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Abstract

lack Sea (BS) is an important ecosystem, which is affected by various anthro-
B pogenic pressures, such as shipping activities, wastewater inputs from large
coastal cities and most importantly loads by major rivers (e.g., Danube, Dniester,
Dnieper). The chemical pollution that rivers transfer to the BS is significant consid-
ering that the Danube river alone discharges 6,550 m® /s to the BS. This study focuses
on the Ukrainian shelf (the northwestern part of the Black Sea) and investigates the
river sources of chemicals in the shelf. To achieve this objective, data generated by
the Joint Black Sea Surveys (JBSS) was used. JBSS took place in 2016 and 2017 in
context of the EU/UNDP EMBLAS II project (www.emblasproject.org). During the
JBSS campaign, seawater samples were collected, extracted and analyzed by high-
throughput analytical methods such as liquid chromatography high-resolution mass
spectrometry (LC-HRMS). The analysis resulted in data, which was processed using
open-source algorithms to generate a dataset with the detected chemical signals and
their intensity in the sampling stations. The dataset was used to generate images,
representing the spatial distribution of the signals. The figures were then used as an
input to a deep learning convolutional neural network classification model. The aim
of the study was to create an end-to-end solution for the estimation of the pollution
potential of the major contributing rivers (Dnieper and Danube) in the Ukrainian
shelf. Finally, a dashboard to facilitate data visualization and results’ evaluation
was built. The generation of such models can also serve to the prioritization of

unknown chemical signals, which is the key for non-target screening.
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Chapter 1

Introduction

The first report on the occurrence of organic contaminants of emerging concern
(CECs) in the marine aquatic environment dates back to 1987 [1]. From very early,
researchers recognized the importance of source detection. Chemicals may enter the
marine environment from many anthropogenic sources such as agriculture surface
run-offs [2], aquaculture [3], discharges from wastewater treatment plants [4], emis-
sions from shipping activity [5], harbor activities [6], manufacture and construction
[7]. A major source for many chemicals in the marine environment is the rivers [8—
10]. The rivers transfer chemical pollution from urban settlements, manufacturing
and agricultural regions to the marine environment [11]. For example, the Black Sea
receives significant riverine inputs from rivers, especially Danube (average annual
discharge of 6550 m?/s) [12], Dnieper (average annual discharge 1670 m?/s) [13] and

Dniester (average annual discharge 310 m?/s) [14].

1.1 Problem description

Tracing sources involve appropriate design and execution of sampling campaigns
at gradient distances from the sources [4, 8, 9, 15, 16] and use of appropriate statis-
tical tests. The most commonly used approaches involve the use of principal com-
ponent analysis (PCA) [15, 17-23] and linear regression between the concentration
levels and salinity [4, 8, 10, 15, 24, 25]. Other less widely used approaches involve
the application of pair-wise correlation analysis [22], OPLS-DA [23], PCA-MLR [26],
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network analysis and decision trees [27] among others.

The majority of the marine studies reporting the occurrence of CECs attempt
source detection or discuss potential origins of the chemical pollution but focus on
specific classes of CECs using quantitative determinations through target screen-
ing, where reference standards are available [26, 28]. However, target screening is
based on the preselection of certain contaminants and the use of reference stan-
dards and cover only a small proportion of CECs [29, 30]. The introduction of
high-throughput analytical instrumentation such as liquid chromatography coupled
to high-resolution mass spectrometry (LC-HRMS), has given unimaginable capabil-
ities to the researchers, who are able to conduct non-target screening [31, 32]. These
new approaches are able to cover a very wide universe of CECs contained in complex
environmental samples given the limitations in extraction and instrumental sensi-
tivity [33]. The challenge of these high-throughput methods is that they produce a
high number of signals (typical many thousands for each ionization), the structural
elucidation of which is not feasible because they require high time and effort [34].
Therefore, the key step to non-target screening is the application of prioritization
strategies, so that elucidation efforts are focused on the most relevant chemicals

based on the goals of the study [35-37].

The goal of this study was to create an open-source workflow for untargeted
source detection in the marine aquatic ecosystem of the Ukrainian shelf (northwest
Black Sea). This study reports a spatial distribution approach to support priori-
tization activities in non-target screening. To the authors’ knowledge, this is the
first study in the literature that uses deep learning as a prioritization approach.
The created workflow was applied in real seawater samples collected from the Joint
Black Sea Surveys (JBSS) that took place in 2016 and 2017. The deep learning
models were trained using the data of 2016 and were used to make predictions for
both sampling periods. Finally, an interactive Dash application was programmed to

visualize the results and support the identification of unknown substances.
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1.2 Thesis structure

The thesis is organized in four chapters. Chapter 1 introduced the importance of
tracking sources of chemical pollution in the marine environment and explained the
need of developing robust prediction models for their detection. Chapter 2 provides
the theoretical background in machine learning and deep neural networks. Chap-
ter 3 summarizes the materials, instrumentation and methods used to generate the
dataset and describes the modeling workflow. Moreover, it describes the computa-
tional resources that were used and the workflow that was developed. Chapter 4
presents the results of the analysis and discusses the findings. The model selection
and the description of the interactive dashboard application are discussed in detail.
Finally, some examples of chemicals that were tentatively identified and their sources
are presented. Chapter 5 provides a summary of the work and discusses potential

future research directions.
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Chapter 2

Theoretical background

2.1 Establishing the basic definitions

The term of Artificial Intelligence (AI) was established in 1956 at the Dart-
mouth College conference. Since then, Al has played a critical role in the human
society because of the development of the useful real-world applications such as
image recognition, natural language processing, driving assistance, art generation,
drug discovery among many other examples. Al received and will continue to receive
an increasing attention from the researchers due to the improved computational ca-
pabilities and the possibility to store huge amounts of data (e.g., images uploaded
to social media platforms, hours of uploaded footage in video platforms, payment

transactions etc.).

AT has developed from self-trained systems without human interference. As
a scientific endeavor, machine learning (ML) grew out of the quest for AI. This
particular domain of Al is called ML. ML is a set of applied statistical methods that
can learn from data given a task and discover patterns or learn to map the data on
classes. ML differentiates from the classical rule-based approach of an algorithm,
which is an explicitly defined procedure. Therefore, ML is not an algorithmic process
but a set of methods that are not programmed but trained on sets of data. A more
formal definition of ML is the following: ” A computer program is considered to be

learning from experience E in relation to a class T task and a performance measure
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P if its performance in class T tasks as valued by P are improved by experience E”
[38].

