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STAVROULA P. FAMELITI 

University of Peloponnese, 2019 

Supervisor: Vasiliki D. Skintzi, Assistant Professor in Econometrics 

 

Abstract 
 

The availability of numerous modeling approaches for volatility forecasting leads to 

model uncertainty for both researchers and practitioners. Accurate forecasts of 

volatility are required across most applications in finance such as risk management, 

portfolio allocation and option pricing. A large number of studies provide evidence in 

favor of combination methods for forecasting a variety of financial variables, but most 

of them are implemented on returns’ forecasting. Surprisingly, combinations of 

volatility forecasts have not received significant attention in the finance literature. 

This thesis is focused on evaluating the predictive ability of simple and complex 

combination techniques as well as on developing and investigating innovative 

methods for combining volatility forecasts with applications in the stock and oil 

markets. 

Firstly, combinations of various volatility forecasts based on different combination 

schemes of S&P500 index are provided. We add to the literature by combining 

volatility forecasts from models based on daily, intraday and implied volatility data. 

Moreover, an exhaustive variety of combination methods to forecast volatility ranging 
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from simple techniques to time-varying techniques based on the past performance of 

the single models and regression techniques is used. The evaluation procedure is 

based on both statistical and economic loss functions indicating the superior 

performance of combination techniques. Although combination forecasts based on 

more complex regression methods perform better than simple combinations and single 

models, there is no dominant combination technique that outperforms the rest in both 

statistical and economic terms, implying that different combination schemes are 

preferable based on the economic application to be used. 

Secondly, we propose new combination techniques based on portfolio and risk 

management loss functions to forecast crude oil price volatility. The forecasting 

performance of three types of volatility forecast combination is evaluated: forecast 

combinations involving high-frequency models, forecast combinations involving daily 

models and forecast combinations involving both high-frequency and daily models. 

By considering combination techniques based on portfolio and risk management loss 

functions, new evidence may be drawn regarding the combination forecasts 

techniques. Firstly, the results show that most combination forecasts produce more 

accurate volatility forecasts in both statistical and economic terms than single 

volatility models. Secondly, daily data generate higher economic gains when they are 

combined through portfolio loss functions especially in 1-step and 22-step ahead 

forecast horizons, while two single models indicate superior forecasting performance 

for the 5- step ahead forecasts. Thirdly, statistical combination forecasts from high-

frequency models are more accurate according to statistical and economic loss 

functions when they are compared with the economic combinations suggesting that 

the information contained in these data can adequately predict economic gains even 

through statistical combinations. Finally, the two information channels lead to higher 
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economic gains when they are combined through portfolio loss functions for the 22-

step ahead forecasting horizon. 

 

Keywords: volatility forecasting, combination methods, combining volatility 

forecasts, forecasting performance, statistical evaluation, economic evaluation, energy 

markets, economic combinations 
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STAVROULA P. FAMELITI 

University of Peloponnese, 2019 

Supervisor: Vasiliki D. Skintzi, Assistant Professor in Econometrics 

 

Abstract in Greek  
 

Η διαθεσιμότητα ενός μεγάλου αριθμού υποδειγμάτων για την πρόβλεψη της 

μεταβλητότητας οδηγεί σε αυξημένη αβεβαιότητα για την αξιοπιστία του μοντέλου 

τους ερευνητές και τους επαγγελματίες. Οι ακριβείς προβλέψεις για την 

μεταβλητότητα απαιτούνται στις περισσότερες χρηματοοικονομικές εφαρμογές, όπως 

η διαχείριση κινδύνων, η διαχείριση χαρτοφυλακίου και η τιμολόγηση των 

δικαιωμάτων προαίρεσης. Ένας μεγάλος αριθμός μελετών υποστηρίζει την χρήση 

συνδυαστικών μεθοδολογιών για την πρόβλεψη ενός μεγάλου αριθμού οικονομικών 

μεταβλητών, όμως οι περισσότερες από αυτές εφαρμόζονται στην πρόβλεψη των 

αποδόσεων. Παραδόξως, οι συνδυαστικές μεθοδολογίες για τη μεταβλητότητα δεν 

έχουν λάβει την δέουσα προσοχή στη βιβλιογραφία. Η έρευνα αυτή επικεντρώνεται 

στην αξιολόγηση της προβλεπτικής ικανότητας απλών και πιο σύνθετων 

συνδυαστικών μεθοδολογιών, όπως και στην ανάπτυξη και διερεύνηση καινοτόμων 

μεθοδολογιών πρόβλεψης της μεταβλητότητας με εφαρμογές στις χρηματιστηριακές 

αγορές και τις αγορές πετρελαίου. 

Πρώτον, παρέχονται διάφορες συνδυαστικές προβλέψεις για τη μεταβλητότητα του 

δείκτη S&P500. Ενισχύουμε την βιβλιογραφία συνδυάζοντας προβλέψεις για την 
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μεταβλητότητα από υποδείγματα που βασίζονται σε ημερήσια, ενδοημερήσια και 

τεκμαρτής μεταβλητότητας δεδομένα. Συγκεκριμένα, χρησιμοποιείται μια μεγάλη 

ποικιλία συνδυαστικών μεθοδολογιών για την πρόβλεψη της μεταβλητότητας, στην 

οποία περιλαμβάνονται απλές τεχνικές, τεχνικές που βασίζονται στις προηγούμενες 

επιδόσεις των μεμονωμένων μοντέλων και τεχνικές παλινδρόμησης. Η διαδικασία 

αξιολόγησης βασίζεται τόσο σε στατιστικά όσο και σε οικονομικά μέτρα 

αποδεικνύοντας την υπεροχή των συνδυαστικών μεθοδολογιών. Αν και οι 

συνδυαστικές προβλέψεις που βασίζονται σε πιο πολύπλοκες μεθόδους έχουν 

καλύτερες επιδόσεις από τις απλές συνδυαστικές μεθοδολογίες και τα μεμονωμένα 

μοντέλα, δεν υπάρχει κάποια μεθοδολογία που να κυριαρχεί τις υπόλοιπες τόσο από 

στατιστική όσο και από οικονομική άποψη. Αυτό μας οδηγεί στο συμπέρασμα ότι οι 

διαφορετικές συνδυαστικές μεθοδολογίες επιλέγονται με βάση την οικονομική 

εφαρμογή. 

Δεύτερον, προτείνουμε νέες συνδυαστικές μεθοδολογίες που βασίζονται σε μέτρα 

αξιολόγησης χαρτοφυλακίων και διαχείρισης κινδύνου στην πρόβλεψη της 

μεταβλητότητας των τιμών των συμβολαίων μελλοντικής εκπλήρωσης αργού 

πετρελαίου. Αξιολογείται η προβλεπτική ικανότητα τριών τύπων συνδυαστικών 

μεθοδολογιών μεταβλητότητας: συνδυαστικές προβλέψεις που βασίζονται σε 

δεδομένα υψηλής συχνότητας, συνδυαστικές προβλέψεις που βασίζονται σε ημερήσια 

δεδομένα και συνδυαστικές προβλέψεις που περιλαμβάνουν και τα δύο είδη 

δεδομένων. Με την εξέταση των συνδυαστικών μεθοδολογιών που βασίζονται σε 

μέτρα αξιολόγησης χαρτοφυλακίου και διαχείρισης κινδύνου, μπορούν να αντληθούν 

νέα στοιχεία σχετικά με τις συνδυαστικές προβλέψεις. Πρώτον, τα αποτελέσματα 

δείχνουν ότι οι συνδυαστικές μεθοδολογίες οδηγούν σε πιο ακριβείς προβλέψεις, σε 

στατιστικούς και οικονομικούς όρους, για τη μεταβλητότητα από τα μεμονωμένα 
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μοντέλα. Δεύτερον, τα μοντέλα που βασίζονται σε ημερήσια δεδομένα οδηγούν σε 

μεγαλύτερα οικονομικά οφέλη όταν συδυάζονται μέσω μέτρων αξιολόγησης  

χαρτοφυλακίου ιδίως στους χρονικούς ορίζοντες της μίας και των είκοσι δύο ημερών, 

ενώ δύο μεμονωμένα μοντέλα επιδεικνούουν καλύτερη παρουσία για τον χρονικό 

ορίζοντα των πέντε ημερών. Τρίτον, οι συνδυαστικές πρόβλεψεις που βασίζονται σε 

στατιστικά κριτήρια και προέρχονται από μοντέλα υψηλής συχνότητας είναι πιο 

ακριβείς σύμφωνα με στατιστικά και οικονομικά μέτρα υποδεικνύοντας ότι η 

πληροφορία που εμπεριέχεται σε αυτά τα δεδομένα μπορεί να οδηγήσει σε σωστή 

πρόβλεψη για τα οικονομικά οφέλη ακόμη και μέσω συνδυαστικών προβλέψεων που 

προέρχονται από στατιστικά μέτρα. Τέλος, ο συνδυασμών των δύο πηγών δεδομένων 

οδηγεί σε υψηλότερα οικονομικά κέρδη, όταν τα δεδομένα αυτά συνδυάζονται μέσω 

μέτρων αξιολόγησης χαρτοφυλακίου, για τον χρονικό ορίζοντα των 22 ημερών. 

Λέξεις-κλειδιά: πρόβλεψη μεταβλητότητας, συνδυαστικές μέθοδοι, συνδυαστικές 

προβλέψεις μεταβλητότητας, αξιολόγηση προβλέψεων, στατιστική αξιολόγηση, 

οικονομική αξιολόγηση, αγορές ενέργειας, οικονομικές συνδυαστικές προβλέψεις   
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Chapter 1 

 

Introduction 

 

1.1 Motivation for the Thesis 
 
Over the last decades forecasting the second moments of asset returns has been one of 

the most active areas in financial econometrics. A vast literature on methods and 

models for volatility forecasting has been developed. Though, there is rarely any 

consensus on which model is most appropriate in providing accurate forecasts. The 

main problem is that volatility, unlike returns, is unobserved even ex post. Therefore, 

it has to be proxied. Accurate forecasts of volatility are required in a number of 

applications such as asset pricing, capital allocation, risk management and option 

pricing. While a strand of the literature has attempted to identify the single best 

forecasting model in the context of financial applications, a number of studies in 

financial forecasting have applied combination techniques to aggregate numerous 

individual forecasts into a pooled model. Despite the large number of combination 

forecasting techniques developed in the literature, little attention has been paid in the 

combination of volatility forecasts. This thesis focuses on investigating the 

forecasting performance of combinations of individual volatility models. 
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The literature on volatility forecasting models is vast. The seminal papers of Engle 

(1982) and Bollerslev (1986) introduced the class of Generalized Autoregressive 

Conditional Heteroscedasticity (GARCH) volatility models that have been proved to 

improve forecasting performance while several extensions have been proposed e.g. 

EGARCH, GJR-GARCH, FIGARCH, APARCH, HYGARCH models among others. 

Similarly, Engle et al. (2013) propose a new class of GARCH models, the so-called 

GARCH-MIDAS models that decompose volatility into a short run and a long run 

component. The long-run volatility component is a slowly-decaying function either of 

realized volatility or macroeconomic variables. Furthermore, a considerable amount 

of studies have explored the availability of high-frequency data and several studies 

have shown that using realized volatility measures based on intraday data improve 

forecast performance (Andersen et al., 2007). Under a similar perspective, Corsi 

(2009) proposes the Heterogeneous Autoregressive (HAR) models of Realized 

Volatility (HAR-RV) considering different volatility components realized over 

different time horizons that lead to good forecasting performance. Andersen et al. 

(2007) proposed the HAR-RV-J models by adding the daily discontinuous jump 

variation to the HAR-RV model, while the HAR-RV-CJ model that decomposes 

realized volatility into continuous sample path variation and discontinuous jump 

variation was introduced. Patton and Sheppard (2011) developed the HAR-RSV 

model which assumes that positive and negative realized semivariances can have 

different predictive abilities for different time horizons.  

Almost five decades of extensive research and promising applications starting from 

the seminal work of Bates and Granger (1969) provide theoretical support and 

empirical evidence on the benefits of forecast combinations. Clemen (1989) 

summarizes the literature on forecast combinations and concludes that combining 
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forecasts of various economic and financial variables leads to increased forecast 

accuracy. Similar conclusions are reached by Aksu and Gunter (1992) based on 

macroeconomic variables and firm specific series, Makridakis and Hibon (2003) 

based on the so-called M3 competition, Stock and Watson (2003, 2004) across 

various economic and financial variables, Swanson and Zeng (2001) using US 

macroeconomic variables, Marsellino (2004) on a large set of European 

macroeconomic variables, Rapach et al. (2010) on equity premium prediction and 

Benavides and Capistrán (2012) based on Mexican peso-US dollar exchange rate. 

From a more theoretical point of view, Timmerman (2006) provides a theoretical 

justification for the success of combination methods. Following the success of 

combination methods on forecasting the first moments of economic or financial time 

series, the research question of whether combinations methods can also improve the 

forecasts of the second moments arises. Despite the importance of volatility 

forecasting and the wide variety of combination models developed, the earliest study 

in combining various volatility forecasts dates back to 2008 by Becker and Clements. 

Becker and Clements (2008), investigate the forecasting performance of combination 

forecasts on S&P500 index volatility, indicating the superior forecasting performance 

of combination techniques. More, Liu and Maheu (2009) based on high-frequency 

data; use the Bayesian model averaging technique to construct realized volatility and 

density forecasts concluding that Bayesian model averaging provides adequate 

density forecasts and modest improvements in volatility forecasting. In a similar 

framework, Patton and Sheppard (2009) combine individual realized volatility 

estimators through various loss functions concluding that none of the combined 

estimators can be out-performed by any individual estimator. Optimal combination 

procedures have been also applied to improve the accuracy of individual quantile 
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forecasts. For instance, McAleer et al. (2011) examine simple deterministic Value-at-

Risk (VaR) forecasts while Halbleib and Pohlmeier (2012) combine VaR forecasts 

based on the maximization of conditional coverage rates and the minimization of the 

distance between the population quantiles and VaR’s combinations and conclude that 

optimal combinations improve VaR performance during turbulent periods. Alternative 

combination procedures for optimally combining individual VaR models have been 

developed by Tsiotas (2015), Opschoor et al. (2017), amongst others, through density 

combination forecasting. Following the large variety of single models and 

combination techniques, two questions arise. Firstly, are there any economic gains 

from combining volatility forecasts. Secondly, are there any economic gains from 

combining volatility forecasts through economic loss functions.  

While a number of studies provide evidence in favor of combination forecasts, most 

of the existing literature evaluates the performance of combination forecasts based 

solely on statistical evaluation criteria. Only a limited number of studies have used 

economic loss functions to evaluate the forecasting performance of individual 

volatility forecasts. In the volatility forecasting literature, González-Rivera et al. 

(2004) compute volatility under several models, using closing prices of call options of 

the S&P 500 index and indicate the importance of economic loss functions in the 

evaluation procedure. Pierdzioch et al. (2008) evaluate the forecasting performance of 

several individual volatility models using economic loss functions such as the utility 

criterion and an option-based criterion. The first objective of this thesis is to apply 

both statistical and economic loss functions in the evaluation process of combination 

forecasts. The fact that volatility is not observable and thereby necessitating the use of 

a volatility proxy as an input in statistical loss functions may affect the ability of these 

loss functions in discriminating between forecasts. In contrast, economic loss 
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functions overcome the problem of the volatility proxy bias and are related to the 

actual economic use of volatility forecasts. More specifically, Chapter 3 investigates 

the economic gains derived from combining volatility forecasts through different 

economic loss functions. In contrast to previous studies, we evaluate the economic 

importance of our results based on loss functions involving Value-at-Risk (VaR), 

VaR-based market risk capital (MRC), option pricing and utility gains. Moreover, we 

adopt the Superior Predictive Ability (SPA) test of Hansen (2005) and the Model 

Confidence Set (MCS, Hansen et al., 2011) to test whether the models with the 

smallest loss values significantly outperform alternative models.  

The second research question is approximated through an application on energy price 

volatility, one of the most important inputs into macroeconometric, option pricing, 

and portfolio selection models. Although a large number of methods and models has 

been developed, it is not clear which model is most appropriate in providing accurate 

oil price volatility forecasts. Numerous surveys indicate the use of GARCH-class 

models (Sadorsky, 2006; Kang et al., 2009; Mohammadi and Su, 2010; Arouri et al., 

2012; Hou and Suardi, 2012; Wei et al., 2014; Lux et al., 2016; Kleian and Wather, 

2016; Charles and Darné, 2017), but there is no model that consistently dominates the 

others. Sadorsky (2006), for example, examines the volatility of WTI crude oil futures 

and finds that GARCH-class models beat the random walk model. Kang et al. (2009) 

found that the Component GARCH and the Fractionally Integrated GARCH models 

yield superior forecasting performance, while Wei et al. (2014) concluded that no 

model outperforms all the others across different loss functions. Mohammadi and Su 

(2010) examining several GARCH models, conclude that even the APARCH model 

outperforms the others, in most cases, there is no clear winner among the models. 
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Although GARCH-class models exhibit adequate forecasting performance for energy 

price volatility; they do not incorporate the whole-day volatility information. The 

seminal work of Andersen and Bollerslev (1998) led to a new method of measuring 

volatility, i.e. the Realized Volatility (RV), based on high-frequency data develops 

rapidly the models based on them. A growing body of literature is based on the HAR-

RV model proposed by Corsi (2009) which is based on high-frequency datasets. Ma et 

al. (2017) argue that GARCH-class models are constructed from low frequency data 

that lead to a substantial loss of intraday trading information. They use Markov 

regime switching models to HAR-RV models indicating their superior forecasting 

ability. Degiannakis and Filis (2017) extend the HAR-RV models incorporating 

information channels from other assets that improve predictive ability across various 

forecasting horizons. Haugom et al. (2014) include the CBOE Crude Oil Volatility 

Index (OVX) and other market variables into HAR-RV models to forecast crude oil 

volatility, pointing out the significantly improvements. The first models improve the 

forecasting accuracy in shorter forecasting horizons (i.e. daily and weekly basis) and 

the second in all forecasting horizons (i.e. daily, weekly and monthly basis). Wen et 

al. (2016) extend the HAR-RV models that control for structural breaks, finding that 

different models perform good across different forecasting horizons. Sévi (2014) 

applies nine extensions of the HAR model in forecasting the oil futures realized 

volatility, pointing out that the simple HAR-RV model outperforms often more 

complicated models. Ma et al. (2018a, 2018b) found that models incorporating both 

large and small jumps significantly perform better than the single models. 

While a number of studies provide evidence in favor of HAR-type and GARCH-type 

models, a considerable amount of literature points out that volatility forecasts from 

individual models are very unstable and change over time (e.g. Corsi et al., 2010; Ma 
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et al., 2017 amongst others). However, few studies investigate the use of combination 

forecasts on the prediction of the oil price volatility. Particularly, only five studies 

exist to date. Lux et al. (2016) combined oil volatility forecasts computing the optimal 

weights through a forecast encompassing test, while Wei et al. (2017) and Ma et al. 

(2018c) used the Dynamic Model Averaging (DMA) approach that takes into account 

the historical performance of the competing models. Zhang and Ma (2018) based on 

high frequency data on oil futures combined several models pointing out their 

superior performance. Zhang et al. (2019) combined several HAR models using 

standard combination techniques and compared them with the forecasts derived from 

shrinkage methods of the elastic net and lasso regressions indicating the superior 

forecasting performance of the shrinkage methods. While a number of studies provide 

evidence in favor of combination forecasts, all the existing studies combine forecasts 

based solely on statistical criteria. The superior forecasting performance in both 

statistical and economic terms of combination models has been corroborated in 

Chapter 3. In Chapter 4, we introduce new combination techniques based on 

economic and risk management loss functions and evaluate their forecasting 

performance using statistical and economic evaluation measures. We expect to 

improve the forecasting accuracy in economic terms by combining volatility forecasts 

based on them. To the best of our knowledge there is no study that combines forecasts 

based on economic criteria to date. 

To compute the combination weights, we use standard economic and risk 

management loss functions widely used in volatility forecasting literature. Ma et al. 

(2017), for example compute the volatility of WTI futures contract based on 5-minute 

returns and evaluate its economic performance through the Sharpe ratio. Zhang and 

Ma (2018) and Ma et al. (2018a, 2018b) compute the volatility of WTI oil futures and 
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spot prices respectively using the Certainly Equivalent Return criterion due to Rapach 

et al. (2010) indicating the out-of-sample economic gains. We expect to use these 

economic loss functions and a risk management loss function proposed by González-

Rivera et al. (2004) (i.e. the Smoothed-Q loss function) to optimally combine 

volatility forecasts of crude oil futures prices.  

1.2 Contribution of the Thesis 
 
This thesis is primarily concerned with the investigation of the forecasting 

performance of simple and more complex combination techniques as weel as on the 

development and use of new, more accurate combination volatility methods in 

financial applications. While the idea of combining volatility forecasts is not new, it 

still has been exploited little in the existing literature. To the best of our knowledge, 

there are a few papers that make reference to this topic (Li et al., 2013; Fuertes et al., 

2009 and Wang et al., 2015 amongst others). In this thesis, two important aspects of 

combination volatility forecasts are examined. Firstly, a large variety of simple and 

more complex combination techniques in the context of volatility forecasting and the 

related economic gains of these techniques are investigated. Secondly, combination 

techniques based on economic and risk management loss functions are proposed and 

examined using statistical and economic measures. 

Concerning the first contribution, various volatility forecasts based on different 

combination schemes are investigated (i.e. simple combinations, combinations based 

on the relative performace of the single models and combinations based on regression 

approaches). Forecasting the volatility of asset returns has received significant 

attention in the literature. The common volatility models seem to provide accurate 

forecasts during tranquil periods but not in turbulent periods. The instability in 
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financial markets during the global financial crisis of 2007-2009 was characterized by 

extreme asset price movements and high volatility revealing the insufficiency of the 

existing single volatility models. Investors faced with extreme losses, while these 

losses underlined the need for accurate volatility forecasting. 

A number of studies compare widely common used models (e.g. GARCH-class 

models due to Engle (1982) and Bollerslev (1986), the GARCH-MIDAS models by 

Engle et al. (2013) and the so-called HAR models of Corsi (2009)) yielding to a 

different best volatility forecasting model each time. However, the evidence about 

which is the best volatility forecasting model is far from being conclusive. The first 

part of this study examines the following question: “Does it worth combining 

volatility forecasts in both statistical and economic terms?”. We address this question 

by examining whether combination forecasts based on three different class models 

can lead to higher volatility forecasting accuracy for the S&P500 index in Chapter 3. 

The three different class models include models based on low-frequency (daily) data, 

models based on high-frequency (5 minutes) data and option-based data (i.e. the VIX 

index). We expect the combination of different information channels, i.e. different 

datasets, to be more efficient than combining models based on the same dataset. 

Moreover, several statistical and economic loss functions widely used in the 

forecasting literature are used to evaluate their forecasting accuracy. The empirical 

evidence indicates that combination forecasts based on regression and more complex 

schemes lead to higher forecasting accuracy and economic gains than the single 

volatility models and the simple combination techniques. Our results are consistent 

with the literature on combining volatility forecasts as many studies suggest 

regression techniques to optimally combine volatility forecasts (Fuertes et al., 2009; 

Li et al., 2013; Yang et al., 2015 amongst others). The superior forecasting 
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performance of such combinations can be attributed to three stylized facts. Firstly, 

different volatility models capture different market microstructures. Secondly, 

regression-based forecasts correct more properly any bias compared with the simple 

average that gives the same weight even to mispecified models. Thirdly, different 

information channels come from three different datasets, improve the pooled model. 

Though the main drawback of our study is that there is no clear winner across all loss 

functions suggesting that different combination techniques are preferable based on the 

economic application to be used. These results are important for investors or financial 

institutions. For instance, taking into consideration the instability in the performance 

of single forecasts and the fact that different loss functions are relevant for different 

decision makers, they are encouraged to use the combination forecasting methodology 

to improve forecasting accuracy and economic gains. On the other hand, if no such 

methodology exists, an investor or financial institution can use the existing volatility 

models that may lead to substantial losses due to the miscalculated volatility. 

The second contribution of the thesis is the development and application of new 

combination methodologies based on economic and risk management loss functions. 

The main research question is: “Does it worth combining volatility forecasts through 

economic loss functions across different model-types and forecasting horizons?”. 

While most combination approaches take into consideration statistical measures or are 

based on simple combination techniques that have been found to work well and 

sometimes outperform more complex techniques (see Stock and Watson, 2004; Smith 

and Wallis, 2009 amongst others), Chapter 4 of this thesis proposes combination 

techniques based on economic and risk management loss functions in the context of 

crude oil price futures volatility. Since each model incorporates different aspects of 

volatility, they arguably contain useful information not included in a single volatility 



Chapter 1 - Introduction 
 

19 
 

model. The proposed methodology has an important advantage compared to 

alternative combinations. It is based on economic and risk management measures that 

can lead to substantial economic gains as the optimal weights are computed through 

the relative performance of each model according to the economic loss functions 

based on a training period. To the best of our knowledge there is no other study in the 

literature that combines volatility forecasts using economic and risk management loss 

functions. 

The economic combination techniques are based on the Certainly Equivalent Return 

(CER) measure, the Sharpe ratio and the Smoothed-Q loss function. More 

specifically, we extend the triangular weighting methodology due to Timmermann 

(2006) by substituting basic statistical loss functions with the aforementioned 

economic and risk management loss functions. We also include a new trimmed mean 

combination technique, where the combination forecast is calculated through the 

equal weighted average of all forecasts after trimming the one with the worst out-of-

sample performance according to the economic and risk management measures. The 

last economic combination technique is based on an alternative combination strategy 

of Stock and Watson (2004) that places all the weight on the individual forecast that 

has the best post performance during the last period. We implement this strategy 

based on economic loss functions rather than statistical loss functions.  

To examine the relative accuracy of the proposed methodologies, we implement three 

types of combinations: combinations based on GARCH models (i.e. low-frequency 

data), combinations based on HAR models (i.e. high-frequency data); and 

combinations based on both model types. The empirical results of this chapter 

propose that the best performing model is different for each combination type and 

forecasting horizon. Considering the GARCH combinations, our results suggest that 
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combination techniques often outperform the single models in both statistical and 

economic terms. Interestingly, two of the proposed combination schemes (i.e. the 

combinations derived from the CER measure and the Sharpe ratio), increase the 

economic gains for an investor for the 1-step and 22-step ahead forecasts. The 

superior performance of these combination techniques is attributed to the fact that 

different volatility models capture different market microstructures (for example the 

FIGARCH model accounts for long memory and asymmetries while the EGARCH 

model responds in a different way to positive and negative returns). As a result, a 

combination based on an economic measure can increase the economic gains even if 

daily data are used. Turning to the HAR combinations, the combination techniques 

based on statistical loss functions indicate superior forecasting performance for both 

statistical and economic loss functions. This result is consistent for all the forecasting 

horizons examined. Although in some cases the economic combinations are ranked 

amongst the best performers, they seldomly outperform the statistical combinations, 

suggesting that the considerable amount of information contained in high-frequency 

data can increase the forecasting accuracy of several models when they are combined 

even in a statistical measure that corrects better for bias (e.g. regression techniques). 

When two information channels (i.e. the low-frequency and the high-frequency 

models) are used, the economic gains for an investor are maximized for longer 

forecasting horizons. Our analysis, however, suggests that a single model, the 

EGARCH model indicates superior forecasting accuracy under statistical and risk 

management evaluation in some cases. Although this result is not expected, a limited 

number of studies (Arouri et al., 2011; Wei et al., 2017) indicate that in some cases 

single models outperform combination techniques. 
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1.3 Overview of the Thesis 
 
In this section a brief overview of the thesis is provided. Chapter 2 reviews the 

existing studies on the development and application of combination forecasts on 

economics. Firstly, simple combination techniques (i.e. Mean, Median amongst 

others) are presented. Secondly, a number of studies that include more complex 

combination techniques are presented. These methodologies include linear 

combinations based on least squares regression approaches as well as non-parametric 

techniques that take into consideration the ranking of the models over the last periods 

(for example the triangular weighting method due to Timmermann ,2006). Moreover, 

based on Yang’s (2004) argument that linear combinations can lead sometimes to 

worse forecasting performance, nonlinear combinations are examined. Furthermore, 

methods based on more complex techniques such as the Bayesian Model Averaging 

and the Dynamic Model Averaging are discussed. Finally, the shrinkage and the 

iterated combinations are considered. 

Chapter 3 of this thesis examines the benefits of combination techniques under an 

economic perspective. Firstly, numerous forecasting volatility models are combined 

using an exhaustive set of simple and statistical combination techniques. Secondly, 

we combine various volatility forecasts to forecast the volatility of S&P500 index 

based on different combination schemes and different model-types (i.e. we include 

GARCH models computed from daily observations, HAR models computed from 

intraday 5-minutes returns, and an implied volatility index). Thirdly, their forecasting 

accuracy is evaluated in both statistical and economic context. The methodology 

consists of simple combination methods such as the mean, the geometric mean, the 

harmonic mean and a transformed trimmed mean method and more complex 

combination methods. More specifically, the discounted Mean Squared Forecasting 
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Error (DMSFE) combination proposed by Diebold and Pauly (1987) and Stock and 

Watson (2004) is used. From a regression approach, we consider the linear least 

squares combinations proposed by Aksu and Gunter (1992). We also use Yang’s 

(2004) nonlinear and AFTER combination model (Yang, 2004; Zou and Yang, 2004). 

Finally, we include nonparametric combinations such as the Kernel regression 

approach (Härdle, 1990), the triangular weighting (TW) method due to Timmermann 

(2006), and the Shrinkage Combination scheme based on Stock and Watson (2004). 

In contrast to previous studies, we evaluate the economic importance of our results 

based on loss functions involving Value-at-Risk (VaR), VaR-based market risk 

capital (MRC), option pricing and utility gains. Moreover, the Superior Predictive 

Ability (SPA) test of Hansen (2005) and the Model Confidence Set (MCS, Hansen et 

al., 2011) are adapted to test whether the models with the smallest loss values 

significantly outperform alternative models. 

Chapter 4 introduces new combination techniques based on economic and risk 

management loss functions in the context of crude oil futures price volatility. The 

volatility forecasting models considered include several GARCH and HAR models. 

To compute these two type models, we use both daily and high-frequency data. 

Furthermore, we include to our calculations combinations derived from GARCH 

models (daily data), combinations derived from HAR models (high-frequency data) 

and combinations derived from both GARCH and HAR models. We include to our 

calculations simple combination methods (i.e. the mean, the median, the geometric 

mean, the harmonic mean and a transformed trimmed mean method), and more 

complex combination schemes based on statistical loss functions. Apart from a vast 

variety of methodologies based on statistical measures, we include three new 

methodologies based on economic and risk management loss functions. Particularly, 
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the economic combinations are analyzed as: the TW-CER, the TW-Sharpe, the TW-

Q, the Trimmed-CER, the Trimmed-Sharpe, the Trimmed-Q, the Best-CER, the Best-

Sharpe and the Best-Q. Finally, we evaluate the economic significance of our results 

based on loss functions involving Value-at-Risk (VaR) and portfolio gains. Moreover, 

the Superior Predictive Ability (SPA) test of Hansen (2005) and the Model 

Confidence Set (MCS, Hansen et al., 2011), as well as a modified version of the SPA 

test proposed by Hsu et al. (2010) are adapted. 

Finally, Chapter 5 presents the major conclusions of this thesis and suggests topics 

and areas of further research. 



 

 

Chapter 2 

 

Combination Forecasts - A Review 
 

Forecasting the volatility of asset returns has become one of the most active areas in 

financial econometrics. Although, a vast literature on models and methods has been 

developed, it is not clear which model is most appropriate in providing accurate 

volatility forecasts. Instability in financial markets during the global financial crisis of 

2007-2009 was characterized by extreme asset price movements and high volatility 

revealing the insufficiency of the existing single volatility methods. Investors faced 

with extreme losses, while these losses underlined the need for accurate volatility 

forecasting. While a strand of literature has attempted to identify the single best 

forecasting model in the context of financial applications, a limited number of studies 

in financial forecasting have applied combination techniques to aggregate numerous 

individual forecasts into a pooled model. Combining forecasts can reduce uncertainty 

risk with a single predictive model, while forecasts combinations are more robust to 

unknown instabilities (i.e. structural breaks). This chapter presents the existing studies 

to date concerning combination forecasts. Furthermore, stylized facts of combination 

forecasts are reported, while the existing methodologies of combination forecasts are 

presented. 
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2.1 Simple Combinations 
 
Several studies have examined the benefits derived from combining different 

forecasts (Aksu and Gunter, 1992; Makridakis and Hibon, 2003; Stock and Watson, 

2004; Swanson and Zeng, 2001; Marsellino, 2004; Benavides and Capistrán, 2012; 

Timmerman, 2006). In general, the combination forecast of st derived from a set of n 

individual volatility forecasts based on the information available at time t-1, fit, is 

given by 

  1 ,..., ;c

t t ntf g f f w   (1) 

where g is a function (linear or non-linear) and w is a vector of parameters/weights. In 

the following chapters, we include every single model presented to all combination 

schemes, as each model is expected to add significant information to the combined 

model. With the exception of the first class of simple combination forecasts, all of the 

combination schemes allow for time-varying weights. 

At first, simple combination forecasts including the mean, the harmonic mean, the 

geometric mean, the trimmed mean, and the median are considered. Smith and Wallis 

(2009) found that simple combinations of point forecasts outperform sophisticated 

weighted combinations using several models to predict US GDP and the industrial 

production index during the 2001 recession. Similarly, Stock and Watson (2004) 

using a large variety of combination approaches, found that the more sophisticated 

models perform worse than the simple combinations. Their results indicate that 

among the simple combination forecasts there seems to be little difference between 

the mean and the trimmed mean while the median combination produces the higher 

MSFE.  
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Recently, Wang et al. (2017) proposed a transformed trimmed mean combination 

computed as the equal-weighted average from single forecasts after trimming the one 

with the worst past performance. Similarly, Jose and Winkler (2008) proposed the 

winsorized mean, computed by averaging the forecasts of all models, winsorizing the 

p highest and the p lowest forecasts. 

Palm and Zellner (1992) pointed out the advantages of the simple average forecasts. 

They argue that the combination weights do not have to be estimated that is an 

important advantage in cases that there is little evidence on the performance of single 

forecasts or if the parameters of the model generating the forecasts are time-varying. 

More, they conclude that a simple average of the forecasts can achieve significant 

reduction in variance and bias and finally that it often dominates forecasts based on 

more complex schemes in terms of MSE. Although the simple combination 

approaches seem to provide good forecasting performance, Genre et al. (2010) 

pointed out that there is no single combination approach which appears to dominate 

across either variable or at different horizons. Based on this argument, several more 

sophisticated combination approaches are examined. 

2.2 Linear Time Varying Parameter Combinations 
 
The importance of combination forecasts was firstly made apparent in Bates and 

Granger (1969) pioneering work on combination forecasts. The core problem for an 

investor is which the superior forecast to use is. The main assumption is that the 

minimized error variance is no greater than the smaller of the n individual forecast 

error variances. The second class of combination methods considered combines all the 

individual models to a linear combination of the form: 
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where c

tf  is the one-step ahead combination forecast at time t, 0w  is the constant term 

if required, itw  are the combination weights and itf  the individual one-step ahead 

forecasts. In these combination schemes a holdout period for estimating the 

combination weights is required. The last q observations of the in-sample period are 

used as the initial holdout period. In the following methodologies, time-varying 

weights are considered in order to capture the dynamics of the examined series and 

weights depend on the historical performance of the single forecasts. The idea to use a 

regression approach for combining forecasts was firstly proposed by Granger and 

Ramanathan (1984). They argued that an advantage of the ordinary least squares 

(OLS) forecast combinations is that a combined forecast including an intercept is 

unbiased, even if one of the single forecasts is biased. However, a disadvantage of the 

proposed methodology is that it places no restriction on the combination weights, 

which complicates their interpretation. Aksu and Gunter (1992) propose a large 

variety of combination techniques based on a regression approach. More specifically, 

the parameters (i.e. weights) are recursively updated and computed through the least 

squares (LS) regression considering different combinations depending on the 

parameters’ constraints and a pseudo-out-of-sample period. The proposed models are:  

 OLSc: Unrestricted LS regression with a constant term;  

 OLSnc: LS regression with no constant term;  

 ERLSc: LS regression with a constant term and the sum of weights equals 

unity;  
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 ERLSnc: LS regression without a constant term and the sum of weights equals 

unity;  

 NRLSc: LS regression with a constant term, while the weights are positive; 

 NRLSpc: LS regression with a positive constant term, while the weights are 

positive; 

 NERLSc: LS regression with a constant term, while the sum of positive 

weights equals unity; 

 NERLSpc: LS regression with a positive constant term, while the sum of the 

positive weights equals unity; 

 NRLSc: LS regression without a constant term and positive weights; 

 NERLSnc: LS regression without a constant term, while the sum of the positive 

weights equals unity. 

The constrained least squares combinations is sub-optimal compared to the OLS 

model of Granger and Ramanathan (1984) as they lack the asymptotic properties 

admitted by OLS. However, the weights are more easily interpretable while it often 

indicates better forecasting performance (Clemen, 1986; Weiss et al., 2018). 

