ПАNЕПIГTHMIO ПEへOПONNHГOY
ГXOAH KOIN Ω NIK Ω N EПII $\mathrm{THM} \Omega \mathrm{N}$
TMHMA KOIN Ω NIKH Σ KAI EKПAI $\triangle E Y T I K H \Sigma ~ \Pi O \Lambda I T I K H \Sigma ~$
П.М.Е.:

АІПАЛМАТIKH ЕРГАЕIA

 $\tau \eta \nu$ ह́v $\tau \alpha \xi \eta \tau \omega \nu$ TПЕ $\sigma \tau \eta \sigma \chi 0 \lambda \iota \kappa \eta \quad \pi \rho \alpha \kappa \tau \iota \kappa \eta ้ »$

METАПTYXIAKH ФOITHTPIA

ЕПIВ $\Lambda Е П \Omega N ~ K А \Theta Н Г Н Т Н \Sigma ~$

KOPIN@OE
Октஸ́ßpıos, 2011

Evzapıбтís

 $\pi \rho \omega ́ \tau o v \mu \varepsilon ́ \rho o u \varsigma ~ \tau \eta \varsigma ~ \varepsilon ́ \rho \varepsilon v v a \varsigma$.

ПEPIEXOMENA

Пєрí $\lambda \eta \psi \eta$ 1
 3
 10
2.1 Evvoıд $о \boldsymbol{\gamma} \kappa \varepsilon ́ \varsigma ~ A \pi о \sigma \alpha \varphi \eta v i \sigma \varepsilon ı \varsigma-O \rho о \lambda о \gamma i \alpha$ 10
2.2 Oı $\varphi \alpha ́ \sigma \varepsilon \iota \varsigma ~ E ı \sigma \alpha \gamma \omega \gamma \eta ́ \varsigma ~ T П E ~ \sigma \tau \eta \nu ~ E к \pi \alpha i ́ \delta \varepsilon v \sigma \eta ~$ 10
 12
2.4 Oı TПЕ $\sigma \tau \eta v \varepsilon \kappa \pi \alpha i ́ \delta \varepsilon v \sigma \eta \mu \varepsilon ́ \sigma \alpha \alpha \pi o ́ ~ \tau \iota \zeta ~ \sigma v ́ \gamma \chi \rho о v \varepsilon \varsigma ~ \theta \varepsilon \omega \rho i \varepsilon \varsigma ~ \mu \alpha ́ \theta \eta \sigma \eta \zeta$. 15
$2.5 \mathrm{~T} \alpha \alpha \pi о \tau \varepsilon \lambda \varepsilon ́ \sigma \mu \alpha \tau \alpha \tau \eta \varsigma^{\prime} \mathrm{Ev} \mathrm{\tau} \mathrm{\alpha} \xi \eta \varsigma \tau \omega \nu$ ТПЕ $\sigma \tau \eta \vee$ Екл $\alpha i ́ \delta \varepsilon v \sigma \eta$ 18
2.6 Пробла́ $\theta \varepsilon ı \varepsilon \varsigma ~ \alpha \pi о \delta о \chi \eta ́ \varsigma ~ к \alpha \imath ~ \varepsilon ́ v \tau \alpha \xi \eta \varsigma ~ \tau \omega \nu ~ Т П Е ~ \sigma \tau о ~ \varepsilon \lambda \lambda \eta \nu ı к о ́ ~ \varepsilon к \pi \alpha ı \delta \varepsilon v \tau ı к о ́ ~$ $\sigma v ́ \sigma \tau \eta \mu \alpha$ 20
Кє甲áдаıo 3: Еклаıסєvтıкоí каı TПЕ 23
 23
 Еклаıঠєитккои́s 26
 31
 $\sigma \tau \alpha ́ \sigma \varepsilon \omega v$ тоטऽ $\pi \rho \circ \varsigma ~ \alpha v \tau \varepsilon ́ \varsigma$ 32
 38
3.5.1 H $\theta \varepsilon \omega \rho i ́ \alpha ~ \tau \eta \varsigma ~ \alpha v \tau o ́-\alpha \pi о \tau \varepsilon \lambda \varepsilon \sigma \mu \mu \tau \kappa к o ́ \tau \eta \tau \alpha \varsigma ~(S e l f-~ e f f i c a c y ~ T h e o r y, ~$ Bandura, 1982) 39
 Behaviour, (TPB), Ajzen, 1985) 40
 Model-Davis, (TAM), 1989). 44
 46
Пєрıєұоцє́vov (Technological Pedagogical Content Knowlecige, TPACK)51
3.5.6 To T $\rho о \pi о \pi о \imath \eta \mu \dot{v} v o$ Mov $\varepsilon \dot{\ell} \lambda о$ (TM) 53
 62
4.1 इколо́ऽ тпऽ в́ $\rho \varepsilon \cup v \alpha \varsigma$ 62
 63
4.3 To Ерютпиатодо́үго 65
4.4 To $\Delta \varepsilon i ́ \gamma \mu \alpha$ 66
4.5 Х $\alpha \rho \alpha \kappa \tau \eta \rho ı \tau \tau \kappa \alpha ́ \delta \varepsilon i ́ \gamma \mu \alpha \tau о \varsigma$ 66
 69
 70
$5.1 \Sigma \nu \mu \pi \varepsilon \rho ⿺ \varphi о \rho ı к \varepsilon ́ \varsigma ~ П \varepsilon \pi о \imath \theta \eta ́ \sigma \varepsilon ı \varsigma$ 70
 73
 74
 77
 78
 80
 80
 $\tau \eta \vee \varepsilon ́ v \tau \alpha \xi \eta$ TПЕ $\sigma \tau \circ \mu \dot{\alpha} \theta \eta \mu \alpha ́ \alpha \sigma \cup \varsigma$ 81
 $\Gamma v \mu v \alpha ́ \sigma ı 0$. 83
Кєча́ $\lambda \alpha \iota$ 6: $\boldsymbol{\Sigma v \mu \pi \varepsilon \rho \alpha ́ \sigma \mu \alpha \tau \alpha ~}$ 86
6.1 Прочí入, $\sigma \tau \alpha ́ \sigma \varepsilon ı \varsigma, ~ \chi \rho \eta ं \sigma \eta ~$ 86
 $\pi \alpha \rho \alpha ́ \gamma o v \tau \varepsilon \varsigma \tau\rceil \varsigma$ є́ $\rho \varepsilon \cup v \alpha \varsigma$ 88
$6.3 \Delta v \sigma \kappa о \lambda i ́ \varepsilon \varsigma-\Pi \rho о \tau \alpha ́ \sigma \varepsilon ı \varsigma ~ \varepsilon \kappa \pi \alpha ı \delta \varepsilon v \tau \iota \kappa \omega ́ v$ 94
6.4 Гєvıкદ́ऽ $\delta 1 \alpha \pi \imath \sigma \tau \omega ́ \sigma \varepsilon \iota \zeta-\Sigma v \mu \pi \varepsilon \rho \alpha ́ \sigma \mu \alpha \tau \alpha$ 95
 101
 103
Eríloyos 110
BIBAIOГРАФIA 111
ПAPAPTHMA 132

ПЕРІАНЧН

 $\tau \alpha ́ \sigma \varepsilon ı \varsigma ~ \sigma \tau о ~ \sigma \cup \gamma к \varepsilon к \rho ı \mu \varepsilon ́ v o ~ \pi \varepsilon \delta \delta i o ~ \varepsilon ́ \rho \varepsilon v v \alpha \varsigma . ~ T o ~ \tau \varepsilon \lambda ı к о ́ ~ \alpha \pi о \tau \varepsilon ́ \lambda \varepsilon \sigma \mu \alpha ~ \varepsilon i ́ v a l ~ \tau о ~$

 като́ то $\chi \rho о v ı к o ́ ~ \delta к o ́ \sigma \tau \eta \mu \alpha ~ 2010-2011 . ~ A \pi o ́ ~ \tau \alpha ~ \sigma \nu \mu \pi \varepsilon \rho \alpha ́ \sigma \mu \alpha \tau \alpha ~ \tau \eta \varsigma ~ \alpha v \alpha ́ \lambda \nu \sigma \eta \varsigma ~ \tau \omega v ~$

Abstract

This study is an attempt to investigate the perceptions and attitudes of high school teachers towards the use of ICT in education and possible factors that influence this use. Studying all the information from the literature and theoretical models in relation to the factors that prevent teachers to use ICT for educational purposes, we created a model based on the principles of the Theory of planned Behavior Ajzen (1980), after we modified some parts so that we can tap current trends in this field of research. The result is the Modified Model, which is analyzed in the theoretical part of this work. For the purposes of this research we created a questionnaire to investigate the Modified Model variables, and factors that coexist and are connected with the use of ICT in the classroom. Teachers were tested in a five-point Likert type scale. The sample consisted of 163 teachers who were employed in public high schools in the prefecture of Corinth during the period 2010-2011. From the analysis of the responses of teachers we found that the perceived usefulness of ICT, perceived ease of use, compatibility, normatibe beliefs, the degree of self-efficacy and the ICT infrastructure in schools are important factors in the integration and acceptance of ICT in education. Another contribution of this study is the teachers' reports of the difficulties they face in their efforts to integrate ICT in educational practice and teir suggestions on the design of ICT integration in school.

Kєчáдаıo 1：Eıбаүตүŋ́

 $\pi ю ~ \sigma \eta \mu \alpha v \pi \kappa \alpha \dot{\alpha} \varepsilon \rho \gamma \alpha \lambda \varepsilon i ́ \alpha ~ \varepsilon Ө v ı \kappa ŋ ́ s ~ \alpha v \alpha ́ \pi \tau ぃ \xi \eta \varsigma$.

 $\alpha v i \sigma o \tau \eta \dot{\tau} \tau \mathrm{v}$ ．

 π лдı七七кои́ऽ $\pi \alpha \rho \alpha ́ \gamma о \nu \tau \varepsilon \varsigma$.

Еклаıঠєvтıкоí $\pi \alpha \rho \alpha ́ \gamma о \nu \tau \varepsilon \varsigma$

 $\pi \rho o ́ o \delta o, ~ \tau \alpha ~ \sigma \chi 0 \lambda \varepsilon i ́ \alpha ~ \delta \varepsilon v ~ \mu \pi$ орои́v va $\pi \alpha \rho \alpha \mu \varepsilon ́ v o v v ~ \alpha \pi \lambda \omega ́ ̧ ~ \kappa \alpha ı ~ \mu o ́ v o ~ \chi \omega ́ \rho o ı ~ \mu \varepsilon \tau \alpha ́ \delta o \sigma \eta \varsigma ~$

 2000; Blurton, 2002; Ertmer, 2005; Hannafin \& Land, 1997).

 $\theta \alpha \alpha \pi о \tau \varepsilon \lambda \varepsilon ́ \sigma o v v$ тך $\beta \alpha ́ \sigma \eta ~ \gamma ı \alpha ~ \varepsilon \rho \mu \eta \nu \varepsilon i \alpha, ~ к \alpha \tau \alpha v o ́ \eta \sigma \eta, ~ \delta ı \alpha \chi \varepsilon i p ı \sigma \eta ~ к \alpha ı ~ о \rho \gamma \alpha ́ v \omega \sigma \eta ~$

 2000; Blurton, 2002; Ertmer, 2005).

 $\kappa 0 \imath \omega \omega v \kappa о \gamma v \omega \sigma \tau \kappa \omega ́ v \pi \rho о \sigma \varepsilon \gamma \gamma i \sigma \varepsilon \omega v \gamma 1 \alpha \tau \eta \delta \iota \delta \alpha \sigma \kappa \alpha \lambda i \alpha \alpha<\alpha \imath ~ \tau \eta \mu \alpha ́ \theta \eta \sigma \eta$ (Jonassen,

 ($\alpha v \alpha ́ \lambda v o \sigma \eta, ~ \sigma u ́ v \theta \varepsilon \sigma \eta ~ к \alpha l ~ \alpha \xi ъ ю \lambda o ́ \gamma \eta \sigma \eta ~ \pi \lambda \eta \rho о \varphi о \rho ı \omega ́ v, ~ \varepsilon \mu \beta \alpha ́ \theta v v \sigma \eta ~ к \alpha ı ~ \varepsilon \varphi \alpha \rho \mu о \gamma \eta ́ ~$

 $\varepsilon \xi ̧ \alpha \sigma \kappa o u ́ v \tau \alpha \iota ~ \sigma \tau \eta v \varepsilon \pi \dot{\imath} \lambda \nu \sigma \eta$ $\pi \rho о \beta \lambda \eta \mu \alpha ́ \tau \omega v$ (Jonassen, 2000; Kó $\mu \eta \varsigma, 2004$; Hermans et al, 2008). Oı TПЕ $\pi \alpha \rho \varepsilon ́ \chi o v v ~ \delta v v \alpha \tau o ́ \tau \eta \tau \varepsilon \varsigma ~ \gamma \mu ~ \pi \rho o ́ \sigma \beta \alpha \sigma \eta ~ \sigma \varepsilon ~ \pi o ́ \rho о v \varsigma ~ к \alpha ı ~ \varepsilon \rho \gamma \alpha \lambda \varepsilon i ́ \alpha ~ \pi о v ~$

 ol $\mu \alpha \theta \eta \tau \varepsilon ́ \varsigma ~ \sigma \tau \alpha ~ \pi \lambda \alpha i ́ \sigma ı \alpha ~ \tau \omega v ~ \sigma \pi o v \delta \dot{\omega} v ~ \gamma \varepsilon v ı \kappa \eta ́ \varsigma ~ \pi \alpha ı \delta \varepsilon i \alpha \varsigma, ~ o ́ \pi \omega \varsigma ~ \alpha v \alpha \zeta \dot{\eta} \tau \eta \sigma \eta, ~ \varepsilon \dot{\rho} \rho \varepsilon \sigma \eta ~ \kappa \alpha l$ $\alpha \xi ̆ \imath \lambda o ́ \gamma \eta \sigma \eta ~ \tau \eta \varsigma ~ \pi \lambda \eta \rho о \varphi о \rho i \alpha \varsigma, ~ \alpha v a ́ \lambda v \sigma \eta-\sigma \dot{v} \theta \varepsilon \sigma \sigma, \mu о v \tau \varepsilon \lambda o \pi o i ́ \eta \sigma \eta ~ \lambda v ́ \sigma \varepsilon \omega v, \sigma v v \varepsilon \rho \gamma \alpha \tau \iota \kappa \dot{\eta}$ $\varepsilon \pi i \lambda v \sigma \eta ~ \pi \rho о \beta \lambda \eta \mu \dot{\alpha} \tau \omega v, \alpha \lambda \lambda \eta \lambda \varepsilon \pi i \delta \rho \alpha \sigma \eta, \delta \iota \alpha$ ßiov $\mu \alpha ́ \theta \eta \sigma \eta$. Kvрi$\omega \varsigma ~ o ́ \mu \omega \varsigma, ~ \mu \varepsilon \tau \alpha \beta \alpha ́ \lambda \lambda o v v$

 Dede, 2000; Ertmer, 2005; Riel \& Becker, 2001; Hermans et al, 2008)

Koıvตvıкоí $\pi \alpha$ ро́yovte؟

 (Talja, 2005). Eлíбŋऽ, η «л $\lambda \eta \rho о \varphi о \rho ı \pi о i \eta \sigma \eta » ~ \tau \eta \varsigma ~ к о ו v \omega v i \alpha \varsigma ~ \delta \eta \mu ı о р \gamma \varepsilon i ~(\varepsilon ́ \mu \mu \varepsilon \sigma \alpha) ~$
 $\theta \alpha$ тоvऽ $\varepsilon \pi \tau \tau \rho \varepsilon ́ \psi \varepsilon 1 ~ \omega \varsigma ~ \mu \varepsilon \lambda \lambda о v \tau ו \kappa о и ́ \varsigma ~ \pi о \lambda i \tau \varepsilon \varsigma ~ v \alpha ~ \varepsilon v \sigma \omega \mu \alpha \tau \omega \theta o v ́ v ~ к \alpha \lambda v ́ \tau \varepsilon \rho \alpha ~ \sigma \varepsilon ~ \mu i ́ \alpha$,
 $\sigma \nu \mu \mu \varepsilon \tau о \chi \dot{\prime} \quad \sigma \tau \alpha$ котх́́.

Oıкоvоцикоі $\pi \alpha \rho \alpha ́ \gamma о v \tau \varepsilon \varsigma$

Подıтькоí $\pi \alpha \rho \alpha ́ \gamma о ч \tau \varepsilon \varsigma$

 Meinrath, δ เยvөvvińs tov Open Technology qov New America Foundation Initiative.

 2003).

tov к $\alpha \theta$ o $\overline{\eta \gamma \eta \tau \eta ́ ~(E r t m e r, ~ 2005 ; ~ H e r m a n s ~ e t ~ a l, ~ 2008) . ~ M \varepsilon ~ \tau \eta ~ \beta o \eta ́ \theta \varepsilon ı \alpha ~ \tau o ́ \sigma o ~ \tau \omega v ~}$

 $\sigma u v \varepsilon \rho \gamma \alpha \tau \kappa \eta \jmath^{\prime} \mu \dot{\alpha} \theta \eta \sigma \eta \varsigma$ (Rogers \& Finlayson, 2004).

 $\chi \rho \eta \dot{\sigma} \eta \tau \omega v$ TПE $\delta \varepsilon v \alpha \pi о \tau \varepsilon \lambda \varepsilon i ́ \varepsilon ́ \kappa \pi \lambda \eta \xi \eta$ (Jimoyiannis, 2009; Jimoyiannis and Komis, 2007; Jimoyiannis and Komis, 2006). Проквıц́vov va к $\alpha \tau \alpha v o \eta \theta \varepsilon i ́ ~ \tau o ~ \zeta ̧ \eta ̃ \tau \eta \mu ~ \tau \eta \varsigma ~$

 Bعки́pŋ, 2011; Etmer, 2005; Becta, 2004).

Н $\pi \alpha \rho о v ́ \sigma \alpha \mu \varepsilon \lambda \varepsilon ́ \tau \eta ~ \alpha \pi о \tau \varepsilon \lambda \varepsilon i ́ ~ \mu i ́ \alpha ~ \pi \rho о \sigma \pi \alpha ́ \theta \varepsilon 1 \alpha ~ \delta ı \rho \rho \varepsilon v ́ v \eta \sigma \eta \varsigma ~ \tau \omega v ~ \alpha v \tau ı \lambda \eta ́ \psi \varepsilon \omega v ~ к \alpha \imath$

 $\sigma \cup \gamma \kappa \varepsilon \kappa \rho \mu \varepsilon ́ v o ~ \pi \varepsilon \delta i ́ o ~ \varepsilon ́ \rho \varepsilon v v a c . ~ T o ~ \tau \varepsilon \lambda ı к o ́ ~ \alpha \pi о \tau \varepsilon ́ \lambda \varepsilon \sigma \mu \alpha ~ \varepsilon i ́ v a l ~ \mu i \alpha ~ \pi \rho о \sigma \alpha \rho \mu о \gamma \eta ́ ~ \tau о ט ~$

 2010-2011. A Aó $\tau \alpha$ $\sigma \cup \mu \pi \varepsilon \rho \alpha ́ \sigma \mu \alpha \tau \alpha ~ \tau \eta ร ~ \alpha v \alpha ́ \lambda \nu \sigma \eta ร ~ \tau \omega v ~ \alpha \pi \alpha v \tau \eta ் \sigma \varepsilon \omega v ~ \tau \omega v$

 $\varepsilon \gamma \chi \varepsilon i \rho \eta \mu \alpha$ عוб $\alpha \gamma \omega \gamma \eta ́ \varsigma ~ \tau \omega \nu$ TПЕ $\sigma \tau \eta \nu \varepsilon \kappa \pi \alpha i \delta \varepsilon \cup \sigma \eta$.

 $\Gamma \nu \mu \vee \alpha ́ \sigma$ ı。

 $\varepsilon \kappa \pi \alpha ı \delta \varepsilon \cup \pi \kappa ฑ \mathfrak{j} \delta \alpha \delta ı \kappa \alpha \sigma i ́ \alpha$.

 غ́ $\rho \varepsilon v v \alpha \varsigma, \mu \varepsilon \lambda \varepsilon ́ \tau \eta \varsigma, ~ \sigma v v \varepsilon \rho \gamma \alpha \sigma i \alpha \varsigma ~ к \alpha ı ~ \varepsilon \pi i ́ \lambda v \sigma \eta \varsigma ~ \pi \rho о \beta \lambda \eta \mu \alpha ́ \tau \omega v$. Пıо $\alpha v \alpha \lambda \nu \tau ו \kappa \alpha ́$

2.2 Oı $\varphi \alpha ́ \sigma \varepsilon \iota \varsigma ~ E \imath \sigma \alpha \gamma \omega \gamma \eta ̌ \varsigma ~ T П Е ~ \sigma \tau \eta \nu ~ E к л \alpha i ́ \delta \varepsilon v \sigma \eta ~$

 $\alpha \pi$ ó to 1970).

- Н $\pi \lambda \eta \rho о ч о \rho ı к \eta ~ \pi \rho о \sigma \dot{\varepsilon} \gamma \gamma ı \sigma \eta ~(1970-1980)$

- H $\dot{\varepsilon} v \tau \alpha \xi \xi \eta ~ \tau \omega \nu$ TПЕ $\sigma \tau \eta \nu$ Eклаíd $\varepsilon v \sigma \eta(2000$ - $\sigma \eta ́ \mu \varepsilon \rho \alpha)$

Ко́и $\left.{ }^{\prime}, 2004\right)$.

 $\pi \rho \circ ß \alpha i ́ v o v v$ $\sigma \varepsilon$ аvaтрочобо́тпоך $\sigma \varepsilon \pi \varepsilon \rho i ́ \pi \tau \omega \sigma \eta ~ \lambda \alpha v \theta \alpha \sigma \mu \varepsilon ́ v \omega v ~ \alpha \pi \alpha v \tau \eta ́ \sigma \varepsilon \omega v-$

 $\pi \rho о \gamma \rho \alpha \mu \mu \alpha \tau \iota \sigma$ ои́ Logo (Kó $\mu \eta \varsigma, 2004)$

Н $\tau \dot{\varepsilon} \tau \alpha \rho \tau \eta ~ \varphi \alpha ́ \sigma \eta, \tau \omega v$ TПE $\omega \varsigma \mu \varepsilon ́ \sigma o \delta \iota \delta \alpha \sigma \kappa \alpha \lambda i \alpha \varsigma \varsigma \kappa \alpha \imath \mu \alpha ́ \theta \eta \sigma \eta \varsigma, \pi о v$ گ́ $\varepsilon \kappa i ́ v \eta \sigma \varepsilon \mu \varepsilon \tau \alpha ́$

 (Kó $\mu \eta$ ऽ, 2004).

 $\varepsilon \kappa \pi \alpha \iota \delta \varepsilon \cup \tau ะ \kappa о$ ์́.

 $\varepsilon к \pi \alpha \iota \delta \varepsilon \cup \tau \iota к \eta \dot{~ \delta ı} \alpha \iota \kappa \alpha \sigma i \alpha$:

3. $\omega \varsigma ~ \sigma \nu v \delta v \alpha \sigma \mu o ́ \varsigma ~ \tau \omega v \delta v ́ o ~ \pi \alpha \rho \alpha \pi \alpha ́ v \omega \mu \varepsilon \theta o ́ \delta \omega v$ ($\pi \rho \alpha \gamma \mu \alpha \tau 0 \lambda 0 \gamma \iota \kappa o ́ \mu о v \tau \varepsilon ́ \lambda 0)$

 $\alpha \vee \tau \iota к \varepsilon i ́ \mu \varepsilon v o$.

 $\alpha \pi о \tau \varepsilon \lambda \varepsilon i ́ ~ \alpha v \tau о ́ v o \mu о ~ \mu \alpha ́ \theta \eta \mu \alpha ~ \alpha \lambda \lambda \alpha ́ ~ « \delta เ \alpha \chi \varepsilon ́ \varepsilon \tau \alpha \downarrow », \kappa \alpha \tau \alpha ́ ~ к \alpha ́ \pi о ю ~ \tau \rho о ́ \pi о, ~ \sigma \tau о ~ \sigma u ́ v о \lambda о ~ \tau \omega \nu$

 $\delta \iota \delta \alpha \sigma \kappa \alpha \lambda i ́ \alpha \varsigma ~ \kappa \alpha l ~ \mu \alpha ́ \theta \eta \sigma \eta \varsigma . ~ \Sigma \tau \eta ~ \pi \alpha \rho о v ́ \sigma \alpha ~ \varepsilon v o ́ \tau \eta \tau \alpha ~ \theta \alpha ~ \alpha v \alpha \varphi \varepsilon \rho \theta о и ́ \mu \varepsilon ~ \sigma \tau \eta ~ \theta \varepsilon \omega \rho i ́ \alpha ~ \tau о ט ~$

 $\pi \rho о к \lambda \eta \dot{\sigma}$ с1ऽ (Albion, 2001; Becker, 2000; Blurton, 2002; Ertmer, 2005; Hannafin \& Land, 1997, Jonassen, 2000)

 $\sigma \chi \eta \mu \alpha \tau \alpha$ к $\alpha \imath \mu о \tau \tau \varepsilon ́ \lambda \alpha$ (Becker, 2000; Jonassen, 2000).

 1ס $\dot{\varepsilon} \varepsilon \varsigma ~(J o n a s s e n, ~ 2000 ; ~ W a t s o n, ~ 2006) . ~ O ı ~ \chi \rho \eta ் \sigma \eta ~ T П E ~ \mu \pi о \rho \varepsilon i ́ ~ v \alpha ~ \sigma \tau \eta \rho i ́ \xi \varepsilon ı ~ \varepsilon ́ v \alpha ~$

 Dede, 2000; Jonassen, 2000; Riel \& Becker, 2001).