There are variations in the types of machine learning. However, it is possible to
divide them in categories based on the nature of the problem in the following broad
categories:

e Supervised Learning: The algorithm is trained to find associations at the
input data that is accompanied with their corresponded labels. The set of
these pairs is called training set and the process of calculating such a function
from the dataset is called training. The training set consists of examples, which
are also known as instances. The label is produced in most of the cases by
human during a process called annotation process. During the training phase,
the model uses the training set to learn and extract useful patterns. The
objective of supervised learning is the calculation of a function that sufficiently
generalizes to the input data, so that it is able to assign to the correct labels
in new input data. It is critical that the new input data consists of instances
that the model did not use during training [39, 40].

e Unsupervised Learning: The algorithm is trained with the aim to iden-
tify patterns in the data without feedback from labels. A typical example of
unsupervised learning is clustering. This method aims at grouping the input
data in groups whose members are similar to each other, and different from
members of other groups [41].

¢ Reinforcement Learning: In reinforcing learning, the datasets are not la-
belled. The operation of reinforement learning is based on a rewarding/pun-
ishing system [42]. The choices made to guide to an outcome are judged based
on whether they had a positive or a negative contribution. In this way, the
model can choose whether to make the same choices again or to follow a dif-
ferent path of action. The different path may involve a change in one or more

choices [43]

For most applications, the input samples are subject to preprocessing. This step
transforms the samples in a new parameter space to ease and accelerate training.

The preprocessing stage is also known as feature extraction. In most of the tasks, in
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which the raw data is multi and high dimensional, preprocessing step is essential.

2.2 Deep learning

A sub-domain of ML is deep learning (DL). DL has gained significant growth in
popularity over the last years. In conventional ML, the algorithms rely on feature
engineering and sophisticated feature selection techniques, which may require consid-
erable domain knowledge. In contrary, DL methods are able to process unstructured
data (images, text, voice, etc.) without applying any prior feature extraction. DL
uses non-linear activated modules able to transform the raw data in high-level fea-
ture representations. This capability has led to revolutionary developments in many
domains including computer vision and natural language processing. DL solved com-
plex problems that researchers were unable to resolve for many years. DL turned
out to have outstanding results at discovering complex patterns in high-dimensional

data.

BIAS

[ S—
ACTIVATE
FUNCTION OUTPUT

INPUTS { Ngo——oWy —{ 3 1) f(zwixi)

| K3o——W3

WEIGHTS

Figure 2.1: Representation of a neuron, which is the building unit of neural networks.
The inputs x are multiplied by the weights w, and a bias is added. The outcome activates

a non-linear function f

The basic building unit that constructs a neural network is called neuron or
perceptron [44]. A neuron is able to perform two operations: a linear (or affine)

transformation to its input and a non-linear function application to the output. A

- 7-
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neuron is depicted in Figure 2.1 and is described by the equation:

z= f(w*x+Db)

The input is a vector x and is multiplied by the weight matrix w, which is
a tunable parameter. The bias is added to the multiplication outcome. These
operations comprise the linear transformation of the perceptron. Afterwards, every
component of the result vector is passed through a non-linear function f, which
is called activation function. Training of a DL network is the tuning of neuron
parameters w and b based on the labels of the instances included in the training set.
The most popular activation functions that are used are the sigmoid, tanh, ReLU

and softmax and will be described in Section 2.3.

In the most common case, a typical neural network consists of multiple layers.

A neural network is illustrated in Figure 2.2.

The output of one neuron becomes the input of another neuron in the next
layer. The network is able to estimate non-linear functions in such hierarchical
networks. If the process is repeated, the network becomes a multi-layer percepton
(MLP) network. MLP networks are able to learn complex functions. The neurons

are organized by levels (Figure 2.2) which are divided into 3 categories:

e Input layer
e Hidden layer
e Output layer

A key property of neural networks is the way of connection between neurons of
all layers. Based on this property, there are the following categories:

e Fully Connected: Networks in which each neuron of a level connects to all
neurons of the next level.

e Partially Connected: Networks that exist at each level neurons that are not
connected to all the neurons of the next level.

e Feed-forward: Networks in which neural connections do not form a circle.
In this case, no neuron promotes its output in neurons of previous levels.

e Feedback: Networks that have neurons that advance their output to previous
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level neurons.

input layer hidden layer 1 hidden layer 2 output layer

Figure 2.2: The layers of a deep neural network. A neural network may have one input

layer, at least one hidden layer and one output layer

2.3 Activation functions

Training a multi-layer neural network requires the choice of the network archi-
tecture and the activation functions. During the training process, the output of a
neuron is passed to the next layer only if activated by a certain function. Sigmoidal
activations functions are usually employed. The sigmoidal activation function is

provided by the following equation:

However, for a deep neural network, there is a computational advantage when
using a non-sigmoidal rectified linear unit (ReLU) [45]. Moreover, the ReLU is
preferred over a sigmoidal for classification problems [46]. The ReLU handles better
the output of sigmoid function and the vanishing gradient phenomenon which may

occur during the training process. The sigmoidal activation function is provided by

-9.-
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the following equation:
ReLU(x) = max(0, )

Another widely-used activation function is the hyperbolic tangent function (tanh)

with the following mathematical expression:

et —e’ "

tanh(x) = prp—
er*+e*

The activation function of the final layer of the network is based on the re-
sponse type. No activation function is required, when the prediction is a continuous
variable. However, when the prediction is a classification output, then softmax ac-
tivation function is manily used. Softmax activation is declared by the following

equation.

Zi

(&

25:1 €%

softmax(z); =

Softmax activation normalizes the input into a probability distribution.

2.4 Loss functions

Training a neural network requires the definition of the loss function. Dur-
ing training, the predicted output is compared to the ground truth to evaluate its
precision. For this purpose, a loss function is utilized. For problems in which the
prediction is a continuous variable, the mean squared error (MSE) is frequently used.
MSE between the predicted value () and the ground truth (y) can be calculated

using the following equation

n

. 1 .
MSE(y,5) = —* > (i = 4:)?
n=1

-10 -
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Alternative loss function is the mean absolute error (MAE) with the following

mathematical expression:
L1 .
MAR(y,9) = — * >y — il
n=1

The loss function that is used in classification problems is called categorical

cross-entropy and is defined according to the following equation:
J(y,9) = _Zyi * log g
n=1

The user can define any loss function he/she wants, as long as the function is

minimized when the predicted value is as close enough to the ground truth.