Following Aksu and Gunter (1992); Becker and Clements (2008) combined volatility 

forecasts for the S&P500 index using both a mean and a regression approach 

concluding that a combination of model based forecasts is the dominant approach and 

that the implied volatility index is an inferior forecast of the S&P500 volatility. Next, 

Chan et al. (1999) and Stock and Watson (2004) considered the principal component 

analysis combination to estimate the static common factors from the panel of forecasts 

and regress a subset of these on the target variable. The combination forecast is based 

on the fitted k principal components of the uncentered second order matrix of the 

single model forecasts. The weights are estimated through the OLS regression. In this 
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combination methodology, the number of the fitted k principal components is 

estimated through an information criterion (e.g. the AIC or the BIC). The projection 

on the mean combination was proposed as a superior forecasting methodology by 

Capistrán and Timmermann (2009). In this method the combination forecast is 

computed through a linear projection of the targer variable on the equally weighted 

forecast. 

Ma et al. (2018c) following Tibshirani (1996) combined forecasts through the LASSO 

regression. In this regression approach, the coefficients for the variables that are not 

significantly important take values of zero, making a simpler model by focusing on 

variables that are strong predictors without increasing bias. More, the variance of the 

OLS estimates is higher when the number of observations is small and the predictors’ 

number is large. Granger and Jeon (2004) proposed the “thick modeling approach” 

that removes the models with the worst past performance. In this methodology, the 

poorly performing models are removed in a step that precedes the calculation of 

combination weights, while the optimal weights are calculated through a least squares 

regression. 

Similarly, Hansen (2008) proposed a forecast combination based on the method of 

Mallows Model Averaging (MMA), where the combination weights are calculated 

through the minimization of the unbiased estimate of both the in-sample MSE and the 

out-of-sample one-step-ahead MSFE. Amendola and Storti (2008) combined volatility 

forecasts using several GARCH-class models for the S&P500 daily returns using the 

Generalized Method of Moments (GMM) to estimate the combination weights, 

concluding that the proposed combination algorithm can be considered as a useful 

tool for risk management applications and financial modeling. More, they propose to 
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use their application to multi-step ahead forecasts. Gurung et al. (2017) combined 

forecasts using a linear regression approach. However, they estimated the coefficients 

through the Kalman Filter
1
 that ensures the minimization of the forecasts error 

variances. Differently, Patton and Sheppard (2009) combined forecasts to predict 

realized volatility estimators concluding that none of the single models outperform the 

forecasting accuracy of the combinations. 

One disadvantage of regression approaches is that many models do not guarantee the 

positiveness of the estimated weights that is required for volatility estimation. In order 

to deal with cases of negative volatility Amendola and Storti (2016) proposed two 

transformations to models that are not restricted to provide positive volatility 

forecasts
2
. To guarantee the positive definiteness of the variance, an exponential 

transformation is used computed as: 
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Alternatively, the square root transformation on the estimations derived from the OLS 

models is computed as: 
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Wei et al. (2017) and Ma et al. (2018c) combined volatility forecasts for oil futures 

through the Dynamic Model Averaging (DMA) approach proposed by Raftery et al. 

(2010). The DMA approach allows both set of predictors (i.e. the forecasting models 

                                                      
1
 The Kalman Filter is a set of mathematical equations that provides a powerful way to estimate the 

unknown state of a process, while it is recursively used to estimate the forecasts and the forecasts error 

variances. In particular, the next observation is estimated using the previous real observation and the 

estimate of the previous observation. 
2
 The transformations are implemented to the following models: OLSc, OLSnc, ERLSc, ERLSnc, 

NERLSc. 
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used in a combination method) and their coefficients to vary over time. The DMA 

combination is described as: 

  
   

1 1, 1,
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n
i ic

t t tt t i
i
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where 
 

1 1

i

t tf f   for 1,2,...,i n  denotes the specific predictor set and 

   1

, 1,
Pr | t

tt t i
L i f 


  . The equation tL i  indicates the model that is selected at 

time t. The DMA approach computes its forecast by taking the average of all the i 

models in terms of their historical forecasting performance (i.e.  , 1,t t i



). 

An alternative combination approach consists of Bayesian Model Averaging. Let’s 

consider M forecasting models with a prior probability of each model equal to  ip M

the prior distribution of the parameters in each model equal to  |i ip M  and the 

likelihood function  | ,i i iL f M . The posterior probabilities of the models are based 

on Bayes rule: 
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where the marginal likelihood of model iM  is      | | , |i i i i i i i im f M L f M p M d    . 

The expected forecast based on the posterior probabilities of the model is equal to: 
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Although the methodology leads to optimal forecasts, conditional on the true model 

being included in the set of models, it faces the problem that the forecast combination 

is adversely affected by in-sample overfitting of the data. 

2.3 Relative Performance Combinations 
 
Apart from the linear time varying parameter combinations, several combination 

techniques based on basic statistical measures and the ranking of a model during a 

pseudo-out-of-sample period have been proposed. Diebold and Pauly (1987) and 

Stock and Watson (2004) proposed the discounted Mean Squared Forecasting Error 

(DMSFE) combination forecast. The recursively updated weights are computed 

through: 
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where  
0

2

,s h

t h
t h s

it i s h

s T

RVm f


 





  and δ is the discount factor, assumed to equal 

0.9 in this case, and h is the forecast horizon. Recently, the inverse MSFE (IMSFE) 

combination scheme by simply imposing 1   was proposed by Baumeister and 

Kilian (2015). 

A related combination approach is the most recently best which places all the weight 

on the single forecast that has the lowest average squared forecast error over the 

previous four periods (Stock and Watson, 2004). 

Kolassa (2011) proposed two combination approaches based on typical statistical 

information criteria, the Akaike Information Criterion and the Bayes Information 
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Criterion. He found that the proposed combination methodologies lead to higher 

forecasting performance for short-range forecasts. The combination weights are 

inversely proportional to the models’ information criterion: 
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where ( ) ( ) ( )IC i IC i IC k    , ( )IC i  is the information criterion (either the AIC or the 

BIC) of the model I and ( )IC k is the minimum information criterion of model k. 

Swanson and Zeng (2001) proposed combination forecasts based on an 

Heteroscedasticity and Autocorrelation-Consistent (HAC) t-statistics as well as 

combinations based on AIC, BIC and MSE. In particular, the best combination is 

pared down by eliminating the forecasts whose weights are insignificant based on the 

HAC statistic concluding that these combinations dominate forecasts from either 

individual or other combinations. Tsangari (2007) following Lupoletti and Webb 

(1986) combined forecasts based on the minimization of the MSE. She argued that 

since the errors have zero means and are uncorrelated, the best choice for the weights 

is a ratio of the sums of squared errors. 

From a different point of view, Granger and Pesaran (2000) and Patton and 

Timmermann (2007) concluded that combination forecasts based on symmetric loss 

functions (i.e. the combinations where the weights are computed through the 

minimization of the MSE) can lead to serial correlation in the forecast error at the 

single-period forecast horizon and to the increase of the forecast error variance as the 

horizon grows. Based on these arguments Timmermann (2006) considered the LINEX 
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loss function as an alternative asymmetric loss function that washes out bias in 

individual forecasts. 

2.4 Non-linear Combinations 
 
The forth class of combination models builds on Yang’s (2004) argument that linear 

combinations can sometimes lead to worse out-of-sample performance compared to 

single models. He argues that this happens if and when the forecasts are strongly 

collinear. Thus, Yang (2004) proposed a nonlinear combination where the weights are 

computed as a function of the mean squared error as follows: 
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  (10) 

For simplicity, he supposes 1i   . This forecasting procedure ensures that 

combinations achieve a performance similar to that of the best single forecasting 

model up to a constantly penalty and a proportionality factor. 

Moreover, Yang (2004) and Zou and Yang (2004) proposed the Aggregated Forecast 

Through Exponential Re-weighting (AFTER) model, as a modified version of the 

Yang’s model. The weights of each single forecast are recursively updated and 

obtained according to: 
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where 
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 . A modified 

version of the AFTER combination, including a forgetting factor in order to adapt the 

combination more quickly to different situations was proposed by Sánchez (2008). 

Cheng and Yang (2015) proposed also another modified version of the AFTER 

combination that ensures for outlier protection through a synthetic loss function 

indicating the advantages of the new method by providing combined forecasts with 

fewer large forecast errors. 

In this combination class is also included the basic combination approach of Bates 

and Granger (1969). This technique assigns weights depending on the inverse of 

means squares error prediction errors. The optimal weight is: 
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where 0 1itw   and 
1

1
n

iti
w


 . 

2.5 Non-parametric Combinations 
 
Timmermann (2006) argued that linear and nonlinear combinations require 

stationarity at least for the time involved in the estimation, as well as a large data 

sample in order to be robust to outliers. However, the non-parametric combination 

methods take into account the ranking of each model based on its forecasting 

performance (often measured by the MSFE) up to time t. More specifically, 

Timmermann’s (2006) triangular weighting (TW) method is less sensitive to outliers, 

while the weights are expected to be more robust than the weights derived from the 
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DMSFE methodology. The combination weights are inversely proportional to the 

model’s rank: 
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where Ri,t is the ranking of model i based on its MSFE up to time t. One advantage of 

the methodology is that any correlations across forecasts are ignored. Moreover, 

Timmermann (2006) argues that this combination forecast generally leads to 

increased forecasting accuracy as the information contained in each single model is 

combined; it averages across differences in the way single forecasts are affected by 

structural breaks; and it is less sensitive to possible misspecification of single 

forecasting models. 

Another combination technique is the Spread Combination proposed by Aiolfi and 

Timmermann (2006) that assumes weights of the form: 
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where α is the proportion of the top models that gets a weight equal to 
1 w

aN


based on 

the performance up to time t. Similarly a proportion of the models gets a weight equal 

to 
w

aN


. The larger the value of α, the wider the set of the top and bottom models used 

in the combination. The larger the value of w , the bigger the difference in weights on 

top and bottom models. 
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Similarly, Härdle (1990) introduced the non-parametric Kernel regression approach 

with time-varying parameters, while Tsangari (2007) indicates the superior 

performance of the Kernel regression approach through an application on exchange 

rates. The Nadaraya-Watson kernel weights are given by: 
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where    2

l
uK u l K

l
 ,  1 2,u u u  and      1 2K u K u K u  is the product of 

each individual univariate kernel K. The shape of the Kernel weights depends on the 

kernel K and the size of the weights is parameterized by l, the bandwidth. 

2.6 Shrinkage and Iterated Combinations 
 
The next combination approach is based in a portfolio application by Ledoit and Wolf 

(2003) who propose to shrink the weights towards a point implied by a single factor 

structure. Diebold and Pauly (1990) and Stock and Watson (2004) proposed the 

shrinkage combination where the weights shrunk the combination weights to the 

equal weight solution so the combination gives a convex combination of the least-

squares and equal weights. The weights are shrunken linearly toward the equal weight 

solution and computed as follows: 

 ˆ (1 )(1/ )it itw n      (16) 
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where   0max 0,1 /n t h T n        ,   is a constant that controls the amount 

of shrinkage toward equal weighting  and ˆ
it  is the ith estimated recursive coefficient 

from the combination
3
.  

Finally, Lin et al. (2017) and Zhang et al. (2018) proposed an advanced combination 

approach, the iterated combination, which is based on standard combination forecasts 

and a simple benchmark forecast. They argued that the iterated combination forecasts 

can generate a smaller forecast error relative to the standard combination forecasts. 

The specification for the iterated combination is: 

  '

,1c c

t it B t tf f f        (17) 

where is the restricted regression coefficient estimated through the restricted least-

squares regression, ,it Bf is the benchmark forecast on day t, and c

tf is a standard 

combination forecast on day t. 

Concluding the major advantage of combining volatility forecasts is that it has been 

found to be a successful alternative to using just a single model. However, there is no 

combination technique that dominates the others. In Chapter 3, we examine a large 

variety of the presented combination techniques through an application on the 

volatility of the S&P500 index. More, in Chapter 4,  new combination methodologies 

based on economic and risk management loss function are proposed and evaluated 

through an application to crude oil futures price volatility. 

                                                      
3
 The Shrinkage technique is applied to all the combination models that do not contain a constant term, 

i.e. the DMSFE, the OLSnc, the ERLSnc, the NRLSnc, the NERLSnc, the IMSFE, the Nonlinear and the 

Triangular Weighting, since the weights are computed as an average of the estimated weights and equal 

weighting. 
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Chapter 3 

 

Predictive Ability and Economic Gains from 

Volatility Forecast Combinations 
 

 

The availability of numerous modeling approaches for volatility forecasting leads to 

model uncertainty for both researchers and practitioners. A large number of studies 

provide evidence in favor of combination methods for forecasting a variety of 

financial variables, but most of them are implemented on returns’ forecasting and 

evaluate their performance based solely on statistical evaluation criteria. In this 

chapter, we combine various volatility forecasts based on different combination 

schemes and evaluate their performance in forecasting the volatility of S&P500 index. 

We use an exhaustive variety of combination methods to forecast the volatility 

ranging from simple techniques to time-varying techniques based on the past 

performance of the single models and regression techniques. Then, we evaluate the 

forecasting performance of single and combination volatility forecasts based on both 

statistical and economic loss functions. The empirical analysis yields an important 

conclusion. Although combination forecasts based on more complex methods perform 

better than the simple combinations and single models, there is no dominant 
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combination technique that outperforms the rest in both statistical and economic 

terms. 

This chapter is organized as follows. Section 3.1 reviews the use of combination 

forecasts on stock market volatility. Section 3.2 describes the single volatility models 

used in this application. Section 3.3 presents the combination techniques used in this 

chapter. Section 3.4 describes the statistical evaluation process of the out-of-sample 

performance of volatility forecasts, while Section 3.5 presents the economic 

evaluation process. In Section 3.6 the tests of forecasting performance (i.e. the 

Superior Predictive Ability (SPA) and the Model Confidence Set (MCS)) are 

presented. Section 3.7 presents the data and the results of the current study. Finally, 

Section 3.8 presents some concluding remarks. 

3.1 Combination forecasts and Stock Market Volatility 
 
Forecasting stock market volatility is an important and challenging task for both 

academics and practitioners. Volatility prediction is the key variable in forecasting the 

prices of stocks and, in general, the risk that investors face. However, a single 

forecasting model is likely to result in worse forecasting performance because of 

model misspecification. A recent trend to improve forecasting accuracy is to combine 

single forecasts under various statistical loss functions or simple combination 

techniques. Given the importance of volatility forecasting, a limited number of studies 

have examined the benefits derived from forecast combination in terms of stock 

market volatility as it is noticed by Poon and Granger (2003). 

Amendola and Storti (2008) combined volatility forecasts for S&P500 index using the 

Generalized Method of Moments (GMM) imposing conditions on the standardized 
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residuals implied by a given set of combination weights. Their methodology has been 

found to provide adequate results for the one-step-ahead prediction of volatility as it 

minimizes the forecasting error. Furthermore, Amendola and Storti (2016) extend 

their research by applying exponential and square root transformations to combination 

volatility forecasting, concluding that the results are very sensitive to the choice of 

model and the combination strategy. 

On the other hand, Becker and Clements (2008) combine volatility forecasts for the 

S&P500 index and compare the forecasting ability among several single models and 

the so-called VIX index. Using two combination approaches (i.e. the mean 

combination and a regression approach), they indicate their dominance as the 

combinations capture different dynamics in volatility. Claessen and Mittnik (2002) 

combined volatility forecasts using several GARCH models and an implied volatility 

index for the DAX index concluding that the combination of two sources of 

information improves the forecasting accuracy. 

Jing-Rong et al. (2011) combined stock market volatility forecasts using least squares 

regressions under different parameter constraints and a regime switching approach 

driven by a latent variable, concluding that the regime switching combination 

approach has a better forecasting accuracy than the single models. In a similar 

framework, Fuertes et al. (2009) and Li et al. (2013) concluded that combination 

forecasts derived from a regression approach is better than an equally weighted 

approach as time-varying weights take into consideration the market’s bias and reduce 

model uncertainty. 

Furthermore, Yang et al. (2015) implemented several combination techniques to 

forecast the volatility of Shanghai Stock Exchange Composite Index and five sectoral 
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indices. The results indicated that a non-parametric Kernel regression and a non-

negative restricted least squares regression are the best performing models for 

forecasting realized volatility under structural breaks. A different approach was 

adapted from Wang et al. (2015). Using a large number of HAR-RV models, they 

combined forecasts to predict the volatility of the S&P500 index under the Dynamic 

Model Averaging (DMA) approach and extended methods based on DMA. More, 

they evaluated their forecasting accuracy based on statistical measures and portfolio 

measures, concluding that combinations lead to more accurate forecasts in both 

statistical and economic terms. 

Ma et al. (2018d) combined volatility forecasts derived from high-frequency and low-

frequency datasets. In total, they implement three types of combinations, 

combinations based on high-frequency data, combinations based on low-frequency 

data and combinations based on both datasets. The results show that combinations 

based on GARCH models lead to higher forecasting accuracy, while the combinations 

based on HAR models do not surpass the forecasting ability of the single models. 

However, incorporating both GARCH and HAR models to combinations lead to 

higher forecasting accuracy. 

Analyzing the properties of combination forecasts in Chapter 2, and motivated by 

their adequate forecasting performance in stock market volatility, we employ several 

combination schemes based on both daily and high-frequency datasets. 
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3.2 Single Volatility Models 
 
Several models have been proposed to forecast volatility, but there is no agreement 

regarding which model is superior in terms of out-of-sample forecasting accuracy. 

Firstly, we analyze several volatility models to capture a number of stylized facts in 

volatility behavior such as asymmetry, long-memory and persistence, and then 

numerous combinations based on these models are considered.  

The return process is usually represented as: 

 t tr      (18) 

where   is a constant mean and  t t ts z  is the innovation term with           and 

ts is the conditional volatility.  

We divide the total sample of T observations into an in-sample portion composed of 

the first T0 observations and an out-of sample portion of T1=T-T0 observations. We 

generate out-of sample volatility forecasts from each of the following described 

models using a rolling estimation window. 

The first specification consists of the so-called GARCH (p,q) model due to Bollerslev 

(1986) considered as sufficient state of the art in volatility forecasting. In its general 

form a GARCH model is presented as: 
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where 2

ts  is the conditional variance, 0 , i and i  are parameters that have to be 

positive, while 1 i ia , p, q are the lags of the ARCH and GARCH terms 



Chapter 3 - Predictive Ability and Economic Gains from Volatility Forecast 

Combinations 
 

44 
 

respectively. In our application, we use the GARCH (1,1) model. To account for 

potential asymmetric response of volatility on positive and negative innovations, 

Nelson’s (1991) exponential GARCH (EGARCH) model is considered. The 

EGARCH model adopts the following volatility process: 
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where the leverage effect is captured if 0i  . 

Another extension of the GARCH model that captures the long memory effect is the 

Fractionally Integrated Model (FIGARCH model) proposed by Baillie et al. (1996) 

and described as: 
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 (21) 

where L is the lag operator and  1
d

L is the fractional differencing operator. 

Another strand of the literature assumes that the information contained in 

macroeconomic variables provides useful information for estimating and forecasting 

volatility. Engle et al. (2013) propose a new class of volatility models, the GARCH-

MIDAS models that incorporate economic fundamentals into a volatility model. In 

particular, a daily GARCH process and a MIDAS polynomial applied to monthly, 

quarterly or bi-annual macroeconomic or financial variables are used. We consider 

two versions of the model. In the first specification, the long term component is based 

on realized volatility over a different time basis (i.e. monthly), while in the second 

version the long term component links to a macroeconomic variable (i.e. the inflation 
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rate and the industrial production index)
4
. A GARCH-MIDAS model with a rolling 

window of the Realized Volatility or a macroeconomic variable is described as:    

 t ts g m   (22) 
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where tg  is the short-run and m  the long-run volatility component, X  is either the 

Realized Volatility or a macroeconomic variable, and k  is the weighting scheme that 

can be either Beta or Exponentially weighting. 

In our application the monthly realized volatility, the inflation rate and the industrial 

production index growth rate are used and a restricted beta weighting scheme is 

adopted where the weights are computed as follows. 
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Numerous studies indicate that models based on high frequency data achieve better 

forecasting performance compared to conventional models based on daily returns 

(Martens, 2002; Martens and Zein, 2004).  First, we compute the Realized Volatility 

(RV) as the sum of squared intraday returns, i.e.: 

                                                      
4
 Macroeconomic variables can be expressed in level or volatility basis, or in both. In our case, we use 

the level basis.  
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   (26) 

Then, we employ three frequently used models directly applied on the realized 

volatility series. The first model is Corsi’s (2009) Heterogeneous AutoRegressive 

model of Realized Volatility (HAR-RV) that encompasses different time aggregations 

of RV (i.e. the RV of the previous day, the weekly RV and the monthly RV). The 

HAR model is represented from the following equation: 

 
2

0 1, 1, 1,t t w t w t md d m tRV RV RV RV u            (27) 

where 
1,t dRV 

is the daily realized volatility, 
1,t wRV 

 is the weekly realized volatility 

and 
1,t mRV 

is the monthly realized volatility. An autoregressive moving average, 

ARIMA(p,d,q) model is also employed on the realized volatility series as follows: 

      d

t tR LVL u     (28) 

where   and   are polynomials of orders p and q,   is the difference operator and 

d is the order of integration. 

Taking into consideration the observed strong serial dependence of realized volatility, 

we finally consider the autoregressive fractionally integrated moving average 

ARFIMA (p,d,q) model given by: 

       1 t

d

tRL LVL u     (29) 

where  1
d

L is the fractional integration operator that captures the long-term 

dependence of the series. If  0,0.5d , the process exhibits long memory, while if 
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 0.5,0d   , it exhibits antipersistence. The ARFIMA model achieves long memory 

in a parsimonious way by imposing a set of infinite-dimensional restrictions on the 

infinite variable lags. 

Finally, we consider the VIX index, the core index for US equities that reflects the 

market view on the expected volatility by averaging the weighted prices of put and 

call options on the S&P500 index over a wide range of strike prices (CBOE, 2014). 

As the VIX index is annualized, we turn it to a daily basis, according to 

Kambouroudis et al. (2016): 

 

2

*100
365

d

VIX
VIX

  
   

  
  (30) 

 

3.3 Combination Techniques 
 
Stock and Watson (2004) argued that the predictability of a single model is very 

unstable and changes over time. Consequently, we use a large variety of combination 

techniques presented in Chapter 2. In particular, we include to our calculations the 

following combinations; the Mean, the Geometric Mean, the Harmonic Mean, the 

linear least regressions and their transformations depicted from the equations (2), (3) 

and (4). Also we consider the Nonlinear combination (equation (10)) by Yang (2004) 

and the AFTER combination (equation (11)). More, the DMSFE and the IMSFE 

based on equation (8) are implemented. Finally, the non-parametric Kernel regression, 

the TW and the Shrinkage combinations based on equations (15), (13) and (16) are 

included to our analysis. 
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3.4 Statistical Evaluation Measures 
 
To evaluate the relative accuracy of the proposed methodologies, we rank the models 

using several statistical loss functions. We consider realized volatility (RV) as a proxy 

for the “true” but unobserved volatility. From a statistical point of view, we use, at 

first, statistical loss functions widely used in the existing forecasting literature such as 

the mean absolute error (MAE) and the mean squared error (MSE). The loss functions 

are defined as: 

 
0

0

1

1( )i

i

T

t

t tMAE f RV

 

     (31) 

    
0

0

1

1 2i

it t

T

t

MSE T f RV






     (32) 

A challenging issue in volatility forecasting is that the over-prediction of volatility 

does not have the same practical implications with the under-prediction of volatility in 

various financial applications and asymmetric loss functions are required. For 

example in risk management applications under-prediction of volatility is far more 

severe that over-prediction. Moreover, in option pricing, a buyer (seller) of an option 

might want to penalize more heavily volatility over (under)-prediction. In the class of 

asymmetric loss functions, the linear exponential (LINEX) loss function proposed by 

Varian (1975) and Zellner (1986) is considered. The LINEX measure is computed as: 

         
0

1

0

1

, ; exp 1
LINEX

T
i

t it it t it t

t T

L RV f T T a f RV f RV 


 

           (33) 

where   is a scalar parameter that controls for the degree of asymmetry. We consider 

only positive values for the scalar parameter that penalize more under-prediction than 
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over-prediction. In the same context, we include the Homogeneous Robust Loss 

Function (HRLF) proposed by Patton (2011) and given by: 

 

 
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  (34) 

where the parameter b  controls the shape of the function. This loss function nests two 

other functions, the MSE when b=0, and the QLIKE when b=-2. Similar to the 

LINEX loss function, in the empirical application we focus on negative values of the 

parameter b that penalize more volatility under-prediction than over-prediction. 

3.5 Economic Evaluation Measures 
 
In order to assess the performance of volatility forecasts in economic terms, we 

consider a number of economic loss functions based on various financial applications 

and compute the predictive gains derived from the used methods. Firstly, following 

González-Rivera et al. (2004), a utility loss function is considered to compare the 

predictive performance of the volatility models. Based on the fact that a risk averse 

agent has lower expected utility when the conditional variance is underestimated than 

overestimated, the loss function is defined as: 

          
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where 
ftr  is the risk-free asset return,   is the risk aversion parameter, 
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Considering a simulated option-pricing framework, we also evaluate the volatility 

forecast methods based on the option criterion of Engle’s et al. (1997), by finding the 

model that generates the highest profits for an investor. Options are priced according 

to the Black and Scholes (1972) model. We simulate an options market comprising n 

agents who trade straddles based on their volatility forecasts.  We assume that a trader 

with a higher forecast price for the option buys a straddle on one US$ of the S&P 500 

index from the remaining traders with lower forecasts. The agent’s average daily 

profit is: 

    

0

1 ,

1 1

0 


  

   
i ji

t

T n

t T j

T T   (36) 

where 
 ,i j

t  is the relative profit of agents (i ) and (j). The trader’s (i) profit is either 

      ,

1 1 1| 1|

i j i j

t t t t t tS S        if    
1| 1|

i j

t t t tS S   or       ,

1 1| 1| 1

i j i j

t t t t t tS S         if    
1| 1|

i j

t t t tS S   where

 , 1| , 1|4 0.5 2i t t i t tS N f    is the straddle’s price and       denotes the cumulative normal 

distribution function. While the daily profit of each agent holding the straddle is 

computed through          1 1 | 1 | 1 1max exp exp ,exp expt t f t f t tr r r r         where 1tr  is the 

daily return of S&P500 index and 
| 1f tr 

 is the daily risk free rate. 

In the last set of loss functions we examine includes value-at-risk (VaR) based loss 

functions. The conditional value-at-risk, denoted as ,

1

i a

tVaR  is estimated from 

  1

1

,

,

t i

i a

t t tV aaR f

    (37) 

where μi,t is the conditional mean and Φt is the cumulative distribution function 

(assumed normal in our case). Firstly, a loss function based on quantile estimation 

(Koenker and Bassett, 1978) that penalizes more heavily observations with a violation 

is used, i.e.: 
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where  , ,

1 1 11   i a i a

t t td r VaR . A smaller value for   indicates a better fit for the model. 

As the   loss function faces the problem of nondifferentiability, we also employ a 

smoothed version of the   loss function proposed by González-Rivera et al. (2004) 

where the indicator function is replaced with a continuous differentiable function. The 

smoothed Q loss function is derived from: 

      
0

1 , ,

0 1 1 1 1
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where     
1

, 1 expm a b a b 


      and the parameter δ>0 controls for the 

smoothness. The    loss function is closer to the Q loss function when higher values of 

the smoothness parameter are used. 

Lastly, the VaR-based market risk capital requirement is used as an additional 

economic loss function. Under the current framework of the Basel II Accord (Basel 

Committee on Banking Supervision 1996, 2004) financial institutions determine their 

market risk minimum capital requirement (MRC) according to their internal VaR 

estimates. The daily risk capital charges must be set at the higher of the average VaR 

over the previous 60 business days or the previous day’s VaR, multiplied by a penalty 

factor based on the three-zone approach. Thus, for a long position are formulated by: 

  
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1 0
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i i
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where ,0.99i

tVaR  is the VaR estimate generated on day t based on model i and a 10-day 

holding period and k is penalty factor ranging from 3 to 4 depending on the number of 
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exemptions over the past 250 days.
5
  Models that produce lower MRC are preferred 

since they suggest lower capital charges and allow for higher bank profits.  

3.6 Tests of Forecasting Performance 
 

The loss functions described above allow forecasts to be ranked according to their 

out-of sample forecasting performance. However, they give no indication whether the 

forecasting losses across the various models are significantly different. Since our aim 

is to compare a large number of volatility forecasts based on various models and 

investigate the statistical significance of their comparative forecasting performance 

based on multiple comparisons we adopt two testing procedures that seem to be the 

most suitable in our analysis. First, we employ the superior predictive ability (SPA) 

test of Hansen (2005) that allows for comparing the forecasting performance of two or 

more models at a time. Consider M+1 different models, i.e. the single and 

combination models discussed in the previous sections.  Forecasts are compared 

against a benchmark model M0 and based on a predefined loss function i.e. the 

performance of model i relative to a benchmark model M0 is: 

 
, 0, , , 1,...,i t t i td L L i M     (41) 

where Li,t is a statistic or economic loss functions. 

Under the assumption of stationarity for di,t, the expected performance of model i 

relative to the benchmark is defined as μi=E[di,t] for i=1,…,M. The null hypothesis is 

that the benchmark model M0 is not outperformed by any of the other M competitive 

                                                      
5
 For 0 to 4 violations (green zone) the penalty factor is 3; for 5 to 9 violations (yellow zone) the 

penalty factor is 3.4, 3.5, 3,65, 3.75 and 3.85, respectively; for more than 10 violations (red zone) the 

penalty factor is 4.  
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models and can be expressed as 
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i i tt
d T d


   and ˆ

ii is a consistent estimate of the 

asymptotic variance of di. An estimator of ωii and the p-values of the test are obtained 

using the stationary bootstrap procedure of Politis and Romano (1994). 

As a way to determine the best performing model(s) in a model-rich environment, we 

employ the MCS proposed by Hansen et al. (2011).  Given a universe of model based 

forecasts, the test actually picks the best model based on in and out-of-sample 

evaluations under a specific loss function. The MCS applies sequential trimming to 

the set of candidate models,   . At each step the null hypothesis of equal predictive 

ability (EPA) is  0 ,: 0 ,  ij tH E d i j M  where       is the loss function differential 

between models i and j. In each step the worst performing model is eliminated from 

the model set, and the set of surviving models is the model confidence set at the α 

level of significance. In order to test the null hypothesis the semi-quadratic statistic: 

     
2

varij iSQ

i j

dT d


   (42) 

is employed where 1
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ij ij t
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Td d



   measures the relative performance between 

models i and j and 
1

1

M

i ij

j

d dT 



   measures the model’s i performance relative to the 

averages of the models in the model set. If the null hypothesis is rejected, the worst 

model is excluded from the model set. A block bootstrap with two bootstrap samples 

and 10,000 replications is used to obtain the distribution under the null and the 

confidence level is set to 10%. 
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The SPA and MCS tests are employed on all statistic and economic loss functions 

defined in equations (41) – (42). Both tests have been used in the literature mostly on 

statistical loss functions such as the MSE and more rarely on economic loss functions 

(González-Rivera et al, 2004; Jiang et al., 2014; Dark, 2015; Tian and Hamori, 2015; 

Wang et al., 2016). As noted by Laurent et al. (2012) they are both tests of conditional 

predictive ability and, thus, suitable for both nested and non-nested models while they 

also account for the estimation method, parameter uncertainty, the estimation and 

evaluation sample, and data heterogeneity. 

3.7 Data and Empirical Results 
 
For the purposes of our study, daily closing prices and intraday 5 minute quotes of the 

S&P 500 index are used. The sample extends from January 3, 2006 to December 30, 

2016 including 2769 daily observations. Daily data are collected from Datastream, 

while the intraday dataset is obtained from Olsen and Associates. The intraday returns 

are used to compute the realized volatility measure and the associated models as they 

contain more information than the simple daily squared returns computed through two 

arbitrary points in time (Chou et al., 2010). The index value is quoted from 9:30 AM 

to 4:00 PM, Monday to Friday. As global financial markets tend to integrate and new 

information arrives during non-trading hours, we adjust the high-frequency dataset to 

capture the overnight return, excluding the first five minutes of each trading day.. 

According to Ahoniemi and Lanne (2013) the incorporation of overnight return leads 

to more accurate forecasts for index realized volatility. Moreover, we use the VIX 
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index, constructed by the Chicago Board of Options Exchange, as a forward-looking 

indicator of the expected S&P500 index volatility
6
.  

To evaluate the performance of the competing models we divide the sample into three 

periods. The period from January 3, 2006 to December 31, 2010 is considered as the 

in-sample period, while the period from January 3, 2011 to December 30, 2016 is 

used as the evaluation period. For the combination schemes that require a holdout 

period for estimating the pseudo-out-of sample forecasts we use the period from June 

1, 2009 to December 31, 2010. A total of 20 models are considered using rolling one-

step ahead out-of-sample forecasts to evaluate the predictive ability and the economic 

significance of the examined models
7
, while estimates of the actual volatility are 

obtained using the Realized Volatility (RV) measure by aggregating the intra-day 

squared returns. The results for the S&P500 index are shown in Tables 1 to 4. Τhe 

SPA and the MCS tests are used to assess the statistical significance of loss 

differences among the models presented in section 2.2.3. The models are also ranked 

according to their forecasting performance. However, the rankings given by the used 

loss functions differ, since the loss functions penalize differently the forecast errors.  

In Table 3.1, results based on the symmetric statistical loss functions are presented. 