Oбov $\alpha \varphi o \rho \alpha ́ ~ \sigma \tau ı \varsigma ~ \theta \varepsilon \omega \rho i ́ \varepsilon \varsigma ~ к о \imath о \tau \eta ́ \tau \omega v ~ \mu \alpha ́ \theta \eta \sigma \eta \zeta ~(l e a r n i n g ~ c o m m u n i t i e s), ~$

 $\sigma \chi \varepsilon \delta \iota \alpha \sigma \mu \circ ́ \varsigma \tau \omega v \mu \alpha \theta \eta \sigma 1 \alpha \kappa \omega ́ v \geqslant \varepsilon \rho \rho \beta \alpha \lambda \lambda o ́ v \tau \omega v$ (Salmon, 2005; Garrison, 1993). H

 кошо́ $\eta \tau \varepsilon \varsigma \mu \alpha ́ \theta \eta \sigma \eta \varsigma ~ \pi о v ~ \sigma u v \delta v a ́ \zeta ̧ o v v ~ \delta ı \alpha \delta \kappa \alpha \sigma i \varepsilon \varsigma ~ \kappa \alpha ı ~ \mu \varepsilon \theta o ́ \delta o v \varsigma ~ o ́ \pi \omega \varsigma ~ \pi \rho o ́ \sigma \omega \pi о ~ \mu \varepsilon ~$
 (Salmon, 2004; Garrison and Kanuka, 2004; Palloff \& Pratt, 1999)

 (Jonassen, 2000; Garrison, 1993).

$\tau \eta v \sigma u v \varepsilon \rho \gamma \alpha \sigma \dot{\prime} \alpha \mu \varepsilon \alpha \dot{\alpha} \lambda \lambda o u \varsigma \gamma 1 \alpha v \alpha \mu \alpha ́ \theta o v v$ (Salmon, 2004; Ertmer, 2005; Hermans et al, 2008).

 (Rogers \& Finlayson, 2004).

2.5 T $\alpha \alpha \pi о \tau \varepsilon \lambda \varepsilon ́ \sigma \mu \alpha \tau \alpha \tau \eta \varsigma^{\prime} E v \tau \alpha \xi \eta \varsigma \tau \omega v$ TПE $\sigma \tau \eta \nu$ Eкл $\alpha \dot{\prime} \delta \varepsilon v \sigma \eta$

 $\pi \eta \gamma \alpha ́ \zeta \varepsilon \iota \alpha \pi o ́ ~ \tau \alpha \alpha \pi о \tau \varepsilon \lambda \varepsilon ́ \sigma \mu \alpha \tau \alpha \mu \alpha \varsigma ~ \sigma \varepsilon \iota \rho \alpha ́ \varsigma ~ \mu \varepsilon \lambda \varepsilon \tau \notin v(C E O ~ F o r u m, ~ 2001 b ; ~ S c h a c t e r, ~$ 1999; Honey, 2001; Norris, Smolka, \& Soloway, 2000; Norris, Sullivan, Poirot \&

 $\chi \rho \eta \dot{\sigma}\rceil \varsigma$ ТПЕ каı $\tau \eta \varsigma \varepsilon \pi i \delta o \sigma \eta \varsigma \tau \omega v \mu \alpha \theta \eta \tau \omega \in v$ عival:
 ($\alpha v \alpha ́ \gamma v \omega \sigma \eta, \gamma \rho \alpha \varphi \eta$, $\mu \alpha \theta \eta \mu \alpha \tau \iota \kappa \alpha, \kappa \lambda \pi$.) (Kulik, 2003; Sivin-Kachala and Bialo, 2000; Murphy et al, 2001)

 O' Dwyer, Russell, Bebell, and Tucker-Seeley, 2005)

 Sivin-Kachala and Bialo, 2000)

 $\gamma \nu \omega ́ \sigma \varepsilon \omega v$. (Roschelle, Pea, Hoadley, Gordin \& Means, 2000)

 $\mu \alpha \theta \eta \sigma \kappa \kappa \eta \dot{\eta} \delta \alpha \delta \delta_{ı} \alpha \sigma i \alpha \alpha$ (Schacter, 1999).

 $\varepsilon \pi \imath \theta v \mu i ́ \alpha ~ v \alpha ~ \varepsilon \rho \varepsilon v v \eta \theta \varepsilon i ́ ~ \eta ~ \varepsilon \pi i ́ \delta \rho \alpha \sigma \eta ~ \tau \omega v ~ T \Pi E ~ \sigma \tau ı \varsigma ~ \varepsilon \pi ı \delta o ́ \sigma \varepsilon ı \varsigma ~ \tau \omega v ~ \mu \alpha \theta \eta \tau \omega ́ v$, oı

$\sigma v ́ \sigma \tau \eta \mu \alpha$

 $\alpha \vee \alpha ́ \gamma к \varepsilon \varsigma ~ к \alpha ı ~ \tau о ~ к о \imath \nu \omega v ı к о ́ ~ \pi \lambda \alpha i ́ \sigma ь ~ \tau \eta \varsigma ~ \chi \omega ́ \rho \alpha \varsigma ~(М \pi i ́ к о \varsigma, ~ 1995 ; ~ \Delta \rho о ́ \sigma о \varsigma ~ \& ~ K v р i ́ \delta \eta \varsigma, ~$
 (1986-1992) $\delta \eta \mu$ оир

 2000) (Eurodice, 2001).

 2010).

- 'Eva סíkтvo GSN (www.sch.gr), то олоío $\delta 1 \alpha \sigma v v \delta \varepsilon ́ \varepsilon ı ~ o ́ \lambda \alpha ~ \tau \alpha ~ \sigma \chi о \lambda \varepsilon i ́ \alpha ~ к \alpha ı ~ \tau о и \varsigma ~$ $\pi \alpha \rho \varepsilon ́ \chi \varepsilon \iota ~ \beta а \sigma ı к \varepsilon ́ \varsigma ~ к \alpha ı ~ \pi \rho о \eta \gamma \mu \varepsilon ́ v \varepsilon \varsigma ~ v \pi \eta \rho \varepsilon \sigma i ́ \varepsilon \varsigma ~ \pi \lambda \eta \rho о \varphi о р ı к \eta ́ \varsigma, ~ о ́ \pi \omega \varsigma ~ \gamma 1 \alpha ~ \pi \alpha \rho \alpha ́ \delta \varepsilon ı \gamma \mu \alpha$,

 vєo $\lambda \alpha i ́ \alpha$ (www.neagenia.gr).
- H $\delta \rho \alpha ́ \sigma \eta$ eTwinning (www.etwinning.net), ó $\pi \circ v \tau \alpha$ $\varepsilon \lambda \lambda \eta \nu \imath \kappa \alpha ́ \alpha \chi 0 \lambda \varepsilon i ́ \alpha ~ \varepsilon ́ \chi o v v ~ \tau \eta \nu$

 $\delta \iota \delta \alpha ́ \sigma \kappa о \nu \tau \alpha \downarrow \mu \varepsilon \tau \eta \chi \rho \eta \dot{\sigma \eta} \tau \omega v$ TПE $\sigma \tau \eta \nu$ A’ $\tau \alpha ́ \xi \eta \eta \gamma \nu \mu \nu \alpha ́ \sigma \iota v$.

Кє甲áдаıо 3: Еклаıঠєvтıкоí каı TПЕ

$\Sigma v ́ \mu \varphi \omega v \alpha \mu \varepsilon \varepsilon \rho \varepsilon \cup v \eta \tau i \kappa \alpha ́ ~ \varepsilon \cup \rho \eta ́ \mu \alpha \tau \alpha$ (Becker, 2000; Hermans, Tondeur, van

To 1985, or Bramble каı Mason $\varepsilon i ́ \chi \alpha v ~ \pi \rho о \beta \lambda \varepsilon ́ \psi \varepsilon ı ~ o ́ \tau ı ~ \theta \alpha ~ v \pi \alpha ́ \rho \xi ̧ o v v ~ \tau \varepsilon ́ \sigma \sigma \varepsilon \rho ı \varsigma ~$

 тทร $\delta \iota \delta \alpha \sigma \kappa \alpha \lambda i ́ \alpha \varsigma, ~ к \alpha ı ~ \theta \alpha ~ \varepsilon \pi \alpha v \alpha \pi \rho о \sigma \delta ı o ́ \rho ı \zeta ̆ \alpha v ~ \tau о ~ \alpha v \alpha \lambda u \tau ı к о ́ ~ \pi \rho o ́ \gamma \rho \alpha \mu \mu \alpha »>~$

 $\mu \varepsilon ́ \rho о \varsigma ~ \tau о v ~ \pi \rho о \gamma \rho \alpha ́ \mu \mu \alpha \tau о \varsigma ~ \sigma \pi о v \delta \omega ́ v . . . » ~(S h i ~ \& ~ B i c h e l m e y e r, ~ 2007) . ~ П \rho о ч \alpha v \omega ́ \varsigma, ~ \varepsilon ́ \chi о v \mu \varepsilon ~$

 $\pi \varepsilon \rho i ́ o \delta o \varsigma ~ \kappa \alpha ı \eta ~ \pi \varepsilon \rho i ́ o \delta o \varsigma ~ \varepsilon v \sigma \omega \mu \alpha ́ \tau \omega \sigma \eta \varsigma ~ \varphi \alpha i v \varepsilon \tau \alpha ı ~ v \alpha ~ \varepsilon i v \alpha ı ~ \pi о \lambda v ́ \pi ю ~ \pi \alpha \rho \alpha \tau \varepsilon \tau \alpha \mu \varepsilon ́ v \varepsilon \varsigma ~ \alpha \pi o ́ ~$

 TПE $\delta \varepsilon v \alpha \pi о \tau \varepsilon \lambda \varepsilon i ́ ~ \varepsilon ́ \kappa \pi \lambda \eta \xi \eta$ (Jimoyiannis, 2009; Jimoyiannis and Komis, 2007; Jimoyiannis and Komis, 2006).

 $\mu \varepsilon і \zeta о v o \varsigma ~ \sigma \eta \mu \alpha \sigma i ́ \alpha \varsigma . ~ \Omega \sigma \tau о ́ \sigma o$, о́ $\pi \omega \varsigma ~ \pi \rho о \alpha v \alpha \varphi \varepsilon ́ \rho \theta \eta \kappa \varepsilon$, то $\sigma \eta \mu \varepsilon \rho \imath v o ́ ~ \varepsilon \pi i \pi \varepsilon \delta o ~ \varepsilon ́ v \tau \alpha \xi \eta \varsigma$

 бколоv́ऽ, о́л $\omega \varsigma ~ \pi . \chi . ~ \tau \eta \nu ~ \pi \rho о \varepsilon \tau о ц \alpha \sigma i ́ \alpha ~ \tau \varepsilon \sigma \tau, ~ к а \tau \alpha \chi \omega ́ \rho \eta \sigma \eta ~ \beta \alpha \theta \mu о \lambda о \gamma i \alpha \varsigma, ~ о \rho \gamma \alpha ́ v \omega \sigma \eta ~$

 Kó $\mu \eta 5$, 2006; Russel et al., 2003; Bebell,et al., 2004)

М $\varepsilon \lambda \varepsilon ́ \varepsilon \varepsilon \varsigma ~ \mu \varepsilon \gamma \alpha ́ \lambda \eta \varsigma ~ к \lambda i ́ \mu \alpha \kappa \alpha \varsigma ~(e . g ., ~ B a r r o n, ~ K e m k e r, ~ H a r m e s, ~ \& ~ K a l a y d j i a n, ~$

 2000) .

 $\delta_{\imath} \delta \alpha \sigma \kappa \alpha \lambda i \alpha \kappa \alpha \iota \tau \eta \mu \alpha ́ \theta \eta \sigma \eta$.

 Jimoyiannis \& Komis, 2007; Jimoyiannis, 2009; Gülbahar, 2007; Etmer, 2005; Becta,
 $\pi 0 v ~ \varepsilon \pi \eta \rho \varepsilon \alpha ́ \zeta o v v ~ \tau \eta ~ \alpha \pi o \delta o \chi \eta ́ ~ \tau \eta \varsigma ~ \varepsilon v \sigma \omega \mu \alpha ́ \tau \omega \sigma \eta \varsigma ~ \tau \omega v ~ T П E ~ \sigma \tau \eta \nu ~ \tau \alpha ́ \xi \eta \eta . ~ O ~$

 Екла兀бєитькои́я

 к人ı лоıтька́ (Muir-Herzig, 2004; Vosniadou \& Kollias, 2001; Hayes, 2007).

Пробшликоі́ $\pi \alpha \rho \dot{́} \gamma о$ отєऽ

 (Mumtaz, 2000; Jimoyiannis \& Komis, 2007).

Пробнлıкоі́ $\pi \alpha \rho \alpha ́ \gamma о у \tau \varepsilon \varsigma$
Ік α о́т $\tau \tau \varepsilon \varsigma, \delta \varepsilon \xi$ เо́тๆ $\tau \varepsilon \varsigma \kappa \alpha \iota \kappa \alpha \tau \alpha ́ \rho \tau ı \sigma \eta ~ \sigma \tau о \nu$ $\tau о \mu \varepsilon ́ \alpha \tau \omega \nu$ TПЕ
К $\alpha \tau о \chi \eta ́ ~ H / ~ Y ~ к \alpha ı ~ \delta u v \alpha \tau о ́ \tau \eta \tau \alpha ~ \sigma ט ́ v \delta \varepsilon \sigma \eta \varsigma ~ \sigma \tau о ~$ Δ l α бíктvo
$\Sigma \tau \alpha ́ \sigma \varepsilon ı \varsigma ~ \sigma \chi \varepsilon \tau 1 \kappa \alpha ́ \mu \varepsilon \tau \eta \chi \rho \eta \dot{\eta} \eta \tau \omega \nu$ TПЕ

Елı९v $\alpha \alpha \kappa \tau \iota к о ́ \tau \eta \tau \alpha \gamma 1 \alpha \tau \iota \varsigma$ TПЕ $\sigma \tau \eta \nu$ $\varepsilon \kappa \pi \alpha i ́ \delta \varepsilon v \sigma \eta$
To к $\alpha \tau \alpha ́ \pi o ́ \sigma o ~ \alpha \pi$ о $\delta \dot{\varepsilon} \chi \circ v \tau \alpha l$ ó ól oı TПЕ
$\mu \pi о \rho о v ́ v ~ v \alpha \beta \varepsilon \lambda \tau \imath \omega ́ \sigma o v v \tau \eta \delta i \delta \alpha \sigma \kappa \alpha \lambda i ́ \alpha \kappa \alpha \iota$ $\tau \eta \mu \alpha ́ \theta \eta \sigma \eta$.
Av í $\sigma \tau \alpha \sigma \eta \sigma \varepsilon \alpha \lambda \lambda \alpha \gamma \varepsilon ́ \varsigma$

Avtıкєí ε vo $\delta \iota \delta \alpha \sigma \kappa \alpha \lambda i \alpha \varsigma ~ к \alpha ı \beta \alpha \theta \mu i \delta \alpha$
$\varepsilon \kappa \pi \alpha i ́ \delta \varepsilon v \sigma \eta \zeta$
Н λ ıкі́ α
Фú λ

Tехүıкоí лара́үочтєऽ

$\mathrm{H} \dot{\varepsilon} \lambda \lambda \varepsilon ı \psi \eta$ TПЕ $\varepsilon \xi \circ \pi \lambda 1 \sigma \mu \circ v$

$\Delta 1 \alpha \theta \varepsilon \sigma \not \mu$ óт $\tau \tau$ тоv $\varepsilon \rho \gamma \alpha \sigma \tau \eta \rho$ íov

 $\delta \rho \alpha \sigma \tau \eta \rho ı \tau \dot{\tau} \tau \omega v \mu \alpha \dot{\alpha} \eta \sigma \eta \varsigma \tau \omega \nu \mu \alpha \theta \eta \tau \dot{\omega} v$
 $\tau \omega v$ TПЕ

$\Sigma v v \varepsilon \rho \gamma \alpha \sigma \dot{i} \alpha \mu \varepsilon \dot{\alpha} \lambda \lambda о \cup \varsigma \varepsilon \kappa \pi \alpha \imath \delta \varepsilon \cup \tau ⿺ \kappa о и ́ \varsigma$
 тоט $\sigma \chi \circ \lambda \varepsilon$ в́o
$\Sigma \chi \circ \lambda t \kappa \eta \quad \alpha v \tau i ́ \sigma \tau \alpha \sigma \eta \sigma \varepsilon \alpha \lambda \lambda \alpha \gamma \varepsilon ́ \varsigma$

- $\eta \pi \rho о \sigma \varepsilon ́ \gamma \gamma \downarrow \sigma \eta \mu \varepsilon \tau \alpha \varphi о \rho \alpha ́ \varsigma ~ \tau \eta \varsigma ~ \gamma \vee \propto ́ \sigma \eta \varsigma$
 $\gamma 1 \alpha \tau 1 \zeta \tau \varepsilon \lambda 1 \kappa \varepsilon ́ \varsigma \varepsilon \xi \varepsilon \tau \alpha \sigma \varepsilon \varepsilon \varsigma$
- $\eta \alpha \nu \alpha ́ \gamma к \eta ~ к \alpha ́ \lambda \nu \psi \eta \varsigma ~ \tau о v ~ \pi \varepsilon \rho เ \varepsilon \chi о ́ \mu \varepsilon v o v ~ \pi о v ~$

 $\beta ı \beta \lambda i \alpha$
- $\eta \chi \rho \eta ์ \sigma \eta$ ТПЕ $\gamma \downarrow \alpha \chi \alpha \mu \eta \lambda$ ои́ $\varepsilon \pi \imath \pi \varepsilon ́ \delta o v$ $\sigma v \mu \pi \lambda \eta \rho \omega \mu \alpha \tau \kappa \alpha \dot{\alpha} \kappa \alpha \theta \dot{\kappa} \kappa о \tau \alpha \alpha$

Паıбаүюүькоí $\pi \alpha \rho \alpha ́ \gamma о v \tau \varepsilon \varsigma$

Н $\varepsilon \pi \dot{\prime} \gamma \nu \omega \sigma \eta \tau \omega \nu \pi \alpha \iota \delta \alpha \gamma \omega \gamma \iota \kappa \omega ́ \nu$ $\chi \alpha \rho \alpha \kappa \tau \eta \rho \iota \sigma \tau \iota \kappa \omega ้ \kappa \alpha \imath \tau \omega v \delta \nu \nu \alpha \tau \sigma \tau \eta \tau \omega v \tau \omega \nu$ ТПЕ
 $\delta \rho \alpha \sigma \tau \eta \rho ю \tau \eta \dot{\tau} \tau \nu \mu \alpha \dot{\alpha} \eta \sigma \eta \varsigma \tau \omega \nu \mu \alpha \theta \eta \tau \omega ้$
 $\delta 1 \delta \alpha \sigma \kappa \alpha \lambda i ́ \alpha \kappa \alpha \iota \tau \eta \mu \alpha ́ \theta \eta \sigma \eta$
 $\pi \lambda \alpha \iota \sigma$ íov $\gamma \downarrow \alpha \tau \iota \varsigma$ TПЕ $\sigma \tau \eta \nu \varepsilon \kappa \pi \alpha i ́ \delta \varepsilon v \sigma \eta$
 $\mu \varepsilon ́ \sigma \omega v \pi o v \beta \alpha \sigma i \zeta о \nu \tau \alpha ı \sigma \tau \iota \varsigma$ TME

 $\mathrm{H} \mu \varepsilon \tau \alpha \beta \alpha \lambda \lambda o ́ \mu \varepsilon \nu \eta \varphi_{v} \sigma \eta \tau \omega v \pi \alpha _\delta \alpha \gamma \omega \gamma \iota \kappa \omega ́ v$ $\pi \rho \alpha \kappa \tau \varkappa \kappa \dot{v}$:

- H $\mu \varepsilon \tau \alpha \dot{\alpha} \beta \alpha \sigma \eta \alpha \pi o ́ ~ \tau \eta \delta \iota \delta \alpha \sigma \kappa \alpha \lambda i ́ \alpha ~ \sigma \tau \eta$ $\mu \alpha \theta \eta \sigma \eta$

- Avá $\gamma \kappa \eta \gamma 1 \alpha \mu \alpha \theta \eta \tau о \kappa \varepsilon v \tau \rho ı \kappa \varepsilon ́ \varsigma ~ \pi \rho о \sigma \varepsilon \gamma \gamma i ́ \sigma \varepsilon ı \varsigma$

 $\theta \varepsilon \tau \iota \kappa o ́ \tau \varepsilon \rho \varepsilon \varsigma ~ \sigma \tau \alpha ́ \sigma \varepsilon ı \varsigma ~ \alpha \pi \varepsilon ́ v \alpha v \tau 兀 ~ \sigma \tau \eta ~ \varepsilon ́ v \tau \alpha \xi ŋ \eta ~ \tau о \cup \varsigma ~ \sigma \tau \eta \nu ~ \varepsilon к \pi \alpha 1 \delta \varepsilon v \tau ı \kappa \eta ́ ~ \delta ı \alpha \delta ı \kappa \alpha \sigma i ́ \alpha ~$ Jimogiannis \& Komis, 2006; Bingimlas, 2009; M $\pi \rho \alpha \tau i \tau \eta \zeta$, к. $\alpha ., 2003$; Becta, 2004).

 $\mu \eta \varepsilon \kappa \mu \varepsilon ́ \rho o \cup \varsigma ~ \tau о \cup \varsigma ~ \tau \omega v ~ T \Pi E ~ \varepsilon i ́ v a l ~ \varepsilon ́ v \alpha ~ \pi \varepsilon \delta i ́ o ~ \pi o v ~ \delta \varepsilon v ~ \varepsilon ́ \chi \varepsilon ı ~ \varepsilon \rho \varepsilon v v \eta \theta \varepsilon i ́ ~ \varepsilon к \tau \varepsilon \tau \alpha \mu \varepsilon ́ v \alpha . ~$

 $\theta \varepsilon \tau \kappa \kappa \varepsilon ́ \varsigma \sigma \tau \alpha ́ \sigma \varepsilon 1 \varsigma \omega \varsigma \pi \rho \circ \varsigma \tau \eta \nu \varepsilon v \sigma \omega \mu \alpha ́ \tau \omega \sigma \eta \tau \omega v$ TПЕ $\sigma \tau \eta v \varepsilon \kappa \pi \alpha i ́ \delta \varepsilon v \sigma \eta$. A π ó $\tau \eta v \alpha \dot{\alpha} \lambda \lambda \eta$

 $\varepsilon \kappa \pi \alpha i ́ \delta \varepsilon u \sigma \eta$.

Tغұvıкоí $\pi \alpha \rho \alpha ́ y o v \tau \varepsilon \varsigma ~$

 2004). Паро́тı $\sigma \tau \eta \nu \chi \omega ́ \rho \alpha ~ \mu \alpha \varsigma ~ о ́ \lambda \alpha ~ \tau \alpha ~ \sigma \chi о \lambda \varepsilon i ́ \alpha ~ \tau \eta \varsigma ~ \delta \varepsilon v \tau \varepsilon р о \beta \alpha ́ \theta \mu ı \alpha \varsigma ~ \varepsilon к \pi \alpha i \delta \varepsilon v \sigma \eta \varsigma ~$

 2007)

 $\pi \rho о \varepsilon \tau о \mu \alpha \sigma i \alpha c ̧(M u m t a z, 2000)$. Oı Cuban, Kirkpatrick, and Peck (2001) $\sigma \varepsilon$ غ́pevvó

 TIIE.

 $\pi \alpha ́ \varepsilon ı ~ \sigma \tau \rho \alpha \beta \alpha ́ ~ \kappa \alpha \tau \alpha ́ ~ \tau \eta ~ \chi \rho \eta ́ \sigma \eta ~ \tau о v \varsigma . ~ Е \pi ı \pi \rho о ́ \sigma \theta \varepsilon \tau \alpha, ~ \eta ~ \pi \rho о \varepsilon \tau о ц \mu \sigma i ́ \alpha ~ \tau \omega v ~ \sigma \chi \varepsilon \tau ı к о ́ v ~$

 $\mu \pi о \rho \varepsilon i ́ ~ v \alpha ~ \alpha v \alpha \sigma \tau \varepsilon ́ \lambda \lambda \varepsilon \tau \alpha ı ~ \alpha \pi o ́ ~ \tau \eta ~ \mu ı к \rho о-к о v \lambda \tau о v ́ \rho \alpha ~ \varepsilon v o ́ \varsigma ~ \sigma v \gamma к \varepsilon к \rho ı \mu \varepsilon ́ v o v ~ \theta \varepsilon \sigma \mu \kappa к о и ́ ~$ op $\gamma \alpha ́ v o v ~ \eta ́ ~ o \rho \gamma \alpha v i \sigma \mu о v ́ . ~ \Omega \varsigma ~ \varepsilon \kappa ~ \tau о v ́ t o v, ~ \eta ~ \alpha \pi о \delta о \chi \eta ́ ~ \tau \omega v ~ T П Е ~ \sigma \varepsilon ~ \mu l \alpha ~ к о \imath \omega \omega v i ́ \alpha ~$

 $\pi \rho \varepsilon ́ \pi \varepsilon \imath ~ v \alpha ~ v \pi \alpha ́ \rho \chi \varepsilon \imath ~ \alpha v \alpha v \tau เ \sigma \tau о \chi i ́ \alpha ~ \mu \varepsilon \tau \alpha \xi ̌ v ́ ~ \tau \omega v ~ \alpha \xi ̆ ı \omega ́ v ~ \tau \eta \varsigma ~ к о v \lambda \tau о ט ́ \rho \alpha \varsigma ~ \tau \omega v$ $\varepsilon \kappa \pi \alpha \iota \delta \varepsilon v \tau \iota \kappa \omega ́ v \kappa \alpha \iota \tau \eta \nu \tau \varepsilon \chi \nu 0 \lambda 0 \gamma i ́ \alpha$ (Albirini, 2006).