2.5 Training process

The learning process is an iterative procedure that is executed in learning cycles
called epochs. The training phase stops when a criterion is fulfilled. The objective
of the training is to find the network’s parameters (weights w and biases b) that
minimize the loss function. To achieve this objective, the use of an optimization
algorithm, which is called optimizer, is needed [47]. The simplest optimizer is the
gradient descent (GS). GS is one of the most widely used optimizer together with

1ts variations.

In GS, all training samples are involved in the calculation of the cost. GS is suc-
cessful when the shape of the objective function is convex. This method minimizes
the cost function using the first partial derivative. To achieve this goal, it performs
two steps iteratively. Firstly, it computes the slope (gradient) that is the first-order
derivative of the function at the current point. In the second step, it moves in the
opposite direction of the slope increase from the current point by the computed
amount. In each iteration of the algorithm, the partial derivative multiplied by a
numeric parameter called learning rate («) is subtracted from each parameter of the

network. The mathematical formula is the following

11 -
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9J(y,7)
owe

(2

Wer = We — a

The choice of the learning rate is crucial. When using small learning rates, the
model will require more steps to converge. High learning values might lose the
minima and the model may never converge. This method can be considered as a

criterion to signal the end of the training process.

The GS algorithm is executed after a forward propagation has been executed
for all the data in the network. However, part of the dataset is fed to the network
before an update is made. The reason of this action is that GS can become com-
putationally expensive in applications with millions of trainable parameters. Based
on this criterion, we distinguish the following basic cases:

e Batch Gradient Descent (BGD): In BGD, all the training data is taken
into consideration to take a single step. The average of the gradients of all the
training examples is considered and then the mean gradient is used to update
the parameters.

e Stochastic Gradient Descent (SGD): In contrast to BGD, the network
parameters are updated for each input sample separately. SGD uses a random
sample ¢ rather than all samples, to update the gradient per iteration. In
SGD, unnecessary calculations do not happen. However, problems may arise
when approaching at a local minimum of the curve and especially when the
slopes of the minimum are steep. This method was proposed by Robbins in
1951 [48].

e Mini-Batch Gradient Descent (MBGD): MBGD is characterized by ran-
dom sample selection but in larger groups. It combines randomness and fast
calculation of the stochastic case using more input data. In this way, it reduces

noise from individual noisy input samples.

For deep learning networks, an instance is passed through the network of neurons
until the final layer and the loss function calculates the error between the prediction
and the ground truth. Afterwards, the network is informed about the error and

adapts its parameters (weights and biases). This process is iterative and resembles

12 -
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an optimization process. Thus, it can be solved utilizing the methods that were
previously mentioned. For network architectures with multiple layers, a chain rule

is applied to calculate the gradients of the layers next.

dJ(y.y)  90J(y,9) § 9J(y,9) 2J(y,9)

(9W, B 8ZL_1 (9zL_2 8WZ

For computational reasons, layers are updated backwards from the latter to
the former. This operation is referred as backpropagation [48]. The algorithm
implements a modification to each weight of the network and considers the error
that occurs for a specific input, the corresponding desired output and the network
recall. The network weights are tuned according to their contribution to the overall
network error. This adjustment is made following the opposite direction from the

data flow.

2.6 Evaluation metrics

Evaluation metrics are used to compare different models. The selection of the
most appropriate evaluation metric depends on the nature of the modeling task
and the dataset. The evaluation metrics must be applied to the test set, which
includes data that the models have never seen during the training. The most basic
metric evaluation of a model is accuracy. Accuracy expresses the success rate of the
model in classifying the samples into the correct categories. It is expressed using

the following equation:

COTTeCtpredictions

Accuracy =
TOtalpredicti(ms

This metric is rarely used and its use must be avoided when the number of

instances in the data classes is not balanced. The correct predictions of the larger

class can overshadow the incorrect predictions of the smaller classes. For this reason,

precision and recall are defined. Precision is the ratio of the correct prediction results

13-
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of a class to the total number of forecasts in this class. It is defined by the following

equation:

TruePositive

Precision =
TruePositive + FalsePositive

Recall is the ratio of the correct prediction results of a class to the total number

of samples in this class. It is defined by the following equation:

TruePositi
Recall — ruePositive

TruePositive + FalseNegative

Good performance of models is indicated by high precision and recall. However,
there is a trade-off between these metrics. A metric that combines precision and

recall is the F1 score, which is defined according to the following equation:

Precision x Recall TruePositive
Precision + Recall — TruePositive + 2 (FalsePositive + FalseNegative)

F1=2%

F1 score can be calculated for all classes. The macro-averaged F1 score (or
macro F'1 score) is computed by taking the arithmetic mean (unweighted mean) of
all the per-class F1 scores. This method treats all classes equally regardless of their
support values. Support refers to the number of actual occurrences of the class in
the dataset. The weighted-averaged F1 score is calculated by taking the mean of all
per-class F'1 scores while considering each class’s support. The ‘weight’ essentially
refers to the proportion of each class’s support relative to the sum of all support
values. Micro averaging computes a global average F1 score by counting the sums
of the True Positives (TP), False Negatives (FN), and False Positives (FP). We sum
the TP, FP, and FN values in all classes and then plug them into the F1 equation

to get the micro F1 score.
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2.7 Performance evaluation

Bias and variance are two types of errors. The bias occurs from the false esti-
mations during training. It is high in cases in which the structure of the network is
too simple to learn a complex representation. High bias is also known as underfit-
ting. Variance is the opposite to bias. It derives from the classifier’s sensitivity in
minor input changes (noise). Noise may come from the dataset or from the random
behavior in the learning algorithm itself [49]. In case of high variance, the classi-
fier learns the training set perfectly. This phenomenon is known as overfitting and

causes issues in the generalization capability of the model.

Splitting of the dataset into training set and test set is performed to avoid un-
derfitting and overfitting. Moreover, to avoid the risk to overfit the network’s hy-
perparameters to a certain test set, a third subset called validation set is created.
The validation set is created from the split of the training set (typically 80-20 % or
70-30 % depending on the size of the dataset). The network is trained as described
in Section 2.5 but the validation set is used to fine-tune the hyperparameters (the

network’s weights).