Under the MAE loss function, the two transformed unrestricted OLS models provide 

the smallest losses compared to all models, while implied volatility is the best 

performing single model. We verify the superior performance of the OLS-based 

                                                      
6
 For technical details on the index construction, see CBOE (2003). 

7
 Although we initially explore a large number of combination models as presented in the previous 

section, for reasons of brevity we include in the empirical results selected models (i.e. 10 single models 

and 10 combination models) from each combination category based on their performance. From the 

simple combinations, we present the results for the Harmonic Mean since it exhibits the best 

forecasting performance amongst the simple combinations. From the OLS-based models we include the 

square root transformed OLSc model (OLSC-SQRT), the exponential transformed OLSnc model (OLSNC-

EXP),and the NRLSNC model. More extended results including 20 combination models are available on 

the Appendix.Results from excluded models are available from the authors upon request. 
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models against all the single models and the majority of the combination techniques 

under the SPA and the MCS test using a 10% significance level. Considering the 

MSE results, the best performing model is the TW model of Timmermann (2006) that 

is not affected by outliers, structural breaks or shocks, while its form allows for 

maximum flexibility; followed by the Shrinkage and the NRLSNC model. Regarding 

the statistical significance, all models except for the FIGARCH model pass the SPA 

test, while the p-values for most of the combinations are significantly higher 

compared to the single models. Under the MSE criterion more models are included to 

the 10% MCS compared to the MAE since the two loss functions penalize differently 

the losses. .Similarly to Becker and Clements (2008), we find that combination 

schemes significantly outperform single forecasting models across symmetric 

statistical evaluation measures. We argue that regression and non-parametric 

combinations indicate superior forecasting performance as more accurate models are 

weighted more heavily suggesting that different volatility models capture different 

market microstructures.  
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Table 3.1: Statistical Evaluation under symmetric loss functions  

 
MSE 

  

 MAE 

  

 

Loss 

function SPA Rank 

 Loss 

function SPA Rank 

GARCH 2.2469* (0.1691) 18  0.6242 (0.0000) 18 

EGARCH 2.0737* (0.6102) 12  0.6925 (0.0000) 20 

FIGARCH 2.5466 (0.0344) 20  0.6500 (0.0000) 19 

MIDAS-RV 2.1044* (0.5626) 13  0.5976 (0.0000) 16 

MIDAS-CPI 2.0631* (0.6812) 10  0.5965 (0.0000) 15 

MIDAS-IP 2.0442* (0.7980) 8  0.5885 (0.0000) 14 

ARMA 2.1565* (0.3564) 16  0.5590 (0.0000) 13 

HAR 2.1490* (0.3792) 15  0.5429 (0.0000) 9 

ARFIMA 2.2846* (0.1745) 19  0.5415 (0.0000) 8 

VIX 2.0006* (0.9528) 4  0.5349 (0.0000) 5 

Harmonic Mean 2.0620* (0.7811) 9  0.5398 (0.0000) 7 

MSFE 2.0369* (0.9238) 7  0.5552 (0.0000) 11 

OLSC-SQRT 2.0710* (0.7029) 11  0.4330* (0.2691) 2 

OLSNC-EXP 2.2203* (0.2993) 17  0.4283* (1.0000) 1 

NRLSNC 1.9909* (0.9818) 3  0.4978 (0.0000) 3 

TW 1.9831* (1.0000) 1  0.5374 (0.0000) 6 

Trimmed MSPE 2.0251* (0.9631) 5  0.5553 (0.0000) 12 

AFTER 2.1240* (0.4910) 14  0.5540 (0.0000) 10 

Shrinkage OLSNC-EXP 2.0312* (0.8890) 6  0.6191 (0.0000) 17 

Shrinkage NRLSNC 1.9906* (0.9791) 2  0.4984 (0.0000) 4 

Note. 1. Values in bold denote that the corresponding model attains the best forecasting performance 

under the specific loss function. 2. Numbers in parentheses denote the p-value of the Hansen’s SPA 

test. The null hypothesis is that none of the models is better than the benchmark. The number of 

bootstrap replications to calculate the p-value is 10,000 and the block length is 2. The confidence level 

used is α=10%. 3. We use * to denote that the model belongs to 10% MCS. The number of bootstrap 

replications to calculate the p-value is 10,000 and the block length is 2. 4. The Shrinkage factor is set 

equal to d=0.50. However, we included to our calculations the values 0.25 and 1 and all gave us similar 

results and ranking. 5. EXP and SQRT denote the exponential and the square root transformation, 

respectively. 
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Results from the asymmetric statistical loss functions are reported in Table 2. The 

HRLF results suggest that the simple and Shrinkage NRLSNC models followed by the 

TW model attain the lowest values for the corresponding loss function. It is 

interesting to note that all the single models are ranked amongst the worst performers 

apart from the VIX index. The superior performance of the combination models is 

further corroborated by both the SPA and the MCS tests..The  asymmetric QLIKE 

criterion also confirms the superior performance of OLS models, whilst three  of them 

are included to the MCS. Similarly, Becker and Clements (2008) found that 

combination forecasts clearly dominate the single models for the asymmetric QLIKE 

loss function that penalizes more the under prediction of the volatility. The superior 

performance of the transformed OLS models is further confirmed under the LINEX 

loss function, presented on the last columns of Table 2.  Considering the MCS test, 

our results indicate that when the scalar parameter is set equal to 0.5, only the two 

best performing combinations are included to the optimal set, while when a value of 1 

is considered, only the best performer i.e. the OLSNC-EXP model is included. On the 

contrary the results for the SPA test indicate that all the combinations pass the test for 

superior predictive ability in both cases. The dominance of regression techniques is 

evident across all asymmetric loss functions, as they may account more properly for 

bias correction than simple techniques. In other words, by updating daily the optimal 

combination weights, regression-based combinations may accommodate more 

efficiently the “model uncertainty” problem. This result is in accordance with 

evidence in previous studies, supporting the superior forecasting performance of 

regression-based combinations for forecasting stock market volatility, i.e. Li et al., 

2013, Yang et al., 2015.  
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Table 3.2: Statistical Evaluation under asymmetric loss functions 

 

HRLF (b=-1) 

 

 
QLIKE 

  

 
LINEX (a=0.5) 

 

 
LINEX (a=1) 

 

 

Loss 

function SPA Rank 

 Loss 

function SPA Rank 

 Loss 

function SPA Rank 

 Loss 

function SPA Rank 

GARCH 0.3410 (0.0452) 16  0.3598 (0.0001) 17  0.2572 (0.0269) 19  6.7130 (0.6531) 16 

EGARCH 0.3398 (0.1619) 15  0.3755 (0.0000) 18  0.2170 (0.2004) 15  2.4278 (0.6688) 13 

FIGARCH 0.3984 (0.0214) 20  0.4022 (0.0006) 20  0.4404 (0.0434) 20  33.5479 (0.0988) 20 

MIDAS-RV 0.3064* (0.3801) 12  0.3267 (0.0296) 12  0.2496 (0.1309) 18  7.4104 (0.5137) 17 

MIDAS-CPI 0.3045* (0.4110) 9  0.3306 (0.0535) 13  0.2486 (0.0822) 17  8.9119 (0.4676) 18 

MIDAS-IP 0.3025* (0.4298) 8  0.3264 (0.0345) 11  0.2068 (0.2048) 14  5.1104 (0.7087) 15 

ARMA 0.3466 (0.0707) 18  0.3568 (0.0015) 16  0.1370 (0.5078) 10  1.2870 (0.7553) 10 

HAR 0.3432 (0.0836) 17  0.3471 (0.0100) 15  0.1212 (0.5826) 6  0.7029 (0.7128) 4 

ARFIMA 0.3795 (0.0469) 19  0.3896 (0.0042) 19  0.1566 (0.4212) 12  3.0749 (0.7105) 14 

VIX 0.2960* (0.5994) 4  0.3234 (0.0566) 8  0.0881 (0.7014) 3  0.3026 (0.7920) 2 

Harmonic 

Mean 0.3063* (0.2983) 11  0.3207 (0.0393) 7  0.1147 (0.6126) 4  0.7588 (0.7738) 6 

MSFE 0.2979* (0.5119) 7  0.3161 (0.0836) 5  0.1594 (0.3824) 13  2.2119 (0.7543) 12 

OLSC-SQRT 0.2974* (0.3554) 6  0.3035* (0.2760) 3  0.0879* (0.7548) 2  0.3355 (0.8454) 3 

OLSNC-EXP 0.3338* (0.1294) 14  0.3248 (0.1194) 10  0.0801* (1.0000) 1  0.2149* (1.0000) 1 

NRLSNC 0.2809* (0.9313) 2  0.2855* (1.0000) 1  0.1210 (0.6023) 5  1.2244 (0.7809) 8 

TW 0.2898* (0.7082) 3  0.3059 (0.2005) 4  0.1302 (0.5364) 9  1.1236 (0.7377) 7 

Trimmed 

MSPE 0.2971* (0.5241) 5  0.3162 (0.0842) 6  0.1541 (0.4160) 11  1.9477 (0.7559) 11 

AFTER 0.3047* (0.4127) 10  0.3235 (0.0494) 9  0.2453 (0.1296) 16  12.6978 (0.4001) 19 

Shrinkage 

OLSNC-EXP 0.3129* (0.3158) 13  0.3441 (0.0085) 14  0.1301 (0.5485) 8  0.7267 (0.7022) 5 

Shrinkage 

NRLSNC 0.2809* (1.0000) 1  0.2857* (0.6022) 2  0.1212 (0.6001) 7  1.2271 (0.7748) 9 

Note. 1. Values in bold denote that the corresponding model has the lowest loss function under the 

specific criterion. 2. Numbers in parentheses denote the p-value of the Hansen’s SPA test. The null 

hypothesis is that none of the models is better than the benchmark. The number of bootstrap 

replications to calculate the p-value is 10,000 and the block length is 2. The confidence level used is 

α=10%. 3. We use * to denote that the model belongs to 10% MCS. The number of bootstrap 

replications to calculate the p-value is 10,000 and the block length is 2. 4. The Shrinkage factor is set 

equal to d=0.50. However, we included to our calculations the values 0.25 and 1 and all gave us similar 

results and ranking. 5. EXP and SQRT denote the exponential and the square root transformation 

respectively. 
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In addition to comparing the models’ statistical performance, we also evaluate their 

forecasting performance in an economic context. Table 3 reports the risk management 

performance of volatility forecasts applied to the S&P500 index. The results include 

the out-of-sample VaR evaluation and daily capital charges based on VaR forecasts 

derived from single and combination volatility models  under the 1% confidence 

level. The first column of Table 3 reports the empirical percentage of violations 

during the out-of sample period for 1% VaR. We note that the percentage of 

violations for all models is always higher than 1% suggesting that all models 

underforecast VaR and none of the models is adequately reliable as an internal VaR 

model. The problem is less severe for the EGARCH, the MIDAS and the Shrinkage 

OLSNC-EXPmodels where the empirical percentage is close to 1%. These findings are 

further corroborated by the results for the Q and smoothed Q loss functions, as the 

Shrinkage OLSNC-EXP model produces the smallest errors for both loss functions. The 

results are noteworthy because contrary to the previous section, the transformed OLS 

schemes perform worse also in terms of the SPA test. We attribute the superior 

performance of the single forecasts and only a few of the combination forecasts to the 

fact that they tend to overestimate the daily volatility.  We also assess the economic 

cost related to VaR models using a loss function based on the MRC requirements. The 

MRC requirements are determined by a 99% VaR over a 10-day holding period. The 

OLSNC-EXP model reduces the economic costs significantly by requiring the lowest 

MRC followed by the rest OLS models. On the contrary, all the single models tend to 

maintain large capital, suffering from big opportunity costs. Moreover, the SPA and 

the MCS tests reveal superior forecasting performance solely for the OLSNC-EXP 

model. It should be pointed out that contrary to previous findings; the OLSNC-EXP 

model is the best performer based on MRC calculations. In other words, the best 
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performing models according to Q and Smoothed-Q loss functions tend to 

overestimate variance during periods of higher volatility, resulting in larger MRC 

values. 

Table 3.3: Economic Evaluation using VaR-based loss functions 

  

 Q-loss (α=0.01)   Smoothed-Q (α=0.01)   MRC 

 

 

  

Percentage 

of violations 

(α=1%) 

 

Loss 

function SPA Rank 

 

Loss 

function SPA Rank 

 

Loss 

function SPA Rank 

GARCH 1.79%  0.0325* (0.1274) 14  0.0324* (0.1264) 14  22.48 (0.0000) 18 

EGARCH 1.13%  0.0302* (0.6510) 5  0.0301* (0.6638) 5  23.51 (0.0000) 20 

FIGARCH 2.19%  0.0352 (0.0292) 17  0.0351 (0.0296) 17  23.40 (0.0000) 19 

MIDAS-RV 1.39%  0.0301* (0.7317) 3  0.0300* (0.7408) 3  21.30 (0.0000) 12 

MIDAS-CPI 1.26%  0.0301* (0.7329) 2  0.0300* (0.7459) 2  21.24 (0.0000) 11 

MIDAS-IP 1.33%  0.0302* (0.7022) 4  0.0301* (0.7179) 4  21.49 (0.0000) 13 

ARMA 1.72%  0.0328* (0.1285) 15  0.0327* (0.1398) 15  21.85 (0.0000) 14 

HAR 2.12%  0.0337* (0.0782) 16  0.0336* (0.0826) 16  22.17 (0.0000) 16 

ARFIMA 2.45%  0.0360 (0.0302) 18  0.0359 (0.0315) 18  22.28 (0.0000) 17 

VIX 1.59%  0.0313* (0.3065) 9  0.0312* (0.3142) 9  20.69 (0.0000) 6 

Harmonic Mean 1.59%  0.0318* (0.1462) 13  0.0317* (0.1488) 13  20.86 (0.0000) 10 

MSFE 1.59%  0.0309* (0.3938) 8  0.0308* (0.4220) 8  20.81 (0.0000) 9 

OLSC-SQRT 3.45%  0.0367 (0.0061) 19  0.0365 (0.0067) 19  20.04 (0.0021) 2 

OLSNC-EXP 3.78%  0.0379 (0.0054) 20  0.0377 (0.0069) 20  19.80* (1.0000) 1 

NRLSNC 1.72%  0.0314* (0.2253) 11  0.0313* (0.2551) 11  20.31 (0.0000) 4 

TW 1.66%  0.0304* (0.6402) 6  0.0303* (0.6695) 6  20.73 (0.0000) 8 

Trimmed MSPE 1.52%  0.0306* (0.5127) 7  0.0305* (0.5253) 7  20.73 (0.0000) 7 

AFTER 1.59%  0.0316* (0.1559) 12  0.0316* (0.1556) 12  20.57 (0.0000) 5 

Shrinkage OLSNC-EXP 1.33%  0.0295* (1.0000) 1  0.0295* (1.0000) 1  22.15 (0.0000) 15 

Shrinkage NRLSNC 1.66%  0.0314* (0.2278) 10  0.0313* (0.2333) 10  20.10 (0.0005) 3 

Note. 1. Values in bold denote that the corresponding model has the lowest loss function under the 

specific criterion. 2. Numbers in parentheses denote the p-value of the Hansen’s SPA test. The null 

hypothesis is that none of the models is better than the benchmark. The number of bootstrap 

replications to calculate the p-value is 10,000 and the block length is 2. The confidence level used is 

α=10%. 3. We use * to denote that the model belongs to 10% MCS. The number of bootstrap 

replications to calculate the p-value is 10,000 and the block length is 2. 4. The Shrinkage factor is set 

equal to d=0.50. However, we included to our calculations the values 0.25 and 1 and all gave us similar 

results and ranking. 5. The Q-loss function and the Smoothed-Q loss function are calculated for VaR 

level α=0.01 and α=0.05. For the Smoothed-Q calculation we set the smoothness parameter δ=25. 6. 

EXP and SQRT denote the exponential and the square root transformation respectively. 
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The results for the utility-based criterion of González-Rivera et al. (2004) are reported 

in Table 4. A lower value for this function can be interpreted as a higher utility gain 

for an investor that uses a specific volatility forecast since the loss function has to be 

minimized. There is a most preferred model that clearly dominates all the rest; this is 

the OLSC-SQRT that attains the highest utility gains, passes the SPA test and is included 

to the 10% model confidence set. The ranking of the competing models indicates that 

most of the combination schemes can lead to higher utility gains compared to the 

single models except from the ARFIMA and the HAR models. Turning to the option 

based loss function, we find that the Shrinkage NRLSNC model is the dominant 

model, as it provides the highest mean daily profit for an investor, while most of the 

single models generate losses. Considering the MCS test, the dominance of the 

combination techniques is obvious against the single models as only one combination 

model is excluded. In total, regression, non-parametric and shrinkage combinations 

produce both higher utility gains and daily profits suggesting that they are preferable 

for volatility forecasting. This result reveals that the combination of three sources of 

information, along with the incorporation of different market microstructure of each 

volatility model may improve the combination techniques in the context of stock 

market volatility. This result is consistent with the aforementioned results of statistical 

evaluations. 

While a significant number of studies (e.g. Rapach et al., 2010; Jordan et al., 2014) 

find evidence in favor of simple combination techniques as better predictors of stock 

market returns and equity premium, our study is consistent with the literature in the 

context of combination forecasts for volatility (e.g. Li et al., 2013; Yang et al., 2015) 

suggesting that more complex combination techniques, including regression-based, 
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non-parametric and shrinkage methods, lead to higher gains. The main issue is that 

volatility cannot be directly observed and a more accurate approximation is needed. 

As a result, simple combinations perform poor as they ignore any information about 

the relative quality of the single forecasts, while the time-varying weights examined 

in this paper allow for maximum flexibility among the forecasts. 

 

Table 3.4: Economic Evaluation using utility-based and option-based loss 

functions 

 

Utility (gamma=3) 

 

 Option criterion 

 

  

Loss 

function SPA Rank 

 Loss 

function SPA Rank 

GARCH -0.0469 (0.0000) 19  -2.6080 (0.0273) 17 

EGARCH -0.0466 (0.0000) 20  -3.1119* (0.0382) 19 

FIGARCH -0.0469 (0.0000) 18  -4.4414 (0.0170) 20 

MIDAS-RV -0.0476 (0.0000) 11  -0.0562* (0.3017) 13 

MIDAS-CPI -0.0476 (0.0000) 14  0.3497* (0.4100) 10 

MIDAS-IP -0.0476 (0.0000) 12  -0.0806* (0.2893) 14 

ARMA -0.0474 (0.0000) 16  -0.0308* (0.3147) 11 

HAR -0.0478 (0.0000) 8  0.6350* (0.4619) 8 

ARFIMA -0.0481 (0.0000) 6  0.4287* (0.4082) 9 

VIX -0.0475 (0.0000) 15  -0.5834* (0.2141) 15 

Harmonic Mean -0.0479 (0.0000) 7  -0.0509* (0.2634) 12 

MSFE -0.0478 (0.0000) 9  1.5643* (0.7804) 5 

OLSC-SQRT -0.0511* (1.0000) 1  1.0040* (0.4777) 7 

OLSNC-EXP -0.0509 (0.0066) 2  -0.8213* (0.2458) 16 

NRLSNC -0.0488 (0.0000) 3  2.7404* (0.9913) 2 

TW -0.0481 (0.0000) 5  2.5149* (0.9571) 3 

Trimmed MSPE -0.0478 (0.0000) 10  1.9650* (0.8541) 4 

AFTER -0.0476 (0.0000) 13  1.2483* (0.6314) 6 

Shrinkage OLSNC-EXP -0.0471 (0.0000) 17  -2.7803 (0.0510) 18 

Shrinkage NRLSNC -0.0488 (0.0000) 4  2.8067* (1.0000) 1 

Note. 1. Values in bold denote that the corresponding model has the lowest loss function under the 

specific criterion. 2. Numbers in parentheses denote the p-value of the Hansen’s SPA test. The null 

hypothesis is that none of the models is better than the benchmark. The number of bootstrap 

replications to calculate the p-value is 10,000 and the block length is 2. The confidence level used is 

α=10%. 3. We use * to denote that the model belongs to 10% MCS. The number of bootstrap 

replications to calculate the p-value is 10,000 and the block length is 2. 4. The Shrinkage factor is set 

equal to d=0.50. However, we included to our calculations the values 0.25 and 1 and all gave us similar 

results and ranking. 5. The risk aversion parameter for the Utility function is set equal to 3. However, 

we included values ranging from 1 to 5 leading to similar results. 6. EXP and SQRT denote the 

exponential and the square root transformation respectively. 7. To calculate the economic gains, the 

risk free rate return is derived from the 3 month T-bill.  
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3.8 Concluding Remarks 
 
One of the most frequently asked question in the finance literature is which model 

should to be used to forecast the volatility of asset returns. Given the uncertainty of 

financial markets the issue of selecting a single model in all cases of volatility 

forecasting is quite complicated. Following an extensive literature in forecasting, 

composite forecasts have been shown to be a good way to improve forecasting 

accuracy. 

In this chapter we investigate the benefits of combining forecasts using simple and 

more complex combination techniques. We compare an exhaustive set of forecast 

combination methods and single models in both statistical and economic terms to 

determine the best performing models. From a statistical point, we assess the volatility 

models using both symmetric and asymmetric loss functions and conclude that the 

OLS-based schemes outperform the single and other combination techniques. Testing 

for the statistical significance of our findings, the SPA and the MCS tests support 

their superior performance. The examination of the economic loss functions results 

yields several useful conclusions. For the VaR-based loss functions, which focus on 

the tails of the density, no model is proved adequately reliable, apart from the 

Shrinkage OLSNC-EXP. Taking into consideration the market risk capital requirements, 

the OLSNC-EXP scheme is the best performing model and the only model that passes 

both tests indicating significant superior performance. Under the utility-based loss 

function and the simulated option pricing framework, the OLS-based combination 

models provide the highest gains, while the SPA test verifies their superior 

performance. These results are in accordance with the literature, as several studies 

point out the dominance of regression techniques in the context of stock market 
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volatility prediction (Fuertes et al., 2009; Li et al., 2013; Yang et al., 2015 amongst 

others), while our resputs further support the use of non-parametric and shrinkage 

techniques to optimally combine volatility forecasts. The superior forecasting 

performance of more complex combination techniques is attributed to three factors: 

(i) the combination of three sources of information, i.e. the combination of different 

information channels is more efficient than combining models based on the same 

dataset; (ii) regression-based, non-parametric and shrinkage forecasts account for bias 

correction more properly than the simple average as the optimal combination weights 

are updated daily; (iii) volatility models incorporate different market microstructures 

that vary over time. As a result, accounting for the importance of each volatility 

model in a time-varying framework reduces the “model uncertainty” problem and 

improves the combination forecast in both statistical and economic terms. 

Concluding, although statistical and economic loss functions support the superior 

performance of combination forecasts based on more regression-based, non-

parametric and shrinkage methods, there is no clear winner across all loss functions 

suggesting that different combination schemes are preferable based on the economic 

application to be used. Taking into consideration the instability in the performance of 

single forecasts and the fact that different loss functions are relevant for different 

decision makers, our results encourage investors or financial institutions to use the 

combination forecasting methodology to improve forecasting accuracy and economic 

gains. A logical next step could be to optimally combine forecasts based on economic 

loss functions expecting these combination forecasts to lead to higher forecasting 

performance. 
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Chapter 4 

 

Combining Energy Price Volatility Forecasts through 

Economic Loss Functions 
 

 

Forecasting energy price volatility is an important input in macroeconomic, option 

pricing, and portfolio selection models. Although a vast literature on models has been 

developed, there is rarely any consensus on which model is most appropriate in 

providing accurate volatility forecasts for energy price. Numerous studies provide 

evidence in favor of GARCH-class and HAR-class models (for example see 

Sadorsky, 2006; Kang et al., 2009; Wei et al., 2014; Lux et al., 2016; Kleian and 

Wather, 2016; Charles and Darné, 2017; Degiannakis and Filis, 2017; Wen et al., 

2016; Ma et al., 2018 among others) but a limited number examines the benefits of 

combination forecasts. 

The objective of this chapter is threefold. Firstly, we introduce new combination 

methodologies based on economic and risk management loss functions where the 

optimal weights are computed through these loss functions. We use two economic 

loss functions widely used in portfolio evaluation literature, i.e. the Certainly 

Equivalent Return (CER) and the Sharpe ratio (Ma et al., 2018a; Rapach et al., 2010); 

and a risk management loss function, the Smoothed-Q loss function due to González-
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Rivera et al. (2004). We expect to optimally combine forecasts that generate higher 

economic gains compared to other combinations and single models. To test the 

predictive ability of the new combination techniques, we use a large variety of simple 

combinations and techniques based on statistical measures to predict the volatility of 

WTI crude oil futures. Secondly, we use both low-frequency and high-frequency 

datasets to our combinations. Specifically, we combine forecasts based on: (i) 

GARCH models (daily data), (ii) HAR models (intraday data), and (iii) both GARCH 

and HAR models. Thirdly, we evaluate the proposed methodologies with the rest 

combinations and the single models using both statistical and economic evaluation 

criteria. 

The empirical analysis yields some important conclusions. At first, the results indicate 

an improvement to the forecasting performance from the combinations based on 

GARCH or all models and economic loss functions, while there is no improvement 

according to HAR combinations. More specifically, economic combination forecasts 

based on either GARCH or all models are more profitable for 1-step and 22-step 

ahead forecast horizons for a mean-variance investor, while economic combination 

forecasts based on risk management and standard statistical loss functions are more 

profitable for one-step-ahead forecasts. 

The remainder of the chapter is organized as follows. Section 4.1 reviews the 

literature on combination forecasts and energy price volatility. Section 4.2 presents 

the single volatility models used in this application. Section 4.3 presents the 

combination models used in this chapter, while Section 4.4 describes the new 

combinations based on economic and risk management loss functions. Section 4.5 

presents the evaluation measures, while in Section 4.6 the tests for forecasting 
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performance are described. Section 4.7 describes the dataset and reports the empirical 

results, and Section 4.8 concludes. 

4.1 Combination Forecasts and Energy Price Volatility 
 
Over the last decade, energy products have become a popular asset class for investors 

and financial institutions. Accurate forecasts of oil price are important to firms, 

consumers and governments. However, as real-time data account for delays and 

revisions in data releases and crude oil price is assigned to the highest weight in 

constructing some popular commodity prices indices, combination forecasts can be 

seen as an alternative solution. Combination forecasts have been found to work well 

for forecasting macroeconomic variables (Timmermann, 2006), but there is little 

evidence considering energy products. The question arises is: Do they work well in 

crude oil price and volatility forecasting? 

Although the no-change forecast has been documented as the best forecast of future 

oil prices (e.g. Davies, 2007; Hamilton, 2009), the recent literature provides several 

econometric forecasting models that outperform at least at some horizons the no-

change forecast (see, e.g. Baumeister and Kilian, 2012). However, a limited number 

of studies examines the benefits from combination forecasts. Baumeister and Kilian 

(2015) using an equal average combination scheme and a DMSPE approach, conclude 

that forecast combinations are superior to the no-change forecast as they generate 

lower MSPE ratios and have higher directional accuracy. 

Similarly, Baumeister et al. (2014) combine several oil price forecasting models under 

three combination techniques; a simple average, a simple average of the models after 

dropping out the models with the largest MSPE, and  the best single model according 
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to the lowest recursive MSPE for the previous period. They find that the two first 

combination schemes lead to smaller MSPE for all forecasting periods while the third 

model indicates unstable forecasting ability over time. Furthermore, Wang et al. 

(2017) combine forecasts using several parametric and non-parametric techniques to 

predict oil prices and the annotated density. Their results indicate that a rank-based 

model (i.e. the TW model due to Timmermann, 2006) generates more accurate point 

and density forecasts. Recently, Zhang et al. (2018) use the so-called iterated 

combination approach (due to Lin et al., 2017), which is based on both the standard 

combination forecasts and simple benchmark forecasts, as an alternative method to 

improve the predictability of the returns of oil prices. The results indicate that the 

iterated combination outperforms standard combination approaches in both statistical 

and economic measures. 

While a significant amount of literature provide evidence for the use of combination 

techniques to oil price forecasting, there is little evidence on the benefits derived from 

combination forecasts to crude oil price volatility. First, Lux et al. (2016) combined 

several GARCH and Markov-Switching Models through a weighted linerar 

combination, where the optimal weights are computed through a forecast 

encompassing test due to Harvey et al. (1998) for non-nested models that is based on 

least squares regression. Pointing out the benefits derived from DMA approach, Wei 

et al. (2017) and Ma et al. (2018c) used the Dynamic Model Averaging (DMA) 

approach that takes into account the historical performance of the competing models. 

Their results indicated the superior predictive ability of the combination techniques 

compared to other single models. 
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Zhang and Ma (2018) based on high frequency data on oil futures combined several 

models, ranging from simple combinations, such as the mean and the median, to more 

complex combination schemes, such as the DMSPE combination, the Shrinkage and 

the iterated combination. The out-of-sample evaluation indicated that the iterated 

combination forecasts surpasses the standard ones and the single models in both 

statistical and economic terms. On the contrary, Zhang et al. (2019) combined eight 

HAR models using several combination techniques and two shrinkage methods (i.e. 

the elastic net and lasso), concluding that the two shrinkage methods outperform not 

only the single models but the combination models in both statistical and economic 

perspectives.In this chapter, we introduce new combination techniques based on 

economic and risk management loss functions, while we expect to improve the 

forecasting accuracy in both statistical and economic terms. 

4.2 Single Volatility Forecasting Models 

4.2.1 GARCH-type Volatility Models 

 
In this chapter we use several (linear and nonlinear) GARCH-type and HAR-type 

models to forecast volatility of crude oil futures prices. The models capture a number 

of stylized facts in volatility behavior such as asymmetry, long-memory and 

persistence. Then, numerous combinations based on these models are considered, as 

well as the out-of-sample evaluation procedure. The total sample of T observations is 

divided into an in-sample portion composed of the first T0 observations and an out-of 

sample portion of T1=T-T0 observations. We generate out-of sample volatility 

forecasts from each of the following described models using a rolling estimation 

window. 
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Considering a return process equal to (18) presented in the previous section, we 

include several common GARCH models, such as the GARCH (p,q), the EGARCH 

and the FIGARCH models presented by the equations (19), (20) and (21) respectively. 

However, GARCH and EGARCH models assume that the conditional variance is a 

linear function of lagged squared returns. As a result, we also use the asymmetric 

power GARCH (APARCH) model of Ding et al. (1993). The APARCH model is 

more flexible in modeling the conditional variance and is written as: 

  0

1 1

p q

t i t i t i t j

i j

s a a s



     

 

       (43) 

where 0  and 1 1   . To capture asymmetric volatility, the GJR-GARCH 

model due to Glosten et al. (1993) is considered. The conditional variance 

specification for this model is: 

  2 2 2

0

1 1

q p

t i t i t i j t j

i j

s a a I s    

 

       (44) 

where 1t iI    if 0t i   , and 0 otherwise. The parameters are restricted to 0 0a   , 

, , 0i i ja     and 0i ia   in order to guarantee the positive variance and the process 

is stationary if  2 1i j ia     . If the asymmetry coefficient  is greater than zero, 

the volatility rises more after large negative shocks than after large positive shocks. 

The GJR-GARCH model nests to the GARCH model when 0  . 

Another long-memory model which generalizes the FIGARCH model is the 

hyperbolic GARCH (HYGARCH) model of Davidson (2004). In this model the 

existence of second moments at more large widths compared to FIGARCH model is 

permitted. The HYGARCH(p,d,q) model is described as: 
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          1 12 2

0 1 1 1 1 1 1
d

t ts a L L L k L   
 

                
  (45) 

where 0k  , 0d  . For 0 1k   the process is stationary, while the model nests the 

FIGARCH and GARCH models when 1k   and 0k  . 

4.2.2 HAR-type Volatility Models 

 
Numerous studies indicate that models based on high frequency data achieve better 

forecasting performance compared to conventional models based on daily returns (e.g. 

Andersen et al., 2007; Corsi et al., 2010; Patton and Sheppard, 2015, Wen et al., 2016, 

Ma et al., 2017).  First, we compute the Realized Volatility (RV) as the sum of 

squared intraday returns, i.e.: 

 2

,

1

m

t t m

t

RV r


   (46) 

Then, we employ several frequently used models directly applied on the realized 

volatility series. The first model is Corsi’s (2009) Heterogeneous AutoRegressive 

model of Realized Volatility (HAR-RV) that encompasses different time aggregations 

of RV represented from (27). Andersen (2007) proposed the HAR-RV-J models by 

adding the daily discontinuous jump variation to the HAR-RV model. The model is 

considered to improve the forecasting performance of the simple HAR-RV model 

through the jump component. The HAR-RV-J models is: 

 
2

0 1, 1, 1, 1,t t w t w td d d tm m d tRV RV RV RV J u               (47) 

where , 1d tJ   is the daily discontinuous jump variation. Following Andersen et al. 

(2007), we employ the HAR-RV-CJ model by decomposing realized volatility into 



Chapter 4 - Combining Energy Price Volatility Forecasts 
 

73 
 

continuous sample path variation and discontinuous jump variation. The model is 

represented as: 

 
2

0 1, 1, 1, 1, 1, 1,t d t d w t w m t m d t d w t w m t m tRV C C C J J J u                     (48) 

where 
1,t dC 

is the daily continuous sample path variation, 
1,t wC 

 is the weekly 

continuous sample path variation, 
1,t mC 

is the monthly continuous sample path 

variation, 
1,t wJ 

 is the weekly discontinuous jump variation; and 
1,t mJ 

is the monthly 

discontinuous jump variation. Patton and Sheppard (2011) developed the HAR-RSV 

model which assumes that positive and negative realized semivariances can have 

different predictive abilities for different time horizons. The HAR-RSV model is 

equal to: 

2

0 1, 1, 1, 1, 1, 1,t d w m d w m tt d t w t m t d t w t m
RV RSV RSV RSV RSV RSV RSV u                

          (49) 

where 
1,t d

RSV 
 is the daily positive realized semivariance,

1,t w
RSV 

is the weekly 

positive realized semivariance,
1,t m

RSV 
is the monthly positive realized semivariance,

1,t d
RSV 

is the daily negative realized semivariance,
1,t w

RSV 
is the weekly negative 

realized semivariance and 
1,t m

RSV 
is the monthly negative realized semivariance. 

Finally, the LHAR-RV model is included to our calculations. Asai et al. (2012) 

introduced the LHAR-RV model that takes into consideration the leverage effects. 

The model is: 

 2

0 1, 1, 1, 1, 1, 1,t d w m d w m tt d t w t m t d t w t m
RV RSV RSV RSV r r r u                

          (50) 
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where 
1,t d

r 
is the daily negative returns (i.e.  

1,
0t tt d

r r I r
  ), 

1,t w
r 

is the weekly 

negative returns and 
1,t m

r 
is the monthly negative returns.  

4.3 Combination Models 
 
As Bates and Granger (1969) stated combining forecasts is generally considered an 

useful forecasting method that leads to improved forecasting accuracy. Furthermore, 

Timmermann (2006) provided a theoretical justification for combining forecasts. In 

this chapter, a large variety of combination techniques is used. In our calculations, the 

following combinations are included. At first, all the simple combinations (i.e. the 

Mean, the Geometric Mean, the Harmonic Mean, the Trimmed Mean and the Median) 

are included. More, the linear least regressions and their transformations represented 

by equations (2), (3) and (4). Also we consider the nonlinear AFTER combination in 

equation (11). More, the DMSFE and the IMSFE based on equation (8) are used. 

Finally, the non-parametric TW and the Kernel regression based on equations (13) 

and (15) are included. 

4.4 Combinations based on economic and risk management loss 

functions 
 
We extend the existing forecasting literature by providing combination forecasts 

based on economic loss functions. We include to our calculations three economic loss 

functions. The former is based on value-at-risk while the second and the third are 

based on Certainly Equivalent Return and Sharpe ratio, respectively. 

In the first combination scheme we incorporate the three loss functions to the TW 

combination technique described at equation (13). In this case the combination 

weights are inversely proportional to the model’s rank according to the specific loss 
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function. Firstly, we use the value-at-risk (VaR) loss function, where the conditional 

value-at-risk, denoted as ,

1

i a

tVaR  is estimated from 

  1

1

,

,

t i

i a

t t tV aaR f

    (51) 

where μi,t is the conditional mean and Φt is the cumulative distribution function 

(assumed normal in our case). Using VaR we employ a loss function (i.e. the Q 

smoothed loss function) proposed by González-Rivera et al. (2004), described as: 

    , ,

1 1 1 1,i i i

t t t tQ m VaR r VaRr  
         (52) 

where     
1

, 1 expm a b a b 


      and the parameter δ>0 controls for the 

smoothness.  

The second loss function is based on portfolio performance as the volatility is one of 

the key determinants for portfolio allocation following Ma et al. (2018a). We assume 

that a mean-variance allocates his/her assets between a risky asset (i.e. oil price) and a 

risk free asset (e.g. Rapach et al., 2010). The portfolio return is equal to: 

 
*i

pt t t ftR w r r    (53) 

where *

tr is the excess return of the risky asset, i.e. 
*

t t ftr r r   and ftr  is the risk free 

return. Following Cambell and Thompson (2008), the investor decides the proportion 

to the risky asset at time t as: 

 1

2

1

1 t
t

t

r
w

s




 
  

 
  (54) 
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where 1tr  is the historical moving average returns of the in-sample data and 2

1ts   is a 

rolling window forecasting variance and  is the risk aversion parameter. We restrict 

the weights to 0 and 1.5. The mean-variance investor realizes a Certainly Equivalent 

Return (CER) equal to: 

 
2ˆ ˆ

2

i

p p pCER


     (55) 

where ˆ
p is the out-of-sample mean portfolio returns and 

2ˆ
p is its variance 

respectively. The CER ratio is the difference between the average utility of the models 

and the benchmark. Finally, we use the Sharpe ratio to combine optimally forecasts 

derived by: 

 
2

ˆ

ˆ

pi

p

p

S



   (56) 

We denote these combinations as TW-Q and TW-CER and TW-Sharpe respectively. 

The second combination technique is based on Wang et al. (2017) who computed 

optimal forecasts after trimming the one with the worst past performance according to 

MSFE. In this case, the excluded model is the one with the worst past performance in 

terms of the economic loss functions described on equations (52), (55) and (56). We 

denote these combinations as Trimmed-Q, Trimmed-CER and Trimmed-Sharpe 

respectively. 

Finally we include an alternative combination strategy following Stock and Watson 

(2004) that places all the weight on the individual forecast that has the best average 

post performance during the last four periods. This strategy was also followed by 

Zhang and Ma (2018) but in contrast to them we implement this strategy based on 
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economic loss functions (i.e. the smoothed-Q, the CER and the Sharpe loss functions) 

rather than statistical loss functions. We denote these combinations as Best-Q and 

Best-CER and Best-Sharpe respectively. 

4.5 Evaluation Measures 
 
To evaluate the relative accuracy of the proposed methodologies, we rank the models 

using several statistical loss functions. We consider realized volatility (RV) as a proxy 

for the “true” volatility. From a statistical point of view, we use, at first, statistical loss 

functions widely used in the existing forecasting literature such as the mean absolute 

error (MAE) and the mean squared error (MSE) defined in equations (31) and (32). In 

various financial applications, volatility over-prediction has different impacts than 

volatility under-prediction. Consequently, we use two asymmetric loss functions, the 

HRLF and the QLIKE represented by equation (34). 

In order to assess the performance of volatility forecasts in economic terms, we 

consider a number of economic loss functions based on various financial applications 

and compute the predictive gains derived from the used methods. Specifically, in this 

chapter, we use the economic loss functions described in equations (52), (55) and (56)

to evaluate the economic gains derived from the combinations and single models. 

4.6 Tests of forecasting performance 
 
The loss functions described above allow forecasts to be ranked according to their 

out-of sample forecasting performance. However, they give no indication whether the 

forecasting losses across the various models are significantly different. Since our aim 

is to compare a large number of volatility forecasts based on various models and 

investigate the statistical significance of their comparative forecasting performance 
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based on multiple comparisons we adopt three testing procedures that seem to be the 

most suitable in our analysis. First, we employ the superior predictive ability (SPA) 

test of Hansen (2005) described in the previous section by equation (41) and the MCS 

proposed by Hansen et al. (2011) represented by equation (42). The SPA and MCS 

tests are employed on all statistic loss functions defined in equations (31), (32) and 

(34). 

Although the SPA test introduced by Hansen (2005) is considered as a powerful test, 

it is designed to test whether the best model from a universe of alternative models 

beats the benchmark of not. Several extensions proposed by the literature lack power 

while many poor models are included in the test (e.g. the stepwise reality check test 

due to Romano and Wolf (2005)). Hsu et al. (2010) proposed a more powerful test, 

the stepwise SPA (StepSPA) test that controls for only one false rejection, which is a 

stringent criterion. In this application, we use this test to evaluate the out-of-sample 

forecasting performance of alternative models relative to the benchmark model 

according to two economic loss functions, the CER and the Sharpe ratio. 

In the StepSPA test, all the significant models are identified when the null hypothesis 

is rejected. The SPA and the StepSPA test differ in the calculation of losses during the 

bootstrap process. The method to calculate the StepSPA by Hsu et al. (2010) is as 

follows: 

 Step 1 All the models are rearranged in a descending order according to ,i td . 