 $\pi \rho \circ \beta$ ov́v $\sigma \varepsilon \sigma \eta \mu \alpha v \pi ı \kappa \varepsilon ́ \varsigma ~ \varepsilon \pi \varepsilon v \delta v ́ \sigma \varepsilon ı \varsigma ~ \sigma \varepsilon ~ h a r d w a r e ~ к \alpha ı ~ \lambda о \gamma ı \sigma \mu ı к o ́ . ~ M \varepsilon ~ \alpha ́ \lambda \lambda \alpha ~ \lambda o ́ \gamma ı \alpha, ~ o ́ \sigma o ı ~$

 2005; Jimoyannis and Komis, 2006; Tonduer et al, 2008). Oı єкла兀ঠعvтıкоí π то

 $\mu \alpha \theta \eta \sigma \iota \kappa \varepsilon ́ \varsigma ~ \varepsilon \mu \pi \varepsilon \imath \rho i \varepsilon \varsigma ~(B e c k e r, ~ 2000) . ~ E \cup \rho \eta ́ \mu \alpha \tau \alpha ~ \alpha \pi o ́ ~ \mu \varepsilon \lambda \varepsilon ́ t \varepsilon \varsigma ~(R i e l ~ \& ~ B e c k e r, 2000 ; ~ ; ~$

 $\delta i \delta \alpha \sigma \kappa \alpha \lambda i \alpha \varsigma, \tau \eta \varsigma \mu \alpha \dot{\theta} \eta \neq \eta \varsigma \kappa \alpha 1 \tau \eta \varsigma \varepsilon \pi เ \kappa о w \omega v i \alpha \varsigma$.

 $\pi \rho \alpha \gamma \mu \alpha \tau о \pi о ю и ́ v \tau \alpha \iota ~ \sigma \tau \alpha ~ \pi \lambda \alpha i ́ \sigma \alpha ~ \tau \omega v ~ П . Е . К . ~ Е \pi \rho о ́ к \varepsilon ı \tau о, ~ к \alpha \tau \alpha ́ ~ к \alpha v o ́ v \alpha, ~ \gamma ı \alpha ~ \sigma \chi \varepsilon \tau \kappa \kappa \alpha ́ ~$

Н $\sigma 0 \zeta \eta ŋ \tau \eta \sigma \eta ~ \gamma 1 \alpha ~ \tau \eta \nu ~ \varepsilon ́ v \tau \alpha \xi \eta ~ T П Е ~ \sigma \tau о ~ Е \lambda \lambda \eta \nu ı к o ́ ~ \varepsilon \kappa \pi \alpha ı \delta \varepsilon v \tau ו к o ́ ~ \sigma ט ́ \sigma \tau \eta \mu \alpha ~$

 ó $\mu \omega \varsigma \alpha v \tau \eta$ v α عívaı vлохрєшткки́.

 $\varepsilon v \sigma \omega \mu \alpha ́ \tau \omega \sigma \eta \tau \omega \nu \nu \pi \circ \lambda \alpha \gamma 1 \sigma \tau \omega \dot{\nu} \sigma \tau \eta \nu \tau \alpha \dot{\xi} \eta$.

 $\alpha \pi о \tau \varepsilon \lambda \varepsilon ́ \sigma \mu \alpha \tau \alpha \tau \eta \zeta \mu \varepsilon \lambda \dot{\varepsilon} \tau \eta \varsigma \tau \omega v$ इхорєтбаvítov \& Bєкúpך (2010), óлоv $\sigma \varepsilon \delta \varepsilon i ́ \gamma \mu \alpha 165$

 $\chi \rho \eta ं \sigma \eta$ тоиऽ $\sigma \tau \eta \nu \tau \alpha ́ \xi \eta$.

 $\Delta ı \alpha i ́ \kappa \tau v o) ~(T \zeta ̧ \mu о \gamma ı \alpha ́ v v \eta \varsigma ~ \kappa \alpha ı ~ K o ́ \mu \eta \varsigma, ~ 2004 ; ~ T a \sigma \tau \sigma i ́ \delta \eta, ~ A v \tau \omega v i ́ o v ~ к \alpha ı ~ M \pi \varepsilon \mu \pi \varepsilon ́ \tau \sigma o v, ~$ 2011; Jimoyiannis \& Komis 2006; Demetriadis et. al. 2003).

 oı $\delta \alpha ́ \sigma \kappa \alpha \lambda$ oı $\varepsilon v \omega ́ ~ \varepsilon ́ \chi o v v ~ \theta \varepsilon \tau ı \kappa \varepsilon ́ \varsigma ~ \sigma \tau \alpha ́ \sigma \varepsilon ı \varsigma ~ \gamma ı \alpha ~ \tau ı \varsigma ~ T П E, ~ \delta \varepsilon v ~ \theta \varepsilon \omega \rho o u ́ v ~ o ́ \tau ı ~ \varepsilon i ́ v \alpha ı ~ \varepsilon \pi \alpha \rho \kappa \omega ́ \varsigma ~$

 इıopév $\tau, 2007$).
$\Sigma \varepsilon \alpha \rho \kappa \varepsilon \tau \varepsilon ́ \varsigma ~ \varepsilon ́ \rho \varepsilon v v \varepsilon \varsigma ~ \varepsilon ́ \chi \varepsilon ı ~ \mu \varepsilon \lambda \varepsilon \tau \eta \theta \varepsilon i ́ ~ \eta ~ \sigma \chi \varepsilon ́ \sigma \eta ~ \tau \omega v ~ \sigma \tau \alpha ́ \sigma \varepsilon \omega v ~ \kappa \alpha ı ~ \tau \omega v ~ \alpha v \tau i \lambda \eta ́ \psi \varepsilon \omega \nu$

 $\pi \rho о и ̈ \pi \eta \rho \varepsilon \sigma i \alpha \varsigma, ~ \varphi v ́ \lambda о, \pi \rho о \eta \gamma о v ́ \mu \varepsilon \vee \eta ~ \varepsilon \mu \pi \varepsilon ı \rho i \alpha ~ \chi \rho \eta ं \sigma \eta \varsigma ~ H / Y, ~ \alpha v \tau о \alpha \pi о \tau \varepsilon \lambda \varepsilon \sigma \mu \mu \alpha ะ к о ́ \tau \eta \tau \alpha$

 TПЕ $\alpha \pi о \tau \varepsilon ́ \lambda \varepsilon \sigma \varepsilon ~ \tau о v ~ \pi ю о ~ \sigma \eta \mu \alpha v \tau ı к о ́ ~ \pi \alpha \rho \alpha ́ \gamma о v \tau \alpha ~ \pi \rho o ́ ß \lambda \varepsilon ч \eta \varsigma ~ \tau \eta \varsigma ~ \chi \rho \eta ́ \sigma \eta \varsigma ~ T П E ~ \sigma \tau \eta ~$

 $\delta \iota \delta \dot{\alpha}$ ğovv $\mu \varepsilon$ TПЕ.

Eлíøŋs or Demetriadis et al. (2003) $\delta \eta \mu \circ \sigma i ́ \varepsilon v \sigma \alpha v \tau \alpha \alpha \pi о \tau \varepsilon \lambda \varepsilon ́ \sigma \mu \alpha \tau \alpha ~ \tau \eta \varsigma$
 $\varepsilon \pi \mu о \rho \varphi \dot{\theta} \theta \eta \kappa \alpha \nu \sigma \tau \downarrow \varsigma$ TПE $\sigma \tau \eta \nu \varepsilon \kappa \pi \alpha i \delta \varepsilon v \sigma \eta \quad \sigma \tau \alpha \pi \lambda \alpha i ́ \sigma 1 \alpha$ тоv $\pi \rho о \gamma \rho \alpha ́ \mu \mu \alpha \tau \circ \varsigma$ E42. T α

 et al., 2003).

 (Venkatesh et al, 2003) $\alpha \lambda \lambda \alpha ́ \quad \delta \varepsilon v ~ \mu \alpha \varsigma ~ \gamma \nu \omega \rho i \zeta o v v ~ \tau u ~ \tau o u \varsigma ~ \varepsilon \pi \eta \rho \varepsilon \alpha ́ \zeta \varepsilon ı ~ \omega ́ \omega \sigma \tau \varepsilon ~ v \alpha ~$

 (Ajzen \& Fishbein, 1980; Ajzen, 1991). इ $\tau \eta \rho \zeta$ ó $\mu \varepsilon v \varepsilon \varsigma ~ \sigma \varepsilon ~ \alpha v \tau \eta ́ v ~ \tau \eta v ~ v \pi o ́ \theta \varepsilon \sigma \eta, ~ o u ~$
 $\pi \alpha \rho \alpha ́ \gamma о v \tau \alpha \varsigma ~ \pi о v \pi \rho о \eta \gamma \varepsilon i \tau \alpha 1 ~ \mu i ́ \alpha \varsigma ~ \sigma \nu \mu \pi \varepsilon \rho ı \varphi о \rho \alpha ́ \varsigma ~ \varepsilon ́ \chi छ ı ~ \mu \varepsilon \gamma \alpha ́ \lambda \eta ~ \sigma \eta \mu \alpha \sigma i ́ \alpha ~ \gamma ı \alpha i i ~ \varepsilon i v \alpha ı ~$

 $\alpha \pi о \delta \varepsilon \kappa \tau \alpha ́ \theta \varepsilon \omega \rho \eta \tau \kappa \kappa \alpha ́ \mu о v \tau \varepsilon ́ \lambda \alpha$.

3.5.1 H $\theta \varepsilon \omega \rho i ́ \alpha ~ \tau \eta \varsigma ~ \alpha v \tau o ́-\alpha \pi о \tau \varepsilon \lambda \varepsilon \sigma \mu \alpha \tau \kappa к o ́ \tau \eta \tau \alpha \varsigma ~(S e l f-~ e f f i c a c y ~ T h e o r y, ~ B a n d u r a, ~$ 1982)

 $\mu \varepsilon \tau \eta \vee \alpha v \tau о \alpha \pi о \tau \varepsilon \lambda \varepsilon \sigma \mu \alpha \tau \iota \kappa$ ќт $\eta \tau$ (self-efficacy). O Bandura opí̧६ı $\tau \eta v \alpha v \tau o ́ \alpha \pi о \tau \varepsilon \lambda \varepsilon$ -

 катабта́бєıร (Bandura, 1982)

 $\sigma \varepsilon \pi \varepsilon ́ \rho \alpha \varsigma ~ к \alpha ́ \pi о \downarrow \alpha ~ \delta \rho \alpha \sigma \tau \eta \rho ı o ́ \tau \eta \tau \alpha ~ \mu \varepsilon ~ T I I E) ~ \pi \rho о \sigma \pi \alpha \theta o v ́ v ~ v \alpha ~ \xi \varepsilon \varphi u ́ \gamma o v v ~ \alpha \pi o ́ ~ \tau \eta ~$

 Fishbein, 1980, б. 5). Oı Fishbein каı Ajzen (1980) $\alpha v \varepsilon ́ \pi \tau v \xi \alpha \nu \mu l \alpha$ $\theta \varepsilon \omega \rho i ́ \alpha ~ \pi o v$
 $\pi \alpha \rho \alpha \gamma o ́ v \tau \omega v: \alpha$) $\tau \eta \varsigma \sigma \tau \alpha ́ \sigma \eta \varsigma \tau \omega v \alpha \tau o ́ \mu \omega v \alpha \pi \varepsilon ́ v \alpha v \tau \imath ~ \sigma \tau \eta ~ \sigma v \mu \pi \varepsilon \rho \iota \varphi \rho \rho \alpha ́$ (attitude toward

 $\omega \varsigma ~ \kappa ט ́ \rho ı о ~ \delta \varepsilon i ́ \kappa \tau \eta ~ \pi \rho о ́ ß \lambda \varepsilon ч \psi \eta \varsigma ~ \kappa \alpha ́ \pi о ь \alpha \varsigma ~ \sigma \nu \mu \pi \varepsilon \rho ı \varphi о \rho \alpha ́ \varsigma . ~$

 $\alpha v \tau \iota \lambda \mu \beta \alpha \nu o ́ \mu \varepsilon v o$ غ́ $\lambda \varepsilon \gamma \chi o$ тךऽ $\sigma \nu \mu \pi \varepsilon \rho \imath \varphi о \rho \alpha ́ \varsigma ~(P e r c e i v e d ~ B e h a v i o r a l ~ C o n t r o l) . ~ H ~$

 Behavior, TPB).

 $\varepsilon \kappa \tau \varepsilon ́ \lambda \varepsilon \sigma \eta ~ \tau \eta \varsigma ~ \sigma v \mu \pi \varepsilon \rho \iota \varphi о \rho \alpha ́ \varsigma ~(\sigma \nu \mu \pi \varepsilon \rho \iota \varphi о \rho \iota \kappa \varepsilon ́ \varsigma ~ \pi \varepsilon \pi о \iota \theta \eta \dot{\sigma \varepsilon \imath \varsigma ~-~ b e h a v i o r a l ~ b e l i e f s) . ~ O ı ~}$

 $\sigma v \mu \pi \varepsilon \rho \imath \varphi о \rho \alpha ́ . ~ O ı ~ \pi \varepsilon \pi о \imath \theta \eta ́ \sigma \varepsilon \imath \varsigma ~ \pi о v ~ \alpha \pi о \tau \varepsilon \lambda о v ́ v ~ \tau \eta ~ \beta \alpha ́ \sigma \eta ~ \tau \omega v ~ v \pi о к \varepsilon ц \mu \varepsilon v ı \kappa \omega v ~ \pi \rho о ́ \tau v \pi \omega v$

 ($\pi . \chi ., \sigma \cup \mu \mu \varepsilon \tau о \chi \eta ́ \sigma \varepsilon \alpha \dot{\alpha} \sigma \kappa \eta \sigma \eta$).

 $\sigma \nu \mu \pi \varepsilon \rho \iota \varphi о \rho \alpha ́ ~ \eta ́ ~ \varepsilon ́ \mu \mu \varepsilon \sigma \alpha, ~ \mu \varepsilon ́ \sigma \omega ~ \tau \omega v ~ \pi \rho о \theta \varepsilon ́ \sigma \varepsilon \omega v ~ \gamma ı \alpha ~ \tau \eta v ~ \sigma \nu \mu \pi \varepsilon \rho \iota \varphi о \rho \alpha ́ ~(b e h a v i o r a l ~$ intentions). Мı $\alpha \pi \varepsilon \cup \theta \varepsilon i ́ \alpha \varsigma ~ \delta ı \alpha \delta \rho о \mu \eta ́ ~ \alpha \pi o ́ ~ \tau о v ~ \alpha v \tau ı \lambda \alpha \mu \beta \alpha v o ́ \mu \varepsilon v o ~ \varepsilon \lambda \varepsilon ́ \gamma \chi o ~ \tau \eta \varsigma ~$

 $\varepsilon \lambda \varepsilon ́ \gamma \chi \circ$ тоv $\alpha \tau о ́ \mu о v \pi \rho \circ \varsigma \tau \eta ~ \sigma \nu \mu \pi \varepsilon \rho ı \rho о \rho \alpha ́$.

 $\tau \eta \varsigma ~ \sigma \nu \mu \pi \varepsilon \rho ı \varphi о \rho \alpha ́ \varsigma$.

 $\pi \rho \circ \theta \varepsilon ́ \sigma \varepsilon \imath \varsigma \tau \omega v \alpha v \theta \rho \omega ் \pi \omega v$ v $\alpha \sigma u \mu \mu \varepsilon \tau \varepsilon ́ \chi o v v ~ \sigma \varepsilon ~ \delta 1 \alpha ́ \varphi o \rho \varepsilon \varsigma ~ \delta \rho \alpha \sigma \tau \eta \rho ı o ́ \tau \eta \tau \varepsilon \varsigma . ~ O ı ~ \varepsilon ́ \rho \varepsilon u v \varepsilon \varsigma ~$
 $\beta \alpha ́ \rho o v \varsigma, ~ \delta \rho \alpha \sigma \tau \eta \rho ı o ́ \tau \eta \tau \varepsilon \varsigma ~ \varepsilon \lambda \varepsilon v ́ \theta \varepsilon \rho \circ v \quad \chi \rho o ́ v o v, ~ \tau \eta v ~ \delta \alpha \alpha ́ \pi \rho \alpha \xi \eta ~ \pi \alpha \rho \alpha \beta 1 \alpha ́ \sigma \varepsilon \omega v$
 $\delta \omega ́ \rho \omega v$ (Siragusa and Dixon, 2008).

 $\chi \rho \eta \sigma \mu о \pi о \emptyset ́ \sigma o v \nu \sigma \tau \eta \delta_{\iota} \delta \alpha \sigma \kappa \alpha \lambda i \alpha$ тovs (Sugar et al, 2004; Horst et al, 2007) каӨஸ́s
$\varepsilon \pi i \sigma \eta \varsigma ~ \gamma i \alpha v \alpha \mu \varepsilon \lambda \varepsilon \tau \eta$ Өov́v or $\pi \alpha \rho \alpha ́ \gamma o v \tau \varepsilon \varsigma$ (Ajzen, 1991) $\pi 0 v \varepsilon \pi \eta \rho \varepsilon \alpha ́ \zeta o v v \tau \alpha \sigma \tau \varepsilon \lambda \varepsilon ́ \chi \eta$
 тovร.

 $\alpha v \tau o ́ v$ каı $\delta \varepsilon v \alpha \pi \alpha ı \tau$ í $\alpha v \xi ̄ \eta \mu \varepsilon ́ v \varepsilon \varsigma ~ \pi \rho о \sigma \pi \alpha ́ \theta \varepsilon \varepsilon \varepsilon \varsigma$.
 Towards Use), $\eta \Sigma \nu \mu \pi \varepsilon \rho \imath \varphi о \rho ı к \eta$ ПоóӨєбך $\gamma \iota \alpha$ X $\dot{\eta} \sigma \eta$ (Behavioural Intention to Use)

 $\tau \varepsilon \chi \vee о \lambda о \gamma i ́ \alpha \mu \pi о \rho \varepsilon i ́ v \alpha \pi \varepsilon \rho \imath \lambda \alpha \mu \beta \alpha ́ v \varepsilon \imath ~ о \varphi \varepsilon ́ \lambda \eta ~ \alpha \lambda \lambda \alpha ́ ~ к \alpha ı ~ \rho i ́ \sigma к \alpha ~ \sigma \tau о \nu ~ \tau \varepsilon \lambda ı к о ́ ~ \chi \rho \eta ́ \sigma \tau \eta, ~ к \alpha ı ~$

 $\pi \alpha ́ \rho o \delta o ~ \tau о v ~ \chi \rho o ́ v o v ~ \mu \varepsilon ~ \varepsilon ́ v \alpha v ~ \tau \varepsilon ́ \tau o ו o ~ \tau \rho o ́ \pi о ~ \pi о v ~ \mu о ı ́ \zeta \varepsilon ı ~ \mu \varepsilon ~ \mu i ́ \alpha ~ к а \mu \pi и ́ \lambda \eta ~ \sigma \varepsilon ~ \sigma \chi \eta ́ \mu \alpha ~ S . ~$

 A $\pi о \delta \varepsilon \kappa \tau \varepsilon ́ \varsigma ~(E a r l y ~ A d o p t e r s): ~ \Sigma \nu v \eta ́ \theta \omega \varsigma ~ \varepsilon ́ \chi o u v ~ \varepsilon ́ v \alpha ~ \pi \lambda \varepsilon о v \varepsilon ́ к \tau \eta \mu \alpha ~ o ́ \sigma o ~ \alpha v \alpha \varphi о \rho \alpha ́ ~ \tau \eta \nu ~$

 عival $\varepsilon \cup \rho \cup ์ \tau \varepsilon \rho \alpha$ катаvоךтๆ́.

 $\delta 1 \alpha ́ \rho \kappa \varepsilon 1 \alpha$ аvтоv́ tov $\sigma \tau \alpha \delta i ́ o v, ~ \varepsilon i ́ v \alpha l ~ \delta v v \alpha \tau o ́ v ~ v \alpha ~ \mu \eta v ~ v \pi \alpha ́ \rho \chi \varepsilon ı ~ \delta 1 \alpha \theta \varepsilon ́ \sigma \mu \mu \eta ~$

 кашотоніац.

 $\delta \varepsilon v v ı \theta \varepsilon \tau \varepsilon i ́ \alpha v \alpha \lambda o ́ \gamma \omega \varsigma$.

 عivar:

 к $\alpha ı о \tau о \mu і ́ \alpha \varsigma, ~ к \alpha \iota ~ \tau о ~ \alpha \nu \tau і б \tau \rho о \varphi о) . ~$

3. H $\pi \rho \lambda \nu \pi \lambda$ окó $\eta \tau \alpha$ (complexity of an innovation), $\pi o v \alpha v \alpha \varphi \varepsilon ́ \rho \varepsilon \tau \alpha \iota ~ \sigma \tau \sigma \nu \beta \alpha \theta \mu o ́ \pi \sigma v$ $\mu 1 \alpha$ к $\alpha ı v о \tau о \mu i ́ \alpha ~ \varphi \alpha i v \varepsilon \tau \alpha l ~ \delta u ́ \sigma к о \lambda \eta ~ \sigma \tau \eta \nu ~ к \alpha \tau \alpha v o ́ \eta \sigma \eta ~ к \alpha ı ~ \tau \eta \nu ~ \chi \rho \eta ́ \sigma \eta ~ \tau \eta \varsigma . ~ М \varepsilon ~ \alpha ́ \lambda \lambda \alpha ~$

 $\pi ө \alpha v o v ́$ рíбкоv.

H Russell (1996) $\delta \varepsilon \varepsilon v \eta ́ \rho \gamma \eta \sigma \varepsilon \mu i ́ \alpha ~ \varepsilon ́ \rho \varepsilon v v \alpha ~ \pi о v ~ \mu \varepsilon \lambda \varepsilon ́ \tau \eta \sigma \varepsilon ~ \tau \eta ~ \varepsilon \kappa \mu \alpha ́ \theta \eta \sigma \eta ~ \chi \rho \eta \dot{\sigma}\rceil \varsigma$
 $\mu \varepsilon \tau \alpha \pi \tau \nu \chi 1 \alpha \kappa \varepsilon ́ \varsigma ~ \sigma \pi о v \delta \varepsilon ́ \varsigma ~ \tau о \cup \varsigma . ~ A \pi o ́ ~ \tau \iota \varsigma ~ \sigma \eta \mu \varepsilon 1 \omega ́ \sigma \varepsilon \varsigma \varsigma ~ \tau \omega v ~ \eta \mu \varepsilon \rho о \lambda о ́ \gamma 1 \omega v ~ \tau \omega v$

Katavónбך $\tau \eta \varsigma \delta \iota \alpha \delta ı \kappa \alpha \sigma i \alpha \varsigma ~ к \alpha l ~ \eta ~ \varepsilon \varphi \alpha \rho \mu о \gamma \eta ́ ~ \tau \eta \zeta ~(U n d e r s t a n d i n g ~ a n d ~ A p p l i c a t i o n ~ o f ~$

 $\mu \alpha \theta \eta \tau \varepsilon ́ \varsigma ~ \tau o v \varsigma$.

 $\pi \rho \circ \beta \lambda \eta \mu \alpha ́ \tau \omega v \pi \circ v \tau \eta \nu \sigma v v o \delta \varepsilon v ́ o v v$.

Пробарноүท́ $\sigma \varepsilon \alpha ́ \lambda \lambda \alpha \pi \lambda \alpha i \sigma l \alpha$ (Adaptation to Other Contexts):

 $\varepsilon \mu \pi \varepsilon \upharpoonleft \rho i ́ \alpha \varsigma$.

 $\tau \omega v$ ТПЕ.

 $\mu \circ v \tau \varepsilon ́ \lambda o v ~ \pi \circ \cup ~ \alpha \pi о \tau \varepsilon \lambda \varepsilon i ́ \tau \varepsilon \alpha \pi o ́ ~ \pi \varepsilon ́ v \tau \varepsilon \sigma \tau \alpha ́ \delta \alpha \alpha:$

 $\chi \rho \eta \dot{\sigma \eta ~ \tau \varepsilon \chi \vee о \lambda о \gamma i \alpha \varsigma ~ v \pi о \lambda о \gamma ı \sigma \tau \omega ่ \nu . ~}$

 $\alpha v \tau o ́ ~ \tau o ~ \sigma \tau \alpha ́ \delta ı o, ~ \alpha \rho \chi i \zeta o v v ~ v \alpha ~ \varepsilon \mu \varphi \alpha v i \zeta о v \tau \alpha ı ~ o ~ \sigma \chi \varepsilon \delta ı \alpha \sigma \mu o ́ s ~ к \alpha ı ~ \eta ~ \nu \lambda о \pi о i ́ \eta \sigma \eta ~ \tau \omega v ~$

Елє́ктабך (Expansion): $\chi \alpha \rho \alpha \kappa \tau \eta \rho i ́ ̧ \varepsilon \tau \alpha \iota ~ \alpha \pi o ́ ~ \pi \varepsilon \rho \alpha ı \tau \varepsilon ́ \rho \omega ~ \varepsilon v \varepsilon ́ \rho \gamma \varepsilon ı \varepsilon \varsigma ~ \gamma ı \alpha ~ \alpha \pi о ́ \kappa \tau \eta \sigma \eta ~ \tau о ט ~$

 $\tau \varepsilon \chi \vee о \lambda о \gamma i ́ \varepsilon \varsigma \kappa \alpha ı \mu \varepsilon$ Өободоүíєऽ.

 $\varepsilon \kappa \pi \alpha i ́ \delta \varepsilon v \sigma \eta \varsigma ~ \tau \omega \nu$ єклаıঠєvтєкळ́v.