Training of a deep neural network can be affected by the choice of a number of
hyperparameters. Some critical choices are the structure of the model, the weight
initialization techniques, the learning rate, early stopping, dropout and batch nor-
malization layers. The dropout is one of the oldest regularization techniques in DL
[50]. At each training iteration, the network drops random neurons with a prede-
fined probability (typically 20% to 50%). In practice, neuron outputs are set to
zero. These neurons do not participate in the loss computation and thus they do
not receive weight updates. Different neurons are dropped at each epoch. Dropout

is a very common method to avoid overfitting in neural networks.

2.8 Convolutional neural networks

Convolutional neural network (CNN, or ConvNet) is a class of artificial neural
networks. They are feed-forward fully-connected regularized versions of multi-layer

perceptrons. They have a broad application in the fields of computer vision due to
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their advantage to process data that come in its raw form and thus avoid manual

feature selection.

The architecture of a CNN is analogous to that of the connectivity pattern of
Neurons in the human brain. CNN was inspired by the visual cortex. Individual
neurons respond to stimuli in a restricted region of the visual field. A collection of
such fields overlap to cover the entire visual area.The architecture of a typical CNN

is illustrated in Figure 2.3

fc_3 fc_a
Fully-Connected Fully-Connected
Neural Network Neural Network
Conv_1 Conv_2 RelU activation
Convolution Convolution 1 /—M
(s x 5) kerr?el Max-Pooling (5 x 5) kerr)el Max-Pooling (with
valid padding (2x2) valid padding (2x2)

D dropout

INPUT nl channels nl channels n2 channels n2 channels E ‘. 9
(28 x28 x 1) (24 x24 xn1) (12x12xn1) (8x8xn2) (4x4xn2) | ’

’/ ~ ouTpPuT

n3 units

Figure 2.3: A typical convolution neural network (CNN) architecture.

The role of the CNN is to reduce the images into a form which is easier to
process, without losing features which are critical for getting a good prediction.
Convolution is an operation for dimensionality reduction. The magnitude of the
reduction depends on the size of the kernel. The kernel slides along the input matrix
with a certain stride Value, generating a feature map, which in turn contributes to
the input of the next layer. The filter moves until it parses the complete width,
hops down to the beginning of the image with the same stride value and repeats the

process until the entire image is traversed.

CNNs are not limited to only one convolutional layer. The first convolutional
layer is responsible for capturing the low-level features such as edges, color, gradient

orientation, etc. Additional convolutional layers, capture the high-Level features.
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After a convolution operation, there is a pooling layer. The pooling layer is respon-
sible for reducing the spatial size of the convolved feature. Pooling decreases the
computational power required to process the data through dimensionality reduction.
Pooling can act as noise suppressant. It discards the noisy activations altogether
and also performs de-noising along with dimensionality reduction. The described
process (convolution and pooling) enables the model to understand the features.
Afterwards, there is a flatten layer that flattens the final output and feeds it to a
regular neural network for classification purposes. The flattened output is passed
to a feed-forward neural network and backpropagation applied to every iteration of
training. Over a series of epochs, the model is able to distinguish between domi-
nating and certain low-level features in images and classify them using the Softmax
Classification technique. There are various architectures of CNNs (e.g. VGGNet,
LeNet, ResNet), which have been key in building algorithms.
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Chapter 3

Chemicals and computational

methods

3.1 Chemicals and reagents

Acetonitrile and methanol were obtained from Merck (Darmstadt, Germany). 2-
propanol was purchased from Fisher Scientific (Geel, Belgium). All solvents were of
the highest possible analytical grade (UPLC grade). Distilled water was produced by
the Milli-Q Direct-Q UV purification device manufactured from Millipore (Bedford,
USA). Solid sodium hydroxide monohydrate for trace analysis of purity more than
99.9995 % , ammonium formate, ammonium acetate and formic acid 99 % were
obtained from Fluka (Buchs, Switzerland). Empty solid phase extraction (SPE)
polypropylene cartridges (6 mL) were obtained from Phenomenex (Torrance, USA).
The same company provided the sorbent materials: Sepra ZT (Strata-X), weak
cation exchange Sepra ZT-WCX (Strata-X-CW) and weak anion exchange ZT-WAX
(Strata-X-AW). The polar sorbent Isolute ENV+ and the frits (pore size 20 pm)
were bought from Biotage (Ystrad Mynach, UK). Before instrumental analysis, the
extracts were filtered from regenerated cellulose syringe filters (RC) with 0.2 pm

pore size (15 mm diameter) and were obtained from Phenomenex (Torrance, USA).
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3.2 : Sample collection and preparation

3.2 Sample collection and preparation

55 seawater samples were collected during the JBSS2016 survey and 20 seawater
samples were collected during the JBSS2017 survey. The study area for contamina-
tion was covered by three transects of Black Sea; the western side close to Danube
(Ukrainian shelf), the eastern Black Sea close to Georgia and the central side includ-
ing (open sea) sampling points across the length of Black Sea and out of reach of any
coastal city. This study focused on the seawater samples from the Ukrainian shelf.
Therefore, the relevant samples were 18 from JBSS2016 and 8 from the JBSS2017
(Figure 3.1).
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Figure 3.1: Sampling points of the Joint Black Sea Surveys (JBSS2016 and JBSS2017).

Both sampling campaigns were conducted in summer of 2016 and 2017 respectively.

The samples were collected by the scientific crew during the expedition at the
deck of the Mare Nigrum vessel. Both sampling campaigns took place in summer
(August and beginning of September). The samples were preprocessed immediately
upon collection. The samples were spiked with internal standards (Table 3.1) and
were cleaned-up and preconcentrated by SPE; 2.5 L of seawater, spiked with internal

standards passed through the in-house four-sorbent cartridge (200 mg Strata-X, 150
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Chapter 3 : Chemicals and computational methods

Table 3.1: Internal standards spiked in the JBSS samples, their CAS number, their Std.

InChIKey and the sampling campaign in which the substances were spiked.

