.
9. Erskine A. (1998), "The Approaches and Methods of Social Policy" oro Alcock P., Erskine A., and May M. (1998) (eds), The Student's Companion to Social Policy, Oxford: Blackwell.
10. Esping - Andersen G. (1985), Politics against Markets: The Social Democratic Role Road to Power, New Jersey: Princeton University Press.
11. Esping - Andersen G. (1990), The Three Worlds of Welfare Capitalism, Polity: Cambridge.
12. Fitzpatrick T. (2001), Welfare Theory: An Introduction, London: Palgrave Macmillan.
13. Friedman (1962), Capitalism and Freedom, Chicago, IL: University of Chicago Press.
14. George V. - Wilding P. (1985), Ideology and Social Welfare, London: Routledge \& Kegan Paul.
15. Ginsburg I. (1979), Class, Capital and Social Policy, London: Macmillan.
16. Gough I. (1979), The Political Economy of the Welfare State, Palgrave McMillan.
17. Hill (1997), Understanding Social Policy, fifth edition, Oxford: Blackwell Publishers.
18. Johnson (1995) (eds.), Private Markets in Health and Welfare: an International Perspective, Oxford: Berg.
19. Lenin (1988), What is to be Done?, Harmondsworth and New York: Penguin.
20. Macmillan (1966), The Middle Way, London: Macmillan.
21. Marshall T.H. (1950), "Citizenship and Social Class", reprinted in Marshall T.H. and Bottomore T. (1992), Citizenship and Social Class, London: Pluto Press.
22. Marshall T. H. (1965), Social Policy, London: Hutchinson University Library.
23. Marx K. (1848), Manifesto of the Communist Party.
24. Marx K. (1965), Capital, Vol. 1, Progress Publishers.
25. Marx K. and Engels F. (1968), Selected Works, London: Lawrence and Wishart.
26. Marx K. and Engels F. (1970), The German Ideology, London: Lawrence and Wishart.
27. May M. (1998), "The Role of Comparative Study" $\sigma \tau 0$ Alcock P., Erskine A., and May M. (1998) (eds), The Student's Companion to Social Policy, Oxford: Blackwell.
28. Miliband R. (1991), Divided Societies: Class Struggle in Contemporary Capitalism, Oxford: Oxford University Press.
29. Myles J. and Quadagno J. (2002), "Political Theories of the Welfare State", Social Service Review, 76 (1):34-57.
30. Niskanen W. (1973), Bureaucracy: Servant or Master?, London: Institute for Economic Affairs.
31. Offe C. (1984), Contradictions of the Welfare State, London: Hutchinson.
32. O' Connor J. (1973), The fiscal crisis of the state, New York: St.Martin's Press.
33. Polanyi K. (1944), The Great Transformation, Boston: Beacon Press.
34. Quadagno J. (1988), "Theories of the Welfare State", Annual Review of Sociology 13: 109-28.
35. Rawls J. (1972), A Theory of Justice, Oxford: Clarendon Press.
36. Smith A. (1776), An Enquiry into the Nature and Causes of the Wealth of Nations. Chicago, IL: University of Chicago Press.
37. Taylor G. (2007), Ideology and Welfare, London: Palgrave Macmillan.
38. Titmuss R. (1958), Essays on 'the Welfare State', London: Allen and Unwin.
39. Titmuss R. (1968), Commitment to Welfare, London: Allen and Unwin.
40. Titmuss R. (1974), Social Policy. An introduction, London: Allen and Unwin.
41. Townsend P. (1979), Poverty in the United Kingdom, London: Penguin.

[^0]: $\pi \rho о ́ \sigma \varphi \alpha \tau \varepsilon \varsigma$ о́л $\boldsymbol{\sigma} \varsigma$ tov Taylor (2007).

[^1]: ${ }^{2}$ Evסcıктıќ่ $\beta \lambda$. Eagleton T. (1991), Ideology: An Introduction, London and New York: Verso. Freeden M. (1996), Ideologies and Political Theory: A Conceptual Approach, Oxford: Clarendon Press. McLellan D. (1995), Ideology, Milton Keynes: Open University Press. Seliger M. (1976), Ideology and Politics, London: Allen and Unwin.

[^2]:
 бколои́ऽ к $\alpha \imath \varepsilon \pi \iota \delta 1 \omega \xi \varepsilon เ \varsigma$.

[^3]:

[^4]:

 коเv曰viкळ́v बe $\alpha v \tau \alpha ́$.

[^5]:

[^6]:

[^7]:

[^8]:
 T.H. Marshall (1950) кんa Bevtép $\mathrm{\eta S}_{S}$ (2009)

[^9]: 1997)

[^10]:

[^11]:

[^12]: ${ }^{17} \mathrm{~B} \lambda . \tau \eta \nu \delta \eta \mu \circ \varphi \lambda \lambda \dot{\eta} \mu \varepsilon \lambda \varepsilon \tau \tau \eta$ tov Peter Townsend (1979)