 $\beta \alpha \sigma \iota \kappa \eta$ ı $\delta \varepsilon ́ \alpha ~ \sigma \tau \alpha \pi \varepsilon \rho \iota \sigma \sigma o ́ \tau \varepsilon \rho \alpha ~ \mu о \nu \tau \varepsilon ́ \lambda \alpha ~ \pi о v ~ \pi \alpha \rho о v \sigma ı \alpha ́ \sigma \tau \eta \kappa \alpha \nu ~ \eta ́ \tau \alpha \nu ~ \eta ~ \alpha v \alpha ́ \pi \tau \nu \xi \eta \eta ~ \tau \omega \nu$ $\varepsilon \kappa \pi \alpha \iota \delta \varepsilon v \tau ו \kappa \propto ́ v ~ \sigma \tau \iota \varsigma ~ T П E, ~ \eta ~ \mu \varepsilon \tau \alpha \tau o ́ \pi \iota \sigma \eta ~ \alpha \pi o ́ ~ \tau \alpha ~ \chi \alpha \mu \eta \lambda o ́ \tau \varepsilon \rho \alpha ~ \sigma \tau \alpha ~ v \psi \eta \lambda о ́ \tau \varepsilon \rho \alpha ~ \varepsilon \pi i ́ \pi \varepsilon \delta \alpha$

 $\alpha \nu \tau \mu \varepsilon \tau \omega \pi \iota \sigma \tau \varepsilon i ́ \eta \chi \rho \eta ं \sigma \eta \tau \omega \nu$ ТПЕ $\sigma \tau \eta \nu \varepsilon \kappa \pi \alpha i \delta \varepsilon v \sigma \eta \sigma \cup ́ \mu \varphi \omega v \alpha \mu \varepsilon \tau \eta \nu \pi \alpha \iota \delta \alpha \gamma \omega \gamma \iota \bar{\eta}$
 $\lambda \varepsilon \iota \tau о \cup \rho \gamma \varepsilon i ́ \sigma \cup \mu \pi \lambda \eta \rho \omega \mu \alpha \tau \iota \kappa \alpha ́ \mu \varepsilon \tau \eta \nu \pi \alpha \rho \alpha \delta о \sigma \iota \alpha \kappa \eta \quad \delta \iota \delta \alpha \sigma \kappa \alpha \lambda i ́ \alpha$. (Jimoyiannis, 2010).

 $\alpha \lambda \lambda \eta \lambda 0 \sigma v \sigma \chi \varepsilon \tau i ́ \sigma \varepsilon \omega v \pi$ тоv opí̧ovv oı $\tau \rho \varepsilon \iota \varsigma ~ \alpha v \tau \varepsilon ́ \varsigma \pi \alpha \rho \alpha ́ \mu \varepsilon \tau \rho o \imath$ (Jimoyiannis, 2010). O七
 Пє $\rho \varepsilon \chi о \mu \varepsilon ́ v o v, ~ Т П Г \Pi » ~(~ \gamma \nu \omega \sigma \tau o ́ ~ \omega \varsigma ~ T P A C K, ~ T e c h n o l o g i c a l ~ P e d a g o g i c a l ~ C o n t e n t ~$ Knowledge), то олоío $\alpha \pi о \tau \varepsilon \lambda \varepsilon i ́ ~ \pi \rho о \varepsilon ́ \kappa \tau \alpha \sigma \eta ~ \tau о v ~ \pi \lambda \alpha \imath \sigma i ́ o v ~ \tau \eta ร ~ П \alpha ı \delta \alpha \gamma \omega \gamma ı к \eta َ \varsigma ~ \gamma \nu \dot{\sigma} \sigma \eta \varsigma$ tov Пєрı $\varepsilon \chi \circ \mu \varepsilon ́ v o v$ (Pedagogical Content Knowledge) $\pi o v \alpha v \varepsilon ́ \pi \tau v \xi \varepsilon$ o Shulman (1986).
 TPACK $\mu \varepsilon \tau \eta \chi \rho \eta ́ \sigma \eta ~ \varepsilon v o ́ \varsigma ~ \delta ı \alpha \gamma \rho \alpha ́ \mu \mu \alpha \tau о \varsigma ~(~ \Sigma \chi \eta ́ \mu \alpha ~ 5), ~ о ́ \pi о v ~ к \alpha ́ \theta \varepsilon ~ к v ́ к \lambda о \varsigma ~ \alpha v \alpha \pi \alpha \rho \iota \sigma \tau \alpha ́ ~$

 $\mu \alpha \theta \eta \tau \omega \in / \tau \rho \iota \omega ́ v$,

 $\delta \iota \alpha \varphi о \rho \varepsilon \tau \iota \kappa \dot{v} v \pi \varepsilon \rho ı \chi \omega ́ v \gamma \vee \omega ́ \sigma \eta \varsigma$ TPACK (Archambault \& Crippen, 2009).

To TPACK $\varepsilon \pi \tau \tau \rho \varepsilon ́ \pi \varepsilon ı ~ \sigma \tau о ט \varsigma ~ к \alpha Ө \eta \gamma \eta \tau \varepsilon ́ \varsigma, ~ \varepsilon \rho \varepsilon u v \eta \tau \varepsilon ́ \varsigma ~ к \alpha ı ~ \varepsilon к \pi \alpha ı \delta \varepsilon \cup \tau \varepsilon ́ \varsigma ~$

 (Jimoyiannis, 2010). T α $\delta 1 \alpha \theta \varepsilon ́ \sigma \not \mu \alpha ~ \varepsilon \rho \varepsilon v v \eta \tau \iota \kappa \alpha ́ ~ \delta \varepsilon \delta o \mu \varepsilon ́ v \alpha ~(J i m o y i a n n i s, ~ 2010 ; ~ ;$ Archambault \& Crippen, 2009; Doering, A., Scharber, C., Miller, C., \& Veletsianos, G., 2009; Koehler \& Mishra, 2009) $\pi \alpha \rho \varepsilon ́ \chi o v v ~ o v \sigma i \alpha \sigma \tau ぃ \kappa \eta ์ ~ v \pi o ́ \sigma \chi \varepsilon \sigma \eta ~ o ́ \tau 兀 ~ \tau o ~ \mu о v \tau \varepsilon ́ \lambda o ~$

 $\varepsilon \vee \sigma \omega \mu \alpha ́ \tau \omega \sigma \eta \varsigma \tau \omega \nu$ TПE $\sigma \tau \circ \mu \alpha ́ \theta \eta \mu \alpha$ тovऽ (Jimoyiannis, 2010).

 $\Sigma \chi \eta \eta^{\prime} \alpha$.

 тоv $\alpha v \tau \iota \lambda \alpha \mu \beta \nu o ́ \mu \varepsilon v o$ с́ $\lambda \varepsilon \gamma \chi о$ тทऽ $\sigma \nu \mu \pi \varepsilon \rho \imath \varphi о \rho \alpha ́ \varsigma . ~$

Oı $\sigma \alpha \dot{\sigma \varepsilon \iota \varsigma ~ \sigma \tau о ~ T M ~ \varepsilon \pi \eta \rho \varepsilon \alpha ́ \zeta о v \tau \alpha ı ~} \alpha \pi o ́ ~ \tau \rho \varepsilon ı \varsigma ~ \pi \alpha \rho \alpha ́ \gamma о v \tau \varepsilon \varsigma: ~ \tau \eta v ~ A v \tau \tau \lambda \alpha \mu \beta \alpha v o ́ \mu \varepsilon v \eta$

 tous.

О $\alpha v \tau ı \lambda \alpha \mu \beta \alpha v o ́ \mu \varepsilon v o \varsigma ~ \varepsilon ́ \lambda \varepsilon \gamma \chi \circ \varsigma ~ \tau \eta \varsigma ~ \sigma v \mu \pi \varepsilon \rho \downharpoonright \varphi \rho \alpha \dot{\varrho} \varsigma \varepsilon \pi \eta \rho \varepsilon \alpha ́ \zeta \varepsilon \tau \alpha \imath ~ \alpha \pi o ́ ~ \tau \eta v$

O $\pi \alpha \rho \alpha ́ \gamma o v \tau \alpha \varsigma$ Av $о \alpha \pi о \tau \varepsilon \lambda \varepsilon \sigma \mu \alpha \tau \iota \kappa о \tau \eta \tau \alpha$ (self-efficacy)

 (Ajzen, 1991, $\sigma \varepsilon \lambda .184$).

 (Ajzen $\sigma \tau 0$ Kraft et al, 2005 , $\sigma \varepsilon \lambda .493$).

 $\chi \rho \eta ́ \sigma \eta \varsigma ~ H / Y . ~ Т о ~ \delta \varepsilon i ́ \gamma \mu \alpha ~ \tau о v \varsigma ~ а \pi о \tau \varepsilon \lambda \varepsilon ́ \sigma \tau \eta к \varepsilon ~ \alpha \pi о ́ ~ 168 ~ \varepsilon к \pi \alpha ı \delta \varepsilon \cup \tau ו к о и ́ \varsigma ~ \tau \eta \varsigma ~$

Mí $\alpha \dot{\alpha} \lambda \eta \eta$ ह́ $\rho \varepsilon u v \alpha$ ol Gulbahar and Guven (2008), $\varepsilon \xi \dot{\varepsilon} \tau \alpha \sigma \alpha \nu \mu \varepsilon \tau \alpha \xi ์ v ́ \alpha \lambda \lambda \omega v$,

 $\varepsilon \xi \varepsilon ́ \tau \alpha \sigma \varepsilon ~ \tau \eta ~ \sigma \chi \varepsilon ́ \sigma \eta ~ \mu \varepsilon \tau \alpha \xi ́ v ́ ~ \tau \eta \zeta ~ \alpha \nu \tau о-\alpha \pi о \tau \varepsilon \lambda \varepsilon \sigma \mu \alpha \tau \iota к o ́ \tau \eta \tau \alpha \varsigma ~ к \alpha ı ~ \tau \omega v ~ \pi \rho о \theta \varepsilon ́ \sigma \varepsilon \omega v$

 $\pi \alpha \rho \alpha ́ \gamma o v \tau \varepsilon \varsigma: ~ B \alpha \sigma \kappa \varepsilon ́ \zeta ~ \Delta \varepsilon \xi ъ o ́ \tau \eta \tau \varepsilon \varsigma ~ \Delta i \delta \alpha \sigma \kappa \alpha \lambda i \alpha \varsigma$ (Basic Teaching Skills, BTS),

 Technology, CUT). Oı $\sigma \nu \mu \mu \varepsilon \tau \varepsilon ́ \chi \circ v \tau \varepsilon \varsigma ~ \alpha \pi \alpha ́ v \tau \eta \sigma \alpha v ~ \sigma \varepsilon \varepsilon ́ v \alpha ~ \varepsilon \rho \omega \tau \eta \mu \alpha \tau о \lambda o ́ \gamma ı о ~ 7-\beta \alpha ́ \theta \mu \alpha \kappa$

 $\chi \rho \eta ́ \sigma \eta$ TПЕ (CUT) . $\Omega \sigma \tau o ́ \sigma o$, о $\pi \alpha \rho \alpha ́ \gamma o v \tau \alpha \varsigma ~ П \rho о \eta \gamma \mu \varepsilon ́ v \varepsilon \varsigma \varsigma ~ \delta \varepsilon \xi ъ о ́ \tau \eta \tau \varepsilon \varsigma ~ \Delta ⿺ \delta \alpha \sigma \kappa \alpha \lambda i \alpha \varsigma$
 $\chi \rho \eta ं \sigma \eta$ TПЕ (CUT) $\sigma \varepsilon$ бпцаvтıкó $\beta \alpha \theta \mu o ́ . ~ \Sigma v v o \lambda ı к \alpha ́, ~ \tau \alpha ~ \alpha \pi о \tau \varepsilon \lambda \varepsilon ́ \sigma \mu \mu \tau \alpha ~ \alpha v \tau \eta ́ s ~ \tau \eta \varsigma ~$

O $\pi \alpha \rho \alpha ́ \gamma o v \tau \alpha \varsigma \Sigma v \mu \beta \alpha \tau o ́ \tau \eta \tau \alpha$ (Compatibility)

'O $\pi \omega \varsigma ~ \pi \alpha \rho \alpha \tau \eta \rho o v ́ v$ oı Dexter et al. (1999, $\sigma \tau$ Ertmer, 2005), $\pi \alpha \rho o ́ \tau ı ~ \eta \gamma \varepsilon v ı к \dot{\prime}$

 (1995) о о́ ооऽ $\sigma \cup \mu \beta \alpha \tau о ́ \tau \eta \tau \alpha$ (compatibility) $\alpha v \alpha \varphi \varepsilon ́ \rho \varepsilon \tau \alpha \iota ~ \sigma \tau о ~ \beta \alpha \theta \mu o ́ ~ к \alpha \tau \alpha ́ ~ \tau о v ~ о \pi о$ о́o

Ot Agarwal кגı Karahanna (1998) $\delta \iota \alpha \varphi \omega v o v ́ v \mu \varepsilon \tau \eta v \pi \alpha \rho \alpha \pi \alpha ́ v \omega ~ \mu о v o \delta ı \alpha ́ \sigma \tau \alpha \tau \eta$

 $\mu \alpha \theta \alpha$ ivouv ol $\mu \alpha \theta \eta \tau \varepsilon ́ \varsigma$ (Wong et al, 2008). H $\mu \eta \varepsilon v \sigma \omega \mu \alpha ́ \tau \omega \sigma \eta \tau \omega v$ TПE $\sigma \tau \eta v$

 $\alpha \lambda \lambda \alpha \gamma \varepsilon ́ \varsigma ~ \pi o v ~ \varepsilon \pi \iota \varphi \varepsilon ́ \rho o v v$ ol TПE, $\delta \varepsilon v \alpha \pi \circ \rho \rho i \pi \tau o v v ~ \tau \eta \nu \alpha v \alpha ́ \gamma \kappa \eta \tau \omega v$ TПE, $\alpha \lambda \lambda \dot{\alpha} \eta$

 катаvoŋ́бovv $\tau \iota \varsigma ~ v \varepsilon ́ \varepsilon \varsigma ~ \tau \varepsilon \chi v o \lambda o \gamma i \varepsilon \varsigma ~(B i n g i m l a s, ~ 2009) . ~$

 $\kappa \alpha \imath \eta \alpha v \alpha \delta o ́ \mu \eta \sigma \eta ं ~ \tau о v \varsigma ~ o ́ \pi \omega \varsigma ~ \alpha v \tau \eta ́ ~ \pi \rho о к и ́ \pi \tau \varepsilon є ~ \mu \varepsilon \tau \alpha ́ ~ \alpha \pi o ́ ~ \tau \eta v ~ \pi \alpha \rho \alpha к о \lambda о v ́ \theta \eta \sigma \eta ~ \tau о v ~$

 $\tau \eta \nu \iota \delta \varepsilon ́ \alpha$.

$\alpha \lambda \lambda \alpha \gamma \varepsilon ́ \varsigma ~ \pi о v \alpha \kappa о \lambda 0 v \theta$ ov́v $\tau \eta \nu \varepsilon \vee \sigma \omega \mu \alpha ́ \tau \omega \sigma \eta \tau \omega \nu$ TПЕ $\sigma \tau \eta \nu \tau \alpha ́ \xi \eta \eta \mu \varepsilon \tau \iota \varsigma \nu \pi \alpha ́ \rho \chi о v \sigma \varepsilon \varsigma$

 Jimoyiannis \& Komis, 2007; Tondeur et al, 2007; Hermanns et al, 2008; Pajares,

 $\varepsilon \mu \pi о \delta i ́ \sigma o v v$ оток $\delta \dot{\eta} \pi о \tau \varepsilon \alpha \lambda \lambda \alpha \gamma \eta ́$ (Levin and Wadmany, 2006).

 $\mu \varepsilon \tau \alpha ́ \delta o \sigma \eta \varsigma ~ \tau \eta \varsigma ~ \gamma \vee \omega ́ \sigma \eta \varsigma ~ \varepsilon ́ \chi o v v ~ \tau \eta \nu ~ \tau \alpha ́ \sigma \eta ~ v \alpha ~ \pi \rho о \varepsilon \tau о ч \mu a ́ \zeta o v v ~ к \alpha l ~ v \alpha ~ \delta ı \varepsilon \xi \alpha ́ \gamma о v \nu ~ \tau \alpha ~$

 Tonduer et al, 2008; Hermans et al, 2008). $\Sigma \varepsilon \mu i ́ \alpha$ tétol α ह́ $\rho \varepsilon v v \alpha$, o Becker (2000)

 $\alpha \lambda \lambda \alpha \gamma \varepsilon ́ \varsigma ~ \pi o v ~ \sigma u v o \delta \varepsilon v ́ o u v ~ \tau \eta v ~ \chi \rho \eta ́ \sigma \eta ~ T П Е ~ \pi \eta \gamma \alpha ́ \zeta \varepsilon ı ~ \alpha \pi o ́ ~ \tau о ~ \gamma \varepsilon \gamma о v o ́ \varsigma ~ o ́ \tau ı ~ \eta ~ \alpha v \tau i \sigma \tau \alpha \sigma \eta ~$ тоטৎ $\sigma \pi \varsigma ~ \alpha \lambda \lambda \alpha \gamma \varepsilon ́ \varsigma ~ \alpha v \tau \varepsilon ́ \varsigma ~ \varepsilon i ́ v a l ~ \varepsilon ́ v \alpha \varsigma ~ \pi \alpha \rho \alpha ́ \gamma o v \tau \alpha \varsigma ~ \pi о v ~ \varepsilon \mu \pi о \delta i \zeta \varepsilon ı ~ \tau \eta v ~ \pi \lambda \eta ́ \rho \eta ~$ $\varepsilon v \sigma \omega \mu \alpha \dot{\tau} \omega \sigma \eta \tau \omega v$ TПE $\sigma \tau \eta v \tau \dot{\alpha} \xi ̄ \eta$ (Cuban et al., 2001; Becta, 2004; Bingimlas, 2009;
 $\alpha \pi о \tau \varepsilon ́ \lambda \varepsilon \sigma \mu \alpha$ va $\chi \rho \varepsilon \varepsilon \alpha ́ \zeta \varepsilon \tau \alpha ı ~ \pi \varepsilon \rho \alpha ı \tau \varepsilon ́ \rho \omega ~ \delta ı \varepsilon \rho \varepsilon v ́ v \eta \sigma \eta$.

4.1. О бколо́я

 $\sigma \tau \eta v \varepsilon \pi \alpha ́ \rho \kappa \varepsilon \iota \alpha ~ \gamma \vee \omega ́ \sigma \varepsilon \omega v ~ \tau о v \varsigma ~ \sigma \tau ı \varsigma ~ T П Е, ~ \sigma \tau \eta ~ \chi \rho \eta \sigma \mu о ́ \tau \eta \tau \alpha ~ \tau \omega v ~ \varepsilon \rho \gamma \alpha \lambda \varepsilon i \omega v, ~ \sigma \tau \eta v$

 кониа́тı $\alpha v \tau \eta ́ \varsigma ~ \tau \eta \varsigma ~ \varepsilon \rho \gamma \alpha \sigma i \alpha \varsigma . ~$

 $\Sigma \varepsilon \mu i ́ \alpha \pi \rho о \sigma \pi \alpha ́ \theta \varepsilon ı \alpha$ va $\pi \alpha \rho \varepsilon ́ \chi \varepsilon ı ~ \pi \lambda \eta \rho о \varphi о \rho i ́ \varepsilon \varsigma ~ \gamma 1 \alpha ~ \tau \eta v ~ \varepsilon v \sigma \omega \mu \alpha ́ \tau \omega \sigma \eta$ ТПЕ, $\eta \mu \varepsilon \lambda \varepsilon ́ \tau \eta$

Oı ки́pıo $\sigma \tau 0 ́ \chi o \imath ~ \tau \eta \varsigma ~ \pi \alpha \rho о v ́ \sigma \alpha \varsigma ~ \varepsilon ́ \rho \varepsilon v v \alpha \varsigma ~ \eta ́ \tau \alpha v: ~$

1. $\mathrm{N} \alpha \alpha v \alpha \pi \alpha \rho \alpha ́ \gamma \varepsilon ı ~ \kappa \alpha ı ~ v \alpha ~ \varepsilon \pi \varepsilon \kappa \tau \varepsilon i ́ v \varepsilon ı ~ \pi \rho о \eta \gamma о v ́ \mu \varepsilon v \varepsilon \varsigma ~ \mu \varepsilon \lambda \varepsilon ́ \tau \varepsilon \varsigma ~ \sigma \tau о ~ \pi \varepsilon \delta i ́ o ~ \tau \eta \varsigma ~ \delta \varepsilon \varepsilon \rho \varepsilon и ́ v \eta \sigma \eta \varsigma ~$

 $\pi \rho \alpha к т к \eta$ я.

 каı « $\propto \tau \tau о \pi о \tau \varepsilon \lambda \varepsilon \sigma \mu \alpha \tau \iota к о ́ \tau \eta \tau \alpha »$.
2. $\mathrm{Na} \sigma \nu \lambda \lambda \varepsilon \chi \theta$ оv́v $\pi \lambda \eta \rho о \varphi о \rho i \varepsilon \varsigma ~ \alpha \pi o ́ ~ \tau \eta \nu ~ \alpha v \alpha ́ \lambda \nu \sigma \eta ~ \tau \omega v ~ \tau о \pi о \theta \varepsilon \tau \eta ́ \sigma \varepsilon \omega \nu ~ \tau \omega v$

 vлобтท่คเ $\eta \eta$, X

$\Delta \eta \mu о \gamma \rho \alpha \varphi ı к о i ́ ~ П \alpha \rho \alpha ́ \gamma о v \tau \varepsilon \varsigma: ~ Н \lambda ı к i \alpha, ~ Ф v ́ \lambda о, ~ Е ı \delta ı к o ́ \tau \eta \tau \alpha, ~ Г v \mu \nu \alpha ́ \sigma ı o, ~ ' E \tau \eta ~$

 $\tau 0 \cup \varsigma \pi \alpha \rho \alpha \pi \alpha ́ v \omega \pi \alpha \rho \alpha ́ \gamma о \nu \tau \varepsilon \varsigma ;$
 $\varepsilon \kappa \pi \alpha ı \delta \varepsilon \cup \pi \kappa о$ í $\gamma \nu \mu \nu \alpha \sigma i o v$, ó $\sigma o v ~ \alpha \varphi о \rho \alpha ́ ~ \sigma \tau \eta \nu ~ \varepsilon ́ v \tau \alpha \xi \eta ~ \tau \omega \nu ~ T П Е ~ \omega \varsigma ~ \mu \varepsilon ́ \sigma o ~ \delta ı \delta \alpha \sigma \kappa \alpha \lambda i \alpha \varsigma, ~$ $\sigma \tau 0 \mu \alpha ́ \theta \eta \mu \alpha ́ ~ \tau о v \varsigma ;$

4.3 To Eрютп $\mu \alpha \tau о \lambda o ́ \gamma ı о ~$

 бкотои́ц.

 4.1), « $\Delta \eta \mu \circ \gamma \rho \alpha \varphi$ เкоí Пара́ $\gamma о \nu \tau \varepsilon \varsigma »$

 $\mu \varepsilon \tau \alpha \beta \lambda \eta \tau \varepsilon ́ \varsigma \tau \eta \varsigma \varepsilon$ ќ $\varepsilon \varepsilon v \alpha \varsigma$.
 $\varepsilon \rho \omega \tau \eta \sigma^{\circ} 1 \varsigma \mathrm{E} 22, \mathrm{E} 23, \mathrm{E} 24, \mathrm{E} 26$.
 E39 к α_{1} E40.

O X Xóvo̧ $\mu \varepsilon \tau \eta v$ єрஸ́т $\eta \sigma \eta$ E33.

 عрळтŋ́ $\sigma \varepsilon 1 \varsigma:$ E12, E13, E14, E15, E16, E17 каı E18.

 $\varepsilon ́ \chi \omega \alpha \pi о \varphi \alpha \sigma і ́ \sigma \varepsilon \imath, \sigma \nu \mu \varphi \omega v \omega ́ \mu \varepsilon \varepsilon \pi \iota \varphi \dot{\lambda} \lambda \alpha \xi \eta, \sigma \cup \mu \varphi \omega v \omega)$.

$4.4 \Delta \varepsilon_{i}^{\gamma} \mu \boldsymbol{\mu}$

4.5. Характๆрıбтıка́ ঠвíүиатоऽ

Фṽぇo

 ($\pi \mathbf{o \sigma o \sigma \tau o ́ ~} 71 \%$) каı 47 áv $\delta \rho \varepsilon \varsigma$ ($\pi о \sigma о \sigma \tau o ́ ~ 29 \%) . ~$

Ндıкía

Eıбıко́тŋ $\tau \alpha$

 $\chi \rho o ́ v i \alpha$ vлп $\rho \varepsilon \sigma i ́ \alpha \varsigma ~(\pi о \sigma о \sigma \tau o ́ ~ 19,3 \%), ~ o ı ~ 18 ~ \varepsilon i ́ \chi \alpha \nu ~ \alpha \pi o ́ ~ 21 ~ \varepsilon ́ \omega \varsigma ~ 25 ~ \chi \rho o ́ v ı \alpha ~ v \pi \eta \rho \varepsilon \sigma i ́ \alpha \varsigma ~$

 $\alpha \rho \kappa \varepsilon \tau о i ́ ~ \varepsilon i ́ \chi \alpha v ~ \beta \alpha \sigma ı \kappa \varepsilon ́ \varsigma ~ \gamma v \omega ́ \sigma \varepsilon ı \varsigma ~ к \alpha ı ~ \delta \varepsilon \xi ъ ı ́ \tau \eta \tau \varepsilon \varsigma ~ \chi \varepsilon ı \rho ı \sigma \mu о v ́ ~ \tau \omega v ~ T П Е . ~ М o ́ \lambda ı \varsigma ~ 12 ~$
 (лобобто́ 7,6\%).

Пробюлткй $\chi \rho \eta ์ \sigma \eta ~ H / Y ~$

 (π обобтó 7,4\%).

4.6. $\Delta \mathrm{l} \alpha \delta \iota \kappa \alpha \sigma i ́ \alpha ~ \sigma \nu \lambda \lambda о \gamma ฑ ์ \varsigma ~ \delta \varepsilon \delta о \mu \varepsilon ́ v \propto v$

 $\beta \varepsilon \lambda \tau \tau \omega \theta$ oúv.

 $\sigma \tau \eta v$ と́p $\varepsilon u v \alpha$.