Compound Name CAS Std. InChlKey Campaign
5-Methyl-1H-benzotriazole-d6  1246820-65-4 ~ LRUDIIUSNGCQKF-RLTMCGQMSA-N 2016
Amisulpride-d5 71675-85-9 NTJOBXMMWNY JFB-SGEUAGPISA-N 2016
Amphetamine-d6 205437-60-1  KWTSXDURSIMDCE-ZQLKWRTGSA-N 2016, 2017
Atenolol-d7 1202864-50-3 METKIMKYRPQLGS-SVMCCORHSA-N 2016
Atorvastatin-d5 222412-82-0 XUKUURHRXDUEBC-BDXWSXJNSA-N 2016, 2017
Atrazine-d5 163165-75-1  MXWJVTOOROXGIU-SGEUAGPISA-N 2016
Benzophenone-d10 22583-75-1 RWCCWEUUXYIKHB-LHNTUAQVSA-N 2016, 2017
BPA-d16 96210-87-6 IISBACLAFKSPIT-MAJJRYNQSA-N 2016, 2017
Carbamazepine-d8 1538624-35-9  FFGPTBGBLSHEPO-PKSNNKEVSA-N 2016, 2017
Cetirizine-d8 774596-22-4  ZKLPARSLTMPFCP-DTSBCCDKSA-N 2016, 2017
Ciprofloxacin-d8 1130050-35-9  MYSWGUAQZAJSOK-SQUIKQQTSA-N 2016, 2017
Citalopram-d6 1246819-94-2 WSEQXVZVIXJVFP-WFGJKAKNSA-N 2016, 2017
Clozapine-d8 1185053-50-2 QZUDBNBUXVUHMW-JNJBWJDISA-N 2016
Codeine-d6 1007844-34-9  OROGSEYTTFOCAN-JLXZPSIDSA-N 2016
Decoquinate-d5 1453100-61-2 JHAYEQICABJSTP-ZTIZGVCASA-N 2016
Diuron-d6 1007536-67-5 XMTQQYYKAHVGBJ-WFGJKAKNSA-N 2016
Fenbendazole-d3 1228182-47-5 ~ HDDSHPAODJUKPD-FIBGUPNXSA-N 2016
Tohexol-d5 66108-95-0 NTHXOOBQLCIOLC-OPCJXEHASA-N 2016, 2017
Ketamine-d4 1246815-97-3 HPQHIBKAPINDEN-KDWOUJHVSA-N 2016
Lamotrigine-'3C3,d3 1246815-13-3 PYZRQGJRPPTADH-MKOZQUTQSA-N 2016, 2017
Mefenamic acid-d3 1189707-81-0  HYYBABOKPJLUIN-FIBGUPNXSA-N 2016, 2017
Metformin-d6 1185166-01-1 XZWYZXLIPXDOLR-WFGJKAKNSA-N 2016, 2017
Metronidazole-d4 1261392-47-5 ~ VAOCPAMSLUNLGC-RRVWJQJTSA-N 2016, 2017
Ranitidine-d6 1185238-09-8 VMXUWOKSQNHOCA-RUESZMOGSA-N 2016, 2017
Ritonavir-d6 155213-67-5 ~NCDNCNXCDXHOMX-GMBJSHJASA-N 2016, 2017
Saccharin-'3C6 1286479-01-3 ~ CVHZOJJKTDOEJC-IDEBNGHGSA-N 2016, 2017
Sulfadimidine-d4 1020719-82-7  ASWVTGNCAZCNNR-LNFUJOGGSA-N 2017
Sulfamethazine-d4 1020719-82-7 ASWVTGNCAZCNNR-LNFUJOGGSA-N 2016, 2017
Sucralose-d6 1459161-55-7 BAQAVOSOZGMPRM-UQRHTAPNSA-N 2016
Tramadol-d6 1109217-84-6  TVYLLZQTGLZFBW-DTPCVOBTSA-N 2016, 2017
Valsartan-13C5, 1N - ACWBQPMHZXGDFX-UDHSYOPXSA-N 2016, 2017
Venlafaxin-d6 1020720-02-8 FETCANMPQJPEEP-WFGJKAKNSA-N 2016, 2017
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3.3 : Instrumental analysis

mg Isolute ENV+, 100 mg Strata-X-AW and 100 mg Strata-X-CW), previously
preconditioned with 3 mL methanol and 3 mL water. Cartridges were eluted with 4
mL 50:50 methanol:Ethyl acetate containing 2% of ammonia, followed by 2 mL 50:50
methanol:ethyl acetate containing 1.7% of formic acid. The extracts were stored in

freezer until their instrumental analysis.

3.3 Instrumental analysis

The extracts were injected onto a Thermo Acclaim RSLC C18 column with di-
mensions 2.1 x 100 mm, particle size 2.2 pm (Dreieich, Germany) preceded by a
guard column of the same packaging material connected to a Bruker Maxis Impact
QTOF (Maxis Impact, Bruker Daltonics, Bremen, Germany). For positive ioniza-
tion, the aqueous phase consisted of water:methanol 90:10 with 5 mM ammonium
formate and 0.01% formic acid and the organic phase was methanol with 5 mM am-
monium formate and 0.01% formic acid. For negative ionization, the aqueous phase
consisted of water:methanol 90:10 with 5 mM ammonium acetate and the organic
phase was methanol with 5 mM ammonium acetate. Gradient for both ionizations
for organic phase was 1% (0-1 min), 39% (1-3 min), 99.9% (3-14 min), 99.9% (14-
16 min), 1% (16-16.1 min), 1% (16.1-20 min) and flow rate gradient was 0.2 mL
min~1 (0-3 min), 0.4 mL min~" (3-14 min), 0.48 mL min~' (16-19 min), 0.2 mL
min~! (19.1-20 min). The instrumental conditions are available in Table 3.2. All
samples were injected in positive and negative ionization in data-dependent (5 most
abundant precursors) and data-independent (full scan collision energy and 25 eV)
acquisition mode. The data-dependent chromatograms were processed in context of

this study.

3.4 Computational workflow

The calibrant substance sodium formate and sodium acetate for positive and
negative ionization respectively was injected in the beginning of each chromato-
graphic run. The m/z peaks of the calibrant substance were used to recalibrate the
whole chromatogram using HPC fitting algorithm, which is embedded in DataAnal-

ysis 4.3. (Bruker Daltonics, Bremen, Germany). This calibration method ensures
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Table 3.2: Instrumental setup for liquid chromatography and mass spectrometer (positive

and negative ionization).