 Step 2 The null hypothesis is rejected when there is at least one model with a 

statistic greater than the critical value, specified at the 1-α quantile of the empirical 

distribution that is obtained through a bootstrapping procedure. 



Chapter 4 - Combining Energy Price Volatility Forecasts 
 

79 
 

 Step 3 If the null hypothesis is rejected, the models with statistics greater than 

the critical value are eliminated and a new critical value is computed through the 

remaining set of models. This procedure is repeated until the hypothesis is not 

rejected. As a result, the models that are not eliminated are considered as superior. 

4.7 Data and Empirical Results 
 
To empirically test the performance of our single and combination models, the 

following two datasets are considered: daily prices and intraday 5 minute quotes of 

the front-month WTI crude oil futures. The sample extends from May 10, 2007 to 

June 30, 2016 including 2281 daily observations. Daily data are collected from the 

U.S. Energy Information Administration (EIA) while the intraday dataset is obtained 

from the paper of Gong and Lin (2018)
8
. Our sample data are divided into three 

groups: 1) in-sample data for volatility modeling from May 10, 2007 to June 10, 

2011; 2) out-of-sample data for forecasting evaluation from June 13, 2011 to June 30, 

2016; and 3) pseudo-out-of-sample data for training the combination weights from 

June 1, 2010 to June 10, 2011. 

A total of 170 models are considered using rolling 1-step, 5-step and 22-step ahead 

out-of-sample forecasts to evaluate the predictive ability and the economic 

significance of the examined models
9
. The results for the WTI crude oil futures are 

shown in Tables 4.1 to 4.27. The models are also ranked according to their forecasting 

                                                      
8
 We would like to thank Gong and Lin (2018) for providing us the realized volatility series used in 

their paper: “The incremental information content of investor fear gauge for volatility forecasting in the 

crude oil futures market” 
9
 Although a large number of combination models is presented in the previous section, for reason of 

brevity we include in this section the empirical results for selected models (i.e. the single models and 

26 combination models). We exclude from the evaluation process models in the same class that give 

similar results, such as the Shrinkage models. From the OLS-based models we include to the evaluation 

process only the square root transformed and exponential transformed ERLSc model and the NRLSnc 

model that indicated superior performance against the other OLS models. Results from excluded 

models are available from the authors upon request. 
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performance. We note that the rankings given by the used loss functions differ, since 

the loss functions penalize differently the forecast errors. We evaluate all models 

using the SPA test due to Hansen (2005), the MCS test due to Hansen et al. (2011) 

and the StepSPA test due to Hsu et al. (2010), which is implemented on the evaluation 

according to economic criteria. 

4.7.1 Out-of-Sample Forecasting Performance for GARCH combinations 

 
Statistical Evaluation 

We use the rolling forecasting methodology to generate the 1-, 5- and 22-step ahead 

volatility forecasts of six competing GARCH-type models and combinations based on 

them. We compare their forecasting performance based on the symmetric MAE and 

MSE loss functions and the asymmetric HR and QLIKE loss functions. The superior 

predictive ability (SPA) proposed by Hansen (2005) and the model confidence set 

(MCS) proposed by Hansen et al. (2011) are used to assess the statistical significance 

of the single models and the proposed combinations. Based on Laurent et al. (2012), 

we set the confidence level α equal to 0.10, which means that if the p-value obtained 

from either the SPA or the MCS test is smaller than 0.10, we can exclude the 

corresponding model. The p-values are obtained from 10,000 bootstraps with 2 block 

length. Table 4.1 reports the obtained results, while the bold face numbers indicate the 

best model in terms of volatility forecasting. Under the MAE loss function, the results 

for the 1-step ahead forecasts indicate the superior forecasting performance of an OLS 

transformed model, while the same results hold for the MSE. However, the SPA test 

indicates that under the MSE all models pass the test, and a big number of 

combinations are included to the MCS. 
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Considering the asymmetric loss functions, HR and QLIKE, the OLSSQRT and the TW 

combinations are ranked first for each loss function. The Kernel regression 

combination is proved inadequate according to SPA test, while five and four single 

models pass the test respectively. From the rest combinations, most of them are 

included to the MCS, while only some combinations based on Smoothed-Q are 

included to the MCS. 

  



Chapter 4 - Combining Energy Price Volatility Forecasts 
 

82 
 

Table 4.1 1-step ahead Statistical Forecasting Performance for GARCH 

combinations 

 

MAE 

  

MSE 

  

HRLF (b=-1) 

 

QLIKE 

  

 

Loss 

Function SPA Rank 

Loss 

Function SPA Rank 

Loss 

Function SPA Rank 

Loss 

Function SPA Rank 

GARCH 2.89 (0.0000) 30 33.34 (0.5757) 29 1.39 (0.2898) 29 0.31 (0.1914) 31 

EGARCH 2.70 (0.0000) 10 32.05 (0.7242) 26 1.31* (0.6620) 26 0.29* (0.6721) 22 

GJR 2.71 (0.0000) 11 31.77 (0.7838) 23 1.29* (0.7589) 20 0.29* (0.6465) 11 

APARCH 2.75 (0.0000) 18 31.77* (0.7523) 22 1.31* (0.6412) 25 0.29 (0.6195) 23 

FIGARCH 2.74 (0.0000) 17 30.93* (0.8552) 8 1.28* (0.7523) 14 0.29* (0.6275) 21 

HYGARCH 2.79 (0.0000) 24 31.83 (0.7488) 25 1.30* (0.6630) 22 0.28* (0.8235) 8 

Mean 2.71 (0.0000) 12 30.78* (0.8994) 4 1.26* (0.9514) 5 0.28* (0.8178) 7 

Geometric Mean 2.69 (0.0000) 7 30.83* (0.8886) 5 1.25* (0.9747) 4 0.28* (0.9479) 3 

Harmonic Mean 2.67 (0.0000) 4 30.88* (0.8729) 6 1.25* (0.9801) 3 0.28* (0.9571) 2 

Trimmed Mean 2.70 (0.0000) 9 30.91* (0.8716) 7 1.26* (0.9471) 8 0.28* (0.8656) 4 

Median 2.69 (0.0000) 8 31.04* (0.8465) 13 1.26* (0.9093) 9 0.28* (0.8470) 5 

AFTER 2.77 (0.0000) 22 31.01* (0.8346) 12 1.28* (0.7102) 16 0.29* (0.6909) 15 

DMSFE 2.73 (0.0000) 16 30.96* (0.9121) 9 1.27* (0.8863) 10 0.28* (0.7657) 9 

IMSFE 2.76 (0.0000) 20 31.06* (0.8837) 14 1.28* (0.8180) 13 0.29 (0.7305) 14 

Kernel 2.65 (0.0131) 3 45.53 (0.1115) 32 1.61 (0.0870) 32 0.34 (0.0555) 32 

OLSEXP 2.60 (0.0041) 2 29.93* (1.0000) 1 1.24* (0.7441) 2 0.29* (0.6606) 16 

OLS 2.73 (0.0000) 14 31.28 (0.8483) 19 1.28* (0.7968) 15 0.28* (0.8477) 10 

OLSSQRT 2.33* (1.0000) 1 30.49* (0.9520) 2 1.24* (1.0000) 1 0.30 (0.3189) 28 

TW 2.68 (0.0000) 5 31.12* (0.8877) 15 1.26* (0.9547) 7 0.28* (1.0000) 1 

Trimmed MSPE 2.72 (0.0000) 13 30.78* (0.9369) 3 1.26* (0.9486) 6 0.28* (0.8486) 6 

TW-CER 2.82 (0.0000) 28 31.78 (0.7323) 24 1.31 (0.6154) 24 0.29 (0.5602) 25 

Trimmed-CER 2.79 (0.0000) 25 31.24 (0.8568) 17 1.29 (0.6977) 18 0.29 (0.6671) 18 

Best-CER 2.93 (0.0000) 32 33.85 (0.5211) 31 1.40 (0.2862) 30 0.30 (0.3253) 29 

TW-Q0.05 2.73 (0.0000) 15 31.24* (0.8339) 16 1.28* (0.7805) 17 0.29 (0.6839) 17 

TW-Q0.01 2.78 (0.0000) 23 31.53 (0.7669) 21 1.29 (0.7023) 21 0.29 (0.6673) 20 

Trimmed-Q0.05 2.75 (0.0000) 19 30.98* (0.9010) 10 1.27* (0.8255) 11 0.29* (0.7344) 12 

Trimmed-Q0.01 2.77 (0.0000) 21 31.00* (0.8941) 11 1.27* (0.8001) 12 0.29 (0.7289) 13 

Best-Q0.05 2.68 (0.0000) 6 32.21 (0.7044) 28 1.34 (0.5204) 27 0.30 (0.4570) 26 

Best-Q0.01 2.86 (0.0000) 29 33.65 (0.5573) 30 1.40 (0.2620) 31 0.30 (0.2731) 30 

TW-Sharpe 2.81 (0.0000) 27 31.42* (0.8031) 20 1.30 (0.6560) 23 0.29 (0.5518) 24 

Trimmed-Sharpe 2.79 (0.0000) 25 31.24* (0.8545) 17 1.29* (0.7041) 18 0.29 (0.6474) 18 

Best-Sharpe 2.91 (0.0000) 31 32.10 (0.6806) 27 1.35 (0.4139) 28 0.30 (0.3540) 27 

Note. 1. Values in bold denote that the corresponding model attains the best forecasting performance 

under the specific loss function. 2. Numbers in parentheses denote the p-value of the Hansen’s SPA 

test. The null hypothesis is that none of the models is better than the benchmark. The number of 

bootstrap replications to calculate the p-value is 10,000 and the block length is 2. The confidence level 

used is α=10%. 3. We use * to denote that the model belongs to 10% MCS. The number of bootstrap 

replications to calculate the p-value is 10,000 and the block length is 2. 4. We constrain the portfolio 

weight on the risky asset to lie between 0% and 150%, i.e. 0 1.5itw   for the economic 

combinations. 5. EXP and SQRT denote the exponential and the square root transformation, 

respectively. 
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Regarding the 5-step and 22-step ahead forecasting horizon (Table 4.2 and Table 4.3), 

we can see that for the MAE loss function, the OLSSQRT model has still the best 

forecasting performance, as it passes the SPA test and is the only model included to 

the MCS. Under the MSE loss function, all combinations based on CER and two 

combinations based on Sharpe ratio reject the null hypothesis of superior forecasting 

performance. However, the Best-Q0.05 combination produces the smallest losses, 

followed by the least squares combinations and two single models (i.e. the EGARCH 

and the APARCH models). 

Under the HR and QLIKE loss functions, the EGARCH model that accounts for 

potential asymmetric response of volatility on positive and negative innovations is 

considered as the best performing model. The only single models that pass the SPA 

test are the EGARCH, the GJR, and the APARCH models. It is worth noting that only 

economic combinations based on Smoothed-Q loss function pass the SPA test while 

the rest economic combinations are proved inadequate.  
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Table 4.2 5-step ahead Statistical Forecasting Performance for GARCH 

combinations 

 

MAE 

  

MSE 

  

HRLF (b=-1) 

 

QLIKE 

  

 

Loss 

function SPA Rank 

Loss 

function SPA Rank 

Loss 

function SPA Rank 

Loss 

function SPA Rank 

GARCH 3.21 (0.0000) 30 39.00 (0.0027) 30 1.76 (0.0000) 31 0.39 (0.0014) 32 

EGARCH 2.81 (0.0000) 8 34.19* (0.8391) 5 1.48* (1.0000) 1 0.33* (1.0000) 1 

GJR 2.87 (0.0000) 10 34.95 (0.3930) 11 1.53* (0.3875) 6 0.33 (0.6449) 2 

APARCH 2.92 (0.0000) 16 34.68* (0.4883) 8 1.53* (0.3893) 7 0.34 (0.5063) 3 

FIGARCH 3.03 (0.0000) 24 37.57 (0.0189) 27 1.67 (0.0006) 28 0.37 (0.0278) 28 

HYGARCH 3.07 (0.0000) 28 38.24 (0.0024) 29 1.69 (0.0000) 29 0.36 (0.0971) 22 

Mean 2.93 (0.0000) 21 35.44 (0.2692) 19 1.56 (0.1312) 17 0.35 (0.3094) 10 

Geometric Mean 2.91 (0.0000) 14 35.25 (0.3110) 14 1.55* (0.1764) 12 0.34 (0.3591) 7 

Harmonic Mean 2.88 (0.0000) 11 35.08 (0.3616) 13 1.55* (0.2428) 10 0.34 (0.4229) 4 

Trimmed Mean 2.92 (0.0000) 17 35.44 (0.2704) 20 1.56 (0.1465) 15 0.34 (0.3637) 6 

Median 2.92 (0.0000) 15 35.51 (0.2476) 21 1.56 (0.1353) 16 0.34 (0.3730) 5 

AFTER 2.77 (0.0000) 5 33.98* (0.9603) 3 1.52* (0.4810) 5 0.35 (0.1694) 20 

DMSFE 2.93 (0.0000) 19 35.42 (0.2864) 18 1.58 (0.0772) 20 0.35 (0.1961) 14 

IMSFE 2.98 (0.0000) 23 35.72 (0.2250) 22 1.60 (0.0299) 22 0.36 (0.1199) 21 

Kernel 2.61 (0.0001) 3 37.70 (0.1007) 28 1.62 (0.0540) 23 0.36 (0.0856) 23 

OLSEXP 2.56 (0.0000) 2 34.09* (0.8617) 4 1.49* (0.7570) 2 0.35 (0.2375) 16 

OLS 2.77 (0.0000) 6 33.96* (0.9877) 2 1.51* (0.6479) 3 0.35 (0.3239) 9 

OLSSQRT 2.36* (1.0000) 1 34.47* (0.7141) 7 1.56* (0.2357) 13 0.38 (0.0493) 30 

TW 2.86 (0.0000) 9 35.02 (0.3797) 12 1.54* (0.2576) 9 0.34 (0.3676) 8 

Trimmed MSPE 2.92 (0.0000) 18 35.42 (0.2808) 17 1.57 (0.0747) 19 0.35 (0.2073) 12 

TW-CER 3.07 (0.0000) 27 37.17 (0.0494) 25 1.66 (0.0011) 26 0.37 (0.0406) 26 

Trimmed-CER 3.04 (0.0000) 25 36.60 (0.0953) 23 1.64 (0.0039) 24 0.36 (0.0585) 24 

Best-CER 3.22 (0.0000) 31 39.63 (0.0022) 31 1.75 (0.0000) 30 0.38 (0.0060) 29 

TW-Q0.05 2.88 (0.0000) 12 34.68* (0.4899) 9 1.55* (0.2052) 11 0.35 (0.2121) 11 

TW-Q0.01 2.89 (0.0000) 13 34.82* (0.4321) 10 1.56 (0.1538) 14 0.35 (0.1728) 18 

Trimmed-Q0.05 2.93 (0.0000) 20 35.26 (0.3180) 15 1.57 (0.0973) 18 0.35 (0.2046) 13 

Trimmed-Q0.01 2.94 (0.0000) 22 35.29 (0.3107) 16 1.58 (0.0737) 21 0.35 (0.1770) 19 

Best-Q0.05 2.76 (0.0000) 4 33.90* (1.0000) 1 1.52* (0.5726) 4 0.35 (0.2106) 15 

Best-Q0.01 2.79 (0.0000) 7 34.38* (0.7112) 6 1.54* (0.3302) 8 0.35 (0.1888) 17 

TW-Sharpe 3.08 (0.0000) 29 37.18 (0.0449) 26 1.66 (0.0007) 27 0.37 (0.0279) 27 

Trimmed-Sharpe 3.04 (0.0000) 25 36.60 (0.1002) 23 1.64 (0.0027) 24 0.36 (0.0578) 24 

Best-Sharpe 3.24 (0.0000) 32 39.71 (0.0010) 32 1.77 (0.0000) 32 0.39 (0.0017) 31 

Note. 1. Values in bold denote that the corresponding model attains the best forecasting performance 

under the specific loss function. 2. Numbers in parentheses denote the p-value of the Hansen’s SPA 

test. The null hypothesis is that none of the models is better than the benchmark. The number of 

bootstrap replications to calculate the p-value is 10,000 and the block length is 2. The confidence level 

used is α=10%. 3. We use * to denote that the model belongs to 10% MCS. The number of bootstrap 

replications to calculate the p-value is 10,000 and the block length is 2. 4. We constrain the portfolio 

weight on the risky asset to lie between 0% and 150%, i.e. 0 1.5itw   for the economic 

combinations. 5. EXP and SQRT denote the exponential and the square root transformation, 

respectively. 
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Table 4.3 22-step ahead Statistical Forecasting Performance for GARCH 

combinations 

 

MAE 

  

MSE 

  

HRLF (b=-1) 

 

QLIKE 

  

 

Loss 

function SPA Rank 

Loss 

function SPA Rank 

Loss 

function SPA Rank 

Loss 

function SPA Rank 

GARCH 3.88 (0.0000) 30 51.14 (0.0000) 30 2.34 (0.0000) 30 0.48 (0.0080) 30 

EGARCH 3.06 (0.0000) 8 38.85* (0.6010) 5 1.75* (1.0000) 1 0.39* (1.0000) 1 

GJR 3.28 (0.0000) 12 40.74 (0.0544) 9 1.86 (0.1976) 7 0.40 (0.4888) 3 

APARCH 3.34 (0.0000) 14 40.74 (0.0758) 8 1.87 (0.1726) 8 0.41 (0.3992) 5 

FIGARCH 3.56 (0.0000) 24 46.55 (0.0001) 26 2.17 (0.0000) 26 0.46 (0.0455) 28 

HYGARCH 3.63 (0.0000) 27 47.61 (0.0000) 27 2.18 (0.0000) 28 0.44 (0.1425) 23 

Mean 3.41 (0.0000) 20 42.97 (0.0003) 21 1.97 (0.0089) 20 0.42 (0.2921) 14 

Geometric Mean 3.37 (0.0000) 16 42.61 (0.0005) 14 1.96 (0.0115) 15 0.42 (0.3042) 12 

Harmonic Mean 3.45 (0.0000) 23 43.85 (0.0003) 23 2.01 (0.0016) 23 0.43 (0.1782) 22 

Trimmed Mean 3.40 (0.0000) 19 42.89 (0.0002) 20 1.97 (0.0099) 19 0.42 (0.2900) 13 

Median 3.38 (0.0000) 18 42.70 (0.0004) 15 1.96 (0.0126) 16 0.42 (0.3109) 11 

AFTER 3.02 (0.0000) 7 38.73* (0.7341) 4 1.80* (0.5205) 5 0.41 (0.1352) 6 

DMSFE 3.34 (0.0000) 13 42.72 (0.0017) 16 1.96 (0.0073) 14 0.42 (0.2558) 16 

IMSFE 3.45 (0.0000) 22 43.85 (0.0001) 22 2.01 (0.0012) 22 0.43 (0.1795) 21 

Kernel 2.74 (0.0000) 3 41.18* (0.0537) 10 1.89 (0.0713) 9 0.42 (0.1537) 9 

OLSEXP 2.68 (0.0003) 2 39.28* (0.4367) 6 1.84* (0.2404) 6 0.43 (0.1089) 19 

OLS 3.01 (0.0000) 4 38.72* (0.7469) 3 1.79* (0.6034) 3 0.41 (0.2888) 4 

OLSSQRT 2.50* (1.0000) 1 39.32* (0.2922) 7 1.93 (0.0849) 13 0.51 (0.0360) 32 

TW 3.27 (0.0000) 9 41.83 (0.0049) 13 1.91 (0.0380) 11 0.42 (0.3464) 8 

Trimmed MSPE 3.36 (0.0000) 15 42.87 (0.0010) 19 1.96 (0.0066) 17 0.42 (0.2528) 15 

TW-CER 3.69 (0.0000) 29 47.97 (0.0000) 29 2.18 (0.0000) 27 0.46 (0.0530) 26 

Trimmed-CER 3.58 (0.0000) 25 45.97 (0.0000) 24 2.10 (0.0000) 24 0.45 (0.1122) 24 

Best-CER 3.96 (0.0000) 31 54.28 (0.0000) 31 2.38 (0.0000) 31 0.48 (0.0062) 29 

TW-Q0.05 3.27 (0.0000) 10 41.26 (0.0207) 11 1.90 (0.0615) 10 0.42 (0.3335) 10 

TW-Q0.01 3.28 (0.0000) 11 41.33 (0.0147) 12 1.92 (0.0270) 12 0.42 (0.2468) 18 

Trimmed-Q0.05 3.37 (0.0000) 17 42.74 (0.0012) 17 1.96 (0.0077) 18 0.42 (0.2652) 17 

Trimmed-Q0.01 3.41 (0.0000) 21 42.86 (0.0002) 18 1.99 (0.0028) 21 0.43 (0.1932) 20 

Best-Q0.05 3.02 (0.0000) 6 38.49* (1.0000) 1 1.77* (0.7845) 2 0.40 (0.5101) 2 

Best-Q0.01 3.02 (0.0000) 5 38.71* (0.7534) 2 1.80* (0.5438) 4 0.41 (0.1498) 7 

TW-Sharpe 3.68 (0.0000) 28 47.82 (0.0000) 28 2.18 (0.0000) 29 0.46 (0.0399) 27 

Trimmed-Sharpe 3.58 (0.0000) 25 45.97 (0.0000) 24 2.10 (0.0000) 24 0.45 (0.1063) 24 

Best-Sharpe 4.04 (0.0000) 32 54.57 (0.0000) 32 2.43 (0.0000) 32 0.50 (0.0006) 31 

Note. 1. Values in bold denote that the corresponding model attains the best forecasting performance 

under the specific loss function. 2. Numbers in parentheses denote the p-value of the Hansen’s SPA 

test. The null hypothesis is that none of the models is better than the benchmark. The number of 

bootstrap replications to calculate the p-value is 10,000 and the block length is 2. The confidence level 

used is α=10%. 3. We use * to denote that the model belongs to 10% MCS. The number of bootstrap 

replications to calculate the p-value is 10,000 and the block length is 2. 4. We constrain the portfolio 

weight on the risky asset to lie between 0% and 150%, i.e. 0 1.5itw   for the economic 

combinations. 5. EXP and SQRT denote the exponential and the square root transformation, 

respectively. 
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Economic Evaluation 

In this section, we examine the economic gains of introducing economic combinations 

in volatility forecasting. This is achieved through the calculation of CER and Sharpe 

ratios. To test whether the CER and the Sharpe ratio based on each forecasting model 

is significantly larger than the aforementioned loss functions of the rest models, we 

use the StepSPA test proposed by Hsu et al. (2010). The following tables report our 

findings for both CER and Sharpe ratio for the one-step ahead forecast 

horizon
10

.Testing for the economic gains derived from the GARCH models and the 

combinations based on them, we find that the forecasting performance of each model 

varies greatly with the change in horizons. The results for the 1-step ahead forecasting 

horizon are presented in Table 4.4 and indicate the superior performance of an 

economic combination technique, the Best-CER, that produces the largest gains from 

a mean-variance investor under the CER measure and the Sharpe ratio. The StepSPA 

test indicates the adequate performance for most of the economic combination 

techniques, while the transformed least squares combination produce the smallest 

economic gains. It is interesting to note that the transformed least squares schemes 

that indicated the good forecasting performance according to statistical loss functions, 

are found to lead an investor to losses. 

  

                                                      
10

 In this section, we present the results for a risk aversion parameter equal to 3. We use several other 

values ranged from 1 to 5, but all lead to quite similar results. 
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Table 4.4 1-step ahead Economic Forecasting Performance for GARCH 

combinations 

 

CER 

  

Sharpe 

  

 

Loss 

function StepSPA Rank 

Loss 

Function StepSPA Rank 

GARCH 0.0307 (0.5090) 17 3.15 (0.5060) 15 

EGARCH 0.0220 (0.3000) 30 2.32 (0.5740) 30 

GJR 0.0278 (0.3270) 27 2.85 (0.4670) 27 

APARCH 0.0236 (0.2940) 29 2.53 (0.3010) 29 

FIGARCH 0.0364 (0.9150) 3 3.57 (0.9120) 5 

HYGARCH 0.0318 (0.4700) 12 3.06 (0.6670) 19 

Mean 0.0302 (0.4670) 19 3.03 (0.6090) 20 

Geometric Mean 0.0295 (0.4670) 23 2.96 (0.6000) 25 

Harmonic Mean 0.0291 (0.4570) 25 2.92 (0.5650) 26 

Trimmed Mean 0.0295 (0.4380) 21 2.99 (0.4920) 24 

Median 0.0295 (0.4120) 22 3.00 (0.5010) 22 

AFTER 0.0329 (0.3290) 10 3.27 (0.3950) 11 

DMSFE 0.0301 (0.0190) 20 3.10 (0.0220) 17 

IMSFE 0.0316 (0.0350) 13 3.24 (0.0660) 12 

Kernel 0.0336 (0.6090) 7 3.62 (0.4180) 3 

OLSEXP -0.0239 (0.0910) 31 0.21 (0.0560) 31 

OLS 0.0294 (0.1510) 24 2.99 (0.1950) 23 

OLSSQRT -0.0367 (0.0970) 32 0.18 (0.0730) 32 

TW 0.0311 (0.3240) 16 3.14 (0.3620) 16 

Trimmed MSPE 0.0312 (0.2150) 14 3.18 (0.1700) 14 

TW-CER 0.0354 (0.7240) 4 3.55 (0.5680) 6 

Trimmed-CER 0.0331 (0.0960) 8 3.38 (0.1050) 8 

Best-CER 0.0386 (1.0000) 1 3.76 (1.0000) 1 

TW-Q0.05 0.0319 (0.3830) 11 3.31 (0.2770) 10 

TW-Q0.01 0.0291 (0.0860) 26 3.01 (0.0470) 21 

Trimmed-Q0.05 0.0311 (0.1210) 15 3.21 (0.1480) 13 

Trimmed-Q0.01 0.0302 (0.1030) 18 3.10 (0.0920) 18 

Best-Q0.05 0.0344 (0.7010) 6 3.58 (0.5320) 4 

Best-Q0.01 0.0239 (0.1360) 28 2.57 (0.1140) 28 

TW-Sharpe 0.0351 (0.6940) 5 3.53 (0.4520) 7 

Trimmed-Sharpe 0.0331 (0.1130) 8 3.38 (0.0750) 8 

Best-Sharpe 0.0376 (0.7760) 2 3.69 (0.7350) 2 

Note. 1. Values in bold denote that the corresponding model attains the best forecasting performance 

under the specific loss function. 2. Numbers in parentheses denote the p-value of the Hsu et al. (2010) 

StepSPA test. The null hypothesis is that none of the models is better than the benchmark. The number 

of bootstrap replications to calculate the p-value is 1,000 and the smoothing parameter for the mean 

block length is 0.1. The confidence level used is α=10%. 3. We constrain the portfolio weight on the 

risky asset to lie between 0% and 150%, i.e. 0 1.5itw   for the economic combinations. 4. EXP and 

SQRT denote the exponential and the square root transformation, respectively. 
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We continue the analysis with the evaluation of the 5- and 22-step ahead forecasts. 

The results are presented in Tables 4.5 and 4.6. Regarding the 5-step ahead 

forecasting horizon, the FIGARCH model that accounts for long memory and 

asymmetric effects is considered as the best performing model for both loss functions. 

Under the Sharpe ratio, six economic combinations are considered amongst the best 

performers, while the transformed least squares combinations are ranked last. For the 

22-step ahead forecasting horizon, the CER evaluation criterion selects the Best-CER 

combination, followed by the Best-Sharpe and the TW-CER combinations. The 

results are statistically significant, according to StepSPA test, implying that the 

proposed combination methodologies can produce larger portfolio returns with lower 

risk. It is interesting to note that the OLS combinations are proved inadequate and 

lead an investor to lower gains according to the economic loss functions. 
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Table 4.5 5-step ahead Economic Forecasting Performance for GARCH 

combinations 

 

CER 

  

Sharpe 

  

 

Loss 

function StepSPA Rank 

Loss 

function StepSPA Rank 

GARCH 0.0410 (0.8480) 8 4.39 (0.6810) 14 

EGARCH 0.0401 (0.8530) 16 3.65 (0.3000) 30 

GJR 0.0400 (0.8540) 18 4.07 (0.3290) 27 

APARCH 0.0420 (0.9730) 2 4.21 (0.6330) 24 

FIGARCH 0.0433 (1.0000) 1 4.77 (1.0000) 1 

HYGARCH 0.0389 (0.7630) 26 3.95 (0.0100) 29 

Mean 0.0417 (0.9930) 4 4.32 (0.5550) 19 

Geometric Mean 0.0414 (0.9950) 6 4.25 (0.2960) 23 

Harmonic Mean 0.0412 (0.9960) 7 4.19 (0.3310) 25 

Trimmed Mean 0.0417 (0.9960) 5 4.31 (0.5760) 20 

Median 0.0405 (0.3460) 14 4.19 (0.1920) 26 

AFTER 0.0408 (0.8820) 9 4.54 (0.8790) 9 

DMSFE 0.0380 (0.2990) 29 4.28 (0.0030) 22 

IMSFE 0.0400 (0.9020) 19 4.60 (0.3210) 7 

Kernel 0.0363 (0.4100) 30 3.97 (0.1140) 28 

OLSEXP 0.0281 (0.5580) 31 2.60 (0.1070) 31 

OLS 0.0390 (0.7610) 25 4.31 (0.1560) 21 

OLSSQRT 0.0136 (0.4460) 32 2.00 (0.0010) 32 

TW 0.0392 (0.8230) 23 4.33 (0.2580) 18 

Trimmed MSPE 0.0399 (0.9070) 20 4.47 (0.3530) 12 

TW-CER 0.0400 (0.6180) 17 4.61 (0.5080) 6 

Trimmed-CER 0.0405 (0.7970) 11 4.71 (0.9360) 2 

Best-CER 0.0405 (0.7650) 13 4.51 (0.6570) 10 

TW-Q0.05 0.0398 (0.9360) 21 4.50 (0.3110) 11 

TW-Q0.01 0.0403 (0.9410) 15 4.59 (0.6520) 8 

Trimmed-Q0.05 0.0384 (0.5470) 28 4.35 (0.0200) 17 

Trimmed-Q0.01 0.0385 (0.3440) 27 4.46 (0.1410) 13 

Best-Q0.05 0.0390 (0.4420) 24 4.37 (0.4310) 16 

Best-Q0.01 0.0394 (0.6650) 22 4.38 (0.5160) 15 

TW-Sharpe 0.0408 (0.9190) 10 4.70 (0.9950) 4 

Trimmed-Sharpe 0.0405 (0.8190) 11 4.71 (0.9270) 2 

Best-Sharpe 0.0419 (0.9020) 3 4.68 (0.9100) 5 

Note. 1. Values in bold denote that the corresponding model attains the best forecasting performance 

under the specific loss function. 2. Numbers in parentheses denote the p-value of the Hsu et al. (2010) 

StepSPA test. The null hypothesis is that none of the models is better than the benchmark. The number 

of bootstrap replications to calculate the p-value is 1,000 and the smoothing parameter for the mean 

block length is 0.1. The confidence level used is α=10%. 3. We constrain the portfolio weight on the 

risky asset to lie between 0% and 150%, i.e. 0 1.5itw   for the economic combinations. 4. EXP and 

SQRT denote the exponential and the square root transformation, respectively. 
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Table 4.6 22-step ahead Economic Forecasting Performance for GARCH 

combinations 

 

CER 

  

Sharpe 

  

 

Loss 

function StepSPA Rank 

Loss 

function StepSPA Rank 

GARCH 0.0257 (0.1650) 28 3.49 (0.2270) 27 

EGARCH 0.0192 (0.2330) 29 2.41 (0.3280) 29 

GJR 0.0266 (0.2330) 27 3.41 (0.3340) 28 

APARCH 0.0282 (0.3240) 24 3.66 (0.4530) 22 

FIGARCH 0.0331 (0.6600) 5 4.35 (0.7550) 7 

HYGARCH 0.0304 (0.7110) 19 3.52 (0.9430) 25 

Mean 0.0287 (0.4930) 22 3.66 (0.4440) 21 

Geometric Mean 0.0280 (0.3190) 26 3.56 (0.4120) 24 

Harmonic Mean 0.0319 (0.2710) 10 4.30 (0.4970) 9 

Trimmed Mean 0.0290 (0.5000) 21 3.70 (0.6150) 20 

Median 0.0285 (0.4020) 23 3.65 (0.5640) 23 

AFTER 0.0311 (0.5310) 17 4.02 (0.6900) 18 

DMSFE 0.0312 (0.2940) 16 4.14 (0.3890) 14 

IMSFE 0.0319 (0.3030) 11 4.30 (0.5380) 10 

Kernel 0.0148 (0.0630) 30 1.99 (0.0070) 30 

OLSEXP -0.0099 (0.2400) 31 0.89 (0.6700) 31 

OLS 0.0302 (0.4750) 20 3.85 (0.6580) 19 

OLSSQRT -0.0132 (0.1580) 32 0.55 (0.5210) 32 

TW 0.0316 (0.2990) 13 4.14 (0.4240) 15 

Trimmed MSPE 0.0318 (0.3400) 12 4.22 (0.4720) 12 

TW-CER 0.0342 (0.2240) 3 4.72 (0.3570) 3 

Trimmed-CER 0.0324 (0.2230) 6 4.44 (0.4470) 5 

Best-CER 0.0383 (1.0000) 1 5.29 (0.5940) 2 

TW-Q0.05 0.0306 (0.2440) 18 4.03 (0.3890) 17 

TW-Q0.01 0.0320 (0.3770) 8 4.28 (0.6080) 11 

Trimmed-Q0.05 0.0313 (0.2920) 15 4.15 (0.4180) 13 

Trimmed-Q0.01 0.0315 (0.1040) 14 4.31 (0.2160) 8 

Best-Q0.05 0.0281 (0.3180) 25 3.52 (0.5130) 26 

Best-Q0.01 0.0320 (0.5560) 9 4.14 (0.7470) 16 

TW-Sharpe 0.0335 (0.3150) 4 4.70 (0.3850) 4 

Trimmed-Sharpe 0.0324 (0.2610) 6 4.44 (0.4050) 5 

Best-Sharpe 0.0364 (0.6300) 2 5.36 (1.0000) 1 

Note. 1. Values in bold denote that the corresponding model attains the best forecasting performance 

under the specific loss function. 2. Numbers in parentheses denote the p-value of the Hsu et al. (2010) 

StepSPA test. The null hypothesis is that none of the models is better than the benchmark. The number 

of bootstrap replications to calculate the p-value is 1,000 and the smoothing parameter for the mean 

block length is 0.1. The confidence level used is α=10%. 3. We constrain the portfolio weight on the 

risky asset to lie between 0% and 150%, i.e. 0 1.5itw   for the economic combinations. 4. EXP and 

SQRT denote the exponential and the square root transformation, respectively. 
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Risk Management Evaluation 

This section provides the results of volatility forecasting performance using a VaR-

based loss function, the Smoothed-Q. The parameter of smooth function is set equal 

to 25, while the VaR is calculated for two confidence levels, 5% and 1%. For the 1-

step ahead forecasts, the results are presented in Table 4.7. Several models seem to 

adequate predict the VaR for 5% confidence level, while for the 1% confidence level, 

there is no model that calculates the VaR adequately. The results indicate that the 

Best-Q0.05 outperform the other models, in terms of the Smoothed-Q loss function 

under a 5% confidence level. The large Hansen’s p-value makes it the preferred 

method of calculation, despite three single models, i.e. the EGARCH, GJR and 

APARCH models are amongst the best performers. Taking into consideration the 1% 

confidence level, the results clearly indicate that the OLS combination generates the 

smaller losses. The results are noteworthy because contrary to the previous section 

that accounts for the economic gains derived from combination forecasts, an OLS 

combination performs better in a risk management framework. Furthermore, the 

simple combination techniques seem to perform quite better compared to economic 

combinations and the single models. 
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Table 4.7 1-step ahead VaR Forecasting Performance for GARCH combinations 

  

Smoothed-Q0.05 

 

Smoothed-Q0.01 

  

 

Percentage of 

violations (5%) 

Loss 

function SPA Rank 

Percentage of 

violations (1%) 

Loss 

function SPA Rank 

GARCH 4.85% 0.2231 (0.0035) 32 1.43% 0.0605 (0.3798) 28 

EGARCH 4.38% 0.2132 (0.8294) 2 1.67% 0.0595 (0.5919) 21 

GJR 4.61% 0.2162 (0.4450) 6 1.67% 0.0597 (0.5484) 24 

APARCH 4.30% 0.2152 (0.5818) 3 1.51% 0.0597 (0.5453) 23 

FIGARCH 5.33% 0.2223 (0.0243) 30 1.75% 0.0599 (0.4740) 25 

HYGARCH 5.33% 0.2211 (0.0503) 27 1.51% 0.0597 (0.5190) 22 

Mean 4.77% 0.2168 (0.3112) 12 1.51% 0.0584 (0.9165) 5 

Geometric Mean 4.93% 0.2173 (0.2308) 15 1.51% 0.0584 (0.9104) 6 

Harmonic Mean 5.01% 0.2177 (0.1731) 18 1.51% 0.0585 (0.8920) 7 

Trimmed Mean 4.61% 0.2171 (0.2579) 13 1.51% 0.0585 (0.8862) 8 

Median 4.69% 0.2174 (0.2277) 16 1.51% 0.0588 (0.8062) 12 

AFTER 5.41% 0.2205 (0.0396) 24 1.43% 0.0593 (0.5929) 19 

DMSFE 4.93% 0.2167 (0.3265) 10 1.51% 0.0583 (0.9422) 4 

IMSFE 4.77% 0.2166 (0.3519) 9 1.43% 0.0586 (0.8660) 9 

Kernel 5.17% 0.2218 (0.0363) 28 2.07% 0.0635 (0.0553) 31 

OLSEXP 6.21% 0.2163 (0.4575) 7 2.31% 0.0605 (0.3508) 29 

OLS 5.25% 0.2176 (0.2186) 17 1.59% 0.0578 (1.0000) 1 

OLSSQRT 7.56% 0.2207 (0.0792) 25 2.94% 0.0652 (0.0255) 32 

TW 5.01% 0.2161 (0.4279) 5 1.59% 0.0581 (0.9736) 2 

Trimmed MSPE 5.01% 0.2164 (0.3491) 8 1.43% 0.0582 (0.9385) 3 

TW-CER 4.93% 0.2186 (0.1098) 22 1.59% 0.0587 (0.7661) 10 

Trimmed-CER 4.77% 0.2179 (0.1821) 19 1.43% 0.0589 (0.7334) 14 

Best-CER 5.01% 0.2210 (0.0307) 26 1.35% 0.0594 (0.5735) 20 

TW-Q0.05 4.69% 0.2155 (0.4945) 4 1.51% 0.0591 (0.7043) 18 

TW-Q0.01 4.77% 0.2183 (0.1398) 21 1.51% 0.0590 (0.7493) 16 

Trimmed-Q0.05 4.69% 0.2168 (0.3477) 11 1.43% 0.0589 (0.7733) 13 

Trimmed-Q0.01 4.93% 0.2172 (0.2779) 14 1.43% 0.0591 (0.7078) 17 

Best-Q0.05 4.77% 0.2130 (1.0000) 1 1.43% 0.0602 (0.4345) 27 

Best-Q0.01 5.01% 0.2228 (0.0128) 31 1.43% 0.0617 (0.1900) 30 

TW-Sharpe 4.93% 0.2188 (0.1031) 23 1.59% 0.0588 (0.7252) 11 

Trimmed-Sharpe 4.77% 0.2179 (0.1784) 19 1.43% 0.0589 (0.7330) 14 

Best-Sharpe 5.17% 0.2220 (0.0131) 29 1.35% 0.0600 (0.4844) 26 

Note. 1. Values in bold denote that the corresponding model attains the best forecasting performance 

under the specific loss function. 2. Numbers in parentheses denote the p-value of the Hansen’s SPA 

test. The null hypothesis is that none of the models is better than the benchmark. The number of 

bootstrap replications to calculate the p-value is 10,000 and the block length is 2. The confidence level 

used is α=10%. 3. The Smoothed-Q loss function is calculated for VaR level α=0.01 and α=0.05. We 

set the smoothness parameter δ=25. 4. We constrain the portfolio weight on the risky asset to lie 

between 0% and 150%, i.e. 0 1.5itw   for the economic combinations. 5. EXP and SQRT denote the 

exponential and the square root transformation, respectively. 
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The results in Tables 4.8 and 4.9, considering the 5-step and 22-step ahead forecasts, 

show differences in the most preferred model. In both confidence levels, the single 

EGARCH model clearly dominates the rest combination and single models. Its 

superior forecasting performance is indicated by the large SPA value and can be 

attributed to the fact that the EGARCH model allows for testing asymmetries. 