$5.1 \Sigma v \mu \pi \varepsilon \rho \iota \emptyset о \rho ı \tau \tau ⿺ \varepsilon ์ \varsigma ~ П \varepsilon \pi о \iota \theta \eta ์ \sigma \varepsilon \iota \varsigma$

Аขтід $\alpha \mu \beta \alpha v o ́ \mu \varepsilon v \eta ~ Х \rho \eta \sigma \iota \mu о ́ \tau \eta \tau \alpha$

 бı α ıккабі α ．

Avтıд $\mu \mu \beta v o ́ \mu \varepsilon v \eta ~ Х \rho \eta \sigma ı \mu o ́ \tau \eta \tau \alpha ~ \tau \omega v ~ Т П Е ~$								
Ap．	Еро́тŋбך		$\Delta \iota \propto \omega v \omega ́ \mu \varepsilon$ 			ェขц甲өvต́	M．O	T．A
E21	Пıฮтะ์́ต ót ot TIE $\mu \tau$ орои́v va 	5，6\％	4，3\％	11，8\％	37，3\％	41\％	4，1	1，1
E27	 $\tau 0 \cup \varsigma{ }^{\mu} \mu \theta \eta \tau \varepsilon ́ \varsigma, \alpha v \mu \pi о \rho о v ́ \sigma \alpha, v \alpha$ $\chi \rho \eta \sigma \mu о \pi о \imath \eta \sigma \omega$ TПЕ $\sigma \tau \eta \vee \tau \dot{\alpha} \xi \eta$	1，9\％	8，6\％	10，5\％	36，4\％	42，6\％	4，1	1
E28	Пıбтモú ω ótı oı $\mu \alpha \theta \eta \tau \varepsilon \varepsilon \varsigma ~ \theta \alpha$ $\mu \alpha ́ \theta \alpha$ avav $\pi \varepsilon \rho เ \sigma \sigma o ́ \tau \varepsilon \rho \alpha$ бто $\mu \alpha \dot{\alpha} \theta \eta \mu \alpha \dot{\alpha} \mu \circ v, \alpha v \mu \pi о \rho о v ́ \sigma \alpha v \alpha$ $\chi \rho \eta \sigma \mu о \pi о џ ์ \sigma \omega$ TПЕ $\sigma \tau \eta \vee \tau \alpha \dot{\xi} \eta$	4，9\％	10，5\％	21，6\％	29，6\％	33，3\％	3，7	1，2
E29	 пn xpíon TIIE	34，6\％	24，7\％	21，6\％	11，1\％	8\％	2，3	1，3
E37	 	4，3\％	7，5\％	18\％	35，4\％	34，8\％	3，9	1，1
E38	Oı в甲ариоує́¢ т ωv TПЕ，ларо́тı $\mu \dot{\alpha} \theta \eta \sigma \eta$	30，4\％	32，4\％	10，6\％	18\％	8，7\％	2，4	1，3
E39	Пıбтєúの ótı oı TПE ßoŋ日oúv $\sigma \tau \eta v \alpha v \alpha ́ \pi \tau \cup \xi ̆ \eta ~ \tau \eta \varsigma ~ к \rho \iota \tau \iota к \eta ์ ร$ $\sigma \kappa \varepsilon ́ \psi \eta \varsigma \tau \omega v \mu \alpha \theta \eta \tau \omega \nu$	12，5\％	13，8\％	21，9\％	35\％	16，9\％	3，3	1，2
E40	 	2，5\％	4，4\％	10，1\％	46，5\％	36，5\％	4，1	0，9

 лобобто́ 65% oı $\varepsilon \kappa \pi \alpha \iota \delta \varepsilon v \tau ı к o i ́ ~ \tau o v ~ \delta \varepsilon i ́ \gamma \mu \alpha \tau о \varsigma ~ \delta \varepsilon v ~ \theta \varepsilon \omega \rho о и ́ v ~ \varepsilon \mu \pi o ́ \delta ı \alpha ~ \sigma \tau \eta \nu ~ \chi \rho \eta ́ \sigma \eta ~ \tau \omega v ~$ ТПЕ бто $\mu \alpha ́ \theta \eta \mu \alpha$ тоvऽ $\tau \eta \nu \pi \rho о \varepsilon \tau о \mu \alpha \sigma i ́ \alpha ~ к \alpha ı ~ \tau \eta \nu ~ \pi \rho о \sigma \pi \alpha ́ \theta \varepsilon ı \alpha ~ \pi о v ~ i ́ \sigma \omega \varsigma ~ \chi \rho \varepsilon เ \alpha \sigma \tau \varepsilon i ́ ~ v \alpha ~$

 бс́́натоц (Пі́vакац 3).

A P .	Ероттضб	Δ Аияөvต́					M. 0	T.A
E19	Av $\tau \mu \varepsilon \tau \omega \pi i \zeta \omega$ бvбкодí $\varsigma \sigma \tau 0$ λ оуıбнкю́v.	26,4\%	22\%	9,4\%	27,7\%	14,5\%	2,8	1,4
E20	 прокадои́v $\dot{\gamma} \gamma \chi$ о̧ к кı 	31,3\%	31,3\%	31,3\%	31,3\%	31,3\%	2,6	1,7
E31	$\Delta \imath \tau \alpha \dot{\zeta} \omega$ v α Хр $\quad \sigma \mu о \pi о џ \dot{\jmath} \sigma \omega$ $\pi \rho о \varepsilon \tau о \mu \alpha \sigma i ́ \alpha к \alpha ı ~ \pi \rho о б \pi \alpha ́ \theta \varepsilon ı \alpha$	40,6\%	19,4\%	8,1\%	21,3\%	10,6\%	2,4	1,4

$\Sigma \nu \mu \beta \alpha \tau \boldsymbol{\tau} \tau \eta \tau \alpha$

$\Sigma v \mu \beta \alpha \tau$ о́ $\tau \downarrow \tau \alpha \sigma \tau \iota \varsigma$ ТПE								
A ρ.	Ерю́тŋбך	$\triangle \iota^{\text {appové }}$		$\Delta \varepsilon v \dot{\varepsilon} \chi(\omega$ илофибі́єє	$\mu \varepsilon$ $\varepsilon \pi\llcorner\varphi$ v́ą̧ท		M.O	T.A
E34	H $\dot{\varepsilon} v \tau \alpha \bar{c} \eta \quad \tau \omega v$ TПE $\sigma \tau \eta$ $\delta เ \delta \alpha к \tau 兀 \kappa \eta \quad \pi \rho \alpha \dot{\xi} \eta \quad \alpha \pi \alpha \iota \tau \varepsilon i ́$ $\pi \rho о \sigma \alpha \rho \mu о \gamma \varepsilon ́ \varsigma \tau \omega v \pi \alpha \iota \delta \alpha \gamma \omega \gamma$ ккю 	3,1\%	6,8\%	7,4\%	32,1\%	50,6\%	4,2	1
E35	$\alpha \lambda \lambda \alpha \gamma \dot{\eta} \sigma \tau о$ Про́ $\gamma \rho \alpha \mu \mu \alpha$ о $\mu \alpha \lambda$ о́ тро́то.	5\%	5,6\%	9,3\%	34,8\%	45,3\%	4,1	1,1
E36	$\mathrm{H} \varepsilon v \sigma \omega \mu \alpha \dot{\tau} \omega \sigma \eta \tau \omega v$ TПE $\sigma \tau \eta v$ $\alpha v \alpha \gamma \kappa \alpha ́ \zeta \varepsilon \varepsilon 1 ~ \tau о \cup \varsigma ̧ ~ \kappa \alpha \theta \eta \gamma \eta \tau \varepsilon ́ \varsigma ~ v \alpha$ $\varepsilon \gamma \kappa \alpha \tau \alpha \lambda \varepsilon$ í ооv $\alpha \pi о \tau \varepsilon \lambda \varepsilon \sigma \mu \alpha \tau ь \kappa \varepsilon ́ \varsigma$ каı бокıцабне́vец бто χ ро́vо $\mu \varepsilon$ Өó $\delta 0 \cup \varsigma ̧$ бt $\delta \alpha \sigma \kappa \alpha \lambda i \alpha c$.	27,5\%	23,1\%	16,3\%	20\%	13,1\%	2,7	1,4
E41	 $\sigma \tau \eta v \varepsilon \kappa \pi \alpha i \delta \varepsilon v \sigma \eta \theta \alpha$ $\alpha v \tau \iota \kappa \alpha \tau \alpha \sigma \tau \alpha \theta \varepsilon$ í $\alpha \pi$ о́ $\tau \alpha$ v $\varepsilon \alpha$ $\mu \varepsilon ́ \sigma \alpha-\pi \varepsilon \rho ı \beta \dot{\alpha} \lambda \lambda \alpha \nu \tau \alpha \tau \omega v$ TПЕ 	19,4\%	23,1\%	24,4\%	23,8\%	9,4\%	2,8	1,3

 үoveí̧ к $\alpha \iota \mu \alpha \theta \eta \tau \varepsilon ́ \varsigma, ~ \oplus ́ \sigma \tau \varepsilon ~ v \alpha ~ \varepsilon v \sigma \omega \mu \alpha \tau ஸ ́ \sigma o v v ~ \tau ı \varsigma ~ T П E ~ \sigma \tau \eta v ~ \delta ı \delta \alpha \sigma \kappa \alpha \lambda i ́ \alpha ~ \tau о v \varsigma . ~ ' E \tau \sigma ı ~$
 $\gamma v \omega ́ \mu \eta \tau \omega v \mu \alpha \theta \eta \tau \omega ́ v \tau \operatorname{\tau os}(54,7 \% \alpha \pi \alpha ́ v \tau \eta \sigma \varepsilon$ ó $\tau \iota ~ \sigma \cup \mu \varphi \omega v \varepsilon i ́ ~ \eta ́ ~ \sigma ט \mu \varphi \omega v \varepsilon i ́ ~ \mu \varepsilon ~ \varepsilon \pi \iota \varphi u ́ \lambda \alpha \xi ॄ \eta$

$\varepsilon \mu \varepsilon ́ v \alpha$ v $\alpha \rho \eta \sigma ч о \pi о \imath \omega ́ ~ Т П Е ~ \sigma \tau о ~ \mu \alpha ́ \theta \eta \mu \alpha ~ \mu о v », ~ \varepsilon ́ v \alpha ~ \mu \varepsilon \gamma \alpha ́ \lambda о ~ \pi о \sigma о \sigma \tau o ́ ~ 80 \% ~ \varepsilon ́ \delta \omega \sigma \varepsilon ~$ $\alpha \rho \vee \eta \tau ו \kappa \eta ์ \alpha \pi \alpha ́ v \tau \eta \sigma \eta$ (Пívaкаs 5).

Ap.	Еро́тŋбך	${ }^{\text {atapevó }}$					M.O	T.A
E42	$\theta \alpha \beta \varepsilon \lambda \tau \tau ஸ ́ \sigma \varepsilon \iota \tau \eta v \varepsilon ⿺ 𠃊 o ́ v \alpha \mu 0 \nu$ бходвío.	41,9\%	12,5\%	17,5\%	15\%	13,1\%	2,4	1,5
E43	Н хрŋ́бŋ TПE бто $\mu \dot{\alpha} \theta \eta \mu \alpha ́ \mu ~ \mu о v ~$ $\theta \alpha \alpha 0 \check{\Sigma}$ $\mu \alpha \theta \eta \tau \omega ้ \vee \gamma 1 \alpha$ то $\varepsilon \kappa \pi \alpha \iota \delta \varepsilon \cup \tau เ к о ́$ цои ह́pүo.	21,7\%	12,4\%	11,2\%	34,2\%	20,5\%	3,2	1,4
E44	$\theta \alpha \alpha \cup \xi ̆ \eta \sigma \varepsilon \iota \tau \eta v \varepsilon к \tau i \mu \eta \sigma \eta \tau \omega v$ в́pyo.	21,3\%	16,9\%	20,6\%	29,4\%	11,9\%	2,9	1,3
E45	 $\left.\kappa \alpha \theta \eta \gamma \eta \tau \varepsilon \varepsilon_{5}, \gamma 0 v \varepsilon i ́ s, \mu \alpha \theta \eta \tau \varepsilon ́ \varsigma\right)$ ह́zouv $\tau \eta v \alpha \pi \alpha i \tau \eta \sigma \eta ~ \alpha \pi o ́ ~ \varepsilon \mu \varepsilon ́ v \alpha ~ . ~$ $\mu \dot{\alpha} \theta \eta \mu \alpha \mu о$.	57,5\%	22,5\%	8,8\%	9,4\%	1,9\%	1,3	1,1

Аvто $\alpha \pi о \tau \varepsilon \lambda \varepsilon \sigma \mu \alpha \tau \iota \kappa o ́ \tau \eta \tau \alpha$

 Пivaка 6.

Ap.	Еро́т甲бท	${ }^{\text {àapové }}$		$\begin{gathered} \Delta \varepsilon \nu \varepsilon ́ \chi \omega \\ \alpha \pi \propto \varphi \alpha \sigma i ́ \sigma \varepsilon t \end{gathered}$	$\begin{gathered} \Sigma \nu \mu \varphi \omega v \omega \\ \mu \varepsilon \\ \varepsilon \pi \varphi \varphi \dot{\lambda} \alpha \underline{\varrho} \eta \end{gathered}$	Еıцрөөө́	M.O	T.A
E32	$\Delta \varepsilon v$ в $\dot{\prime} \mu \alpha!~ к \alpha \tau \dot{c} \lambda \lambda \lambda \eta \lambda \alpha$ $\pi р о в т о \mu и б н \varepsilon ́ v o с ̧ / \eta ~ \gamma \omega \nu \alpha$ 	24,4\%	17,5\%	9,4\%	23,1\%	25,6\%	3,1	1,5
E46	 $\sigma \tau \eta \vee \tau \alpha \in \eta \eta \mu \circ$.	23,1\%	16,3\%	9,4\%	31,3\%	20\%	3,1	1,5
E47	 $\alpha \varphi о р \alpha ́ \sigma \tau \eta \chi \rho \eta ́ \sigma \eta$ TПЕ $\sigma \varepsilon$ 	19,4	19,4	14,4	27,5	19,4	3,1	1,4

 $\mu \alpha ́ \theta \eta \mu \alpha$ тоט̧, $\sigma \varepsilon \alpha \rho \kappa \varepsilon \tau \varepsilon ́ \varsigma ~ \pi \varepsilon \rho \imath \pi \tau \dot{\omega} \sigma \varepsilon \iota \varsigma ~ \delta \varepsilon v ~ \varepsilon ́ \chi o v v ~ \tau \alpha ~ \alpha \pi \alpha \rho \alpha i ́ \tau \eta \tau \alpha ~ \mu \varepsilon ́ \sigma \alpha ~ \gamma l \alpha ~ v \alpha ~ \tau о ~$ $\pi \rho a ́ \xi o u v$.

Ap．	Еро́т甲б！	${ }^{\text {àupové }}$		$\begin{gathered} \Delta \varepsilon v \dot{\varepsilon} \chi \omega \\ \propto \pi 0 \varphi \propto \sigma i \sigma \varepsilon \mathbf{l} \end{gathered}$		ธıц甲өvө́	м． 0	T．A
E48	Н тєरvoдоүıкй итодоий тои о $\alpha \alpha \lambda \eta ́ \varepsilon v \sigma \omega \mu \alpha ́ \tau \omega \sigma \eta ~ \tau \omega v ~ T I I E ~$ $\sigma \tau া \varsigma \mu \alpha \theta \eta \sigma ル \kappa \varepsilon ́ \varsigma ~ \pi р \alpha к \tau া к \varepsilon ́ \varsigma ~ \sigma \tau \eta v$ đ $\dot{\alpha} \leqslant ̧ \eta ~ \mu о v$.	42，5\％	20，6\％	5\％	23，1\％	8，8\％	2，3	1，4
E49	Еі́ $\mu \alpha 1$ เкаvотот μ ќvo̧ $\mu \varepsilon$ то а甲ора́ бта $\delta \iota \delta \alpha к \tau 兀 к \alpha ́ \mu о ь ~$ $\alpha \nu \tau \iota к \varepsilon i ́ \mu \varepsilon v \alpha$	44\％	24，5\％	14，5\％	12，6\％	4，4\％	2，1	1，2
E50	$\kappa \alpha \tau \alpha ́ \lambda \lambda \eta \eta \lambda о \pi \rho о \sigma \omega \pi \iota \kappa o ́$ $\gamma 1 \alpha$ 呷 $\tau \varepsilon \chi$ vıки́ 	33，8	21，9\％	12，5\％	21，9\％	10\％	2，5	1，4

Xpóvos

 $\tau \omega v$ TПЕ бто $\mu \alpha ́ \theta \eta \mu \alpha$ ноv $\alpha \lambda \lambda \alpha \dot{\alpha} \delta \varepsilon v ~ \varepsilon ́ \chi \omega ~ \tau о v ~ \chi \rho o ́ v o », ~ \pi \alpha ́ v \omega ~ \alpha \pi o ́ ~ \tau о ~ \mu ı \sigma o ́ ~ \tau \omega v ~$

 $\delta \varepsilon v ~ \varepsilon ́ \chi \varepsilon \iota ~ \alpha \pi о \varphi \alpha \sigma i ́ \sigma \varepsilon ı . ~ T \alpha ~ \alpha \pi о \tau \varepsilon \lambda \varepsilon ́ \sigma \mu \alpha \tau \alpha ~ \sigma \chi \varepsilon \tau ı к \alpha ́ ~ \mu \varepsilon ~ \tau о v ~ \pi \alpha \rho \alpha ́ \gamma о v \tau \alpha ~ \chi р о ́ v o ~$

Xpóvos								
A ρ ．	Ерஸ́тŋбך	Atapovó	$\begin{gathered} \hline \Delta \alpha \alpha \varphi \omega \bar{\prime} \\ \mu \varepsilon \\ \varepsilon \pi \downarrow \varphi \dot{\lambda} \alpha \xi^{\prime} \eta \end{gathered}$			ェขน甲өvต́	M． 0	T．A
E33	$\Theta \alpha \eta \dot{\eta} \theta \varepsilon \lambda \alpha v \alpha \varepsilon \pi \mu \circ \rho \varphi \omega \theta \dot{\omega}$ $\sigma \chi \varepsilon \tau \iota \alpha \alpha ́ \mu \varepsilon \tau \eta \nu \varepsilon \dot{\varepsilon} v \tau \alpha \xi \eta$ $\tau \omega v$ ТПЕ бто $\mu \alpha ́ \theta \eta \mu \alpha ́ \mu о v$ $\alpha \lambda \lambda \alpha \dot{\alpha} \delta \varepsilon v$ ह́ $\not \omega$ то $\chi \rho$ óvo．	28，6\％	8，7\％	5，6\％	18，6\％	38，5\％	3，3	1，7

 $\delta \varepsilon v$ то $\chi \rho \eta \sigma \mu о \pi о \iota \varepsilon i ́ ~ « \kappa \alpha \theta o ́ \lambda о v » ~ \eta ́ ~ « \sigma \pi \alpha ́ v i \alpha » . ~ E \pi \imath \tau \lambda \varepsilon ́ o v, ~ \mu o ́ v o ~ \tau o ~ 39,1 \% ~ \tau \omega v ~$

 9）．

Хрŋ́бŋ ТПЕ бто єкл								
Ap．		Kиөó久．ov	こ̇úvio	Мєрькє́ц Форв́є	Euzvii	Hòú Luzvá	M．O	T．A
E22	Хрұбчотоњ́ vтодоуเбти́ каı то HOU．	9，9\％	11，1\％	27，8\％	23，5\％	27，8\％	3，5	1，3
E23	K $\alpha \tau \dot{\alpha} \tau \eta v \pi \alpha \rho \alpha \dot{\delta} \delta \sigma \eta \tau \eta ร$ өєตрі́цц，хрŋбцотоє́ ßьтєєолроßодє́а $\gamma เ \alpha \tau \eta \nu$ 	45，7\％	14，2\％	21\％	12，3\％	6，8\％	2，2	1，3
E24	Хрпбцолою́ TIE бто $\mu \dot{\alpha} \theta \eta \mu \alpha ́$ $\mu 00$（ $\sigma \tau \eta \nu \tau \alpha ́ \xi ŋ \eta$ ŋ́ $\sigma \tau 0$ ие touc $\mu \alpha \theta \eta \tau \varepsilon ́ c ~ \mu o u . ~$	42，1\％	20，8\％	21，4\％	8，8\％	6，9\％	2，2	1，3
E26	 ТПЕ кaı $\Delta a \delta$ ıкти́ou	19，8\％	27，2\％	48，1\％	2，5\％	2，5\％	2，4	0，9

 бєіүнатоц (Пívакац 9).

 «к $\alpha \dot{\prime} \alpha »$.

 $\alpha v \tau o ́ ~ \tau о \vee ~ \tau о \mu \varepsilon ́ \alpha ~ \alpha \pi o ́ ~ « \kappa \alpha \lambda \varepsilon ́ \varsigma ̧ » ~ \varepsilon ́ \omega \varsigma ~ « \alpha ́ p ı \sigma \tau \varepsilon \varsigma » . ~ \Sigma \tau \eta \nu ~ \pi \lambda \varepsilon ı о \psi \eta \varphi i ́ \alpha ~ \tau о u \varsigma, ~ \sigma \varepsilon ~ \pi о \sigma о \sigma \tau o ́ ~$
 «кацí人».

 $\kappa \alpha 1$ тоия $\delta 1 \alpha \sigma \kappa \varepsilon \delta \alpha ́ \zeta \varepsilon 1 ~ \eta ~ \chi \rho \eta ́ \sigma \eta ~ H / Y, ~ к \alpha ı ~ \alpha v \tau i ́ \sigma \tau о \imath \chi \alpha ~ 79,7 \% ~ \tau о ט ~ \delta \varepsilon i ́ \gamma \mu \alpha \tau о \varsigma ~$

 $\delta 1 \alpha \delta ı к \alpha \sigma i \alpha \alpha$.

Атоцьки์ $\chi \rho \underline{\chi} \sigma \eta$ бтьऽ TПE								
Ap.	Еро́тリби					Еขцрөуш்	M. 0	T.A
E12	oaç va χ モıíţote tov бас аv α रкес;	5,5\%	8,0\%	14,7\%	37,4\%	34,4\%	3,9	1,1
E13	 $\tau \iota \varsigma \pi \rho 0 \sigma \omega \pi \iota \kappa \varepsilon ́ \zeta \kappa \alpha ı$ $\varepsilon \pi \alpha \gamma \gamma \varepsilon \lambda \mu \alpha \tau \kappa \kappa \varepsilon$ б $\sigma \alpha \varsigma ~ \alpha v \alpha ́ \gamma \kappa \varepsilon \zeta ;$	11,7\%	27\%	27,6\%	23,9\%	9,8\%	2,9	1,2
E14	 $\gamma 1 \alpha \tau \iota \varsigma \pi \rho о \sigma \omega \pi \iota \kappa \varepsilon ́ \zeta ~ \kappa \alpha ı$ $\varepsilon \pi \alpha \gamma \gamma \varepsilon \lambda \mu \alpha \tau ו \kappa \varepsilon ́ \varsigma ~ \sigma \alpha \varsigma ~ \alpha v \alpha ́ \gamma \kappa \varepsilon \varsigma ;$	14,7\%	26,4\%	16,0\%	25,8\%	17,2\%	3	1,3
E15	$\sigma \alpha \varsigma v \alpha \alpha v \alpha \check{\zeta} \eta \tau \alpha ́ \tau \varepsilon \pi \lambda \eta \rho о \varphi о \rho i \notin \varsigma$ $\sigma \alpha \varsigma$ बvá $\gamma \kappa \varepsilon \varsigma ;$	3,7\%	3,7\%	12,3\%	37,7\%	42,6\%	4,1	1
E16	$\sigma \alpha \varsigma$ v α хр $\eta \sigma \mu о \pi о є і \tau \varepsilon \varepsilon$ єрү $\lambda \lambda \varepsilon i \alpha$ facebook, twitter $\kappa . \lambda \pi$.	26,7\%	25,5\%	19,9\%	19,9\%	8,1\%	2,6	1,3
E17	Н $\chi \rho \eta ́ \sigma \eta$ тоט ขлодоүเбтŋ́ $\mu \varepsilon \varepsilon \cup \chi \alpha \rho เ \sigma t \varepsilon i ́ ~ \kappa \alpha \iota \mu \varepsilon$ $\delta ı \alpha \sigma \kappa \delta \alpha \dot{\zeta} \zeta \varepsilon 1$.	4,3\%	10,5\%	14,2\%	42\%	29\%	3,8	1.1
E18	$\mu \varepsilon \varepsilon \cup \chi \alpha \rho เ \sigma \tau \varepsilon i ́ ~ к \alpha ı ~ \mu \varepsilon ~$ $\delta 1 \alpha \sigma \kappa \varepsilon \delta \alpha ́ \zeta \varepsilon 1$.	4,4\%	3,8\%	12\%	43\%	36,7\%	4	1

 ŋ́óqı.

$\tau \eta \vee \varepsilon ́ v \tau \alpha \xi ̧ \eta ~ T \Pi Е ~ \sigma \tau о ~ \mu \alpha ́ \theta \eta \eta \mu \alpha ́ ~ \tau o v \varsigma . ~$

 $\mu \alpha ́ \theta \eta \mu \alpha ́$ тous:
 $\kappa \alpha ́ \pi о \imath о ~ \pi \rho o ́ \beta \lambda \eta \mu \alpha »$.