Positive Ionization

Gradient Elution Program Electrospray Ionization Parameters
Time (min) % B Capillary Voltage 2500V
0 1 End plate offset 500V
1 1 Nebulizer 2 bar
3 39 Drying gas 8 L min-1
14 99.9 Drying temperature 2000C
16 99.9 (A) Water : Methanol 90:10 5mM HCOONH4 with 0.01% HCOOH
16.1 1 (B) Methanol 5mM HCOONH4 with 0.01% HCOOH
20 1

Negative Ionization

Gradient Elution Program Electrospray lonization Parameters
Time (min) % B Capillary Voltage 3500V
0 1 End plate offset 500 V
1 1 Nebulizer 2 bar
3 39 Drying gas 8 L min-1
14 99.9 Drying temperature 2000C
16 99.9 (A) Water : Methanol 90:10 5mM CH3COONH4
16.1 1 (B) Methanol 5mM CH3COONH4
20 1

Positive and Negative Ionization
Gradient 0 min (1% B), 1 min (1% B), 3 min (39% B), 14 min (99.9% B), 16 min (99.9% B), 16.1 min (1% B), 20 min (1% B)
Flow 0 min (200 ul min-1), 2 min (200 ul min-1), 14 min (400 ul min-1), 16 min (480 ul min-1), 20 min (200 ul min-1)

Injection volume 5 pL
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mass accuracy below 2 mDa during the chromatographic run for m/z from 50 Da
to 1000 Da. CompassXport 3.0.9.2 (Bruker Daltonics, Bremen, Germany) was used
for exporting files in mzML format. The mzML files were processed with an es-
tablished processing workflow using xcms [51] and CAMERA R-packages [52]. The
functions for peak detection, matching peaks in the samples and retention time
alignment (OBI-Warp algorithm) are included in the xcms package, whereas func-
tions for componentization based on retention time and peak shape and functions for
annotation of adducts and isotopic peaks are included in the CAMERA R-package.
The input parameters for peak-picking, grouping and retention time alignment were
optimized based on three level incomplete factorial design (Box-Behnken design) [53]
for the data generated for the specific instrumental setup [54]. Peaks detected in the
blank samples (with an intensity ratio below one order of magnitude) were removed.
The final dataset consisted of 30489 components (11432 for year 2016 and 19057 for
the year 2017). Spatial generalized additive model (GAMs) was used to predict the
signal intensity near the sampling stations given as input the coordinates [55]. The
computational workflow is available as R script (“l.Dataset generation.R”!. The
workflow generated 30489 figures, one for every chemical signal. Three signals with

three different origins are depicted in Figure 3.2.

Danube Dnieper UnknownOrigin

Figure 3.2: Examples of simulated spatial distribution based on the non-target dataset.
The plots depict sequentially cases of a signal that comes from Danube, from Dnieper and

from unknown origin.

Manual effort was made to create the training set with total size of 1406 instances.

The training set consisted of 652 figures showing a clear origin of the chemical signal

'https://github.com/nalygizakis/CECinBS
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from Danube, 559 figures showing origin from Dnieper and 195 instances of unknown
origin. 80% of the training set was used for training and 20% for validation. To ver-
ify the performance of the models, three different training set splits were performed.
Moreover, a hold out dataset was also created to evaluate the performance of the
classifiers in instances never seen before by the models. The hold out set consisted
of 224 instances (109 examples with origin from Danube, 78 examples with origin
from Dnieper, 37 examples of unknown origin). The datasets (all three splits) are
available at Zenodo!. TensorFlow machine learning library, which is developed by
Google Brain, was used in this study [56]. The python Jupyter notebooks “2.Im-
age recognition.ipynb” and “3.Image recognition_Other split.ipynb”? were used to
investigate the most accurate deep learning classifier. Given that the training and
evaluation sets were unbalanced (not equal instances per class), the overall F1 score
was used as the evaluation metric of the accuracy. Four deep learning architectures
were evaluated; a three-layer model (regarded as baseline model), a convolutional
neural network (CNN), VGG Net and ResNet. The best performing classifier which
was the CNN model was used to predict the source of all componentS (“4.Make pre-
dictions_.CNN.ipynb”?). The data is summarized and is presented in an interactive
Dash application (script “5.Dash application.ipynb”?), which is online available at
https://norman-data.eu/BS/. The dependencies to run the application are avail-
able at the file “requirements.txt”. The workflow is reproducible and all scripts can

run on the Google Colab cloud infrastructure.

Finally, the non-target screening identification workflow (script “6.Identification
script.R”?) was used to reveal the identity of chemicals with clear pollution sources
in the Ukrainian shelf. The script uses the MassBank (MB) text records from the
official GitHub repository® and performs 1) filtering based on the mass accuracy
(comparison between the experimental m/z and the theoretical m/z provided by
the molecular formula and the adduct in the MB records) and 2) spectral match
between the experimental HRMS/MS spectra and the MB library spectra. The MB
records were retrieved from the repository on the 19th of Match 2022. The m/z filter

1https ://doi.org/18610.5281/zenodo.6474592
’https://github.com/nalygizakis/CECinBS
3https://github.com/MassBank/MassBank-data
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was realized with help from functions included in the enviPat R-package [57] and
the spectral match was achieved using the OrgMassSpecR R-package (Dodder and
Mullen, 2017; Stein and Scott, 1994). The results obtained from this identification
workflow (Figure 3.3) and using the following parameters (mass accuracy 2 mDa and
spectral similarity > 0.95) were further processed and manually verified using vendor
software DataAnalysis v4.3 developed by Bruker Daltonics (Bremen, Germany). The
workflow aimed at achieving reliable results with high efficiency. The elucidation was
based on mass accuracy, isotopic pattern, plausibility of the chromatographic reten-
tion time and HRMS/MS spectral interpretation using the comparison with spectral
libraries [34]. Finally, irrelevant substances such as naturally-occurring substances
(aminoacids, nucleosides and proteins etc.) were excluded from the identifications,
since their presence does not induce risk to the ecosystem. It is worth mentioning
that the purpose of the identification workflow was not to exhaustively identify a
high number of substances but to present some examples with characteristic spatial

distribution.
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Figure 3.3: Illustration of the identification workflow, presenting an example of a suc-
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Chapter 4