Consequently, we conclude that for the GARCH combinations, the economic 

combinations based on CER and Sharpe ratio seem to provide economic gains for the 

1-step and 22-step ahead forecast horizons, while the combinations based on risk 

management loss functions do not improve in a significant amount the forecasting 

performance in both statistical and economic terms. 
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Table 4.8 5-step ahead VaR Forecasting Performance for GARCH combinations 

  

Smoothed-Q0.05 

  

Smoothed-Q0.01 

 

 

Percentage of 

violations (5%) 

Loss 

function SPA Rank 

Percentage of 

violations (1%) 

Loss 

function SPA Rank 

GARCH 4.71% 0.2288 (0.0000) 32 1.68% 0.0658 (0.0434) 31 

EGARCH 4.39% 0.2130 (1.0000) 1 1.36% 0.0602 (1.0000) 1 

GJR 4.47% 0.2167 (0.3217) 8 1.44% 0.0617 (0.5628) 8 

APARCH 4.39% 0.2165 (0.3453) 7 1.28% 0.0620 (0.5172) 19 

FIGARCH 4.71% 0.2257 (0.0012) 30 1.28% 0.0637 (0.1727) 26 

HYGARCH 4.87% 0.2245 (0.0020) 28 1.36% 0.0637 (0.1438) 27 

Mean 4.47% 0.2195 (0.0797) 20 1.28% 0.0618 (0.5476) 11 

Geometric Mean 4.55% 0.2193 (0.0827) 18 1.44% 0.0618 (0.5486) 12 

Harmonic Mean 4.55% 0.2192 (0.0901) 15 1.52% 0.0619 (0.5068) 18 

Trimmed Mean 4.47% 0.2192 (0.0892) 16 1.60% 0.0619 (0.5174) 17 

Median 4.47% 0.2194 (0.0848) 19 1.60% 0.0623 (0.3926) 21 

AFTER 4.55% 0.2154 (0.4628) 4 1.36% 0.0618 (0.5870) 9 

DMSFE 4.39% 0.2193 (0.0952) 17 1.52% 0.0619 (0.5431) 13 

IMSFE 4.31% 0.2197 (0.0847) 21 1.20% 0.0620 (0.4735) 20 

Kernel 5.83% 0.2227 (0.0183) 25 2.00% 0.0645 (0.1634) 30 

OLSEXP 6.86% 0.2154 (0.4598) 3 2.31% 0.0608 (0.6436) 2 

OLS 4.63% 0.2145 (0.4918) 2 1.36% 0.0611 (0.7841) 3 

OLSSQRT 8.30% 0.2236 (0.0262) 27 3.35% 0.0702 (0.0071) 32 

TW 4.63% 0.2183 (0.1538) 11 1.44% 0.0613 (0.7358) 4 

Trimmed MSPE 4.55% 0.2189 (0.1189) 14 1.44% 0.0619 (0.5502) 14 

TW-CER 4.39% 0.2226 (0.0138) 24 1.20% 0.0629 (0.2583) 24 

Trimmed-CER 4.31% 0.2216 (0.0287) 22 1.20% 0.0627 (0.2840) 22 

Best-CER 4.71% 0.2256 (0.0018) 29 1.28% 0.0639 (0.2100) 28 

TW-Q0.05 4.39% 0.2175 (0.2289) 9 1.36% 0.0617 (0.6124) 6 

TW-Q0.01 4.39% 0.2178 (0.1956) 10 1.36% 0.0619 (0.5076) 16 

Trimmed-Q0.05 4.31% 0.2186 (0.1482) 12 1.20% 0.0618 (0.5663) 10 

Trimmed-Q0.01 4.31% 0.2188 (0.1377) 13 1.20% 0.0619 (0.5259) 15 

Best-Q0.05 4.63% 0.2157 (0.4294) 6 1.36% 0.0615 (0.6647) 5 

Best-Q0.01 4.63% 0.2154 (0.4667) 5 1.36% 0.0617 (0.6181) 7 

TW-Sharpe 4.39% 0.2228 (0.0112) 26 1.20% 0.0630 (0.2463) 25 

Trimmed-Sharpe 4.31% 0.2216 (0.0278) 22 1.20% 0.0627 (0.2868) 22 

Best-Sharpe 4.63% 0.2263 (0.0013) 31 1.28% 0.0641 (0.1791) 29 

Note. 1. Values in bold denote that the corresponding model attains the best forecasting performance 

under the specific loss function. 2. Numbers in parentheses denote the p-value of the Hansen’s SPA 

test. The null hypothesis is that none of the models is better than the benchmark. The number of 

bootstrap replications to calculate the p-value is 10,000 and the block length is 2. The confidence level 

used is α=10%. 3. The Smoothed-Q loss function is calculated for VaR level α=0.01 and α=0.05. We 

set the smoothness parameter δ=25. 4. We constrain the portfolio weight on the risky asset to lie 

between 0% and 150%, i.e. 0 1.5itw   for the economic combinations. 5. EXP and SQRT denote the 

exponential and the square root transformation, respectively. 
 



Chapter 4 - Combining Energy Price Volatility Forecasts 
 

95 
 

Table 4.9 22-step ahead VaR Forecasting Performance for GARCH 

combinations 

  

Smoothed-Q0.05 

  

Smoothed-Q0.01 

 

 

Percentage of 

violations (5%) 

Loss 

function SPA Rank 

Percentage of 

violations (1%) 

Loss 

function SPA Rank 

GARCH 4.94% 0.2414 (0.0021) 32 1.62% 0.0665 (0.0496) 27 

EGARCH 5.34% 0.2247 (1.0000) 1 1.29% 0.0602 (1.0000) 1 

GJR 4.94% 0.2282 (0.4087) 6 1.21% 0.0616 (0.4953) 3 

APARCH 4.85% 0.2272 (0.5179) 3 1.13% 0.0609 (0.6878) 2 

FIGARCH 5.26% 0.2403 (0.0022) 31 1.70% 0.0653 (0.1418) 24 

HYGARCH 5.50% 0.2361 (0.0242) 27 1.38% 0.0644 (0.2226) 21 

Mean 5.10% 0.2316 (0.1600) 20 1.21% 0.0620 (0.3079) 5 

Geometric Mean 5.10% 0.2316 (0.1510) 19 1.29% 0.0621 (0.2259) 8 

Harmonic Mean 4.77% 0.2315 (0.1629) 18 1.46% 0.0641 (0.1502) 20 

Trimmed Mean 5.10% 0.2315 (0.1659) 16 1.29% 0.0620 (0.2726) 7 

Median 5.10% 0.2312 (0.1847) 14 1.29% 0.0620 (0.2750) 6 

AFTER 5.58% 0.2281 (0.3993) 5 1.62% 0.0627 (0.1945) 11 

DMSFE 5.02% 0.2302 (0.2434) 11 1.46% 0.0638 (0.1764) 18 

IMSFE 4.77% 0.2315 (0.1676) 17 1.46% 0.0641 (0.1469) 19 

Kernel 6.39% 0.2333 (0.0953) 23 2.51% 0.0715 (0.0053) 31 

OLSEXP 7.28% 0.2339 (0.1021) 24 2.91% 0.0699 (0.0171) 30 

OLS 5.50% 0.2278 (0.4476) 4 1.62% 0.0623 (0.2626) 9 

OLSSQRT 9.06% 0.2390 (0.0255) 29 3.88% 0.0802 (0.0005) 32 

TW 5.02% 0.2292 (0.3158) 9 1.46% 0.0625 (0.2023) 10 

Trimmed MSPE 4.94% 0.2303 (0.2360) 13 1.46% 0.0634 (0.2168) 13 

TW-CER 4.69% 0.2348 (0.0564) 25 1.54% 0.0657 (0.0946) 25 

Trimmed-CER 4.69% 0.2332 (0.1027) 21 1.38% 0.0650 (0.1483) 22 

Best-CER 4.53% 0.2379 (0.0168) 28 1.46% 0.0674 (0.0265) 28 

TW-Q0.05 4.85% 0.2291 (0.3241) 8 1.38% 0.0629 (0.1116) 12 

TW-Q0.01 4.94% 0.2298 (0.2764) 10 1.62% 0.0635 (0.2107) 16 

Trimmed-Q0.05 4.94% 0.2303 (0.2264) 12 1.46% 0.0635 (0.2212) 14 

Trimmed-Q0.01 4.85% 0.2313 (0.1760) 15 1.46% 0.0637 (0.1861) 17 

Best-Q0.05 5.34% 0.2272 (0.5607) 2 1.46% 0.0618 (0.4024) 4 

Best-Q0.01 5.58% 0.2284 (0.3716) 7 1.54% 0.0635 (0.1251) 15 

TW-Sharpe 4.77% 0.2354 (0.0444) 26 1.46% 0.0659 (0.0828) 26 

Trimmed-Sharpe 4.69% 0.2332 (0.1019) 21 1.38% 0.0650 (0.1442) 22 

Best-Sharpe 4.53% 0.2403 (0.0058) 30 1.46% 0.0681 (0.0115) 29 

Note. 1. Values in bold denote that the corresponding model attains the best forecasting performance 

under the specific loss function. 2. Numbers in parentheses denote the p-value of the Hansen’s SPA 

test. The null hypothesis is that none of the models is better than the benchmark. The number of 

bootstrap replications to calculate the p-value is 10,000 and the block length is 2. The confidence level 

used is α=10%. 3. The Smoothed-Q loss function is calculated for VaR level α=0.01 and α=0.05. We 

set the smoothness parameter δ=25. 4. We constrain the portfolio weight on the risky asset to lie 

between 0% and 150%, i.e. 0 1.5itw   for the economic combinations. 5. EXP and SQRT denote the 

exponential and the square root transformation, respectively. 
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4.7.2 Out-of-Sample Forecasting Performance for HAR combinations 

 
Statistical Evaluation 

To test the forecasting accuracy of the HAR combinations, we use the symmetric 

MAE and MSE loss functions, as well as the asymmetric HRLF and QLIKE loss 

functions. Table 4.10 reports the SPA and MCS tests results of the HAR models and 

the combinations based on HAR models for 1-step-ahead forecasts. From both MAE 

and MSE loss functions, we can conclude that the best performing model is the square 

root transformed least squares regression model. It is interesting to note that for the 

MAE loss function only the best performing model passes the SPA test, while it is the 

only model included in the optimal set. Turning to the economic combinations, 

although seven of them are ranked to the first 10 models, they cannot beat the 

OLSSQRT model. Under the MSE loss function, the null hypothesis that none of the 

models can beat the benchmark cannot be rejected, while four combinations and two 

HAR models are included to the optimal set. 

For the asymmetric HR loss function, the HAR-RSV model is considered as the best 

performing model followed by the OLSSQRT and the trimmed mean combination. It is 

worth noting that only for the Best-Sharpe combination the null hypothesis is 

rejected. In this case, three models are included to the optimal set. Second, we 

consider the QLIKE loss function, which indicates the superior performance of the 

Trimmed Mean combination that passes both the SPA and the MCS tests. 
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Table 4.10 1-step ahead Statistical Forecasting Performance for HAR 

combinations 

 

MAE 

  

MSE 

  

HRLF (b=-1)  QLIKE 

  

 

Loss 

function SPA Rank 

Loss 

function SPA Rank 

Loss 

function SPA Rank 

Loss 

function SPA Rank 

HAR-RV 2.29 (0.0000) 30 26.55* (0.6041) 4 1.00 (0.5536) 15 0.23 (0.6471) 23 

LHAR-RV 2.29 (0.0000) 29 27.29 (0.5442) 12 1.01 (0.4672) 18 0.22 (0.6992) 20 

HAR-RV-J 2.16 (0.0000) 12 29.24 (0.1166) 24 1.05 (0.2585) 24 0.22 (0.7176) 21 

HAR-CJ 2.12 (0.0000) 2 29.64 (0.4477) 25 1.10 (0.1155) 25 0.24 (0.5012) 24 

HAR-RSV 2.24 (0.0000) 27 24.33* (0.6669) 2 0.92* (1.0000) 1 0.22 (0.8163) 13 

Mean 2.17 (0.0000) 16 26.67 (0.3578) 6 0.95 (0.8391) 3 0.21 (0.9802) 2 

Geometric Mean 2.17 (0.0000) 18 27.28 (0.2209) 11 0.97 (0.7192) 5 0.21 (0.9477) 5 

Harmonic Mean 2.18 (0.0000) 19 27.89 (0.1403) 19 1.00 (0.6040) 17 0.22 (0.8852) 10 

Trimmed Mean 2.17 (0.0000) 16 26.67* (0.3571) 6 0.95* (0.8393) 3 0.21* (0.9761) 1 

Median 2.26 (0.0000) 28 26.92 (0.5800) 8 1.00 (0.5748) 16 0.22 (0.7510) 19 

AFTER 2.19 (0.0000) 24 26.60* (0.4771) 5 1.02 (0.4421) 19 0.23 (0.6252) 22 

DMSFE 2.17 (0.0000) 14 27.33 (0.2044) 13 0.99 (0.6601) 9 0.21 (0.9609) 7 

IMSFE 2.17 (0.0000) 13 27.39 (0.1906) 16 0.99 (0.5897) 12 0.21 (0.9588) 8 

Kernel 2.58 (0.0000) 31 54.74 (0.0333) 31 1.64 (0.0130) 31 0.33 (0.3519) 30 

OLSEXP 2.19 (0.0000) 23 30.16 (0.4391) 28 1.20 (0.0876) 30 0.41 (0.0963) 31 

OLS 2.18 (0.0000) 20 26.46* (0.4643) 3 0.98 (0.6446) 8 0.22 (0.8816) 14 

OLSSQRT 1.76* (1.0000) 1 23.78* (1.0000) 1 0.93* (0.8334) 2 0.26 (0.4893) 29 

TW 2.16 (0.0000) 11 27.21 (0.2290) 10 0.98 (0.7055) 7 0.21 (0.9763) 3 

Trimmed MSPE 2.17 (0.0000) 15 27.02 (0.2634) 9 0.98 (0.7528) 6 0.21 (0.9768) 4 

TW-CER 2.15 (0.0000) 9 28.34 (0.1255) 23 1.03 (0.3325) 23 0.22 (0.7474) 18 

Trimmed-CER 2.15 (0.0000) 6 27.37 (0.1880) 14 0.99 (0.6067) 10 0.22 (0.9268) 9 

Best-CER 2.22 (0.0000) 25 30.34 (0.4200) 30 1.14 (0.1018) 29 0.24 (0.4655) 28 

TW-Q0.05 2.15 (0.0000) 10 28.23 (0.1251) 20 1.03 (0.3751) 21 0.22 (0.7818) 15 

TW-Q0.01 2.14 (0.0000) 4 28.29 (0.1297) 21 1.02 (0.3708) 20 0.22 (0.7736) 16 

Trimmed-Q0.05 2.14 (0.0000) 3 27.50 (0.1821) 17 0.99 (0.5794) 13 0.21 (0.9548) 6 

Trimmed-Q0.01 2.15 (0.0000) 5 27.52 (0.1776) 18 0.99 (0.5543) 14 0.22 (0.8854) 12 

Best-Q0.05 2.18 (0.0000) 21 30.14 (0.4363) 26 1.13 (0.1130) 26 0.24 (0.4968) 25 

Best-Q0.01 2.18 (0.0000) 22 30.15 (0.4357) 27 1.13 (0.1111) 27 0.24 (0.4929) 26 

TW-Sharpe 2.15 (0.0000) 8 28.34 (0.1310) 22 1.03 (0.3438) 22 0.22 (0.7474) 17 

Trimmed-Sharpe 2.15 (0.0000) 7 27.37 (0.1984) 15 0.99 (0.6085) 11 0.22 (0.9168) 11 

Best-Sharpe 2.22 (0.0000) 26 30.34 (0.4272) 29 1.14 (0.0969) 28 0.24 (0.4718) 27 

Note. 1. Values in bold denote that the corresponding model attains the best forecasting performance 

under the specific loss function. 2. Numbers in parentheses denote the p-value of the Hansen’s SPA 

test. The null hypothesis is that none of the models is better than the benchmark. The number of 

bootstrap replications to calculate the p-value is 10,000 and the block length is 2. The confidence level 

used is α=10%. 3. We use * to denote that the model belongs to 10% MCS. The number of bootstrap 

replications to calculate the p-value is 10,000 and the block length is 2. 4. We constrain the portfolio 

weight on the risky asset to lie between 0% and 150%, i.e. 0 1.5itw   for the economic 

combinations. 5. EXP and SQRT denote the exponential and the square root transformation, 

respectively. 
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Table 4.11 shows the performance of single and combination models at the forecast 

horizon of 5 days. Under the MAE loss function, only the OLSSQRT model passes the 

SPA test, while it is the only included model in the MCS. Using the MSE loss 

function, two single models, the HAR-CJ and the HAR-RV-J produce the smaller 

losses. In this case, only two models, including an economic combination do not pass 

the SPA test, while almost all the simple combinations and four economic 

combinations are included to the MCS. The superior forecasting performance is also 

indicated by Stock and Watson (2004). Taking into consideration, the asymmetric HR 

loss function, we note the superior predictive ability of the TW scheme, while the 

transformed least squares combinations are proved inadequate. In this case, only an 

economic combination, the Best-Q00.1 does not pass the SPA test, as well as the 

Kernel regression, the OLSSQRT and the HAR-RSV that are ran-ked amongst the worst 

performers. It is interesting to note that the OLSSQRT model that was among the best 

performing models for the 1-step ahead forecasts, is ranked last in this case. For the 

QLIKE loss function, the TW combination is still the best performing model, while 

the OLSSQRT is the worst performing combination. In this case all the economic 

combinations pass the SPA test, while nine of them are included to the optimal set. 

Considering the 22-step ahead forecasting performance in Table 4.12, the results are 

quite different. For the MAE loss function, the OLSSQRT model is still the best 

performing model followed by the Kernel regression, where both of them are included 

to the optimal set. Tsangari (2007) indicated the superior forecasting performance of 

more complex combination techniques such as the Kernel regression. Using the MSE 

loss function, the Kernel regression is considered as the best combination that passes 

both the SPA and MCS test. Although, more models are included to the MCS, only 

three models pass the SPA test, the Kernel regression, the Best-Q0.05 and the single 
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HAR-CJ. For the asymmetric loss functions, the TW model is the best performing 

model, while more economic combinations pass both tests and are ranked amongst the 

best performers. 
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Table 4.11 5-step ahead Statistical Forecasting Performance for HAR 

combinations 

 

MAE 

  

MSE 

  

HRLF (b=-1) 

 

QLIKE 

  

 

Loss 

function SPA Rank 

Loss 

function SPA Rank 

Loss 

function SPA Rank 

Loss 

function SPA Rank 

HAR-RV 2.76 (0.0000) 29 39.01 (0.1528) 28 1.65 (0.1448) 26 0.35 (0.1264) 26 

LHAR-RV 2.76 (0.0000) 28 39.00 (0.1544) 27 1.64 (0.1551) 25 0.35 (0.1236) 27 

HAR-RV-J 2.67 (0.0000) 6 37.01* (0.6969) 2 1.58* (0.7072) 3 0.34* (0.4596) 22 

HAR-CJ 2.66 (0.0001) 3 36.58* (1.0000) 1 1.59* (0.5906) 9 0.34 (0.2479) 24 

HAR-RSV 2.78 (0.0000) 31 39.56 (0.0971) 29 1.66 (0.0816) 29 0.35 (0.0968) 28 

Mean 2.69 (0.0002) 10 37.49 (0.4844) 12 1.59 (0.5025) 13 0.34 (0.4731) 16 

Geometric Mean 2.67 (0.0001) 8 37.29* (0.5663) 6 1.59* (0.5726) 11 0.34 (0.4665) 18 

Harmonic Mean 2.66 (0.0004) 5 37.14* (0.6487) 5 1.58* (0.6245) 7 0.34 (0.4327) 19 

Trimmed Mean 2.69 (0.0001) 10 37.49* (0.4913) 12 1.59* (0.5089) 13 0.34* (0.4772) 16 

Median 2.75 (0.0001) 27 38.82 (0.1799) 26 1.64 (0.1863) 24 0.34 (0.1491) 25 

AFTER 2.70 (0.0000) 14 37.46* (0.6046) 11 1.58* (0.6946) 6 0.33* (0.9356) 5 

DMSFE 2.71 (0.0001) 16 37.57 (0.4463) 14 1.59* (0.5599) 8 0.33* (0.8680) 8 

IMSFE 2.71 (0.0000) 20 37.70 (0.3980) 19 1.59 (0.4692) 15 0.33* (0.8287) 9 

Kernel 2.62 (0.0297) 2 39.84 (0.1244) 31 1.71 (0.0318) 30 0.37 (0.0323) 30 

OLSEXP 2.74 (0.0000) 24 38.55 (0.2417) 25 1.65 (0.1521) 27 0.35 (0.1833) 29 

OLS 2.67 (0.0001) 7 37.12* (0.6971) 4 1.57* (0.8718) 2 0.33* (0.9959) 2 

OLSSQRT 2.44* (1.0000) 1 38.23 (0.2811) 21 1.72 (0.0062) 31 0.40 (0.0051) 31 

TW 2.66 (0.0003) 4 37.11* (0.6744) 3 1.57* (1.0000) 1 0.33* (1.0000) 1 

Trimmed MSPE 2.70 (0.0002) 13 37.59 (0.4440) 15 1.59* (0.5336) 12 0.33* (0.7163) 10 

TW-CER 2.71 (0.0001) 22 37.65 (0.4370) 17 1.59 (0.4091) 20 0.33* (0.7359) 12 

Trimmed-CER 2.75 (0.0000) 25 38.49 (0.2126) 23 1.62 (0.2742) 22 0.34 (0.4115) 20 

Best-CER 2.71 (0.0000) 19 37.32* (0.6836) 8 1.59 (0.5526) 18 0.33* (0.6640) 15 

TW-Q0.05 2.70 (0.0001) 15 37.66 (0.4108) 18 1.59* (0.5464) 10 0.33* (0.9870) 3 

TW-Q0.01 2.71 (0.0002) 17 37.78 (0.3684) 20 1.59 (0.4720) 16 0.33* (0.9225) 7 

Trimmed-Q0.05 2.74 (0.0001) 23 38.45 (0.2220) 22 1.61 (0.3495) 21 0.33* (0.6441) 13 

Trimmed-Q0.01 2.69 (0.0000) 12 37.39* (0.5150) 9 1.58* (0.7170) 5 0.33* (0.9566) 6 

Best-Q0.05 2.68 (0.0001) 9 37.40* (0.6030) 10 1.58* (0.6647) 4 0.33* (0.8807) 4 

Best-Q0.01 2.77 (0.0001) 30 39.68 (0.0837) 30 1.66 (0.0970) 28 0.34 (0.3327) 23 

TW-Sharpe 2.71 (0.0002) 21 37.65 (0.4377) 16 1.59 (0.4039) 19 0.33* (0.7314) 11 

Trimmed-Sharpe 2.75 (0.0000) 25 38.49 (0.2145) 23 1.62 (0.2607) 22 0.34 (0.4164) 20 

Best-Sharpe 2.71 (0.0000) 18 37.31* (0.6841) 7 1.59* (0.5514) 17 0.33* (0.6693) 14 

Note. 1. Values in bold denote that the corresponding model attains the best forecasting performance 

under the specific loss function. 2. Numbers in parentheses denote the p-value of the Hansen’s SPA 

test. The null hypothesis is that none of the models is better than the benchmark. The number of 

bootstrap replications to calculate the p-value is 10,000 and the block length is 2. The confidence level 

used is α=10%. 3. We use * to denote that the model belongs to 10% MCS. The number of bootstrap 

replications to calculate the p-value is 10,000 and the block length is 2. 4. We constrain the portfolio 

weight on the risky asset to lie between 0% and 150%, i.e. 0 1.5itw   for the economic 

combinations. 5. EXP and SQRT denote the exponential and the square root transformation, 

respectively. 
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Table 4.12 22-step ahead Statistical Forecasting Performance for HAR 

combinations 

 

MAE 

  

MSE 

  

HRLF (b=-1) 

 

QLIKE 

  

 

Loss 

function SPA Rank 

Loss 

function SPA Rank 

Loss 

function SPA Rank 

Loss 

function SPA Rank 

HAR-RV 3.16 (0.0000) 27 45.30 (0.0364) 27 2.06 (0.4128) 28 0.43 (0.6054) 26 

LHAR-RV 3.13 (0.0000) 17 44.63* (0.0754) 12 2.03* (0.7000) 6 0.42* (0.7139) 17 

HAR-RV-J 3.11 (0.0000) 11 44.65 (0.0743) 13 2.03* (0.7445) 5 0.42* (0.7589) 9 

HAR-CJ 3.04 (0.0000) 3 43.61* (0.2748) 2 2.06 (0.3798) 26 0.66 (0.1335) 31 

HAR-RSV 3.17 (0.0000) 31 45.81 (0.0200) 30 2.08 (0.2962) 30 0.43 (0.5699) 27 

Mean 3.11 (0.0000) 8 44.51 (0.0805) 9 2.03 (0.6919) 11 0.42 (0.6783) 21 

Geometric Mean 3.10 (0.0000) 6 44.43* (0.0880) 7 2.03* (0.7344) 9 0.43 (0.6792) 23 

Harmonic Mean 3.09 (0.0000) 4 44.35* (0.0936) 6 2.03 (0.6805) 13 0.46 (0.6140) 29 

Trimmed Mean 3.11 (0.0000) 8 44.51* (0.0799) 9 2.03* (0.6916) 11 0.42 (0.6852) 21 

Median 3.11 (0.0000) 10 44.79 (0.0647) 18 2.04 (0.5608) 17 0.42 (0.6869) 20 

AFTER 3.12 (0.0000) 15 44.67 (0.0654) 14 2.04 (0.6501) 15 0.42 (0.6672) 19 

DMSFE 3.13 (0.0000) 16 44.78 (0.0665) 17 2.03* (0.7445) 10 0.42* (0.7816) 7 

IMSFE 3.13 (0.0000) 19 44.85 (0.0613) 19 2.04 (0.6824) 14 0.42 (0.7510) 10 

Kernel 2.83* (0.0557) 2 42.47* (1.0000) 1 2.04* (0.4752) 19 0.45 (0.3866) 28 

OLSEXP 3.17 (0.0000) 29 45.87 (0.0181) 31 2.06 (0.5312) 25 0.42* (0.7760) 4 

OLS 3.11 (0.0000) 7 44.34* (0.0890) 4 2.03* (0.8304) 4 0.42 (0.6674) 18 

OLSSQRT 2.75* (1.0000) 1 44.47* (0.0661) 8 2.22 (0.0220) 31 0.54 (0.3725) 30 

TW 3.09 (0.0000) 5 44.35* (0.0979) 5 2.01* (1.0000) 1 0.42* (1.0000) 1 

Trimmed MSPE 3.11 (0.0000) 12 44.68 (0.0746) 15 2.02* (0.8612) 2 0.42* (0.8984) 2 

TW-CER 3.15 (0.0000) 22 45.09 (0.0494) 22 2.04 (0.5291) 21 0.42 (0.6919) 16 

Trimmed-CER 3.15 (0.0000) 23 45.26 (0.0409) 24 2.05 (0.4765) 22 0.42 (0.7328) 11 

Best-CER 3.17 (0.0000) 30 45.56 (0.0304) 29 2.07 (0.3795) 29 0.43 (0.5493) 25 

TW-Q0.05 3.12 (0.0000) 14 44.52* (0.0889) 11 2.03* (0.8465) 3 0.42* (0.8158) 5 

TW-Q0.01 3.14 (0.0000) 20 45.00 (0.0505) 20 2.04 (0.6397) 16 0.42* (0.7751) 6 

Trimmed-Q0.05 3.13 (0.0000) 18 44.71 (0.0716) 16 2.03* (0.7616) 8 0.42* (0.7639) 8 

Trimmed-Q0.01 3.15 (0.0000) 23 45.26 (0.0416) 24 2.05 (0.4815) 22 0.42 (0.7363) 11 

Best-Q0.05 3.11 (0.0000) 13 44.28* (0.1078) 3 2.03* (0.7416) 7 0.42* (0.6983) 14 

Best-Q0.01 3.16 (0.0000) 26 45.20 (0.0434) 23 2.04 (0.5691) 18 0.42* (0.8675) 3 

TW-Sharpe 3.14 (0.0000) 21 45.07 (0.0471) 21 2.04 (0.5406) 20 0.42 (0.6915) 15 

Trimmed-Sharpe 3.15 (0.0000) 23 45.26 (0.0421) 24 2.05 (0.4836) 22 0.42 (0.7404) 11 

Best-Sharpe 3.17 (0.0000) 28 45.44 (0.0344) 28 2.06 (0.2837) 27 0.43 (0.5564) 24 

Note. 1. Values in bold denote that the corresponding model attains the best forecasting performance 

under the specific loss function. 2. Numbers in parentheses denote the p-value of the Hansen’s SPA 

test. The null hypothesis is that none of the models is better than the benchmark. The number of 

bootstrap replications to calculate the p-value is 10,000 and the block length is 2. The confidence level 

used is α=10%. 3. We use * to denote that the model belongs to 10% MCS. The number of bootstrap 

replications to calculate the p-value is 10,000 and the block length is 2. 4. We constrain the portfolio 

weight on the risky asset to lie between 0% and 150%, i.e. 0 1.5itw   for the economic 

combinations. 5. EXP and SQRT denote the exponential and the square root transformation, 

respectively. 
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Economic Evaluation 

Our analysis continues with the examination of the economic gains generated from 

the HAR models and the combinations based on them, To test whether there is a 

significantly larger difference in terms of CER and Sharpe ratio, the StepSPA test 

proposed by Hsu et al. (2010) is used. Table 4.13 reports our findings for both CER 

and Sharpe ratio for the one-step ahead forecast horizon. Differently from the 

previous section we find no advantage for the use of economic combinations in terms 

of HAR models. Interestingly, the regression combination approaches are found to 

produce higher economic gains for a mean-variance investor. We find that the OLSEXP 

model has the larger CER and Sharpe ratios compared to the rest models. Therefore, 

the OLSEXP model can increase the economic value in the oil futures market. 

Furthermore, the OLSEXP model is the only model that passes the StepSPA test 

indicating superior forecasting performance compared. More importantly, we find that 

in 1-step ahead forecasting horizon, the economic combinations are proved 

inadequate except for the Trimmed-Q0.05. 
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Table 4.13 1-step ahead Economic Forecasting Performance for HAR 

combinations 

 

CER 

  

Sharpe 

  

 

Loss 

function StepSPA Rank 

Loss 

function StepSPA Rank 

HAR-RV 0.0427 (0.0000) 30 4.09 (0.0000) 30 

LHAR-RV 0.1107 (0.0010) 4 9.40 (0.0000) 2 

HAR-RV-J 0.0777 (0.0000) 11 6.15 (0.0000) 18 

HAR-CJ 0.1237 (0.0070) 2 6.80 (0.0000) 8 

HAR-RSV 0.0649 (0.0000) 21 5.77 (0.0000) 21 

Mean 0.0770 (0.0000) 13 6.51 (0.0000) 13 

Geometric Mean 0.0796 (0.0000) 9 6.58 (0.0000) 11 

Harmonic Mean 0.0860 (0.0000) 7 6.78 (0.0000) 9 

Trimmed Mean 0.0770 (0.0000) 13 6.51 (0.0000) 13 

Median 0.0666 (0.0000) 18 5.85 (0.0000) 20 

AFTER 0.0596 (0.0000) 27 5.42 (0.0000) 27 

DMSFE 0.0797 (0.0000) 8 7.28 (0.0000) 5 

IMSFE 0.0772 (0.0000) 12 7.07 (0.0000) 7 

Kernel 0.0260 (0.0000) 31 2.61 (0.0000) 31 

OLSEXP 0.2064 (1.0000) 1 14.21 (1.0000) 1 

OLS 0.0655 (0.0000) 20 5.96 (0.0000) 19 

OLSSQRT 0.1139 (0.0000) 3 6.62 (0.0000) 10 

TW 0.0861 (0.0000) 6 7.81 (0.0000) 4 

Trimmed MSPE 0.0783 (0.0000) 10 7.16 (0.0000) 6 

TW-CER 0.0667 (0.0000) 17 6.17 (0.0000) 16 

Trimmed-CER 0.0602 (0.0000) 24 5.64 (0.0000) 22 

Best-CER 0.0566 (0.0000) 28 5.32 (0.0000) 28 

TW-Q0.05 0.0715 (0.0000) 15 6.52 (0.0000) 12 

TW-Q0.01 0.0690 (0.0000) 16 6.33 (0.0000) 15 

Trimmed-Q0.05 0.0873 (0.0000) 5 7.88 (0.0000) 3 

Trimmed-Q0.01 0.0601 (0.0000) 25 5.63 (0.0000) 23 

Best-Q0.05 0.0604 (0.0000) 22 5.48 (0.0000) 25 

Best-Q0.01 0.0604 (0.0000) 22 5.48 (0.0000) 25 

TW-Sharpe 0.0666 (0.0000) 19 6.17 (0.0000) 17 

Trimmed-Sharpe 0.0601 (0.0000) 25 5.63 (0.0000) 23 

Best-Sharpe 0.0563 (0.0000) 29 5.31 (0.0000) 29 

Note. 1. Values in bold denote that the corresponding model attains the best forecasting performance 

under the specific loss function. 2. Numbers in parentheses denote the p-value of the Hsu et al. (2010) 

StepSPA test. The null hypothesis is that none of the models is better than the benchmark. The number 

of bootstrap replications to calculate the p-value is 1,000 and the smoothing parameter for the mean 

block length is 0.1. The confidence level used is α=10%. 3. We constrain the portfolio weight on the 

risky asset to lie between 0% and 150%, i.e. 0 1.5itw   for the economic combinations. 4. EXP and 

SQRT denote the exponential and the square root transformation, respectively. 5. The CER ratio is 

annualized, while the SR is multiplied by 100. 
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Tables 4.14 and 4.15 present the results for the 5- and 22-step ahead forecasts, 

respectively. Considering the 5-step ahead forecasts, in Table 4.14, a non-parametric 

technique, the Kernel regression approach has the larger economic value for both 

ratios. It is worth noting that the economic combinations based on either CER or 

Sharpe ratio lead to increased economic gains compared to single models and other 

combinations. Ma et al. (2018c) indicated the superior forecasting performance of 

combination methods in economic terms, but they combined models based solely on 

statistical measures. In contrast to the previous sections, the transformed least squares 

combinations are ranked last and indicate inadequate performance. Under the 

StepSPA test, we note that only the LHAR-RV model does not pass the test. 