 коı $\tau \omega v$ к $\alpha \theta \eta \nu \eta \tau \omega ́ v »$
 $\mu \alpha \theta \eta \tau \varepsilon ́ \varsigma ~ \kappa \alpha l ~ \tau о v \varsigma ~ \varepsilon ́ \varphi \varepsilon \rho v \alpha v ~ \mu \alpha \zeta ̌ i ~ \tau o v \varsigma ~ \sigma \tau о ~ \mu \dot{\theta} \theta \eta \mu \alpha: ~ 1 . ~ \Delta \varepsilon v ~ \pi \rho о \sigma \varepsilon ́ \theta \varepsilon \tau \alpha v ~ \tau i ́ \pi о \tau \alpha ~ \alpha \varphi о и ́ ~ \eta ́ \tau \alpha v ~$

 $\pi о \lambda o ́ s ~ \chi \rho o ́ v o \varsigma ~ \mu \varepsilon ~ \sigma v v \varepsilon ́ \pi \varepsilon \iota \alpha ~ v \alpha ~ \mu \eta v ~ \mu \pi о \rho ळ ́ ~ v \alpha ~ \pi \alpha \rho \alpha \delta o ́ \sigma \omega, ~ \gamma ц \alpha i ́ ~ \alpha \pi о \sigma \pi о o ́ v \tau \alpha v ~ \dot{~}$

 $\alpha \pi о \tau \varepsilon \lambda \varepsilon \sigma \mu \alpha \tau \iota \alpha \dot{\text { ж }}$
 $\alpha \varphi \downarrow \rho \omega ́ v \omega \alpha \tau \varepsilon \lambda \varepsilon i ́ \omega \tau \varepsilon \varsigma ~ \omega ́ \rho \varepsilon \varsigma ~ \sigma \tau \eta \nu ~ \pi \rho о \varepsilon \tau о \tau \mu \alpha \sigma i ́ \alpha ~ \mu \alpha \theta \dot{\eta} \mu \alpha \tau о \varsigma »$

Гицขи́бıо.

Oı $\pi \rho о \tau \alpha ́ \sigma \varepsilon ı \varsigma ~ \tau \omega v ~ \varepsilon \kappa \pi \alpha ı \delta \varepsilon v \tau \iota \kappa ळ ́ v ~ \sigma u v o y i ́ ̧ o v \tau \alpha ı ~ \omega \varsigma ~ \varepsilon \xi ŋ ́ \varsigma: ~ T o ~ \mu \varepsilon \gamma \alpha \lambda u ́ \tau \varepsilon \rho о ~$

 $\sigma \varepsilon \mu \tau v \alpha ́ \rho ı \alpha ~ \sigma \tau o ~ \chi \omega ́ \rho o ~ \tau o v ~ \sigma \chi о \lambda \varepsilon i ́ o v ~ \gamma ı \alpha ~ \kappa \alpha ́ \theta \varepsilon ~ \sigma \chi о \lambda ı к \grave{\eta} \mu о v \alpha ́ \delta \alpha »$.
 $\kappa \alpha \iota ~ \tau o ~ \varepsilon i ́ \delta o \varsigma ~ \mu \alpha ́ \theta \eta \sigma \eta \varsigma ~ \pi о v ~ \varepsilon i ́ \mu \alpha \sigma \tau \varepsilon ~ \delta ı \alpha \tau \varepsilon Ө \varepsilon \tau \mu \varepsilon ́ v o l ~ v \alpha ~ \pi \rho о \sigma \varphi \varepsilon ́ \rho о v \mu \varepsilon ~ \sigma \tau о v ~ 21 ~ \alpha ı ळ ́ v \alpha » . ~$

 $\alpha \pi о \pi v ı \kappa \tau \iota \alpha \dot{\alpha} \alpha \pi o ́ ~ \alpha ́ \pi o \psi \eta ~ v i \lambda \eta \varsigma ~ \kappa \alpha ı ~ \chi \rho o ́ v o v » . ~$

 онадо́ т оо́ло».

Кє甲о́даю 6: $\Sigma v \mu \pi \varepsilon \rho \alpha ́ \sigma \mu \alpha \tau \alpha$

6.1 Прочíд, $\sigma \tau \dot{\alpha} \sigma \varepsilon \iota \varsigma, \chi \rho \eta ́ \sigma \eta$

 $\tau \omega \nu$ THE $\sigma \tau \eta \nu \tau \alpha ́ \xi \eta$.

 $\kappa \alpha \imath ~ \varepsilon \rho \gamma \alpha \lambda \varepsilon i ́ \alpha ~ \delta \varepsilon v ́ \tau \varepsilon \rho \eta \varsigma ~ \gamma \varepsilon v \alpha ́ \varsigma ~ o ́ \pi \omega \varsigma ~ b l o g s, ~ f a c e b o o k, ~ t w i t t e r, ~ к . \lambda . \pi . ~ E \pi i \sigma \eta \varsigma, ~ o 七 ~$

- Oı TПЕ $\mu \pi$ ороv́v va $\pi \rho о \sigma \varphi \varepsilon ́ \rho o v v ~ o v \sigma ı \alpha \sigma \tau ı \kappa \alpha ́ ~ \sigma \tau \eta v ~ \mu \alpha ́ \theta \eta \sigma \eta . ~$

- Oı $\mu \alpha \theta \eta \tau \varepsilon ́ \varsigma ~ \theta \alpha \mu \alpha ́ \theta \alpha ı v \alpha v ~ \pi \varepsilon \rho ı \sigma \sigma o ́ \tau \varepsilon \rho \alpha ~ \alpha v ~ \chi \rho \eta \sigma \mu о \pi о ю o v ́ \sigma \alpha v ~ T П E ~ \sigma \tau \eta \nu ~ \tau \alpha ́ \xi \eta$.

 $\alpha \pi \alpha ́ v \tau \eta \sigma \varepsilon$ ó τ ol $\pi \alpha \imath \delta \alpha \gamma \omega \gamma 1 \kappa \varepsilon ́ \varsigma ~ \tau о \cup ~ \gamma \nu \omega ́ \sigma \varepsilon ı \varsigma ~ \varepsilon i v \alpha ı ~ \alpha v \varepsilon \pi \alpha \rho \kappa \varepsilon i ́ ̧ . ~ A \pi o ́ ~ \alpha v \tau о v ́ \varsigma ~ \pi o v ~$

 ТПЕ $\sigma \tau о \mu \alpha ́ \theta \eta \mu \alpha$ тоvऽ.

 є $\rho \varepsilon \cup v \omega ๋ v$ (Pederson \& Nysveen, 2003; Horst \& Gutteling, 2007). $\Sigma \mathbf{u} \mu \varphi \omega v \alpha \mu \varepsilon \alpha v \tau \varepsilon ́ \varsigma$

$\Sigma v \mu \beta \alpha \tau o ́ \tau \eta \tau \alpha$

 $\dot{\varepsilon} v \tau \alpha \xi \eta \eta \tau \omega \nu$ ТПЕ $\sigma \tau \eta \delta_{\imath} \delta \alpha \kappa \tau \iota \kappa \eta ์ \pi \rho \alpha ́ \xi \eta ~ \alpha \pi \alpha ı \tau \varepsilon i ́ ~ \pi \rho о \sigma \alpha \rho \mu о \gamma \varepsilon ́ \zeta ~ \tau \omega \nu ~ \pi \alpha ı \delta \alpha \gamma \omega \gamma ı \kappa \omega ் \nu$

 Про́чрацца $\Sigma \pi о v \delta \omega ́ v ~ \pi о v ~ \mu \pi о \rho є i ́ ~ v \alpha ~ \gamma i v \varepsilon ı ~ \mu \varepsilon ~ о \mu \alpha \lambda o ́ ~ \tau \rho o ́ \pi о », ~ \alpha ́ \rho \alpha ~ \mu \alpha ́ \alpha \lambda \lambda о v ~$ $\alpha v \alpha \gamma v \omega \rho i \zeta ̧ o v v$ ó $\tau \mu \varepsilon \tau \eta v \kappa \alpha \tau \alpha ́ \lambda \lambda \eta \lambda \eta \varepsilon \pi \mu \mu о ́ \rho \varphi \omega \sigma \eta, \mu \varepsilon \tau \eta v \kappa \alpha \tau \alpha ́ \lambda \lambda \eta \lambda \eta \geqslant \pi о \delta о \mu \eta, \mu \varepsilon$ $\pi i \sigma \tau \omega \sigma \eta$ хро́vov каı $\mu \varepsilon$ а́ $\lambda \lambda \varepsilon \varsigma ~ \tau \alpha v \tau о ́ \chi \rho о v \varepsilon \varsigma ~ \delta ı \alpha \delta ı к \alpha \sigma i \varepsilon \varsigma ~ о ́ \tau ৷ ~ \mu \pi о \rho \varepsilon i ́ ~ \tau \varepsilon \lambda ı к \alpha ́ ~ v \alpha ~$
 $\sigma \varepsilon \alpha v \tau \varepsilon ́ \varsigma \pi о v \theta \alpha \pi \rho о \kappa v ́ \psi \circ v \nu \mu \varepsilon \tau \eta v \varepsilon v \sigma \omega \mu \alpha ́ \tau \omega \sigma \eta \tau \omega v$ TПE.

Еگютєрикє̧́ Пробдокíєऽ

Avто $\alpha \pi о \tau \varepsilon \lambda \varepsilon \sigma \mu \alpha \tau \iota к о ́ \tau \eta \tau \alpha$

 $\sigma \tau \eta \tau \alpha ́ \xi \eta, \varepsilon v \omega ் ~ \lambda i ́ \gamma o ~ \lambda \imath \gamma o ́ \tau \varepsilon \rho o ı ~ \pi ı \sigma \tau \varepsilon v ́ o v v ~ \tau o ~ \alpha v \tau i ́ \theta \varepsilon \tau ๐ . ~$

 A π ó $\sigma \chi \varepsilon \tau \pi \kappa \varepsilon ́ \varsigma ~ \varepsilon ́ \rho \varepsilon v v \varepsilon \varsigma ~(L i t t e r e l l ~ e t ~ a l, ~ 2005 ; ~ \Sigma \chi о \rho \varepsilon \tau \sigma \alpha v i ́ \tau o v ~ \& ~ B \varepsilon к u ́ \rho \eta, ~ 2010 ; ~ A l b i o n, ~$

 غ́v $\tau \alpha \xi \eta$ тous $\sigma \tau \eta \vee \tau \alpha ́ \xi \eta$

 $\delta \kappa \alpha \delta_{\kappa} \alpha \sigma i \alpha$.

 $\kappa \alpha \tau \alpha ́ \lambda \lambda \eta \lambda о ~ \pi \rho о \sigma \omega \pi \kappa к о$.

Xpóvos

 $\tau \omega v$ TПЕ $\sigma \tau о \mu \dot{\alpha} \theta \eta \mu \alpha \mu$ 人v $\alpha \lambda \lambda \alpha \dot{\alpha} \delta \varepsilon v ~ \varepsilon ́ \chi \omega ~ \tau о v ~ \chi \rho o ́ v o », ~ \pi \alpha ́ v \omega ~ \alpha \pi o ́ ~ \tau o ~ \mu ו \sigma o ́ ~ \tau \omega v ~$

 TПЕ, о $\chi \rho o ́ v o \varsigma ~ \alpha \pi о \tau \varepsilon \lambda \varepsilon i ́ ~ \varepsilon \mu \pi o ́ \delta ı о ~ \sigma \tau \eta \nu ~ \varepsilon \pi \tau \mu o ́ \rho \varphi \omega \sigma \eta ~ \tau о v \varsigma ~ ต ́ \sigma \tau \varepsilon ~ v \alpha ~ к \alpha \tau \alpha \sigma \tau о v ́ v ~ ı к \alpha v o i ́ ~$
 $\alpha v \tau о \alpha \pi о \tau \varepsilon \lambda \varepsilon \sigma \mu \mu \tau \kappa \kappa о ́ \tau \eta \tau \alpha \varsigma ~ \sigma \tau \eta \vee \chi \rho \eta ं \sigma \eta$ TПЕ.

 $\tau \eta \nu \varepsilon v \sigma \omega \mu \alpha ́ \tau \omega \sigma \eta \tau \omega v$ TПЕ $\sigma \tau \alpha \sigma \chi \circ \lambda \varepsilon \varepsilon^{\prime} \alpha$.

 $\pi \rho о \sigma \omega \pi ィ \kappa \frac{v}{\mu \varepsilon} \mu \nu \dot{\sigma} \sigma \varepsilon \iota \varsigma \tau \llbracket \varsigma$ TПЕ

 $\pi \alpha \rho о \cup \sigma i \alpha \sigma \eta \varsigma)$. $\Sigma v \mu \pi \varepsilon \rho \alpha \sigma \mu \alpha \tau \kappa \alpha ́, \alpha \pi o ́ ~ \tau \alpha ~ \pi \alpha \rho \alpha \pi \alpha ́ v \omega ~ \pi \rho о к v ́ \pi \tau \varepsilon ו$, ót oı ТПЕ $\delta \varepsilon v$

 tov.

 $\alpha \vee \tau ו \kappa \varepsilon i ́ \mu \varepsilon v o$.

 $v \alpha \varepsilon v \tau \alpha ́ \xi o v v \tau \tau \varsigma ~ T П Е ~ \sigma \tau о ~ \mu \alpha ́ \theta \eta \mu \alpha ~ \tau о v \varsigma . ~$

 غ́pevvac.

 $\varepsilon \in \tau \alpha \xi \eta \tau \omega \nu \mathrm{T}$ ПЕ $\sigma \tau \eta \nu \tau \alpha \dot{\xi} \eta$.

 $\sigma \varepsilon \alpha v \tau \varepsilon ́ \varsigma \pi о v \theta \alpha \pi \rho о \kappa v ์ \psi о v \nu \mu \varepsilon \tau \eta v \varepsilon \vee \sigma \omega \mu \alpha ́ \tau \omega \sigma \eta \tau \omega v$ ТПЕ.

 $\delta \varepsilon v ~ \alpha \rho \kappa \varepsilon i ́ ~ \mu o ́ v o ~ \eta ~ \alpha \pi o ́ к \tau \eta \sigma \eta ~ \gamma v ต ́ \sigma \varepsilon \omega v ~ \gamma ט ́ \rho \omega ~ \alpha \pi o ́ ~ \tau \alpha ~ \beta \alpha \sigma ı к \alpha ́ ~ \pi \rho о \gamma \rho \alpha ́ \mu \mu \alpha \tau \alpha ~ \tau о v ~$

 єклаıঠєv兀ाкळ́v.

 $\varepsilon \vee \sigma \omega \mu \alpha ́ \tau \omega \sigma \eta \varsigma$.

 $\alpha \pi$ ó $\tau 0 v \varsigma ~ \varepsilon \kappa \pi \alpha ı \delta \varepsilon v \tau া \kappa о v ́ \varsigma ~ \kappa \alpha ı ~ \sigma \varepsilon ~ \sigma \chi \varepsilon ́ \sigma \eta ~ \mu \varepsilon \alpha ́ \alpha \lambda \lambda \varepsilon \varsigma ~ \pi \tau \cup \chi \varepsilon ́ \varsigma ~ \tau \eta \varsigma ~ \varepsilon \vee \sigma \omega \mu \alpha ́ \tau \omega \sigma \eta \varsigma ~ T П E ~ \sigma \tau \eta \nu$

 $\pi о \sigma о \sigma \tau o ́ ~ \pi \rho о ́ \tau \varepsilon เ v \varepsilon ~ \tau \eta v ~ \delta \eta \mu \imath \rho v \rho \gamma i ́ \alpha ~ к \alpha \tau \alpha ́ \lambda \lambda \eta \lambda \omega v ~ v \pi о \delta о \mu \omega ́ v, ~ \varepsilon v \omega ́ ~ \varepsilon \pi i \sigma \eta \varsigma ~ \alpha v \alpha \varphi \varepsilon ́ \rho \theta \eta \kappa \alpha v$

 $\pi \rho о \sigma \omega \pi ィ к о и ́ \mu \varepsilon \gamma v \omega ́ \sigma \varepsilon \iota \varsigma ~ \sigma \pi \iota \varsigma ~ Т П Е . ~$

 $\tau \omega v$ TПE. H $\varepsilon \rho \omega ́ \tau \eta \sigma \eta ~ \alpha v ~ \pi \rho \varepsilon ́ \pi \varepsilon ı ~ \tau \varepsilon \lambda ı \kappa \alpha ́ ~ v \alpha ~ \varepsilon v \sigma \omega \mu \alpha \tau \omega \theta \varepsilon i ́ ~ \eta ~ v \varepsilon ́ \alpha ~ \varepsilon \kappa \pi \alpha ı \delta \varepsilon v \tau \kappa к \eta ́ ~$

 $\kappa \varepsilon \varphi \alpha ́ \lambda \alpha \ldots ~ \pi о v ~ \alpha к о \lambda о v \theta \varepsilon i ́ ~ \pi \alpha \rho \alpha \tau i ́ \theta \varepsilon v \tau \alpha \iota ~ \sigma \cup \gamma к \varepsilon к \rho \upharpoonleft \mu \varepsilon ́ v \varepsilon \varsigma ~ \pi \rho о \tau \alpha ́ \sigma \varepsilon ı \varsigma ~ \gamma 1 \alpha ~ \tau \eta v \varepsilon \pi \iota \tau \cup \chi \eta \mu \varepsilon ́ v \eta$
 $\varepsilon к \pi \alpha \iota \delta \varepsilon \cup \tau и к \mathfrak{~ \kappa о ю о ́ \tau \eta \tau \alpha . ~}$

 $\alpha \pi о \tau \varepsilon \lambda \varepsilon ́ \sigma \mu \alpha \tau \alpha$
 $\pi \alpha \rho \alpha \gamma о ́ v \tau \omega \nu \kappa \alpha \downarrow \tau \eta \varsigma \chi \rho \eta \dot{\sigma \eta \varsigma}$ TПЕ $\sigma \tau \eta \nu \varepsilon \kappa \pi \alpha \iota \delta \varepsilon v \tau \iota \kappa \eta ́ \pi \rho \alpha ́ \xi \eta$. Т $\alpha \alpha \pi о \tau \varepsilon \lambda \varepsilon ́ \sigma \mu \alpha \tau \alpha \mu i ́ \alpha \varsigma$

 $\varepsilon ́ v \tau \alpha \xi \eta \tau \omega \nu$ TПЕ $\sigma \tau \eta \vee \varepsilon \kappa \pi \alpha i \delta \varepsilon v \sigma \eta$.

 $\mu \varepsilon \lambda \varepsilon ́ \tau \tau \eta$.

 TПЕ $\sigma \tau \eta \nu \varepsilon \kappa \pi \alpha i ́ \delta \varepsilon v \sigma \eta$.

Кє甲áдаıо 7: $\boldsymbol{\Sigma v ̧ ̧ ŋ ́ \tau \eta \sigma \eta - П р о т а ́ \sigma \varepsilon ı \varsigma ~}$

 (TПE) $\pi \rho о к \alpha \lambda \varepsilon i ́ ~ \rho \alpha \gamma \delta \alpha i \varepsilon \varsigma ~ \alpha \lambda \lambda \alpha \gamma \dot{\varepsilon} \varsigma ~ \sigma \varepsilon ~ \pi о \kappa i ́ \lambda о v \varsigma ~ \tau о \mu \varepsilon i ́ ̧ ~ к \alpha ı ~ \delta \rho \alpha \sigma \tau \eta \rho ı o ́ \tau \eta \tau \varepsilon \varsigma ~ \tau \eta \varsigma ~$

 $\varepsilon v \delta v \vee \alpha ́ \mu \omega \sigma \eta, \tau \eta \nu \tau \rho о \pi о \pi о i ́ \eta \sigma \eta$ каı $\pi о \lambda \lambda \varepsilon ́ \varsigma ~ \varphi о \rho \varepsilon ́ \varsigma ~ \tau \eta v ~ \alpha v \alpha \tau \rho о \pi \eta ं ~ \tau \eta \varsigma ~ v \pi \alpha ́ \rho \chi о v \sigma \alpha \varsigma$
 $\varepsilon \kappa \pi \alpha \imath \delta \varepsilon \cup \pi \kappa \omega ́ v ~ \sigma к о \pi \omega ́ v ~ к \alpha \imath ~ \tau \omega v ~ \gamma \nu \omega \sigma \tau \kappa \kappa ́ v ~ \sigma \tau о ́ \chi \omega v$. To $\pi \alpha \rho \alpha \delta о \sigma \kappa \kappa o ́ ~ \sigma \chi о \lambda \varepsilon i ́ o ~ \pi о v ~$

 tov σ тó χ ou.

 $\kappa \alpha ı \varepsilon \pi \iota \tau \cup \chi \eta \dot{\varepsilon} \varepsilon \sigma \omega \mu \alpha ́ \tau \omega \sigma \eta \tau \omega \nu$ TПЕ $\sigma \tau \eta \nu \varepsilon \kappa \pi \alpha i \delta \varepsilon \cup \sigma \eta$.

 $\alpha \cup \tau o ́ s ~ \lambda \varepsilon ́ \gamma \varepsilon \tau \alpha ı ~ \lambda о \gamma ı \sigma \mu к o ́ ~ \varepsilon і \tau \varepsilon ~ \delta ı к \tau v \alpha \kappa \eta ́ ~ v \pi о \delta о \mu \eta ́ ~ \varepsilon i ́ \tau \varepsilon ~ \sigma v v \tau \eta ́ \rho \eta \sigma \eta ~ к \alpha ı ~ \alpha v \alpha \beta \alpha ́ \theta \mu ı \sigma \eta ~$

 vлодоүıбтє́¢.

Елıцо́ $\varphi \varphi \omega \sigma \eta$

 $\tau \iota \varsigma$ TПE $\sigma \tau \eta \nu \tau \alpha ́ \xi \eta$.

 $v \alpha \sigma \nu \mu \beta \alpha i ́ v \varepsilon \imath \mu \varepsilon \tau \alpha \kappa \tau _\kappa o ́, ~ о \rho \gamma \alpha v \omega \mu \varepsilon ́ v o ~ к \alpha \imath ~ \alpha \pi о \tau \varepsilon \lambda \varepsilon \sigma \mu \mu \tau \iota \kappa o ́ ~ \tau \rho o ́ \pi о . ~$

 $\alpha \nu \alpha ́ \gamma \kappa \varepsilon \varsigma ~ \pi \rho о \gamma \rho \alpha ́ \mu \mu \alpha \tau о \varsigma ~ \varepsilon \kappa \pi \alpha i \delta \varepsilon v \sigma \eta \varsigma ~ \varepsilon \pi \tau \mu о \rho \varphi \omega \tau \omega ́ v-\mu \varepsilon v \tau o ́ \rho \omega v ~ \alpha \varphi о v ́ ~ \kappa \alpha \tau \alpha ́ ~ \beta \alpha ́ \sigma \eta ~$

 $\kappa \alpha \tau \alpha ́ ~ \tau \eta v \delta 1 \alpha ́ \rho \kappa \varepsilon 1 \alpha \tau \eta \varsigma ~ \varepsilon \kappa \pi \alpha i \delta \varepsilon \varepsilon v \sigma \eta ́ \varsigma ~ \tau о v \varsigma$.

 2002).

 ขлодоүاбт ωv.

 $v \varepsilon ́ \alpha ~ \delta \varepsilon \delta о \mu \varepsilon ́ v \alpha, ~ \alpha \lambda \lambda \alpha ́ ~ \kappa \alpha ı ~ \tau \eta ~ \delta ı \alpha ́ \theta \varepsilon \sigma \eta ~ \alpha \pi o ́ ~ \mu \varepsilon ́ \rho o v \varsigma ~ \tau o u \varsigma ~ v \alpha ~ \sigma u v \varepsilon \rho \gamma \alpha \sigma \tau о v ́ v ~ к \alpha ı ~ v \alpha ~ \lambda \alpha ́ \beta o v v ~$

'Eגєı $\pi \alpha \rho \alpha \tau \eta \rho \eta \theta \varepsilon i ́ ~ o ́ \mu \omega \varsigma ~ \pi \omega \varsigma ~ o ı ~ \varepsilon \kappa \pi \alpha \iota \delta \varepsilon v \tau ı к о i ́, ~ \varepsilon v \omega ́ ~ \pi \alpha \rho \alpha \delta \varepsilon ́ \chi о \nu \tau \alpha ı ~ \tau \alpha$

 غ́ $\chi \varepsilon ı ~ \lambda \alpha ́ \beta \varepsilon \imath ~ \mu \varepsilon ́ \rho o \varsigma ~ \sigma \varepsilon ~ \varepsilon ́ v \alpha ~ \tau о v \lambda \alpha ́ \chi ı \tau \tau о v ~ \varepsilon \pi п \mu о \rho \varphi \omega \tau ı к o ́ ~ \sigma \varepsilon \mu ı v \alpha ́ \rho ı o, ~ \pi \alpha \rho o ́ \lambda \alpha \tau \alpha v \tau \alpha ~ \eta ~ \chi \rho \eta ́ \sigma \eta ~$

 $\varepsilon \kappa \pi \alpha ı \delta \varepsilon v \tau \kappa \omega ́ v ~ \kappa \alpha ı ~ \tau о v ~ \sigma v \sigma \tau \eta ́ \mu \alpha \tau о \varsigma . ~ ' O \pi \omega \varsigma ~ v \pi о \sigma \tau \eta \rho i ́ \zeta \varepsilon ı ~ o ~ P \alpha ́ \pi \tau \eta \zeta ~(2009), ~$

 $\chi \omega \rho i \varsigma ~ v \alpha ~ \alpha \lambda \lambda \alpha ́ \zeta o v v ~ \tau o ~ v \pi \alpha ́ \rho \chi \omega v ~ \sigma v ́ \sigma \tau \eta \mu \alpha ~ к \alpha ı ~ \tau ı \zeta ~ \pi \varepsilon \pi о เ \theta \eta ́ \sigma \varepsilon ६ \varsigma . ~ E v \omega ́ ~ \tau \alpha ~ \varepsilon \mu \pi o ́ \delta ı \alpha ~$

Evต́ ol $\alpha \lambda \lambda \alpha \gamma \varepsilon ́ \varsigma ~ \pi \rho \omega ́ \tau \eta \varsigma ~ \tau \alpha ́ \xi ̄ \eta \varsigma ~ \theta \varepsilon \omega \rho о v ́ v \tau \alpha ı ~ \alpha v \alpha \sigma \tau \rho \varepsilon ́ \psi \mu \mu \varepsilon \varsigma, ~ o l ~ \alpha \lambda \lambda \alpha \gamma \varepsilon ́ \varsigma ~ \delta \varepsilon v ́ \tau \varepsilon \rho \eta \varsigma ~$

 ТПЕ, к.д.л.).

[^0]

 $\varepsilon \kappa \pi \alpha i \delta \varepsilon u \sigma \eta$ ．

Eлìioyos

 $\varepsilon к \pi \alpha \iota \delta \varepsilon \cup \tau ⿺ 𠃊 乛$,

 $\mu \alpha \theta \eta \tau \varepsilon ́ \varsigma(\sigma \varepsilon \lambda .29) »$.