Results

4.1 Deep-learning model selection

The tested deep learning architectures were the following: a three-layer model,
a CNN model, the VGG Net and ResNet architectures. The three-layer model con-
sisted of a layer to flatten the input, a densely-connected neural network layer of
1500 units and relu activation and another densely-connected with 3 units and soft-
max activation. This model was regarded as baseline model due to their simplicity
in architecture. The average F1 score for all three classes was 0.78. More specifically,
F1panupe was 0.95, 0.97, 0.96, F1ppieper was 0.95, 0.95 and 0.84 and Flypknownsource
was 0.84, 0.91 and 0.54 for the three splits of the training set respectively. The
three-layer model was the second-best performing model. The confusion matrices
for the two best performing models are given in Figure 4.1. The best performing
model was the CNN model. This model consisted of a rescaling layer with input
shape the dimensions of the figure and two convolution layers with a max pooling
layer in each of them. The first 2D convolution layer had 16 filters (kernel size of
3, case-insensitive padding and relu activation function) and the second 2D convo-
lution layer had 32 filters (same kernel size, padding and activation function). The
next layer was a dropout layer with rate 0.2, a layer to flatten the output, a fully-
connected dense layer with 128 units on top of it that is activated by relu activation
function and finally a dense layer with three output units, representing the number

of classes (Danube, Dnieper, Unknown source). As in the case of the three-layer
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model, Adam optimizer was used with sparse categorical cross entropy as loss func-
tion. The model tuned 5,613,027 weights after 45 epochs with each epoch requiring
time on average 22 sec per epoch resulting in a 16.5-minute training. The average
f1 score for all three classes was 0.993 (F'1panupe was 1.00, 0.98, 1.00; F'1ppicper Was
1.00, 0.99 and 0.99; F1lypinownsource Was 1.00, 0.97 and 0.99 for the three splits re-
spectively). Vggnet structure [58] and ResNet [59] could not achieve satisfactory
results possibly due to domain differentiation and size of the training dataset. Com-
plex neural networks require bigger datasets to fine-tune their weights. Moreover,
the approach that was followed did not involve retraining of all weights but only
tuning the weights of the last layer. Transfer learning of complex architectures was

abandoned given the high performance of the much simpler custom-architecture

CNN.
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Figure 4.1: Confusion matrices for the two best performing models using three different
splits at the training set. The convolution neural network (CNN) proved to be the most

precise with accuracy higher than 99%.

The selected CNN model proved to be accurate enough to fit its purpose and
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was used for allocation of the chemical signals in the spatial distribution categories.
For the sampling campaign JBSS2016, 34.1% of chemical signals proved to originate
from Dnieper (3893 signals), 49.7% of signals came from Danube (5686 signals), and
16.2% of chemical signals came from undefined sources (1853 signals). The results
yield for JBSS2016 matched well those of the JBSS2017 campaign. 28.1% chemical
signals came from Dnieper (5363 signals), 46.7% chemical signals originated from

Danube (8894 signals) and 25.2% came from undefined sources (4800 signals).

Overall, more chemicals were detected in the JBSS2017 campaign comparing
to JBSS2016 (11432 and 19057 in JBSS2016 and JBSS2017 respectively). In both
campaigns, the majority of the detected compounds (on average 48.2%) proved to
have Danube as their source. Dnieper proved to be an important source (on average
31.1%). Higher variability was observed for Dnieper percentage between the two ma-
jor riverine sources. Finally, some chemicals had several different pollution sources.
For these substances, different factors affect their occurrence and no clear conclusion
for their source can be drawn. However, using CNN models demonstrated a clear
pollution trends for more than 79% of detected chemicals. The initial hypothesis
that the Danube River is one of the major pollution hotspots of the Black Sea is
confirmed from the findings of this study.

4.2 Interactive dashboard for spatial distribution
visualization

The results of the analysis were used to build an interactive interface to facilitate
further interaction and exploitation of the results. The graphical user interface
(GUI) of the application is shown in Figure 4.2. The dashboard was built using
Dash platform, which is commonly used for producing and sharing enterprise-ready
analytic application. It was proved to be of great help for the identification of the

potential sources of pollution sources.

The application consists of three vertical panels (Figure 4.2). On the left panel,
there is a selection module, which helps the user to select the compound of interest.

The user can select the campaign of interest (JBSS2016 or JBSS2017) and filter the
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EMBLAS-II: EU/UNDP project Improving Environmental Monitoting
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Figure 4.2: Screenshot from the developed application. Application is available at

https://norman-data.eu/BS

chemical signals based on the source (Danube, Dnieper or unknown origin) using
the predictions from the CNN model. Moreover, the user can filter the signals based
on their m/z, retention time and retention time index (RTI). RTT is the normalized
retention time given the retention time of 18 recently proposed calibrant compounds
[60]. The user optionally applies the desired filters. It must be noticed that it is not
necessary to apply all these filters at the same time. The system will filter the signals
that comply with the user filter selection and will update instantly the dropdown
menu “Select Compound”. Once a specific signal is selected, the map (on the middle
of Figure 4.2) will visualize its occurrence exactly as it is in the initial raw data.
The signal intensity is automatically scaled in the map, so that the most intense
signals are presented with purple color, while the weakest signals are presented with
orange color. Moreover, the selection of a specific signal triggers the visualization
of the simulated spatial distribution on the right panel. The HRMS/MS spectra
is also visualized below the simulated spatial distribution, given that HRMS/MS
was acquired by the instrument. A button to download the HRMS/MS as csv is
available. This capability is useful, because the HRMS/MS is the fingerprint of the
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structure of the substances and can be used as input in structure elucidation tools

such as MetFrag [61], CSI:FingerID [62].

4.3 Tentatively Identified substance and their sources

In total 35 compounds were tentatively identified (Table 4.1 and Table 4.2 at
level 2A of probable structure by library spectrum match [63]. Table 1 presents
some characteristic examples from each source category; substances introduced in
the Black Sea by Danube river (12 compounds; ID 1 to 12), by Dnieper river (10
compounds; ID 13 to 22) and input from unknown sources (5 compounds; ID 23 to
27).

Danube river proved to be the input of many contaminants belonging in different
chemical classes. Among the substances that were detected include industrial chemi-
cals (1,2,3-benzotriazole), pharmaceuticals (metformin, carbamazepine, telmisartan,
tiapride, sulpiride), antidepressant drugs (sertraline) and plant protection products
(PPPs). The following three PPPs originating from Danube river were elucidated
dimethenamid, terbutylazine and metolachlor. Both degraded substances and some
transformation products (atenolol acid, 4-methyl-benzotriazole) were detected. The
initial hypothesis that the Danube river is one of the major pollution hotspots of the
Black Sea is supplemented with new findings through this analysis, which unequiv-
ocally excludes the contribution of selected compounds from additional significant
pollution sources. A pollution link between the Danube and the Black Sea was veri-
fied using data from the Joint Danube Survey 4 (JDS4) organised by the ICPDR in
2019 [12]. The compounds detected in this study were also detected at the delta of
the Danube river and more specifically at stations JDS50 (Reni) and JDS51 (Vilkove
Chillia).

As expected, a wide variety of chemicals were proved to be introduced by Dnieper
river. Compounds that were tentatively identified include industrial chemicals (tri-
isobutyl phosphate, mono(2-ethylhexyl) phthalate), surfactants (lauryldiethanolamine,
diethylene glycol monobutyl ether acetate), pharmaceuticals (repaglinide) and PPPs
(isoxaben). TPs originating from the Dnieper were detected in the Ukrainian shelf.

Some characteristic examples that were elucidated were iminostilbene, cyprodinil-
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Table 4.1: Characteristic examples of tentatively identified compounds with riverine

origin (both Danube and Dnieper).

D Compound structure Formula RTI  Ton. Year Similarity (matched record) origin

N 0.95
28  2-Benzothiazolesulfonic acid Q\ /,O CTH5NO3S2  191.7 - 2016

s7 sk (SM820151)
N O
HO

1.00
29 Melamine NTN'N C3H6NG 19.2 + 2017

| (AU387001)

N 0.96
30 4-nitrophenol “o-  C6H5NO3  319.3 2016, 2017
(LU115652)
HO

0.98

31  2-Naphthalenesulfonic acid O'IS C10H803S  190.1 - 2017
(EA065359)

0.99
32 Octocrylene C24H27NO2 918.2 + 2017
She (AU250103)
HO
0.99
33 Paracetamol C8HINO2 1384  + 2017
o (EA024309)
N
H <
NH2
n= 0.99
34 Cyromazine \ C6H10NG6 309.5 + 2016

L
N N
r _<N _/< (AU262503)
NH:2

N 0.98
35 DEET N p\ CI2HITNO 5302 + 2016
(AU335302)

i
PRERREDRE N
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TP CGA 249287, 2-hydroxy-terbutylazine and 2-hydroxy-benzothiazole. The oc-
currence of these TPs indicates the consumption of the respective drug TPs (e.g.
carbamazepine in the case of Iminostilbene [64]) and use of the parent PPPs in
agriculture (e.g. Cyprodinil in the case of Cyprodinil-TP CGA 249287 [65]. The
formation of TPs is highly dependent on the degradation rates, the flow of the river,
and the climatic conditions. It is known that the flow rate of Dnieper is almost
four time lower than Danube, indicating that contaminants have more time to fully

degrade in Dnieper before reaching the sea.

It is worth to note that some substances have inputs from both rivers (examples
presented in Table 4.1). In these cases, the origin of the chemicals in the shelf
was determined based on the signal intensities. For example, when a substance
yield higher signals close to the Danube delta comparing to the Dnieper delta,
then Danube was regarded as the major source. Some examples of substances that
are introduced by both river in the Ukrainian shelf are the industrial chemicals
(melamine, 4-nitrophenol, 2-naphthalenesulfonic acid), PPPs (cyromazine, DEET),

UV filters (octocrylene) and pharmaceuticals (paracetamol).

The third class that was investigated were chemicals with unknown origin. The
term “unknown origin” indicates that there are unknown sources of input of these
compounds in the sea or that there are multiple sources of input. The following com-
pounds proved to have unknown origin based on the observed signals in the sampling
stations: salicylic acid, caffeine, atrazine-2-hydroxy, isoproturon-didemethyl and O-
Demethylmetoprolol. Salicylic acid and caffeine have multiple inputs from various
anthropogenic activities (e.g. shipping activities). A reason that can drive a com-
pound in this category is when signals are very low and thus close to the detection
limits. This fact can obscure the origin of the compounds especially in the case in
which a compound has been sporadically detected in some stations. Moreover, com-
plex degradation mechanisms can also obscure the sources of the compounds. This
is due to the fact that there are multiple degradation paths leading to a multitude

of TPs, the signal of which is most of the times lower than the parent compound.
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Table 4.2: Characteristic examples of tentatively identified compounds and their origin.

D Compound structure Formula RTI  Ton. Year Similarity (matched record) origin
N
o
. N 0.99
1 1,2,3-Benzotriazole , C6H5N3 2629 + 2016, 2017
N (EA016662)
H
N 0.99
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H
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D Compound structure Formula RTI Ion. Year Similarity (matched record) origin
Oy
o
. @ 1.00
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1D Compound structure Formula RTI Ion. Year Similarity (matched record) origin
]
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S e
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Conclusions and Future Work

Sources of chemical pollution of the Ukrainian shelf of the Black Sea were investi-
gated using a non-target screening workflow. Spatial distribution was proposed as a
new prioritization approach. A novel method for the classification of 30,489 signals/-
chemicals detected during the Joint Black Sea Surveys in 2016 and 2017 was applied
using open-source tools and supervised machine learning. Deep learning proved to
be highly accurate to build spatial distribution models. The developed workflow
was able to detect and tentatively identify chemicals that reach the Ukrainian shelf
from the Danube and Dnieper rivers. The CNN model enabled a detection and reli-
able prediction of the percentage of chemical components that clearly originate from
the Danube, Dnieper and other unknown sources. The two large European rivers,
Danube and Dnieper, were identified as major contributors of the chemical pollu-
tion in the northwest region of the Black Sea. Further development of prioritization
methodologies and their integration in open-source workflows still remains a future
goal for the non-target screening community. There is a multitude of statistical
approaches and advanced visualization tools that have not yet been exploited at the
selection of the most relevant chemical signals. The use of interactive applications
such as the Dash application, developed in this study, is expected to play an in-
creasing role in identification of so far unknown emerging substances pinpointed by
non-target screening. The proposed non-target screening and prioritization work-
flow developed in this study were found as useful at detection of the sources of

contaminants and their transformation products that are continuously introduced
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into the marine ecosystem. The prioritised substances can be then subjected to

in-depth structure elucidation and follow up risk assessment.
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