Regarding the 22-step ahead forecasting horizon, we can see that a single model, the 

HAR-RSV model is found to absolutely outperform the other single and combination 

models. The Best-CER and the Best-Sharpe combinations are ranked second and third 

respectively. The forecasting evaluation criteria reject the null hypothesis for only the 

HAR-RV-J model, while the rest pass the test. Three models, the OLSSQRT, the 

Harmonic Mean and the HAR-CJ are ranked last as they produce economic losses for 

an investor. In contrast to previous findings the OLSSQRT model is proved inadequate 

for the 22-step ahead forecasting horizon. We note that although an OLS model is the 

best performing model that generates higher economic gains for 1-step ahead 

forecasts, it is ranked amongst the worst performers in longer forecast horizons. 
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Table 4.14 5-step ahead Economic Forecasting Performance for HAR 

combinations 

 

CER 

  

Sharpe 

  

 

Loss 

function StepSPA Rank 

Loss 

function StepSPA Rank 

HAR-RV 0.0320 (0.6130) 25 3.30 (0.6840) 24 

LHAR-RV 0.0286 (0.0460) 29 2.99 (0.0350) 29 

HAR-RV-J 0.0314 (0.5840) 28 3.21 (0.6210) 28 

HAR-CJ 0.0366 (0.8090) 18 3.62 (0.8410) 18 

HAR-RSV 0.0319 (0.5610) 26 3.28 (0.5630) 26 

Mean 0.0324 (0.7200) 21 3.32 (0.7180) 21 

Geometric Mean 0.0324 (0.7780) 23 3.31 (0.8210) 23 

Harmonic Mean 0.0321 (0.5620) 24 3.28 (0.7390) 25 

Trimmed Mean 0.0324 (0.7120) 21 3.32 (0.7180) 21 

Median 0.0318 (0.6510) 27 3.27 (0.7300) 27 

AFTER 0.0385 (0.9620) 8 3.93 (0.9950) 8 

DMSFE 0.0387 (0.9860) 4 3.98 (0.9980) 6 

IMSFE 0.0386 (0.9790) 5 3.98 (0.9890) 7 

Kernel 0.0406 (1.0000) 1 4.27 (1.0000) 1 

OLSEXP 0.0230 (0.2420) 30 2.49 (0.2770) 30 

OLS 0.0379 (0.8870) 10 3.88 (0.9370) 14 

OLSSQRT 0.0078 (0.2270) 31 1.64 (0.5210) 31 

TW 0.0379 (0.8790) 11 3.88 (0.9500) 13 

Trimmed MSPE 0.0379 (0.8420) 9 3.92 (0.8410) 11 

TW-CER 0.0386 (0.9740) 6 4.00 (0.9870) 4 

Trimmed-CER 0.0377 (0.2120) 14 3.92 (0.2880) 9 

Best-CER 0.0388 (0.8750) 2 4.03 (0.9100) 2 

TW-Q0.05 0.0375 (0.8010) 16 3.84 (0.8350) 17 

TW-Q0.01 0.0378 (0.8740) 13 3.86 (0.9360) 15 

Trimmed-Q0.05 0.0372 (0.1910) 17 3.84 (0.2390) 16 

Trimmed-Q0.01 0.0378 (0.5150) 12 3.89 (0.5610) 12 

Best-Q0.05 0.0343 (0.6550) 20 3.45 (0.7290) 20 

Best-Q0.01 0.0351 (0.7500) 19 3.50 (0.8270) 19 

TW-Sharpe 0.0386 (0.9720) 7 3.99 (0.9920) 5 

Trimmed-Sharpe 0.0377 (0.2390) 14 3.92 (0.2770) 9 

Best-Sharpe 0.0388 (0.8890) 3 4.03 (0.9020) 3 

Note. 1. Values in bold denote that the corresponding model attains the best forecasting performance 

under the specific loss function. 2. Numbers in parentheses denote the p-value of the Hsu et al. (2010) 

StepSPA test. The null hypothesis is that none of the models is better than the benchmark. The number 

of bootstrap replications to calculate the p-value is 1,000 and the smoothing parameter for the mean 

block length is 0.1. The confidence level used is α=10%. 3. We constrain the portfolio weight on the 

risky asset to lie between 0% and 150%, i.e. 0 1.5itw   for the economic combinations. 4. EXP and 

SQRT denote the exponential and the square root transformation, respectively. 
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Table 4.15 22-step ahead Economic Forecasting Performance for HAR 

combinations 

 

CER 

  

Sharpe 

  

 

Loss 

function StepSPA Rank 

Loss 

function StepSPA Rank 

HAR-RV 0.0260 (0.1900) 6 3.06 (0.1390) 19 

LHAR-RV 0.0258 (0.2750) 10 2.98 (0.3630) 21 

HAR-RV-J 0.0230 (0.0870) 26 2.70 (0.0510) 26 

HAR-CJ -2.3542 (0.1820) 31 -2.58 (0.3470) 31 

HAR-RSV 0.0312 (1.0000) 1 3.52 (1.0000) 1 

Mean 0.0240 (0.1210) 23 2.79 (0.1260) 24 

Geometric Mean 0.0150 (0.1970) 28 1.95 (0.2270) 28 

Harmonic Mean -0.4220 (0.2770) 30 -2.21 (0.4220) 30 

Trimmed Mean 0.0240 (0.1260) 23 2.79 (0.1030) 24 

Median 0.0252 (0.0750) 18 2.92 (0.1000) 23 

AFTER 0.0251 (0.2080) 20 3.12 (0.2820) 17 

DMSFE 0.0258 (0.9640) 11 3.19 (0.8690) 9 

IMSFE 0.0258 (0.9660) 9 3.19 (0.8570) 8 

Kernel 0.0251 (0.7130) 19 3.16 (0.4070) 15 

OLSEXP 0.0184 (0.0530) 27 2.39 (0.1710) 27 

OLS 0.0261 (0.8800) 4 3.24 (0.7580) 4 

OLSSQRT -0.0242 (0.0410) 29 -0.14 (0.2180) 29 

TW 0.0261 (0.9100) 5 3.21 (0.7590) 6 

Trimmed MSPE 0.0257 (0.9040) 12 3.17 (0.7750) 10 

TW-CER 0.0260 (0.9660) 7 3.21 (0.8860) 5 

Trimmed-CER 0.0256 (0.6680) 13 3.16 (0.7560) 12 

Best-CER 0.0265 (0.8290) 2 3.27 (0.6820) 2 

TW-Q0.05 0.0250 (0.4760) 21 3.11 (0.6500) 18 

TW-Q0.01 0.0254 (0.7490) 17 3.15 (0.8220) 16 

Trimmed-Q0.05 0.0255 (0.7530) 16 3.17 (0.6240) 11 

Trimmed-Q0.01 0.0256 (0.6710) 13 3.16 (0.7900) 12 

Best-Q0.05 0.0238 (0.4040) 25 2.96 (0.6200) 22 

Best-Q0.01 0.0245 (0.6970) 22 3.04 (0.6910) 20 

TW-Sharpe 0.0259 (0.6540) 8 3.21 (0.6970) 7 

Trimmed-Sharpe 0.0256 (0.6880) 13 3.16 (0.7830) 12 

Best-Sharpe 0.0264 (0.2850) 3 3.26 (0.3470) 3 

Note. 1. Values in bold denote that the corresponding model attains the best forecasting performance 

under the specific loss function. 2. Numbers in parentheses denote the p-value of the Hsu et al. (2010) 

StepSPA test. The null hypothesis is that none of the models is better than the benchmark. The number 

of bootstrap replications to calculate the p-value is 1,000 and the smoothing parameter for the mean 

block length is 0.1. The confidence level used is α=10%. 3. We constrain the portfolio weight on the 

risky asset to lie between 0% and 150%, i.e. 0 1.5itw   for the economic combinations. 4. EXP and 

SQRT denote the exponential and the square root transformation, respectively. 
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Risk Management Evaluation 

Considering a risk management perspective, we evaluate the results from HAR 

models and combinations based on HAR models, using the Smoothed-Q loss 

function. In table 4.16, the errors related to Smoothed-Q are quite different 

considering the two confidence levels for 1-step ahead forecasting horizon. 

Considering the percentage of violations, the OLSEXP combination clearly dominates 

the rest as it produces the lower number of violations. However, under the Smoothed-

Q loss function, the OLSEXP is the dominant model for 5%, while we cannot reject the 

null hypothesis of superior predictive ability according to SPA. The combinations 

based on Smoothed-Q loss function that take into consideration a 5% VaR exhibit an 

adequate performance based on the annotated ranking, but they do not pass the SPA 

test. Considering a 1% VaR, although the combinations based on Smoothed-Q are 

amongst the best performers, the Trimmed-Q0.05 is suggested as the best performing 

model. In this case all the single models except for the HAR-RV-J and most 

combination schemes perform poorly even if they indicate superior forecasting ability 

under the SPA test. 
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Table 4.16 1-step ahead VaR Forecasting Performance for HAR combinations 

  

Smoothed-Q0.05 

  

Smoothed-Q0.01 

 

 

Percentage of 

violations (5%) 

Loss 

Function SPA Rank 

Percentage of 

violations (1%) 

Loss 

function SPA Rank 

HAR-RV 5.25% 0.2112 (0.0005) 29 1.59% 0.0551 (0.0661) 29 

LHAR-RV 4.30% 0.2010 (0.0569) 2 1.11% 0.0524 (0.3892) 25 

HAR-RV-J 5.17% 0.2027 (0.0040) 9 1.11% 0.0509 (0.9201) 8 

HAR-CJ 5.57% 0.2032 (0.0118) 16 1.51% 0.0515 (0.6405) 15 

HAR-RSV 5.17% 0.2090 (0.0005) 28 1.51% 0.0540 (0.1190) 28 

Mean 5.09% 0.2038 (0.0075) 17 1.27% 0.0516 (0.7000) 18 

Geometric Mean 5.25% 0.2042 (0.0048) 21 1.35% 0.0518 (0.5844) 22 

Harmonic Mean 5.25% 0.2046 (0.0041) 22 1.35% 0.0520 (0.4888) 24 

Trimmed Mean 5.09% 0.2038 (0.0066) 17 1.27% 0.0516 (0.6947) 18 

Median 5.17% 0.2073 (0.0043) 27 1.43% 0.0524 (0.3483) 26 

AFTER 5.17% 0.2072 (0.0011) 26 1.19% 0.0530 (0.2528) 27 

DMSFE 4.77% 0.2029 (0.0060) 12 0.95% 0.0509 (0.8979) 7 

IMSFE 4.77% 0.2029 (0.0063) 15 0.95% 0.0510 (0.8795) 11 

Kernel 6.36% 0.2206 (0.0001) 31 2.70% 0.0665 (0.0010) 31 

OLSEXP 3.98% 0.1920 (1.0000) 1 0.72% 0.0514 (0.5859) 14 

OLS 5.17% 0.2053 (0.0004) 25 1.03% 0.0518 (0.5986) 23 

OLSSQRT 7.48% 0.2172 (0.0001) 30 2.86% 0.0639 (0.0095) 30 

TW 4.69% 0.2024 (0.0068) 6 0.88% 0.0507 (0.9195) 3 

Trimmed MSPE 4.85% 0.2038 (0.0032) 19 1.11% 0.0515 (0.6800) 16 

TW-CER 4.93% 0.2028 (0.0038) 11 0.95% 0.0509 (0.9561) 5 

Trimmed-CER 4.85% 0.2048 (0.0016) 23 1.11% 0.0517 (0.6079) 20 

Best-CER 5.17% 0.2029 (0.0027) 13 1.03% 0.0512 (0.8281) 12 

TW-Q0.05 4.85% 0.2021 (0.0068) 4 0.95% 0.0506 (0.9909) 2 

TW-Q0.01 4.85% 0.2025 (0.0049) 8 0.95% 0.0508 (0.9621) 4 

Trimmed-Q0.05 4.77% 0.2020 (0.0068) 3 0.95% 0.0505 (1.0000) 1 

Trimmed-Q0.01 4.85% 0.2039 (0.0023) 20 1.03% 0.0516 (0.6400) 17 

Best-Q0.05 5.17% 0.2024 (0.0042) 7 0.95% 0.0509 (0.8870) 9 

Best-Q0.01 5.17% 0.2021 (0.0040) 5 0.95% 0.0509 (0.8758) 10 

TW-Sharpe 4.93% 0.2028 (0.0039) 10 0.95% 0.0509 (0.9533) 6 

Trimmed-Sharpe 4.85% 0.2048 (0.0012) 24 1.11% 0.0518 (0.6006) 21 

Best-Sharpe 5.17% 0.2029 (0.0038) 14 1.03% 0.0512 (0.8279) 13 

Note. 1. Values in bold denote that the corresponding model attains the best forecasting performance 

under the specific loss function. 2. Numbers in parentheses denote the p-value of the Hansen’s SPA 

test. The null hypothesis is that none of the models is better than the benchmark. The number of 

bootstrap replications to calculate the p-value is 10,000 and the block length is 2. The confidence level 

used is α=10%. 3. The Smoothed-Q loss function is calculated for VaR level α=0.01 and α=0.05. We 

set the smoothness parameter δ=25. 4. We constrain the portfolio weight on the risky asset to lie 

between 0% and 150%, i.e. 0 1.5itw   for the economic combinations. 5. EXP and SQRT denote the 

exponential and the square root transformation, respectively. 
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Tables 4.17 and 4.18 present the results for the 5- and 22-step ahead forecast horizon 

including the empirical percentage of violations during the out-of sample period for 

5% and 1% VaR confidence levels. For the 5-step ahead forecasts, we note that the 

percentage of violations for all models is always higher than 5% and 1% suggesting 

that all models underforecast VaR and none of the models is adequately reliable as an 

internal VaR model. For the 5% confidence level, the problem is less severe for TW-

Q0.05 and TW-Q0.01 where the empirical percentage is close to 5%. Based on the 

Smoothed-Q loss function, the TW model followed by the AFTER, the DMSFE, the 

IMSFE and the Trimmed-Q0.01 model produce the smallest errors, while the single 

modes exhibit poor forecasting performance and they are ranked last. It is worth to 

note that for the 1% confidence level, the AFTER combination produce smaller 

errors, while the transformed least squares models are ranked last. The superior 

forecasting performance of the AFTER model is indicated by the large Hansen’s p-

value. The results are noteworthy because the transformed OLS schemes (i.e. the 

OLSSQRT and the OLSEXP) perform worse in terms of the SPA test. To this end, we 

argue that the combinations based on the ranking of the single models perform better 

as they capture better the structural breaks compared with the rest combinations. 

The results for the 22-step ahead forecasting horizon, are presented in Table 4.18. we 

note, again, that all the models underforecast VaR and none of the models is 

considered as an adequate VaR model. For both confidence levels, the OLSEXP 

combination indicates superior forecasting performance. It is noteworthy that 

although the economic combinations indicate good forecasting performance according 

to SPA test, only a limited number of them are ranked among the best models, while 

the single models and the OLSSQRT model are ranked last.  
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Table 4.17 5-step ahead VaR Forecasting Performance for HAR combinations 

  

Smoothed-Q0.05 

  

Smoothed-Q0.01 

 

 

Percentage of 

violations (5%) 

Loss 

function SPA Rank 

Percentage of 

violations (1%) 

Loss 

function SPA Rank 

HAR-RV 5.67% 0.2249 (0.3582) 27 2.08% 0.0661 (0.0960) 24 

LHAR-RV 5.83% 0.2250 (0.3526) 28 2.00% 0.0661 (0.0996) 25 

HAR-RV-J 5.91% 0.2243 (0.4219) 21 2.15% 0.0656 (0.1371) 23 

HAR-CJ 6.23% 0.2258 (0.2622) 29 2.15% 0.0652 (0.2884) 21 

HAR-RSV 5.67% 0.2247 (0.3761) 25 2.08% 0.0662 (0.0982) 27 

Mean 5.75% 0.2237 (0.5514) 18 1.92% 0.0645 (0.3370) 14 

Geometric Mean 5.83% 0.2242 (0.4440) 20 2.00% 0.0649 (0.2295) 20 

Harmonic Mean 5.83% 0.2246 (0.3477) 24 2.08% 0.0652 (0.1894) 22 

Trimmed Mean 5.75% 0.2237 (0.5434) 18 1.92% 0.0645 (0.3312) 14 

Median 5.67% 0.2249 (0.3551) 26 2.00% 0.0662 (0.0926) 28 

AFTER 5.35% 0.2218 (0.8898) 2 2.00% 0.0619 (1.0000) 1 

DMSFE 5.27% 0.2218 (0.9489) 3 2.00% 0.0629 (0.7564) 4 

IMSFE 5.27% 0.2220 (0.9314) 4 1.92% 0.0630 (0.7036) 6 

Kernel 6.30% 0.2272 (0.1215) 30 2.23% 0.0667 (0.0963) 30 

OLSEXP 5.75% 0.2245 (0.4181) 23 2.23% 0.0661 (0.1595) 26 

OLS 5.43% 0.2222 (0.9088) 6 2.08% 0.0627 (0.8191) 3 

OLSSQRT 8.70% 0.2302 (0.0360) 31 3.43% 0.0735 (0.0011) 31 

TW 5.35% 0.2212 (1.0000) 1 2.08% 0.0625 (0.8779) 2 

Trimmed MSPE 5.35% 0.2222 (0.8105) 7 2.08% 0.0636 (0.5899) 8 

TW-CER 5.27% 0.2224 (0.8442) 9 2.00% 0.0637 (0.5093) 10 

Trimmed-CER 5.35% 0.2229 (0.7115) 12 1.92% 0.0646 (0.2869) 17 

Best-CER 5.27% 0.2229 (0.6840) 14 2.15% 0.0644 (0.3392) 12 

TW-Q0.05 5.11% 0.2226 (0.7944) 11 2.00% 0.0637 (0.5066) 9 

TW-Q0.01 5.11% 0.2224 (0.8775) 8 2.00% 0.0634 (0.6253) 7 

Trimmed-Q0.05 5.27% 0.2231 (0.6780) 16 1.92% 0.0646 (0.2763) 19 

Trimmed-Q0.01 5.27% 0.2221 (0.9124) 5 1.92% 0.0630 (0.7112) 5 

Best-Q0.05 5.43% 0.2233 (0.5848) 17 2.23% 0.0646 (0.3101) 16 

Best-Q0.01 5.43% 0.2244 (0.4389) 22 2.47% 0.0666 (0.0707) 29 

TW-Sharpe 5.27% 0.2224 (0.8312) 10 2.00% 0.0637 (0.5083) 11 

Trimmed-Sharpe 5.35% 0.2229 (0.7050) 12 1.92% 0.0646 (0.2904) 17 

Best-Sharpe 5.27% 0.2230 (0.6660) 15 2.15% 0.0644 (0.3432) 13 

Note. 1. Values in bold denote that the corresponding model attains the best forecasting performance 

under the specific loss function. 2. Numbers in parentheses denote the p-value of the Hansen’s SPA 

test. The null hypothesis is that none of the models is better than the benchmark. The number of 

bootstrap replications to calculate the p-value is 10,000 and the block length is 2. The confidence level 

used is α=10%. 3. The Smoothed-Q loss function is calculated for VaR level α=0.01 and α=0.05. We 

set the smoothness parameter δ=25. 4. We constrain the portfolio weight on the risky asset to lie 

between 0% and 150%, i.e. 0 1.5itw   for the economic combinations. 5. EXP and SQRT denote the 

exponential and the square root transformation, respectively. 
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Table 4.18 22-step ahead VaR Forecasting Performance for HAR combinations 

  

Smoothed-Q0.05 

  

Smoothed-Q0.01 

 

 

Percentage of 

violations (5%) 

Loss 

function SPA Rank 

Percentage of 

violations (1%) 

Loss 

function SPA Rank 

HAR-RV 6.07% 0.2387 (0.1069) 25 2.18% 0.0686 (0.4131) 21 

LHAR-RV 5.99% 0.2375 (0.2344) 20 2.35% 0.0678 (0.6154) 18 

HAR-RV-J 6.07% 0.2387 (0.1284) 27 2.35% 0.0696 (0.1961) 27 

HAR-CJ 6.63% 0.2416 (0.0424) 30 2.67% 0.0725 (0.0530) 30 

HAR-RSV 6.07% 0.2389 (0.0942) 28 2.27% 0.0692 (0.2761) 26 

Mean 5.99% 0.2383 (0.1352) 21 2.43% 0.0687 (0.3707) 22 

Geometric Mean 6.07% 0.2386 (0.1149) 24 2.51% 0.0688 (0.3312) 24 

Harmonic Mean 6.15% 0.2395 (0.0730) 29 2.59% 0.0699 (0.1559) 28 

Trimmed Mean 5.99% 0.2383 (0.1356) 21 2.43% 0.0687 (0.3665) 22 

Median 6.07% 0.2384 (0.1268) 23 2.35% 0.0689 (0.3274) 25 

AFTER 5.74% 0.2350 (0.5361) 9 2.18% 0.0672 (0.8115) 8 

DMSFE 5.66% 0.2348 (0.5219) 5 2.27% 0.0670 (0.8575) 4 

IMSFE 5.66% 0.2348 (0.5151) 6 2.27% 0.0670 (0.8592) 3 

Kernel 6.31% 0.2387 (0.1586) 26 3.07% 0.0714 (0.0996) 29 

OLSEXP 5.66% 0.2329 (1.0000) 1 2.10% 0.0663 (1.0000) 1 

OLS 5.74% 0.2352 (0.5002) 13 2.27% 0.0672 (0.7738) 9 

OLSSQRT 9.47% 0.2451 (0.0091) 31 4.61% 0.0833 (0.0001) 31 

TW 5.50% 0.2343 (0.6578) 2 2.35% 0.0672 (0.8225) 7 

Trimmed MSPE 5.66% 0.2346 (0.5752) 3 2.27% 0.0671 (0.8319) 5 

TW-CER 5.74% 0.2352 (0.4930) 14 2.27% 0.0673 (0.8081) 11 

Trimmed-CER 5.83% 0.2351 (0.5122) 10 2.27% 0.0673 (0.7931) 13 

Best-CER 5.74% 0.2362 (0.3285) 19 2.27% 0.0677 (0.6472) 17 

TW-Q0.05 5.58% 0.2349 (0.5047) 7 2.18% 0.0671 (0.8557) 6 

TW-Q0.01 5.66% 0.2350 (0.5367) 8 2.18% 0.0673 (0.8073) 12 

Trimmed-Q0.05 5.58% 0.2347 (0.5528) 4 2.18% 0.0669 (0.9003) 2 

Trimmed-Q0.01 5.83% 0.2351 (0.5164) 10 2.27% 0.0673 (0.7895) 13 

Best-Q0.05 5.50% 0.2359 (0.3893) 17 2.27% 0.0685 (0.4480) 20 

Best-Q0.01 5.66% 0.2356 (0.4039) 16 2.10% 0.0679 (0.5926) 19 

TW-Sharpe 5.74% 0.2352 (0.4973) 15 2.27% 0.0673 (0.8067) 10 

Trimmed-Sharpe 5.83% 0.2351 (0.5303) 10 2.27% 0.0673 (0.7891) 13 

Best-Sharpe 5.74% 0.2361 (0.3377) 18 2.27% 0.0677 (0.6586) 16 

Note. 1. Values in bold denote that the corresponding model attains the best forecasting performance 

under the specific loss function. 2. Numbers in parentheses denote the p-value of the Hansen’s SPA 

test. The null hypothesis is that none of the models is better than the benchmark. The number of 

bootstrap replications to calculate the p-value is 10,000 and the block length is 2. The confidence level 

used is α=10%. 3. The Smoothed-Q loss function is calculated for VaR level α=0.01 and α=0.05. We 

set the smoothness parameter δ=25. 4. We constrain the portfolio weight on the risky asset to lie 

between 0% and 150%, i.e. 0 1.5itw   for the economic combinations. 5. EXP and SQRT denote the 

exponential and the square root transformation, respectively. 
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4.7.3 Out-of-Sample Forecasting Performance for combinations based on both 

HAR-type and GARCH-type models 

 
Statistical Evaluation 

We consider 1-, 5- and 22-step ahead volatility forecasts based on HAR-type, 

GARCH-type and combinations based on both classes of models. We assess the 

forecasting accuracy of different single and combination models based on standard 

statistical loss functions, such as the MAE and MSE, and asymmetric loss functions, 

such as the HRLF and the QLIKE. Table 4.19 shows the performances of single and 

combination models for 1-step ahead forecasts. For the MAE and MSE loss functions, 

the OLSSQRT combination clearly dominates the rest. Especially for the case of MAE, 

the OLSSQRT combination is the only forecasting scheme that passes the SPA test and 

is included to the MCS. On the contrary, under the MSE loss function, almost all the 

combinations pass the SPA test and are included to the MCS. From the GARCH-type 

models only the FIGARCH model is included to the MCS, although from the HAR-

type all are incorporated to it, indicating the better performance of models based on 

high-frequency data. Considering the HRLF and the QLIKE measures, there is a 

single model that clearly dominates the rest; this is the HAR-RSV model which 

produces the smallest losses. This result is opposite to the findings of Becker and 

Clements (2008) that concluded that combination forecasts can beat the single models 

based on high-frequency data. For the HRLF, some economic combinations based on 

Smoothed-Q loss function and five other combinations pass the SPA test, while the 

null hypothesis is not rejected for all the HAR-type models. The results for the 

QLIKE measure, assure the inadequate performance of the GARCH-type models. 
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Table 4.19 1-step ahead Statistical Forecasting Performance for HAR-GARCH combinations 

 

MAE 

  

MSE 

  

HRLF (b=-1) 

 

QLIKE 

  

 

Loss 

Function SPA Rank 

Loss 

Function SPA Rank 

Loss 

Function SPA Rank 

Loss 

Function SPA Rank 

HAR-RV 2.29 (0.0000) 13 26.55* (0.5073) 4 1.00* (0.5362) 4 0.23* (0.6987) 5 

LHAR-RV 2.29 (0.0000) 12 27.29* (0.3534) 6 1.01* (0.4412) 5 0.22* (0.7638) 3 

HAR-RV-J 2.16 (0.0000) 4 29.24* (0.1507) 22 1.05* (0.2069) 9 0.22* (0.8420) 4 

HAR-CJ 2.12 (0.0000) 3 29.64* (0.1339) 23 1.10* (0.1109) 20 0.24 (0.5481) 9 

HAR-RSV 2.24 (0.0000) 9 24.33* (0.8049) 2 0.92* (1.0000) 1 0.22* (1.0000) 1 

GARCH 2.89 (0.0000) 35 33.34 (0.2830) 35 1.39 (0.0002) 35 0.31 (0.0458) 35 

EGARCH 2.70 (0.0000) 30 32.05 (0.3434) 33 1.31 (0.0052) 33 0.29 (0.1516) 31 

GJR 2.71 (0.0000) 31 31.77 (0.3519) 31 1.29 (0.0120) 30 0.29 (0.1811) 29 

APARCH 2.75 (0.0000) 33 31.77 (0.3487) 30 1.31 (0.0051) 32 0.29 (0.1376) 32 

FIGARCH 2.74 (0.0000) 32 30.93* (0.3786) 29 1.28 (0.0429) 29 0.29 (0.1538) 30 

HYGARCH 2.79 (0.0000) 34 31.83 (0.3512) 32 1.30 (0.0232) 31 0.28 (0.1829) 28 

Mean 2.43 (0.0000) 22 28.16* (0.1634) 7 1.08* (0.1050) 11 0.25 (0.4272) 20 

Geometric Mean 2.39 (0.0000) 16 28.39* (0.1368) 12 1.08* (0.0951) 12 0.24 (0.4461) 14 

Harmonic Mean 2.36 (0.0000) 15 28.66* (0.1266) 18 1.08* (0.0904) 14 0.24 (0.4669) 13 

Trimmed Mean 2.41 (0.0000) 18 28.24* (0.1476) 8 1.08* (0.0918) 13 0.25 (0.4324) 21 

Median 2.44 (0.0000) 24 28.68* (0.1092) 19 1.11* (0.0494) 21 0.25 (0.4026) 22 

AFTER 2.19 (0.0000) 8 26.62* (0.5278) 5 1.03* (0.3679) 6 0.23* (0.6918) 6 

DMSFE 2.41 (0.0000) 17 28.65* (0.1153) 17 1.10* (0.0627) 19 0.24 (0.4408) 15 

IMSFE 2.42 (0.0000) 21 28.49* (0.1221) 16 1.09* (0.0707) 16 0.24 (0.4374) 16 

Kernel 2.60 (0.0000) 27 56.04 (0.0336) 37 1.67 (0.0111) 37 0.33 (0.0470) 37 

OLSEXP 2.06 (0.0001) 2 30.21* (0.1277) 27 1.17* (0.0802) 26 0.32 (0.1175) 36 

OLS 2.19 (0.0000) 7 26.48* (0.5509) 3 0.99* (0.5903) 2 0.22* (0.9875) 2 

OLSSQRT 1.78* (1.0000) 1 24.32* (1.0000) 1 0.99* (0.5357) 3 0.28 (0.1634) 27 

TW 2.35 (0.0000) 14 28.29* (0.1527) 9 1.07* (0.1021) 10 0.24 (0.5012) 10 

Trimmed MSPE 2.42 (0.0000) 19 28.42* (0.1345) 13 1.09* (0.0713) 15 0.24 (0.4410) 17 

TW-CER 2.64 (0.0000) 29 30.24 (0.3981) 28 1.21 (0.0036) 28 0.27 (0.3004) 25 

Trimmed-CER 2.47 (0.0000) 25 28.81* (0.1070) 20 1.12 (0.0355) 22 0.25 (0.3925) 23 

Best-CER 2.93 (0.0000) 37 33.85 (0.2735) 36 1.40 (0.0005) 36 0.30 (0.0645) 34 

TW-Q0.05 2.26 (0.0000) 11 28.36* (0.1610) 10 1.05* (0.1824) 7 0.23 (0.6215) 7 

TW-Q0.01 2.26 (0.0000) 10 28.39* (0.1634) 11 1.05* (0.1831) 8 0.23 (0.6055) 8 

Trimmed-Q0.05 2.42 (0.0000) 20 28.45* (0.1276) 15 1.09* (0.0694) 17 0.24 (0.4371) 18 

Trimmed-Q0.01 2.43 (0.0000) 23 28.45* (0.1278) 14 1.09* (0.0686) 18 0.25 (0.4406) 19 

Best-Q0.05 2.18 (0.0000) 5 30.14* (0.1259) 25 1.13* (0.1242) 24 0.24* (0.5292) 11 

Best-Q0.01 2.18 (0.0000) 6 30.15* (0.1308) 26 1.13* (0.1250) 25 0.24 (0.5402) 12 

TW-Sharpe 2.64 (0.0000) 28 29.96 (0.4081) 24 1.20 (0.0055) 27 0.27 (0.2999) 26 

Trimmed-Sharpe 2.47 (0.0000) 26 28.82* (0.1004) 21 1.12 (0.0368) 23 0.25 (0.3932) 24 

Best-Sharpe 2.91 (0.0000) 36 32.10* (0.3347) 34 1.35 (0.0125) 34 0.30 (0.0798) 33 

Note. 1. Values in bold denote that the corresponding model attains the best forecasting performance under 

the specific loss function. 2. Numbers in parentheses denote the p-value of the Hansen’s SPA test. The null 

hypothesis is that none of the models is better than the benchmark. The number of bootstrap replications to 

calculate the p-value is 10,000 and the block length is 2. The confidence level used is α=10%. 3. We use * to 

denote that the model belongs to 10% MCS. The number of bootstrap replications to calculate the p-value is 

10,000 and the block length is 2. 4. We constrain the portfolio weight on the risky asset to lie between 0% 

and 150%, i.e. 0 1.5itw   for the economic combinations. 5. EXP and SQRT denote the exponential and 

the square root transformation, respectively. 
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The analysis continues with the 5- and 22-step ahead forecasts in Tables 4.20 and 

4.21. For the 5-step ahead forecasts, the best performing model according to the two 

asymmetric loss functions and the MSE, there is a dominant model. This is an 

economic combination, the Best-Q0.05 followed by several other economic 

combinations based on Smoothed-Q loss function. In the meanwhile, for most 

economic combinations, the null hypothesis that none of the rest models is better than 

the benchmark is not rejected, while some of them are included to the MCS. These 

results reassure previous findings from Ma et al. (2018d) who suggested that the 

combination of low-frequency and high-frequency data yields significantly better 

forecasting performance. 

Regarding the 22-step ahead forecasts, we find that the best performing model varies 

across different loss functions (Table 4.21). For example, for the asymmetric loss 

functions, the single EGARCH model indicates superior performance compared to 

other single and combination models. It is interesting to note that none of the HAR-

type models pass the SPA under the HRLF. However, the standard MSE loss 

function, indicates the superior forecasting performance of an economic combination, 

the Best-Q0.05. Furthermore, the Best-Q0.05, the Best-Q0.01, the three least squares 

schemes, the AFTER combination and the single EGARCH model are the only 

models included to the MCS. 
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Table 4.20 5-step ahead Statistical Forecasting Performance for HAR-GARCH combinations 

 

Note. 1. Values in bold denote that the corresponding model attains the best forecasting performance under the specific loss 
function. 2. Numbers in parentheses denote the p-value of the Hansen’s SPA test. The null hypothesis is that none of the models 

is better than the benchmark. The number of bootstrap replications to calculate the p-value is 10,000 and the block length is 2. 

The confidence level used is α=10%. 3. We use * to denote that the model belongs to 10% MCS. The number of bootstrap 
replications to calculate the p-value is 10,000 and the block length is 2. 4. We constrain the portfolio weight on the risky asset to 

lie between 0% and 150%, i.e. 0 1.5itw   for the economic combinations. 5. EXP and SQRT denote the exponential and the 

square root transformation, respectively. 