Bı $\beta \lambda ı$ ı $\boldsymbol{\rho} \boldsymbol{\alpha} \varphi$ í α

Ahmad TBT, Madarsha KB, Zainuddin AM, Ismail NAH \& Nordin MS (2010). Faculty's acceptance of computer based technology: Cross-validation of an extended model. Australasian Journal of Educational Technology, 26, 268-279. http://www.ascilite.org.au/ajet/ajet.html

Afshari, M., Kamariah, A. B., Wong, S.L., Bahaman, A.S. \& Foo, S. F. (2009) Factors affecting teachers' use of information and technology. International Journal of Instruction Vol. 2, No. 1,79-104

Agarwal, R., Karahanna, E., 1998. On the multi-dimensional nature of compatibility beliefs in technology acceptance. In: Proceedings of the DIGIT Conference, http://disc-nt.cba.uh.edu/chin/digit98/first.pdf

Ajzen, I. (1991). The theory of planned behaviour. Organisational Behaviour and Human DecisionProcesses, 50, 179-211.

Ajzen, I. (2005). Attitudes, personality, and behavior (2nd ed.). Milton-Keynes, England: Open University Press (McGraw-Hill).

Ajzen, I. \& Fishbein, M. (1980). Understanding attitudes and predicting social behavior. Englewood Cliff, NJ: Prentice Hall.

Albion, P. R. (1999). Self-Efficacy Beliefs as an Indicator of Teachers' Preparedness for Teaching with Technology. http://www.usq.edu.au/users/albion/papers/site99/1345.html

Albion, P.R. 2001, "Some factors in the development of self-efficacy beliefs for computer use among teacher education students", Journal of Technology and Teacher Education, vol. 9, no. 3, pp. 321-347.

Albirini, A. (2006).Teachers' Attitudes Toward Information and Communication Technologies. Journal of Computer \& Education, 47, 373-398.

Apple Computer, Inc. (1995). Teaching and learning with technology: A report on 10 years of ACOT research [On-Line]. Cupertino, CA: Author. URL http://www.apple.com/education/k12/leadership/acot/pdf/10yr.pdf

Archambault, L., \& Crippen, K. (2009). Examining TPACK among K-12 online distance educators in the United States Contemporary Issues in Technology and Teacher Education, 9(1). http://www.citejournal.org/vol9/issl/general/article2.cfm

Bandura, A. (1977). Social Learning Theory. Englewood Cliffs, NJ: Prentice Hall.

Bandura, A. (1982). Self-efficacy mechanism in human agency. American Psychologist, 37, 122-147.

Bandura, A. (1986). Social foundations of thought and action: A social cognitive theory. Englewood Cliffs, NJ: Prentice-Hall

Bandura, A., Adams, N. E., \& Beyer, J. (1977). Cognitive processes mediating behavioral change. Journal of Personality and Social Psychology, 35, 125-139.

Bandura, A., Adams, N. E., Hardy, A. B., \& Howells, G. N. (1980). Tests of the generality of self-efficacy theory. Cognitive Therapy and Research, 4, 39-66

Becker, H.J. (2000). How exemplary computer-using teachers differ from other teachers: Implications for realizing the potential of computers in schools. Journal of Research on Computing in Education, 26 (3), 291-321

Becta (British Educational Communications and Technology Agency). (2004)
A Review of the research literature on barriers to the uptake of ICT by teachers. http://www.e-learningcentre.co.uk/Resource/CMS/Assets/5c10130e-6a9f-102c-a0be$003005 \mathrm{bbceb} 4 /$ form uploads/Literature review barriers to the uptake of ICT b y teachers.pdf

Bebell, D., Russell, M., and O'Dwyer, L. (2004). Measuring teachers' technology uses: Why multiple-measures are more revealing. Journal of Research on Technology in Education, 37(1)

Bingimlas, K. A. (2009). Barriers to the successful integration of ICT in teaching and learning environments: A review of the literature. Eurasia Journal of Mathematics, Science, \& Technology Education, 5(3), 235-245.

Black, G. (2009). This changing world: Technology, teaching and learning, Teacher, 16-19.

Blurton, C., (2002). "New Directions of ICT-Use in Education". http://www.unesco.org/education/educprog/lwf/dl/edict.pdf;

Bramble, W. J., \& Mason, E. J. (1985). Computers in schools, New York: McGrawHill Inc.

Butler, D. \& Sellbom, M. (2002). Barriers to Adopting Technology for Teaching and Learning, Educase Quarterly, 25 (2), 22-28.

Casulleras, R. P., Lagaron, D. C., and Rodriquez, M.I.H. (2010). An inquiry-oriented approach for making the best use of ICT in the classroom. eLearning Papers. $\mathrm{N}^{\circ} 20$. http://www.elearningeuropa.info/files/media/media23254.pdf

CEO Forum on Education and Technology (2001b). School technology and readiness report: Key building blocks for student achievement in the $21_{\text {st }}$ century: Assessment, alignment, accountability, access and analysis. http://www.ceoforum.org/downloads/forum4.pdf

Commission of the European Communities (2002) eEurope 2005: an information society for all. An Action Plan to be presented in view of the Sevilla European Council, 21-22 June 2002. Available at: http://europa.eu.int (accessed 23 July 2006).

Cox, M., Preston, C., \& Cox, K. (1999). What factors support or prevent teachers from using ICT in their classrooms? Paper presented at the British Educational Research Association Annual Conference. Brighton: University of Sussex. http://www.leeds.ac.uk/educol/documents/00001304.htm

Cuban, L. (1990). Reforming again, again, and again. Educational Researcher, 19(1), 3-13.

Cuban, L. (1997). High-tech schools and low-tech teaching. Education Week on the Web. http://www.edweek.org/ew/vol-16/34cuban.h16

Cuban, L., Kirkpatrick, H., Peck, C. (2001). High access and low use of technologies in high school classrooms: explaining an apparent paradox. American Educational Research Journal, 38 (4), pp. 813-834.

Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319-339.

Dede, C. (2000). Emerging influences of information technology on school curriculum. Journal of Curriculum Studies, 32(3), 281-303.

Demetriadis, S., Barbas, A., Molohides, A., Palaigeorgiou, G., Psillos, D., Vlahavas, I., et al. (2003). "Cultures in negotiation": Teachers'acceptance/resistance attitudes considering the infusion of technology into schools. Computers \& Education, 41(1), 19-37.

DeYoung, C.G., \& Spence, I. (2004). Profiling information technology users: En route to dynamic personalization. Computers in Human Behavior, 20(1), 55-65.

Doering, A., Scharber, C., Miller, C., \& Veletsianos, G. (2009). GeoThentic: designing and assessing with technology, pedagogy, and content knowledge. Contemporary Issues in Technology and Teacher Education, 9(3), 316-336.

Eng, T. S. (2005).The impact of ICT on learning: A review of research. International Education Journal, 6(5), 635-650.

Ertmer P.A. (2005) "Teacher Pedagogical Beliefs: The Final Frontier in Our Quest for Technology Integration?". Educational Technology Research and Development, 53(4).
 http://eacea.ec.europa.eu/education/eurydice/documents/eurybase/eurybase_full repor ts/EL_EL.pdf

Eurydice (2001).Information and Communication Technology in European Education Systems. http://www.see-educoop.net/education_in/pdf/info_comm_eu_sys-oth-enlt05.pdf

Eurostat. (2005). The digital divide in Europe.
http://epp.eurostat.ec.europa.eu/cache/ITY_OFFPUB/KS-NP-05-038/EN/KS-NP-05-038-EN.PDF

Eurostat.(2009) Information society statistics at regional level. http://epp.eurostat.ec.europa.eu/statistics_explained/index.php/Information_society_st atistics_at_regional level

Frank, K., Zhao, Y., \& Borman, K. (2004). Social capital and the diffusion of innovations within organizations: The case of computer technology in schools. Sociology of Education 77(2), 148-171.

Fullan, M. (2001). Leading in a Culture of Change. San Francisco: Jossey-Bass.

Gabrielle, D. M. (2003). The effects of technology-mediated instructional strategies on motivation, performance, and self-directed learning.
http://etd.lib.fsu.edu/theses/available/etd-11142003-171019i.

Garrison, D. R. 1993: Quality and access in distance education: theoretical considerations. In: Keegan, D. (ed.): Theoretical Principles of Distance education. London/New York: Routledge.

Garrison, D. R. \& Kanuka, H. (2004). Blended Learning: Uncovering its Transformative Potential in Higher Education. The Internet and Higher Education, 7(2), 95-105.

Glaisyer, T. (2011). Sascha Meinrath to share Open Techology Initiative's perspective on the role of new media in Egypt and across the Middle East http://oti.newamerica.net/blogposts/2011/sascha meinrath to share open techology initiatives perspective_on_new_media_in egypt

Gülbahar, Y. (2007). Technology Planning: A Roadmap to Successful Technology Integration in Schools. Journal of Computers \& Education, 49, 943-956

Gulbahar, Y., \& Guven, I. (2008). A Survey on ICT Usage and the Perceptions of Social Studies Teachers in Turkey. Educational Technology \& Society, 11 (3), 37-51.

Gustin, S. (2011). Social Media Sparked, Accelerated Egypt's Revolutionary Fire. http://www.wired.com/epicenter/2011/02/egypts-revolutionary-fire/

Hays, D. (2007). ICT and Learning: Lessons from Australian classrooms. Computers and Education, 49, 385-395.

Hannafin, M. J., \& Land, S. M. (1997). The foundations and assumptions of technology-enhanced student-centred learning environments. Instructional Science, 25(3), 167-202.

Heafner, T. (2004). Using technology to motivate students to learn social studies. Contemporary Issues in Technology and Teacher Education [Online serial], 4(1). http://www.citejournal.org/vol4/iss1/socialstudies/article1.cfm

Hennessy, S., Deaney, R., Ruthven, K. \& Winterbottom, M. (2007) Pedagogical strategies for using the interactive whiteboard to foster learner participation in school science. Learning, Media and Technology,

32(3), 283-301.

Hermans, R.J.,Tondeur, J. van Braak, M. Valcke (2008) The impact of primary school teachers' educational beliefs on the classroom use of computers. Computers \& Education, 51,1499-1509.

Hodas, S. (1993). Technology Refusal and the Organizational Culture of Schools. Education Policy Analysis Archives 1(10) http://epaa.asu.edu/epaa/v1n10.html

Horst, M., Kuttschreuter, M. \& Gutteling, J. (2007). Perceived usefulness, personal experiences, risk perception and trust as determinants of adoption of e-government services in The Netherlands. Computers in Human Behavior, 23, 1838-1852.

Hung, Y.-W., \& Hsu, Y.-S.. (2007). Examining Teachers' CBT Use in the Classroom: A Study in Secondary schools in Taiwan. Educational Technology \& Society, 10 (3), 233-246.

Hsu, Y.-S., Wu, H.-K, \&Hwang. F.-K. (2007). Factors Influencing Junior High School Teachers' Computer-Based Instructional Practices Regarding Their Instructional Evolution Stages. Educational Technology \& Society, 10 (4), 118-130.

Jimoyiannis A. (2008). Factors determining teachers' beliefs and perceptions of ICT in education, in A. Cartelli \& M. Palma (eds.), Encyclopedia of Information Communication Technology, 321-334, Hershey, PA: IGI Global

Jimoyiannis A. \& Komis V. (2007). Examining teachers' beliefs about ICT in education: implications of a teacher preparation programme, Teacher Development, 11(2), 181-204

Jimoyiannis A. \& Komis V. (2006). Factors affecting teachers' views and perceptions of ICT in education, in P. Isaias, M. McPherson \& F. Banister (eds.), Proceedings of the IADIS International Conference e-Society 2006, Vol. I, 136-143, Dublin, Ireland

Jonassen D. H. (2000), Computers as mind tools for schools: engaging critical thinking, NJ: Prentice-Hall ($2^{\text {nd }}$ edition)

Kadijevich, D. (2000). Gender differences in computer attitucle among ninth -grade students. Journal of Educational Computing Research, 22(2) 145-154.

Kay, K. \& Honey, M. (2005). Beyond technology competency: A vision of ICT literacy to prepare students for the 21st century. The Institute for the Advancement of Emerging Charleston, W.V.: Evantia Technologies in Education.

Kraft, P. Rise J., Sutton, S. and. Røysamb, E. (2005). Perceived difficulty in the theory of planned behaviour: Perceived behavioural control or affective attitude? British Journal of Social Psychology, 44, 479-496

Kriek, J. \& Stols, G.H. (2010), Teachers' beliefs and their intention to use interactive simulations in their classrooms. South African Journal of Education, 30, 439-456.

Kukafka R, Johnson SB, Linfante A, Allegrante JP (2003). Grounding a new information technology implementation framework in behavioural science: a systematic analysis of the literature on IT use. Journal of biomedical informatics, 36(3), 218-227.

Kulik, J.A. (2003) Effects of using instructional technology in elementary and secondary schools: What controlled evaluation studies say.
http://www.sri.com/policy/csted/reports/sandt/it/

Kumar, N., Rose, R.C. \& D'Silva, L.J. (2008a). Teachers' Readiness to Use Technology in the Classroom: An Empirical Study. European Journal of Scientific Research, 21 (4), pp.603-616

Kumar, N., Rose, R.C. \& D'Silva, L.J. (2008b). A review on Factors Impinges Computer Usage in Education. Journal of Social Sciences, 4 (2), 146-157.

Kumar, R. (2008) Convergence of ICT and Education.World Academy of Science, Engineering and Technology, 40. http://www.waset.org/journals/waset/v40/v4095.pdf

Lave, J., \& Wenger, E. (1991). Situated learning: Legitimate peripheral participation. Cambridge, MA: Cambridge University Press.

Levin, T. and Wadmany, R. (2006) Teachers" Beliefs and Practices in Technologybased Classrooms: A Developmental View. Journal of Research on Technology in Education, 39, 2, 157-181.

Lim, C.P. \& Tay, L.Y. (2003). Information and Communication Technologies (ICT) in an Elementary School: Students' Engagement in Higher Order Thinking. Journal of Educational Multimedia and Hypermedia, Vol. 12, p425-451

Litterell, A.B., Zagumny, M.J. \& Zagumny, L.L. (2005), "Contextual and psychological predictors ofinstructional technology use in rural classrooms", Educational Research Quarterly, vol. 29, no. 2, pp. 37-47.

Looker, E.D., \& Thiessen, V. (2003). Beyond the digital divide in Canadian schools. From access to competency in the use of information technology. Social Science Computer Review, 21(4), 475-490.

Martinez, E. (1999). Boosting Public Understanding of Science and Technology in Developing Countries. Paper presented at World Conference on Science, 1999. http://www.nature.com/wcs/c16.html.

McHale, T (2005) "Portrait of a Digital Native" techLEARNING, Technology and Learning, U.S.A.
http://www.techlearning.com/story/showArticle.jhtml?articleID=170701917

Marshall, J. (2002). Learning with technology evidence that technology can, and does, support learning. http://www.medialit.org/reading_room/pdf/545

Mathews, J.G., \& Guarino, A.J. (2000). Predicting teacher computer use: a path analyses. International Journal of Instructional Media, 27(4), 385-392.

Mishra, P., \& Koehler, M. J. (2006). Technological Pedagogical Content Knowledge: A new framework for teacher knowledge. Teachers College Record 108 (6), 10171054.

Muir-Herzig, R. G. (2004). Technology and its impact in the classroom. Computer \& Education, 42, 111-131.

Mumtaz S. (2000), "Factors Affecting Teachers' Use of Information and Communications Technology: a review of the literacy", Journal of InformationTechnology for Teacher Education, 9, 3, 319-432.
www.informaworld.com

Norris, C., Smolka, J., \& Soloway, E. (2000). Extracting values from research: A guide for the perplexed. Technology and Learning, 20(11), 45-48.

Norris, C., Sullivan, T., Poirot, J., \& Soloway, E. (2003). No access, no use, no impact: Snapshot surveys of educational technology in K-12. Journal of Research on Teaching in Education, 36(1), 15-27.

Observatory for the Greek Information Society (2010). Measuring the i2010 indicators study. Research findings among schools.
http://www.observatory.gr/page/default.asp?la=2\&id=2101\&pk=161\&return=22

O'Dwyer, L.M., Russell. M., Bebell, D., \& Tucker-Seeley, K. (2005).
Examining the relationship between home and school computer use and students' English/language arts test scores. Journal of Technology, Learning, and Assessment, 3(3). http://www.jtla.org

OECD (2001). Learning to Change: ICT in Schools, Paris.

http://www.rhodes.aegean.gr/sxedia/ICTgroup NEMED/9601131E.pdf

Osborne, J. and Hennessy, S. (2003). Literature review in science education and the role of ICT: Promise, problems and future directions. A report for NESTA

Palloff, R., \& Pratt, K. (1999). Building learning communities in cyberspace: Effective strategies for the online classroom. San Francisco: Jossey-Bass.

Pajares, M. F. (1992) Teachers Beliefs and Educational Research: Cleaning Up a Messy Construct. Review of Educational Research 62, 307-332.

Pedersen, P. E. and Nysveen, H. (2003): Usefulness and self-expressiveness: extending TAM to explain the adoption of a mobile parking service, $16^{\text {th }}$ BLED eCommerce Conference - eTransformation, Bled, Slovenia, June 9-11.

Prensky, M (2001). "Digital Natives, Digital Immigrants, partII. Do They Really Think Differently " On the Horizon, Vol. 9 No. 6 December 2001, NCB University Press
http://www.marcprensky.com/writing/Prensky\ -
\%20Digital\%20Natives, \%20Digital\%20Immigrants\%20-\%20Part2.pdf

Riel, M., \& Becker, H. (2001). Teacher professional engagement and constructivistcompatible computer use. Report no.7, Teaching,learning and computing project. (http://www.crito.uci.edu/tlc/findings/report_7).

Rogers, E.M. (1995). Diffusion of Innovations, 4th ed., The Free Press, New York.

Rogers, L., \& Finlayson, H. (2004). Developing successful pedagogy with information and communications technology: how are science teachers meeting the challenge? Technology, Pedagogy and Education, 13(3), 287-305.

Roschelle, J., Pea, P., Hoadley, C., Gordin, D. \& Means, B. (2000) Changing How and What Children Learn in School with Computer-Based Technologies.
http://halshs.archives-
ouvertes.fr/docs/00/19/06/10/PDF/A103_Roschelle etal 01 Packard.pdf

Russell, A. L. (1996). Six stages in learning new technology. Retrieved September 13, 2004, http://mww.fed.qut.edu.au/russell/Stages. htm

Russell, M., Bebell, D., O'Dwyer , L., \& O’Connor, K. (2.003). Examining teacher technology use. Implications for preservice and inservice teacher preparation. Journal of Teacher Education, 54(4), 297-310.

Salmon, G. (2004). E-Moderating: The key to Teaching and Learning Online, London: Routledge.

Salmon, G. (2005), 'Flying not flapping: a strategic framework for e-learning and pedagogical innovation in higher education institutions', ALT-J Research in Learning and Technology, vol. 13, no. 3, pp. 201-18.

Sang, G. , Valcke, M., van Braak, J \&, Tondeur, J. (2009). Student Teachers' Thinking Processes and ICT Integration: Predictors of Prospective Teaching Behaviors with Educational Technology, Computers and Education, 54(1), 103-112.

Selwyn, N. (2007) 'The use of computer technology in university teaching and learning: a critical perspective' Journal of Computer Assisted Learning, 23, 2, pp.8394

Schacter, J. (1999). The impact of educational technology on student achievement: What the most current research has to say. Santa Monica, CA: The Milken Exchange on Education Technology http://www.mff.org/pubs/ME161.pdf

Shi, M., \& Bichelmeyer, B. A. (2007). Teachers' experiences with computers: A comparative study. Educational Technology \& Society, 10 (2), 180-190.

Snoeyink, R., Ertmer, P. (2001). Thrust into technology: how veteran teachers respond. Journal of Educational Technology Systems, 30 (1), 85-111.

Siragusa, L. \& Dixon, K. (2008). Planned behaviour: Student attitudes towards the use of ICT interactions in higher education. In Hello! Where are you in the landscape of educational technology? Proceedings ascilite Melbourne 2008. http://www.ascilite.org.au/conferences/melbourne08/procs/siragusa.pdf

Sivin-Kachala, J., \& Bialo, E. R.. (2000). 2000 research report on the effectiveness of technology in schools, $7^{\text {th }}$ Edition. Prepared for Software Information Industry Association. http://www.sunysuffolk.edu/Web/Central/InstTech/projects/iteffrpt.pdf

Stavropoulos, N. \& Moschona, T. (2007). The Usage of Information and Communication Technologies (ICT) in Greece 2002-2006. The Conference for the Contribution of Information Technology to Science, Society and Education.

Sugar, W., Crawley, F., \& Fine, B. (2004). Examining teachers' decisions to adopt new technology. Educational Technologyand Society, 7 (4), 201-213.

Talja S. (2005), "The Social and Discursive Construction of Computing Skills", Journal of the American Society for Information Science and' Technology, 56, (1), 13 -22.

Tearle, P. (2003). ICT Implementation: What Makes the Difference? British Journal of Educational Technology, 34 (5), 403-417.

Teo, T. (2009). Examining the relationship between student teacher's selfeficacy beliefs and their intended uses of technology for teaching: A structural equation approach. The Turkish Online Journal of Educational Technology ,volume 8, Issue 4, Article I

Teo, T. (2008). Pre-service teachers' attitude towards computer use: a Singa-pore survey. Australasian J. Educational Technology, 24, 413-424.

Toledo, C. (2005). A five-stage model of computer technology integration into teacher education curriculum. Contemporary Issues in Technology and Teacher Education, 5 (2), 177-191.

Tondeur, J., Van Braak, J. \& Valcke. (2007) Towards a typology of computer use in primary education. Journal of Computer Assisted Learning, 23 (3), 197-206

Tondeur, J., Hermans, R., Van Braak, J. and Valcke, M. (2008) Exploring the link between teachers" educational beliefs profiles and different types of computer use in the classroom. Computers in Human Behavior 24, 6, 2541-2553.

Tinio, V.L. (2003), ICT in Education. http://www.apdip.net/publications/iespprimers/eprimer-edu.pdf

Unesco. ICT in Education. http://www.unesco.org/new/index.php?id=19142\&L=0

Unesco (1999). New Directions of ICT-Use in Education http://www.unesco.org/education/educprog/lwf/dl/edict.pdf
van Braak, J., Tondeur, J., \& Valcke, M. (2004). Explaining different types of computer use among primary school teachers. European Journal of Psychology of Education, 19(4), 407-422.

Vanderline, R., \& van Braak, J. (2010). The e-capacity of primary schools: Development of a conceptual model and scale construction from a school improvement perspective. Computers \& Education, 55, 541-553.

Veen W. (1993), "How Teachers Use Computers in Instructional Practice: four case studies in a Dutch secondary school", Computers and Education, 22, 1-8.

Venkantesh, V., Morris, M. G., Davis, G. B., \& Davis, F. D. (2003). User acceptance of information technology: toward a unified view. MIS Quarterly, 27(3), 425-478.

Vosniadou, S., \& Kollias, V. (2001). Information and communication technology and the problem of teacher training: Myths, dreams and harsh reality. Themes in Education, 2(4), 341-365.

Vrasidas, C. (2010). Why Don't Teachers Adopt Technology? A Survey of Teachers' Use of ICT in the Republic of Cyprus. Elearning Magazine.
http://www.elearnmag.org/subpage.cfm?section=case_studies\&article=46-1.

Vygotsky,. (1998). O vovৎ $\sigma \tau \eta v$ кolv $\omega v i \alpha . \mu \tau \varphi \rho$. A. M $\pi i \mu \pi \sigma \nu$, A $\theta \dot{\eta} v \alpha: G u t e n b e r g$.
Watson, D. (2006). Understanding the relationship between ICT and education means exploring innovation and change. Education and Information Technologies, 11(3-4), 199-216.

Wong, E. M. L., Li, S. S. C., Choi, T.-H., \& Lee, T. N. (2008). Insights into innovative Classroom Practices with ICT: Identifying the Impetus for Change. Educational Technology \& Society, 11 (1), 248-265.

Wong A. K., Chan, K-W., \& Lai, P-Y. (2009). Revisiting the relationships of epistemic beliefs and conceptions about teaching and learning of pre-service teachers in Hong Kong. The Asia-Pacific Education Researcher, 18(1), 1-19.

World Bank (1998) The world Development Report 1998/99.

Zhao, Y. and Bryant, F. L. (2006). Can Teacher Technology Integration Training Alone Lead to High Levels of Technology Integration? A Qualitative Look at Teachers' Technology Integration after State Mandated Technology Training. Electronic Journal for the Integration of Technology in Educalion, 5, 53-62.

 Па́т ρ, , 95-104

 163-172.

 $E \lambda \lambda \alpha \dot{\alpha} \delta \alpha$. http://www.epe.org.gr/meleth/final/MEP2006.pdf

ЕПІТРОПН ГТРАТНГІКНГ ГIA THN ПАНРОФОРІКН ГTHN EKПАIДEYГH (2003). Мє $1 \varepsilon \varepsilon \tau \eta \gamma_{1 \alpha} \tau \eta \delta \iota \delta \alpha \sigma \kappa \alpha \lambda i ́ \alpha ~ \tau \eta \varsigma ~ \pi \lambda \eta \rho о \varphi о \rho ı к \eta ́ \varsigma ~ \sigma \tau \eta ~ \Delta \varepsilon v \tau \varepsilon \rho о \beta \alpha ́ \theta \mu \mu \alpha$

WWW.OBSERVATORY.GR/FILES/MELETES/PLIREKP1R-FINAL1.DOC

http://ec.europa.eu/publications/booklets/move/36/el.doc
 $\mu \varepsilon \pi \varsigma$ Т.П.Е. : $\mu \iota \alpha \pi \rho о ́ \tau \alpha \sigma \eta ~ \delta \iota \delta \alpha \sigma \kappa \alpha \lambda i \alpha \varsigma », T \alpha \varepsilon к \pi \alpha \iota \delta \varepsilon v \tau \iota \kappa \alpha \dot{\alpha}, 9-18$.