 

MAE 

  

MSE 

  

HRLF (b=-1) 

 

QLIKE 

  

 

Loss 

function SPA Rank 

Loss 

function SPA Rank 

Loss 

function SPA Rank 

Loss 

function SPA Rank 

HAR-RV 2.76 (0.0000) 17 39.01 (0.0734) 33 1.65 (0.0113) 29 0.35 (0.2116) 25 

LHAR-RV 2.76 (0.0000) 16 39.00 (0.0770) 32 1.64 (0.0126) 28 0.35 (0.1997) 26 

HAR-RV-J 2.67 (0.0000) 9 37.01 (0.2472) 27 1.58 (0.0850) 23 0.34* (0.4384) 18 

HAR-CJ 2.66 (0.0000) 8 36.58 (0.3004) 24 1.59 (0.0618) 25 0.34 (0.2184) 22 

HAR-RSV 2.78 (0.0000) 22 39.56 (0.0471) 34 1.66 (0.0070) 32 0.35 (0.1773) 27 

GARCH 3.21 (0.0000) 35 39.00 (0.1160) 31 1.76 (0.0002) 36 0.39 (0.0017) 37 

EGARCH 2.81 (0.0000) 25 34.19* (0.8338) 4 1.48* (0.6474) 5 0.33* (0.5955) 7 

GJR 2.87 (0.0000) 29 34.95* (0.5502) 9 1.53* (0.3502) 13 0.33* (0.5058) 13 

APARCH 2.92 (0.0000) 30 34.68* (0.5960) 8 1.53* (0.3545) 14 0.34 (0.3859) 20 

FIGARCH 3.03 (0.0000) 33 37.57 (0.1988) 28 1.67 (0.0038) 33 0.37 (0.0209) 33 

HYGARCH 3.07 (0.0000) 34 38.24 (0.1307) 30 1.69 (0.0017) 34 0.36 (0.0666) 30 

Mean 2.78 (0.0000) 23 35.52 (0.4297) 16 1.53 (0.3238) 12 0.33 (0.4168) 12 

Geometric Mean 2.74 (0.0000) 14 35.40* (0.4306) 13 1.52* (0.3119) 10 0.33* (0.5135) 10 

Harmonic Mean 2.71 (0.0000) 12 35.34* (0.4705) 11 1.51* (0.3363) 9 0.33* (0.6012) 9 

Trimmed Mean 2.77 (0.0000) 18 35.62 (0.4140) 19 1.53 (0.2742) 16 0.33 (0.3992) 14 

Median 2.78 (0.0000) 20 35.51 (0.4325) 14 1.54 (0.2034) 19 0.34 (0.3254) 21 

AFTER 2.61 (0.0000) 5 34.13* (0.8305) 3 1.48* (0.5748) 4 0.33* (0.6692) 5 

DMSFE 2.76 (0.0000) 15 35.34 (0.4707) 12 1.52 (0.3489) 11 0.33* (0.4934) 11 

IMSFE 2.81 (0.0000) 26 35.75 (0.3893) 21 1.55 (0.1829) 20 0.34 (0.3527) 19 

Kernel 2.61 (0.0073) 4 41.69 (0.0678) 37 1.66 (0.0405) 31 0.35 (0.1141) 28 

OLSEXP 2.56 (0.0041) 2 37.99 (0.1393) 29 1.66 (0.0225) 30 0.37 (0.0391) 32 

OLS 2.63 (0.0000) 6 34.22* (0.7984) 5 1.47* (0.6947) 3 0.32* (0.8393) 2 

OLSSQRT 2.35* (1.0000) 1 35.51* (0.4749) 15 1.58 (0.0954) 24 0.38 (0.0229) 35 

TW 2.68 (0.0000) 11 35.22* (0.5202) 10 1.50* (0.3854) 8 0.33* (0.5883) 6 

Trimmed MSPE 2.77 (0.0000) 19 35.55 (0.4226) 17 1.53 (0.2769) 15 0.34 (0.3852) 15 

TW-CER 2.98 (0.0000) 31 36.71 (0.2854) 25 1.62 (0.0252) 26 0.36 (0.0767) 29 

Trimmed-CER 2.85 (0.0000) 27 35.98 (0.3472) 22 1.56 (0.1164) 21 0.34 (0.2381) 23 

Best-CER 3.22 (0.0000) 36 39.63 (0.0821) 35 1.75 (0.0002) 35 0.38 (0.0098) 34 

TW-Q0.05 2.68 (0.0000) 10 34.54* (0.6403) 6 1.48* (0.4467) 6 0.33* (0.7816) 3 

TW-Q0.01 2.73 (0.0000) 13 34.63* (0.5941) 7 1.50* (0.5593) 7 0.33* (0.5687) 8 

Trimmed-Q0.05 2.78 (0.0000) 24 35.67 (0.3953) 20 1.54 (0.2509) 18 0.34 (0.3823) 16 

Trimmed-Q0.01 2.78 (0.0000) 21 35.55 (0.4237) 18 1.53 (0.2563) 17 0.34 (0.3570) 17 

Best-Q0.05 2.58 (0.0003) 3 33.75* (1.0000) 1 1.45* (1.0000) 1 0.32* (1.0000) 1 

Best-Q0.01 2.65 (0.0000) 7 33.96* (0.8979) 2 1.47* (0.7184) 2 0.33 (0.7112) 4 

TW-Sharpe 2.98 (0.0000) 32 36.72 (0.2861) 26 1.62 (0.0193) 27 0.36* (0.0659) 31 

Trimmed-Sharpe 2.85 (0.0000) 27 35.98 (0.3485) 22 1.56 (0.1161) 21 0.34 (0.2464) 23 

Best-Sharpe 3.24 (0.0000) 37 39.71 (0.0752) 36 1.77 (0.0004) 37 0.39 (0.0035) 36 
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Table 4.21 22-step ahead Statistical Forecasting Performance for HAR-GARCH combinations 

 

MAE 

  

MSE 

  

HRLF  (b=-1) 

 

QLIKE 

  

 

Loss 

function SPA Rank 

Loss 

function SPA Rank 

Loss 

function SPA Rank 

Loss 

function SPA Rank 

HAR-RV 3.16 (0.0000) 15 45.30 (0.0007) 29 2.06 (0.0023) 29 0.43 (0.5415) 26 

LHAR-RV 3.13 (0.0000) 14 44.63 (0.0028) 27 2.03 (0.0070) 27 0.42 (0.5664) 24 

HAR-RV-J 3.11 (0.0000) 11 44.65 (0.0014) 28 2.03 (0.0036) 26 0.42 (0.5849) 20 

HAR-CJ 3.04 (0.0000) 8 43.61 (0.0025) 26 2.06 (0.0016) 28 0.66 (0.1068) 37 

HAR-RSV 3.17 (0.0000) 17 45.81 (0.0006) 30 2.08 (0.0012) 30 0.43 (0.5365) 27 

GARCH 3.88 (0.0000) 35 51.14 (0.0000) 35 2.34 (0.0000) 35 0.48 (0.3748) 34 

EGARCH 3.06 (0.0000) 9 38.85* (0.7778) 5 1.75* (1.0000) 1 0.39* (1.0000) 1 

GJR 3.28 (0.0000) 26 40.74 (0.1801) 9 1.86 (0.2633) 8 0.40* (0.6948) 5 

APARCH 3.34 (0.0000) 30 40.74 (0.2391) 8 1.87 (0.2497) 10 0.41 (0.6337) 10 

FIGARCH 3.56 (0.0000) 31 46.55 (0.0000) 33 2.17 (0.0000) 33 0.46 (0.4238) 32 

HYGARCH 3.63 (0.0000) 34 47.61 (0.0000) 34 2.18 (0.0000) 34 0.44 (0.4852) 28 

Mean 3.23 (0.0000) 24 42.58 (0.0062) 19 1.94 (0.0210) 20 0.41 (0.6101) 15 

Geometric Mean 3.18 (0.0000) 19 42.24 (0.0138) 17 1.92 (0.0371) 14 0.41 (0.6256) 11 

Harmonic Mean 3.13 (0.0000) 13 41.97 (0.0180) 13 1.92 (0.0430) 13 0.42 (0.6335) 25 

Trimmed Mean 3.21 (0.0000) 20 42.52 (0.0100) 18 1.94 (0.0252) 19 0.41 (0.6122) 12 

Median 3.18 (0.0000) 18 42.23 (0.0120) 16 1.93 (0.0233) 16 0.42 (0.6031) 17 

AFTER 2.98 (0.0000) 6 38.80* (0.8657) 3 1.80* (0.6291) 4 0.41 (0.7195) 8 

DMSFE 3.17 (0.0000) 16 42.12 (0.0155) 15 1.91 (0.0399) 12 0.41 (0.6787) 9 

IMSFE 3.28 (0.0000) 25 43.23 (0.0026) 22 1.97 (0.0041) 22 0.42 (0.5685) 19 

Kernel 2.73 (0.0001) 3 41.99 (0.0981) 14 1.85* (0.2362) 7 0.40* (0.6302) 6 

OLSEXP 2.65 (0.0081) 2 40.72* (0.1738) 7 1.93 (0.0753) 15 0.44 (0.4357) 29 

OLS 2.98 (0.0000) 5 38.81* (0.8697) 4 1.79* (0.7064) 3 0.40* (0.7763) 4 

OLSSQRT 2.51* (1.0000) 1 39.43* (0.5890) 6 1.93 (0.1138) 17 0.51 (0.4054) 36 

TW 3.08 (0.0000) 10 40.75 (0.1068) 10 1.84* (0.2990) 6 0.40* (0.7924) 2 

Trimmed MSPE 3.22 (0.0000) 21 42.64 (0.0055) 20 1.94 (0.0168) 18 0.41 (0.6348) 13 

TW-CER 3.56 (0.0000) 32 46.50 (0.0000) 32 2.12 (0.0000) 31 0.45 (0.4515) 30 

Trimmed-CER 3.32 (0.0000) 28 43.55 (0.0015) 23 1.98 (0.0031) 23 0.42 (0.5626) 21 

Best-CER 3.96 (0.0000) 36 54.28 (0.0000) 36 2.38 (0.0000) 36 0.48 (0.3695) 33 

TW-Q0.05 3.12 (0.0000) 12 40.78 (0.1088) 11 1.86 (0.1557) 9 0.41 (0.7314) 7 

TW-Q0.01 3.23 (0.0000) 22 41.34 (0.0592) 12 1.90 (0.0535) 11 0.42 (0.5914) 18 

Trimmed-Q0.05 3.23 (0.0000) 23 42.78 (0.0055) 21 1.95 (0.0113) 21 0.42 (0.6127) 16 

Trimmed-Q0.01 3.32 (0.0000) 27 43.56 (0.0020) 24 1.98 (0.0036) 24 0.42 (0.5569) 22 

Best-Q0.05 2.97 (0.0000) 4 38.63* (1.0000) 1 1.78* (0.7931) 2 0.40* (0.7380) 3 

Best-Q0.01 3.02 (0.0000) 7 38.71* (0.9198) 2 1.80* (0.6102) 5 0.41 (0.6483) 14 

TW-Sharpe 3.56 (0.0000) 33 46.48 (0.0000) 31 2.12 (0.0000) 32 0.45 (0.4431) 31 

Trimmed-Sharpe 3.32 (0.0000) 29 43.56 (0.0017) 25 1.99 (0.0029) 25 0.42 (0.5632) 23 

Best-Sharpe 4.04 (0.0000) 37 54.57 (0.0000) 37 2.43 (0.0000) 37 0.50 (0.3736) 35 

Note. 1. Values in bold denote that the corresponding model attains the best forecasting performance under the specific 

loss function. 2. Numbers in parentheses denote the p-value of the Hansen’s SPA test. The null hypothesis is that none of 

the models is better than the benchmark. The number of bootstrap replications to calculate the p-value is 10,000 and the 

block length is 2. The confidence level used is α=10%. 3. We use * to denote that the model belongs to 10% MCS. The 

number of bootstrap replications to calculate the p-value is 10,000 and the block length is 2. 4. We constrain the portfolio 

weight on the risky asset to lie between 0% and 150%, i.e. 0 1.5itw   for the economic combinations. 5. EXP and 

SQRT denote the exponential and the square root transformation, respectively. 
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Economic Evaluation 

To compare the models’ economic performance, we also evaluate the economic value 

of the models in the context of portfolio management. Table 4.22 reports the portfolio 

performance of various forecasting models applied to the crude oil futures price 

volatility. Examining the economic gains derived from the single models and the 

combinations based on HAR-type and GARCH-type models, we find that the best 

performing model varies across different forecasting horizons. The OLSEXP 

combination is the dominant approach, that leads to both higher economic gains and 

indicates superior forecasting performance based on StepSPA test. From the 

economic combinations only some based on Smoothed-Q indicate adequate 

forecasting performance according to the ranking of the models, while almost all 

HAR models are ranked quite higher than the GARCH models. 
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Table 4.22 1-step ahead Economic Forecasting Performance for HAR-GARCH combinations 

 

CER 

  

Sharpe 

  

 

Loss 

function StepSPA Rank 

Loss 

function StepSPA Rank 

HAR-RV 0.0427 (0.0000) 28 4.09 (0.0000) 28 

LHAR-RV 0.1107 (0.0020) 3 9.40 (0.0000) 2 

HAR-RV-J 0.0777 (0.0000) 5 6.15 (0.0000) 5 

HAR-CJ 0.1237 (0.0120) 2 6.80 (0.0010) 3 

HAR-RSV 0.0649 (0.0000) 7 5.77 (0.0000) 9 

GARCH 0.0307 (0.0000) 33 3.15 (0.0000) 32 

EGARCH 0.0220 (0.0000) 36 2.32 (0.0000) 37 

GJR 0.0278 (0.0000) 34 2.85 (0.0000) 34 

APARCH 0.0236 (0.0000) 35 2.53 (0.0000) 35 

FIGARCH 0.0364 (0.0000) 31 3.57 (0.0000) 31 

HYGARCH 0.0318 (0.0000) 32 3.06 (0.0000) 33 

Mean 0.0522 (0.0000) 20 4.73 (0.0000) 19 

Geometric Mean 0.0524 (0.0000) 19 4.67 (0.0000) 22 

Harmonic Mean 0.0552 (0.0000) 17 4.77 (0.0000) 18 

Trimmed Mean 0.0493 (0.0000) 21 4.50 (0.0000) 23 

Median 0.0464 (0.0000) 25 4.28 (0.0000) 27 

AFTER 0.0595 (0.0000) 13 5.41 (0.0000) 13 

DMSFE 0.0477 (0.0000) 24 4.30 (0.0000) 26 

IMSFE 0.0565 (0.0000) 14 5.36 (0.0000) 14 

Kernel 0.0220 (0.0000) 37 2.32 (0.0000) 36 

OLSEXP 0.2025 (1.0000) 1 11.73 (1.0000) 1 

OLS 0.0655 (0.0000) 6 5.96 (0.0000) 6 

OLSSQRT 0.1099 (0.0000) 4 6.27 (0.0000) 4 

TW 0.0640 (0.0000) 8 5.84 (0.0000) 7 

Trimmed MSPE 0.0544 (0.0000) 18 5.16 (0.0000) 17 

TW-CER 0.0453 (0.0000) 26 4.41 (0.0000) 24 

Trimmed-CER 0.0487 (0.0000) 22 4.70 (0.0000) 20 

Best-CER 0.0386 (0.0000) 29 3.76 (0.0000) 29 

TW-Q0.05 0.0621 (0.0000) 9 5.81 (0.0000) 8 

TW-Q0.01 0.0599 (0.0000) 12 5.60 (0.0000) 10 

Trimmed-Q0.05 0.0554 (0.0000) 16 5.29 (0.0000) 15 

Trimmed-Q0.01 0.0559 (0.0000) 15 5.28 (0.0000) 16 

Best-Q0.05 0.0604 (0.0000) 10 5.48 (0.0000) 11 

Best-Q0.01 0.0604 (0.0000) 10 5.48 (0.0000) 11 

TW-Sharpe 0.0451 (0.0000) 27 4.39 (0.0000) 25 

Trimmed-Sharpe 0.0486 (0.0000) 23 4.69 (0.0000) 21 

Best-Sharpe 0.0376 (0.0000) 30 3.69 (0.0000) 30 

Note. 1. Values in bold denote that the corresponding model attains the best forecasting performance 

under the specific loss function. 2. Numbers in parentheses denote the p-value of the Hsu et al. (2010) 

StepSPA test. The null hypothesis is that none of the models is better than the benchmark. The number 

of bootstrap replications to calculate the p-value is 1,000 and the smoothing parameter for the mean 

block length is 0.1. The confidence level used is α=10%. 3. We constrain the portfolio weight on the 

risky asset to lie between 0% and 150%, i.e. 0 1.5itw   for the economic combinations. 4. EXP and 

SQRT denote the exponential and the square root transformation, respectively. 
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Tables 4.23 and 4.24 present the results for the 5- and 22-step forecasts. Regarding 

the 5-step ahead forecasting horizon, the single FIGARCH model that captures the 

long memory effect, is the best performing model for both CER and Sharpe ratio, 

while all the HAR models are proved inadequate and are ranked last. It is worth to 

note that the economic combinations based on either CER or Sharpe ratio, are ranked 

higher, while they found to be superior to the rest models under the StepSPA test. 

The results for the 22-step ahead forecasts, are presented in Table 4.24. In this case, 

the Best-CER and the Best-Sharpe combinations are found to outperform the rest 

combinations and the single models on CER and Sharpe ratio, respectively. It is 

interesting to note that the rest CER and Sharpe combinations are ranked amongst the 

best performers while the transformed least squares regressions and the single models 

are the worst performers. As a result, based on the results from the previous and the 

current section, we conclude that the economic combinations seem to provide more 

accurate results for longer (i.e. the 22-step ahead) forecast horizons, when low-

frequency and high-frequency data are combined in economic terms while the 

statistical combinations are proved adequate for short-term forecasting horizons. 
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Table 4.23 5-step ahead Economic Forecasting Performance for HAR-GARCH combinations 

 

CER 

  

Sharpe 

  

 

Loss 

function StepSPA Rank 

Loss 

function StepSPA Rank 

HAR-RV 0.0320 (0.5470) 32 3.30 (0.0300) 32 

LHAR-RV 0.0286 (0.0880) 35 2.99 (0.0070) 35 

HAR-RV-J 0.0314 (0.5450) 34 3.21 (0.0280) 34 

HAR-CJ 0.0366 (0.8290) 28 3.62 (0.1180) 28 

HAR-RSV 0.0319 (0.4780) 33 3.28 (0.0350) 33 

GARCH 0.0410 (0.8780) 4 4.39 (0.7070) 6 

EGARCH 0.0401 (0.8780) 7 3.65 (0.2500) 27 

GJR 0.0400 (0.9290) 8 4.07 (0.3930) 15 

APARCH 0.0420 (0.9740) 2 4.21 (0.6370) 11 

FIGARCH 0.0433 (1.0000) 1 4.77 (1.0000) 1 

HYGARCH 0.0389 (0.7910) 13 3.95 (0.0270) 19 

Mean 0.0380 (0.8640) 20 3.92 (0.0400) 21 

Geometric Mean 0.0375 (0.8470) 23 3.84 (0.0300) 24 

Harmonic Mean 0.0372 (0.8710) 27 3.78 (0.0370) 26 

Trimmed Mean 0.0375 (0.7690) 24 3.86 (0.0240) 23 

Median 0.0373 (0.7970) 26 3.81 (0.0540) 25 

AFTER 0.0383 (0.9440) 16 3.93 (0.1660) 20 

DMSFE 0.0380 (0.7040) 21 4.10 (0.0000) 14 

IMSFE 0.0395 (0.9140) 10 4.32 (0.3410) 9 

Kernel 0.0327 (0.4330) 31 3.42 (0.0110) 31 

OLSEXP -0.0023 (0.1900) 37 1.29 (0.0020) 36 

OLS 0.0374 (0.8340) 25 3.90 (0.0310) 22 

OLSSQRT -0.0019 (0.1660) 36 1.26 (0.0000) 37 

TW 0.0383 (0.7850) 17 4.04 (0.2340) 17 

Trimmed MSPE 0.0388 (0.9010) 14 4.20 (0.2090) 12 

TW-CER 0.0397 (0.5710) 9 4.49 (0.3990) 5 

Trimmed-CER 0.0393 (0.8320) 11 4.36 (0.4250) 7 

Best-CER 0.0405 (0.7110) 5 4.51 (0.5550) 4 

TW-Q0.05 0.0380 (0.8910) 22 4.00 (0.0660) 18 

TW-Q0.01 0.0382 (0.8780) 19 4.06 (0.0780) 16 

Trimmed-Q0.05 0.0383 (0.5060) 18 4.15 (0.0030) 13 

Trimmed-Q0.01 0.0386 (0.5610) 15 4.23 (0.2500) 10 

Best-Q0.05 0.0343 (0.7150) 30 3.45 (0.1150) 30 

Best-Q0.01 0.0351 (0.7690) 29 3.50 (0.1170) 29 

TW-Sharpe 0.0403 (0.8320) 6 4.56 (0.8710) 3 

Trimmed-Sharpe 0.0393 (0.7910) 11 4.36 (0.4530) 7 

Best-Sharpe 0.0419 (0.8970) 3 4.68 (0.8650) 2 

Note. 1. Values in bold denote that the corresponding model attains the best forecasting performance 

under the specific loss function. 2. Numbers in parentheses denote the p-value of the Hsu et al. (2010) 

StepSPA test. The null hypothesis is that none of the models is better than the benchmark. The number 

of bootstrap replications to calculate the p-value is 1,000 and the smoothing parameter for the mean 

block length is 0.1. The confidence level used is α=10%. 3. We constrain the portfolio weight on the 

risky asset to lie between 0% and 150%, i.e. 0 1.5itw   for the economic combinations. 4. EXP and 

SQRT denote the exponential and the square root transformation, respectively. 
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Table 4.24 22-step ahead Economic Forecasting Performance for HAR-GARCH combinations 

 

CER 

  

Sharpe 

  

 

Loss 

function SPA Rank 

Loss 

function SPA Rank 

HAR-RV 0.0260 (0.2620) 25 3.06 (0.2120) 27 

LHAR-RV 0.0258 (0.3490) 26 2.98 (0.4030) 29 

HAR-RV-J 0.0230 (0.0690) 30 2.70 (0.0630) 31 

HAR-CJ -2.3542 (0.1950) 37 -2.58 (0.3750) 37 

HAR-RSV 0.0312 (0.8370) 7 3.52 (0.9600) 18 

GARCH 0.0257 (0.1610) 27 3.49 (0.2870) 21 

EGARCH 0.0192 (0.3310) 32 2.41 (0.4140) 32 

GJR 0.0266 (0.2420) 23 3.41 (0.4290) 24 

APARCH 0.0282 (0.3420) 19 3.66 (0.6040) 16 

FIGARCH 0.0331 (0.8270) 3 4.35 (0.8880) 5 

HYGARCH 0.0304 (0.8340) 9 3.52 (0.9550) 19 

Mean 0.0279 (0.6730) 21 3.43 (0.6880) 23 

Geometric Mean 0.0247 (0.5040) 29 3.04 (0.3690) 28 

Harmonic Mean -0.1094 (0.1960) 36 -1.52 (0.4030) 36 

Trimmed Mean 0.0282 (0.6190) 20 3.46 (0.7930) 22 

Median 0.0227 (0.3170) 31 2.85 (0.2490) 30 

AFTER 0.0262 (0.1830) 24 3.35 (0.2110) 25 

DMSFE 0.0292 (0.3240) 16 3.72 (0.4660) 14 

IMSFE 0.0299 (0.2920) 12 3.87 (0.4150) 11 

Kernel 0.0124 (0.0650) 33 1.75 (0.0070) 33 

OLSEXP -0.0113 (0.2510) 34 0.71 (0.7340) 34 

OLS 0.0292 (0.3620) 17 3.69 (0.5680) 15 

OLSSQRT -0.0145 (0.1750) 35 0.49 (0.5610) 35 

TW 0.0289 (0.4000) 18 3.63 (0.4380) 17 

Trimmed MSPE 0.0297 (0.3660) 14 3.80 (0.4940) 12 

TW-CER 0.0330 (0.1820) 4 4.45 (0.3520) 3 

Trimmed-CER 0.0301 (0.3210) 11 3.91 (0.4660) 9 

Best-CER 0.0383 (1.0000) 1 5.29 (0.6840) 2 

TW-Q0.05 0.0276 (0.2300) 22 3.51 (0.2480) 20 

TW-Q0.01 0.0309 (0.3200) 8 4.07 (0.5670) 7 

Trimmed-Q0.05 0.0292 (0.3000) 15 3.74 (0.3840) 13 

Trimmed-Q0.01 0.0298 (0.2600) 13 3.87 (0.3840) 10 

Best-Q0.05 0.0250 (0.1880) 28 3.11 (0.2880) 26 

Best-Q0.01 0.0320 (0.5870) 6 4.14 (0.8120) 6 

TW-Sharpe 0.0326 (0.2300) 5 4.45 (0.4850) 4 

Trimmed-Sharpe 0.0301 (0.3170) 10 3.91 (0.5160) 8 

Best-Sharpe 0.0364 (0.7880) 2 5.36 (1.0000) 1 

Note. 1. Values in bold denote that the corresponding model attains the best forecasting performance 

under the specific loss function. 2. Numbers in parentheses denote the p-value of the Hsu et al. (2010) 

StepSPA test. The null hypothesis is that none of the models is better than the benchmark. The number 

of bootstrap replications to calculate the p-value is 1,000 and the smoothing parameter for the mean 

block length is 0.1. The confidence level used is α=10%. 3. We constrain the portfolio weight on the 

risky asset to lie between 0% and 150%, i.e. 0 1.5itw   for the economic combinations. 4. EXP and 

SQRT denote the exponential and the square root transformation, respectively. 
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Risk Management Evaluation 

We continue our analysis through the evaluation of combination volatility forecasts 

based on both HAR and GARCH models under a risk management framework. The 

results for the 1-step ahead forecasts are presented to Table 4.25. We note that the 

percentage of violations is adequate for several combinations and single models under 

a 5% confidence level, while for the 1% confidence level most models under-forecast 

VaR. In particular, only the Best-Q0.05 and Best-Q0.01 schemes forecast adequately 

VaR. For the 5% confidence level, the OLSEXP combination produces errors of lower 

magnitude. It is interesting to note that four combinations based on Smoothed-Q loss 

function are amongst the best performers, while the GARCH models are proved 

inadequate. The SPA test reveals that only the best performing models provide 

significantly higher forecasting accuracy. For the 1% confidence level, the single 

HAR-RV-J model dominates the rest, while four combinations based on Smoothed-Q, 

i.e. the TW-Q0.05, the TW-Q0.01, the Best-Q0.05 and Best-Q0.01, are among the best 

performing models. 

The results for the  5- and 22-step ahead forecasts (Table 4.26 and Table 4.27) 

indicate that there is a single model that clearly dominates all the other models; this is 

the EGARCH model. It is interesting to note that all the HAR-type models are the 

worst performers, while the SPA test indicates their statistical insignificance. 

Furthermore, most combinations based on Smoothed-Q loss functions are among the 

best models, while the SPA test reveals their statistical significance. 
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Table 4.25 1-step ahead VaR Forecasting Performance for HAR-GARCH combinations 

  

Smoothed-Q0.05 

  

Smoothed-Q0.01 

 

 

Percentage of 

violations (5%) 

Loss 

function SPA Rank 

Percentage of 

violations (1%) 

Loss 

function SPA Rank 

HAR-RV 5.25% 0.2112 (0.0220) 23 1.59% 0.0551 (0.2280) 22 

LHAR-RV 4.30% 0.2010 (0.3613) 2 1.11% 0.0524 (0.5876) 8 

HAR-RV-J 5.17% 0.2027 (0.1922) 5 1.11% 0.0509 (1.0000) 1 

HAR-CJ 5.57% 0.2032 (0.2153) 6 1.51% 0.0515 (0.8195) 4 

HAR-RSV 5.17% 0.2090 (0.0366) 15 1.51% 0.0540 (0.3168) 12 

GARCH 4.85% 0.2231 (0.0007) 37 1.43% 0.0605 (0.0440) 35 

EGARCH 4.38% 0.2132 (0.0223) 26 1.67% 0.0595 (0.0361) 29 

GJR 4.61% 0.2162 (0.0073) 30 1.67% 0.0597 (0.0328) 32 

APARCH 4.30% 0.2152 (0.0121) 29 1.51% 0.0597 (0.0314) 31 

FIGARCH 5.33% 0.2223 (0.0011) 36 1.75% 0.0599 (0.0557) 33 

HYGARCH 5.33% 0.2211 (0.0020) 34 1.51% 0.0597 (0.0679) 30 

Mean 5.01% 0.2098 (0.0483) 17 1.27% 0.0544 (0.2206) 16 

Geometric Mean 5.25% 0.2102 (0.0399) 18 1.43% 0.0547 (0.1941) 17 

Harmonic Mean 5.33% 0.2105 (0.0381) 19 1.43% 0.0550 (0.1745) 19 

Trimmed Mean 5.09% 0.2106 (0.0333) 20 1.43% 0.0549 (0.1743) 18 

Median 5.09% 0.2127 (0.0179) 25 1.43% 0.0559 (0.1929) 24 

AFTER 5.17% 0.2073 (0.0546) 10 1.19% 0.0530 (0.5695) 9 

DMSFE 5.17% 0.2116 (0.0282) 24 1.43% 0.0551 (0.1636) 23 

IMSFE 4.61% 0.2086 (0.0611) 12 1.19% 0.0538 (0.3359) 11 

Kernel 6.52% 0.2210 (0.0020) 33 2.86% 0.0642 (0.0088) 36 

OLSEXP 5.41% 0.1973 (1.0000) 1 1.51% 0.0574 (0.1710) 27 

OLS 5.17% 0.2050 (0.0712) 8 1.03% 0.0516 (0.8819) 5 

OLSSQRT 7.72% 0.2166 (0.0150) 31 2.70% 0.0658 (0.0133) 37 

TW 4.85% 0.2073 (0.0906) 11 1.19% 0.0531 (0.4602) 10 

Trimmed MSPE 4.77% 0.2091 (0.0535) 16 1.19% 0.0541 (0.2843) 13 

TW-CER 4.61% 0.2146 (0.0104) 27 1.27% 0.0563 (0.2015) 25 

Trimmed-CER 4.61% 0.2106 (0.0343) 21 1.19% 0.0551 (0.1784) 20 

Best-CER 5.01% 0.2210 (0.0022) 32 1.35% 0.0594 (0.0811) 28 

TW-Q0.05 4.77% 0.2046 (0.1676) 7 1.03% 0.0517 (0.8415) 6 

TW-Q0.01 4.85% 0.2052 (0.1438) 9 1.11% 0.0519 (0.7816) 7 

Trimmed-Q0.05 4.53% 0.2089 (0.0593) 13 1.11% 0.0542 (0.2626) 15 

Trimmed-Q0.01 4.69% 0.2089 (0.0513) 14 1.11% 0.0542 (0.2759) 14 

Best-Q0.05 5.17% 0.2024 (0.2213) 4 0.95% 0.0509 (0.9393) 2 

Best-Q0.01 5.17% 0.2021 (0.2356) 3 0.95% 0.0509 (0.9350) 3 

TW-Sharpe 4.69% 0.2147 (0.0091) 28 1.27% 0.0564 (0.1883) 26 

Trimmed-Sharpe 4.61% 0.2107 (0.0338) 22 1.19% 0.0551 (0.1790) 21 

Best-Sharpe 5.17% 0.2220 (0.0017) 35 1.35% 0.0600 (0.0617) 34 

Note. 1. Values in bold denote that the corresponding model attains the best forecasting performance under the 

specific loss function. 2. Numbers in parentheses denote the p-value of the Hansen’s SPA test. The null hypothesis 

is that none of the models is better than the benchmark. The number of bootstrap replications to calculate the p-

value is 10,000 and the block length is 2. The confidence level used is α=10%. 3. The Smoothed-Q loss function is 

calculated for VaR level α=0.01 and α=0.05. We set the smoothness parameter δ=25. 4. We constrain the portfolio 

weight on the risky asset to lie between 0% and 150%, i.e. 0 1.5itw   for the economic combinations. 5. EXP 

and SQRT denote the exponential and the square root transformation, respectively. 
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Table 4.26 5-step ahead VaR Forecasting Performance for HAR-GARCH combinations 

  

Smoothed-Q0.05 

  

Smoothed-Q0.01 

 

 

Percentage of 

violations (5%) 

Loss 

function SPA Rank 

Percentage of 

violations (1%) 

Loss 

function SPA Rank 

HAR-RV 5.67% 0.2249 (0.0076) 29 2.08% 0.0661 (0.1018) 33 

LHAR-RV 5.83% 0.2250 (0.0070) 30 2.00% 0.0661 (0.1027) 34 

HAR-RV-J 5.91% 0.2243 (0.0069) 26 2.15% 0.0656 (0.1361) 31 

HAR-CJ 6.23% 0.2258 (0.0103) 35 2.15% 0.0652 (0.2310) 30 

HAR-RSV 5.67% 0.2247 (0.0122) 28 2.08% 0.0662 (0.0999) 35 

GARCH 4.71% 0.2288 (0.0010) 37 1.68% 0.0658 (0.1031) 32 

EGARCH 4.39% 0.2130 (1.0000) 1 1.36% 0.0602 (1.0000) 1 

GJR 4.47% 0.2167 (0.4770) 5 1.44% 0.0617 (0.7257) 10 

APARCH 4.39% 0.2165 (0.4947) 4 1.28% 0.0620 (0.6976) 12 

FIGARCH 4.71% 0.2257 (0.0041) 34 1.28% 0.0637 (0.3998) 24 

HYGARCH 4.87% 0.2245 (0.0165) 27 1.36% 0.0637 (0.3638) 26 

Mean 5.03% 0.2196 (0.1612) 18 1.68% 0.0622 (0.6745) 15 

Geometric Mean 5.11% 0.2198 (0.1329) 19 1.68% 0.0624 (0.6111) 17 

Harmonic Mean 5.19% 0.2200 (0.1091) 21 1.76% 0.0626 (0.5654) 20 

Trimmed Mean 5.11% 0.2199 (0.1317) 20 1.68% 0.0627 (0.5413) 21 

Median 5.19% 0.2210 (0.0746) 22 1.60% 0.0633 (0.4210) 22 

AFTER 5.11% 0.2177 (0.2995) 7 1.76% 0.0622 (0.6722) 16 

DMSFE 4.47% 0.2184 (0.2675) 10 1.60% 0.0614 (0.8498) 5 

IMSFE 4.47% 0.2190 (0.2051) 15 1.52% 0.0616 (0.7981) 8 

Kernel 6.07% 0.2222 (0.0686) 25 2.08% 0.0646 (0.2807) 29 

OLSEXP 7.82% 0.2253 (0.0330) 31 2.63% 0.0675 (0.0669) 36 

OLS 4.87% 0.2165 (0.2968) 3 1.60% 0.0610 (0.9485) 3 

OLSSQRT 8.22% 0.2255 (0.0197) 32 3.27% 0.0702 (0.0161) 37 

TW 4.95% 0.2184 (0.2289) 11 1.92% 0.0609 (0.9255) 2 

Trimmed MSPE 4.47% 0.2189 (0.2185) 14 1.68% 0.0615 (0.8236) 7 

TW-CER 4.47% 0.2217 (0.0688) 23 1.36% 0.0625 (0.5848) 18 

Trimmed-CER 4.47% 0.2195 (0.1884) 16 1.52% 0.0621 (0.6736) 13 

Best-CER 4.71% 0.2256 (0.0112) 33 1.28% 0.0639 (0.3496) 27 

TW-Q0.05 5.03% 0.2182 (0.2639) 9 1.68% 0.0619 (0.7483) 11 

TW-Q0.01 4.87% 0.2176 (0.2808) 6 1.60% 0.0617 (0.7988) 9 

Trimmed-Q0.05 4.47% 0.2185 (0.2583) 12 1.60% 0.0614 (0.8400) 4 

Trimmed-Q0.01 4.47% 0.2186 (0.2504) 13 1.60% 0.0615 (0.8245) 6 

Best-Q0.05 5.19% 0.2179 (0.3508) 8 1.92% 0.0636 (0.3788) 23 

Best-Q0.01 4.95% 0.2160 (0.5514) 2 1.92% 0.0637 (0.3640) 25 

TW-Sharpe 4.47% 0.2218 (0.0681) 24 1.36% 0.0626 (0.5730) 19 

Trimmed-Sharpe 4.47% 0.2195 (0.1824) 16 1.52% 0.0621 (0.6818) 13 

Best-Sharpe 4.63% 0.2263 (0.0086) 36 1.28% 0.0641 (0.3197) 28 

Note. 1. Values in bold denote that the corresponding model attains the best forecasting performance under the 

specific loss function. 2. Numbers in parentheses denote the p-value of the Hansen’s SPA test. The null hypothesis 

is that none of the models is better than the benchmark. The number of bootstrap replications to calculate the p-

value is 10,000 and the block length is 2. The confidence level used is α=10%. 3. The Smoothed-Q loss function is 

calculated for VaR level α=0.01 and α=0.05. We set the smoothness parameter δ=25. 4. We constrain the portfolio 

weight on the risky asset to lie between 0% and 150%, i.e. 0 1.5itw   for the economic combinations. 5. EXP 

and SQRT denote the exponential and the square root transformation, respectively. 
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Table 4.27 22-step ahead VaR Forecasting Performance for HAR-GARCH combinations 

  

Smoothed-Q0.05 

  

Smoothed-Q0.01 

 

 

Percentage of 

violations (5%) 

Loss 

function SPA Rank 

Percentage of 

violations (1%) 

Loss 

function SPA Rank 

HAR-RV 6.07% 0.2387 (0.0021) 31 2.18% 0.0686 (0.0122) 31 

LHAR-RV 5.99% 0.2375 (0.0057) 28 2.35% 0.0678 (0.0211) 29 

HAR-RV-J 6.07% 0.2387 (0.0054) 32 2.35% 0.0696 (0.0100) 33 

HAR-CJ 6.63% 0.2416 (0.0025) 37 2.67% 0.0725 (0.0046) 36 

HAR-RSV 6.07% 0.2389 (0.0021) 33 2.27% 0.0692 (0.0114) 32 

GARCH 4.94% 0.2414 (0.0021) 36 1.62% 0.0665 (0.0957) 27 

EGARCH 5.34% 0.2247 (1.0000) 1 1.29% 0.0602 (1.0000) 1 

GJR 4.94% 0.2282 (0.4318) 3 1.21% 0.0616 (0.6624) 3 

APARCH 4.85% 0.2272 (0.5468) 2 1.13% 0.0609 (0.7391) 2 

FIGARCH 5.26% 0.2403 (0.0022) 35 1.70% 0.0653 (0.2262) 23 

HYGARCH 5.50% 0.2361 (0.0323) 26 1.38% 0.0644 (0.2794) 18 

Mean 5.26% 0.2336 (0.0540) 19 1.70% 0.0636 (0.2150) 6 

Geometric Mean 5.34% 0.2337 (0.0394) 20 1.78% 0.0639 (0.1839) 14 

Harmonic Mean 5.58% 0.2347 (0.0251) 24 2.02% 0.0650 (0.1608) 22 

Trimmed Mean 5.34% 0.2337 (0.0477) 21 1.78% 0.0637 (0.2068) 8 

Median 5.58% 0.2345 (0.0248) 23 1.86% 0.0638 (0.2428) 10 

AFTER 5.91% 0.2285 (0.3800) 5 1.78% 0.0641 (0.2158) 16 

DMSFE 5.18% 0.2308 (0.1918) 11 1.62% 0.0638 (0.1938) 11 

IMSFE 5.10% 0.2327 (0.0940) 16 1.70% 0.0643 (0.2125) 17 

Kernel 6.72% 0.2315 (0.2377) 12 2.67% 0.0698 (0.0237) 34 

OLSEXP 7.28% 0.2367 (0.0559) 27 3.48% 0.0713 (0.0117) 35 

OLS 5.58% 0.2286 (0.3467) 6 1.70% 0.0625 (0.3727) 4 

OLSSQRT 8.98% 0.2387 (0.0270) 30 4.21% 0.0788 (0.0005) 37 

TW 5.26% 0.2304 (0.2255) 8 1.70% 0.0636 (0.1395) 7 

Trimmed MSPE 5.18% 0.2317 (0.1322) 13 1.62% 0.0639 (0.1789) 13 

TW-CER 4.94% 0.2344 (0.0696) 22 1.54% 0.0656 (0.1212) 24 

Trimmed-CER 5.10% 0.2326 (0.0984) 15 1.70% 0.0645 (0.1922) 19 

Best-CER 4.53% 0.2379 (0.0239) 29 1.46% 0.0674 (0.0577) 28 

TW-Q0.05 5.34% 0.2305 (0.2032) 9 1.62% 0.0637 (0.1021) 9 

TW-Q0.01 5.10% 0.2305 (0.2230) 10 1.70% 0.0639 (0.1882) 12 

Trimmed-Q0.05 5.18% 0.2321 (0.1102) 14 1.70% 0.0640 (0.1827) 15 

Trimmed-Q0.01 5.10% 0.2327 (0.0985) 18 1.70% 0.0646 (0.1787) 21 

Best-Q0.05 5.66% 0.2298 (0.3435) 7 1.78% 0.0660 (0.1003) 26 

Best-Q0.01 5.58% 0.2284 (0.3954) 4 1.54% 0.0635 (0.3424) 5 

TW-Sharpe 4.94% 0.2351 (0.0484) 25 1.54% 0.0657 (0.1069) 25 

Trimmed-Sharpe 5.10% 0.2327 (0.0968) 17 1.70% 0.0645 (0.1963) 20 

Best-Sharpe 4.53% 0.2403 (0.0068) 34 1.46% 0.0681 (0.0329) 30 

Note. 1. Values in bold denote that the corresponding model attains the best forecasting performance under the 

specific loss function. 2. Numbers in parentheses denote the p-value of the Hansen’s SPA test. The null hypothesis 

is that none of the models is better than the benchmark. The number of bootstrap replications to calculate the p-

value is 10,000 and the block length is 2. The confidence level used is α=10%. 3. The Smoothed-Q loss function is 

calculated for VaR level α=0.01 and α=0.05. We set the smoothness parameter δ=25. 4. We constrain the portfolio 

weight on the risky asset to lie between 0% and 150%, i.e. 0 1.5itw   for the economic combinations. 5. EXP 

and SQRT denote the exponential and the square root transformation, respectively. 
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4.7.4 Out-of-Sample Forecasting Performance for best combinations across 

different loss functions 

 
Several interesting conclusions are reached from Table 4.28 that summarizes the best 

performing models across all the forecasting horizons examined. Particularly, the best 

performing model for each different combination type is presented (i.e. the best model 

considering the GARCH combinations, the HAR combinations and the combinations 

based on both models). We find that the forecasting performance of each 

model/combination varies greatly with the change in horizons and the models used in 

each combination type. 

For the 1-step ahead forecasting horizon, the transformed OLS combinations based on 

HAR models, i.e. the statistical combinations, indicate superior forecasting 

performance across almost all loss functions. This result is opposite to Ma et al. 

(2018d) who argue that HAR combinations do not lead to higher forecasting ability. 

Also, it is worth noting that according to the Smoothed-Q0.01 loss function, an 

economic combination, the Trimmed-Q0.05 is the best performer.   

Considering the 5-step ahead forecasts, the best performer in statistical terms, is an 

economic combination derived from all models, the Best-Q0.05 that produces the 

minimum losses. However, the economic evaluation suggests that two single models, 

the FIGARCH and the EGARCH model, lead to increased economic gains compared 

to combination techniques. The superior performance of the two single models is 

attributed to the fact that the FIGARCH model accounts for long memory and 

asymmetric effects, while the EGARCH model minimizes the VaR losses for the 5-

step ahead forecasting period. As a result, although an economic combination point 

out adequate performance in statistical context, there is no evidence for using 
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economic loss functions to optimally combine forecasts in economic terms for the 5-

step ahead forecasts. 

Taking into consideration the 22-step ahead forecasting horizon, GARCH 

combinations dominate the rest. Two economic combinations, the Best-CER and the 

Best-Sharpe lead to higher economic gains a mean-variance investor suggesting that 

economic combinations are more accurate in longer forecasting horizons as the 

different models combined incorporate different aspects of the market. Moreover, 

statistical combination techniques are superior according to symmetric statistical loss 

functions, while the asymmetric loss functions suggest the use of the asymmetric 

EGARCH model. 

The main finding of our research is that it does worth combining volatility forecasts 

from either one model-type or more model-types, as they lead to increased forecasting 

accuracy and higher economic gains. The results suggest that low frequency models 

increase forecasting accuracy when they are combined through economic loss 

functions, especially in 1-step and 22-step ahead forecasting horizons. However, there 

is a single model that clearly dominates the rest, this is the EGARCH model that 

indicates superior forecasting accuracy under statistical and risk management 

evaluation. Although this result is not expected, a limited number of studies (Arouri et 

al., 2011; Wei et al., 2017) indicate that in some cases single models outperform 

combination techniques. 
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Table 4.28 Out-of-Sample performance of best combinations across all loss 

functions 

 MAE MSE HRLF QLIKE CER Sharpe Smoothed-

Q0.05 

Smoothed-

Q0.01 

h=1 

GARCH OLSSQRT 

(2.33) 

OLSEXP 

(29.93) 

OLSSQRT 

(1.24) 

TW 

(0.28) 

Best-CER 

(0.0386) 

Best-CER 

(3.76) 

Best-Q0.05 

(0.2130) 

OLS  

(0.0578) 

HAR OLSSQRT 

(1.76) 

OLSSQRT 

(23.78) 

HAR-RSV 

(0.92) 

Trimmed 

Mean 

(0.21) 

OLSEXP 

(0.2064) 

OLSEXP 

(14.21) 

OLSEXP 

(0.1920) 

Trimmed-

Q0.05 

(0.0505) 

ALL OLSSQRT 

(1.78) 

OLSSQRT 

(24.32) 

HAR-RSV 

(0.92) 

HAR-RSV 

(0.22) 

OLSEXP 

(0.2025) 

OLSEXP 

(11.73) 

OLSEXP 

(0.1973) 

HAR-RV-J 

(0.0509) 

h=5 

GARCH OLSSQRT  

(2.36) 

Best-

Q0.05 

(33.90) 

EGARCH 

(1.48) 

EGARCH 

(0.33) 
FIGARCH 

(0.0433) 

FIGARCH 

(4.77) 

EGARCH 

(0.2130) 

EGARCH 

(0.0602) 

HAR OLSSQRT 

(2.44) 

HAR-CJ 

(36.58) 

TW 

(1.57) 

TW 

(0.33) 

Kernel 

(0.0406) 

Kernel 

(4.27) 

TW 

(0.2212) 

AFTER 

(0.0619) 

ALL OLSSQRT 

(2.35) 

Best-

Q0.05 

(33.75) 

Best-Q0.05 

(1.45) 

Best-Q0.05 

(0.32) 

FIGARCH 

(0.0433) 

FIGARCH 

(4.77) 

EGARCH 

(0.2130) 

EGARCH 

(0.0602) 

h=22 

GARCH OLSSQRT 

(2.50) 

Best-

Q0.05 

(38.49) 

EGARCH 

(1.75) 

EGARCH 

(0.39) 

Best-CER 

(0.0383) 

Best-

Sharpe 

(5.36) 

EGARCH 

(0.2247) 

EGARCH 

(0.0602) 

HAR OLSSQRT 

(2.75) 

Kernel 

(42.47) 

TW 

(2.01) 

TW 

(0.42) 

HAR-RSV 

(0.0312) 

HAR-RSV 

(3.52) 

OLSEXP 

(0.2329) 

OLSEXP 

(0.0663) 

ALL OLSSQRT 

(2.51) 

Best-

Q0.05 

(38.63) 

EGARCH 

(1.75) 

EGARCH 

(0.39) 

Best-CER 

(0.0383) 

Best-

Sharpe 

(5.36) 

EGARCH 

(0.2247) 

EGARCH 

(0.0602) 

Note. 1. The table presents the best performing model across all loss functions and combination types. 

2. GARCH, HAR and ALL denote the combinations derived from GARCH, HAR and all models 

respectively. 3. Values in bold denote that the corresponding model attains the best forecasting 

performance under the specific loss function. 4. Numbers in parentheses denote the value of the 

specific loss function. 
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4.8 Concluding Remarks 

 
Forecasting the volatility of energy prices is one of the most asked question in energy 

economics. Given the uncertainty of energy markets the issue of selecting a single 

model in all cases of volatility forecasting is quite complicated. A vast literature 

proposes a large number of single models, based on either GARCH-type or HAR-type 

models, while a limited number of researches proposes combination forecasts as a 

good way to improve volatility forecasting accuracy. 

In this chapter we investigated the benefits of combining forecasts using economic 

and risk management measures in the context of crude oil futures volatility, while 

their forecasting accuracy was compared with standard combination techniques 

generating 1-, 5- and 22-step ahead forecasts. The economic combination techniques 

are based on two portfolio loss functions, the CER and the Sharpe ratio, whilst a risk 

management loss function, the Smoothed-Q is also considered. Furthermore, we 

computed combinations based on HAR-type models (high-frequency data), 

combinations based on GARCH-type models (low-frequency data) and combinations 

based on both HAR and GARCH models. Lastly, we compared the forecasting ability 

of forecast combinations and single models in both statistical and economic terms. 

From a statistical point, the volatility models are evaluated using both symmetric and 

asymmetric loss functions. The results suggest that the square root transformed OLS 

model outperforms the other single and combination techniques under most statistical 

loss functions. However, considering the multi-step ahead forecasts, the economic 

Best-Q0.05 combination exhibits better forecasting performance for the 5-step ahead 

forecasts. Our results are even corroborated from the SPA and the MCS tests. It is 

worth noting that simple combinations indicate similar and sometimes worse 
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performance to the single models suggesting the use of more complex combination 

techniques for volatility prediction. This finding is consistent with the literature, for 

example Claessen and Mittnik (2002), Fuertes et al. (2009), Li et al. (2013) and Yang 

et al. (2015). However, our results suggest that a single model, the EGARCH model, 

exhibits often better forecasting performance than the combination techniques and 

models based on the high-frequency dataset. The superior performance of the 

EGARCH model can be attributed to the fact that it takes into consideration the 

asymmetric response of volatility to positive and negative returns. 

Regarding the combinations derived from economic and risk management loss 

functions, the examination of the economic loss functions results yields several useful 

conclusions. We summarize the results considering the combinations derived from the 

different model-types. Firstly, for the HAR combinations, there is no improvement to 

the economic gains under the economic combinations (except for one case), as more 

complex statistical techniques perform better lead to higher economic gains for all the 

examined horizons. Taking into consideration the GARCH combinations, the 

economic gains derived from the economic combinations, the Best-CER and the Best-

Sharpe, are significantly superior under the CER and the Sharpe loss functions for the 

1- and 22-step ahead forecasts. Surprisingly, for the 5-step ahead forecasting horizon, 

two single models, the FIGARCH and the EGARCH model outperform all the 

combination schemes. Finally, the economic combinations based on all models, are 

more accurate in statistical terms only for the 5-step ahead forecasting horizon. To 

this end, we conclude that although combining volatility forecasts leads to increased 

forecasting accuracy in both statistical and economic terms, economic combinations 

increase the economic gains for an investor only when low-frequency data are 

considered. 
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Chapter 5 

 

Conclusions and Suggestions for Further Work 
 

 

This thesis was primarily concerned with the development and application of new 

combination techniques in financial applications. The aim has been threefold: first to 

explore the existing methodologies to combine forecasts and underline the benefits 

derived from combination forecasts; second to use a large variety of combination 

techniques to optimally combine volatility forecasts and evaluate them through 

statistical and economic measures; and thirdly to develop an innovative methodology 

for optimally combine volatility forecasts based on economic loss functions. Although 

this thesis has dealt with a small number of the numerous issues derived from 

volatility forecasting, we have managed to establish some important results. This 

chapter draws together the evidence from the particular components of this study and 

provides some suggestion for future research. 

Chapter 2 of this thesis reviews the existing literature on combination forecasting in 

financial econometrics. The review concludes that combination forecasts achieve 

improved forecasting accuracy compared with their single counterparts and influence 

significantly financial decisions. In addition, a number of stylized facts have been 

reported in the literature concerning the combination forecasts properties. The most 

important is that combination forecasts reduce uncertainty risk, while they are more 

robust to unknown instabilities. As a result, a large variety of alternative combination 

techniques ranging from regression approaches to time-varying weights based on the 
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forecasting performance of the single models during a training period has been 

developed but there is no clear winner amongst different methodologies. The most 

exciting is that a simple average of forecasts is often reported as the best performing 

model for point forecasts. 

In Chapter 3 of this thesis, we use an exhaustive variety of combination techniques to 

optimally combine volatility forecasts of S&P500 index. Firstly, models based on 

daily, high-frequency and implied volatility data are used. We use all data types to the 

combination techniques as it is expected to add to the forecasting performance of the 

combinations. Secondly, we use various simple and more complex combination 

techniques, widely used in the literature, to predict the volatility of S&P500 index. 

Thirdly, we explore whether combination forecasts outperform the single models 

based on both statistical and economic loss functions. 

We find similar results for both statistical and economic evaluation. Combination 

forecasts improve volatility forecasting compared to single models. Using symmetric 

and asymmetric loss functions, the OLS-based schemes outperform the other single 

and combination models. Moreover, the tests for statistical significance assure their 

superior forecasting performance. Furthermore, we find that OLS-based schemes 

outperform again the rest models under the economic loss functions. To this end, the 

forecasts derived from regression model combinations exhibit superior forecasting 

performance in both statistical and economic terms. 

Although this finding is opposite to the combination literature for point forecasts that 

suggests the simple combinations as the best performing model, it is related to the 

findings of volatility combination forecasting. For example Fuertes et al. (2009) and  

Li et al. (2013) suggest the use of regression approaches to optimally combine 
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volatility forecasts in the context of stock market volatility. In these combinations, the 

optimal weights are updated daily and incorporate new different market 

microstructures that vary over time, while the regression-based forecasts account 

more properly for bias correction. Moreover, the combination of three sources of 

information, i.e. the combination of different information channels is more efficient 

than combining models based on the same dataset, as each volatility model reduces 

the “model uncertainty” and improves the combination forecast in both statistical and 

economic terms. On the contrary, the simple average does not take into consideration 

the forecasting error of each model and leads sometimes to increased errors as simple 

combinations do not account for the different properties of each volatility model. 

However, the results indicate that there is no clear winner across all loss functions, 

suggesting that different combination schemes are preferable based on the economic 

application to be used. 

Chapter 4 of this thesis is primarily concerned with the development of a new 

methodology for combining volatility forecasts through economic and risk 

management loss functions. Firstly, combinations based on two economic loss 

functions, widely used in the portfolio evaluation procedure (i.e. the CER and Sharpe 

ratio), and a risk management loss function (i.e. the Smoothed-Q) are used to combine 

volatility forecasts for crude oil futures prices. Their forecasting ability is compared to 

standard combination techniques. Secondly, daily and intraday data are used in this 

application, resulting in three combination schemes: GARCH combinations, HAR 

combinations and combinations based on both GARCH and HAR models. Thirdly, all 

the combinations and the single models are evaluated through a statistical and 

economic framework. 
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Under a statistical perspective, we find that more complex techniques, such as the 

regression approaches, outperform the single and other combinations for all the three 

combinations considered. Only a combination based on the risk management loss 

function, the Best-Q0.05 is found to exhibit a better performance in some cases. 

However, it is interesting to mention that some single models, such as the EGARCH 

model outperforms many combination schemes for longer forecast horizons. 

The empirical results of this study indicate that the economic combinations are more 

profitable when GARCH combinations or combinations based on all models are used. 

However, the economic combinations do not perform stable across different forecast 

horizons. The reported evidence points out the use for economic combination 

techniques for 1-step and 22-step ahead forecasts. This result is reinforced by the 

statistical significance of the economic gains during the examined period. We argue 

that combining volatility forecasts of various GARCH-type or all models generate 

higher gains in terms of CER and Sharpe ratio for 22-step ahead forecasts. 

Interestingly, the combinations based on a risk management loss function are not 

found to forecast volatility adequately for risk management applications. Turning to 

HAR combinations, the economic combinations do not exhibt a clear advantage, as 

statistical combinations are more robust in economic terms even if they are ranked 

among the best performers. These results are opposite to Ma et al. (2018d) who argue 

that there is no advantage to combine HAR-type models as the simple HAR models 

outperform their combinations in statistical and economic terms. Finally, the 

combination of two information channels increases the economic gains for an investor 

for longer forecasting horizons. We conclude that although it does worth combine 

volatility forecasts through economic loss functions (especially in the case of low-

frequency models) as there is a substantial improvement according to economic loss 
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functions, the results are not stable across different model-types and forecasting 

horizons. 

Several issues for further research arise from this thesis. Chapter 3 deals with the 

importance of economic evaluation in volatility forecasts combinations using a large 

variety of simple and more complex combination techniques. An alternative course of 

future research is to investigate whether there are economic gains from volatility 

forecasts under a multivariate modeling approach. For example, a series of studies 

including Ledoit et al. (2003), Bauwens et al. (2006), Laurent et al. (2012) amongst 

others compare the predictive ability of various multivariate models. However, there 

is no study that examines the economic gains of these models or their combinations. 

The development of new combination techniques based on economic and risk 

management loss functions is examined in chapter 4 of the thesis. The results 

indicated a relative improvement in economic terms for GARCH combinations and 

combinations based on all models. An interesting topic for future research would be to 

study applications where the new combination techniques will be implemented to 

financial economic problems. For example, the proposed economic volatility 

combination forecasts could be used for hedging risk. Furthermore, these 

methodologies can be used for measuring volatility of several asset types, e.g. 

currencies, interest rates, commodities, option prices. One more extension is to 

compare the performance of the new methods with alternative combination schemes 

that take into consideration different economic loss functions. To this end, an 

interesting question that arises from the empirical evidence of this thesis is whether a 

different economic loss function or a different combination scheme could achieve 

higher economic gains. 
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Table A.1: Statistical Evaluation under symmetric loss functions  

 

MAE 

  

 MSE   

  Loss function SPA Rank 

 Loss 

function SPA Rank 

GARCH 0.6242 (0.0000) 28  2.2469* (0.1930) 27 

EGARCH 0.6925 (0.0000) 30  2.0737* (0.6123) 20 

FIGARCH 0.6500 (0.0000) 29  2.5466* (0.0338) 30 

MIDAS-RV 0.5976 (0.0000) 26  2.1044* (0.5845) 22 

MIDAS-CPI 0.5965 (0.0000) 25  2.0631* (0.6909) 18 

MIDAS-IP 0.5885 (0.0000) 23  2.0442* (0.8093) 16 

ARMA 0.5590 (0.0000) 17  2.1565* (0.3947) 25 

HAR 0.5429 (0.0000) 11  2.1490* (0.4195) 24 

ARFIMA 0.5415 (0.0000) 10  2.2846* (0.1766) 28 

VIX 0.5349 (0.0000) 7  2.0006* (0.9526) 4 

Mean 0.5697 (0.0000) 22  2.0205* (0.9832) 6 

Geometric Mean 0.5542 (0.0000) 13  2.0351* (0.9390) 13 

MSFE 0.5552 (0.0000) 14  2.0369* (0.9409) 15 

OLSC-SQRT 0.4330* (0.3335) 3  2.0710* (0.6977) 19 

OLSNC-EXP 0.4283* (0.5617) 2  2.2203* (0.2991) 26 

NERLSC-SQRT 0.4279* (1.0000) 1  2.0007* (0.9915) 5 

NRLSC 0.4978 (0.0000) 4  1.9909* (0.9812) 3 

Kernel 0.5157 (0.0000) 6  2.3261* (0.1684) 29 

IMSFE 0.5654 (0.0000) 18  2.0313* (0.9374) 9 

Nonlinear 0.5671 (0.0000) 20  2.0323* (0.9291) 11 

TW 0.5374 (0.0000) 8  1.9831* (1.0000) 1 

Trimmed MSPE 0.5553 (0.0000) 16  2.0251* (0.9698) 7 

Harmonic Mean 0.5398 (0.0000) 9  2.0620* (0.8346) 17 

AFTER 0.5540 (0.0000) 12  2.1240* (0.5320) 23 

Shrinkage DMSFE 0.5553 (0.0000) 15  2.0365* (0.9368) 14 

Shrinkage OLSNC-EXP 0.6191 (0.0000) 27  2.0307* (0.8973) 8 

Shrinkage NRLSC 0.4984 (0.0000) 5  1.9906* (0.9798) 2 

Shrinkage IMSFE 0.5655 (0.0000) 19  2.0318* (0.9350) 10 

Shrinkage Nonlinear 0.5671 (0.0000) 21  2.0324* (0.9289) 12 

Shrinkage TW 0.5942 (0.0000) 24  2.1040* (0.5863) 21 

Note. 1. Values in bold denote that the corresponding model attains the best forecasting performance 

under the specific loss function. 2. Numbers in parentheses denote the p-value of the Hansen’s SPA 

test. The null hypothesis is that none of the models is better than the benchmark. The number of 

bootstrap replications to calculate the p-value is 10,000 and the block length is 2. The confidence level 

used is α=10%. 3. We use * to denote that the model belongs to 10% MCS. The number of bootstrap 

replications to calculate the p-value is 10,000 and the block length is 2. 4. The Shrinkage factor is set 

equal to d=0.50. However, we included to our calculations the values 0.25 and 1 and all gave us similar 

results and ranking. 5. EXP and SQRT denote the exponential and the square root transformation, 

respectively. 
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Table A.2: Statistical Evaluation under asymmetric loss functions 

  
HRLF (b=-1)  QLIKE  LINEX (α=0.5)  LINEX (α=1) 

 

Loss 

function 

SPA Rank  Loss 

function 

SPA Rank  Loss 

function 

SPA Rank  Loss 

function 

SPA Rank 

GARCH 0.3410 (0.0771) 25 
 

0.3598 (0.0001) 26 
 

0.2572 (0.3875) 28 
 

6.7130 (0.8289) 25 

EGARCH 0.3398 (0.1912) 24 
 

0.3755 (0.0000) 27 
 

0.2170 (0.4913) 23 
 

2.4278 (0.8362) 21 

FIGARCH 0.3984 (0.0187) 30 
 

0.4022 (0.0004) 30 
 

0.4404 (0.2153) 29 
 

33.5479 (0.4363) 29 

MIDAS-RV 0.3064* (0.4169) 20 
 

0.3267 (0.0932) 19 
 

0.2496 (0.4603) 27 
 

7.4104 (0.7477) 26 

MIDAS-CPI 0.3045* (0.4423) 17 
 

0.3306 (0.0770) 22 
 

0.2486 (0.4108) 26 
 

8.9119 (0.7082) 27 

MIDAS-IP 0.3025* (0.4534) 16 
 

0.3264 (0.1026) 18 
 

0.2068 (0.5283) 22 
 

5.1104 (0.8582) 24 

ARMA 0.3466 (0.0662) 27 
 

0.3568 (0.0011) 25 
 

0.1370 (0.7420) 12 
 

1.2870 (0.8758) 12 

HAR 0.3432 (0.0828) 26 
 

0.3471 (0.0068) 24 
 

0.1212 (0.7833) 7 
 

0.7029 (0.8729) 5 

ARFIMA 0.3795 (0.0464) 29 
 

0.3896 (0.0029) 29 
 

0.1566 (0.6743) 15 
 

3.0749 (0.8647) 22 

VIX 0.2960* (0.7098) 5 
 

0.3234 (0.0977) 15 
 

0.0881 (0.8528) 4 
 

0.3026 (0.9032) 3 

Mean 0.3017* (0.5481) 14 
 

0.3269 (0.0720) 20 
 

0.1427 (0.7312) 13 
 

1.4628 (0.8983) 13 

Geometric 

Mean 0.3025* (0.5392) 15 

 

0.3228 (0.0829) 14 

 

0.1273 (0.7682) 9 

 

1.0604 (0.9003) 8 

MSFE 0.2979* (0.5751) 9 
 

0.3161 (0.1618) 7 
 

0.1594 (0.6603) 20 
 

2.2119 (0.8806) 20 

OLSC-SQRT 0.2974* (0.3678) 7 
 

0.3035 (0.1724) 4 
 

0.0879* (0.9012) 3 
 

0.3355 (0.9287) 4 

OLSNC-EXP 0.3338* (0.1399) 23 
 

0.3248 (0.1196) 17 
 

0.0801* (1.0000) 1 
 

0.2149* (1.0000) 1 

NERLSC-SQRT 0.2828* (0.7352) 3 
 

0.2810* (1.0000) 1 
 

0.0822* (0.9588) 2 
 

0.2742 (0.9258) 2 

NRLSC 0.2809* (0.9386) 2 
 

0.2855* (0.5314) 2 
 

0.1210 (0.8052) 6 
 

1.2244 (0.9017) 10 

Kernel 0.3649* (0.0925) 28 
 

0.3761 (0.0172) 28 
 

0.6002 (0.1350) 30 
 

244.9816 (0.1540) 30 

IMSFE 0.2997* (0.5874) 10 
 

0.3206 (0.1271) 10 
 

0.1581 (0.6652) 16 
 

2.0124 (0.8841) 15 

Nonlinear 0.3002* (0.5773) 13 
 

0.3214 (0.1198) 13 
 

0.1595 (0.6503) 21 
 

2.0347 (0.8851) 17 

TW 0.2898* (0.7679) 4 
 

0.3059 (0.1371) 5 
 

0.1302 (0.7705) 11 
 

1.1236 (0.8840) 9 

Trimmed MSPE 0.2971* (0.5761) 6 
 

0.3162 (0.1631) 8 
 

0.1541 (0.6832) 14 
 

1.9477 (0.8815) 14 

Harmonic Mean 0.3063* (0.4502) 19 
 

0.3207 (0.0754) 11 
 

0.1147 (0.8095) 5 
 

0.7588 (0.8956) 7 

AFTER 0.3047* (0.5119) 18 
 

0.3235 (0.0935) 16 
 

0.2453 (0.4564) 25 
 

12.6978 (0.6494) 28 

Shrinkage 

DMSFE 0.2978* (0.5723) 8 

 

0.3161 (0.1591) 6 

 

0.1593 (0.6610) 19 

 

2.2014 (0.8850) 19 

Shrinkage 

OLSNC-EXP 0.3128* (0.3553) 22 

 

0.3441 (0.0084) 23 

 

0.1300 (0.7722) 10 

 

0.7264 (0.8616) 6 

Shrinkage 

NRLSC 0.2809* (1.0000) 1 

 

0.2857* (0.5226) 3 

 

0.1212 (0.8032) 8 

 

1.2271 (0.8963) 11 

Shrinkage 

IMSFE 0.2998* (0.5984) 11 

 

0.3206 (0.1287) 9 

 

0.1587 (0.6682) 17 

 

2.0492 (0.8871) 18 

Shrinkage 

Nonlinear 0.3002* (0.5773) 12 

 

0.3214 (0.1133) 12 

 

0.1593 (0.6475) 18 

 

2.0170 (0.8847) 16 

Shrinkage TW 0.3091* (0.4215) 21 
 

0.3301 (0.0555) 21 
 

0.2228 (0.4819) 24 
 

5.0024 (0.8565) 23 

Note. 1. Values in bold denote that the corresponding model has the lowest loss function under the 

specific criterion. 2. Numbers in parentheses denote the p-value of the Hansen’s SPA test. The null 

hypothesis is that none of the models is better than the benchmark. The number of bootstrap 

replications to calculate the p-value is 10,000 and the block length is 2. The confidence level used is 

α=10%. 3. We use * to denote that the model belongs to 10% MCS. The number of bootstrap 

replications to calculate the p-value is 10,000 and the block length is 2. 4. The Shrinkage factor is set 

equal to d=0.50. However, we included to our calculations the values 0.25 and 1 and all gave us similar 

results and ranking. 5. EXP and SQRT denote the exponential and the square root transformation 

respectively. 
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Table A.3: Economic Evaluation using VaR-based loss functions 

 

 
 

Q-loss (α=0.01) 
 

Smoothed-Q (α=0.01) 
 

MRC 

  

Percentage 

of 

violations 

 

Loss 

function Rank SPA 

 

Loss 

function Rank SPA 

 

Loss 

function Rank SPA 

GARCH 1.79% 
 

0.0325* 22 (0.1826) 
 

0.0324* 22 (0.1872) 
 

22.4777 28 (0.0000) 

EGARCH 1.13% 
 

0.0302* 5 (0.6675) 
 

0.0301* 5 (0.6666) 
 

23.5144 30 (0.0000) 

FIGARCH 2.19% 
 

0.0352 25 (0.0305) 
 

0.0351 25 (0.0287) 
 

23.3967 29 (0.0000) 

MIDAS-RV 1.39% 
 

0.0301* 3 (0.7512) 
 

0.0300* 3 (0.7595) 
 

21.2956 21 (0.0000) 

MIDAS-CPI 1.26% 
 

0.0301* 2 (0.7320) 
 

0.0300* 2 (0.7457) 
 

21.2388 19 (0.0000) 

MIDAS-IP 1.33% 
 

0.0302* 4 (0.7061) 
 

0.0301* 4 (0.7165) 
 

21.4918 23 (0.0000) 

ARMA 1.72% 
 

0.0328* 23 (0.1445) 
 

0.0327* 23 (0.1484) 
 

21.8463 24 (0.0000) 

HAR 2.12% 
 

0.0337* 24 (0.0776) 
 

0.0336* 24 (0.0765) 
 

22.1657 26 (0.0000) 

ARFIMA 2.45% 
 

0.0360 27 (0.0309) 
 

0.0359 27 (0.0304) 
 

22.2781 27 (0.0000) 

VIX 1.59% 
 

0.0313* 16 (0.2953) 
 

0.0312* 17 (0.3103) 
 

20.6856 7 (0.0000) 

Mean 1.39% 
 

0.0308* 13 (0.4358) 
 

0.0307* 13 (0.4485) 
 

21.3617 22 (0.0000) 

Geometric 

Mean 1.46% 

 

0.0313* 17 (0.2454) 

 

0.0312* 16 (0.2685) 

 

20.9900 16 (0.0000) 

MSFE 1.59% 
 

0.0309* 15 (0.3909) 
 

0.0308* 15 (0.4190) 
 

20.8104 11 (0.0000) 

OLSC-SQRT 3.45% 
 

0.0367 29 (0.0047) 
 

0.0365 29 (0.0072) 
 

20.0429 2 (0.0016) 

OLSNC-EXP 3.78% 
 

0.0379 30 (0.0047) 
 

0.0377 30 (0.0066) 
 

19.7969* 1 (1.0000) 

NERLSC-SQRT 3.58% 
 

0.0360 26 (0.0068) 
 

0.0357 26 (0.0106) 
 

20.3313 5 (0.0000) 

NRLSC 1.72% 
 

0.0314* 19 (0.2264) 
 

0.0313* 19 (0.2476) 
 

20.3056 4 (0.0000) 

Kernel 2.45% 
 

0.0365* 28 (0.0343) 
 

0.0363* 28 (0.0383) 
 

20.7194 8 (0.0000) 

IMSFE 1.52% 
 

0.0307* 12 (0.5081) 
 

0.0306* 12 (0.5334) 
 

20.9786 14 (0.0000) 

Nonlinear 1.52% 
 

0.0307* 10 (0.5221) 
 

0.0306* 10 (0.5361) 
 

21.0096 17 (0.0000) 

TW 1.66% 
 

0.0304* 6 (0.6493) 
 

0.0303* 6 (0.6758) 
 

20.7349 10 (0.0000) 

Trimmed 

MSPE 1.52% 

 

0.0306* 8 (0.5059) 

 

0.0305* 8 (0.5276) 

 

20.7302 9 (0.0000) 

Harmonic 

Mean 1.59% 

 

0.0318* 21 (0.1388) 

 

0.0317* 21 (0.1494) 

 

20.8635 13 (0.0000) 

AFTER 1.59% 
 

0.0316* 20 (0.1534) 
 

0.0316* 20 (0.1507) 
 

20.5734 6 (0.0000) 

Shrinkage 

DMSFE 1.59% 

 

0.0309* 14 (0.3942) 

 

0.0308* 14 (0.4152) 

 

20.8121 12 (0.0000) 

Shrinkage 

OLSNC-EXP 1.33% 
 

0.0295* 1 (1.0000) 
 

0.0295* 1 (1.0000) 

 

22.1492 25 (0.0000) 

Shrinkage 

NRLSC 1.66% 

 

0.0314* 18 (0.2235) 

 

0.0313* 18 (0.2341) 

 

20.0999 3 (0.0005) 

Shrinkage 

IMSFE 1.52% 

 

0.0307* 11 (0.5155) 

 

0.0306* 11 (0.5367) 

 

20.9791 15 (0.0000) 

Shrinkage 

Nonlinear 1.52% 

 

0.0307* 9 (0.5204) 

 

0.0306* 9 (0.5348) 

 

21.0109 18 (0.0000) 

Shrinkage TW 1.33% 
 

0.0306* 7 (0.5531) 
 

0.0305* 7 (0.5604) 
 

21.2751 20 (0.0000) 

Note. 1. Values in bold denote that the corresponding model has the lowest loss function under the 

specific criterion. 2. Numbers in parentheses denote the p-value of the Hansen’s SPA test. The null 

hypothesis is that none of the models is better than the benchmark. The number of bootstrap 

replications to calculate the p-value is 10,000 and the block length is 2. The confidence level used is 

α=10%. 3. We use * to denote that the model belongs to 10% MCS. The number of bootstrap 

replications to calculate the p-value is 10,000 and the block length is 2. 4. The Shrinkage factor is set 

equal to d=0.50. However, we included to our calculations the values 0.25 and 1 and all gave us similar 

results and ranking. 5. The Q-loss function and the Smoothed-Q loss function are calculated for VaR 

level α=0.01 and α=0.05. For the Smoothed-Q calculation we set the smoothness parameter δ=25. 6. 

EXP and SQRT denote the exponential and the square root transformation respectively. 
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Table A.4: Economic Evaluation using utility-based and option-based loss 

functions 

 

Utility (gamma=3)  Option criterion 

  

Loss 

function  Rank SPA 

 Loss 

function Rank SPA 

GARCH -0.0469 29 (0.0000)  -5.3618 29 (0.0259) 

EGARCH -0.0466 30 (0.0000)  -5.2546* 28 (0.0530) 

FIGARCH -0.0469 28 (0.0000)  -7.2089 30 (0.0223) 

MIDAS-RV -0.0476 15 (0.0000)  -1.1160* 22 (0.2724) 

MIDAS-CPI -0.0476 22 (0.0000)  -0.3262* 18 (0.4130) 

MIDAS-IP -0.0476 16 (0.0000)  -1.2064* 23 (0.2646) 

ARMA -0.0474 25 (0.0000)  -0.1558* 17 (0.3762) 

HAR -0.0478 10 (0.0000)  0.5415* 15 (0.5037) 

ARFIMA -0.0481 8 (0.0000)  0.4382* 16 (0.4719) 

VIX -0.0475 23 (0.0000)  -1.6965* 25 (0.2139) 

Mean -0.0475 24 (0.0000)  -1.7075 26 (0.1317) 

Geometric Mean -0.0477 14 (0.0000)  -0.8866* 20 (0.2346) 

MSFE -0.0478 11 (0.0000)  3.1154* 6 (0.9850) 

OLSC-SQRT -0.0511* 1 (1.0000)  0.9602* 14 (0.5044) 

OLSNC-EXP -0.0509 2 (0.0201)  -1.4282* 24 (0.2828) 

NERLSC-SQRT -0.0508 3 (0.0046)  1.0319* 13 (0.5074) 

NRLSC -0.0488 4 (0.0000)  3.6663* 3 (0.9913) 

Kernel -0.0482 6 (0.0000)  2.2968* 9 (0.7218) 

IMSFE -0.0476 17 (0.0000)  2.9738* 7 (0.8990) 

Nonlinear -0.0476 20 (0.0000)  1.3408* 11 (0.6491) 

TW -0.0481 7 (0.0000)  3.8251* 1 (1.0000) 

Trimmed MSPE -0.0478 13 (0.0000)  3.3575* 4 (0.9781) 

Harmonic Mean -0.0479 9 (0.0000)  -0.3709* 19 (0.3215) 

AFTER -0.0476 19 (0.0000)  1.4242* 10 (0.6770) 

Shrinkage DMSFE -0.0478 12 (0.0000)  3.1909* 5 (0.9862) 

Shrinkage OLSNC-

EXP -0.0471 27 (0.0000) 

 

-4.9923 27 (0.0574) 

Shrinkage NRLSC -0.0488 5 (0.0000)  3.7227* 2 (0.9988) 

Shrinkage IMSFE -0.0476 18 (0.0000)  2.4370* 8 (0.8292) 

Shrinkage Nonlinear -0.0476 21 (0.0000)  1.0944* 12 (0.5972) 

Shrinkage TW -0.0474 26 (0.0000)  -0.9579* 21 (0.2789) 
 

Note. 1. Values in bold denote that the corresponding model has the lowest loss function under the 

specific criterion. 2. Numbers in parentheses denote the p-value of the Hansen’s SPA test. The null 

hypothesis is that none of the models is better than the benchmark. The number of bootstrap 

replications to calculate the p-value is 10,000 and the block length is 2. The confidence level used is 

α=10%. 3. We use * to denote that the model belongs to 10% MCS. The number of bootstrap 

replications to calculate the p-value is 10,000 and the block length is 2. 4. The Shrinkage factor is set 

equal to d=0.50. However, we included to our calculations the values 0.25 and 1 and all gave us similar 

results and ranking. 5. The risk aversion parameter for the Utility function is set equal to 3. However, 

we included values ranging from 1 to 5 leading to similar results. 6. EXP and SQRT denote the 

exponential and the square root transformation respectively. 

 