 Еклаídєvбๆ, 115.

 $\Theta \varepsilon ́ \mu \alpha \tau \alpha ~ \sigma \tau \eta v$ Eклаíбєvбך, 4(2), 267-289.

 тпऽ П П η рочорíaऽ. Http://www.observatory.gr/files/meletes/

Kıvпүós X \& $\Delta \eta \mu a \rho \alpha ́ к \eta ~ E . ~(2002), ~ N o \eta \tau ı к \alpha ́ ~ \varepsilon \rho \gamma \alpha \lambda є i ́ \alpha ~ к \alpha ı ~ \pi \lambda \eta \rho о \varphi о \rho ı \alpha к \alpha ́ ~$

 Паллá.

$\Delta \rho o ́ \sigma o \varsigma, ~ B . ~ \& ~ K u \rho i ́ \delta \eta \varsigma, ~ A . ~(2000) . ~ « П \rho о \beta \lambda \eta ́ \mu \alpha \tau \alpha ~ к \alpha \tau \alpha ́ ~ \tau \eta ~ \chi \rho \eta ́ \sigma \eta ~ \tau o v ~ \Delta ı \alpha \delta ı \kappa \tau v ́ o v ~ \sigma \tau о ~$

M $\alpha \lambda \varepsilon ́ \tau \sigma \kappa о \varsigma, ~ A . ~ П \varepsilon v \varepsilon ́ к \varepsilon \lambda \eta \varsigma, ~ K . . ~ Z i ́ \kappa o \varsigma, ~ Z . ~ М \pi \lambda ı ı v ́ \mu \eta ~ E ., ~ P \alpha \rho \rho \alpha ́ ~ E . ~(2009) ~ A v \tau i \lambda \eta ́ \psi \varepsilon ı \varsigma ~$

 $\kappa \alpha \iota ~ X \rho \dot{\eta} \sigma \eta \tau \omega v$ TПE $\sigma \tau \eta v$ Eклаı $\delta \varepsilon v \tau \imath \kappa \eta ́ ~ \triangle ı \alpha \delta ı \kappa \alpha \sigma i ́ \alpha » ~ B o ́ \lambda о \varsigma . ~$ http://www.etpe.gr/files/proceedings

 TПE бтףv Eклаídعvбך», то́цоৎ II, б. 199-206

М $\alpha \rho \kappa о ́ \pi о v \lambda о \varsigma, ~ I . ~ к а ı ~ \Lambda о v \rho ı \delta \alpha ́ \varsigma, ~ П . ~(2010) . ~ К \rho ı \tau ı к \dot{\eta} \pi \rho с \sigma \varepsilon ́ \gamma \gamma \imath \sigma \eta ~ v \varepsilon ́ \omega v ~ к \alpha v o ́ v \omega \nu$

 $\sigma \tau \eta v \quad$ Eклаı $\delta \varepsilon v \tau \iota \kappa \eta \quad \Delta ı \alpha \delta ı \kappa \alpha \sigma i ́ \alpha »$ http://www.etpe.gr/files/proceedings/27/1305145200_1-0545.pdf

М $\pi \alpha \beta \varepsilon \lambda \eta ́ \varsigma, ~ А . ~(2010) . ~ O ı ~ v \varepsilon ́ \varepsilon \varsigma ~ \tau \varepsilon \chi v o \lambda о \gamma i \varepsilon \varsigma ~ \sigma \tau \eta \nu ~ \varepsilon к \pi \alpha \iota \delta \varepsilon v \sigma \eta . ~ П \rho о \beta \lambda \eta ́ \mu \alpha \tau \alpha ~ к \alpha ı ~$ $\pi \rho о о \pi \tau \iota \kappa \varepsilon$.http://www.inarcadia.gr/news/arthra/ekpaid/neestexnol.pdf

 $\Delta ı \alpha \delta_{\imath \kappa \alpha \sigma i \alpha}$.

 $\Sigma \chi \varepsilon \delta \iota \alpha \sigma \mu о ́ \varsigma ~ \pi \rho о \gamma \rho \alpha ́ \mu \mu \alpha \tau о \varsigma ~ \delta \iota \alpha \rho \kappa о v ́ \varsigma ~ \varepsilon \pi \iota \mu о ́ \rho \varphi \omega \sigma \eta \varsigma ~ \tau \omega v ~ \varepsilon к \pi \alpha \imath \delta \varepsilon v \tau \imath \kappa \omega ́ v ~ \alpha \pi o ́ ~ \alpha \pi о ́ \sigma \tau \alpha \sigma \eta$, $\mu \varepsilon$ ßáбך $\delta \varepsilon \delta о \mu \varepsilon ́ v \alpha ~ \varepsilon ́ \rho \varepsilon v v a \varsigma ~ \alpha \pi o ́ ~ \tau \rho \varepsilon ́ \chi о v \sigma \alpha ~ \varepsilon \pi г \mu o ́ \rho \varphi \omega \sigma \eta ~ \sigma \pi ı \varsigma ~ T \varepsilon \chi v o \lambda o \gamma i \varepsilon \varsigma ~ \tau \eta \varsigma ~$

 इóүұроvך Eкпаídєvбๆ, 104, 80-102

 Eклаíd\&vбך» http://www.etpe.gr/files/proceedings/26/1286257827_89.pdf

 http://www.etpe.gr/files/proceedings/uploads/eisigisi1.pdf

$\tau \eta \varsigma ~ E \pi \imath \kappa о \imath v \omega v i \alpha \varsigma ~ \sigma \tau \eta v ~ E \kappa \pi \alpha i \delta \varepsilon v \sigma \eta » ~(\sigma . ~ 583-592), ~ . . \alpha ́ \tau \rho \alpha: ~ Е к \delta o ́ \sigma \varepsilon ı \zeta ~ N \varepsilon ́ \omega v ~$

Рáл $\tau \eta \varsigma, ~ А . ~(2009) . ~ H ~ к \alpha \theta v \sigma \tau \varepsilon \rho \eta \mu \varepsilon ́ v \eta ~ к \alpha l ~ \sigma \tau \rho \varepsilon \beta \lambda \eta \dot{\eta} ~ \varepsilon l \sigma \alpha \gamma \omega \gamma \eta \dot{\eta} \tau \omega v ~ T П E ~ \sigma \tau \eta v$
 $\pi \alpha \iota \delta \alpha \gamma \omega \gamma \iota \kappa \dot{\omega} v \varepsilon \varphi \circ \delta i \omega v$. http://www.adraptis.com/araptis/node/23

 Kópıv日os.

 П⿱́át $\rho \alpha$. http://www.etpe.gr/files/proceedings/27/1305146871_1-0837.pdf

 http://www.etpe.gr/extras/view_proceedings.php?conf_id=12

 99-111.

 тоvऽ, $\sigma \tau о ~ М . ~ Г \rho \eta \gamma о \rho ı ́ \alpha ́ \delta o v ~(\varepsilon \pi \tau \mu),. ~ П \rho \alpha к \tau ı к \alpha ́ ~ 4 o v ~ П \alpha v \varepsilon \lambda \lambda \eta ́ v ı o v ~ \Sigma v v \varepsilon \delta \rho i o v ~ \mu \varepsilon ~ \Delta ı \varepsilon \theta v \eta ́ ~$

 $\Delta \alpha \delta \lambda \lambda \varepsilon ́ \lambda \eta \varsigma_{S}^{(\varepsilon \pi \mu \mu .), ~ П \rho \alpha к \tau \iota \kappa \alpha ́ ~ \tau o v ~ 5 o v ~ П а v \varepsilon \lambda \lambda \eta v i o v ~ \Sigma v v \varepsilon \delta \rho i o v ~ « O l ~ T I I E ~ \sigma \tau \eta v ~}$

 Екпаídzvбๆ, 5 (Г)

П $\alpha \rho \dot{\rho} \rho \tau \eta \mu \alpha:$ То Е $\rho \omega \tau \eta \mu \alpha \tau о \lambda о ́ \gamma \iota о$

ПANEПİTHMIO ПEへOMONNHEOY

TMHMA KOINONIKH亡 \＆EKПAIDEYTIKH乏 ПOAITIKH亡
Аүапптє́c／oi $\sigma u v \alpha ́ \delta \varepsilon \lambda \phi о$ ，

 практькй．

E1 「uムváoto：．．．．．．．．．．．．．．．．．．．．．．．．
E2 Фú入o：．．．．．．．．．．．．．．．．．．．．．．．．．．．（Avסpa̧，Гuvaiка）
E3 Elסıкótๆта：．．．．．．．．．．．．．．．．．．．．．．．．．．．．
E4 H 4 ıкi α
Méxpı 30
31－40
41－50
51－60

$1-5$	$6-10$	$11-15$	$16-20$	$21-25$	$26-30$	30 каl ávに

 \qquad （NAI，OXI）
 \qquad （NAI，OXI）
 \qquad （NAI，OXI）

Kaध̛ó̀ou \quad Inávia 1 بорá tqv $\varepsilon 8 \delta о \mu \dot{\alpha} \delta \alpha$

60 к α óvo ω

 $\pi \rho о \sigma \omega \pi เ \kappa \varepsilon ́ \varsigma ~ к \alpha เ ~ \varepsilon \pi \alpha ү ү \varepsilon \lambda \mu \alpha \pi เ \kappa \varepsilon ́ \varsigma ~ \sigma \alpha \varsigma ~ \alpha v \alpha ́ ү к \varepsilon \varsigma ;$

K $\alpha \mu i \alpha$	$\chi \alpha \mu \eta \lambda \dot{\square}$		Kalir	Aplotn
\square	\square	\square	\square	\square

 twitter к. λ п.;

$\Delta \iota \alpha \varphi \omega v \dot{\omega}$	$\Delta \iota \alpha \omega \nu \omega \dot{\mu} \mu \varepsilon$ $\varepsilon \pi \iota \varphi \dot{u} \lambda \alpha \xi \eta$ \square	$\Delta \varepsilon v \dot{\varepsilon} \chi \omega$ алочабібеı \square	$\Sigma \nu \mu \varphi \omega v \dot{\omega} \mu \varepsilon$ $\varepsilon \pi \iota \varphi \dot{\lambda} \lambda \alpha \xi \eta$ \square	$\Sigma u \mu \varphi \omega v \dot{\omega}$
$\Delta \iota \alpha \varphi \omega v \dot{\omega}$	$\Delta ı \alpha \omega v \dot{\omega} \mu \varepsilon$ єпьчú入а૬п \square	$\Delta \varepsilon v \dot{\varepsilon} \chi \omega$ алочабібєь	$\Sigma \nu \mu \varphi \omega v \dot{\omega} \mu \varepsilon$ عпичúд $\alpha \xi \eta$ \square	$\Sigma u \mu \varphi \omega v \dot{\omega}$

$\Delta \iota \alpha \varphi \omega v \dot{\omega}$	$\Delta \iota \alpha \varphi \omega v \dot{\omega} \mu \varepsilon$	$\Delta \varepsilon v \dot{\varepsilon} \chi \omega$	$\sum \cup \mu \varphi \omega \nu \dot{\omega} \mu \varepsilon$	$\sum \nu \mu \varphi \omega v \dot{\omega}$
\square	$\varepsilon \pi \iota \varphi \dot{\lambda} \lambda \alpha \xi \eta$	$\alpha \pi о \varphi \alpha \sigma \sigma \varepsilon \iota$	$\varepsilon \pi \iota \varphi \dot{\lambda} \lambda \alpha \xi \eta$	\square

 ท́ $\lambda о ү เ \sigma \mu$ ккผ́v.

 $\Delta ı \alpha \delta$ ıкúou.

 $\Delta ı \alpha \varphi \omega v a$

$\Delta \varepsilon v \dot{\varepsilon} \chi \omega$
$\Sigma \nu \mu \varphi \omega \nu \dot{\omega} \mu \varepsilon$ єпичúえа§ η
$\Sigma u \mu \varphi \omega v \dot{\omega}$ апочабібєı
$\Delta \iota \sigma \dot{\alpha} \zeta \omega$ va xpŋot

$\Delta \iota \alpha \varphi \omega v \dot{\omega}$	$\Delta \iota \alpha \varphi \omega v \dot{\omega} \mu \varepsilon$	$\Delta \varepsilon v \varepsilon ́ \chi \omega$	$\sum u \mu \varphi \omega v \dot{\omega} \mu \varepsilon$	$\Sigma u \mu \varphi \omega v \dot{\prime}$
\square	$\varepsilon \pi \iota \varphi \dot{\lambda} \lambda \alpha \xi \eta$	$\alpha \pi о \varphi \alpha \sigma i \sigma \varepsilon!$	$\square \pi \iota \varphi \dot{\lambda} \lambda \xi \eta$	\square

 лроєтоเцабі α каเ лроола́Өєเа.

$\Delta \iota \alpha \varphi \omega v \dot{\omega}$	$\Delta \iota \alpha \varphi \omega v \dot{\omega} \mu \varepsilon$	$\Delta \varepsilon v \varepsilon \dot{x} \omega$	$\sum \cup \mu \varphi \omega v \dot{\omega} \mu \varepsilon$
\square	$\varepsilon \pi \iota \varphi \dot{\lambda} \alpha \xi \eta$	$\alpha \pi о \varphi \alpha \sigma i \sigma \varepsilon \iota$	$\varepsilon \pi \iota \varphi \dot{\lambda} \alpha \xi \eta$

$\Delta \iota \alpha \varphi \omega v \dot{\omega}$	$\Delta \iota \alpha \varphi \omega v \dot{\omega} \mu \varepsilon$	$\Delta \varepsilon v \dot{\varepsilon} \chi \omega$	$\sum u \mu \varphi \omega v \dot{\omega} \mu \varepsilon$	$\Sigma u \mu \varphi \omega v \dot{\omega}$
\square	$\varepsilon \pi \iota \varphi \dot{\lambda} \lambda \alpha \xi \eta$	$\alpha \pi \sigma \varphi \alpha \sigma i \sigma \varepsilon \iota$	$\square \pi \iota \varphi \dot{\lambda} \lambda \alpha \xi \eta$	\square

$\Delta ı \alpha \varphi \omega v \dot{\omega}$

$\Delta \iota \alpha \varphi \omega \nu \dot{\omega} \mu \varepsilon$	$\Delta \varepsilon v \dot{\varepsilon} \chi \omega$
$\varepsilon \pi \iota \varphi \dot{\lambda} \lambda \alpha \xi \eta$	$\alpha \pi о \varphi \alpha \sigma i \sigma \varepsilon \iota$

$\begin{array}{cc}\Sigma u \mu \varphi \omega v \omega \dot{\omega} \mu \varepsilon & \Sigma u \mu \varphi \omega v \dot{\omega} \\ \varepsilon \pi \iota \varphi \dot{\lambda} \lambda \alpha \xi \eta & \square\end{array}$

$\Delta \iota \alpha \varphi \omega v \dot{\omega} \quad \Delta ı \alpha \varphi \omega v \dot{\omega} \mu \varepsilon$ $\varepsilon \pi \iota \varphi \cup ் \lambda \alpha \xi \eta$

$\Delta ı \alpha \varphi \omega v \dot{\omega}$	$\Delta \iota \alpha \varphi \omega v \omega \dot{\mu} \mu \varepsilon$	$\Delta \varepsilon v \dot{\varepsilon} \chi \omega$	$\Sigma \cup \mu \varphi \omega v \omega \dot{\mu} \mu \varepsilon$	$\Sigma \cup \mu \varphi \omega v \dot{1}$
\square	$\varepsilon \pi \iota \varphi \dot{\chi} \lambda \alpha \xi \eta$	$\alpha \pi о \varphi \alpha \sigma i \sigma \varepsilon \iota$	$\varepsilon \pi \iota \varphi \dot{\lambda} \lambda \alpha \leqslant \eta$	\square
	\square	\square	\square	

$\Delta \iota \alpha \varphi \omega v \dot{\omega}$
$\Delta ı \alpha \varphi \omega v \dot{\omega} \mu \varepsilon$
$\varepsilon \pi \iota \varphi \cup \dot{\lambda} \alpha \xi \eta$
$\Delta \varepsilon v \dot{\varepsilon} \chi \omega$
$\alpha \pi о \varphi \alpha \sigma i \sigma \varepsilon t$
$\sum \cup \mu \varphi \omega \nu \dot{\omega} \mu \varepsilon$
$\varepsilon \pi \iota \varphi \dot{\lambda} \lambda \alpha \xi \eta$
$\Sigma \cup \mu \varphi \omega v \dot{\omega}$
\square عпเчú入 $\square \xi \eta$

$\Delta \iota \alpha \varphi \omega v \dot{\omega}$	$\Delta \iota \alpha \varphi \omega v \dot{\omega} \mu \varepsilon$	$\Delta \varepsilon v \dot{\varepsilon} \chi \omega$	$\sum \cup \mu \varphi \omega v \dot{\omega} \mu \varepsilon$	$\Sigma \cup \mu \varphi \omega v \dot{\omega}$
\square	$\varepsilon \pi \iota \varphi \dot{\lambda} \lambda \alpha \xi \eta$	$\alpha \pi о \varphi \alpha \sigma i \sigma \varepsilon \iota$	$\square \pi \iota \varphi \dot{\lambda} \alpha \xi \eta$	\square

 $\Delta \iota \alpha \varphi \omega v \dot{\prime}$

$\Delta \varepsilon \vee \varepsilon \dot{\chi} \omega$ $\alpha \pi о \varphi \alpha \sigma і \sigma \varepsilon \iota$
$\Sigma u \mu \varphi \omega v \dot{\omega} \mu \varepsilon$
$\varepsilon \pi \iota \varphi \cup \dot{\lambda} \alpha \xi \eta$
$\Sigma u \mu \varphi \omega v \omega ́$ $\varepsilon \pi เ \varphi \dot{\lambda} \alpha \propto \eta$

$\Delta t \alpha \varphi \omega v \dot{\omega} \mu \varepsilon$
$\varepsilon \pi \iota \varphi \dot{\lambda} \lambda \alpha \xi \eta$
$\Delta \varepsilon v \varepsilon ́ \chi \omega$
$\alpha \pi о \varphi \alpha \sigma i \sigma \varepsilon \iota$
$\Sigma \nu \mu \varphi \omega v \dot{\omega} \mu \varepsilon$
$\sum u \mu \varphi \omega v \dot{\omega}$

$\Delta \iota \alpha \varphi \omega v \dot{\omega}$	$\Delta \iota \alpha \varphi \omega v \dot{\omega} \mu \varepsilon$	$\Delta \varepsilon v \dot{\varepsilon} \chi \omega$	$\sum u \mu \varphi \omega v \dot{\omega} \mu \varepsilon$	$\Sigma \pi \mu \varphi \omega v \dot{\omega}$
\square	$\varepsilon \pi \iota \varphi \dot{\lambda} \lambda \alpha \xi \eta$	$\alpha \pi \sigma \varphi \alpha \sigma i \sigma \varepsilon i$	\square	\square

$\Delta l \alpha \varphi \omega v \dot{\omega}$	$\Delta \iota \alpha \varphi \omega \nu \dot{\omega} \mu \varepsilon$	$\Delta \varepsilon v \varepsilon \dot{\varepsilon} \chi \omega$	$\Sigma u \mu \varphi \omega v \dot{\omega} \mu \varepsilon$	$\Sigma u \mu \varphi \omega v \dot{\omega}$
\square	$\varepsilon \pi \iota \varphi \dot{\lambda} \lambda \xi \xi \eta$	$\alpha \pi \sigma \varphi \alpha \sigma i \sigma \varepsilon \iota$	$\square \pi \iota \varphi \dot{\lambda} \lambda \alpha \xi \eta$	\square

$\Delta \iota \alpha \varphi \omega v \dot{\omega}$	$\Delta \iota \alpha \varphi \omega v \dot{\omega} \mu \varepsilon$	$\Delta \varepsilon v \dot{\varepsilon} \chi \omega$	$\Sigma u \mu \varphi \omega v \dot{\omega} \mu \varepsilon$	$\Sigma u \mu \varphi \omega v \dot{\omega}$
\square	$\varepsilon \pi \iota \varphi \dot{\lambda} \lambda \xi \eta$	$\alpha \pi о \varphi \alpha \sigma i \sigma \varepsilon \iota$	$\varepsilon \pi \iota \varphi \dot{\lambda} \lambda \alpha \xi \eta$	\square

$\Delta ı \alpha \varphi \omega v \dot{\omega}$	$\Delta \iota \alpha \varphi \omega v \dot{\mu} \mu \varepsilon$	$\Delta \varepsilon v \dot{\varepsilon} \chi \omega$	$\Sigma u \mu \varphi \omega v \dot{\omega} \mu \varepsilon$	$\Sigma u \mu \varphi \omega v \dot{\omega}$
\square	$\varepsilon \pi \iota \varphi \dot{\lambda} \lambda \alpha \xi \eta$	$\alpha \pi о \varphi \alpha \sigma i \sigma \varepsilon \iota$	$\varepsilon \pi \iota \varphi \dot{u} \lambda \alpha \xi \eta$	\square

$\Delta \iota \alpha \varphi \omega v \omega \dot{~}$	$\Delta \iota \alpha \varphi \omega v \dot{\omega} \mu \varepsilon$	$\Delta \varepsilon v \dot{\varepsilon} \chi \omega$	$\Sigma u \mu \varphi \omega v \dot{\omega} \mu \varepsilon$	$\Sigma u \mu \varphi \omega v \dot{\omega}$

 $\alpha \pi \alpha i t \eta \sigma \eta ~ \alpha \pi o ́ ~ \varepsilon \mu \varepsilon ̇ v \alpha ~ v \alpha ~ \chi р \eta \sigma ı \mu о п о เ \omega ́ ~ T П E ~ \sigma \tau о ~ \mu \dot{\alpha} \theta \eta \mu \alpha \mu o u$.

$\Delta ı \alpha \varphi \omega v \dot{\omega}$	$\Delta \iota \alpha \varphi \omega \nu \dot{\omega} \mu \varepsilon$	$\Delta \varepsilon v \dot{\varepsilon} \chi \omega$	$\Sigma u \mu \varphi \omega v \dot{\omega} \mu \varepsilon$	$\Sigma u \mu \varphi \omega v \dot{\omega}$
\square	$\varepsilon \pi \iota \varphi \dot{u} \lambda \alpha \xi \eta$	$\alpha \pi о \varphi \alpha \sigma i \sigma \varepsilon \iota$	$\square \pi \iota \varphi \dot{\lambda} \lambda \alpha \xi \eta$	\square

$\Delta \iota \alpha \varphi \omega v \dot{\omega}$	$\Delta \iota \alpha \varphi \omega v \dot{\omega} \mu \varepsilon$	$\Delta \varepsilon v \dot{\varepsilon} \chi \omega$	$\sum \nu \mu \varphi \omega v \dot{\omega} \mu \varepsilon$	$\sum u \mu \varphi \omega v \dot{\omega}$
\square	$\varepsilon \pi \iota \varphi \dot{u} \lambda \alpha \xi \eta$	$\square \pi \sigma \varphi \alpha \sigma i \sigma \varepsilon l$	$\square \pi \iota \varphi \dot{1} \lambda \xi \eta$	\square

$\Delta \iota \alpha \varphi \omega v \dot{\omega}$	$\Delta \iota \alpha \varphi \omega v \dot{\omega} \mu \varepsilon$	$\Delta \varepsilon v \dot{\varepsilon} \chi \omega$	$\sum u \mu \varphi \omega v \dot{\omega} \mu \varepsilon$	$\Sigma u \mu \varphi \omega v \dot{\omega}$
\square	$\varepsilon \pi \iota \varphi \dot{\lambda} \lambda \alpha \xi \eta$	$\alpha \pi \sigma \varphi \alpha \sigma i \sigma \varepsilon \iota$	$\varepsilon \pi \iota \varphi u ́ \lambda \alpha \xi \eta$	\square

$\Delta \iota \alpha \varphi \omega v \dot{\omega}$	$\Delta \iota \alpha \varphi \omega v \dot{\omega} \mu \varepsilon$	$\Delta \varepsilon v \dot{\varepsilon} \chi \omega$	$\sum \nu \mu \varphi \omega v \dot{\omega} \mu \varepsilon$	$\varepsilon \mu \mu \varphi \omega v \dot{\omega}$
\square	$\varepsilon \pi \iota \varphi \dot{\lambda} \lambda \alpha \xi \eta$	$\alpha \pi \sigma \varphi \alpha \sigma i \sigma \varepsilon \iota$	\square	

$\Delta ı \alpha \varphi \omega v \dot{\omega}$	$\Delta ı \alpha \varphi \omega v \dot{\omega} \mu \varepsilon$	$\Delta \varepsilon v \dot{\varepsilon} \chi \omega$	$\Sigma \nu \mu \varphi \omega \nu \dot{\omega} \mu \varepsilon$	$\Sigma \cup \mu \varphi \omega v \dot{\prime}$
\square	$\varepsilon \pi \iota \varphi \dot{\cup} \lambda \lambda \alpha \xi \eta$	$\alpha \pi о \varphi<\sigma i \sigma \varepsilon \iota$	$\left.\varepsilon \pi \iota \varphi \cup \dot{~}{ }^{\square} \alpha\right\} \eta$	佰
	\square	\square	\square	

$\Delta \iota \alpha \varphi \omega v \dot{\omega}$	$\Delta \iota \alpha \varphi \omega v \dot{\omega} \mu \varepsilon$	$\Delta \varepsilon v \dot{\varepsilon} \chi \omega$	$\sum u \mu \varphi \omega v \dot{\omega} \mu \varepsilon$	$\sum u \mu \varphi \omega v \dot{\omega}$
\square	$\varepsilon \pi \iota \varphi \dot{\lambda} \alpha \xi \eta$	$\alpha \pi о \varphi \alpha \sigma i \sigma \varepsilon \iota$	$\varepsilon \pi \iota \varphi \dot{\lambda} \lambda \alpha \xi \eta$	\square

[^0]:

