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Abstract

Time series are generated and stored at a vastly increasing rate in many indus-
trial and research applications, including the Web and the Internet of Things, public
utilities, finance, astronomy, biology, and many more. A significant portion concerns
geolocated time series, i.e., those generated at, or otherwise associated with specific lo-
cations. Although several works have focused on efficient time series similarity search,
there has been limited attention to the inherent challenge that geolocated time series
introduce for hybrid queries, i.e., queries that involve both spatial proximity and time
series similarity. Apart from traditional similarity search, we also consider the prob-
lem of detecting locally similar pairs and groups, called bundles, over co-evolving
time series. These are pairs or groups of subsequences whose values do not differ
by more than a predefined threshold for a number of consecutive timestamps. They
could represent potentially valuable, concurrent common local patterns and trends
among the time series. Time series visualization and visual analytics in general, is an-
other field that has drawn the attention of the scientific community. However, there
is a lack of efficient techniques for visual exploration and analysis of geolocated time
series. Finally, large-scale time series forecasting has attracted a significant amount

of interest, due to the highly complex nature of such data.

In this thesis, we efficiently process hybrid queries through a hybrid index that
we propose, called BTSR-tree. Furthermore, we address the problem of hybrid sim-
ilarity joins over such geolocated time series. We introduce both centralized and
MapReduce-based algorithms for performing such join operations using spatial-only,
time series-only, and hybrid indices. Then, we tackle the problem of pair and bun-
dle discovery over co-evolving time series, via a filter-verification technique that only
examines candidate matches at judiciously chosen checkpoints across time. In the
same line of work, we consider hybrid queries for retrieving geolocated time series
based on filters that combine spatial distance and time series local similarity. To
efficiently support such queries, we introduce the SBTSR-tree index, an extension
of BTSR-tree that further optimizes local similarity search. Additionally, we present
two approaches that rely on hybrid indices, allowing efficient map-based visual ex-
ploration and summarization of geolocated time series data. In particular, we use
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the BTSR-tree index and we introduce a new variant of the standard :SAX index,
called geo-iSAX. We define the structure of the new index and show how both hybrid
indices can be directly exploited to produce map-based visualizations of geolocated
time series at different levels of granularity. Finally, towards large-scale time series
forecasting, we introduce FML-kNN, a novel distributed processing framework for big
data that performs probabilistic classification and regression. The framework’s core
is consisted of a k-nearest neighbor joins algorithm which, contrary to similar ap-
proaches, is executed in a single distributed session and scales on very large volumes
of data of variable granularity and dimensionality.

Throughout this thesis, we experimentally and empirically evaluate our work us-
ing synthetic and real-world datasets from diverse domains, against baseline and
state-of-the-art existing methods, demonstrating the efficiency and superiority of our
approaches.



ITepixndn

YTic UEpES KOG, OE TOANES PLOUNYAVIXES O EQEUVNTIXES EQPAPUOYES (T, SLodixTuO
TV TEAYPATOV, 0o TPovop{a, owovouxd, Blooyia), dnuiovpyeiton xar anobnxedeton ye-
YaNog &yxog BedoPEVeV ypovooeledy. 'Eva onuaviixé TococTd auTOV ATOTEAOLY Ol
YEWXWEIXES YPOVOTELRES, DNAADY| EXElveES oL omoleg oyeTloVToL UE CUYXEXPLIEVES TOTIO-
Oeolec. Ta teleutala xpdvia, TANOOE EToTHHOVIXGY dpbpwy ueetd uedddoug avalrity-
ONC OUOLOTNTAS OE BEBOUEVA YPOVOGELNOY APNPOVTAC T YEWXWOEXT TOUC UTOCTICT), 1)
onola 0o emétpene UPpLOXd epwTruaTa, Bacloueva —exTOE amd TNV OUOLOTNTA GTO TEdlo
TOU YEOVOU— G TN YweXh EYYOTNTA TwV Xeovooelp®y. TTapdAAnha, evdlapépov Tapouctd-
Cel to mpdPANua eviomiopol LEUYapiidy xol OUddwY TOTUXE OUOLWY, CUV-EEENICOOUEVWY
KEOVOOELPMY. LUYXEXOUEVA, Ol OUADES UTEC ATOTENOUVTL OO XPOVOCELREC TWV OTO(-
0V ol TWéS o onoldnnote unoaxoloubic Toug BeV BLaPEPOLY TEPLOCHTERO MO €Vt
0wlEV xatdPAL. O eviomioud TETOLWY OUABWY UTOREL VoL PUVERGGEL YEHOULO XOLVAL TOTIL-
%4 potiBa xou tdoeig ot dedouéva ypovooelpnyv. Enlong, mAnfodpa enio tnuovixmy dpbenv
ETUXEVTPWOVETOL G TNV OTTIXOTTONON XU OTTIXT) AVANUGT] BEBOUEVWY Ypovooelpwy. H amo-
dotxn) oY) EEEREVVNCT YEWXWPLXWY YPOVOGELRWY, OUOC, deV €xel ueNeTnBel emopxC.
TéNog, n anodotxr) TedPAedn BeBOUEVLY KEOVOTEIROY UEYAANC XAiuaTac elvon €var axd-
un medlo €peuvac To omolo €xEL XEVTPIOEL TO EVOLAPEQOY TNG ETUO TNUOVIXNS XOWVOTNTAC,
AOYO TOV SLAPOROV IBLUTECOTATOV TOU CUYXEXPLUEVOLY TUTIOU DEBOUEVWV.

Y1 SwtplBr) auth, nopovaidlouye éva ufeldxd evpeThplo Ye to Gvouo BTSR-tree,
T0 omolo unopel amodoTixd vo amavtAoel LBEWWE epoTALNTY avalHTNONS OUOLOTNTOC.
Emnpoctétog, emxevipmvouaote 0To TeoPANUA ToV UPELOXW)Y CUVOECEWY OUOLOTNTOC
o€ OEDOUEVA YEWYWEWXWY Yeovooelpwy. T tnv eniluoy| tou, npotelvouue xevtoiolc
xan xataveunuévous anyoplBuoug Poaciopévoug otn wébodo MapReduce, pe tn yerion
LBEWBIXMOY xou un eupeTNElwY. XTN CUVEYELW, OYETXA UE TO TEOBANUL evTomiopol Leu-
YOPUOY XL OUGBWY TOTUXE OUOLWY CUV-EEENLOCOUEVWY YEOVOCELORY, TEOTEVOUUE [ULoL
uébodo gurtpaplopatoc-etanfeuone, 1 onolo EMXEVIPWVETAUL O CUYXEXPWEVA onueia
ENEYYOL OTO TEBlO TOU YEOVOL, emitaryxOvovTag T Blodxaoto. IlapdhAnia, npoteivouue
ueBoBoLC amdvTNoNG LPEWOXOY EPOTNUATOY TOTULXNC OUOLOTNTAS OE DEDOUEVA YEWYWEL-
AWV (POVOCELRMV UeYAINOL Oyxou. [N TNV UTOC TARIEN TETOLWY EPWTNUATOY, ELOSYOUUE
wo eméxtaot tou eupetneiov BTSR-tree, ue to 6voua SBTSR-tree, to onolo BerticTo-
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rotel v Pacioyévn oe o) ogoldtTnTa avalTNoy. LT CUVEXELX, ToEoLGLILoUUE BUO
npooceyyloelg Pacioyéveg oe LPELWOKE EUPETAPLY, OL OTOlEC EMUTEENOUY TNV ATOBOTIXN
e€epelVNOT| DEDOUEVWYV YEOYMPLXWY YPOVOTELRMY UEYSIAOLU OYXOU UE TN XENON ONTLXO-
rotrjoewy ot xaeTn. ['a Ty Tpdtn, Yenoipwonololue to npoavagepdév LPELWOLXS EVPETHELO
BTSR-tree. H 8e0tepn mpocéyyion PBacileton o€ yiar eMEXTAGT, TOU UTHEYOVTOS EVRETN-
elou ypovooelpdy 1SAX, e to dvopa geo-iSAX. Yuyxexpiuéva, nopovoldlouue T doun
Tou VEOU eupeTnpiou xou ueBddoUE amodoTIXC o TIXOTONGTE TETOLWY BEdOoPEVLV. TEéNOC,
010 Moo TNE TEOPBNEPNS BEDOUEVOV YEOVOGELDY UEYANNE XAaTag, Tapouctdlou-
UE éva TAPAANNAO xan xatoveunuévo mhaiolo enelepyosiac ye to ovopa FML-kENN, to
onolo exteel anodoTXd xaTryoplonolinon xou ToAvdEouNncT. O xevtpindg oy oelbude
Tou mhactou elvan Poolouévoc ot pébodo cuvdéoewv k-mAnolEoTEpWY YEITOVWV Xou
unopel vo exteNec el oE ol TUPdAANAY cuvedplo —oe avtibeon ue tapouotes uebodouc—,
EMTEETOVTAC, ETOL, TNV EXTENECT] OE BEBOUEVA UEYANOU OYXOoU, Blapdpwv Pobucdv Ne-
TTOUEQELAC XL DLOC TATIXOTNTAC.

‘OXot ot any6ptbuor xou uéBodol mou mapouctaloviar oTny dtelr) auvty adlolo-
YOUVTOL TELRAUUATIXG XOU EUTELQXAL, UE T1) XENOY CUVOETIXDV 1) BEBOUEVWV TAEYUATIXOU
x6oyuou. HoapdAAnka, cuyxpivovtan pe Booixée, 1 undpyovoes pebddoug auyunc (state-
of-the-art), anodewviovtog Ty uTEpoYR Toug xou EmPePatdhvovtos TNV anodoTIXGTNTA
Toug.
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Chapter 1

Introduction

1.1 Concept and Motivation

Time series data is a treasure trove for a variety of mining and monitoring appli-
cations both in industry and in academia, while a rapidly increasing bulk of such data
is also generated on the Web and the Internet of Things. Time series can represent
various types of measurements, such as user check-ins at various Points of Interest
(Pols), energy consumption in smart buildings, particle concentration measured by
air pollution sensors, etc. More formally, a time series is a time-ordered sequence
of values. A real-world example of two time series representing the total per-hour
water consumption during a specific day of two separate regions within a city, is
illustrated in Figure 1.1. Tasks such as exploring and mining time series data are
highly important for discovering trends or patterns and extracting useful insights
from such phenomena, and have attracted extensive research interest over the last

years | , , , ) ) J.
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6000} ' i E '
3 : :
= 4000 5 5
2000 : :
0 |
0 5 10 15 20
Hour

Figure 1.1: Water consumption-related time series.



1.1. Concept and Motivation

As an example of time series exploration, consider a large set of daily water con-
sumption time series of each household within a region of a city, measured per hour.
Given a new time series (e.g., dark shaded line in Figure 1.1), one could require to
obtain the most similar one from the dataset (e.g., line shaded line in Figure 1.1),
to detect days of similar consumption. However, looping over all time series in the
dataset and comparing similarities is rather time consuming. To speed things up, we
could build an index using all the time series in the dataset and then perform a simi-
larity query on it. Several approaches have been proposed for efficiently indexing large
amounts of time series data. One well-studied family of approaches includes wavelet-
based methods | |, which rely on Discrete Wavelet Transform | | to reduce
the dimensionality of time series and generate an index using the coefficients of the
transformed sequences. Another line of work employs a Symbolic Aggregate Approxi-
mation (SAX) representation of time series | |, introducing a series of indices,
such as iSAX | ], iISAX 2.0 | |, iISAX2+ | |, and ADS+ | ]

However, to the best of our knowledge, none of the existing works so far has
considered the specific case of geolocated time series (i.e., produced at, or otherwise
associated with, specific locations). Formally, geolocated time series can be defined
as follows.

Definition 1 (Geolocated Time Series). A time series is a time-ordered sequence
of values T = {v1,...,v,}, where v; is the value at the i-th time point and w is the
length of the series. A time series is geolocated if it is also characterized by a location,
denoted by T.loc. Assuming a 2-dimensional space, (T.loc,,T.loc,) refer to the (z,y)
coordinates of T"’s location.

Figure 1.2 depicts a set of geolocated time series on a map. Geolocated time
series can be found in various domains and applications. For instance, they can be

Figure 1.2: A set of geolocated time series.
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used to represent, analyze and forecast water consumption measured by smart meters
installed in urban households | |. Analyzing such time series can provide valu-
able insights regarding trends and patterns of consumer behavior in daily life. These
results can then be used for customer segmentation, targeted marketing, planning fu-
ture network upgrades, forecasting and balancing water demand, as well as planning
and prioritizing interventions that can guide consumers towards more sensible water
use. Similarly, check-ins in geosocial networks can also be modeled as geolocated time
series. Analysis results can indicate nearby venues with similar frequency patterns,
which may be used for social recommendations according to time, place, activity, etc.
Other use cases can be found in other domains, such as in geomarketing or mobile
advertisement, where geolocated time series may represent the number of visitors or

the revenue generated at a certain location across time.

All aforementioned indices aim at efficiently supporting similarity search on time
series data, based on similarity measures such as the Fuclidean distance and Dynamic
Time Warping (DTW); in case that the analyzed time series are associated with a
spatial attribute and issued queries involve spatial filters, these need to be treated in-
dependently. As an example, given the set shown in Figure 1.2 and a query geolocated
time series, one could request all similar time series in the time domain that are also
spatially close within a given range, as illustrated in Figure 1.3 (i.e., we search inside
the red circle and the query geolocated time series is shaded green, while the results
are blue). Thus, for such hybrid queries employing both types of predicates, this im-
plies evaluating each predicate separately. Other examples of hybrid queries involve
retrieving the top-k spatially closest geolocated time series that are also similar in
the time series domain, or vice versa (i.e., top-k most similar within a given range).

Finally, a special type of such a query is the hybrid similarity join, where, given two

Figure 1.3: A query on geolocated time series.
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sets of geolocated time series, it retrieves all possible spatially close pairs that are
also similar in the time series domain. Of course, in all the above cases, due to the
rather complex nature of time series data and in conjunction with the extra spatial
characteristics, such analysis tasks can be a rather slow and cumbersome procedure,
as the datasets get larger.

As mentioned, most research efforts on time series focus on similarity measures
such as the Euclidean distance and dynamic time warping. These are globally cal-
culated, i.e., across the entire length of time series. In this thesis, we introduce the
measure of local similarity, where we consider as similar, time series whose values
do not differ by more than e for at least o consecutive timestamps. Based on this
local similarity, and given a set of co-evolving (i.e., time aligned) time series, we
tackle the problem of detecting groups, called bundles. These are groups of locally
similar subsequences that could indicate common local patterns and trends. Hybrid
local similarity search on geolocated time series data is also of particular interest.
For example, considering Figure 1.3, one could request all locally similar time series
within that area.

Extracting insights, trends and patterns from large geolocated time series datasets
can be significantly facilitated by map-based visualizations of summarized time se-
ries data. For instance, considering the scenario of water consumption measured by
smart meters installed in urban households, such visualizations could reveal which
type of consumption patterns are most frequently observed among consumers in a
certain area, or what the spatial distribution of sales for a certain product looks like.
However, the inherently complex nature of time series, combined with the extremely
large volumes of such datasets that have millions or billions of geolocated time series,
incommodes their management, analysis and exploration. In particular, visual explo-
ration of geolocated time series needs to process the required information efficiently,
while the user interacts with the application. For example, whenever the user zooms
in or scrolls the map, visual analytics and aggregates should be computed on-the-fly,
identifying the predominant patterns in the time series and their spatial distribution
within the actual map area.

Forecasting time series is crucially useful in various applications, such as resource
demand management (e.g., water, electricity, natural gas), stock market and supply
demand forecasting (e.g., in super markets). Applying forecasting simultaneously on
sets of time series can be a crucially useful task in such applications, where multiple
forecasts should be available as soon as possible. Depending on the dataset (e.g., size,
time series value heterogeneity), this can be a rather complex and computationally
intensive task, due to the high dimensionality and usual uncertainty in such data. In
this thesis, we focus on large scale, simultaneous, distributed time series forecasting,
that enables such analysis tasks on very large sets of time series (i.e., tens of millions).
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1.2 Contributions

In the following, we provide details regarding all the contributions of this thesis
on the above challenges.

1.2.1 Hybrid Indexing of Geolocated Time Series.

As mentioned, due to the rather complex nature of time series data, and con-
sidering the extra spatial characteristics, executing hybrid similarity search queries
can be a rather slow and cumbersome procedure. To make such applications more
efficient and scalable, geolocated time series need to be appropriately indexed to al-
low queries based on both spatial proximity and time series similarity. In this thesis,
we introduce a hybrid index, called T'SR-tree, which extends the standard R-tree by
introducing bounds for the time series indexed at each node. These bounds follow a
similar intuition to the Minimum Bounding Rectangles (MBR) of the R-tree, enclos-
ing all the time series contained within a node. This way, the node accesses during
query evaluation are reduced, while the search space in both the spatial and the
time series domain is pruned. We also present an optimized version, the BTSR-tree,
which uses tighter bounds by bundling together similar time series in each node. We
describe how these indices can be used to efficiently evaluate different variants of
hybrid queries combining spatial and time series filtering or ranking.

In the same line of work, we introduce efficient methods for applying hybrid
similarity join on very large geolocated time series datasets. A hybrid similarity join
query aims to identify all pairs between the two datasets qualifying to the criteria of
spatial proximity and time series similarity. Clearly, performing a pairwise comparison
among all pairs of objects in the two datasets is not an option when their size is large
(i.e., millions of time series, each with several thousand data points or more). Hence,
indexing them is indispensable for efficient processing of such queries. In this work,
we take advantage of the BTSR-tree’s hybrid pruning potential, to deliver a more
efficient and faster hybrid similarity join evaluation compared to other, adapted,
state-of-the-art indices. However, this centralized approach has certain limitations,
as it cannot process queries on larger datasets. Hence, we further suggest a space-
driven data partitioning scheme that enables a parallel and distributed approach for
hybrid similarity joins.

In summary, in the fields of hybrid indexing and querying on geolocated time
series, our work makes the following contributions:

e We propose the TSR-tree, a hybrid index for geolocated time series, extend-
ing the spatial R-tree and augmenting each node with appropriate time series
bounds.
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e We further optimize the TSR-tree to derive a more efficient variant, the BTSR-
tree, that clusters the time series of each subtree to derive and maintain tighter
bounds for pruning.

e We address the problem of similarity search for geolocated time series, via
hybrid boolean or top-k queries combining both spatial proximity and time

series similarity.

e We adapt state-of-the-art indices (including the BTSR-tree index) for hybrid
similarity join over geolocated time series data in centralized settings and pro-
pose traversal methods that can prune the search space and return answers
without false misses.

e We suggest a space-driven partitioning method to distribute large datasets in
cluster infrastructures, thus enabling faster, in-parallel evaluation of smaller
similarity join tasks.

e We experimentally validate our proposed approach using real-world datasets
from different application use cases, showing that our hybrid indices can effec-
tively allow simultaneous pruning of the search space in both spatial and time
series domains, significantly reducing the required number of node accesses and

execution time.

The above results are published at the International Conference on Advances in
Geographic Information Systems (SIGSPATIAL) 2017 | | and 2018 | .

1.2.2 Visual Exploration of Geolocated Time Series.

In this thesis, we propose two geolocated time series summarization approaches
for visual exploration. These are supported and driven by two hybrid indices (i.e.,
the BTSR-tree and a hybrid variant of iSAX index, called geo-iSAX). This way,
the result computation is sped up, providing efficient exploration of geolocated time
series data. The summarization approaches consist of a spatial and a time series
summary that jointly facilitate knowledge extraction and insight gaining. To the
best of our knowledge, this is the first work that considers visual exploration and
summarization of geolocated time series. In brief, our main contributions on this field

are the following:

e We suggest an adapted variant of the BTSR-tree index, as well as a novel
algorithm for its traversal in order to quickly retrieve summaries of geolocated

time series within a given spatial area.
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e We propose a hybrid variant of the iSAX index, called geo-iSAX, which com-
bines time series with spatial information within its nodes. Based on that, we
describe a novel traversal algorithm for geo-iSAX that enables fast timebox (i.e.,
a rectangle in the time series domain) search by performing efficient pruning,
while avoiding false negatives.

e We exemplify the proposed visualization methods with two use cases based
on real-world datasets. In addition, we empirically evaluate the performance
of our summarization methods, confirming their low execution time against a

large synthetic dataset of geolocated time series.

A preliminary version of the above results appears at the BigVis workshop |
The complete work is published at the Elsevier Big Data Research journal | |
in 2019.

1.2.3 Local Similarity Search.

Towards the efficient detection of bundles of locally similar co-evolving time se-
ries, we first present a baseline algorithm that performs a sweep line scan across
all timestamps to identify matches. Then, we propose a filter-verification technique
that only examines candidate matches at judiciously chosen checkpoints across time.
Specifically, we introduce two block scanning algorithms for discovering local pairs
and groups respectively, which leverage the potential of checkpoints to aggressively
prune the search space.

In the same line of work, we tackle the problem of similarity search on geolocated
time series data, using local similarity. Our approach for hybrid search over geolo-
cated time series using the BTSR-tree supports only global geolocated time series
similarity. Such hybrid queries involving local similarity can also be evaluated using
the BTSR-tree index. We first present a baseline method employing a sweep-line al-
gorithm to check for local similarity, and then describe how this can be optimized by
using appropriately placed checkpoints, based on the local similarity score threshold
specified by the query, in order to skip unnecessary comparisons. Despite the fact
that this saves some computations, the resulting time savings are relatively small,
since the number of index nodes that need to be probed is not significantly reduced.
To overcome this problem, we introduce an improved version of the BTSR-tree index
called SBTSR-tree, which is based on temporally segmenting the time series bounds
within each node and deriving tighter bounds per segment. Once the time series
bounds in each node become more fine-grained, pruning the search space for local

similarity queries proves much more effective.
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Our main contributions on pair/bundle discovery and local similarity search can

be summarized as follows:

e We introduce the problems of local pair and bundle discovery over co-evolving

time series.

e We suggest an aggressive checkpoint-based pruning method that drastically
reduces the candidate pairs and bundles that need to be verified, significantly

improving performance.

e We conduct an extensive experimental evaluation using both real-world and
synthetic time series, showing that our algorithms outperform the respective
sweep line baselines.

e We extend our previous work on hybrid queries for geolocated time series to
support local time series similarity. We consider both range and top-k queries,
including combined criteria for spatial distance and local time series distance.

e We present how such queries can be answered efficiently exploiting the BTSR-tree

index.

e To achieve lower execution time by further reducing node accesses, we propose
an enhanced variant of BTSR-tree, called SBTSR-tree, which additionally em-
ploys temporal segmentation in each node to derive tighter, more fine-grained

time series bounds.

e We experimentally evaluate our methods using real-world datasets from differ-
ent application domains, showing that BTSR-tree can efficiently handle hybrid
queries under local similarity search, while SBTSR-tree achieves even higher
performance due to the additional temporal segmentation.

The above results are published at the 16th International Symposium on Spatial
and Temporal Databases (SSTD) 2019 | | and at the International Confer-
ence on Advances in Geographic Information Systems (SIGSPATIAL) 2019 | |.

1.2.4 Scalable Time Series Forecasting.

To support large scale, simultaneous time series forecasting, we introduce a frame-
work for scalable data analysis on Big Data collections, named FML-kNN (i.e., Flink
Machine Learning k-Nearest Neighbors). The framework implements a probabilistic
classifier and a regressor. Its core algorithm is an extension of F-zkNN | ],

8
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which is built upon an optimized version of the H-zkNNJ | | distributed ap-
proximate kNN join algorithm. Finally, we demonstrate the framework’s capabilities
through a large scale time series forecasting use-case on a large real-world dataset of
hourly water consumption per household within a city.

The overall contributions of our work on FML-kKNN are the following:

e We propose a novel, easily extensible distributed processing framework that
performs probabilistic classification and regression using kNN join.

e The framework operates in a single distributed session, saving I/O and com-
munication resources. Similar approaches require three distributed sessions.

e We present a detailed experimental and comparative evaluation with similar
approaches and exhibit our framework’s efficiency in terms of scalability and
wall-clock completion time.

e We conduct experiments on two real-world cases using water consumption re-
lated datasets and extract useful knowledge and insights towards the induction

of more efficient water use.

A preliminary version of these results appears at the 2015 IEEE International
Conference on Big Data (BigData) | |. The complete work is published at the
Springer Journal of Big Data | | in 2018.

1.3 Organization

The rest of this thesis is structured as follows:

Chapter 2 surveys the related work in the field of time series indexing, querying,
exploration and similarity search, as well as scalable kNN methods and machine
learning.

Chapter 3 presents our hybrid BTSR-tree index, that indexes geolocated time series
both in the spatial and in the time series domain.

Chapter 4 extends the work of Chapter 3, introducing a variety of hybrid queries
that can be processed using the BTSR-tree index.

Chapter 5 considers an efficient exploration on large geolocated time series data,
using hybrid indexing.

Chapter 6 introduces the pair and bundle discovery on large co-evolving time series
datasets based on local similarity. It also presents a new collection of hybrid
local similarity search queries, using hybrid indexing.



1.3. Organization

Chapter 7 considers scalable kNN join and presents our FML-ENN framework for
classification and regression on Big Data.

Chapter 8 concludes this thesis and presents future work directions.

10



Chapter 2

State of the Art

In this chapter, we present and describe all the state-of-the-art methods related to
the challenges tackled in this thesis. Time series management, mining and exploration
have many applications across several industrial and scientific domains. Due to the
complex nature of time series data, these tasks have attracted a lot of academic
and research interest. Furthermore, with the ubiquitous generation of information
governing more and more aspects of human life, applying efficient analysis tasks on
time series sets that fall within the Big Data realm, is a demanding task of increasing
scientific and industrial importance. As a result, there is a plethora of methods in the
literature, that:

e Apply various techniques to improve the management of large time series datasets.
e Facilitate querying and extracting insightful information from such datasets.

e Enable their efficient exploration.

In the following sections we outline related and state-of-the-art work on the above
fields. Specifically, in Section 2.1, we discuss existing approaches for indexing, query-
ing and exploring of time series and other types of data. Finally, Section 2.2, presents
existing scalable approaches on kNN and kNN join, as well as real-world applications

leveraging their potential.

2.1 Time Series Indexing and Exploration

This section presents state-of-the-art time series, spatial and spatio-textual index-
ing approaches, as well as efficient query algorithms on such indices. The supported
queries include similarity search, subsequence matching, kNN, top-k£ and join. We

also outline important work on time series clustering and the discovery of movement
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Figure 2.1: SAX representation of a time series.

patterns in trajectories, which can be considered as time series in the spatial domain.

Finally, we demonstrate existing outstanding work on time series visual exploration.

2.1.1 Indexing and Similarity Search

State-of-the-art approaches for time series indexing comprise methods based on
the Symbolic Aggregate Approximation (SAX) representation | |, that pro-
duces a multi-resolution summary of a time series, quantized on the v-axis. It is de-
rived from the Piecewise Aggregate Approximation (PAA) | , |, which
segments a time series on the t-axis and considers a per-segment average value, thus
reducing its length. As exemplified in Figure 2.1, a time series T5 is transformed to
a PAA representation of word-length w=3 with real-valued coefficients (the horizon-
tal red bars). To get a SAX representation for a time series, these coefficients are
discretized along the v-axis using breakpoints (shown with dashed lines) assuming a
N(0,1) Gaussian distribution that enables generation of equi-probable symbols for
a given cardinality (b = 4 symbols are used in this example). Interestingly, by using
bitwise representations for these symbols, coarser SAX values can be obtained from
more refined ones by simply ignoring trailing bits. Importantly, the Euclidean dis-
tance between SAX representations of two time series is guaranteed to be a lower
bound with respect to the Euclidean distance over the original time series. Formally,
for two time series T, 7" of equal length n using their respective SAX words T, T},
of size w, it holds that:

n

distSAX(Tw,T;U):,/g Sty t) < | S (T — T 0y)? (2.1)
7=1

i=1
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Figure 2.2: {SAX index over time series.

where d(t;,1}) is the distance between symbols at the j-th position of each SAX
word. Comparing :SAX words of different cardinality is possible by promoting the
1SAX representation of lower cardinality to that of the larger, as the lower bound in
Equation 2.1 still holds.

The first attempt to leverage the potential of the SAX was presented in | ],
introducing the indexable Symbolic Aggregate Approximation (iISAX), capable of a
multi-resolution representation for time series. Considering a set of time series, an
iSAX index | | can be built as illustrated in Figure 2.2. The root node captures
the complete :SAX space. It does not contain any SAX words, it only points to
its children nodes (in the worst case, their number is 2w). Each leaf has a pointer
to a disk file containing the raw time series that it represents. The leaf itself also
stores the :{SAX word of highest cardinality among these time series. An internal
node designates a split in SAX space and is created when the number of time series
contained by a leaf node exceeds a fixed capacity M. This split is binary and is made
at a given position j = 1..w of the SAX word using a round-robin policy, so it always
yields two children that differ on their j-th symbol while replicating the rest from
their parent node. In essence, the SAX space represented by every node fully contains
the union of the SAX spaces of its subtree.

Time series indices can be leveraged to efficiently compute similarity search queries.
Similarity search is a thoroughly researched problem | |, where given a query
time series, we seek to find similar time series within a dataset. iSAX can answer
similarity search queries by simply traversing the tree, looking for a leaf node having
the same i{SAX word as the query. The respective raw times series are fetched from
disk and a sequential scan identifies those matching with ¢. The iSAX index was
further extended to iSAX 2.0 in | | by enabling bulk loading of time series
data. Its next version is the iISAX2+ index | |, which handles better the ex-
pensive I/O operations caused by the aggressive node splitting while building the
index. The ADS+ index | | is another extension of iSAX, which overcomes the
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still significantly expensive index build time by adaptively building the index while
processing the workload of queries issued by the user. Recently, the ULISSE index
was proposed | |, which is the first index that can answer similarity search queries
of variable length. A comprehensive overview and comparison of the time series in-
dexing approaches based on the SAX representation is presented in | |. Finally,
other indexing methods based on the SAX representation are Coconut | ],
DPiSAX | |, and ParlS | |-

Closely related to similarity search, is subsequence matching, for which many ap-
proaches have been proposed. In this problem, a query subsequence is provided and
the goal is to identify matches of this subsequence across one or more time series,
typically of large length. The UCR suite | | offers a framework comprising
four different optimizations regarding subsequence similarity search. In computing
full-similarity-join over large collections of time series, i.e., to detect for each pos-
sible subsequence its nearest neighbor, the matrix profile | | keeps track of
Euclidean distances among each pair within a similarity join set (i.e., a set contain-
ing pairs of each subsequence with its nearest neighbor). Identifying similar subse-
quences between time series also indicates some correlation between them. Several
approaches compute pairwise statistics (e.g., Pearson correlation, beta values) espe-
cially in streaming time series | , , |. There are also works concerning
co-evolving time series data, either towards detecting and correcting missing values
[ | or mining typical patterns and points of variation to achieve a meaningful
segmentation of large time series | ]

Earlier approaches towards indexing time series data were based on leveraging
multi-resolution representations. For instance, the discrete wavelet transform | |

is used in | | to gradually reduce the dimensionality of time series data via the
Haar wavelet | | and generate an index using the coefficients of the transformed
sequences. In | |, it is further observed that, bi-orthonormal wavelets can also

be used for efficient similarity search over wavelet-indexed time series data, demon-
strating several cases that outperform the Haar wavelet in terms of precision and
performance. In addition, an alternative approach to the k-nearest neighbor search
over time series data is introduced in | |. The proposed method accesses the
coefficients of Haar-wavelet-transformed time series through a sequential scan over

step-wise increasing resolutions.

2.1.2 Spatial Join Queries

Spatial join is a popular, yet computational expensive type of query. Given two
datasets, a spatial join seeks to find all pairs of objects spatially located within a dis-
tance less than a given threshold. To efficiently compute spatial join, several methods
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have been proposed, often based on the R-tree family of indices | , ].
Recall that an R-tree organizes a hierarchy of nested d-dimensional rectangles. Each
node corresponds to a disk page and represents the MBR of its children or, for leaf
nodes, the MBR of its contained geometries. The number of entries per node (ex-
cluding the root) is between a lower bound m and a maximum capacity M. Query
execution in R-trees starts from the root. MBRs in any visited node are tested for
intersection against a search region. Qualifying entries are recursively visited until
the leaf level or until no further overlaps are found. Several paths may be probed,
because multiple sibling entries could overlap with the search region.

The spatial join problem over R-trees was first introduced in | |. In this
work, the authors present a first simple approach as a baseline, which is subsequently
tuned and optimized in terms of CPU and I/O cost. Specifically, they examine two
basic approaches. The first restricts the search space while joining two nodes, by
only considering children that intersect the parent nodes’ common area. The second
approach sorts the entries according to their spatial location and uses a plane-sweep
algorithm to compute the desired pairs of intersecting entries. Multiway spatial join
[ | generalizes search over more than two R-trees, by modeling the problem as
a Constraint Satisfaction Problem (CSP) and employing CSP algorithms for its pro-
cessing. As a note, a CSP problem requires its solution to be within some limitations,
consisting of a finite variable set, a domain set and a finite constraint set. Finally, in
[ |, the authors employ R-tree-based top-k spatial join in data blocks ordered
by an objective score, to retrieve k pairs of objects with highest score.

Our work on geolocated time series similarity join queries is reminiscent of related
approaches in spatio-textual search. Spatio-textual join identifies objects that are
both spatially and textually close. In particular, the algorithm proposed in | |
uses a spatial partitioning in conjunction with spatial join over R-trees in order to
batch process such queries. MapReduce-based methods in | | resolve spatio-
textual join on spatially partitioned data. However, it should be stressed that time
series information is quite distinct from documents or keywords used in those works
and certainly requires a totally different processing paradigm. To the best of our
knowledge, ours is the first approach for processing similarity join on geolocated time
series data.

2.1.3 Spatio-Textual Indices

There is an increasing amount of spatio-textual objects, e.g., Points of Interest
(Pols) with textual descriptions, geotagged tweets or posts in social media. This
has motivated research on hybrid spatial-keyword queries combining location-based
predicates with keyword search. Main query types include | |:
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e The Boolean Range Query, which retrieves all objects that contain a given
set of keywords and are located within a specified spatial range.

e The Boolean kNN Query, which returns the k nearest objects to a specific
location and contain the given keywords.

e The Top-k kNN Query, which finds the top-k objects according to an objec-
tive function that assigns hybrid scores to objects based on both their keyword
similarity and spatial proximity to the query object.

To evaluate such queries efficiently, the main idea is to construct hybrid index
structures that simultaneously partition the data in both dimensions, spatial and
textual. Essentially, this implies combining a spatial index structure (e.g., R-tree,
Quadtree, Space-Filling Curve) with a textual index (e.g., inverted file, signature
file). Depending on their form, the resulting variants can be characterized either
as spatial-first or textual-first indices | |. One of the most fundamental and
characteristic ones is the IR-tree | ) |, which extends the R-tree by
augmenting the contents of each node with a pointer to an inverted file indexing
terms and documents contained in its sub-tree. Several other hybrid spatio-textual
indices extending the R-tree (or R*-tree) have been proposed, such as the IR?-tree
[ |, the KR*-Tree | |, SKI | | and S21I | |, while methods
based on space filling curves include SF2I | | and SFC-QUAD | |-

2.1.4 Time series clustering

Clustering of time series detects groups of similar time series in a dataset, in
respect to a specific similarity measure (e.g., Euclidean distance). A special group
of such methods regards the discovery of clusters of moving objects, in particular a
type of movement patterns that is referred to as flocks | |. A flock is a group of
at least m objects moving together within a circular disk of diameter € for at least ¢§
consecutive timestamps. Finding an exact flock is NP-hard, hence this work suggests
an approximate solution to find the maximal flock from a set of trajectories using
computational geometry concepts. In | |, another approximate solution for
detecting all flocks is based on a skip-quadtree that indexes sub-trajectories. Flock
discovery over streaming positions from moving objects was addressed in | .
This exact solution discovers flock disks that cover a set of points at each timestamp.
Their flock discovery algorithm finds candidate flocks per timestamp and joins them
with the candidate ones from the previous timestamps, reporting a flock as a result
when it exceeds the time constraint 6. An improvement over this technique was

presented in | |, using a plane sweeping technique to accelerate detection of
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object candidates per flock at each timestamp, while an inverted index speeds up
comparisons between candidate disks across time.

Other time series clustering methods perform either partitioning or density-based
clustering. In the former class, algorithms typically partition the time series into £
clusters. Similarly to iterative refinement employed in k-means, the k-Shape parti-
tioning algorithm | , | aims to preserve the shapes of time series assigned
to each cluster by considering the shape-based distance, a normalized version of the
cross-correlation measure between time series. In contrast, density-based clustering
methods are able to identify clusters of time series with arbitrary shapes. YAD-
ING | | is a highly efficient and accurate such algorithm, which consists of
three steps: it first samples the input time series also employing PAA to reduce the
dimensionality, then applies multi-density clustering over the samples, and finally
assigns the rest of the input to the identified clusters.

2.1.5 Visual Exploration of Time Series

Numerous approaches leverage the potential of summarizing or aggregating the
information of large time series data to facilitate visual exploration and knowledge
extraction. An early approach is | |, where the authors use tile maps and box
plots to discover ten-year trends in air pollution data. In | |, the authors intro-
duce a pixel-oriented visualization to detect recursive patterns, where each data value
is represented by one pixel. The authors demonstrate the potential of their method
using a stock market dataset. An extension of this work is presented in | ],
where several time granularities are combined in a single visualization to enhance the
knowledge extraction potential of recursive patterns.

Of particular interest are visualization approaches that make use of declarative
SQL-like languages and DBMSs to enable exploratory queries. Such an approach is
suggested in M4 | |, where the authors introduce an aggregation-based di-
mensionality reduction scheme for visualizing horizontally large time series using line
charts. Their approach operates on top of an RDBMS and supports various SQL
queries that select and visualize particular parts of time series. ForeCache | ]
leverages two prefetching mechanisms to facilitate exploration of large geospatial,
multidimensional and time series data stored in a DBMS. By predicting the user’s
behavior, it fetches the necessary data as the user interacts with the application.
Another declarative language-based visualization is suggested in | |, where
relational algebra queries are used to represent the visualization, leveraging the po-
tential of traditional and visualization-specific optimizations. In contrast, a recent
tutorial | | advocates the use of example-based methods in exploration of
large relational, textual, and graph datasets. Such a query-by-example approach has
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been applied in | | so as to explore relevance feedback for retrieval from time
series databases. Instead of returning the top matching time series, this technique
incorporates diversity into the results, which are presented to the user for feedback
and refined in several rounds.

RINSE | | is a Recursive Interactive Series Explorer specifically designed for
exploration of data series. Built on top of ADS+ | |, a special adaptive index
structure for data series, it can progressively build parts of the index on demand
at query time, concerning only those chunks of the data involved in users’ queries.
In terms of visualization, users can get those series qualifying to range or nearest-
neighbor queries interactively drawn on screen, as well as monitor various statistics
regarding the index footprint (e.g., RAM and disk usage) as it gets updated. ATLAS
[ | is another visual analytics tool, specifically geared towards interactivity
when ad hoc filters, arbitrary aggregations, and trend exploration are applied against
massive time series data. This client-server architecture employs a column store as
its backend equipped with indexing, and preemptively caches data that may be re-
quired in queries so as to reduce latency when panning, scrolling, and zooming over
time series. Recently, the ONEX paradigm | | concerns online exploration of
time series. It first constructs compact similarity groups over time series for specific
lengths based on Euclidean distance, and then can efficiently support exploration of
these groups with the Dynamic Time-Warping (DTW) method over their represen-
tatives of different lengths and alignments. Smoothing can be applied to streaming
time series to remove noise in visualizations while preserving large-scale deviations
[ |. To highlight important phenomena without harming representation quality
from oversmoothing, this approach introduces quantitative metrics involving variance
of first differences and kurtosis to automatically calibrate smoothing parameters.

The ability to zoom in to specific parts of interest of a large time series can sig-
nificantly enhance the exploratory potential of a visualization. Stack zooming | |
provides such a functionality, by building hierarchies of line chart visualizations for
user-defined intervals on large time series data. Each selected interval is zoomed and
stacked beneath the initial time series. A similar approach is KronoMiner | ],
which employs a radial-based visualization to enable zooming functionality for spe-
cific time intervals. The interface is visually refined through an iterative design pro-
cedure involving expert user feedback. ChronoLenses | | introduces a domain-
independent visualization that offers the ability to perform on-the-fly transformations
(e.g., Fourier transform, auto-correlation) of the selected interval using lenses.

Zooming in regions of interest in time series can be performed via timeboxes, which
essentially consist of rectangular regions on the time series domain thus specifying
intervals in both the time and value axis. The procedure retrieves the time series
whose values in the given region are fully contained in the rectangle. Hochheister et
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al. introduced timeboxes | | along with TimeSearcher, an application for visual
exploration of time series datasets that implements timebox queries. The user is
able to draw rectangles on the time series domain and the results are separately
displayed on-screen. Keogh et al. | | extended the timeboxes, introducing the
Variable Time Timeboxes, which allowed a degree of uncertainty in the time axis.
Later versions of TimeSearcher (such as | |) provided enhanced functionality,
allowing the visual exploration of longer time series (>10,000 time points) and offering

forecasting functionality.

2.2 Scalable k-Nearest Neighbors

The simplicity along with the effectiveness of the k-Nearest Neighbors (kNN) al-
gorithm, have motivated many research communities over the years with numerous
applications and scientific approaches, which exploit or improve its potential on vari-
ous data types, one of which being time series. Given a dataset, a single query element
(i.e., a time series) and a parameter k, a kNN process would seek to find the k closest
objects to the query among all the objects in the dataset (in terms of a predefined
distance measure, such as the Euclidean distance). Of course, considering datasets in
the realm of Big Data (i.e., several gigabytes or terabytes containing millions of ob-
jects), such a procedure is rather cumbersome. Hence, k-nearest neighbors has greatly
attracted the research community’s attention. This section outlines important state-
of-the-art approaches on centralized and distributed k-nearest neighbors solutions,
dimensionality reduction, and utilization of kNN for resource consumption-related
data analytics tasks.

Several works in the literature have reported the superiority of k-nearest neighbors
on specific machine learning tasks over similar approaches, both in terms of processing
time, as well as in terms of accuracy | , , |. The increasing scientific
interest in the Big Data area has introduced modern distributed implementations of
famous kNN-related algorithms. A particular family of such algorithms is the kNN
join, where given a testing dataset R, we seek to retrieve the k nearest neighbors of
every element within a training dataset S. Song et al. | | present a review
of the most efficient kNN join approaches, denoting that all share the same three
processing stages:

e Data Pre-Processing. During this stage, depending on the data, the goal is to
either process the initial dataset to reduce its complexity (e.g., by reducing its
dimensionality), or to pre-process the data in order to produce extra valuable

information for the subsequent stages.
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Figure 2.3: The three Space Filling Curves: (a) z-order curve, (b) Gray-code curve (c)
Hilbert curve.

e Data Partitioning and Organization. This stage involves the partitioning
and distribution of the dataset to worker machines, followed by an initial, local,
shared-memory and efficient kNN computation depending on the method. This
way, the neighbor set can be pruned and the necessary neighbor sorting is
performed faster.

e Final ANN Computation. Finally, during this stage, the individual computed
ENNs are gathered from the workers and merged, in order to extract the final
k-nearest neighbors.

As with many data analysis and management tasks, kNN join suffers from the
|. Liao et al. | | stated that as the number
of dimensions increases, such techniques need an exponentially larger amount of

curse of dimensionality |

CPU time. Consequently, executing a kNN join method on Big Data requires pro-
hibitively long-lasting operations. To overcome this issue, dimensionality reduction
can be applied on the datasets by indexing their elements via a Space Filling Curve

(SFC) |

allows for a significantly faster execution of an approximate nearest neighbor search,

|. This approach reduces data dimensionality to one dimension, which

based on the indexed elements. The most widely used SFCs are the z-order, Gray-
code and Hilbert, among which Mokbel et al. | | concluded that Hilbert is
the most fair, due to the fact that two consecutive points in the curve are always
nearest neighbors. Yao et al. | | used the z-order curve to significantly boost
the query performance over large amounts of data. Lawder et al. | | efficiently
executed range queries in data indexed by the Hilbert curve, while Faloutsos | |
presented a mathematical model for indexing the multi-attribute records of a data
collection, using Gray-codes instead of binary values. Figure 2.3 shows an example

of the recursive way the three SFCs scan the elements in a two-dimensional space.
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In their review paper | |, Song et al. conclude that the SFC-based H-
2zkNNJ algorithm introduced in | | outperforms in terms of completion time
the rest of the methods, among which is the popular RankReduce | |. The
latter uses Locality Sensitive Hashing (LSH) | | in order to assign similar objects
to the same machines in the distributed file system. Subsequently, potential candidate
neighbors are more efficiently selected during the second stage, which are then reduced
to the set of kNNs. In contrast, H-2zkNNJ exploits the z-order curve in order to reduce
the dimensionality and quickly compute partitioning ranges for the dataset, during
the first computation stage. Then, the partitions are very efficiently distributed to the
worker machines due to the lower dimensionality and the local kNNs are calculated
during the second stage, before being gathered and reduced to the final kNN set
(third stage). H-zkNNJ is implemented in Apache Hadoop MapReduce and each one
of the three aforementioned stages needs to be executed in a separate distributed
session.

Other machine learning-related approaches that utilize k-nearest neighbors in-
clude | |, where Zhang et al. introduced a multi-label classification method based
on kNN. Their approach uses a Maximum a Posteriori (MAP) principle to predict
the class of an new element. Oswald et al. | | used an approximate kNN-based
regression approach in order to forecast traffic flow. Wei and Keogh | | presented
an 1NN classifier that outperforms other similar methods in terms of error rate, when
applied on time-series data. Xu | | introduced a multi-label weighted kNN clas-
sifier, where the weights for each class are computed via mathematical optimization,
using Least Squared Errors (LSE). Gou et al. | | presented a weighted voting
scheme for such classifiers, where the distance between an element and its nearest
neighbors determines the weight of each neighbor’s vote. The query element is clas-
sified to the most weighted class.

Finally, there are numerous worth-mentioning approaches in the resources con-
sumption domain (e.g., water, energy, natural gas consumption), which leverage the
potential of k-nearest neighbors on time series datasets towards useful knowledge ex-
traction. One such approach is presented in | |, where Chen et al. introduce
a novel statistical framework for identifying water usage. They do so by disaggregat-
ing coarse smart meter data via modeling fixture characteristics, household behavior
and activity correlations, before applying a NN classification method. Schwarz et
al. | | used kNN and other machine learning methods for classification on en-
ergy smart meter consumption data. This allowed for efficient real-time and mass en-
ergy consumption classification, which enabled the early short-term energy consump-
tion prediction. Finally, Naphade et al. | | and Silipo and Winters | |
introduced KNIME, which employs an autoregressive model with seasonality correc-
tion, to identify water and energy consumption patterns. This enables the provision
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of various analytics and the prediction of future consumptions in high granularity
data.
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Chapter 3

Hybrid Indexing of Geolocated

Time Series

As mentioned, efficient similarity search on geolocated time series can be lever-
aged by numerous applications, such as geosocial networks, geomarketing and sensor
networks. Such functionality can be provided by hybrid queries, which apply both
spatial proximity and time series similarity thresholds. Figure 3.1 depicts such an ex-
ample, where, given a geolocated time series, we seek to find the three spatially closest
ones, that are also similar in the time series domain by a given threshold. Indexing
techniques such as the R-tree allow the efficient computation of spatial queries, in-
volving only spatial predicates. Of course, similarity search on geolocated time series,
could be performed by separately evaluating the two domains, e.g., obtaining first all
results that satisfy the spatial threshold using an R-tree, and then applying the time
series predicate on the results (or vise versa). This, however, can be a rather slow
procedure, as it requires two separate searches. To enable fast and efficient calculation
of hybrid queries on geolocated time series, we need a hybrid index that enables the
simultaneous evaluation of the spatial and time series threshold during its traversal.

In this chapter, we propose a hybrid index for efficiently supporting similarity
search on geolocated time series combining both spatial proximity and time series
similarity. First, we introduce the T'SR-tree, an extension of the R-tree spatial index.
In the TSR-tree, each node is augmented with additional information correspond-
ing to the bounds of the time series contained in its subtree, in addition to the
standard Minimum Bounding Rectangle (MBR) denoting the spatial bound of its
contents. Maintaining both kinds of bounds in each node allows to prune the search
space simultaneously in the spatial dimension and in the time series dimension while
traversing the index. Thus, the number of required node accesses is significantly re-
duced, since we only retrieve the contents of nodes that may actually contain objects
satisfying both types of predicates.
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Figure 3.1: A hybrid query on geolocated time series.

Our proposed index, called BTSR-tree is an optimized variant of T'SR-tree, with
its nodes having entries with more refined bounds by bundling together similar time
series. This allows to compute and maintain tighter bounds for each individual bun-
dle, hence increasing pruning effectiveness. To allow for a larger number of bundles
in nodes at higher levels in the tree hierarchy, we exploit Piecewise Aggregate Ap-
proximation | , | to trade off between the number of bundles and the
resolution of the bounding time series for each bundle.

Our approach follows a similar rationale to that applied in hybrid spatio-textual
indices | |. In that line of research, several variants of hybrid indices (e.g.,
the IR-tree | |) have been proposed to tackle the problem of combining spatial
predicates with keyword search. Constructing a hybrid index that combines spatial
and textual pruning has been shown to speedup processing of hybrid spatial-keyword
queries. Motivated by this, our goal is to provide similar improvements for queries on
geolocated time series data. Nevertheless, spatio-textual indices are designed specif-
ically for keyword search and typically rely on inverted indices for the textual part,
hence they are not applicable to queries that involve similarity of time series where
the sequence of values is important.

The rest of this chapter is organized as follows. Section 3.1 provides background
on distance functions that we use for spatial and time series domains. Sections 3.2
and 3.3 present our proposed indices. Finally, Section 3.4 concludes the chapter.

3.1 Preliminaries

Next, we introduce our notation and define the distance functions for geolocated
time series. Additionally, we provide some details regarding the R-tree, on which we
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Figure 3.2: An example of an R-tree.

base our methods.

In the spatial domain, the distance between two geolocated time series T" and 1" is
calculated using the Euclidean distance of their respective locations. Furthermore, we
normalize this distance with maxDist,), i.e., the maximum possible spatial distance
in the dataset, to obtain a measure in the interval [0, 1]. Thus:

T.loc, — T".loc,)? + (T.loc, — T".loc,)?
disty,(T,T') = V(T loc 0cs)* + (T'locy ocy) (3.1)
maxDistsg,

In the time series domain, similar to many prior works (e.g., | |), we also
apply the Euclidean distance to measure the similarity. Specifically, we calculate the
distance between two geolocated time series T' and 1" as follows:

zw:(T’Ul — T/.Ui)Q

distys(T, T/) - i:inaxDiStt >

where max Dist;s denotes the maximum possible distance in the time series domain
and is used for normalization, as above.

An R-tree indexes spatial data, allowing the fast computation of spatial proximity-
related queries. It organizes a hierarchy of nested d-dimensional rectangles. Each node
corresponds to a disk page and represents the Minimum Bounding Rectangle (MBR)
of its children, which is the smallest possible box that contains all the elements of a
set of geometries. Leaf nodes represent the MBR of their contained geometries. The
number of entries per node (excluding the root) is between a lower bound m and a
maximum capacity M. Query execution in R-trees starts from the root. MBRs in any
visited node are tested for intersection against a search region. Qualifying entries are

recursively visited until the leaf level or until no further overlaps are found. Several
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paths may be probed, because multiple sibling entries could overlap with the search
region. Figure 3.2 depicts the structure of a R-tree, containing 8 geometries. It is
consisted of 2 leaf nodes, each containing the MBRs of its geometries. Finally, the
root node contains 2 MBRs, each one containing the corresponding inner nodes.

3.2 The TSR-tree Index

This section presents the architecture of the TSR-tree index and its hybrid pruning
capability both in the spatial and in the time series domain.

3.2.1 Index Structure

The TSR-tree is an enhanced R-tree. As in the standard R-tree | |, each
node has at least m and at most M entries and stores the MBRs of its children.
Additionally, for each child, a node stores a pair of Minimum Bounding Time Series
(MBTS), which —following a similar intuition to the MBRs— are the smallest possible
set of bounds that enclose all the time series indexed in its subtree. More specifically,
this pair consists of an upper bounding time series B" and a lower bounding time
series B", respectively constructed by selecting the maximum (for 7"") and minimum
(for T) of values at each time point among all geolocated time series indexed therein.
More formally:

Definition 2 (Minimum Bounding Time Series (MBTS)). Given a set of time series
T, its MBTS consists of an upper bounding time series B"' and a lower bounding
time series B", constructed by respectively selecting the maximum and minimum of

values at each time point among all time series in set T as follows:

B" = {maxT.vy,...,maxT.v,}
TeT TeT (3.3)
BY = {minT.vy,...,minT.v,}.
TeT TeT
O

Example 1. Figure 3.3a illustrates an example of the MBTS of a set of given time
series. The latter are represented in the figure by colored solid lines with different
markers. The upper and lower bounding time series are represented by thick grey
lines, enclosing the whole (shaded) area where the individual time series lie. ]

Construction and maintenance of the TSR-tree follow the standard procedures
of the R-tree for data insertion, deletion and node splitting. Raw geolocated time
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Figure 3.3: Examples illustrating the time series bounds and pruning in TSR-tree.

series are always inserted into leaves. The difference is that, after the R-tree has been
built, it is traversed in a reverse breadth-first manner and the MBTS of each node
are calculated. Moreover, the heuristic for determining where each geolocated time
series will be inserted can be adapted to also account for the similarity in the time
series domain, in addition to their spatial distance. Recall that in the standard R-
tree, selecting the node where a new object will be inserted is based on finding the
entry where such an insertion incurs the least possible enlargement of its MBR. Now,
this is extended to also consider the enlargement incurred in that entry’s MBTS.
Specifically, selecting the appropriate node N should minimize the following hybrid
cost function:

cost(T,N) = X - costy, (T, N) + (1 — \) - costys(T, N) (3.4)

where T is the new geolocated time series for insertion, cost,, and cost;s are functions
quantifying the cost of enlarging the MBR and MBTS of N, respectively, and A is a
weight parameter determining the relative importance of the two factors. Notice that
for A = 1, this heuristic behaves exactly as in the standard R-tree. When checking
a given geolocated time series 71" for insertion in node N, we calculate distance o;
between T" and current MBTS at each time point i € {1,...,n}:

T, — B]r\',.vi, if Tw; > B]T/',Uz

Such distances 9; are shown with dashed red lines in Figure 3.3b. Thus, we can
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Figure 3.4: An example of a TSR-tree index.

quantify enlargement cost;s = Y §; of MBTS for N.

Figure 3.4 depicts an example of a TSR-tree index. As described above, it is es-
sentially a standard R-tree structure, with each node containing the necessary MBTS
of its underlying geolocated time series.

3.2.2 Hybrid Node Pruning

For efficient hybrid query execution, the goal is to reduce the number of node
accesses by pruning subtrees of the index that cannot contain any results. To do so,
we need to establish lower bounds for the different types of distances between the
query T, and any geolocated time series contained in the subtree rooted at a node
N in the index. In the spatial domain, this bounding mindists,(T,, N) is computed
as in the case of the standard R-tree, i.e., based on the MBR of N. Similarly, in the
time series domain, the corresponding bounding distance is derived by the MBTS of
N. Following Equations 3.2 and 3.3, it can be easily seen that this can be calculated

as follows:

mindist,(T,, N) = (3.6)

maxDist,,’

where ¢; represents distances between 7;, and MBTS at each time point ¢, computed
analogously to Equation 3.5.

Example 2. Figure 3.3b depicts a time series query (the magenta solid line) and
the bounds (thick gray lines) in the MBTS of a node. The vertical dashed red lines
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outside MBTS indicate distances between the query and those bounds contributing
to mindists(Ty, N;).

Moreover, given that the geolocated time series under a node N are a subset
of those of its parent N’, it follows from the definition of the time series bounds
(Equation 3.3) that the MBTS of N is tighter than (or equal to) the MBTS of N'.
From Equation 3.6, this guarantees that:

mindists(Ty, N') < mindists(Ty, N). (3.7)

So, if mindist,s(T,, N') is higher than threshold 6, specified by the query, the entire
subtree rooted at N’ can be pruned altogether.

We define a hybrid distance measure dist,(T,T") between two geolocated time
series 7" and 71", combining both their distances disty,(T,7") in the spatial domain
and dist;s(T,T") in the time series domain. For that purpose, we apply an exponential
decay function to decrease the similarity of two time series based on their spatial

distance:
simp (T, T') = simy, (T, T") e~ @stsn(TT7) (3.8)

where simy (T, T") = 1 — dist;s(T,T") and + is the exponential decay constant. Then:
disty(T,T") = 1 — simy, (T, T") (3.9)

Accordingly, the hybrid similarity (distance) between two geolocated time series T°
and T" is equal to their standard time series similarity (distance) if they are located at
the same position, and it gradually decreases (respectively, increases) if one is placed
farther apart from the other. From Equations 3.8 and 3.9 we can observe that hybrid
distance disty, (1}, T") is monotone with respect both to dist,(1},,T) and dist,s(1;,T).
This implies that a minimum hybrid distance bound mindist,(T,, N) for the contents
of a given node N can be similarly established by combining the individual bounds
mindists,(T,, N) and mindist,(T,, N), i.e.:

mindist,(T,, N) = 1 — (1 — mindist,s(T,, N)) e~ 7 mindists(Ta.N) (3.10)

The TSR-tree does not provide any explicit guarantee that time series contained
in the same node are highly similar to each other, hence the produced bounds are
typically expected not to be sufficiently tight. Further, constructing the aggregate
bounds from a set of dissimilar time series, yields bounding time series that are
not very similar to any of the enclosed ones. These observations are obvious in the
example of Figure 3.3a, where the constructed MBTS encloses a much larger (grey
shaded) area than the one actually occupied by the contained time series, and the
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Figure 3.5: MBTS in BTSR-tree.

resulting bounding time series do not closely resemble any of the original ones.

3.3 The BTSR-tree Index

As explained in the previous section, each node in the TSR-tree holds an MBTS
(i.e., a pair of upper and lower bounding time series) that encloses all the time series
contained in its subtree. This allows to prune nodes while traversing the index by
computing lower bounds for similarity in the time series domain. As explained above,
the pruning effectiveness depends on the tightness of these bounds, which are rather
loose in the case of TSR-tree. To overcome this issue, we present an optimized version
of the TSR-tree, which we call BTSR-tree. In a nutshell, the idea is to bundle similar
time series together in each node, and construct individual MBTS per bundle. This
allows to derive bounding time series that are tighter and resemble more closely the
enclosed ones.

Example 3. Figure 3.5 illustrates this idea using the same example as Figure 3.3a.
The original time series are now grouped in two bundles, and the MBTS of each
bundle is constructed separately. The resulting bounds are now much tighter, elimi-
nating much of the dead space within the MB'TS and allowing more precise similarity

comparisons.

The BTSR-tree index is built similarly to the TSR-tree index. To construct the
time series bundles within each node, we rely on k-means clustering. To avoid con-
fusion with the top-k predicate in queries, next we symbolize with [ is the number
of bundles to be created. The process is performed bottom-up, starting from the leaf
nodes of the index. In each leaf node, the contained time series are clustered into (3
bundles. Then, the MBTS of each bundle is computed and stored in the node. Each
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Figure 3.6: An example of a BTSR-tree index.

internal node receives all the MBTS of its children so as to compute its own 5 bundles
and respective set of MBTS. Thus, the process propagates upwards, until reaching
the root of the tree.

Figure 3.6 depicts an example of a BTSR-tree index for § = 2. Notice that, as
we move bottom-up towards the root of the tree, the MBTS of each node tend to be
less and less tight and, consequently, overlap. Thus, a higher number 3 of bundles is
needed, since nodes become increasingly more heterogeneous in the time series they
contain in their subtree. The higher the number /5 of bundles, the tighter the resulting
bounds. But this also implies that a larger number of MBTS needs to be maintained
within each node. However, the number of bundles that can be created is limited by
node capacity.

To address such issues, we increase the number of bundles bottom-up at every
tree level by a factor c. Hence, a node at level ¢ has 3; = ¢- 3;_1 bundles; at leaf level,
such number [, is fixed. At the same time, in order to compensate this increase in

terms of node capacity M, we decrease the resolution of the MBTS by the same factor

c. The latter is achieved using PAA | , |. PAA is a common technique
that can approximate a time series 7' = {vy,...,v,} of length w into a time series
T = {¥1,...,0,} of any arbitrary length w’ < w. In general, each %; is calculated as
follows:

/ (w/w')i

w
=Y - 11
v w Uj (3.11)

j=(w/w)(i=1)+1

In our case, w’ = w/c. To preserve bounds when applying PAA on an upper (lower)
bounding time series B"' (BY), instead of taking the average as in Equation 3.11, we
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compute their max (min) values.

The BTSR-tree can execute hybrid queries in a similar manner to the TSR-tree,
with a straightforward adaptation. Whenever a node is accessed, instead of evaluating
the pruning condition on a single pair of MBTS, each individual MBTS in each bundle
is checked, and the node is pruned if all checks fail.

3.4 Summary

In this chapter, we have addressed the problem of indexing geolocated time series
data. Our hybrid TSR-tree index enhances the R-tree by augmenting the spatial
bounds in its nodes with respective time series bounds. We have also presented an
optimized variant, the BTSR-tree, which maintains tighter time series bounds in each
node by bundling similar time series together.

In the following chapter, we will showcase the potential of our hybrid indexing
methods for processing various types of hybrid queries on geolocated time series, that
combine spatial proximity with time series similarity. These include several similarity
search queries, as well as a similarity join query, implemented both for centralized

and distributed environments.
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Chapter 4

Hybrid Queries on (Geolocated

Time Series

In this chapter, we present methods for the efficient evaluation of hybrid queries,
using our hybrid indexing techniques from the previous chapter. Specifically, we focus
on the following types of queries:

e Hybrid similarity search: Given a set of geolocated time series dataset and
a query geolocated time series, find all the dataset’s objects that satisfy given
spatial proximity and time series similarity thresholds.

e Hybrid similarity join: Given two geolocated time series datasets, find all

pairs of objects that satisfy given spatial proximity and time series similarity
thresholds.

Hybrid Similarity Search. Consider a geolocated time series dataset that con-
tains the user check-ins of a geosocial network. Each location is associated with the
number of visitors across time. Given a geolocated time series ¢, one possible query
would be to retrieve all the geolocated time series within a given spatial range from
q, that are also similar in the time series domain by a given threshold. Similarly,
in a geomarketing or mobile advertisement, one could identify nearby places with
similar visiting pattern. Other examples involve time series generated by sensors in-
stalled at fixed locations, such as noise, weather or pollution sensors. For instance,
in the DAIAD project!, smart water meters are installed at households within a city
to measure, analyze and mine water consumption patterns towards promoting more
intelligent and efficient water use. Finding households in a region or close to a given
location that exhibit consumption patterns similar to a given one can offer precious
insights.

http://daiad.eu/
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All such applications need to index geolocated time series to allow efficient hybrid
similarity search based on both spatial proximity and time series similarity. Several
approaches have been proposed for time series similarity, efficiently indexing large
amounts of time series data. One well-studied family of approaches includes wavelet-
based methods | |, which rely on Discrete Wavelet Transform | | to reduce
the dimensionality of time series and generate an index using the coefficients of the
transformed sequences. Another line of work employs a Symbolic Aggregate Approxi-
mation (SAX) representation of time series | ], introducing a series of indices,
such as iISAX | ], iISAX 2.0 | |, iISAX2+ | ], and ADS+ | ]

However, to the best of our knowledge, none of the existing works so far has
considered the specific case of geolocated time series. All aforementioned indices aim
at efficiently supporting similarity search for time series; in case that the analyzed
time series are associated with a spatial attribute and issued queries involve spatial
filters, these need to be treated independently. Thus, for queries employing both types
of predicates, this implies evaluating each predicate separately. This can be done by
first using a time series index to retrieve similar time series and then applying the
spatial predicate on the results, or vice versa, by employing a spatial index to evaluate
the spatial predicate and then filter the results according to their similarity with the
query time series. In our case, we make use of our BTSR-tree index, leveraging its
hybrid indexing potential, allowing for more aggressive pruning in the spatial and

time series domains simultaneously.

Hybrid Similarity Join. Consider two such datasets containing time series of CO4
emissions collected from two different sensor networks, R and 5, spread in different
locations over a given spatial region. Suppose that the R network covers an industrial
zone —where air pollution is higher—, while the S network covers a residential area.
A hybrid similarity join query retrieves pairs of sensors (the first from R, the second
from ) such that both the distance between the locations of the two sensors and the
distance between the time series of their measurements do not exceed certain given
thresholds. An environmentalist, for example, may use the distance between the res-
idential area and the industrial zone as a spatial threshold and get a better insight
about the spread of the pollution. Similarly, check-ins in geosocial networks can also
be modeled as geolocated time series and analyzed with hybrid similarity join queries.
Results can indicate nearby venues with similar frequency patterns, which may be
used for social recommendations according to time, place, activity, etc. Moreover,
geolocated time series can indicate water or gas consumption in households. A util-
ity company may identify nearby customers who have similar consumption profiles.
Results may be used for customer segmentation, targeted marketing, planning future
network upgrades, etc.
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Note that similarity join differs substantially from the hybrid similarity search
queries discussed previously. A hybrid similarity join query aims to identify all pairs
between the two datasets qualifying to the criteria of spatial proximity and time series
similarity. Clearly, performing a pairwise comparison among all pairs of objects in
the two datasets is not an option when their size is large. Hence, indexing them is
indispensable for efficient processing of such queries. Certainly, similarity search over
indexed time series is a well-studied topic and several schemes have been proposed,
as discussed in the previous paragraph. Likewise, efficient methods for distance joins
in spatial databases also exist, usually over R-trees | , |.

Our starting point is to employ such indices either for time series-only (with iSAX)
or spatial-only (using R-trees) filtering of candidate pairs during query evaluation.
We also take advantage of the BTSR-tree index, which enables combined search over
both the time series and the spatial information of candidates and thus excels in
pruning power. These algorithms concurrently traverse those indices and identify
subtrees that may contain candidate matches. However, this centralized approach
has certain limitations, as it cannot sustain examination of large datasets. Hence, we
further suggest a space-driven data partitioning scheme that enables a parallel and
distributed approach for hybrid similarity joins. Following the MapReduce paradigm,
our method leverages any of the aforementioned indices to efficiently handle similarity
join queries locally within each partition. This is then combined with an optimization
that minimizes the amount of data transferred between worker nodes at query time
without false misses. To the best of our knowledge, this is the first work to address
hybrid similarity join queries over large datasets of geolocated time series.

The rest of this chapter is organized as follows. Section 4.1 formulates the pro-
posed hybrid similarity search query variants. Section 4.2 presents our approach for
centralized processing of the hybrid similarity search queries. Section 4.3 describes
the proposed hybrid similarity join query. Section 4.4, introduces a a centralized and
a distributed approach for similarity join over large datasets of geolocated time series.
Section 4.5 reports our experimental results and, finally, Section 4.6 concludes this
chapter.

4.1 Hybrid Similarity Search

We are interested in hybrid similarity search queries on geolocated time series,
i.e., queries that retrieve search results based on both spatial distance and time series
distance. In these queries, a geolocated time series 7}, is given as a reference, and the
goal is to identify similar time series to T, based on both spatial distance and time

series distance. Different query variants can be derived, for which:
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Table 4.1: Similarity search query variants.

Query Variant Spatial Filter Time Series Filter

Double Range Query (Qp,) boolean (6p) boolean (6;s)
Top-k Range Query (Qgp) top-k boolean (6;5)
Range Top-k Query (Qpr)  boolean (6p) top-k
Hybrid Range Query(Qpnp) boolean (05)

Hybrid Top-k Query(Qpxk) top-k

e The query condition can be applied on each distance independently or on the

hybrid distance defined in Section 3.2.2.

e The condition can be a boolean filter (i.e., retrieve all geolocated time series
with distance lower than ) or a top-k filter (i.e., retrieve the k geolocated time
series having the smallest distance).

These lead to the hybrid query variants listed in Table 4.1 and outlined below:

Double Range Query - Qu (1,05, 0:5): This query applies two individual
boolean filters. It retrieves each time series 17" having dist,,(1,,T) < 6, and
distis(T,, T) < ;5. In other words, it retrieves all time series that are located
within a radius 6y, - mazDists, (see Section 3.1) from T}’s location and their
time series dissimilarity to T} is at most 0, - max Dist,.

Top-k Range Query - Qi (Ty, k,0:5): This query retrieves the k time series
closest to T},’s location also having dist,s(T},,T) < 0.

Range Top-k Query - Qu (T}, 0y, k): This query retrieves the & most similar
time series to 7T, which are also located within distance 0y, - max Dist,, from

T,’s location.

Hybrid Range Query - Quy(7},6n,7): This query retrieves all time series
having hybrid distance to T}, at most 0y, i.e., dist,(T,,T) < 6.

Hybrid Top-k Query - Qni(T}, k,v): This query retrieves the k time series
with the smallest hybrid distance dist,(T,,T") to T,.

Example 4. Figure 4.1 illustrates an example including two queries, Qu (1}, Osp, O1s)

and Quy(T}, k, 0:5), on a set of geolocated time series T1, ..., Ty. In both cases, the

reference time series T;, specified by the query is shown in red. Moreover, those time

series having dissimilarity to T, at most 6,5 (i.e., Ty, Ty, Ty, Ty) are also shown with

red lines. In the first query, only time series within a radius equal to the spatial
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Figure 4.1: Hybrid queries on geolocated time series.

distance threshold 0, are retrieved. Thus, the result contains only time series 15 and
Ty, whereas Ty and Ty are excluded. The second query for k = 3 retrieves the three
closest time series to T, having dissimilarity at most 0, i.e., T, Ty and Tg. ]

4.2 Hybrid Similarity Search Query Processing

As already mentioned, for the efficient evaluation of hybrid similarity search
queries, we employ our BTSR-tree index. Query processing in BTSR-tree follows
a similar procedure to the respective processes for boolean range | | and ANN
queries | | in R-trees. However, this is now extended by utilizing all available
bounds mindists,, mindist,; and mindist,, thus pruning nodes simultaneously in the
spatial dimension and the time series dimension while traversing the index. This
reduces node accesses during evaluation of hybrid queries. Next, we outline the algo-
rithms for executing each of the query variants presented in Section 4.1.

4.2.1 Double Range Query

To evaluate a Quy(Ty, Osp, O1s) query, we recursively traverse the BTSR-tree starting
from the root. For each node N, the following two conditions are checked:

o mindisty,(T,, N) < 0,
o mindist,(T,, N) < 0y,

If either of these conditions returns false, IV is pruned. Once a leaf node is reached,
the geolocated time series contained therein are retrieved, and each one is checked if
it qualifies the query criteria. The steps for processing this query are shown in detail
in Algorithm 1.
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Algorithm 1: Double Range Query - Quy (77, 0sp, 0:s)

1 begin

2 R+ 10

3 L + root entries

4 while L # () do

5 N + L.next

6 if N is not leaf then

7 foreach N’ € N.children do

8 if mindist,, (T, N') < 05, A mindists(T,, N') < 6,5 then
9 L L < LU{N'.children}

10 else

11 foreach T € N.getGeoTS() do

12 if dist,,(T,,T) < 8,p A distys(T,,T) < 8,5 then
13 | R+ RU{T}

14 return(R)

Algorithm 2: Range Top-k Query - Quk(73, 0sp, k)

1 begin
2 R+
3 Queue < root
4 while Queue is not empty do
5 X + Q.pull()
6 if X is a time series then
7 R+ RU{X}
8 if |R| = k then
9 L break
10 else if X is leaf node then
11 foreach T' € X.getGeoTS() do
12 if dist,,(7,,7T) < 05, then
13 T.dist < dists(Ty,,T)
14 L Queue.push(T, T.dist)
15 else
16 foreach N € X.children do
17 if mindist,,(T;,, N) < 0, then
18 N.dist < mindist,; (T, N)
19 L Queue.push(N, N.dist)
20 return(R)

4.2.2 Range Top-k

The Qui(1y,05p, k) query combines a boolean filter and a top-k filter. To retrieve

top-k results, we employ a best-first search approach using a priority queue, as in a
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typical best-first traversal algorithm | |. Algorithm 2 describes the procedure in
more detail. Initially, the root entries are retrieved, and their lower spatial distance
bound mindist,, is calculated. For a given such entry, if its mindists, > 0;,, then
the underlying subtree can be safely pruned. Otherwise, this entry’s mindist,, is
calculated, and the entry is pushed to the priority queue according to its mindist,
value in ascending order. The process continues recursively, pulling the next item
from the queue. When we reach a leaf, we retrieve all its raw geolocated time series,
calculate their exact spatial distances dists,, and the ones that are not filtered out
are pushed to the queue, based on their mindist;,. If a pulled item is a geolocated
time series, we add it to the result set. The process terminates once k results have
been retrieved.

4.2.3 Top-k Range Query

The evaluation of a top-k range query (Quy(7}, k, 6:5)) is performed similarly to
the range top-k query, by reversing the treatment of the spatial and the time series

dimensions.
4.2.4 Hybrid Range Query

Hybrid range query Qpny(15,05,7) applies a boolean filter on the hybrid distance
dist,(T,,T) of the query T, to each of the candidate geolocated time series 7. The
evaluation follows the same process as outlined in Algorithm 1. The difference is that
instead of checking separately the given distance thresholds on the spatial and the
time series distances, a single check is made comparing the hybrid distances disty,
and mindist;, against the single threshold 6},.

4.2.5 Hybrid Top-k£ Query

Hybrid top-k query Qni(Ty, k,~y) applies a top-k on the hybrid distance dist,(1,,T)
of the query T, to each of the candidate geolocated time series T'. Its evaluation is
similar to the one outlined in Algorithm 2. In this case the difference is that there is
no boolean filtering involved, so raw geolocated time series and nodes are inserted into
the priority queue according to their hybrid distance, dist;, and mindist, respectively.
Again, the algorithm terminates once k geolocated time series are pulled from the
queue; these are the top-k results.

4.3 Hybrid Similarity Join

Given two datasets R and S, the hybrid similarity join query seeks all the existing
pairs of geolocated time series that are close to each other both in terms of spatial
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0 0.I5km

Figure 4.2: Hybrid similarity join.

and time series distance. Of course, both distance thresholds need to be provided

before the query is executed. More formally:

Definition 3 (Hybrid Similarity Join over Geolocated Time Series). Given two sets of
geolocated time series Tr and Tg, and two thresholds €,, and €5, the hybrid similarity
join query returns all pairs satisfying w.r.t. to both criteria on spatial proximity and

time series similarity, i.e.,
{(Tr,Ts) : Tg € Tr, Ts € Tg,dists,(Tr, Ts) < €gp A disty(Tr, Ts) < €5}

This query searches for pairs of geolocated time series that are within spatial
distance €, while also their respective time series do not deviate by more than e;.
Spatial proximity is measured in distance units (e.g., meters). As mentioned before,
since the (transformed) time series are z-normalized, values for parameter ¢, are

unitless and are typically expressed in standard deviations.

Example 5. Figure 4.2 depicts two sets of geolocated time series, {Ry, ..., Rs} (in
red bullets) and {Sy, ..., S} (in green squares) that represent CO, emissions collected
by two different sensor networks R and S in an urban area during a day. In order
to find similar CO, patterns, suppose that a similarity join query over those two
datasets specifies a distance radius €5, = 500 meters to identify nearby sensors and
a maximum deviation of ¢;; = 0.4. Qualifying pairs {(R1,Ss), (R3,S5), (R5, 52)} are
shown connected with dashed lines. Note that other pairs, e.g., (Ry, S3), may be even
closer in space, but their time series deviate more than the given ¢;;, so they are
filtered out. Besides, time series like those in rejected pair (Rs, S3) may have almost
the same pattern, but their locations are too far from each other to qualify for this
query. O
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4.4 Hybrid Similarity Join Processing

A naive approach to answer a hybrid similarity join query over two geolocated
time series datasets 7z and Tg would involve examination of all possible pairs, i.e.,
calculating their Cartesian product Tz X Ts and filtering each candidate pair with the
two criteria. Clearly, such a technique has limitations due to its quadratic processing
cost and cannot be realistically applied to datasets with more than a few thousand
geolocated time series each.

Hence, we propose three index-based techniques for answering hybrid similarity

join queries:

e We describe a spatial-only filtering method that employs R-trees over the lo-
cations of geolocated time series so as to identify candidate pairs close enough
in space. Afterwards, each such candidate pair should also be checked on their
similarity in the time series domain, to finally yield the exact answer (Sec-
tion 4.4.1).

e We build iSAX indices over the time series information only per dataset and
we introduce a traversal method to facilitate similarity search. Refinement over
returned candidate pairs by their spatial distance issues the final results (Sec-
tion 4.4.2).

e We employ BTSR-trees that can jointly index the positional and time series
information of each geolocated time series. We introduce a hybrid similarity
join algorithm that descends these two BTSR-trees in tandem and can safely
prune subtrees that cannot possibly contribute any valid results (Section 4.4.3).

In each of these methods, one global index is created per dataset. Hence, a cen-
tralized processor is responsible to maintain these indices and access them when
evaluating similarity join queries. However, the above approaches, being centralized,
inherently cannot scale very well on large datasets. To overcome this, we also pro-
pose a parallel and distributed method for hybrid similarity join, able to scale up to
millions of geolocated time series.

4.4.1 Spatial-Only Filtering using R-Trees

One possible approach to similarity join search over two datasets Tz and Tg of ge-
olocated time series is to build an R-tree | | per dataset by organizing its spatial
locations into a hierarchy of nested d-dimensional rectangles. Each node corresponds
to a disk page and represents the MBR of its children. A leaf holds the MBR of its
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Algorithm 3: SimJoinSAX(R, S, €, €t5)

Input: Nodes R, S, spatial constraint €,,, time series constraint e,
Output: Set @ of pairs of geolocated time series satisfying constraints

1 if R is not leaf A S is not leaf then . internal nodes in both trees
2 foreach Ny € R.children do

3 foreach Ng € S.children do

4 if distsax(Ng, Ng) < €;5 then . compare SAX words
5 L L SimJoinSAX(Ng, Ng, €sp, €15)

=}

else if R is leaf A S is not leaf then . trees of different height
7 foreach Ng € S.children do
L SimJoinSAX(R, Ng, €sp, €15)

9 else if R is leaf A S is leaf then . leaf level in both trees

10 foreach Tr € R.children do

11 foreach Ts € S.children do

12 if dists,(Tr,Ts) < esp Adistys(Tr,Ts) < € then

13 L L Q<+ QU{(Tr,Ts)} . add pair to result set

contained geometries. The number of entries per node (excluding the root) is between
a lower bound m and a maximum capacity M.

With respect to hybrid similarity joins, we search over R-trees using the spatial
condition, exactly as in | |. So, both R-trees are concurrently traversed starting
from their roots and recursively examining their respective descendants only if the
minimum distance of their MBRs | | does not exceed parameter €,,. Obviously,
a pair of nodes breaking this spatial constraint cannot possibly contain any qualifying
results, so their respective subtrees can be safely pruned. Once the leaf levels are
reached, the candidate pairs of raw time series are accessed and refined according to
both criteria in Definition 3 in order to issue the final results.

4.4.2 Time Series-Only Filtering with :SAX

We process hybrid similarity join queries using available :SAX indices over two
datasets Tz and Tg, each concerning their respective time series as discussed in Sec-
tion 2.1. Each :SAX index solely indexes the time series part of a dataset; their leaf
entries point to the raw time series including their location. Searching for similar
geolocated time series starts from the root of each tree and progressively descends by
visiting nodes that may contain candidate answers based on their similarity, strictly
on the time series domain, as listed in Algorithm 3. Without loss of generality, we
assume that either the trees have the same height, or the iSAX for Ty is less deep
than the iSAX for Tg.
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Algorithm 4: SimJoinBTSR(R, S, €4, €15)

Input: Nodes R, S, spatial constraint €,,, time series constraint e,
Output: Set @ of pairs of geolocated time series satisfying constraints

1 if R is not leaf A S is not leaf then . internal nodes in both trees
foreach Ny € R.children do
Npr.buf < buffer(Ng.mbr, esp) . expand MBR by ;op
foreach Ng € S.children do
L if Ng.buf N Ng.mbr # 0 A diStMBTs(NR, NS) < ¢ then

o A W N

| SimJoinBTSR(Ng, N, €5p, €15)

IN]

else if R is leaf AS is not leaf then . trees of different height
8 foreach Ng € S.children do
L SimJoinBTSR(R, Ng, €y, €15)

10 else if R is leaf A S is leaf then . leaf level in both trees
11 foreach Tr € R.children do

12 foreach Ts € S.children do

13 if dists,(Tr,Ts) < esp Adisty(Tr,Ts) < €5 then

14 L L Q<+ QU{(Tr,Ts)} . add pair to result set

Suppose that at a given iteration, node R in the 7z iSAX needs to be checked
against node S in the Tg iSAX. If neither of them is leaf, the algorithm is recursively
called for all combinations of their children entries, provided that these are within
distance €;5 as computed by Equation 3.2 (Lines 1-5). Once the leaf level is reached
in the 7z i1SAX but not yet in the 75 iSAX, recursive calls examine that specific leaf
of the former against each of the children entries of the latter (Lines 6-8).

Eventually, when the leaf level is reached in both trees, we compare each combi-
nation of their respective contents (Lines 9-13). Each geolocated time series from leaf
R of the T iSAX is checked with its counterparts in leaf S of the 7g iISAX. Since raw
time series data is fully accessible at the leaf level (including locations), refinement
of candidates is based not only on their distance dist;s in the time series domain,
but also on their spatial distance dists,. If both distances are below the respective
constraints, then this specific pair qualifies for the final result ) to the query. The

algorithm terminates once there are no remaining pairs of leaves to check.

4.4.3 Hybrid Filtering using BTSR-Trees

This method makes use of a hybrid BTSR-tree index per dataset Tr and Tg of
geolocated time series. Initially, let us assume that both BTSR-trees have the same
height. Exactly like the iSAX-based method, search starts from the root of each

tree and descends them in tandem by checking their nodes pairwise, as listed in
Algorithm 4.
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In case that the currently examined entries R and S are internal (directory) nodes,
a nested-loop check finds which of their descendants may contain candidate results
(Lines 1-6). In particular, for each child entry Ng of node R, we calculate a buffer
rectangle by expanding its respective MBR by distance €,,. In case that this buffer
intersects with the MBR of entry Ng from node S, whereas also their MBTS do not
deviate by more than ¢, then search should be recursively applied against those two
entries Ng and Ng. Clearly, if neither of these criteria is met, those candidate entries

cannot possibly contain any matching time series.

Note that this step involves comparison between two MBTS. Consider two MBTS
By = (BY, BY") and By = (By, BY), each constructed according to Equation 3.3 over
two disjoint subsets of time series data. We compute their deviation disty;grg by first
comparing the lower bounding time series of the former with the upper bounding time
series of the latter per time point i € {1,...,n}, depending on which of these two

values is larger, i.e.:

Blu.l)i - B;.’UZ‘, if Bluvz Z B;UZ
0; = § BY.v; — B, if BY.w; > Bl (4.1)

0, otherwise

and we take the average Euclidean norm over these n differences:

. 1
dZStMBTs(Bl, BQ) = E (42)

This measure is a lower bound of the Euclidean distance dist;s(7},T3) between two
time series T} and 75 that are enclosed in MBTSs B; and Bs, respectively. Consider
the situation at a given time point ¢ € {1,...,n}. In case that By.v; > By, it
is straighforward that Ty.v; > BY.v; > Byv; > Th.v; by definition of the MBTS,
hence 0, = T1.v; — Ty.v; > §;. This also holds for the other branches of Equation 4.1.
But, taking the Euclidean norm of these §; values over all time points expresses
the Euclidean distance between B; and Bs, according to Equation 3.2. Overall, this
confirms that dist;s(T1,Ty) > distyprs(Bi, B2), so checking with MBTSs does not

cause any false misses.

If both R and S are leaves, the algorithm retrieves all time series from either leaf
and checks every combination against both criteria (Lines 10-14). If a time series
from Tx and a time series from 7g are close enough in space (i.e., less than €,,) and
also similar in the time series domain by ¢, this pair is issued as result.

Handling the case of BTSR-tree indices with different height is handled as in R-
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trees | |. Without loss of generality, let the first BTSR-tree (over dataset Tg)
be shorter than the second BTSR-tree (over dataset Tg). Then, once a leaf entry R
is reached in the Tr BTSR-tree, comparisons are made against any subtrees under
nodes Ng in the Tg¢ BTSR-tree (Lines 7-9). In the case that both criteria are met,
we descend the 7g BTSR-tree and recursively check for similarity joins between its
children entries with the same leaf entry R fixed in the 7T BTSR-tree. Eventually,
the leaf level in the Tg¢ BTSR-tree will be reached and refinement against the raw
time series on both the spatial and time series criteria can yield the final results.

4.4.4 Hybrid Distributed Similarity Join

As any join query over large datasets, computing hybrid similarity joins over
millions of geolocated time series is a very demanding task. Building a global index
per dataset and applying any of the above methods still incurs excessive cost, as
demonstrated in our empirical tests (Section 5.4). To tackle scalability, we present a
parallel and distributed approach based on space-driven partitioning (Section 4.4.4.1).
We also describe an optimized, index-guided variant to reduce the amount of data
shuffled between workers (Section 4.4.4.2).

4.4.4.1 MapReduce Method with Spatial Partitioning

Typically, in MapReduce-based processing, both input datasets Tz and Tg should
be divided into smaller chunks that may be efficiently processed in a distributed
fashion by a number of worker nodes. In our case, distributing geolocated time series
data by their spatial location is straightforward and can be effectuated much faster as
opposed to a high-dimensional, times series-based subdivision (i.e., considering each
value as a separate dimension). Our method employs a subdivision P into disjoint
partitions over the spatial area covering all locations in either dataset Tz and 7g.
Partitioning P is identical for both datasets. Without loss of generality, we consider
P as a uniform grid tessellation into g x ¢ square equi-sized cells, but our method
can be easily adjusted to other space-driven subdivisions into disjoint regions (e.g.,
quadtrees). Choosing a suitable grid granularity g over each axis mostly depends
on dataset size, but also on the number and processing power of available nodes in
cluster infrastructures.

The pseudocode listed in Algorithm 5 outlines the entire process. It proceeds in
two successive phases:

e Local search per partition.

e Cross-partition search, by shuffling subsets of data between neighboring parti-

tions.
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Figure 4.3: Blocks in cross-partition search.

In particular, we make use of distinct tiers of blocks with increasingly finer spatial

resolution (Figure 4.3):

1)

2a)

2b)

Local search per partition (Lines 1-6): The first tier concerns individual parti-
tions, and the algorithm needs to check for similarity join between those geolo-
cated time series from T and those from 7g contained in the same partition
p € P. This is depicted for a given partition (cell) p enclosed with dashed line
segments in Figure 4.3 over each of the two datasets.

Cross-partition search in pairs of adjacent bands (Lines 7-12): A collection
B of spatial bands of width e, is created inwards along each side of every
partition in P. Geolocated time series of each dataset coming from adjacent
bands across every pair of neighboring partitions need to be checked against
the query criteria. For a given partition p, each of the four bands created over
Tr must be compared with respective bands created not in the same partition
p for Tg, but in each of the four partitions sharing one common side with p.
In Figure 4.3, the pairs of respective bands are shown hatched with the same
colored pattern and are connected with curly arrows. A set Lg consisting of
pairs of such adjacent bands indicates those that must be probed across all
partitions.

Cross-partition search in pairs of boxes with one common corner (Lines 13-18):
The finest tier concerns a set C of square boxes of side ¢, created at the corner
of each partition in P. Geolocated time series from either dataset contained
in boxes having one common corner need further probing (i.e., corner-wise in
P), and all pairs of such boxes are collected in set L¢. As shown in Figure 4.3,
each box c¢ created at the four corners of partition p over 7z should be checked
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against one equi-sized box over Tg; this latter box belongs to a neighboring
partition p’ # p, which has only one common corner with p.

Since all blocks are purely space-driven, the rationale is that spatial filtering
comes first, whilst the time series criterion is checked afterwards for any remaining
candidate pairs. At each block level, our method creates disjoint data chunks for
subsets of geolocated time series located in that block; this is applied against both
datasets similarly for partitions (Lines 2-3), bands (Lines 8-9), and boxes (Lines 14-
15).

Furthermore, at each block tier, a local index is built for every derived chunk.
Interestingly, we may plug in any of the centralized similarity join methods suggested
in this section. The same indexing scheme must be used at each tier, i.e., either
R-tree, iSAX, or BTSR-tree (hereafter referred to as X-index). For partitions, such
indices can be suitably built in advance with a predefined subdivision P and thus can
be readily available for any similarity join query that may specify varying values on
parameters €, and €. In contrast, indices over data contained in each of the bands
listed in Lg or each corner box in L have to be created at query time, since they
clearly rely on distance threshold ¢,,, which may vary among queries.

Once pairs of blocks need be checked at each tier (either Lp for partitions, or Lg
for bands, or L¢ for boxes), blockwiseSimJoin (Lines 19-25) takes advantage of the
created indices and applies the respective method to return their results. Each pair of
blocks at any tier can be processed independently. Hence, for a given partitioning P,
once the query is submitted, the required subsets and their indices can be prepared
in a distributed fashion and the respective block-wise checking can be evaluated in
parallel. For a given partition p (first tier), subsets from both datasets are assigned
to the same worker node. This policy is also applied in the case of blocks that need
to be checked: the worker responsible for a given partition p receives the data and
index concerning geolocated time series from the other dataset within an adjacent
block. Such processing fits well under the MapReduce paradigm; mappers assign data
subsets to workers according to partitioning scheme P. Each worker employs reduce
operations to generate the respective indices and store them on HDFS. At query time,
a map procedure assigns the indices that reside within each partition to a reducer,
which calculates the local results. Simultaneously, mappers shuffle data per block to
workers responsible for their neighboring partitions. Finally, a reduce operation is
carried out on each pair of such blocks to compute their similarity joins and to store
results on HDF'S.

Overall, this method manages to provide correct and complete results for any
similarity join query over two datasets of geolocated time series. This is stated in the
following;:
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Algorithm 5: SimJoinMR(7g, Ts, €5p, €15, X)

Input: dataset 7r, dataset 7g, spatial constraint e, time series constraint e, index
method X (e.g., BTSR-tree or R-tree)

Output: Set @ of pairs of geolocated time series satisfying constraints

/* PHASE #1.: local search per partition */

P « space partitioning common for both datasets Tg, Ts

Rp <+ distribute 7r and build a local X-index per partition p € P

Sp « distribute 7g and build a local X-index per partition p € P

Lp <~ {(p,p) : Vp € P} . pairs of identical partitions

Qp < blockwiseSimJoin(Lp, Rp, Sp, €sp, €15)

storeHDFS(Qp) . partial results over partitions

/* PHASE #2a: cross-partition search in pairs of adjacent bands */

B + create bands of width €5, inwards each side of every p € P

8 Rp « filter Rp by B and build a local A-index per band b € B

9 Sp < filter Sp by B and build a local X-index per band b € B

10 Lp < {(r € Rg,s € Sp) : bands r.b, s.b share a side in partitioning P}

11 Qg + blockwiseSimJoin(Lg, Rg, S5, €sp, €ts)

12 storeHDFS(Qp) . partial results over bands

/* PHASE #2b: cross-partition search in corner-wise pairs of boxes */

13 C < create boxes of side €4, at the corners of each partition p € P

14 R¢ < filter Rp by C and build a local A-index per box c € C

15 S¢ < filter Sp by C and build a local X-index per box ¢ € C

16 Le < {(r € Re,s € S¢) : boxes r.c, s.c share a single corner in P}

17 Q¢ < blockwiseSimJoin(L¢, R¢, S, €sp, €15)

DUt R W N =

N

18 storeHDFS(Q¢) . partial results over boxes
19 Function blockwiseSimJoin(L, R, S, €sp, €15)

20 Q0

21 foreach block pair (a,b) € L do . local search
22 TE « local X-index available for dataset R in block a

23 T + local X-index available for dataset S in block b

24 Q < QU SimJoinX (ZE.root, I; .root, €5y, €15)

25 return @ . results collected from all pairs of blocks

Lemma 1. Algorithm 5 issues all qualifying results of similarity join between two
datasets Tr and Tg of geolocated time series, without probing candidate pairs more
than once and without any false misses.

Proof. To prove the above Lemma, we separately evaluate its correctness and its
completeness (i.e., ensure that there aren’t any qualifying results missing from the
final answer).

Regarding correctness, consider a given partition p € P, as depicted in Figure 4.3
and let R, be the geolocated time series of T having their location contained therein.
Obviously, any of their possibly qualifying pairs from dataset 7g must be within
distance €g,. So, it suffices to examine similarity between geolocated time series in
R, with those of Tg topologically located within a buffer that expands partition p by
distance €,,. Clearly, the area covered by the nine blocks (one partition, four bands,
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and four boxes) concerning Tg is exactly this buffer zone, s0 Quna(p) = {(Tr,Ts) :
within(Tg.loc, p), within(Ts.loc,buf fer(p, €s,))} provides all possible candidates in a
given partition p. As partitions hold disjoint subsets of the raw data, iterating with
the same logic over each partition p € P, confirms that all candidates are examined.

Regarding completeness, observe that the pairs of blocks involved at each stage
include all possible candidates to probe from each dataset. At the first tier, searching
in each partition p (common for either dataset) provides all qualifying pairs having
their constituent geolocated time series both located in p. Cross-searching beyond
the boundary of each partition p is meaningful only along the adjacent bands and
boxes, each of them coming from a distinct neighboring partition to p. Clearly, in
each of those nine blocks, a disjoint subset of candidate pairs from the two datasets
is examined and their union is Q..nq(p). Hence, each candidate pair is probed only
once, and no qualifying results can ever be missing from the final answer. ]

4.4.4.2 Minimizing Data Shuffling

Recall that a worker w already has locally available all data for subsets of Tgr
and Tg located in its assigned partition p. This is sufficient for its own local search,
but w still needs to send raw data concerning its four bands and four boxes for the
cross-partition search.

This evaluation strategy can be further optimized by minimizing the amount of
data that needs to be shuffled during cross-partition search. We introduce an inter-
mediate filtering step that takes advantage of the pruning power of our BTSR-tree
index. Consider a given block a over dataset Tz held in worker w’ that must be
shipped to worker w responsible for partition p. Instead, w’ builds a BTSR-tree Zt
over this subset in a, and sends this index only to worker w, which builds its own
BTSR-tree Z; over its local subset of Tg within its corresponding block b. Checking
for similarity joins against those two indices can be carried out with Algorithm 4.
The algorithm returns pairs {(mbr{, mbr})} of overlapping MBRs, where mbr{ is an
MBR over block a and mbr;? is over block b, and each one contains candidate geolo-
cated time series for refinement. The list {mbr{} of all identified MBRs concerning
block a is returned to worker w’ and the raw geolocated time series within each such
MBR can be readily accessed thanks to the already available BTSR-tree ZX. Those
MBR-filtered time series are then shipped to worker w, which also retrieves its own
raw data from BTSR-tree 7} concerning those MBRs {mbr?} identified for its own
block b. Finally, those two MBR-filtered subsets of geolocated time series are each
indexed with a new BTSR-tree and joined according to the similarity criteria to yield
their matching results. As confirmed in our empirical tests, this index-guided shuf-
fling can reduce the raw data transferred between workers by more than 50% without
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sacrificing performance.

4.5 Experimental Evaluation

This chapter experimentally evaluates all our hybrid queries processing approaches
and discusses the obtained results. First, we evaluate the TSR-tree and BTSR-tree
indices in terms of construction time and index size, in contrast with the standard
R-tree. Then we evaluate the performance of TSR-tree and BTSR-tree against a
standard R-tree implementation, where we first apply spatial filtering and then scan
through all the obtained geolocated time series to keep only the ones that satisfy
€:s. Next, we evaluate our hybrid similarity join approach using iSAX, R-tree and
BTSR-tree. Finally, we compare our distributed similarity join algorithm against a
basic version that utilizes standard R-trees for local indexing. We first describe our
experimental setup, the datasets and the applied parameterizations.

4.5.1 Experimental Setup

Here we describe the setup of our evaluation regarding the datasets used, the
index and query parameters and the machine specifications where the experiments

were executed.

4.5.1.1 Datasets

We use four real-world datasets, which are selected from various application do-
mains and have different characteristics, in order to evaluate our approach with di-
verse types of geolocated time series. Next, we describe the characteristics of each
dataset. A summary is listed in Table 4.2.

DAIAD Water Consumption (Water) . Courtesy of the DAIAD project (http:
//daiad.eu/), we acquired a geolocated time series dataset of hourly water con-
sumption for 822 households in Alicante, Spain from 1/1/2015 to 20/1/2017. In
order to get a more representative dataset for our tests, we first calculated the

Table 4.2: Datasets and default thresholds used in the similarity search experiments.

Dataset Area  Number of Length of Default query thresholds

(km?) locations  timeseries 0, O:s 0y
Water 114 200,000 168 0.15 0.175 0.15
Taxi 2,500 417,960 168 0.2 0.001 0.0025
Flickr Earth 414,967 96 0.25 0.0005 0.001
Crime 392,000 362,215 76 0.3 0.01 0.02
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weekly (24 x 7) time series per household by averaging corresponding hourly
values over the entire period. Then, these weekly time series were used as seeds
in order to synthetically increase the size of the dataset from 822 to 200,000,
by introducing some random variations in their location and pattern. For as-
sessing the performance of hybrid similarity join, we generated several synthetic
datasets of various sizes, using the DAIAD water consumption dataset as a seed.
Specifically, the weekly sequences were used as seeds to synthetically increase
the size of the dataset up to 2 million geolocated time series, by introducing

small random variations in their location and pattern.

NYC taxi drop-offs (Taxi) . This dataset contains time series extracted from yel-
low taxi rides in New York City during 2015. The original data® provide pick-up
and drop-off locations, as well as corresponding timestamps for each ride. For
each month, we generated time series by applying a uniform spatial grid over
the entire city (cell side was 200 meters) and counting all drop-offs therein for
each day of the week at the time granularity of one hour. Thus, we obtained
the number of drop-offs for 24 x 7 time intervals in every cell, which essentially
captures the weekly fluctuation of taxi destinations there. Without loss of gen-
erality, the centroid of each cell is used as the geolocation of the corresponding

time series.

Flickr geotagged photos (Flickr) . This dataset contains time series data ex-
tracted from geolocated Flickr images between 2006 and 2013 over the entire
planet®. In order to get meaningful geolocated time series, we partitioned the
space by a uniform grid of 7200 x 3600 cells (each one spanning 0.05 decimal
degrees in each dimension) and we counted the number of photos contained in
every cell each month, excluding cells with no data at all (e.g., in the oceans).
Each time series conveys the visits pattern (in terms of number of photos taken
per month) of that region over this period.

UK historical crime data (Crime) . This dataset contains time series represent-
ing the temporal variation in the number of crime incidents reported across
England and Wales over 76 months (December 2010— March 2017). From the
original data’!, we generate 362,215 time series over a grid with cell size 200
meters. For each month, we counted incidents having their location within each
cell.

Zhttp://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml
3https://code.flickr.net/category/geo/
“nttps://data.police.uk/data/
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Table 4.3: Parameters tested in the hybrid similarity join experiments.

Parameter Values

Dataset size (centralized) 50K, 100K, 150K, 200K, 500K, 1000K
Dataset size (distributed) 500K, 1000K, 1500K, 2000K
Number of partitions g x g (distributed) 102, 202, 302,402,50%,602,702
Distance radius ey, (meters) in queries 100, 125, 150, 175, 200

Time series deviation €5 in queries 0.3, 0.35, 0.4, 0.45, 0.5

4.5.1.2 Index Parameters

For hybrid similarity search queries, we set the minimum (m) and maximum (M)
number of entries stored in each node to 60 and 200, respectively. To insert time
series in the TSR-tree and the BTSR-tree in the same manner as in the R-tree,
the weight parameter A, used in Equation 3.4 to select the node with the least cost
during an insertion, is set to 1. This implies that only the spatial cost is considered
during insertion. This way, the performance benefits observed in the experiments are
only due to the pruning conditions. Finally, for the BTSR-tree, we fix the number
of bundles 8y = 5 for its leaf nodes; factor ¢, specifying the increase (decrease) rate
of the number of bundles (respectively, time series resolution) at each higher level in
the tree hierarchy, is set to ¢ = 2.

Regarding hybrid similarity join, we fine-tuned parameters for the various indices
used against this data. For BTSR-trees and R-trees, the number of entries per node
ranges between m = 10 and M = 50. In :SAX, up to M = 250 time series can be
stored per leaf and the length of each SAX word is w = 8.

4.5.1.3 Query Parameters

For hybrid similarity search, the query parameters involve the different types
of distance thresholds for queries involving boolean filtering, namely spatial (),
time series () and hybrid (6,), as well as the number £ of results to return for
queries involving top-k filtering. Values to these parameters are set differently for
each dataset, based on their characteristics; default values are shown in Table 4.2.
Moreover, for queries involving hybrid distance, we fix the exponential decay constant
v to 0.025 for the Water and Taxi, 0.001 for the Flickr and 0.05 for the Crime dataset,
to better reflect the spatial distribution and coverage of each particular dataset.

For hybrid similarity join, Table 4.3 lists the range of values for the rest of pa-
rameters used in our tests; default values are in bold.

4.5.1.4 Evaluation Setting

All algorithms were implemented in Java. For hybrid similarity search, we compare
the performance of our hybrid indices to the standard R-tree, used as baseline. In
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Figure 4.4: Comparison of index construction time and size for each dataset.

the R-tree, query evaluation is done by traversing the index according to the spatial
predicate of the query, retrieving a set of intermediate results that satisfy the spatial
condition, and then filtering out candidates according to the time series predicate
to produce the final result set. We measure the portion of tree nodes accessed by
each method, since this is the dominant performance factor for each index. Moreover,
for each index, we measure its size and the time required for its construction. The
implementations of all indices are in-memory and developed in Java. The tests are
run on a Debian Linux machine with 4 CPUs, each containing 8 cores clocked at
2.13GHz, and 256 GB RAM. Query workloads were created by randomly picking 500
geolocated time series separately for each dataset.

Regarding hybrid similarity join, distributed methods were developed on Apache
Spark 2.3.0. The centralized experiments were executed on a machine running MacOS
10.13.5 with a 2GHz CPU and 8GB of RAM. The distributed tests were conducted
on a cluster with 7 virtual machines running Ubuntu 16.04.3 LTS, with 4 cores
each, clocked at 2.1GHz. Each node had a total of 5GB of RAM. Next, we report
performance in terms of average response time per query. Each query runs against
two instances of the same dataset (i.e., self~join), excluding identity matches from
resulting pairs. In the distributed case, we also measure the amount of raw data
transferred between workers during the cross-partition phase.

4.5.2 Index Construction Time and Size

Figure 4.4 shows the index construction time and the resulting index size (i.e.,
memory footprint) for each dataset. Construction time of the TSR-tree index is
slightly higher than that of the R-tree, and the same holds for the index size. This
is natural, because after building the spatial part of the index, it has to be traversed
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Figure 4.5: Query Qu (15, Osp, 015) with varying spatial distance threshold 6),.

in order to calculate the MBTS of each node, which incurs additional cost both for
computing and for storing it in each node. Compared to the TSR-tree, building the
BTSR-tree index is even more costly, since it incurs an additional time and space
overhead to compute the time series bundles in each node and maintain the MBTS
of each bundle. Still, these costs are not considered significant. Even for the largest
dataset (Taxi), which contains 417,960 time series and has an original size of 153
MB, the index construction time is around 43 seconds for TSR-tree and 45 seconds
for BTSR-tree, while the index size is around 610 MB and 710 MB, respectively. Note
that the extra space for the BTSR-tree is needed for storing the bounds for each of
the progressively multiple bundles in internal nodes.

4.5.3 Hybrid Similarity Search Query Performance

We compare the percentage of nodes accessed by each index in each query. All
measurements are average cost per query in each particular workload.
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Figure 4.6: Query Qu (15, bsp, 015) with varying time series distance threshold 6.

4.5.3.1 Double Range Query

Figure 4.5 illustrates the performance of double range query (Qy,) on each dataset
for varying spatial distance threshold (6,,). Both the TSR-tree and the BTSR-tree
clearly outperform the standard R-tree in all datasets, with gains in performance
increasing even further as the threshold 6, increases. The standard R-tree needs to
access a significant amount of nodes as it can only prune in the spatial domain. As a
result, it performs increasingly worse than the TSR-tree and the BTSR-tree. Due to
its tighter bounds, the BTSR-tree manages to prune more nodes than the TSR-tree,
especially for larger spatial threshold values.

Obviously, increasing the time series threshold (Figure 4.6) has absolutely no im-
pact on the performance of the standard R-tree. On the contrary, the node accesses
required by the TSR-tree and the BTSR-tree are much lower. Nevertheless, these
also increase with more relaxed 6;s, asymptotically reaching those of the R-tree. Per-
formance of the BTSR-tree is better for lower values of 0;, as it allows more pruning
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Figure 4.7: Query Qu»(Tq, k, 015) with varying number & of results.

thanks to the tighter bounds of bundles. It is apparent that the sensitivity of the
threshold heavily depends on the dataset. Even slightly increasing 6, in the Taxi and
Flickr datasets (Figure 4.6b and 4.6¢), significantly affects performance of both the
TSR-tree and the BTSR-tree, as they are more sparse than the Water and Crime
datasets (Figure 4.6a and 4.6d), with a large number of time series having many zero
values. Consequently, even a small increase in this threshold causes a larger amount
of nodes to be probed.

4.5.3.2 Top-k Range Query

Performance of top-k range query (@) for varying number k of results is de-
picted in Figure 4.7. In all cases, both the TSR-tree and the BTSR-tree cope better
compared to the standard R-tree. Varying the number k of results does not signifi-
cantly affect performance, as nearby elements tend to have similar time series values

and all required results are found in close distance. This is an interesting insight,
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Figure 4.8: Query Qu(Tq, k, 0:5) with varying time series distance threshold 6.

especially for the Water dataset, which suggests that neighboring households tend
to have similar water consumption. The R-tree performs really poor in the Crime
dataset (Figure 4.7d), requiring a full traversal (100% of its nodes), as the sought
number of results cannot be found. This is not the case with the TSR-tree and the
BTSR-tree, respectively accessing 65% and 58% of their nodes due to their effective

pruning in the time series domain.

Increasing the time series threshold 6, (Figure 4.8) in @, improves perfor-
mance of the R-tree and it is sometimes competitive to that of the TSR-tree and the
BTSR-tree, as more nearby elements qualify as results and are thus quickly found.
However, this is strongly influenced by dataset characteristics. For the Taxi dataset
(Figure 4.8b), node accesses in the R-tree are similar for different values of 6, but
performance for the BTSR-tree slightly decreases with higher threshold values. In-
deed, relaxing this threshold effectively allows more tolerance in the similarity of time
series and thus, extra nodes need to be visited for checking.
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Figure 4.9: Query Qui (T3, bsp, k) with varying number £ of results.

4.5.3.3 Range Top-k

Varying the number k& of results in the range top-k query (Qu), as illustrated in
Figure 4.9, shows similar behavior to the Q);, query. Similar time series are located
close to each other, so k results are quickly obtained once the first qualifying time
series is retrieved. The R-tree is always significantly outperformed by the TSR-tree
and BTSR-tree; the effect is less apparent in the Crime dataset (Figure 4.9d).

Figure 4.10 illustrates performance of the (. query for varying spatial dis-
tance threshold (6,,). The significantly better performance of the TSR-tree and the
BTSR-tree is also apparent here, with the difference getting more pronounced with
larger thresholds (i.e., wider radii). This advantage is less manifest in the Crime
dataset (Figure 4.10d) because the applied thresholds cover increasingly larger spa-
tial areas (practically the entire dataset for s, = 0.5), thus more nodes need to be
examined in order to identify the k results. In the Taxi dataset, the performance im-
provement of the BTSR-tree compared to the TSR-tree is smaller due to data sparsity,
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Figure 4.10: Query Qi (1y, 0sp, k) with varying spatial distance threshold 6.

which diminishes the pruning effect of bundles in the nodes of the BTSR-tree.

4.5.3.4 Hybrid Range Query

First, note that such hybrid queries cannot be possibly applied on the R-tree at
all. Regarding the hybrid range query (Qn;), Figure 4.11 plots performance for vary-
ing hybrid distance threshold (6p;). The BTSR-tree fares better than the TSR-tree in
all cases. The effect is more intense with smaller 6y, values, since the tighter bundles
in the BTSR-tree allow more effective pruning. For each dataset, divergence in per-
formance between the two indices largely depends on variance among closely located
time series. For instance, taxi dropoffs exhibit similar patterns locally, so the derived
bounds also tend to be similar, diminishing the pruning power of both indices as
shown in Figure 4.11b. Instead, when nearby time series have many diverse patterns,
the BTSR-tree becomes more effective by allocating them to distinct bundles and
offering considerable performance gain as for the Water dataset (Figure 4.11a).
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Figure 4.11: Query Qn»(T5, 0r,y) with varying hybrid distance threshold 6p,.

4.5.3.5 Hybrid Top-k Query

Finally, Figure 4.12 depicts the performance of the hybrid top-k query (Qnx) for
varying number £ of results. BTSR-tree always outperforms TSR-tree with a margin
of more than 10% node accesses on average, again with the exception of the Taxi
dataset (Figure 4.12b), as mentioned before.

4.5.4 Centralized Hybrid Similarity Join Performance

Next, we describe the results obtained for the centralized hybrid similarity join,
performed on the synthetic water dataset. Figure 4.13 depicts performance for differ-
ent parameter values and dataset sizes. The :SAX-based algorithm performs signifi-
cantly worse than the rest, mostly because each node comparison involves reconver-
sion of the iSAX symbols to the Euclidean space | | and consequently, calculation
of Euclidean distances over long sequences (up to 168 values in this data). BTSR-tree

is superior in all cases, as it is able to prune in both time series and spatial domains.
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Figure 4.12: Query Qunx(Ty, k,y) with varying number & of results.

As shown in Figure 4.13a, BTSR-tree and R-tree-based methods perform similarly
for smaller €, values, as fewer candidates are found and need refinement in the time
series domain. However, as the distance radius e, is relaxed, R-tree search worsens
significantly, while BTSR-tree still copes well due to its hybrid pruning ability. :SAX-
based search is immune to different values of ¢, as filtering with spatial distance is
only involved at refinement. With varying ¢, values (Figure 4.13b), BTSR-tree and
R-tree approaches have no fluctuations in performance, as €, is fixed and refinement
of candidates involves a similar cost in the time series domain. However, using iSAX
indexing is faster for lower ¢;; values and performance slowly degrades for larger €,
as more candidates become eligible. In terms of scalability (Figure 4.13c), all algo-
rithms are almost equally fast over small datasets. But, as dataset sizes grow, the
BTSR-tree approach scales better thanks to its hybrid pruning, although the number
of matching pairs escalates. Indicatively, for 100K input data, we get 2K qualifying
pairs; in the 500K dataset, we get 40K results. For input data sizes larger than 500K,

all centralized methods fail to finish execution, issuing an out-of-memory error. This
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Figure 4.13: Processing cost for centralized execution of similarity join queries employing
different indices.

manifests the necessity of distributed processing schemes for similarity joins over
larger datasets.

4.5.5 Distributed Hybrid Similarity Join Performance

For the distributed hybrid similarity join evaluation, using the synthetic water
dataset, we compare SimJoinMR (using R-trees for local indexing) with its SimJoinOPT
variant (employing BTSR-trees) for varying e, values. It is apparent from Figure
4.14a that query response times for the SimJoinMR method are increasing, since the
underlying R-trees fare worse for larger distance radii. With larger €, values, more
raw data has to be shuffled between workers during the cross-partition checks, as
the size of bands and boxes involved gets bigger and covers more candidate geolo-
cated time series. Concerning exactly this shuffling overhead, Figure 4.14b reveals
that this is indeed lower in the SimJoinOPT variant, which explains its processing
cost advantage. Finally, Figure 4.14c illustrates the number of results produced from
the two stages; first locally in each partition, and then after cross-partition checks in
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Figure 4.14: Performance results for the distributed methods with varying egp,.

bands and boxes. As distance constraint €, gets more relaxed, more pairs qualify as
answers. For smaller €, the majority of results come locally from each partition. But
as €, is relaxed, many more pairs are found in neighboring partitions, as bands and

boxes also become larger and increase their share in qualifying results much more.

With regard to increasing ¢;s values, observe in Figure 4.15a that SimJoinMR is
consistently worse than SimJoinOPT, basically due to the different pruning power
of their respective indices. The former relies on R-trees, which have no effect with
varying €;; in contrast, BTSR-trees employed by SimJoinOPT can effectively filter
candidates also in the time series domain. With a more relaxed ¢;,, more results
qualify, hence the linear increase in processing cost. Regarding the data shuffling
overhead, this is practically stable for each method irrespective of the ¢, constraint
(Figure 4.15b). In SimJoinMR, selection of geolocated time series that should be
transmitted is solely based on their spatial containment in the respective bands and
corner-wise boxes. But SimJoinOPT avoids many irrelevant transfers, as it also uses
filtering with ¢;; the amount of dispatched geolocated time series is only slightly
increasing with €. Regarding the number of generated results, Figure 4.15¢ reveals
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Figure 4.15: Performance results for the distributed methods with varying €.

a rather steep increase for small variations of ¢, which indicates that most time
series are clustered within a small range of ¢;; deviations. As original data concern
water consumption, this explains such highly correlated behavior, especially among
neighboring households; of course, this pattern is replicated in the synthetic data
as well. The percentage of results from cross-partition checks in each full answer is
similar across various €5 values, as distance ¢, is fixed and so are the respective
bands and boxes involved in this phase.

Figure 4.16 concerns scalability of the distributed methods with increasing dataset
sizes. For smaller datasets, both methods are competitive, but response times for
SimJoinMR escalate with larger sizes. With 2 million geolocated time series as input,
this method did not finish, as it required traversal of too many paths in its underlying
R-trees per partition, exceeding the capabilities of the workers. Regarding communi-
cation (Figure 4.16b), SimJoinMR requires shuffling of more raw data, especially for
input size of 1.5 million. In contrast, SimJoinOPT maintains lower communication
overhead, as it uses light-weight indices to guide data shuffling. Figure 4.16¢ indi-
cates that the number of results is growing according to the input size, as the spatial
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Figure 4.16: Scalability of the distributed methods.

density also increases with larger synthetic datasets that still cover the same area
(Alicante).

Last but not least, we conducted tests concerning partitioning, i.e., varying the
grid granularity and distributing input data accordingly. As shown in Figure 4.17a,
SimJoinMR was not able to conclude its evaluation over coarser spatial subdivisions,
as each resulting partition can hardly cope with the larger subsets of data held locally.
For 30 x 30 partitions, SimJoinOPT performs better thanks to the superiority of
BTSR-tree in pruning. But SimJoinMR overtakes SimJoinOPT when allowing finer
partitioning (40 x 40 partitions or more), as the R-tree overhead diminishes. Each
such index has to deal with smaller subsets, although it incurs higher communication
overhead compared to SimJoinOPT (Figure 4.17b). Indeed, having more partitions
forces SimJoinOPT to search for joins pairwise in many more bands and boxes,
while also building the respective intermediate indices. So, such optimization really
compensates with a coarser partitioning, achieving its best performance with a 20 x 20
grid as depicted in Figure 4.17a. Finally, Figure 4.17c indicates that the majority
of resulting pairs are derived locally under a coarser partitioning. However, this is
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Figure 4.17: Effect of partitioning on the performance of distributed methods.

reversed with finer partitioning, as the size of blocks (bands and boxes) during the
cross-partition checks cover much more area per cell, hence many more qualifying
pairs are found while searching across neighboring partitions.

4.6 Summary

In this chapter, we addressed the problem of hybrid similarity search and join
over geolocated time series according to both their spatial proximity and time se-
ries similarity. Our approach takes advantage of different state-of-the-art indexing
schemes to design an efficient algorithm for query evaluation. As far as similarity
join is concerned, given that scalability is a bottleneck in such centralized settings,
we show how a space-driven partitioning can be employed to deal with much larger
datasets in cluster environments. Our parallel and distributed method can efficiently
execute similarity joins per partition locally, while also minimizing the amount of

data shuffled between processing nodes.

Our experiments against diverse real-world and synthetic datasets from different
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domains and varying sizes confirm the efficiency and effectiveness of our algorithms
and show that the proposed indices significantly improve performance when evaluat-
ing hybrid similarity joins, as well as queries combining boolean and /or top-k filtering
on both spatial proximity and time series similarity.

In the following chapter we introduce two visual exploration methods for geolo-
cated time series datasets, that leverage the BTSR-tree index to speed-up the search

and allow interactive exploratory visualizations.
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Chapter 5

Visual Exploration of Geolocated

Time Series

Time series is an inherently complex data type. Datasets containing time series can
reach extremely large volumes, both horizontally (i.e., very long series of values across
time) and vertically (i.e., time series generated by countless sources). Consequently,
the management, analysis and exploration of big time series data is a task requiring
efficient and scalable algorithms. In particular, visual exploration of geolocated time
series needs to process the required information efficiently, while the user interacts
with the application. For example, whenever the user zooms in or scrolls the map,
visual analytics and aggregates should be computed on-the-fly, e.g., identifying the
predominant patterns in the time series and their spatial distribution within the
actual map area.

Consider the example illustrated in Figure 5.1a. When the user zooms the map

into the red rectangle, the visualization application should identify, summarize and

= by
{4 gl 12 w/iama 2 o) > Tig Ay
b

(a) Exploring in a spatial region. (b) Exploring in a timebox.

Figure 5.1: Visual exploration examples over geolocated time series.
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present the two patterns (shown in blue and green color) appearing therein. For
such requests that inherently combine spatial filters with time series analysis, it is
inefficient to evaluate each predicate separately, e.g., apply a spatial filter on the time
series of a large dataset and then calculate summaries of the candidates, or vice versa.
The same stands for the case of exploration on the time series domain, as depicted
in Figure 5.1b. Consider a user drawing a timebox (i.e., a rectangle in the time series
domain) or zooming in the yellow part. The application should identify the time series
that are fully contained within that filter area, i.e., their values along the specified
time range fall within the value range (both ranges shown in orange in Figure 5.1b),
and then provide an informative summary comprising aggregate spatial information
to avoid cluttering the map.

Efficient filtering and retrieval over large datasets of geolocated time series can
be enabled by indexing. Several approaches have been proposed that efficiently in-
dex large amounts of plain time series data. They either rely on Discrete Wavelet
Transform to reduce the dimensionality of time series | |, or make use of a fam-
ily of indices based on Symbolic Aggregate Approximation (SAX) | ) ,

, |. However, all aforementioned techniques index the data solely on the
time series domain, not taking the spatial dimension into account. If each analyzed
time series is inherently associated with a spatial attribute (e.g., locations of smart
meters), such indexing is not sufficient for queries and visualizations that additionally
involve spatial filters.

In this chapter, we propose two geolocated time series summarization approaches
for visual exploration, named bundle and tile map summary. These are supported
and driven by two appropriate hybrid indices that speed up the result computation,
providing efficient exploration of geolocated time series data. They consist of a spatial
and a time series summary that jointly facilitate knowledge extraction and insight
gaining. The spatial summary is similar for both and consists of Minimum Bounding
Rectangles (MBRs) of geolocated time series, according to a specific predicate (i.e.,
spatial proximity, or time series similarity). Each MBR is associated with a counter
denoting the number of time series it contains. A visualization example of the spatial
summary is depicted in Figure 5.1a, where the geolocated time series are organized in
two groups (i.e., green and blue colored) according to their similarity. Each group is
depicted along with a number that indicates the amount of time series that it contains
(i.e., three geolocated time series for the first group and four for the second).

The main difference among the two methods lies in the time series part of the
summary. The bundle summary consists of sets of MBTS, an example of which is
depicted in Figure 5.2a. An MBTS is a band with upper and lower bounds that
encloses all time series of a set, providing with a notion of a range of the time
series values throughout the time axis. On the other hand, the tile map summary
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L 2

(a) Bundle summary. (b) Tile map summary.

Figure 5.2: Examples of computed summaries on the time series domain.

(Figure 5.2b) of a set of time series indicates (using a corresponding shading), the
density of the time series points at each tile of a partitioning of the domain, obtained
by discretizing the time and value axes. This way, it avoids overplotting that would
be caused by outputting a large number of resulting time series and provides a notion
of how the values of the time series are distributed across time.

For providing prompt visualizations of summaries over geolocated time series data
and minimizing latency when drawing the relevant graphic elements, we need early
access to both spatial and time series information while traversing the index. For this
purpose, we adapt our BTSR-tree index so as to also include aggregates per node,
i.e., the number of time series pertaining to each bundle. Subsequently, we introduce
a new traversal algorithm for efficient retrieval of a given number of bundles that are
the most representative in the map area.

The tile map summary is driven by geo-iSAX, a hybrid index we introduce in this
chapter. This is a time series-first index, i.e., it is primarily built in the time series
domain. More specifically, it constitutes a hybrid variant of the iSAX index (for
details, refer to Chapter 2), augmented with spatial attributes of its nodes’ children,
to combine spatial and time series information. In each node, besides the SAX word
that describes all its children time series, geo-iSAX keeps also the MBR that they
form. To minimize the size and overlap of the MBRs, we propose a spatial splitting
policy, that instead of choosing the splitting dimension in a round-robin fashion (as
in iSAX), it does so by selecting the dimension that produces the smallest overlap
and overall size of the two generated MBRs. We introduce a traversal algorithm for
applying timebox search on large (both vertically and horizontally) geolocated time
series datasets. The traversal algorithm is applied on our geo-iSAX index and returns
a tile map-like summary of the qualifying geolocated time series, by taking advantage
of the SAX representation’s properties.
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To the best of our knowledge, this is the first work that considers visual ex-
ploration and summarization of geolocated time series. Specifically, we propose two
summarization methods enabling efficient map-based exploration driven by suitable
hybrid indices.

The rest of this chapter is organized as follows. Section 5.1 outlines basic con-
cepts and formulates the problem. Sections 5.2 and 5.3 introduce our methods for
efficient visual exploration of geolocated time series by harnessing the potential of
the BTSR-tree and geo-iSAX indices, respectively. Section 5.4 presents indicative use
cases with map visualizations and also reports performance results from our empirical

study. Finally, Section 5.5 concludes the chapter.

5.1 Summaries for Exploration

Our objective in this chapter is to compactly represent a large number of geolo-
cated time series by some form of summaries so as to support and facilitate their vi-
sual exploration. Intuitively, given a set of geolocated time series, we want to provide
summaries that express both their pattern across time as well as their corresponding
spatial extent. These summaries may be constructed over the whole dataset, e.g., to
provide an initial quick overview of the whole data, or over the results of a previ-
ous query, e.g., over those time series located inside a bounding box drawn by the
user on the map. Specifically, we consider two types of summaries, called bundle sum-
maries and tile map summaries, respectively, which we describe next, in Sections 5.1.1
and 5.1.2.

5.1.1 Bundle Summaries

This type of summary is composed of a set of k£ bundles, where each bundle

comprises the following information:

e A cluster of similar time series in the temporal domain

e A set of Minimum Bounding Rectangles (MBRs) summarizing in the spatial
domain the respective locations of those time series

e An integer indicating the number of objects located within each of the above
MBRs.

To derive such bundles, we use the notion of Minimum Bounding Time Series
(MBTS) introduced in Chapter 3. As a reminder, an MBTS bundles together a set
of time series T using a pair of bounds that fully contain all of them. Hence, we can
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formulate the problem of summarizing a set of geolocated time series by means of a
bundle summary as follows:

Problem 1 (Bundle Summary). Given a set T of geolocated time series, a spatial
area q of interest, a number k of desired bundles, and a number of | MBRs per bundle,
the problem is to efficiently compute a bundle summary that consists of a list of k
tuples over the subset {T' € T : within(Tloc,q)} of time series located within area q.
FEach such tuple in the bundle summary has the following structure:

Ry = {(mbts, {{mbr,cent)})} (5.1)

where mbts is a time series summary in the form of MBTS associated with a list of |
MBRs and cnt is the count of objects within each such mbr. O

In Section 5.2, we show how the BTSR-tree index can be used to address this
problem, i.e., to efficiently compute bundle summaries.

5.1.2 Tile Map Summaries

The bundles in the summary type introduced above are formed in a data-driven
manner, as objects belonging to the same bundle should be similar (e.g., based on clus-
tering). An alternative way to visually highlight spatio-temporal patterns in a large
set of geolocated time series is through summaries that rely on a fixed partitioning of
the time series domain. More specifically, the entire domain may be subdivided into
adjacent, non-overlapping tiles (Figure 5.3a), so that each tile captures the portion
of a time series falling within this tile. Simple aggregates (e.g., counts) of time series
per tile can easily convey the distribution of values in the dataset. As shown in the
example, the higher the concentration of data points within a tile, the darker its
shade. More formally:

Definition 4 (Tile Map). Let the time domain [t,,in, tmaz) be divided into succes-

sive intervals of equal size T, resulting into a subdivision {[tmin,tmin + T), [tmin +

Tytmin + 27), oy [tmaz — T, tmaz) }- Subdivision of the value domain [vVyin, Umaz) IS
carried out using a finite number of breakpoints {vi,vs,...,v,} where vy > Vpin,
Vp < Umaz and vy < vg < --- < vy. This subdivision yields disjoint, consecutive seg-
ments {[Vmin, V1), [U2,03), ..., [Uh, Umaz)} In the value axis. The resulting tile map is
a matrix of tiles over both domains, so that tile (i,j) corresponds to time interval
(toin + 0+ Ty bmin + (1 +1) - 7), 1 €0,..., [mae=tun] and to value segment [vj,v;41),
j€e0,....,h—1.

Essentially, such a tile map has a similar effect as space-driven partitionings like
quadtrees or grid subdivisions | |. As in the case of spatial objects, a time series
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L 2

(a) Tile map summary. (b) A timebox.

Figure 5.3: Exploration using a tile map summary and a timebox.

can be checked for containment within each tile. More specifically, a time series data
point v; at time ¢ is contained in tile (i,7) if tyn +0-7 < t < tppin + (1 + 1) - 7
and v; < vy < v;41. Once all time series are mapped into tiles, this matrix offers a
summary of the entire dataset.

However, we may inspect specific portions of a tile map, by checking a group
of neighboring tiles. This can be abstracted as a timebox [[H503] applied over both
domains. Intuitively, such a timebox is a rectangle in the time series domain that fully
contains a set of time series in the time and value range that it represents. Figure 5.3b
depicts with green color the time series that are contained within a timebox, among
a set of time series. More specifically:

Definition 5 (Timebox). A timebox p specifies a time interval [t, ') and a value range
[v,v") in order to identify any qualifying time series. We denote as timebox (T, p) once
a time series T qualifies to this timebox p if Vt; € [t,t'),v < T.v; < v'.

Overall, given a timebox p and a spatial area q of interest over a set of geolocated
time series, we are interested in identifying:

e The tiles that summarize objects located within ¢ and are also fully included
within p, i.e., no data point of the time series falls outside p in the respective
time interval.

e In addition, the summary provides also a set of £k MBRs covering all qualifying
time series; a counter measures the time series contained within each such MBR.

We can now formulate the problem of computing tile map summaries as follows:

Problem 2 (Tile Map Summary). Given a set T of geolocated time series, a timebox
p and a spatial area q of interest, and a number k of desired MBRs, a tile map
summary provides a list of k tuples over the subset {T € T : within(T.loc,q) A
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timebox (T, p)} of time series located within area q and qualifying to timebox p. Fach
such tuple in the tile map summary has the following structure:

R, = {(tmap, {{mbr,cnt)})} (5.2)

where tmap represents the tile map constructed over the qualifying time series and
is associated with a list of k MBRs that outline their spatial extent; the count cnt of
objects within each such mbr is also available. ]

In Section 5.3, we propose a technique that can efficiently construct tile map
summaries by employing an extended variant of the iSAX index.

5.2 Computing Bundle Summaries

Intuitively, the first visualization method displays the bundle summaries for a
spatial area of interest, as defined in Section 5.1. This may concern the currently
visible area on a map, so a set of time series patterns and their respective spatial
extents are computed and visualized. Using this process, a user can select the bundle
of her preference and the proper spatial summary will appear on the map after
acquiring the necessary MBRs from the BTSR-tree index. Whenever the user zooms
in/out or pans around the map, the BTSR-tree is traversed, and the corresponding
bundles, MBRs, and object counts are obtained to drive the visualization. In each
case, the rectangle corresponding to the visible part of the map is used to feed a
traversal algorithm that efficiently gathers the results. Next, we first outline the
structure of the BTSR-tree index, and then we introduce a novel algrorithm for its
traversal in order to compute the bundle summaries for a given area of interest.

5.2.1 Deriving Bundle Summaries from the BTSR-tree Index

To support the summaries required by the visualization method, we further ex-
tend the information stored in each node of the BTSR-tree index with the count
of geolocated time series that are fully contained within each bundle. This is done
bottom-up during insertion, while the index is traversed to calculate the bundles. At
each leaf node, after the clustering, we propagate the number of members of each
cluster to its parent, which in turn calculates its clusters and aggregates the counts it
has received for each bundle’s members. This procedure continues up to the root of
the tree. We stress that this process concerns the building of the index and is carried
out once geolocated time series are being inserted.

We now present our summarization technique for producing map-based visual-

izations of geolocated time series. The process is outlined in Algorithm 6. It takes
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Algorithm 6: Bundles Summarization of Geolocated Time Series

15

16
17
18
19
20
21

22
23

24
25
26
27
28
29
30

31

32

Input: Input rectangle ¢; number k of bundles to be generated; number [ of MBRs per

bundle

Output: A list R, containing tuples of bundles, MBRs, and object counts

R + IndexTraversal(q) // Step 1
R. < BundlesClustering(R, k) // Step 2
Ry, <+ BundlesCalculation(R,,) // Step 3
return R,

Procedure IndexTraversal(q)

R < 0,Q < Root.children
while Q # () do
N + Q.getNext()
if N is not leaf then
foreach N’ € N.children do
if g.contains(N’.mbr) then
L R <+ RU{(N'".mbr,{(N'.mbts, N'.cnt)})}

else if g.overlaps(N'.mbr) then
L Q < QU N'.children

return R

Procedure BundlesClustering(R, k)

R, 0,C« 0
foreach ¢t € R do
foreach b € t.mbts do

Tavg < avg(b.up,b.lo)
C + CU{(Thug,b, t.cnt(b),t.mbr)}

R. < kmeans(C.avg, k)
return R,

Procedure BundlesCalculation(R,, )

Ry + 0
foreach CIl € R..clusters do
mbts < 0, mbr + 0
foreach ¢t € Cl do
mbts < updateMBTS (mbts, t.mbts)
L {(mbr, ent)} + kmeans(l, t.mbr, t.cnt)

Ry + Ry U {(mbts, {(mbr,cnt)})}

return R

as input a rectangle ¢, i.e., the spatial area of interest for which the visualization

is produced, the number k£ of bundles and the number [ of MBRs per bundle to be

generated. The process comprises three distinct steps. Initially, the BTSR-tree index

is traversed to obtain the MBRs contained in the input rectangle, along with their

bundles and the number of objects per bundle (Line 1). Next, k-means clustering is

applied using the average time series per bundle as centroids (Line 2). Finally, the

new bundles are calculated and the proper MBRs and corresponding object counts
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are assigned to each bundle (Line 3). Next, we describe each step in more detail.

Step 1: BTSR-tree Traversal. During this step, the BTSR-tree index is tra-
versed, with the target being the fast provision of a predefined number k& of geolo-
cated time series bundles contained within the given area ¢, along with [ MBRs where
these bundles can be found and the total number of geolocated time series that re-
side within each MBR. All required information is stored within the nodes of the
BTSR-tree, thus, when a node that is contained within the input rectangle is found,
the relevant information is retrieved and added to the intermediate results, without
any need to continue searching in its sub-tree. The output of this step is passed to
the next phase of bundle clustering.

In more detail, the traversal is performed as follows. After initializing a queue
with the root’s children (Line 7), we iterate over it (Line 8) until it is empty. For each
inner node’s child N’, we check whether its MBR is contained within the given input
rectangle ¢ (Lines 11-12). If so, its MBR, the time series bundles, and the number
of objects per bundle are added to the intermediate results (Line 13) as a tuple with

the following components:

(mbr, {(mbtsy, cnty), ..., (mbtsg, enty)}).

Each such tuple indicates the MBR of a node (mbr), consisting of the coordinates of
the lower left and upper right point, as well as k pairs denoting the bundles of the
node along with the corresponding number of objects per bundle. If the MBR is not
contained in the input rectangle ¢, we check whether it overlaps with ¢ and if so, we
add the child node to the queue (Line 15). If not, this MBR is located outside the
input rectangle, and thus we can skip searching this subtree. Once no more nodes are
left to search, the intermediate results are finally returned (Line 16).

Step 2: Bundles Clustering. The aforementioned traversal method returns tu-
ples, each containing the bundles residing in the input rectangle, the corresponding
nodes” MBRs and the number of objects per bundle. Next, k-means clustering is
executed on the average time series of each bundle. Line 2 of Algorithm 6 calls the
clustering procedure. Initially, for each tuple (Line 20), we iterate over its bundles
(Line 21) and generate a new tuple per bundle of the following format:

(Tag, mbts, ent, mbr)

This new tuple contains an average time series, the bundle itself (mbts), the number
cnt of objects enclosed in this bundle, and the MBR (mbr) this bundle belongs to
(Line 23). The average time series T, is calculated by averaging the upper and lower
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bound of each bundle (Line 22), i.e., average value at each time point. The resulting
collection of tuples is fed to the k-means algorithm (Line 24) in order to return the
required number k of bundles to be created. This clustering generates a clustered
collection of tuples using the calculated average time series. These results are then
forwarded to step 3 (Line 25).

Step 3: Bundles Calculation and MBR Assignment. During this step, the
clustered tuples received from step 2 are used to calculate the final bundles, the
corresponding [ MBRs and total number of objects per MBR are assigned to each
bundle. The final bundles are calculated in a similar manner to the MBTS bundles
during BTSR-tree construction. More specifically, at each time point, we obtain the
maximum and minimum value among the corresponding upper and lower bounds for
the bundles of each cluster (see Section 3.2.1). Then, we apply k-means clustering
on each bundle’s MBRs, obtaining a total of [ new MBRs per bundle along with an
aggregate count of the time series contained therein. The final result is then used for
visualization.

Line 3 of Algorithm 6 calls the corresponding procedure. For each cluster of tuples
received from step 2 (Line 28), we loop over its members (Line 31) and we use each
tuple’s bundle to update the upper and lower bounds (Line 32). Then, we apply
k-means clustering on the cluster’s MBRs, obtaining [ new MBRs along with their
counts (Line 33). Once the bounds and the corresponding list of MBRs for the current
bundle have been calculated, we issue an aggregated tuple to the final result (Line
34). This tuple has the following components:

(mbts', {(mbry, cnty), ..., (mbry, cnt;) })

where mbts’ is a resulting bundle, along with [ MBRs associated with it. Each MBR
is accompanied with the corresponding number of raw time series therein. The final
result with all such tuples is then returned, to generate the visualization (Line 36).

5.3 Computing Tile Map Summaries

In this section, we present our second visualization method, which allows the user
to draw one or more timeboxes on the time series domain. This triggers a traversal
of our hybrid geo-t:SAX index to obtain the geolocated time series in the currently
visible map area and also fully contained within these timeboxes. The result comes
in the form of tiles, each spanning between two :SAX breakpoints, along with a
count per tile indicating the number of time series whose SAX symbol resides within
that tile. This count is used to generate the visualization in the form of tile map. A
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(a) Sample dataset in geo-iSAX.
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(b) The geo-iSAX index with letters indicating MBRs (depicted in 5.4a) attached to each
node. Nodes with filled boxes indicate a degenerate MBR consisting of a single point; nodes
with hollow boxes indicate no data. Subtrees under dash lines are not shown for brevity.

Figure 5.4: Sample dataset as maintained by the geo-iSAX index.

predefined number of MBRs and corresponding counts is also returned, generated by
clustering the locations of the resulting geolocated time series and used for the spatial
part of the visualization. Whenever the user zooms in/out or pans over the map, or
whenever she draws a new timebox, the procedure is repeated, the index is traversed
and the visualization is regenerated. Next, we first outline the original structure of
the :SAX index and then we introduce its geo-iSAX variant, which enables evaluation
of timebox queries and also maintenance of spatial information in its nodes. As we
discuss next, those two extensions provide the necessary support for computing tile

map summaries as specified in Section 5.1.

5.3.1 The geo-iSAX Index

We introduce geo-iSAX, a time series-first hybrid variant of the i{SAX index that
allows significant traversing speed-ups by pruning both on the spatial and time series
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domain. This is achieved by storing in each node of the tree, apart from the SAX
word of the geolocated time series it contains, the MBR that they form. Initially, the
time series part of the index is built, following the procedure described in Section 2.1.
As a next step, similarly to the BTSR-tree index, we traverse the index in a bottom-
up fashion, first generating the MBRs of the geolocated time series contained in the
leaf nodes. As we go upwards, we update the MBR information of each visited inner
node, using the MBRs of its children nodes, until we reach the root, whose MBR
will contain the geolocated time series of the whole dataset. Figure 5.4b illustrates
the structure of the geo-iSAX tree created over a sample dataset of geolocated time
series.

Due to the fact that the iSAX index is created to solely index time series data,
the MBRs generated by our hybrid variant may be highly overlapping, mitigating the
pruning potential while traversing the index. To alleviate the negative effects of the
numerous overlaps, we introduce an alternative splitting policy for geo-iSAX, which
attempts to minimize the overlapping area, while maintaining the total area covered
by the MBRs that occur after a split at the lowest possible levels. Recall that the
original iSAX index selects the split dimension (i.e., the segment of a node’s word
on which the split will occur) for a node using a round robin approach. Our method
loops over all split dimensions and for each one, it calculates the SAX word that
would occur upon splitting on it. Then, it generates the MBRs for that specific split
using the location of the geolocated time series contained in the node to be split. For
each split dimension, it computes the sum of the two new MBRs’ intersection area
and the total area that they cover. The selected split is the one that generates the
smaller sum. Due to the rather small number of word segments in an :SAX index, this
procedure does not incur high construction costs, only slightly affecting the overall

index construction time.

5.3.2 Deriving Tile Map Summaries from geo-:SAX

Next, we present our summarization approach for tile map visualization of geolo-
cated time series, obtained using timeboxes. In order to maintain low latency even for
large datasets, we traverse geo-iSAX to obtain the resulting geolocated time series in
a timely fashion. However, to avoid false negatives, we need to ensure that the pruned
nodes do not contain any qualifying geolocated time series, as we discuss next.

5.3.2.1 Pruning Timebox Queries on geo-iSAX

When traversing geo-iSAX, we first evaluate whether its MBR satisfies the spatial
constraint ¢ (i.e., intersects with or is within ¢). If so, we need to check the timebox
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Figure 5.5: Cases where a timebox p is either outside or intersecting a given tile c.

constraint p, i.e., whether the time series it contains certainly have data points that
reside outside the given timebox. Consider the time series in Figure 5.5. Without loss
of generality, we suppose a SAX word of length w = 1 and cardinality b = 8, i.e.,
SAX(T,1,8) = {010}. The solid red horizontal line is the PAA value that classifies
this segment of the time series to the SAX value 010. Tile ¢ defined by the two
breakpoints that contain the PAA value is hown in green color, while the user-defined
timebox p specifying a value range [v,v’) is depicted in orange.

As can be noticed in Figure 5.5a, the upper side of the timebox is below the lower
side of tile ¢, i.e., p.v’ < ¢,. In this case, we can safely prune a node that is described
by this SAX word, because there is at least one data point outside the timebox,
“pulling” the PAA upwards and within c. For the same reasons, we can prune a node
whose breakpoint-defined area is completely below the given timebox, as depicted in
Figure 5.5b. In this case, the lower side of the timebox is above the upper side of
¢ (p.v > ¢yp), indicating that there is at least one data point outside the timebox
“pulling” the PAA value downwards and within ¢. On the other hand, in case the
timebox intersects with tile ¢, we cannot safely prune the corresponding node. For
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example, in Figure 5.5¢, ¢, < p.v" < ¢yp, S0 there may exist a time series that is fully
contained in the timebox and thus be part of the result. The same stands for the
example in Figure 5.5d, where ¢, < p.v < ¢,,. Finally, for the cases where timebox p
fully contains tile ¢ or vise-versa, it is trivially deduced that no pruning can apply.

We stress that the above observations only hold when in the time axis the given
timebox is aligned to the segments of the SAX words in the index. For example, for
a time series of length n = 10 and a word length of w = 5, the resulting segments will
have length equal to n/w = 2. Thus, the timebox must be aligned to the data points
to, t2, 4, te and ts.

5.3.2.2 Traversal Algorithm over geo-iSAX

Algorithm 7 outlines the process for producing the tile map visualizations of
geolocated time series. The process takes as input a spatial rectangle ¢, a user-defined
timebox p and the number k£ of MBRs that will be returned. It produces a list R;
containing k tuples of MBRs along with time series counts and the tile map, as
defined in Equation 5.1. For each inner node, the procedure checks whether its MBR
intersects rectangle ¢ and whether its SAX word might represent time series within
timebox p. If a leaf node is reached and both constraints are met, we iterate over its
raw geolocated time series and add the ones qualifying for the timebox to the final
result R;, after properly updating the breakpoint tile counts.

In more detail, the procedure takes place as follows. Starting from the root of
the geo-iSAX index, we iterate over each node’s children (Lines 5-6 in Algorithm 7).
Next, we check whether the node to be evaluated is a leaf node (Line 8) and if it is
not, we iterate over its children (Line 9) and check whether each one’s MBR either is
contained or intersects the spatial rectangle (Line 10). If so, we check whether its SAX
word could represent time series within the timebox (Line 11) and if this is the case,
we add it to the queue @ to be evaluated (Line 12). At this point, we should mention
that, in order to avoid expensive calculations, we first perform the spatial check as it
is less computationally expensive than the timebox check, avoiding the latter in case
the node’s MBR is outside the input rectangle. If the currently evaluated node is a
leaf node (Line 13), we iterate over the geolocated time series that it contains (Line
14) and check whether it is fully contained within the user-defined timebox (Line 15).
If so, we update the tile counts matrix tmap (Line 16) and add the corresponding
raw time series to the set R (Line 17). Finally, we add to a list L the MBR of the
set of qualifying time series along with its size (Line 18). Upon exiting the loop, we
apply k-means clustering on the resulting centroids and obtain k tuples containing
MBRs along with time series counts.

The procedure that checks whether a SAX word could represent time series that
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Algorithm 7: Tile Map Summarization of Geolocated Time Series

Input: The input rectangle ¢; the timebox p; the number of MBRs to be generated k
Output: A list R; containing a tile map and tuples of MBRs and object counts

1 R; + IndexTraversal(Root, q,p, k)
2 return R;

3 Procedure IndexTraversal(Root, q, p, k)
Ry + 0,R <« 0,tmap + 0, L + (0, Q + Root.children
while Q # () do
N + Q.next
if N is not leaf then
foreach N’ € N.children do
if g.contains(N’.mbr) V g.overlaps(N’'.mbr) then
10 L if timebox(N'.sax,p) then

© ® N O G A

11 L Q < QU N'.children

12 else

13 foreach T € N'.children do

14 if timebox(T,p) then

15 tmap < updateCounts(tmap, T.sax)
16 L R+ RUT

17 L + LU{R.mbr,|R|}

18 {(mbr, cnt)} + kmeans(L, k)

19 Ry + {(tmap, {{mbr,cent)})}
20 return R;

21 Procedure timebox (X, p)
22 if isSaz(X) then

23 foreach s € {p.tmin, P-tmas} do

24 ¢ + breakpoints(Xj;)

25 if pvmin > Cup V D-Umaz < Clo then
26 L return False

27 | return True

28 else

29 foreach t € {p.tin, P-tmas} do

30 if X; > p.vpmas V X¢ < pvmin then
31 L return False

32 | return True

are fully contained within the given timebox is described in detail starting from Line
22 in Algorithm 7. It takes as input a timebox and a raw time series or SAX word
that we want to check against the given timebox. We initially check whether the
given X argument is a SAX word (Line 23). If it is, we itereate over all the segments
that are contained (Line 22) in the time range defined by the timebox and for each
segment we obtain the iSAX breakpoints that enclose it (Line 25). Afterwards, we
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check whether the lower side of the timebox is above the upper side of the tile defined
by the obtained breakpoints, or vice versa, as depicted in Figure 5.5. If this is true,
we return false. If this is not the case for any of the segments, the method returns
true (Line 28). A similar procedure is followed for the case that argument X is a raw
time series (Lines 29-33).

5.4 Experimental Evaluation

In this section, we evaluate the proposed visualization methods. We first describe
our experimental setup including the datasets that we use in the evaluation. Next,
we present illustrative visualizations over real-world geolocated time series, as well
as scalability results against a synthetic dataset containing 4 million geolocated time

series.

5.4.1 Experimental Setup

All experiments were conducted on a Dell PowerEdge M910 with 256 GB RAM
and 4 Intel Xeon E7-4830 CPUs, each containing 8 cores clocked at 2.13GHz. We
assume that all indices fit in memory, hence parameter selection for their construction
was based on this assumption. We use the water and taxi real-world datasets also
used for experimental evaluation in Section 4.5. To examine the scalability of our
algorithms, we generated a synthetic dataset comprising 4 million geolocated time
series by inflating the water consumption dataset. This was achieved by using the
original time series as seeds and introducing some random variations in their location
and pattern. We chose the water dataset so as to generate a more densely populated
dataset (Alicante is a medium-sized city) to stress-test our summarization methods.

Table 5.1: Datasets used in the experiments.

Area  Number of Length n of

Dataset (km?) time series each time series
Water 114 822 168
Taxi 2,500 417,960 168
Synthetic 114 4,000,000 168

Table 5.2: Parameters tested in the experiments.

Parameter Values
Dataset size 1000K, 2000K, 3000K, 4000K
Map scale 1:50000, 1:25000, 1:20000, 1:15000, 1:10000, 1:5000, 1:500
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In scalability tests, we also make use of randomly chosen subsets from this synthetic
dataset. Table 5.1 lists a summary of the main characteristics for each dataset.

Table 5.2 lists the range of values for the parameters used in our tests concerning
both methods; default values are shown in bold.

5.4.2 Evaluation of Bundle Summarization

We first present a detailed evaluation of our method concerning bundle summaries.
Specifically, we present two visualization examples on two real-world datasets. Then,
we evaluate the scalability of our method in terms of different map scales and dataset

sizes.

5.4.2.1 Map Visualizations

The visualization for the bundle summary depicts the MBTS derived for the most
representative patterns of time series at the currently visible area of the map. Once
our summarization method returns the results, the corresponding MBRs contained in
the current view and zoom level are drawn on the map, along with the number of the
geolocated time series that belong to the selected bundle. This number is depicted
using circles, colored green for small numbers, yellow for larger and red for more
densely populated MBRs, thus easily conveying the local intensity of this pattern.
The bundles are listed on the left of the map, using confidence bands to indicate their
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Figure 5.6: Visualizing water consumption patterns in the city center of Alicante (map scale
1:5000).
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upper and lower bounds. The average time series of each bundle is also depicted. A
user can scroll this list and select the bundle of their preference. Once a bundle is
selected, the contents of the map are updated accordingly with the respective MBRs
and aggregates.

Figure 5.6 shows an example of the bundle summary visualization using the water
dataset, for £ = 5 bundles and [ = 3 MBRs. The depicted area is in the center of
Alicante, in the most densely populated zone of the city. In this example, Bundle 4
is selected (indicated with a green colored frame) and the relevant MBRs are shown
on the map (using red colored boxes). This indicates that inside each depicted MBR
there exists a specific number of geolocated time series that have been clustered to the
chosen bundle. As mentioned, each geolocated time series in this dataset represents
hourly water consumption of a household across one week. Different consumption
behaviors have been grouped together and a daily pattern for each bundle can be
noticed which is due to the Circadian rhythmic way that people consume water
[ |. The rather large number of geolocated time series in the bundle, considering
the zoom level and the extent of the MBRs, intuitively suggests that neighboring
families tend to have similar water consumption behavior.

Figure 5.7 illustrates another example, this time using the taxi dataset in New
York City, for £ = 5 bundles and [ = 11 MBRs. This dataset is significantly larger, and
the zoom level selected in this example is lower (a larger geographic area is visible),
hence the MBRs contain a larger number of time series. In this figure, we choose
Bundle 1, which represents the rather quieter taxi dropoff zones in Manhattan, as
the total number of dropoffs there is rarely over 60 during any hour of the week.
In this example, there is also a clear daily routine in all bundles, with the dropoffs
reaching a local maximum twice per day, suggesting the rush hours in New York City,
when people commute to and from their work. In almost all bundles, the daily pattern
is significantly different on Saturdays and Sundays, which confirms the intuition that
during weekends people do not tend to commute in a routinely fashion. Overall, such
visual representations of information digested from massive time series data can easily
catch users’ attention to important phenomena and ongoing trends, confirming the
usefulness of our approach.

5.4.2.2 Performance Evaluation

We evaluate the performance of our approach on larger datasets in terms of re-
sponse time for different zoom levels on the map using map scales, since zooming-in
requires deeper traversal of the BTSR-tree index. The comparison is performed for
subsets of the synthetic dataset of different size. We measure the accuracy both in
spatial and time series domains, by calculating the mean Euclidean distance of each
object located within the spatial area of interest from its closest bundle and MBR,
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Figure 5.7: Visualization of taxi dropoff patterns in Manhattan, NYC (map scale 1:10000).

respectively. Since this is intended as an interactive application, where the summa-
rization method is triggered as soon as the user moves the map, response times must
be adequately small. In our method, this is facilitated by the fact that the search
along a path stops once it encounters a node whose MBR is contained in the actual
map extent (rectangle). However, for the same reason, the responsiveness is expected
to come at the expense of the summaries’ level of detail, since the inner nodes contain
coarser information regarding the time series they contain in their sub-trees.

In order to determine the trade-off between responsiveness and accuracy of our
method (Section 5.2.1), we compare it with a baseline approach, which involves more
detailed summarization. The latter utilizes the raw geolocated time series retrieved
from the spatial filtering and generates the summaries by first applying k-means clus-
tering on the time series domain to obtain the bundles, followed by another clustering
in the spatial domain within each bundle to obtain its respective MBRs.

Parameters. In preliminary tests, we fine-tuned parameters used against the syn-
thetic dataset. Conclusively, for the scalability evaluation, we built the BTSR-tree
index setting the minimum and maximum number of entries per node to m = 750
and M = 2000, respectively. Note that the index fits in memory, so such large pa-
rameter values do not have a negative impact on performance. For an evaluation of
the BTSR-tree index under different parameter settings, please refer to [CSP717].
Regarding the number of bundles, we set ky = 5 for its leaf nodes. The number £ of
bundles and the number [ of MBRs per bundle for the traversal algorithm is set to
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be equal to the number of bundles at the leafs, i.e., k =1 = ky = 5.

Results. Figure 5.8 depicts traversal costs for different map scales over the areas
covered by the three datasets. We remind that, the water and synthetic datasets
cover the area of the city of Alicante, Spain, whereas the taxi dataset the wider
metropolitan area of New York City. Response time in all cases is equal or lower
than one second. The synthetic dataset, due to its very high density is significantly
slower than the rest, however still the results are obtained in less than a second. The
response for the water dataset is almost instant due to its small size and very low
density. Initially, in all cases, at the largest scale, the visible area of the map contains
all the time series in the dataset, thus it only has to retrieve information from the
root of the index. Then, as we zoom in, more nodes have to be visited, as the MBRs of
the accessed nodes begin to overlap with the map rectangle and their children have
to be retrieved. The worst case for the synthetic dataset is at scale 1:5000, which
roughly corresponds to a large neighborhood of the city, where many time series are
located. For the taxi dataset, the worst case is at 1:20000, which corresponds to the
wider Manhattan area and then the response time gradually drops due to the lower
dataset density. The number of nodes accessed in each case is proportional to the
response times, ranging from one node (the root) in case of the smaller map scale (all
city) up to 165 at scale of 1:5000 for the synthetic dataset, one up to 53 for the taxi
dataset and one up to 15 for the water dataset. Interestingly, fewer node accesses are
required in all cases at the very large scale of 1:500, since the respective small map
area overlaps with fewer nodes and most of the search space is pruned.

Figure 5.9 depicts the accuracy and responsiveness comparison between the bundle

summarization method and its detailed version. In the spatial domain (Figure5.9a),
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Figure 5.8: Execution time for different map scales.
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Figure 5.9: Assessment of bundle summarization.

it is apparent that the mean Euclidean distance of the raw data from the closest
MBR centers is close to two times larger for our bundle summary, indicating a loss in
accuracy, as expected. The mean distance is not heavily affected by the dataset size
at any case, indicating a rather stable summary quality, independent of the amount of
the results. The case is quite different in the time series domain (Figure5.9b), where
the mean distance of the raw time series from the closest bundle’s average time
series is only slightly larger for the bundle summary —especially for smaller datasets—
, indicating a rather good summary quality. There is a slight worsening trend in
both cases as the size of the dataset is increased, possibly due to the tendency of
the summary to be more generic as the number of results increases, with a larger
number of BTSR-tree nodes taking part in the summary calculation. However, this
loss in accuracy in both domains is largely compensated in terms of execution time
(Figure 5.9¢), with the bundle summary being close to one second in all cases, while
the detailed approach is linearly slowed down as the dataset size increases, requiring
more than an hour to generate the summary against 4 million objects. Overall, this
test confirms that our proposed method for bundle summaries can offer a really large

speedup in terms of response time with tolerable concessions in accuracy, even against
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Figure 5.10: Visualization of water consumption tile map summary in the city center of
Alicante (map scale 1:5000).

a heavily dense synthetic dataset where a large number of time series are contained

within a small area.

5.4.3 Evaluation of Tile Map Summarization

Next, we present an evaluation of our method for obtaining tile map summaries.
We first demonstrate two examples of visual exploration via summarization over two
real-world geolocated time series datasets. Then, we compare the scalability of our
method with a baseline detailed summary in terms of different map scales and dataset

sizes.

5.4.3.1 Map Visualizations

This visualization depicts a tile map summary of the geolocated time series that
are contained within the currently visible part of the map. Whenever the user either
moves around, zooms in and out the map, or draws a timebox on the time series
domain, our summarization method is invoked to traverse the geo-iSAX index and
return the MBRs and tile map that correspond to the visible area. Once the results
are returned, they are drawn on the map and time series frames respectively. Simi-

larly to the bundle summary and in order to present the local density, the number
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of geolocated time series contained within each MBR is depicted using circles col-
ored green for small numbers, yellow for larger and red for more densely populated
MBRs. The time series frame is located on the bottom of the map and is essentially
a depiction of the returned tile map, using lighter shades of blue for less populated
tiles and darker shades for the more dense ones. The timeboxes are drawn on this
frame, allowing a selection of arbitrary ranges on the value axis, while, on the time

axis, the selection is forced to be aligned with the iSAX segments.

An example of the tile map visualization is illustrated in Figure 5.10, for the
central area of Alicante, with £ = 5 MBRs, a SAX word length of w = 24 and a
maximum cardinality of b = 32. An example timebox (depicted as an orange box)
spans two iSAX segments (corresponding to Tuesdays on the time axis) and has a
range of one standard deviation on the value axis. The associated MBRs are depicted
using red colored boxes. In this example, and within the chosen timebox, there exists
a rather small amount of time series, indicating that not many households tend to

maintain a lower water consumption behavior during Tuesdays.

Another example of the tile map visualization, depicting an area in Manhattan,
New York is illustrated in Figure 5.11, with £ = 5 MBRs, a SAX word length of w = 24
and a maximum cardinality of b = 64. This time, the timebox spans three :SAX
segments (representing Wednesdays) and a value range of one standard deviation.
Since the selected range of taxi dropoffs is rather small, especially considering the
fact that Manhattan is a busy area during the whole week, the depicted MBRs
indicate that, during Wednesdays, there are quieter zones in these specific areas.
Such information could be leveraged for searching a quieter neighborhood within the
city.

5.4.3.2 Performance Evaluation

We evaluate the performance of the tile map summary for different zoom levels
and timebox sizes. For the comparison between the two tile maps we use the root
mean squared error (RMSE) on the difference among the counts between each pair
of corresponding tiles. As mentioned, the detailed tile map is generated using the
raw time series. This essentially generates tile maps with larger counts, since instead
of only incrementing the count once for a SAX word’s segment of a time series, it
may be incremented multiple times, as each word’s segment is derived from n/w time
series points (where n is the length of time series and w is the SAX word length). To
compensate this, we divide the count of each tile of the detailed summary with n/w.

Conclusively, the root mean squared error among two tile maps is calculated as
follows:
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Figure 5.11: Visualizing taxi dropoff tile map in Manhattan, NYC (map scale 1:10000).
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where tmap and tmap’ are the tile maps from our method (Section 5.3.2) and the
detailed summary respectively, while c[i, j|.cnt and c[i, j].cnt are the corresponding
counts of the (i, 7) tile in both summaries and h is the number of y-axis breakpoints.
For measuring the spatial accuracy, we follow the same rationale as in the evaluation
of bundle summaries. Similarly, we evaluate the trade-off between responsiveness
and accuracy of our approach. The detailed summary is expected to have a higher
accuracy; however, since both spatial and time series summaries are calculated using
the raw geolocated time series, we expect a trade-off in responsiveness, especially for
larger datasets.

Similarly to the bundle summary, we also compare to a more detailed baseline
implementation in terms of accuracy and time required to fetch the results. The
spatial part of the detailed summary is generated by performing k-means clustering
on the filtered raw time series themselves and generating the resulting MBRs, instead
of performing the clustering on each node’s resulting MBRs. The tile map of the
detailed summary has the exact same structure with the one of tile map summary.
The difference among the two tile maps, since in the detailed summary the raw
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Table 5.3: Parameters in tests for tile map summaries

Parameter Values

Timebox time range (|p|) 1,2,3,4,5
Timebox value range (|py|) 1o, 1.50, 20, 2.50, 30
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(a) Response time for different map scales. (b) Response time for different timebox sizes.

Figure 5.12: Response time for different map scales and timebox sizes.

time series are used, lies in the way the count of each tile is augmented. Instead of
increasing the count of the tiles where the SAX word’s segments of a time series
reside, we increase the count of the tiles where each time series point falls within.

Parameters. Similarly to the bundle summary, we performed preliminary tests
against the synthetic dataset to fine-tune the parameters. We built the geo-iSAX
index setting the maximum number of entries per node to M = 200, a maximum
cardinality of b = 512 and a default SAX word length of w = 8. We have set the
number of resulting MBRs to & = 5 for its leaf nodes. Table 5.3 lists the range of
values for the rest of the parameters.

Results. Figure 5.12a shows the traversal costs for different map scales for each
of the three datasets. For the taxi and water datasets, the response time is almost
instant due to their smaller sizes, ranging up to at most 100 milliseconds. For the case
of the synthetic dataset and due to its high density, the response time is higher, start-
ing from approximately 2.25 seconds for larger spatial areas of interest and falling
down to 1.5 seconds as the map scale becomes larger (i.e., smaller areas). The rather
higher response time for the tile map summary is due to the fact that in order to be
calculated, the geo-iSAX’s leaf nodes have to be accessed to obtain the locations and
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Figure 5.13: Accuracy of tile map summarization.

maximum cardinality SAX words to generate the summary. However, it should be
noted that this is a rather worst case scenario, since the synthetic dataset was gen-
erated to be very highly dense as a stress test. The response time is not dramatically
reduced for larger map scales, since geo-iSAX is a time series-first hybrid index and
high overlapping of its MBRs is expected, so larger spatial areas of interest tend to
intersect with the MBRs of many nodes, negatively impacting performance. As it is
apparent, at a map scale of 1:500, the performance is more abruptly improved as the
nodes of the index begin to be more aggressively pruned.

Similar results are also observed for different timebox sizes, as depicted in Fig-
ure 5.12b. The taxi and water datasets almost instantly generate the summaries along
all timebox sizes. As a reminder, the timebox size is measured in terms of number
of SAX segments selected in the time axis and standard deviation range selected in
the value axis. In the figure, time range |p;| denotes the number of SAX segments,
whereas value range |p,| expresses the standard deviation range selected for each
timebox. For larger timebox sizes, the index traversal is slower as expected, as more
nodes tend to satisfy the rather loose constraints. For the same reasons, the response
time is improved up to around 1500 milliseconds as the timebox size gets smaller.

Figure 5.13 demonstrates the trade-off between accuracy and responsiveness by
comparing the proposed tile map summary and its detailed implementation. As it can
be easily observed, the difference between the spatial mean Euclidean distance among
the raw data and their closest MBRs (Figure5.13a) is between 150 and 200 meters for
all dataset sizes. In both cases, it is rather larger for smaller datasets, slowly diminish-
ing as their size gets larger, indicating an improvement of both summaries for larger
data. It is worth noting that the difference from the baseline implementation also
seems to be slightly reduced for larger datasets. Figure 5.13b illustrates the RMSE
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Figure 5.14: Tile map summarization response time.

between the two tile maps using Equation 3.2. The number at the top of each bar is
the count of results returned using the same constraints (spatial rectangle, timebox)
over each dataset. It is apparent that the quality of the tile map summary worsens
for a larger number of participating time series, increasingly diverging from the de-
tailed version. Still, the loss in both spatial and tile map accuracy is compensated
in terms of response time as depicted in Figure 5.14. The detailed implementation
requires up to twice the time to generate the summary for all dataset sizes, while
its overhead compared to the tile map summary is increasing with larger datasets.
Consequently, there is a clear trade-off between accuracy and response time in both

domains, allowing an increase in responsiveness without much sacrifice in accuracy.

5.5 Summary

In this chapter, we introduced methods for map-based visual exploration over
large geolocated time series data. To that end, we proposed two summarization ap-
proaches over geolocated time series, which allow a visual analytics application to
retrieve the required information. The results can be displayed on a map, depicting
the spatial distribution of the data in the form of MBRs for both approaches. Each
approach also provides a time series summary, via time series bundles or tile maps
respectively. To speed up the retrieval of the results, we employ two hybrid indexing
techniques that allow pruning in both the spatial and the time series domains. Our
experiments on a large-scale synthetic dataset indicated that the visualizations can be
rendered fast, enabling efficient exploration in map-based applications; in the worst
case, response time is up to a couple of seconds. Additionally, we examined indica-
tive demonstrations of the visualizations generated from two real-world datasets in

different application domains, confirming their helpfulness in jointly exploring both

95



5.5. Summary

the time series themselves as well as their geographic distribution.

In the next chapter, we deal tackle the problem of discovering pairs or bundles
(groups) of co-evolving time series, i.e., time series that contain observation values
at the same timestamps all along their duration. Additionally, we focus on local
similarity search on geolocated time series, using a modified version of our BTSR-tree

index.
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Local Similarity Search

In this chapter, we introduce the measure of local similarity, that can be applied
on co-evolving (i.e., time aligned) time series. Two co-evolving time series are locally
similar if the pairwise distance of their values per timestamp does not exceed a given
threshold during a time interval, that lasts at least a pre-defined number of consecu-
tive timestamps. Based on this new similarity measure, we two novel local similarity
search approaches. The first, efficiently detects all possible pairs and bundles (groups)
of time series that are locally similar within a given dataset. The second approach
is an extension of our work on hybrid similarity search applied on geolocated time
series (see Chapter 4) and introduces efficient methods for hybrid queries based on
local similarity.

A real-world example of local similarity is depicted in Figure 6.1. These two time
series represent per-hour average water consumption during a day of the week for two
different households. We can observe that their respective values per timestamp (at
granularity of hours, in this example) are very close to each other during hours 2-11,
but are farther apart during the rest. Hence, an algorithm that measures the global
similarity between two time series might not consider this pair as similar; however, the
subsequences inside the gray strip are clearly pairwise similar, and might indicate an
interesting pattern. Identifying such local similarities within a sufficiently long time
interval is our focus in this chapter.

Local Pair and Bundle Discovery. Discovering locally similar pairs and bundles
among a set of co-evolving time series is useful in various applications. For instance,
public utility companies employ smart meters to collect time series measuring con-
sumption per household (e.g., for water or electricity). Identifying such bundles of
time series (i.e., a number of similar subsequences over certain time intervals) can
reveal similar patterns of consumption among users, allowing for more personalized

billing schemes. In finance, examining time series of stock prices can identify pairs or
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Figure 6.1: Pair of locally (but not globally) similar time series.

bundles of stocks trending similarly at competitive prices over some trading period,
hence offering precious insight for possible future investments.

Figure 6.2 illustrates an example comprising four time series depicted with differ-
ent colors. We observe that from timestamp 1 to 5 the values of 77 and T5 are very
close to each other, thus forming a locally similar pair. Similarly, from timestamp
8 to 12, the values of T, T; and T} are close to each other, forming a bundle with
three members. Note that values in each qualifying subsequence may fluctuate along
a bundle as long as they remain close to the respective values per timestamp of the
other members in that bundle.

Local Similarity Search on Geolocated Time Series. Our approach for hy-
brid search over geolocated time series (see Chapter 3) using the BTSR-tree sup-
ports only global time series similarity, i.e., similarity measured across the entire
length of time series. Specifically, as in other works in this area [EZPB18, LICWLO7,
CPSK10, CSPT14], the distance between two time series is measured by aggregating
the pairwise Euclidean distance of their respective values across the entire sequences.

Figure 6.2: A pair and a bundle of locally similar time series.
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However, in many cases, more fine-grained trends and patterns may exist, which are
missed under this global similarity measure. For example, consider two time series
representing the hourly energy consumption of two nearby buildings over a week, and
assume that the two buildings exhibit a similar consumption pattern during working
days but a different one in weekends. A query imposing a similarity threshold over
the entire week would fail to identify these two geolocated time series as similar.
However, it may be useful to discover that there is a period of up to 5 days during
which these two time series are actually similar.

Motivated by this observation, in this work we extend our previous approach on
hybrid queries over geolocated time series to support local similarity of time series,
thus allowing more flexible and fine-grained queries and analyses. The local similar-
ity score between two time series 7; and 7T is defined as the maximum number of
consecutive timestamps during which the respective values of T; and T; do not differ
by more than a user-specified threshold €. Notice that, compared to global similarity,
this condition is more relaxed, in the sense that it is applied to subsequences of length
lower than 7; and T}, but at the same time stricter, in the sense that the threshold
€ is required to be satisfied at each individual timestamp during the selected period
rather than on the aggregate distance over all timestamps.

The rest of this chapter is organized as follows. Section 6.1 describes our work
on local pair and bundle discovery on co-evolving time series. Section 6.2 focuses on
local similarity search on geolocated time series. Finally, Section 6.3 concludes this
chapter.

6.1 Local Pair and Bundle Discovery

This section describes our novel methods for pair and bundle discovery based on
local similarity. Discovering all possible pairs and bundles of locally similar time series,
along with the corresponding subsequences, within large sets is a computationally
expensive process. For instance, to find pairs, a filter-verification technique can be
applied. At each timestamp, the filtering step can discover candidate pairs having
values close to each other, by looping —for each value— over the whole set of time
series; then, the verification step is invoked for all remaining timestamps, to determine
whether each such candidate satisfies the required conditions, essentially whether this
match occurs throughout a sufficiently large time interval. The computational cost
becomes especially high for the case of bundle discovery, as it has to examine all
possible subsets of locally similar time series that could form a bundle. Hence, such
an exhaustive search is prohibitive when the number and/or the length of the time

series is large.
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Figure 6.3: Bundles of locally similar time series.

Figure 6.3 depicts a real-world example of bundle discovery, on a dataset con-
taining smart water meter measurements. The detected bundles represent different
per-hour average water consumption patterns during a week. There is a wider pat-
tern detected among 6 households during the first 30 hours of the week indicating
reduced consumption (probably no permanent residence). The orange and yellow pat-
terns indicate different morning routines during the third and fourth day of the week.
The green and purple patterns represent a reduction in consumption during the late
hours of the fourth and sixth day, respectively, with some intermediate consumption
taking place during the night. Finally, the shorter red and light blue bundles suggest
different evening patterns for two other days (respectively, decreasing and increasing
consumption).

We employ a value discretization approach that divides the value axis in ranges
equal to the value difference threshold ¢, in order to reduce the number of candidate
pairs or bundles that need to be checked per timestamp. Leveraging this, we first
propose two sweep line scan algorithms, for pair and bundle discovery respectively,
which operate according to the aforementioned filter-verification strategy. However,
this process still incurs an excessive amount of comparisons, as it needs to scan
all values at every timestamp. To overcome this, we introduce a more aggressive
filtering that only checks at specific checkpoints across time, appropriately placed to
ensure that no false negatives ever occur. This approach incurs significant savings in
computation cost, as we only need to examine candidate matches on those checkpoints
only instead of all timestamps. To further reduce the number of examined candidates,
we propose a strategy that judiciously places these checkpoints across the time axis in

a more efficient manner. We then exploit these optimizations introducing two more
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efficient algorithms that significantly reduce the execution cost for both pair and
bundle discovery.

The bundle discovery problem addressed in this chapter, resembles the problem
of flock discovery in moving objects, where the goal is to identify sufficiently large
groups of objects that move close to each other over a sufficiently long period of time
[ , , , |. In fact, the baseline algorithm we describe can
be viewed as an adaptation of the algorithm presented in | |. However, to the
best of our knowledge, our work is the first to address the problems of locally similar

pair and bundle discovery over co-evolving time series.

6.1.1 Problem Definition

We consider a set of co-evolving time series, so all time series are time-aligned and
each series has a value at each of the k timestamps. Given a set of such co-evolving
time series, our goal is to find pairs of time series that have similar values locally over
some time intervals of significant duration. More specifically:

Definition 6 (Locally Similar Time Series). Two co-evolving time series T; and 7T}
are locally similar if there exists a time interval I spanning at least 6 consecutive
timestamps such that at every timestamp t € [ their corresponding values T;.v; and
T;.v; do not differ by more than a given threshold e, i.e., Vt € I,|T;.v, — T;.v| < e.

Note that threshold € expresses the maximum tolerable deviation per timestamp
between two time series, so it actually concerns the absolute difference of their cor-
responding values. We wish to find all such pairs of time series, so the problem is
actually a self-join over the dataset, specifying as join criteria the distance threshold

¢ and the minimum time duration 0 of qualifying pairs. More formally:

Problem 3 (Pair Discovery over Time Series). Given a set of r co-evolving time
series T = {T1,...,T,} of equal duration n, a distance threshold ¢ > 0, and a time
duration threshold 6 > 1 timestamps, (6 € N), retrieve all pairs {1;,1;},1 <i < j <r
of locally similar time series along with the corresponding time intervals.

For example, in Figure 6.4, the detected pairs for specified € and § would be the
locally similar time series within grey ribbons. Since two time series might be locally
similar in more than one intervals, their matching subsequences are considered as
two different pairs, one for each interval. For instance, in Figure 6.4 the green and
red time series yield two matching pairs in different time intervals.

The above problem can be extended to the detection of groups, called bundles, of
co-evolving time series. Each such bundle of time series contains at least a pre-defined
number g > 2 of members, which are pairwise locally similar to each other over a

time interval of sufficient duration. This problem can be formulated as follows:
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Figure 6.4: Pair discovery over a set of time series.

Problem 4 (Local Bundle Discovery over Time Series). Given a set of co-evolving
time series T = {11, ..., T,} of equal length n, a minimum bundle size u > 2, (u € N),
a maximum value difference € > 0, and a minimum time duration 6 > 1 timestamps,

(6 € N), retrieve all groups G of time series such that:
e Fach group G € G contains at least . time series.

e Within each group G € G, all pairs of time series are locally similar with respect
to € and ).

e Fach group G € G is maximal, i.e., there is no other group G' O G that also
forms a bundle for the same time interval.

An illustration of local bundle discovery is shown in Figure 6.5. Each grey band
covers the subsequences of at least ;1 = 3 time series that constitute a bundle. These
subsequences are pairwise locally similar for a specified distance ¢ and duration 4.

6.1.2 Pair Discovery

In this section, we propose two solutions for the pair discovery problem. The
first (Section 6.1.2.2) is a baseline algorithm that uses a sweep line to scan the co-
evolving time series throughout their duration, while validating and keeping all the
pairs that satisfy the given constraints employing a value discretization scheme per

Figure 6.5: Bundle discovery over a set of time series.
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timestamp (Section 6.1.2.1). The second method (Section 6.1.2.4) employs an opti-
mization that reduces the number of pairs to consider by judiciously probing candi-
dates at selected timestamp values (referred to as checkpoints, Section 6.1.2.3). This
significantly prunes the search space without missing any qualifying results.

6.1.2.1 Value Discretization

To reduce the candidate pairs that need be checked at each timestamp ¢, we
discretize the values of all time series at ¢ in bins, i.e., several consecutive value ranges,
each one of size €. Time series with values within the same bin at timestamp ¢ form
candidate pairs, but we also need to check adjacent bins for additional candidate
pairs whose values differ by at most e. Time series having values at non-adjacent bins
are certainly farther than e at that specific timestamp ¢, so we can avoid these checks.

To detect all candidate pairs and avoid cross-checking in every two adjacent bins
we consider a value range of size €, whose upper endpoint coincides with each value
under consideration at time ¢. Then, all values of time series contained within this
range, form candidate pairs (see Figure 6.6). Obviously, values contained in the same
bin 5 can form candidate pairs. Then, we can cross-check each value in bin j with
values in bin j + 1 for additional candidates with value difference at most €, as
indicated with the red (right) range.

At each timestamp ¢, the process of finding all the pairs consists of: (1) Filtering
- Search among time series values in adjacent bins to detect candidate pairs using
the aforementioned search method. (2) Verification - For each candidate pair, check
similarity of their respective values at successive timestamps as long as this pair still

AV

j+1

m
-
© 0 O 100l OO

Figure 6.6: Discretization of time series.
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Algorithm 8: Sweep line scan pair discovery
Input: Set 7 of co-evolving time series of length n
Parameters: Threshold €, min duration §

Output: List P with all locally similar pairs of time series

1 B <+ CreateBins(T)
P <+ DiscoverPairs(0, B, {0, ...,n},¢,9)
return P

W N

4 Procedure DiscoverPairs(P, B, ¢,0)

5 foreach ¢t € w do

6 foreach z =0 — B.size do

7 T «BLUB.,

8 foreach T ¢ 7' do

9 Pt + getAdjacentPairs(T.vy, €)
10 foreach p € P do

11 if p ¢ P then

12 p < VerifyPair(p, t,n,€)
13 if p.end — p.start > § then
14 L P+~ PUp
15 return P

16 Procedure VerifyPair(p,t,n,¢)

17 foreacht’ =t+1 — ndo

18 if |p.T1.vpy — p.To.vy| > € then
19 L L break

20 p.start <1

21 p.end <t

22 return p

qualifies to the matching conditions (or the end of time series data is reached). This
step resembles to a “horizontal expansion” along the time axis in an attempt to eagerly
verify and report pairs.

6.1.2.2 Pair Discovery Using Sweep Line

A baseline method for pair discovery over a set of time series is to check all the
candidate pairs formed at each timestamp, and verify whether the minimum duration
constraint § is satisfied. Algorithm 8 describes this procedure. Pair discovery (Line 5)
considers a time duration 2 (as a set of consecutive timestamps) to check for results.
Initially Q = {0,...,n}, where n is the total duration of all time series data. For each
timestamp ¢, we obtain only the subset of time series whose values are contained in
two adjacent bins (Line 7). Based on these values at ¢, we obtain all candidate pairs
with respect to the threshold e (Line 9). For each such pair, if it is not already part
of the resulting pairs at that specific timestamp t, we verify it by first expanding it
horizontally (Lines 10-12) and checking if this pair meets the duration constraint §
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(Line 13) along subsequent timestamps. If so, we add it to the reported results (Line
14).

For the horizontal expansion, we iterate over the subsequent timestamps (after
the current one — Line 17) and stop when ¢ is violated (Lines 18-19). Then, we mark
the start of this pair with the current timestamp ¢, whereas its end is marked by the
timestamp at which e is crossed, and we return this pair (Lines 20-22).

However, searching over all timestamps in such an exhaustive manner can be
expensive, particularly for long time series. Next, we present an optimization that
identifies candidate pairs at selected timestamps only, so that only those pairs require

verification.

6.1.2.3 Optimized Filtering at Checkpoints

To prune the search space, we consider checkpoints along the time axis, so that
searching for candidate pairs will be performed at these specific timestamps only.
Figure 6.7 shows an example for a set of time series (checkpoints placed every 5
timestamps). If the temporal span between two successive checkpoints does not ex-
ceed the minimal duration threshold J, we can ensure no false negatives, since any
qualifying pair starting at an intermediate timestamp between two checkpoints will
surely be detected at least on the second one. To verify this, assume a set of check-
points placed at time interval § from each other, as depicted in Figure 6.8. Let a
checkpoint at timestamp ¢’ and a qualifying pair of duration § starting at timestamp
t' —  + 1. This pair cannot have smaller duration, otherwise it would not meet con-
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straint §. Consequently, the pair will be detectable on the checkpoint at ¢'. Similarly,
if a qualifying pair ends at timestamp t' + § — 1 (Figure 6.9), it will be detected
at the checkpoint at t’. Hence, all pairs around a checkpoint at ¢’ can be detected
as candidates when we check their values at ¢'. Thus, we can easily conclude to the
following observation.

Lemma 2 (Checkpoint Covering Interval). Let the interval between successive check-
points not exceed 0. Considering a checkpoint placed at timestamp t', all qualifying
pairs starting at s,t' —d +1 < s <t and ending at f,t' < f <t' + 6 — 1 will satisfy

constraint € at timestamp t'.

This lemma entails that it suffices to check for candidate pairs only at check-
points, i.e., every § timestamps. We denote the set of checkpoints as C. Since we
skip timestamps and in order to avoid false misses, we now have to verify pairs with
a horizontal expansion (as in 6.1.2.2), but towards both directions, i.e., before and
after a given checkpoint. Overall, at each checkpoint the optimized process performs:

e Filtering: Search for candidate pairs among the values of time series in adjacent

bins.

e Verification: For each pair, perform a two-way horizontal expansion across

the time axis.

Improving placement of checkpoints. Depending on the dataset, the default
checkpoint placement might yield an increased number of candidate pairs, resulting

Figure 6.10: Sub-optimal checkpoint placement.
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>

Figure 6.12: Best checkpoint placement (thick vertical lines).

in too many verifications. Intuitively, if the time series values at a specific timestamp
t' are placed in a more scattered manner over the bins, less candidates would be
generated. This is because the values of time series at ¢’ would differ from each
other by more than ¢ and thus can be pruned as described in Section 6.1.2.1. Figure
6.10 depicts such a case of sub-optimal placement of checkpoints, where the second
checkpoint is placed at a rather dense area and as a result, six candidate pairs are
considered. We can avoid this by shifting all checkpoints together either to the left or
to the right, yet maintaining their temporal span every §. As shown in Figure 6.11,
all three checkpoints are collectively shifted to the left, avoiding the dense area and
reducing the total number of candidate pairs. An extra checkpoint can be inserted
before the first or after the last one (e.g., starting from the leftmost or rightmost
timestamp respectively in Figure 6.11), guaranteeing that there is no interval longer
than ¢ without checkpoints.

Clearly, the placement of the set C of checkpoints influences the amount of candi-
date pairs. We wish to find the best such placement, which provides the least number
of candidate pairs. The amount of candidates depends on the cardinality of the bins
(i.e., the number of values in each one, as shown in Figure 6.6) at any particular
checkpoint ¢ € C'. Given that r is the total number of time series in the dataset (and
hence the number of values at each checkpoint), we can identify the most populated

max{B.}

=l where B. represents

bin at checkpoint ¢ by calculating the maximal density
the set of bin cardinalities at checkpoint c. Therefore, for a given configuration C' of
checkpoints, we can estimate an overall cost r by taking the sum of such maximal

densities over all checkpoints, i.e., g = > %. The lower this total cost, the
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smaller the cardinality per bin at each checkpoint and, thus, the less the candidates
that will be generated. Consequently, we seek to find the minimum ¢. To do so, we
shift all checkpoints together to the right, one timestamp at a time, we estimate ratio
g again and repeat ¢ times. This procedure is illustrated in Figure 6.12, where the
checkpoints symbolized with similar lines belong to the same set as we move them to
the right in order to identify the best placement (indicated with the thickest vertical
dashed lines).

6.1.2.4 Pair Discovery Using Checkpoints

After identifying the best checkpoint placement, we can discover pairs of locally
similar time series by applying the exhaustive algorithm presented in Section 6.1.2.2,
but iterating over the defined checkpoints instead of all timestamps. To speed up the
verification step, we introduce an optimization that reduces the number of checks.
For each candidate pair p that started at (a possibly previous) timestamp p.start, we
first expand its verification to the left. In case the current duration of pair p is still
less than 0, we jump at timestamp p.start 4+ ¢ in order to eagerly prune candidates
that will not last at least §. There, we check whether the values of these two time
series qualify, and we continue this check backwards in time. If at an intermediate
timestamp the e constraint is not met, we can stop the verification process and discard
the candidate pair.

The procedure for pair discovery is listed in Algorithm 9. Initially, we calculate
the best possible checkpoint set (Line 2). Then, we run the procedure described in
Section 6.1.2.2 but instead of probing over all timestamps we iterate over the resulting
checkpoint set (Line 3).

Regarding verification, we first move towards the leftmost endpoint (Line 6) and
detect the starting timestamp of the pair (Line 9). Then, we iterate from the times-
tamp t. = p.start + § towards the initial timestamp ¢ (Line 11). If the pair does not
qualify at a timestamp during this interval (Line 12), we set t as its final timestamp
and return the pair (Line 14). Otherwise, we continue from timestamp ¢, and towards
the rightmost timestamp until the pair ceases to qualify (Lines 15-19).

Cost analysis. Let V. be the number of examined timestamps (i.e., checkpoints)
considered by the algorithm. For each such timestamp, Algorithm 9 needs to perform
two operations, namely first to generate the set of candidate pairs and second to verify
each pair. Let C,y, C., and N, denote, respectively, the candidate generation cost, the
verification cost per candidate and the number of generated candidates. Then, the
total cost is C' = Ny (Cey+ N, Ce, ). The candidate generation cost C,, is proportional
to the number of candidates N,, which in turn is O(|T|?). However, in practice, the
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Algorithm 9: Checkpoint scan pair discovery

Input: Set 7 of co-evolving time series of length n
Parameters: Threshold €, min duration §
Output: A list P containing all the locally similar time series

1 B <+ CreateBins(T)

2 C < GetCheckpoints(n, J)

3 P + DiscoverPairs(l), B, C, ¢, )
4 return P

5 Procedure VerifyPair2Way (p, t,n, €)
6 foreacht' =t—1— 0do

7 if |p.Th.vy — p.Th.vp| > € then
8 L L break

9 p.start < t'
10 te + p.start+ 96 —1
11 foreach t' =t. — t do

12 if |p.Th.vy — p.To.vp| > € then
13 p.f+t

14 L return p
15 foreacht =t.+1— ndo

16 if |p.Th.vy — p.To.vp| > € then
17 L break
18 p.end < t'
19 return p

algorithm only needs to generate candidate pairs from the time series corresponding
to the same bin. Let § denote the number of bins (8 < (Ymaz — Ymin)/€) and Ng
the maximum number of time series associated with any bin. Then, the expected
cost would be [ - Ng. As € increases, [ decreases but Ng increases (in the worst
case, N3 = |T], i.e., there is a single bin that contains all time series). Moreover,
any candidate that has been already generated and verified in a previous timestamp
does not need to be verified again, so the number of candidate pairs to be verified
in the worst case is O(|T|?). Regarding the verification cost C.,, consider a pair of
time series (7;,7;) that is generated at timestamp 7. Algorithm 9 needs to check for
each subsequent timestamp ¢ € (7,n) if |T;.0; — Tj.1| < €, as long as this condition
holds; hence, the cost is O(n). Of course, in practice, this will also require much
fewer comparisons in most cases. Notice that the difference between Algorithm 8
and Algorithm 9 is that the checkpoint scan generates and verifies candidates only at
checkpoints, i.e., N;. = n/d, while the sweep line scans every timestamp, i.e., Ny. = n.

6.1.3 Bundle Discovery

We now consider the bundle discovery problem. We propose two algorithms: an
exhaustive one using a sweep line (Section 6.1.3.1), and one using checkpoints (Sec-
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Algorithm 10: Sweep line scan bundle discovery

Input: Set 7 of co-evolving time series of length n
Parameters: Threshold €, min duration §, min members p
Output: A list P containing all the discovered bundles

1 B <+ CreateBins(T)
2 P + DiscoverBundles((}, B,{0,...,n},¢€, 4, )
3 return P

4 Procedure DiscoverBundles(P, B, ¢, 0, i)

5 foreach ¢ € () do
6 foreach z — B.size do
7 T «BLUB.,
8 foreach T € 7' do
9 G! «+ getAdjacent(T.vy,¢)
10 if G' ¢ P then
11 if Gl.size > u then
12 P «+ VerifyBundle(G?, {t,..,n}, ¢, p)
13 foreach G € P do
14 if G.end — G.start > 6 then
15 L L P+ PUg
16 return P

17 Procedure VerifyBundle(G*, {t1,...,t5},€, 1)

18 P« gt

19 foreach t' =t, — t, do

20 expanded < False

21 foreach G € P do

22 foreach T € G do

23 G' « getAdjacent(T.vy, €)
24 if (gt,.size > u then

25 Rearrange duration of Gt accordingly
26 P+ PuUgG’

27 expanded < True

28 P + keepLongestBundles(P)
29 if expanded = False then

30 | break

31 return P

tion 6.1.3.2), following the same principles as in pair discovery.

6.1.3.1 Bundle Discovery Using Sweep Line

To exhaustively detect bundles of time series, we can follow a similar procedure
employing a sweep line as in Section 6.1.2.2. However, this time we detect candidate
bundles at each timestamp before verifying whether constraints concerning minimal
duration ¢ and minimum membership p are satisfied. Essentially, this can be thought
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of as an adaptation of the flock discovery approach in | | to the 1-dimensional
setting in the case of time series.

Algorithm 10 describes this exhaustive process. Similarly to pair discovery, at
each timestamp ¢ (Line 5) we obtain the values of time series contained in adjacent
bins (Lines 6-7). Then, each such value is considered the origin of a search range
¢, which returns a candidate group at time ¢ (Line 9). Of course, such a candidate
group may have been already included in the result bundles previously, during a
horizontal expansion at a previous timestamp. In this case, its examination is skipped.
Otherwise, if this group contains more than ; members, we proceed to verify it as a
candidate bundle over subsequent timestamps via horizontal expansion (Lines 10-12).
As will see next, this expansion may return one or more candidate bundles; each one
is checked against the duration constraint ¢ before adding it to the result bundles
(Lines 13-16).

Regarding the verification step of a candidate bundle G*, we apply its horizontal
expansion over all subsequent timestamps (Line 19). For each member of such candi-
date bundle (Lines 21-28), we find the group G* of time series having values within
range € at time ¢'. Many such new groups may be created, as each member may yield
one group. Such a group G may become a new candidate bundle if it satisfies the p
constraint; if so, it is added to the resulting bundles with an updated duration (Lines
24-27). As we look at subsequent timestamps, it may happen that the same bundle
may be added to the results multiple times, but with increasing duration. In the end,
we eliminate duplicates and only keep the one with the longest duration (Line 28).

Expansion stops once no new candidate bundles can be found in the next timestamp
(Lines 29-30).

6.1.3.2 Bundle Discovery Using Checkpoints

For bundle discovery using checkpoints, we apply a similar sweep line approach,
but this time we only filter at checkpoints and then verify towards both directions
in the time axis. Algorithm 11 describes this procedure. After initializing the check-
points (Line 2), we run the bundle discovery process as in Algorithm 10, but this time
looking at checkpoints (Line 3) instead of all timestamps. For the two-way horizontal
expansion, we first examine all candidate bundles in set (); detected from the current
checkpoint towards the origin of time axis (Line 7). This is done because a quali-
fying bundle could have started earlier, before the current checkpoint. Afterwards,
we apply the same eager pruning strategy as in Section 6.1.2.4. So, we verify each
such candidate bundle jumping forward at timestamp t. = ¢.start + § and continue
backwards in time to its currently known start (Lines 8-10). Among the candidate
bundles (in set ()2) returned from the forward verification (Line 11), we only care

111



6.1. Local Pair and Bundle Discovery

Algorithm 11: Checkpoint scan bundle discovery

Input: Set 7 of co-evolving time series of length n
Parameters: Threshold €, min duration §, min members p
Output: A list P containing all the discovered bundles

1 B <+ CreateBins(T)

2 C < GetCheckpoints(n, J)

3 P < DiscoverBundles(), B,C, ¢, 0, u)
4 return P

5 Procedure VerifyBundle2Way (G',t,n, €, i)

6 Pv le QQ — (Z)

7 Q1 < VerifyBundle(G!, {t — 1,...,0},¢, 1)

8 foreach g € )1 do

9 te < q.start+6 —1

L Q2 + Q2 U VerifyBundle(q, {t., ..., g.start}, e, p)

11 foreach g € ()2 do
12 if g.end — g.start > 6 then
13 L P + P U VerifyBundle(q, {t., ...,n}, €, 1)

14 return P

for those that satisfy the minimal duration constraint § (Line 12). These are further
verified from t. and forwards, obtaining all subsequent qualifying bundles (Line 13).

Cost analysis. The algorithm follows a similar approach as for the case of pairs.
At selected timestamps, first the candidate bundles are generated, and then each
bundle is verified. In this case, since we are seeking groups of at least u time series,
the number of candidates N. is O(|T|*), although in practice it is again expected to
be much lower since only those time series corresponding to the same bin need to be
considered. Finally, verification is similar with only slightly higher cost. Indeed, when
checking the condition |7T;.v; — Tj.v¢| < €, we first need to determine the time series
T; and Tj inside the bundle that have the highest and lowest values, respectively.

6.1.4 Experimental Evaluation

We evaluate the performance of our methods on pair and bundle discovery both
qualitatively and quantitatively. We compare our checkpoint (CP) scan approaches
for each problem with the respective sweep line (SL) methods. We use the water real-
world dataset also used for experimental evaluation in Section 4.5 and a synthetic
dataset, as listed in Table 6.1. The latter is consisted of 50,000 time series, each
with a length of 1,000 timestamps. So, this dataset contains 50 million data points in
total. The dataset was generated in a similar manner to the synthetic dataset used
in | .

All experiments were conducted on a Dell PowerEdge M910 with 4 Intel Xeon
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Table 6.1: Datasets used in the experiments.

Dataset Size  Time series length
Water 822 168
Synthetic 50,000 1,000

ET7-4830 CPUs, each containing 8 cores clocked at 2.13GHz, 256 GB RAM and a
total storage space of 900 GB.

6.1.4.1 Evaluation Results

We conducted two sets of experiments, using the water and synthetic datasets. The
water dataset was used for qualitative and quantitative assessment of our methods
on pair and bundle discovery, while the synthetic dataset was used for efficiency

evaluation.

6.1.4.1.1 Pair and Bundle Discovery over Real Data

We performed several experiments using the water dataset for various parameter
values to detect pairs and bundles using both the SL and CP approaches. The dataset
was z-normalized to eliminate amplitude discrepancies among time series and focus
on structural similarity.

To evaluate our methods using different parameters, we performed preliminary
tests to extract ranges of values where the algorithms would return a reasonable
number of results. Table 6.2 lists the range of values for the parameters used for
bundle and pair discovery tests (recall that parameter p is not applicable in pair
discovery); default values are in bold. Parameter ¢ is expressed as a percentage of
the duration of the time series, € is expressed as a percentage of the value range (i.e.,
difference max — min in values encountered across the dataset) and p is expressed as
a percentage of the number of time series in the dataset.

Varying 6. Figure 6.13 depicts the results for varying minimal duration §. In bun-
dle discovery, the CP algorithm outperforms SL by up to an order of magnitude in
terms of execution time (Figure 6.13a). As the threshold § gets larger, performance

Table 6.2: Parameters for tests over the water dataset

Parameter Values

§ (% of time series length, i.e., 168) 6%, 5%, 6%, 7%, 8%

€ (% of value range, i.e., approx 11.4) 4%, 5%, 6%, 7%, 8%

u (% of dataset size, i.e., 822) 0.5%, 0.75%, 1%, 1.25%, 1.5%
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Figure 6.13: Assessment against real data for varying o.

is improved due to less checkpoints being specified and less candidates needing ver-
ification. On the contrary, the SL approach performs similarly irrespective of ¢, as
time series must be checked at all timestamps. From Figure 6.13b, it turns out that
the number of detected bundles is reduced as the § value increases, which is expected
as fewer bundles can last longer. In this plot, the blue bars on the left indicate the
maximum bundle duration among the ones that were detected, while the orange bars
on the right indicate the larger detected bundle in terms of membership. It is clear
that the maximum bundle size is drastically reduced as the number of results dimin-
ish, while the maximum duration among bundles remains the same with the increase

of ¢, as the longest bundle is the same in these results.

Regarding pair discovery, since it is an overall faster process, the differences in
terms of efficiency are smaller, but still apparent. In this case, the execution time
(Figure 6.13c) is more abruptly reduced in both SL and CP methods, since less
subsequences qualify as pairs. The number of results (Figure 6.13d) is now naturally
much larger, as far more pairs are expected to be verified if bundles exist. The same
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Figure 6.14: Assessment against real data for varying e.

stands for the maximum duration among pairs, which tend to last longer compared to
bundles. Since a pair is actually a bundle with y=2 members, it is easier to find local
similarity over longer intervals between two subsequences rather than an increased
number of them. The maximum duration, as in bundle discovery, remains the same
as J increases, since this corresponds to the same pair in the results.

Varying e. Varying threshold e for bundle discovery slightly incurs more execution
cost for both SL and CP approaches. This is due to the increased number of bundles
that need to be verified. Nonetheless, the difference in cost remains at levels of at
most an order of magnitude, as shown in Figure 6.14a. As expected, the number of
results is also increased (Figure 6.14b). So does the maximum duration bundle, which
is also expected due to more qualifying bundles, hence a higher probability to find
longer ones. The maximum bundle size (i.e., membership) is also increased, as more
time series can form a bundle when allowing a wider threshold € in deviation of their
respective values.

Regarding pair discovery, the results are again similar to bundle discovery for
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Figure 6.15: Assessment against real data for varying p.

varying e. For very small € values of up to 7% of the value range, the CP algorithm
returns results almost instantly. The SL approach is at least five times slower, with its
performance deteriorating more rapidly with increasing e values. Again, as in bundle
discovery, the results are growing with greater €, as does the maximum duration

among pairs, especially for € equal to 8% of the value range.

Varying p. When varying the minimum membership parameter x4 in bundle dis-
covery (Figure 6.15), the results regarding execution time are again very similar to
the rest of the tests as indicated in Figure 6.15a. Again, the CP algorithm outper-
forms SL up to one order of magnitude. The execution time is very slightly decreased
for larger p values in both algorithms, as more candidate bundles are pruned. Re-
sults from CP are reported almost instantly, since the number of time series is rather
small and scanning through the limited number of checkpoints is very fast. This ex-
plains why performance of SL does not get drastically improved as u gets larger,
since filtering and verification has to be repeated at every timestamp. The number
of results (Figure 6.15b) is reduced as p increases, which is expected, as less bundles
get detected with a larger membership. The maximum duration among bundles also
decreases; interestingly, the maximum size detected among bundles increases as the
number of results diminishes, due to the growing number p of required number of
members per bundle.

6.1.4.1.2 Efficiency against Synthetic Data

To evaluate the efficiency of our methods, we used the synthetic dataset. Re-
garding parameter values, as in the previous experiments, we performed preliminary

tests to extract ranges of values where the algorithms return a reasonable number of
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Table 6.3: Parameters for tests against synthetic data

Parameter Values

Dataset Size 10000, 20000, 30000, 40000, 50000
Time Series Length 600, 700, 800, 900, 1000

d (% of time series length) 2.5%

€ (% of value range) 0.2%

p (% of dataset size) 1.25%

results. Table 6.3 lists the range of values for all parameters used in these efficiency
tests for bundle and pair discovery, with the default values emphasized in bold (again,
i is not applicable in pair discovery).

Varying Dataset Size. Figure 6.16 depicts the performance comparison between
CP and SL algorithms for bundle and pair discovery. We omit cases where execution
of an algorithm was taking more than 15 hours (cutoff). As illustrated in Figure 6.16a,
an increase in the dataset size leads to a very abrupt deterioration of performance
for the SL algorithm of up to several hours of execution for 20,000 time series. For
larger dataset sizes, the execution time was significantly longer than the cutoff time.
On the other hand, CP reports results in all cases. Its execution time increases for
larger dataset sizes, but manages to finish in a few hours in the worst case (for 50,000
time series). It is worth noting that membership parameter p is more relaxed for
larger dataset sizes, as it is expressed in terms of percentage of the total number of
time series in the dataset. This explains the slight improvement in performance for
dataset sizes of 20,000 and 30,000 for the CP method. In general, CP is more than an
order of magnitude faster than SL, which also stands for the case of pair discovery,
as illustrated in Figure 6.16b. As the number of time series in the dataset grows, it
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5 40000 5
= =
8 200001 g 50001
» <
[8a] ]
30000 20000 30000 40000 50000 40000 20000 30000 40600 50000
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Figure 6.16: Efficiency with varying numbers of time series.
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Figure 6.17: Efficiency with varying length of time series.

is natural that more pairs will be detected, hence the linear increase in the execution
cost for the CP algorithm. Of course, baseline SL requires more time, as it must check
many more combinations of time series.

Varying Time Series Length. For time series with increasing length (Figure 6.17a),
the CP algorithm for bundle discovery again constantly outperforms SL. Similarly to
previous experiments, 0 is expressed as a percentage of the time series length. We ob-
serve that the execution time initially decreases for both algorithms, as more bundles
are pruned. However, as the time series length (and §) gets larger, the performance
of both algorithms slightly worsens. Only in the case of 1,000 timestamps the execu-
tion time starts to drop for the CP algorithm due to the even larger §. This is not
the case with the SL method, which has to evaluate more timestamps. Notice that
the difference between the SL and CP algorithms is smaller, compared to the real
dataset. This is due to the larger number of existing bundles in the synthetic dataset,
which were detected on the checkpoints and had to be verified. Similar observations
stand for pair discovery, with the CP algorithm significantly outperforming SL in all
cases (Figure 6.17b).

6.2 Local Similarity Search on Geolocated Time

Series

In this section, we present our approach on applying local similarity search on
geolocated time series datasets. Combining this local similarity constraint with a
filter on spatial distance leads to a novel set of hybrid queries. Figure 6.18 shows an

example with a query time series 7; searching over a set of time series 71, ..., Ty for
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Figure 6.18: Retrieving geolocated time series based on spatial distance and local similarity.

those within radius p from its location and also locally similar to 7j. In particular,
with respect to a given e, results should also be locally similar to 7}, for at least
5 consecutive timestamps. Qualifying results include T, with local similarity score
o9 =5 (bottom chart), and 77 with o; = 7 (top chart).

It turns out that such hybrid queries involving local similarity can still be eval-
uated using the BTSR-tree index. We first present a baseline method employing a
sweep-line algorithm to check for local similarity, and then describe how this can be
optimized by using appropriately placed checkpoints, based on the local similarity
score threshold specified by the query, in order to skip unnecessary comparisons.
Despite the fact that this saves some computations, the resulting time savings are
relatively small, since the number of index nodes that need to be probed is not es-
sentially reduced. To overcome this problem, we introduce an improvement to the
BTSR-tree index, which is based on temporally segmenting the time series bounds
within each node and deriving tighter bounds per segment. Once the time series
bounds in each node become more fine-grained, pruning the search space for local

similarity queries proves much more effective.

6.2.1 Problem Definition

We first define the local similarity score between time series, and then present the
query variants we consider in this section.

Definition 7 (Local Similarity Score). The local similarity score o between two

time series T and T is the maximum count of consecutive timestamps during which
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the respective values of T' and T' do not differ by more than a given margin e, i.e.,
o(T,T",€) = |Iaz|, where I,,., is the longest consecutive time interval I such that
Viel,|Tw, —T v <e.

Our goal is to efficiently support hybrid queries on geolocated time series that
retrieve the results based both on spatial proximity and local similarity. Specifically,
we focus on the following types of queries (hereafter referred to as LS-queries):

e Double Range LS-Query - Q,.(T}, p, €,0): Given a geolocated time series T,
retrieve every geolocated time series 7' such that 7' is located within range p
from T, i.e., dists,(T,,T) < p and has local similarity score against T, at least
3, ie., o(T,,T,e) > 0.

e Top-k Range LS-Query - Q,(1;, k,€,6): Given a geolocated time series T,
retrieve the spatial k-nearest neighbors to 7; that also have local similarity
score against T}, at least .

e Range Top-k LS-Query - Q,«(1,, p, ¢, k): Given a geolocated time series T,
retrieve the top-k geolocated time series that have the highest local similarity
score against 7j, with respect to € and are located within range p from 7j,.

Example 6. Figure 6.18 depicts an example of the double range LS-query Q,.(1y, p, €, 9)
query. Given the geolocated time series T, as query, we seek the spatially close ones
(i.e., within a circle of radius p) that are also locally similar within margin € for at
least ¢ timestamps. In this example, despite five geolocated time series being within
range, only T, and T; qualify for the final result, since these are the ones that are
also locally similar for at least one time interval of length at least 6.

6.2.2 LS-Queries Using the BTSR-tree

A straightforward approach for answering LS-queries would be to use a spatial
index to first filter by spatial distance and then perform a sequential scan across
each result to filter out those having local similarity score below the given threshold.
This suffers from generating an unnecessarily large number of intermediate results
which are then discarded. Instead, we propose to process LS-queries by leveraging
the BTSR-tree index | |, which can prune the search space simultaneously
according to both criteria.

While traversing the BTSR-tree, spatial filtering is performed at each node N by
computing the bounding distance mindist,, between the location of T, and the MBR
of N, as in R-Trees | ].
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5
>

Figure 6.19: Local similarity check against an MBTS.

For time series similarity, we exploit the MBTS stored within each node. We fol-
low a similar intuition to the cross-MBTS comparison, described in Chapter 4, Equa-
tion 4.1. Considering an MBTS B at a node N, we calculate its distance mindist!,
from 77 at each timestamp i as:

Tq.’UZ’ — Bll_\lf.’l}i, if Tq.Ui > BR'[UZ
mindisty,(Ty, Bx) = § BSy.v; — Tyv;, if Tyv; < BR.v; (6.1)
0, if By.v; <T,v; < By.v

where B} .v; and BY.v; are the upper and lower values of the MBTS at timestamp
i. By definition of MBTS, no time series indexed under N can differ from 7} by less
than mindisti, at timestamp i. Hence, only at those timestamps that mindist:, < e,
it is possible that a time series indexed under NV is locally similar to 7;. Subsequently,

we can compute a local similarity bound opg:
op(T,, Bx,€) = maz{|I|;Vi € I, mindist. (T,, By) < €}. (6.2)

that reflects the maximum interval I of consecutive timestamps where the distance
computed by Equation 6.1 does not exceed margin €. This value is an upper bound
of the local similarity scores of T, with any time series enclosed in this MBTS. Figure
6.19 shows that 7, deviates from the given MBTS by no more than e during two
intervals: one consisting of |I;| = 5 consecutive timestamps and a smaller one with

only |I| = 2 timestamps (shown as square points). So, the local similarity bound for
this MBTS is og = 5.
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By construction, the MBTSs of a child node N’ get tighter bounds compared to
those of its parent N as we descend the BTSR-tree. It is easy to verify that

op(Ty, Bn,€) > op(Ty, By, €) (6.3)

hence local similarity bounds can only diminish when descending the index. This
bound provides a useful pruning condition during search with a cutoff threshold 4.
Any node where all its MBTSs have local similarity bound op below § can be safely
pruned.

Next, we describe a baseline approach that employs a sequential scan over MBTSs,
and then we present an optimization that prioritizes selected checkpoints to avoid

many point-wise comparisons.

6.2.3 Sweep Line Approach

We explain how the BTSR-tree can be used, in conjunction with a simple sweep-
line algorithm, to answer each of the three LS-queries, taking advantage of the two
types of bounds, mindists, and mindist,s, described above.

Double Range LS-Query - Q,.(T}, p,€,6). We traverse the BTSR-tree starting
from its root. At each inner node N, we first check whether mindist,,(T,, MBRy) < p.
If so, we employ a sweep line across the time axis to compute the local similarity bound
op(Ty, By, €) for every MBTS included in N. If all resulting bounds op are below
0, the subtree under N is pruned. Otherwise, the search continues at the children.
Upon reaching a leaf node, we fetch the geolocated time series contained therein, and
verify the query constraints against each one. Each T such that dist,,(T,,T) < p and
o(T,,T,e) > ¢ is added to the results.

Top-k Range LS-Query - Q. (1,,k,€,0). We maintain a priority queue P con-
taining both inner nodes (sorted by ascending mindist,,) and geolocated time series
(sorted by ascending spatial distance to T,). We start by adding to P the root of
BTSR-tree. In each iteration, we retrieve the top element from P. If it is an inner
node, we visit its children to calculate local similarity bounds o according to Eq. 6.2.
For any child N that op of one of its MBTSs satisfies threshold d, we search the sub-
tree of N. Then, we calculate the corresponding spatial distance (mindist,, for a node
N or Euclidean distance for a geolocated time series 7') and insert it back to P. Once
we encounter a geolocated time series 1" at the top of P, we add it to the results. The

process terminates once k geolocated time series have been obtained.
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Range Top-k LS-Query - Q,x(1,, p, €, k). This query is evaluated similarly to the
previous one, with two differences. The first difference is that the priority queue P is
now sorted based on local similarity bounds in descending order, instead of spatial
distance bounds in ascending order. The second is that before inserting an item (node
or time series) to P, its spatial distance (mindists, or exact) is calculated, and if it
is higher than p the item is skipped. The traversal starts again from the root, and
terminates once k time series have been retrieved from the top of P. These are the
top-k results with respect to local similarity (if another time series 7" had higher local
similarity, it would have been retrieved from P first), and they are located within
range p from T, (otherwise, they would not have been admitted to P).

6.2.3.1 Checkpoint Approach

The drawback of the sweep-line approach is that it needs to perform a comparison
for each individual timestamp to eventually determine the exact or maximum local
similarity of a given time series or node, respectively. In the following, we explain how
we can use checkpoints (introduced in Section 6.1.2) along the time axis to avoid this
exhaustive search. These checkpoints prioritize specific timestamps when checking for
candidate matches to eagerly filter out non-qualifying items.

Figure 6.20 exemplifies the use of checkpoints for comparing 7, to an MBTS of
a node for 6 = 5 timestamps. Instead of sequentially performing 11 comparisons
until verifying that local similarity score o is at least 0 (i.e., we stop the verification
at t = 11, once 0 = 5), we check only around the checkpoints. At the leftmost
checkpoint ¢, no local similarity is found (7} is farther than e from the MBTS),
so we skip directly to checkpoint cy. Since T} differs by less than € at co, we need

t
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Figure 6.20: Local similarity with a MBTS using checkpoints.
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to compare values backward and forward, up to the previous and next checkpoint,
respectively. This requires only 6 comparisons instead of 11 to decide that this node
may contain candidates. Next, we describe how probing with checkpoints is applied
during evaluation of LS-queries.

Double Range LS-Query - Q,.(1,,p,¢,9). Algorithm 12 outlines the procedure.
Initially, we obtain the children of the root node in a list and place the checkpoints
every ¢ timestamps (Line 1). We iterate over each item N in this list. If N is an
inner node, we have to examine whether both constraints with respect to p and J are
met for each of its children. Verification of MBTS against query 7, will be discussed
shortly. If this is the case, we traverse the sub-tree of each child in the same manner,
by adding it to the list (Lines 5-9), thus descending the tree. If the examined node is
a leaf (Line 10), we iterate over each contained time series 7" to check the constraints
p and 0. If T' qualifies, it is added to the results (Lines 11-13). Note that now the
calculation of local similarity scores for geolocated time series is based on checkpoints
(Line 12), as discussed above.

Verification of MBTS against the local similarity constraints ¢, is applied using
checkpoints (Lines 15-36). This verification concerns each MBTS in a given node N'.
At each checkpoint ¢, we first verify whether its mindist;, to query T, is at most
¢ (Line 18). If so, we first scan backward to inspect whether there are at least §
consecutive timestamps where 7, deviates by at most e from this MBTS (Lines 20-
27). Similarly, we probe forward from checkpoint ¢ (Lines 28-35). In either case, once
local similarity no longer holds at a timestamp, probing skips to the next checkpoint.
If the check fails for all checkpoints of all MBTSs, then this node cannot contain any
results (Line 36).

Top-k Range LS-Query - Q. (T,, k,€,6). We follow a similar procedure to the one
in Section 6.2.3 for query Q,, employing the same verification process over MBTSs
and time series as in Algorithm 12. Algorithm 13 describes the procedure. We start
by adding the root node to a priority queue P based on spatial distance (Line 2).
After determining the checkpoints using the given § (Line 3), we iteratively retrieve
elements from P (Line 5). Then, three cases may occur:

(1) If this element is a time series (Lines 6-9), it is guaranteed to be a result, given
that P is sorted based on spatial distance from 7j. Indeed, any subsequent
element must be located farther than the current. When list R obtains the
required number k of results, the search terminates.

(ii) The element is a leaf node (Lines 10-14): In this case, we obtain each time series
T contained in this leaf, and verify the local similarity score of T against J. If
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Algorithm 12: Double Range LS-Query - Q,,.(T, p, €, )

1 R« (), List < Root.entries, C' + determineCheckpoints(§)
2 while List # () do

3 N <« List.next

4 if N is not leaf then

5 foreach N’ € N.children do

6 if mindist,,(7,, MBRy/) < p then

7 count < ()

8 if VerifyMBTS(T,, N’,C,¢,0) then

9 L List < List U {N'.children}
10 else
11 foreach T € N.objects do

12 if dist,,(T,,T) < pAo®(T,,T,¢) > & then
13 | R+ RU{T}
14 return R

15 Procedure VerifyMBTS(T,, N’,C,¢, )
16 foreach B € N’ do

17 foreach ¢ € C do

18 if mindist;, (T}, B) < ¢ then

19 count + +,c < ¢

20 while True do

21 c ——

22 if mindist{,(T,, B) < ¢ then
23 count + +

24 if count > ¢ then

25 L return True

26 else

27 L break

28 while True do

29 c+ +

30 if mindisty, (T}, B) < ¢ then
31 count + +

32 if count > ¢ then

33 L return True

34 else

35 L break

36 return False

the condition is met, we calculate the distance of candidate 7" from query T},
and push T into the priority list along with its spatial distance (Lines 10-14).

(iii) If the element is an inner node, we iterate over its children and only push back
to the queue the ones whose MBTSs are verified against ¢ and ¢ (Lines 15-19).
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Algorithm 13: Top-k Range LS-Query - Q. (T3, k, €, 9)
1 R«

2 P.push(Root)

3 C + determineCheckpoints(J)

4 while P is not empty do
5 N « P.poll()

6 if N is raw then
7 R+ RU{N}
8 if |R| =k then
9 L break
10 else if N is leaf then
11 foreach T € N.objects do
12 if O'C(Tq,T, €) > ¢ then
13 T.dist < dist, (T, T)
14 L P.push(T,T.dist)
15 else
16 foreach N’ € N.children do
17 if VerifyMBTS(T;,, N’',C,¢€,6) then
18 N'.dist < mindist,(T,, MBRy-)
19 L P.push(N', N'.dist)

20 return R

Range Top-k LS-Query - Q,x(T,,p,¢,k). The procedure for this query is listed
in Algorithm 14. Notice that for employing checkpoints, we need a local similarity
threshold ¢, so as to determine their placement, but this query does not specify
a fixed 0. To be able to obtain one during search, we now maintain two priority
queues: P holds inner nodes sorted by local similarity bounds (Eq. 6.2), while R
keeps up to k geolocated time series sorted by local similarity scores (as in Def. 1).
We initially set 6 = 1, so checkpoints are trivially placed at every timestamp. This
implies that computation of local similarity scores with 6 = 1 is equivalent to the
sweep line approach. However, 0 increases with the detection of qualifying results,
hence checkpoints will progressively get placed more sparsely. The search starts by
adding the BTSR-tree root in P (Line 2). We iteratively poll the top element from
P, and there are two possible cases:

(i) The top element is a leaf node. Then, we iterate over the contained time series
and add the ones that satisfy the spatial condition (p) to R, along with their
corresponding local similarity score o if it exceeds the current value of ¢ (Lines
8-12). Once R exceeds capacity k, its last element is evicted to make room
for the newly inserted one and ¢ is updated according to the local similarity
score o, of the k-th element in R. In this case, the placement of checkpoints is
re-adjusted according to the increased J value (Lines 13-16).
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Algorithm 14: Range Top-k LS-Query - Q. (7, ,

p)

1 R+ 0

2 P.push(Root)

3 0«1

4 C <+ determineCheckpoints(J)
5 while P is not empty do
6 if P.peekFirst().ocp < J then

7 L break
8 if N is leaf then
9 foreach T € N.objects do

10
11
12

13
14
15
16

17 else

if dist,,(T,,T) < p then
if 0(T,,T,€) > 6 then
L R.push(T,c%(T,, T,¢))

if R.size > k then

R.pollLas()t

) < R.peekLast().c

C + determineCheckpoints(d)

18 foreach N’ € N.children do

19
20
21
22
23

24
25

26 return R

if mindist,,(T,, MBRy/) < p then
oB < 0
foreach B € N’ do

if 05(T,, B,€) > op then
L L op + 0%(Ty, B,e)

if o > § then
L P.push(N' o)

(ii) The top element is an inner node. In this case, we iterate over each child N’
and check if mindist,,(T,, MBRY) < p. If N' qualifies, we calculate the local
similarity bound o of all its MBT'Ss using checkpoints. If the maximum among
these bounds mazx(op) > 9, then N’ is inserted to P with this maximum score

(Lines 17-25).

The process terminates once the top element in P has local similarity less than ¢

(Lines 6-7). The result is the contents of R.

6.2.4 The SBTSR-tree Index

The BTSR-tree index uses k-means clustering to cluster the time series under each
node and then stores the MBTSs of those clusters. However, clustering entire time
series typically generates many overlapping MBTSs, incurring much dead space. This
has a negative impact on the pruning power of the index, especially when considering
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Figure 6.21: Segmenting time series yields tighter MBTS.

local similarities. Figure 6.21a depicts such a case of six time series indexed in a node.
A k-means clustering with £ = 3 will form the depicted MBTSs denoted with shaded
colors. As a result, the dark area A represents the overlap between mbts.1 and mbts.2
and actually makes those bounds less tight. Hence, such MBTSs inflate estimates for
local similarity bounds, and thus lead to unnecessarily descending further down the
index.

To reduce the amount of overlap within the MBT'Ss of nodes, we introduce an ex-
tended version of the BTSR-tree, named SBTSR-tree. SBTSR-tree attempts to elim-
inate as much overlap as possible, through segmentation of time series. Figure 6.21b
depicts the intuition. If we segment the time series before applying k-means, the re-
sulting MBTSs for each segment tend to be tighter, eliminating the excessive overlap
A from Figure 6.21a. The SBTSR-tree is built similarly to BTSR-tree. The only dif-
ference is that the MBTSs of each node are calculated per segment. In this method,
we assume a pre-defined number s of segments, but segmentation is orthogonal to
our problem and can be carried out by applying existing methods like [BGH 06]. Ul-
timately, SBTSR-tree allows for more aggressive pruning when traversing the index.

6.2.4.1 Cross-Segment Continuity Via Bit-Vectors

A downside of the segmentation approach is the loss of the MBTS continuity across
time, which results in MBT'Ss enclosing different time series in neighboring segments.
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For example, in Figure 6.21b, there are no MBTSs in the right segment containing
the same time series as mbtsl.1 and mbtsl.2, a fact which hinders the calculation
of local similarity on the segment boundaries (the vertical line). To overcome this,
we introduce a bit-vector V' along each MBTS of a segment, having one bit for each
MBTS created. If in the current segment a bit in vector V' of a given MBTS is set,
this indicates that this MBTS encloses at least one common time series with another
MBTS’ in the next segment. In the example shown in Figure 6.21b, V' = 110 for
mbtsl.1 indicates common time series with mbts2.1 and mbts2.2 in the next segment,
while V' = 001 for mbtsl.3 signifies common time series with only mbts2.3. This way,
to calculate local similarity, we can easily identify all the MBTSs that share common
time series among two successive segments.

To evaluate LS-queries, traversal of the SBTSR-tree index follows a similar ra-
tionale to the procedure in Section 6.2.3.1. For each checkpoint ¢, we first obtain the
segment where it falls in, and we scan each MBTS leftward and rightward from c, as
discussed in Section 6.2.3.1. If we cross the border to another segment, the available
bit-vectors directly identify the MBTS that need be examined in this neighboring
segment. This propagates until the local similarity constraints (e and 0) are satisfied.
Figure 6.22 illustrates an example of a node verification. Let us consider a predeter-
mined number of three segments and the corresponding MBTS of each segment for
that node. Suppose that there exists a checkpoint ¢ on the second segment. To verify
whether this node satisfies the local similarity constraints, we start from checkpoint
¢ and we check leftwards whether mindisti, < e for each timestamp. If the currently
examined timestamp falls in the first segment, we fetch the corresponding MBTS
and bit-vectors and continue checking whether mindisti, < € in both MBTS (green
shaded), as their bit-vectors both indicate common members with the first one in
segment 2. A similar procedure is followed rightwards, where we only have to check
the first MBTS, according to the bit-vectors.

6.2.4.2 Cost Analysis

Next, we analyze the cost of the @), query (the other queries have similar costs).
For index traversal, since the index is an augmented R-tree, the basic cost for search-
ing over an R-tree applies here as well | |. However, there is an extra cost which
involves two parts. The first part concerns MBTS verification. Assume a query time
series T;, of length n that is verified against the MBTS of a node N. For each check-
point, the algorithm checks for each timestamp ¢ among two segments, whether the
mindist at ¢t between T, and the node’s MBTS is less than e (see Equation 6.3).
This is repeated at each neighboring segment for each MBTS whose bit vector is 1,
until threshold ¢ is satisfied, or rejected for all checkpoints. Thus, this extra cost is
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Figure 6.22: Example of verifying a SBTSR-tree node.

O(c*b?*sxg) in the worst case, where c is the number of checkpoints, b is the number
of MBTS, s the number of segments, and g = n/s the number of timestamps between
two segments. In practice, this will typically require much fewer comparisons, since
the node is traversed only when a qualifying interval is found. The second part of
extra cost concerns time series verification. To verify 7, against 7', the algorithm
needs to check for each timestamp ¢ whether the value difference between 7, and T
is less than €, and keep the largest detected one; hence, this extra cost is O(n).

6.2.5 Experimental Evaluation

Next, we report results from a comprehensive evaluation of our methods against
real-world datasets.
Datasets. We use the real-world datasets also used for experimental evaluation in
Section 4.5, containing diverse types of geolocated time series as detailed in Table 6.4.
To test scalability, we generated a synthetic, augmented version of the Flickr dataset
by slightly moving each location in a random manner and altering each time series
value by a random number between 1 and 10. We produced three additional synthetic
datasets each containing x2, x3, x4 the number of time series from the original
dataset.
Index and Query Parameters. To evaluate the performance benefits observed

in the experiments only based on pruning, we tuned the index parameters to fixed

Table 6.4: Datasets and parameters used in the experiments.

Area  Number of Length of | Default query parameters
Dataset 9 . . .

(km®)  locations timeseries | p € J k
Flickr Earth 414,967 96 30% 7.5% 20 30
Crime 392,000 362,215 76 30% 7.5% 25 30
Taxi 2,500 417,960 168 30% 10% 20 30
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values. The minimum (m) and maximum (M) number of entries stored in each node
are set to 40 and 100, respectively. For both BTSR-tree and SBTSR-tree, the number
of MBTS is set to 10 and for SBTSR-tree, the number of segments s is also set to
10. The query parameters involve the spatial distance and local similarity thresholds,
i.e., p, €, 0 and k. The values of these parameters are set differently for each dataset,
based on their characteristics; default values are shown in Table 6.4. The value of p is
set relatively, by setting the covered area as a percentage of the total area. Similarly,

€ is set as a percentage of the maximum difference between the observed values.

Evaluation Setting. FEach experiment is performed using a randomly selected
workload of 100 queries for each dataset and we report the average response time.
All indices are held in memory, while the leafs contain pointers to files with geolocated
time series stored on disk. All methods were developed in Java. Tests were executed
on a server with 4 CPUs, each containing 8 cores clocked at 2.13GHz, and 256 GB
RAM running Debian Linux.

6.2.5.1 Query Performance

We compare the average per query execution time for all three queries using
sweep line and checkpoint methods on BTSR-tree and the checkpoint method on
SBTSR-tree.

Double Range LS-Query - Q.. (1,,p,€,0). Figure 6.23 illustrates the query per-
formance for varying thresholds p and € and the first column of Figure 6.24 for varying
0, on all three datasets. It is apparent that the SBTSR-tree with the checkpoint ap-
proach outperforms the rest in all cases. Its superior pruning power is attributed to
the segmentation, which yields tighter bounds within the nodes and consequently less
disk accesses. The sweep line and checkpoint methods over BTSR-tree perform simi-
larly in all cases. Both methods access the same nodes, but the checkpoint approach
needs to examine significantly less values across time to determine local similarities.
However, since all local similarity calculations take place in-memory, computation
cost does not make a big difference, compared to the less node accesses required with
the SBTSR-tree.

More specifically, for the crime dataset, relaxing p (Figure 6.23a) has a negative
impact on all three methods as more nodes have to be accessed and pruning depends
mostly on the e value. SBTSR-tree increasingly outperforms the rest as p increases,
due to its more aggressive pruning on local similarity. For the case of increasing e
(Figure 6.23b), the result is the opposite, as this way the parameter is relaxed and
more nodes get accessed. For very large € values, pruning is solely based on spatial
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Figure 6.23: Query Q,.(1y, p,€,0) for varying p and e.

distance and all approaches perform similarly. Finally, increasing ¢ (Figure 6.24a)
also increases the difference in performance among the three approaches, while it also
reduces the average query response time. This is due to large numbers of subsequences

qualifying for small ¢ values, resulting in more node accesses. As ¢ increases, pruning
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is more rapidly improved in the case of SBTSR-tree due to its tighter bounds.

The results are similar but with larger differences for the Flickr dataset (Figures
6.23c, 6.23d and 6.24e). Intuitively, the less periodicity in a dataset, the more the
benefit from segmentation; if the time series in the dataset exhibit periodicity, the
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bounds that will occur from applying k-means clustering on the whole sequences will
be relatively tighter than otherwise. The Flickr dataset, due to its nature, is more
random than the crime dataset, which justifies the larger differences. This explanation
is also supported by the results for the taxi dataset, illustrated in Figures 6.23a,
6.23b and 6.24a. Despite a similar behavior in varying all thresholds, the differences
in average query response time among the different approaches are smaller than in
the crime and Flickr datasets, due to the high daily periodicity of taxi drop-offs.

Another observation is that the execution cost for queries against the Taxi dataset
is lower than that against Flickr. Although these two datasets have a similar number
of locations, their spatial distribution and extent differ substantially (Taxi data spans
New York city, while Flickr data spans the entire planet), which may significantly
affect pruning during search. To verify this, we ran a test with a random @), query,
p = 30% and the default parameters, and we measured the number of pruned nodes.
For the query against the Taxi dataset, 3017 nodes were pruned in the tree as opposed
to only 360 nodes in the tree built for the Flickr data. Since spatial filtering is much
faster with our approach, this explains the difference in execution cost against these
two datasets.

Top-k Range LS-Query - Q. (1,,k,€,6). Figures 6.24b, 6.24f and 6.24d depict
the results for the Q. (1}, k,€,0) query for the three datasets. As k increases, more
nodes have to be traversed in order to fetch the additional results, and the execution
time increases for all methods. Nevertheless, SBTSR-tree still clearly outperforms
the other two algorithms.

Range Top-k LS-Query - Q,x(1,,p, €, k). Figures 6.25¢, 6.25a and 6.25¢ depict
the results for the Q,1(Ty, k, p) query. In this case, the performance deterioration as k
increases is less abrupt, especially for the crime dataset, as usually the top-k results
are spatially closely located and are retrieved quickly. Again, the largest and smallest
differences are spotted on the Flickr and taxi datasets, respectively.

6.2.5.2 Scalability

We performed a scalability evaluation for all three queries using the Flickr-based
synthetic datasets, again measuring the average query response time for the same
query workload. The results for increasing dataset size (up to four times) are depicted
in Figure 6.25. In all cases, the SBTSR-tree-based approach scales better, especially
in the top-k queries (Figures 6.25d and 6.25f), where the larger difference observed
in Figures 6.24f and 6.25a is further augmented.
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6.3 Summary

In this chapter, we addressed the problems of pair and bundle discovery over co-
evolving time series, according to their local similarity. We introduced two efficient
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algorithms for pair and bundle discovery that utilize checkpoints appropriately placed
across the time axis in order to aggressively prune the search space and avoid expen-
sive exhaustive search at each timestamp. Our methods successfully detect locally
similar subsequences of co-evolving time series, as demonstrated in our experimental
evaluation over real-world and synthetic data. Also, they were orders of magnitude
faster compared to baseline methods that apply a sweep line approach, confirming
their effectiveness in pair and bundle discovery.

Furthermore, we have studied three variants of hybrid queries on geolocated time
series, involving both range and top-k search, and combining spatial distance with
local time series similarity. The latter allows to measure similarity of time series over
subsequences instead of their entire length, and thus enables the identification of
more fine-grained trends and patterns. The queries are evaluated by hybrid index
structures, in order to allow for simultaneous pruning by both criteria. We first dis-
cuss query evaluation using the previously proposed BTSR-tree, and then we further
extend it to derive the SBTSR-tree which exhibits even better performance, by using
temporal segmentation of time series to derive tighter bounds. Our evaluation against
several real-world datasets has shown that SBTSR-tree can compute results much
faster for all query variants.

In the following chapter, we present our distributed machine learning framework
for fast and efficient classification and regression, using an optimized parallelization
approach of the k-Nearest Neighbors joins algorithm.
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Scalable Time Series Forecasting

Forecasting time series is crucially useful in various applications, such as resource
demand management (e.g., water, electricity, natural gas), stock market and supply
demand forecasting (e.g., in super markets). An electricity provider, for example,
could forecast future demand on its power supply network, based on the historical
consumption time series of its customers. This way, precautionary measures could
be taken when a larger electricity demand is anticipated, to avoid a potential power
outage. Depending on the dataset, time series forecasting can be a rather complex and
computationally intensive task due to the high dimensionality and usual uncertainty
in such data. Classical statistical methods (e.g., autoregressive integrated moving
average, simple exponential smoothing), or more data-driven, machine learning-based
(e.g., recursive neural networks) approaches could be employed for such a task. In this
chapter, we present a data-driven k-Nearest Neighbors (KNN) method for large-scale
analytics on Big Data.

During the past few years, new database management and distributed computing
technologies have emerged to satisfy the need for systems that can efficiently store and
operate on massive volumes of data. MapReduce | |, a distributed programming
model which maps operations on data elements to several machines (i.e., reducers),
set the foundation for this technology trend. This laid the groundwork for the develop-
ment of open source distributed processing engines such as the Apache Hadoop, Spark
and Flink | |, that efficiently implement and extend MapReduce. These en-
gines offer a handful of tools that operate on Big Data stored in distributed storages,
supported by distributed file systems such as the Hadoop Distributed File System
(HDFS). Among them, Flink provides a mechanism for automatic procedure opti-
mization and exhibits better performance on iterative distributed algorithms | .
It also exhibits better overall performance, as it processes tasks in a pipelined fash-
ion [fli]. This allows the concurrent execution of successive tasks, i.e., a reducer can

start executing as soon as it receives it’s input from a mapper, without requiring all
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the mappers to finish first.

Data analysis and knowledge extraction from Big Data collections is often per-
formed by applying specific machine learning techniques. Of particular interest are
the kNN join methods | |, which retrieve the nearest neighbors of every element
in a testing dataset (R) from a set of elements in a training dataset (5). Each data
element consists of several features, which constitute the preliminary knowledge on
which the neighbor retrieval is conducted. However, computing KNN join on vast
amounts of data can be very time consuming when conducted by a single CPU, as
it requires computing kNN for each element in dataset R. Additionally, a possible
extension of such methods to perform machine learning tasks such as classification
or regression, magnifies the complexity. Various studies have been also carried out
towards approximate solutions of kNN, where there is a trade-off between the algo-
rithm’s precision and complexity.

In this chapter, we introduce a framework of methods for scalable management,
analysis and mining on Big Data collections. We present the Flink Machine Learn-
ing kNN (FML-ANN for short) framework which implements a probabilistic classifier
and a regressor. Specifically, we introduce a MapReduce-based version of kNN joins,
which reduces file operations for large amounts of data and is uniquely initialized
upon launch. Our approach is unified in a single session to reduce space occupation
and cluster overloading. Through an experimental evaluation on real-world water con-
sumption data, we show that the proposed method achieves high prediction precision
and useful knowledge extraction.

The rest of this chapter is organized as follows. Section 7.1 presents some prelim-
inaries. Section 7.2 presents FML-kKNN. In Section 7.3, we evaluate the framework’s
methods in terms of wall-clock completion time and scalability. We also present and
discuss two case studies on knowledge extraction tasks over large amounts of water

consumption data. Finally, Section 7.4 concludes the chapter.

7.1 Preliminaries

In the following, we present basic concepts regarding classification and regression
based on NN join, as well as methods for dimensionality reduction, essential for the

implementation of FML-ENN. We also briefly describe Apache Flink, the distributed
processing engine that we used.

7.1.1 Classification

A kNN join classifier algorithm categorizes new elements in a testing dataset
(R). It detects the nearest neighbors of each elements in a training dataset (S) via
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a similarity measure, expressed by a distance function (i.e., Euclidean, Manhattan,
Minkowski). In FML-ANN we used the Euclidean distance, through which, for each
query element in the testing dataset R we obtain the dominant class (i.e., class
membership) among its kNNs’ classes. kNN classification in most cases is performed
by a voting scheme, according to which, the class that appears more times among
the nearest neighbors will be the resulting class. The voting scheme can be weighted
when someone takes into account the distances between the nearest neighbors. Then
each nearest neighbor has a weight according to its distance to the query element.
Let us consider the set of the k-nearest neighbors as X = {2V, ..., 2V} and the
class of each one as a set C' = {c'V, ..., c¥V}. The weight of each nearest neighbor,

indicating its impact on the final result, is calculated as follows:

i=1,..k (7.1)

d N —ay N NN NN
d?VN_dNN . dk 7é dl
Wi = P NN NN

where d'" is the closest neighbor and dY" the furthest one. By this calculation,
the closest neighbors will be assigned a greater weight. We extend the approach to

perform probabilistic classification (more details in Section 7.2).

7.1.2 Regression

Regression is a statistical process, used to estimate the relationship between one
dependent variable and one or more independent variables. In the machine learning
domain, regression is a supervised method, which outputs continuous values (instead
of discrete values such as classes, categories, labels, etc.). These values represent an
estimation of the target (dependent) variable for the new observations. A common
use of the regression analysis is the prediction of a variable’s values (e.g., future wa-
ter /energy consumption, product prices, web pages visibility /prediction of potential
visitors), based on existing/historical data. There are numerous statistical processes
that perform regression analysis, however, in the case of kNN, regression can be
performed by averaging the numerical target variables of the kNN as follows.

Considering the same set of kNNs (X = {0V ..., 2¥"}) and the target variable
of each one as V' = {v] ... vV}, the value of the new observation will be calculated
as:

k
vy = —zi_}:zNN,i =1,k (7.2)

FML-kENN regressor implements the above procedure. At this point we should
note that k-nearest neighbors performs non-linear classification and regression, as it
does not seek a decision hyperplane to separate the data or a straight line to fit them.
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Instead, it seeks the closest elements in the neighborhood of the query element based
on the Euclidean distance, which results to a non-linear traversal of the space.

7.1.3 Dimensionality reduction

In order to avoid expensive distance computations caused by high dimensional
input data, we reduce their dimensionality to one. This is accomplished by three
different SFC implementations, namely the z-order, the Gray-code and the Hilbert
curve (see Section 2.2), all supported by FML-ANN in order to provide the flexibility
of tuning according to specific needs, with respect to time performance or accuracy.
Each curve scans the n-dimensional space in a dissimilar manner and exhibits different

characteristics in terms of scanning “fairness” and computation complexity | .

2-Order Curve. The z-order curve (Figure 2.3a) is computed by interleaving the
binary codes of an element’s features. This procedure takes place starting from
the most significant bit (MSB) towards the least significant (LSB). For example,
the z-value of a 3-dimensional element with feature values 3 (011s), 4 (1005)
and 5 (1102), can be formed by first interleaving the MSB of each number (0, 1
and 1) going towards the LSB, thus, forming a final value of 0111011005. This
is a fast procedure, not requiring any costly CPU execution.

Gray-code Curve. The Gray-code curve (Figure 2.3b) mapping computation is
very similar to the z-order curve as it requires only an extra step. After obtaining
the z-value as described above, it is transformed to Gray-code by performing
exclusive-or operations to successive bits. For example, the Gray-code value of
01004 would be calculated as follows. Initially, the MSB is left the same. Then,
the second bit would be an exclusive-or of the first and second (0 @ 15 = 15),
the third and exclusive-or of the second and third (15 &0y = 15) and the fourth
an exclusive-or of the third and fourth (0 &0y = 03). Thus, the final Grey-code
value would be 01105.

Hilbert Curve. Finally, the Hilbert curve (Figure 2.3c) requires more complex com-
putations in order to be calculated. The intuition behind Hilbert curve is that
two consecutive points in the sequence are nearest neighbors, thus, avoiding
“jumping” to farther elements, as in the z-order and Gray-code curves. The
curve is generated recursively by rotating the two bottom quadrants at each
recursive step. There are several algorithms that map coordinates to Hilbert
coding. In this work, we employ the methods described in | |, offering
both forward and inverse Hilbert mapping.
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7.1.4 Apache Flink

Our framework was implemented using the Apache Flink distributed processing
engine. Flink offers a variety of transformations on datasets and is more flexible than
similar engines like Apache Hadoop and Apache Spark, due to the fact that it exe-
cutes its jobs in a pipelined manner, thus, gaining in performance. Also, it efficiently
supports iterative algorithms, which are extremely expensive in the standard MapRe-
duce framework. The parallel tasks are executed by task managers, each one usually
denoting a single machine with a number of further parallel processing slots, usually
set to be the same as the number of available CPUs.

Flink is more appropriate for demanding computations performance-wise, as it
does not require key-value pairs during the transitions that take place between the
transformations. Instead, Java plain objects or just primitive types are used, op-
tionally grouped in tuples. The grouping (partitioning) and sorting can be applied
directly according to specific tuple elements or object variables, thus, avoiding the
need of generating key-value pairs, which are required by other frameworks like by
Hadoop, in order to properly partition and sort the elements during the shuffle and
sort phase. Furthermore, Flink is equipped with built-in automatic job optimization,
which achieves better performance compared to other engines.

7.2 Methods

This section outlines the design and implementation of FML-ENN. One of the
main contributions of FML-AKNN is the unification of the three different processing
stages into a single Flink session. Multi-session implementations, regardless of the
distributed platform on which they are developed and operated, are significantly
inefficient due to the following reasons:

Data partitioning
and organization
(Stage 2)

Data pre-processing
(Stage 1)

kNN computation
(Stage 3)

Figure 7.1: Single Flink session.
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Multiple initializations of the distributed environment. They increase the to-

tal wall-clock time needed by an application in order to produce the final results.

Extra I/O operations during each stage. They introduce latency due to I/O
operations and occupy extra HDFS space.

We avoid the above issues by unifying the distributed sessions into a single one.
Figure 7.1 illustrates the unified session. The stages are executed sequentially and
I/0 operations on HDF'S take place only during the start and end of the execution.

7.2.1 Dimensionality reduction and shifting

The input dataset is consisted of points in a d-dimensional space. To perform
dimensionality reduction, we transform each point into SFC values via either z-order,
Gray-code, or Hilbert curve. By taking a closer look on the way the SFCs fill a two-
dimensional space from the smallest value to the largest, one could easily notice that
some elements are falsely calculated being closer than others, as the curve scans them
first. This can have a negative impact on the result’s accuracy.

To diminish the negative effect of such false approximations, we generate a pre-
determined number of alternate versions of the dataset, where each element is ran-
domly shifted by a pre-calculated random vector. As an example, let us suppose that
we have a dataset whose elements consists of three features and a random vector
v =1{3,5,2}. Then, all the elements of the dataset are shifted using this vector, e.g.,
an element el = {2,6,9} will be altered to el’ = {2+3,5+6,24+9} = {5,11,11}. This
is demonstrated for z-order curve in Figure 7.2, where the four bottom-left elements
are shifted twice in the z-axis and once in the y-axis, altering the sequence in which
they are scanned by the curve. This way, neighboring points that are distant on the
curve will possibly be closer in the shifted dataset. This procedure compensates the
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Figure 7.2: Data shifting.
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Stage 1 Stage 2 Stage 3
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Figure 7.3: Single-session FML-kNN.

lost accuracy, as it enables scanning the space in an altered sequence. During execu-
tion, the shifted dataset is concatenated with the original one and the algorithm is
executed, producing multiple groups of kNNs, from which the final kKNNs are deter-
mined. The limitation of this approach is the fact that the size of the input dataset
is increased according to the number of shifts ¢ € [1, a], where « is the total number
of shifts. Finally, we should mention that the above process is similar for all SFCs.

7.2.2 Partitioning

A crucial part of developing a MapReduce application is the way input data
are partitioned in order to be delivered to the required reducers. Similar baseline
distributed approaches of kNN joins problem perform partitioning on both R and S
datasets in n blocks each and cross-check for nearest neighbors among all possible
pairs, thus requiring n? reducers. We avoid this issue by computing n overlapping
partitioning ranges for both R and S, using each element’s SFC values. This way, we
make sure that the nearest neighbors of each R partition’s elements will be detected
in the corresponding S partition. We calculate these ranges after properly sampling
both R and S, due to the fact that this process requires costly sorting of the datasets.

7.2.3 The FML-ENN Distributed Processing Framework

FML-kENN has the same workflow as other similar approaches | |, and
consists of three processing stages. The workflow of the algorithm is depicted in
Figure 7.3. The operations that each stage of FML-kKNN performs are enumerated
below (the Flink operation/transformation is in parentheses):

Data pre-processing (Stage 1).

e Performs dimensionality reduction via SFCs on both R and S datasets
(Flat Map R/S).
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Shifts the datasets (Flat Map R/S).

Unifies the datasets and forwards to the next stage (Union).

Samples the unified dataset (Flat Map Sampling).

Calculates the partitioning ranges and broadcasts them to the next stage
(Group Reduce).

Data partitioning and organization (Stage 2).

e Partitions the unified dataset into n partitions, using the received parti-
tioning ranges (Flat Map).

e For each partition and each shifted dataset, the KNNs of each element in
dataset R are calculated (Group Reduce).

ENN computation (Stage 3).

e The final kNNs for each element in dataset R are calculated and classifi-
cation or regression is performed (Group Reduce).

During data pre-processing, the sampling process is performed by a separate
flatMap operation, which in return feeds the reducers with a smaller, sampled dataset
used to calculate the partitioning ranges. The unified transformed datasets are di-
rectly passed to the mappers of Stage 2, which also receive the partitioning ranges as
a broadcast dataset via the withBroadCastSet operation. The data partitioning and
organization stage directly feeds the input of the kNN computation. Flink’s agility
allows for the entire removal of the mapping procedure of Stage 3, as it only prop-
agates the results from the Stage 2 to the reducers of Stage 3. This increases the
efficiency as it reduces the algorithm’s resource requirements. In the following, we
present each stage in more details.

7.2.3.1 Data pre-processing (Stage 1)

The R and S datasets are read as plain text from HDFS and delivered to two
separate concurrent flatMap transformations, identifiable by the input source file.
During this stage, the SFC values (z-values for z-order, g-values for Grey-code curve
and h-values for Hilbert) and possible shifts, are calculated and passed to a union
transformation, which creates a union of the two datasets. The unified and trans-
formed datasets are then forwarded to the next stage (stage 2) and to a sampling
process, which is performed by a separate flatMap transformation. The sampled
dataset is then passed on a groupReduce transformation, grouped by a shift number.
This way, o (number of shifts) reducers will be assigned with the task of calculating
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Algorithm 15: FML-kENN (Stage 1).

1 > The pre-processing stage’s input

— .
Input: Datasets R, S, random vectors V = {vy,...,v,},v; = 0 and sampling threshold o
2 > The output, that will be emitted to the next stage
Output: Transformed datasets R} and SI,i=1,...,a

3 begin

4 > The same procedure is repeated for each shift
5 fori=1,...,a do

6 R, =R+v;

7 S, =S+v;

8 RT « caleSFC(R;)

9 ST« calcSFC(S;)

10 foreach z € RT U ST do

11 > Sampling

12 r + Random(0, 1)

13 if r < o then

14 if x € R; then

15 L InsertSample(s, RT)

16 else if x € S; then

17 | InsertSample(s, ST)
18 Rrange; + calcRange(RT)
19 Srange; + calcRange(S7)
20 Broadcast(Rrange;, Srange;)
21 > Emit to the partitioning and organization stage
22 return RI U ST

the partitioning ranges for R and S datasets, which are then broadcast to the next
stage (data partitioning and organization).

Broadcasting the partitioning ranges significantly reduces the computational re-
sources required by the reducers compared to F-zkNN, as it avoids the race condition
between Stages 1 and 2 (Figure 7.4a). During the race condition, the transformed
dataset is forwarded to the second stage before the partitioning ranges are calculated
by the reducers, causing its mapping operation to be initiated, which would result
in an error, as the partitioning ranges are required. To avoid this race condition,
F-zkNN’s reducers have to locally cache the transformed dataset while it is being
sampled for the calculation of ranges, as depicted in Figure 7.4b. FML-kKNN over-
comes this issue, by broadcasting the partitioning ranges, as this procedure blocks
the execution of the second stage until the transformed dataset is ready. The left
part of Figure 7.3 depicts the whole process.

Algorithm 15 presents the pseudocode of Stage 1. The random vectors are initially
generated and cached on HDFS in order to be accessible by all the nodes which take
part in the execution. They are then given as input to the algorithm, along with
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Figure 7.4: F-zkNN race condition and solution.

_>
datasets R and S. Notice that vi = 0 indicating that the datasets are not shifted
during this iteration. This process takes place « times, where « is the number of shifts
(Line 5). After shifting the datasets, during the first mapping phase (Lines 5-9), the

elements’ SFC values are calculated and collected to RZT and ST

., where i =1, ..., a.

Then, the sampling is performed by the second mapping phase (Lines 10-17). During
the reduce phase (Lines 18-22), the partition ranges (Rrange; and Srange;) for each
shift are calculated using the sampled datasets and broadcast to Stage 2 (Lines 18-
20). The output consists of the unified transformed datasets, which finally feed the
data partitioning and organization stage (Line 22).

7.2.3.2 Data partitioning and organization (Stage 2)

The transformed datasets of Stage 1 are partitioned to n x « blocks via a custom
partitioner, after fetching the previously broadcast partitioning ranges. Each block is
then delivered to a different reducer through a groupBy operation. Finally, the nearest
neighbors for each query element are calculated via proper range search operations
and passed on the next stage (kNN computation). The middle part of Figure 7.3
depicts this process.

Algorithm 16 presents the pseudocode of Stage 2. During the map phase (Lines
7-18), after having read each shift’s broadcast partition ranges (Line 6), the received
transformed datasets are partitioned into n x a buckets (RY** and S9%/ i = 1,..., a,
g = 1,..,n, Lines 13 & 18), a being the number of shifts and n the number of
partitions. The partitions S9%¢ are then sorted and emitted to the reducers (Lines
23-30) along with the corresponding partitions R9*’. There, for each x € R element,
a range search is performed on the proper sorted partition in order for its kNN to
be determined (Line 23) and its initial coordinates are calculated (Line 24). The
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Algorithm 16: FML-kENN (Stage 2).

1 > This stage’s input are the datasets emitted during the partitioning and organization stage
Input: Datasets RT, ST, i=1,...,«

2 > The output, that will be emitted to the next stage
Output: Dataset Rixa

3 begin
4 > Initialization of the dataset to be emitted
5 Rixa = 0
6 receiveBroadcast(Rrange;, Srange;)
7 > Again, repeat for each shift
8 fori=1,...,a do
9 > Partition the R elements
10 foreach r € RT do
11 forg=1,...,ndo
12 if zval(s) € Rrange;(g) then
13 L L addintopartition(s, R9*?)
14 > Partition the S elements
15 foreach z € ST do
16 forg=1,...,ndo
17 if zval(s) € Srange;(g) then
18 L L addintopartition(s, $9%)
19 forg=1,...,ndo
20 >> Sorting is needed to properly perform range search
21 sort(59%%)
22 foreach z € R9** do
23 RES + rangeSearch(z, k, S9*%)
24 CC, + calcCoords(z)
25 foreach neighbor € RES do
26 CChreighbor < calcCoords(neighbor)
27 CD < calcDist(CC,, CCheighbor)
28 Ryxo < add(z, neighbor, CD)
29 > Emit to the final stage, grouped by element
30 return Ry

initial coordinates of all neighboring elements’ coordinates are then calculated (Line
26) and their distance to the x € R element is computed (Line 27). Finally, all
nearest neighbors are integrated into the proper dataset (Rjxn, Line 28) along with
the calculated distance and feed the Stage 3, grouped by x € R elements.

7.2.3.3 kNN computation (Stage 3)

The calculated « x k-nearest neighbors of each R element, are fetched from HDFS
and mapped to |R| reduce tasks. The final k-nearest neighbors are determined and

passed to the classifier or regressor, depending on user preference. The latter calculate
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either the probability for each class (classifier) or the final value (regressor) for each

element in R.

Classification. In the case of classification, we extend the voting scheme, to perform
probabilistic classification. We consider the set P = {pj}ézl, containing the
probability that the query element will belong to each class, where [ is the
number of classes. The final probability for each class will be derived as follows:

Sigwi I =)
= . g=1,..,1 (7.3)

D iy Wi

) is a function which takes the value 1 if the class of the

b =

where I(c; = MV

NN

neighbor x;'" is equal to ¢;. Finally, the element will be classified as:

¢, =argmax P, j=1,...,1 (7.4)
¢

which is the class with the highest probability. The final result for each element
is appended along with the calculated probabilities for each class in a result
entry. For example, < XY Z|Result : C|A : 0.06/B : 0.03|C : 0.71|D : 0.2 >
represents a four class classification where the element XYZ has been assigned
to class C', which has the highest probability.

Regression. For the case of regression, the final result for each element is calculated
as described in Section 7.1.2 and contains its predicted value. It has the following
format: < XY Z|Result : 19.24446 >, where XY Z is the element’s id.

In both cases, the results for each query element are stored on HDFS in plain text.

Algorithm 17 presents the pseudocode of Stage 3. During this stage, which consists
of only a reduce operation, kNNs of each R element are fetched from the grouped set
of Ry« Finally, for each query element either classification (Line 9) or regression
(Line 11) is performed, after determining its final nearest neighbors (Line 7). The
results are added to the resulting dataset (Line 9), which is then stored on HDFS
(Line 12) in the proper format.

7.2.3.4 Spark implementation

We implemented a three-sessions and a single-session Spark version of the proba-
bilistic classifier, named S-kKNN, in order to conduct a comparative evaluation among
the different distributed processing engines. The architecture of the implementation
is the same as described above. The main difference lies to the transformations and
actions that were used in order to achieve similar functionality to the Flink imple-
mentations.
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Algorithm 17: FML-kENN (Stage 3).

1 > The input is the grouped by element dataset emitted during the previous stage
Input: Datasets R, Rixqo

2 > The algorithm’s results
Output: Dataset R

3 begin

4 > Initialization of the final dataset
5 Ry=10

6 foreach x € R do

7 RES + KNN(z, Rjx;)

8 if classification then

9 L FIN < classify(RES)
10 else if regression then

11 L FIN + regress(RES)
12 | Ry« add(s,FIN)
13 > Store the final results on HDF'S
14 return Ry

7.2.3.5 Cost analysis

Zhang et al. | | showed that the overall communication cost of H-zkNN is
O(a(1/e* + |S| + |R| + k|R| + nk)), where « is the number of shifts, € the sampling
rate, n the number of partitions and k is the number of required nearest neighbors.

FML-kENN introduces some further communication within the Stage 1 and be-
tween Stages 1 and 2. More specifically, |R| and |S| elements have to be communi-
cated from the initial flatMap of Stage 1 to the sampling flatMap. Similarly, the
same number of elements have to be sent to the mappers of the Stage 2. There is no
extra communication from the unification of Stage 3, due to the removal of its map-
pers. Thus, the rest of the communication cost remains unchangeable. Consequently,
the overall communication cost of our method is O(a(1/€% + 3|S| + 3| R| + k| R| +nk)).

As far as the CPU cost is concerned, Zhang et al. | | estimate it to be
O(1/€%*log(1/e*)+nlog(1/e*)+(|R|+]|S]|)log|S]|) for H-zkNN. The FML-ANN introduces
extra calculations in the Stage 3, for classification and regression, which are O(3k|R|+
2c|R|) and O(2k|R|) respectively, where ¢ is the number of classes for classification.
However, since both are significantly less than (|R| + |S])log|S|, the total CPU cost
is finally equal to O(1/€%log(1/€*) + nlog(1/€*) + (|R| + |S|)log]|S]).

7.3 Experimental Evaluation

FML-ENN was assessed in terms of wall-clock completion time and scalability, by

conducting a comparative benchmarking among similar implementations, executed
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over different distributed processing engines. The latter are either executed in one
(where possible), or three Spark or Hadoop (i.e., an extension of the original H-
zkNNJ algorithm) sessions and are compared with the corresponding versions of the
probabilistic classifier. Similar results are expected for the regressor which we have
omitted to avoid repetition.

We also present two case studies which exhibit the framework’s efficiency over use-
ful insights extraction from water consumption events on a city scale level. Through-
out our experiments, we used one synthetic and two real-world water consumption

time-series datasets.

7.3.1 Experimental setup

In the following, we present the environmental setting of the experiments and the
qualitative and quantitative metrics that we used to assess the performance of the
classification and regression processes. We also present the parameters that were used
and how they were determined in the context of the experimentation process.

7.3.1.1 System

The algorithms were assessed on a pseudo-distributed environment. The setup
includes a system with 4 CPUs, each containing 8 cores clocked at 2.13GHz, 256
GB RAM and a total storage space of 900 GB. The CPUs support hyper-threading
technology, running 2 separate threads per core. The total parallel capability of the
system reaches the 64 threads (4 - 8- 2). All (i.e., Flink-, Spark- and Hadoop-based)
implementations were evaluated on the same HDFS, over a local YARN' (Yet An-
other Resource Negotiator) resource manager. This way, each Flink task manager,
Spark executor or Hadoop daemon runs on a different YARN container, represented
by a separate Java process able to run one or more threads, simulating the distributed
cluster.

Despite the significant differences in the distributed processing engines’ configu-
ration settings, they were all configured in order to use the same amount of system
resources. The level of parallelism of all tasks for each engine was set to 16, in order to
exploit the fact that, in an optimally determined setting and during the experiments,
the stage 2 partitions the dataset into 8 subsets and the total number of shifts is 2.
Thus, a maximum of 16 simultaneous tasks are executed in all cases. For Flink and
Spark, a total of 4 task managers (one per CPU) and executors respectively were
assigned 32768 MB of Java Virtual Machine (JVM) heap memory. Each task man-
ager and executor was given a total of 4 processing slots (Flink) or executor cores

thttps: //hadoop.apache.org/docs/current /hadoop-yarn/hadoop-yarn-site/ YARN.html
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(Spark). For Hadoop, the parallelism ability was set to 16 by assigning the mappers
and the reducers to the same number of YARN containers, with 8192 MB of JVM
each. Thus, the total amount of JVM heap memory assigned to each session is always
131072 MB (either 4 - 32768 MB, or 16 - 8192 MB).

Despite our attempt to assign similar amount of system resources to each dis-
tributed processing engine and due to the fact that each one offers a handful of
configuration settings regarding execution, memory allocation, and job scheduling
behavior, the performance of the different implementations may differ from the op-
timal one. However, after performing numerous benchmarking sessions, we believe
that for the current system setting, the presented configuration is fair, achieving
the highest possible performance for all three engines, while maintaining the level of
parallelism at 16. The configuration was performed by taking into consideration the
corresponding guide of each engine.

7.3.1.2 Parameters

FML-ENN uses a variety of input parameters required by the underlying dis-
tributed kNN algorithm, in order to support the classification and regression pro-
cesses. Regarding the value of the k parameter that was used throughout the exper-
iments and due to the fact that the optimal value is problem specific, we performed
a separate cross-validation-based evaluation for each of the case studies (see Sec-
tion 7.3.4). The best k parameter choice was performed in a way that maintains the
best balance between completion time and accuracy. Most parameters were similarly
chosen after performing appropriate cross-validation-based benchmarking.

Among the rest of the parameters, FML-ENN utilizes a vector of size equal to
the input dataset’s dimensions, indicating the weight of each feature according to
its significance to the problem. Each feature is multiplied with its corresponding
weight before the execution of the algorithm in order to perform the required scaling,
according to the feature’s importance. To automatically determine an optimal feature
weighting vector, we provide the option of executing a genetic algorithm, which uses a
specific metric, described in the next paragraph, as cost function. The parameters of
the genetic algorithm, such as the size of the population, the probability to perform
mutation or crossover, the elite percentage of the population and the number of
the iterations can be directly determined by the user. This approach was applied to
produce the optimal feature weighting vector for each of the cases that we studied.

7.3.1.3 Metrics

Four different well known performance measures were used to evaluate the quality
of the results obtained by the classifier and the regressor. These performance measures

151



7.3. Experimental Evaluation

are included in the framework in order to offer the ability to assess the various data
analysis tasks. Accuracy and F-Measure are implemented for classification, while
Root Mean Square Error (RMSE) and Coefficient of determination (R?) are used to
evaluate the quality of regression. A short description of what each of these metrics

represents in our experimentation is listed below:

e Accuracy: The percentage of correct classifications (values from 0 to 100).
It indicates the classifier’s ability to correctly guess the proper class for each

element.

e F-Measure: The weighted average of precision and recall of classifications (val-
ues from 0 to 1). Using this metric, we ensure good balance between precision
and recall, thus, avoiding misinterpretation of the accuracy.

e Root Mean Square Error (RMSE): Standard deviation between the real
and predicted values via regression. This metric has the same unit as the target
variable. It provides us with the insight of how close the guessed values are to
the real ones.

e Coefficient of determination (R?): Indicates the quality of the way the
model fits the input data. It takes values from 0 to 1, with 1 being the perfect
fit. A good fit means that the regressor is able to properly identify the variations
of the training data.

The completion time comparison of the distributed processing engines is per-
formed after simply obtaining the system time elapsed before and after each execu-

tion.

7.3.2 Datasets

For the experimental evaluation of FML-ANN we used two real-world water con-
sumption related datasets coming from Switzerland and Spain. We also generated a
synthetic dataset, based on an extended version of the Spain dataset, with a much
larger amount of entries. Since the framework’s algorithm is kNN-based, we normal-
ized all the datasets’ features from values ranging from 0 to 1, in order to avoid
broader ranged features heavily affecting the result.

SWM dataset. Asin the previous chapters, this dataset is a courtesy of the DATAD
project (http://daiad.eu/). Specifically, it contains hourly time-series of 1000
Spanish households’ water consumption, measured with smart water meters. It
covers a time interval of a whole year, i.e., from the 1% of July 2013 to the 30"
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of June 2014. The records include a household identifier, a timestamp and a
meter measurement in liters. This dataset has a total number of 8.7M records.

Shower dataset. The second dataset is also provided by DAIAD and includes
shower events from 77 Swiss households collected with shower water meters.
Each record contains a household and shower identifier, a meter measurement
in liters, the number of times that the faucet was turned off during the shower
and the corresponding duration, the total duration of each shower as a whole,
as well as the average water temperature and flow rate. It also contains demo-
graphic information related to the age, income, number of males or females and
total number of household members. This dataset counts 5795 records. While
this dataset is not on a Big Data scale, we perform a case study based on it, in
order to assess the framework’s data analysis capability on water consumption
data regarding a single water fixture and consumer activity.

Synthetic dataset. In order to evaluate completion time performance on Big Data,
we created a synthetic dataset via a Big Data generator. The latter is a part of
the BigDataBench benchmark suite [bdb| and operates via .xml files, in which
the user can determine the number of records and their features. Based on an
extended version of the SWM dataset produced after proper feature extraction
(see Section 7.3.4.1), the synthetic dataset’s entries consist of an id, 10 features
and two target variables of continuous (floating point with 10 decimals) and
binary data representation, respectively. Each feature is ranged from 1 to 99 and
the id is alphanumeric. The data representation, number and range of features
was selected in order to maintain a relatively high number of dimensions, while
being able to create a large number of records and at the same time avoiding
exceeding the memory limits of the setup (approx. 8192 MB per mapper or
reducer for the Hadoop case). Thus, the total size of the synthetic dataset has
100M records (approx. 4.1 GB).

7.3.3 Benchmarking

In the following, we perform a comparative benchmarking of FML-ANN, in terms
of scalability and wall-clock completion time, using the synthetic dataset and the
probabilistic classifier. Similar results are expected for the regressor. The comparison

involved:

FML-ENN (single session): The proposed implementation, presented in the pre-

vious section.
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Table 7.1: Wall-clock completion time

Version 3 Sessions 1 Session
1st 2nd 3rd Total Total

FML-ENN | 03m 45sec | 24m 59sec | 01m 48sec | 30m 32sec || 30m 25sec

S-kENN 07m 12sec | 29m 15sec | 03m Olsec | 39m 28sec || 33m 03sec

F-zkNN N/A N/A N/A N/A 46m 09sec
H-zkNNJ | 06m 00sec | 31m 19sec | 05m 54sec | 43m 13sec N/A

FML-kNN (three sessions): A three-sessions version of FML-ENN, where each
stage is executed by a different Flink process.

S-kINN (single session): An Apache Spark version with the same architecture as
FML-ENN.

S-kNN (three sessions): A three-sessions version of S-kNN, where each stage is
executed by a different Spark process.

-zkINN: The single-session algorithm on which the core algorithm of FML-ANN was
based.

H-zkNNJ: An extended version of the algorithm to perform probabilistic classifi-
cation executed in three separate sessions. This is the baseline method.

It is important to note that a single-session version of the H-zkNNJ algorithm is
not possible, as a Hadoop session can only execute one map, followed by one reduce
procedure. A single session requires the three stages to be executed in a sequential
manner, which is not possible in Hadoop, as it would require mapping to be performed
after reducing procedures several times.

7.3.3.1 Wall-clock completion time

Table 7.1 shows the probabilistic classifier’s wall-clock completion time of all Flink,
Spark and Hadoop versions, run in either three, or one sessions (possible only for
FML-kANN, S-kNN and F-zkNN). The three-session F-zkNN is identical to the three-
session FML-ENN implementation and its measurements are omitted. We used the
synthetic dataset and we followed a 10%-90% testing—training split scheme, resulting
in 10M records being used as the testing set (R) and 90M as the training set (5). It
is apparent that the Flink-based implementations perform significantly better than
all implementations, in both three and single-session versions. This improved perfor-
mance is due to Flink’s ability to process tasks in a pipelined manner, which allows
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the concurrent execution of successive tasks, thus, gaining in performance by com-
pensating time spent in other operations (i.e., communication between the cluster’s
nodes).

The unified version implemented with Spark is significantly faster than the total
wall-clock time of the corresponding three-sessions setting. This is due to the reduc-
tion of the I/O operations on HDFS during the beginning and end of each session.
A critical role is also played by the omission of the mappers of stage 3, which intro-
duced the additional overhead of forwarding the results of the second session to the
proper reducers. For FML-A£NN, the total time of the three-sessions version is similar
to the unified one, again due to the pipelined way of execution, which compensates
the time lost during HDFS 1/O operations. The wall-clock completion time of S-kNN
is only slightly lower for each stage than the baseline H-zkNNJ implementation, ex-
cept during the third session, where it executes almost twice as fast. This is caused
by the fact that the stage 3 does not include costly operations such as sorting and
transforming the dataset coming from stage 2. The latter is partitioned according
to the id of each query element (i.e., elements in R dataset), thus, taking advantage
of all system resources and possibly Spark’s documented better performance over
Hadoop. F-zkNN performs worse than the rest of the implementations due to its
resource-hungry propagation of the transformed dataset during the first stage.

It should be noted that the results do not suggest that Flink is superior to the
other distributed processing engines. The comparison is limited to the current FML-
kNN’s core algorithm and the implementation and experimental setting are as fair as
possible, considering the engines’ different operational support. It proves, however,
that our algorithm performs significantly better with Flink and supports our choice

to use it as an underlying execution environment.

7.3.3.2 Scalability

The various implementations were also evaluated in terms of scalability. Fig-
ure 7.5 shows the way each version scales in terms of completion time for subsets of
the synthetic dataset of different size, using the same 10%-90% testing—training split
scheme. The subset sizes varied from 10M (1M testing-9M training), to 100M (10M
testing-90M training). As illustrated in the figure, the FML-ANN implementations
exhibit similar performance and scale better as the dataset’s size increases. However,
the unified version, i.e., the one used at FML-ANN framework, has the advantage
of not requiring user input and session initialization between the algorithm’s stages.
Flink’s pipelined execution advantages are once again apparent if we compare the
scalability performance of all the three-sessions implementations: The I/O HDFS op-
erations cause the Spark and Hadoop versions to scale significantly worse than Flink,
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Figure 7.5: Scalability comparison for 10%-90% split.

which performs similarly to the unified version. Finally, due to the aforementioned

dataset propagation, F-zkNN scales worse than all the implementations.

We have executed the algorithm using the 100M synthetic dataset for different
split schemes, more specifically for 10%-90%, 30%-70%, 50%-50%, 70%-30% and
90%-10% testing—training. The results are depicted in Figure 7.6. FML-ANN performs

5500 -

5000

4500

—a
O—0

A~

FML-KNN 1 Session
FML-KNN 3 Sessions
S-kNN 1 Session
S-kNN 3 Sessions

F-zkNN

4000

Wall-Clock Time (sec)

3000}

3500 | oo

2500

2000} i

1500

L L
10%-90% 30%-70%

L
50%-50%
Training-Testing Split

L
70%-30%

L
90%-10%

Figure 7.6: Wall-clock completion time for different split sizes.
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better in all cases. Due to the fact that the CPU cost of all methods similarly depends
on the size of R and S datasets (please refer to Section 7.2.3.5), there are no large
variations between the differences in the performance among all the implementations,
and for all split cases. More time is required to finish execution as the size of the
R dataset is increased, due to the fact that the communication cost more heavily
depends on the size of the R dataset. However, this is compensated in each split case
by the reduced size of dataset S, causing the execution time to be increased in a

similar to logarithmic manner.

7.3.4 Case studies

The framework’s data analysis potential was evaluated using two real-world water
related datasets in two independent case studies presented below. We focus on knowl-
edge extraction from large volumes of historical water consumption data, towards the
facilitation of useful insights acquisition for consumers and resource utilities in the

water domain, which could induce lifestyle changes by promoting sustainability.

7.3.4.1 SWM dataset

The first case study showcases the potential of the framework’s machine learning
algorithms on a water consumption time-series forecasting task. Time-series data on
water consumption pose several challenges on applying machine learning algorithms
for forecasting purposes. Apart from the actual measurement values, one must take
into account their correlation with previous values, their seasonality, the effect of
contextual factors, etc. | |. Thus, proper features that represent and correlate
different aspects of the data need to be defined in order to take advantage of the
time-series nature of such data.

Feature extraction. The dataset consists of 8.7M smart water meter hourly read-
ings for 1000 households during a year, with each reading representing a record. The
id of each element was set to be the smart meter id, together with the date and hour
during which the consumption occurred. Initially, we removed any outlier records
that could affect the final result. Such records belong to customers who do not ex-
hibit normal water consumption behavior, i.e., they are frequently absent during the
year or they continuously consume water (i.e. indication of possible leakage). We con-
sidered as frequently absent the users who did not consume any water for more than
40 days during a year, which indicates that they were away from their households.
As a next step, we generated a total of nine different features for each data element.

Due to the qualitative nature of the extracted features, the Euclidean distance
of FML-ENN cannot be applied directly on them. To overcome this, we assign each
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feature with a new value, which is derived during a pre-processing step, after we sort
according to average water consumption. For example, for the feature indicating the
season of the year, we obtain the average per season water consumption and we sort
the seasons according to this value. Then, each season is assigned with a numerical
value corresponding to its position in this sequence. This way, if supposedly winter
was assigned with 1, summer with 2, autumn with 3 and spring with 4, we know that
winter is closer to summer both in terms of consumption and Euclidean distance.

The extracted features are presented in more details in the following.

Hour: The hour during which the consumption occurred.

Time Zone: We grouped the hours into four time zones of consumption: lam - 4am
(sleeping), bam - 10am (morning activity), 1lam - 7pm (working hours) and
8pm - 12am (evening activity).

Day of week: The day of the week from Monday to Sunday.
Month: The month of the year, from January to December.
Season: The season of the year, from winter to autumn.

Weekend: A binary feature indicating whether or not the consumption occurred
during a weekend. We decided to include this feature after noticing differences
between average hourly consumption during weekdays and weekends.

Customer group: We run a k-means clustering algorithm, configured to run for
time-series data, on the weekly average per-hour consumption time-series for

each customer (for details, see below).

Customer ranking: For each hour, we calculated the average hourly consumption
of each customer and sorted according to it.

Customer class: This feature represents a grouping of the customers to one of four
classes according to their monthly average consumption, i.e. “environmentally
friendly”, “normal”, “spendthrift”, “significantly spendthrift”.

Each record also contained two target variables, being the exact meter reading at
each timestamp and a binary flag, indicating whether consumption occurred during
that hour or not (i.e., if the meter reading was positive or zero).

The reason for choosing k-means for extracting the customer group feature was
its significantly lower complexity compared to other clustering methods. As several
evaluating works in the literature suggest | , , |, k-means achieves

the best performance in terms of execution time and scalability. This is crucial in our
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case, as in a real world scenario the feature extraction procedure, as a pre-processing
step is usually required to be as time efficient as possible. Additionally, k-means can
produce accurate and tight clusters compared to similar methods | |, which
renders it the best choice for this case study.

Since the input data to be clustered are time-series, we used Dynamic Time Warp-

ing (DTW) as a distance metric. DTW is a very commonly used metric for comparing
time series. As opposed to other distance metrics (e.g., Euclidean distance), it can
handle the case where two time series have similar form but are slightly shifted in
the time axis. For more details and a formal definition of DTW, the reader can refer
to | |. Finally, we applied k-means on the average consumption time-series, with
10 as the number of clusters, which was determined as follows. Initially, we used a
rule of thumb which provides a very fast estimation of the optimal number of clusters,
described by Kodinariya et al. | |, which sets & =, /%, where n is the number
of elements to be clustered. Considering the number of the customers (1,000), the
above equation yielded k£ = 22. Starting from this value, we run the k-means algo-
rithm several times, using lower (higher) number of clusters than 22. We decreased
(increased) the number of clusters by 1 and repeated the clustering and measured
the Davies-Bouldin index | | score of each execution. Finally, we chose the local
best score, which in this case study was 10 clusters.
Procedure. We first execute the probabilistic classifier, with the testing set (R)
comprising of the last two weeks of water consumption for every user (336,000
records), in order to obtain the possibility of whether consumption will occur or not,
during each hour. The rest of the dataset (8.36M records) is used as the training set
(S). We perform binary classification, obtaining an intermediate dataset indicating
whether or not consumption will occur for each training record. Using the hours dur-
ing which we predicted that water will be consumed, we run the regressor and get a
full predicted time series result of consumption for each user. Before each algorithm’s
execution, we determined the optimal scale vector using the genetic approach.

In order to choose the optimal k parameter for both algorithms, we employed
a ten-fold cross-validation approach. We iteratively split the entire dataset into ten
equal parts and executed each algorithm the same number of times, using a different
subset as training set (S) while the rest of the sets, unified, comprised the testing set
(R). As a metric, we used accuracy for classification and RMSE for regression. The
k value that achieved the best balance between completion time and result quality
was 15, for both the classifier and regressor.

Space filling curves accuracy evaluation. FML-kNN supports three SFC-based
solutions for reducing the dimensionality of the input data to just one dimension,
namely the z-order, Grey code and Hilbert curves. We evaluated the completion time
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Table 7.2: Space Filling Curves’ performance.

Curve Classification Regression
Accuracy | F-Measure | Wall-Clock Time || RMSE | R~2 | Wall-Clock Time
z-order Curve 70.24% 0.775 1m 20sec 18.86 | 0.64 Om 59sec
Hilbert Curve 70.54% 0.78 1m 32sec 18.69 | 0.66 1m 15sec
Gray-code Curve 70.4% 0.777 1m 25ec 18.81 | 0.64 1m 5sec

and approximation quality of each SFC, in order to choose the one that achieves the
best balance between timing performance and approximation accuracy, regarding
the water consumption dataset. Table 7.2 presents the metric and time performance
related results of the probabilistic classifier and regressor for each SFC, which we
obtained from running the algorithms using the ten-fold cross-validation.

All three SFCs demonstrate similar performance in all aspects. Hilbert curve
scores higher in all metrics as expected, however only slightly. Consequently, we chose
the z-order curve for this case study, as it exhibits better time performance due to

its decreased calculation complexity.

Results. The classifier correctly predicted the 74.54% (F-Measure: 0.81) of the
testing set’s target variables, i.e., the hours during which some consumption occurred
for the two-week period. For these specific hours the regressor achieved a RMSE score
of 19.5 and a Coefficient of determination score of 0.69. The results were combined
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Figure 7.7: Personalised hourly water consumption prediction.
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into a single file, forming the complete time-series of the dataset’s last two weeks’
(June 16-30 2014) water consumption prediction for all the users.

Figure 7.7 shows four users’ consumption prediction versus the actual one, during
four different days. The prediction for user #4 was close to reality. The results seem
to follow the real values, but are not able to properly follow the observed ones. This
indicates that it is rather difficult to accurately predict a single user’s future water
consumption, due to possible unforeseen or random events during a day, a fact which
justifies the rather large RMSE score. For example, consumptions higher than 20
liters during an hour (e.g., user #3 around 6:00) could indicate a shower event, while
larger consumptions (>50 liters) over more than one hour could suggest usage of
the washing machine or dish washer (e.g., user #3 from 16:00 to 20:00), along with
other activities. In order to assess the generalization of the results, we calculated the
average RMSE of the hour and volume of the peak consumption during each day,
as well as the average RMSE of the total water use per day, for all the predictions.
The rather high errors, (8.89 hours, 28.9 liters and 132.23 liters respectively), confirm
the previous observations regarding the difficulty in predicting random daily events.
However, despite all the above, our algorithms’ predictions are able to mostly follow
the overall behavior during most days (e.g., users #3 and #1).

The results are particularly interesting if we aggregate the total predicted con-
sumption of all users during each hour. The two upper diagrams in Figure 7.8 illus-
trate this case for two different days. It is apparent that our algorithms’ predictions
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Figure 7.8: Aggregated hourly water consumption prediction.
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are able to properly follow the real aggregated consumption during each hour. This
indicates that the negative effect of the sudden/unusual/unforeseen events is lost
when we attempt to predict the total hourly water consumption of a larger number
of users. The two lower diagrams present the same prediction performed by feeding
our algorithms with already aggregated hourly consumption data. While the pre-
aggregated dataset’s predictions appear to less diverge from the actual values in
certain points, the non-aggregated results are smoother and better assemble the ac-
tual overall behavior. This is due to the fact that the non-aggregated dataset also
contains user-specific features and is thus able to perform predictions based on user
similarity, thus, yielding more accurate predictions.

7.3.4.2 Shower dataset

This case study exhibits the framework’s potential in extracting useful knowledge
from shower water consumption data, using the shower dataset. More specifically, the
probabilistic classifier is used (the z-order curve is selected, similarly to the previous
case study) in order to predict specific characteristics of a user, from shower water

consumption events.

Feature extraction. As mentioned, the dataset, apart from shower water con-
sumption related data, also included demographic information. In this case study we
focused on predicting the sex, age and income of the person that generates a shower
event, using classification. For the case of sex, we used the shower events for which we
knew whether the person was male or female (binary classification), i.e., households
with only one, or only same sex inhabitants. Consequently, each record consisted of
all the smart meter measurements (shower stops, break time, shower time, average
temperature, average flow rate) as features and the sex as the target variable. Due
to the dataset’s rather small size, the age and income prediction was also performed
by binary classification, i.e., determine whether the person that generates a shower
event is of age less than 35 years or not, or has income less than 3000 CHF or not.
The features of each record were the same in all three cases.

Procedure. We ran the probabilistic classifier in order to perform binary classifica-
tion of the shower events for each of the target variables. Ten-fold cross-validation was
also used in this case. The latter, similarly to the previous case, helped us determine
the optimal value of k parameter, which was set to 10.

Results. The results obtained by the classification are illustrated in Figure 7.9.
The classifier achieved cross-validation accuracy of 78.6%, 64.7% and 61.5% for sex,

162



Chapter 7. Scalable Time Series Forecasting

801

=
S
T

PN
S
T

Cross-validation Precision (%)

[
S
T

! i !
sex age income
Binary Classification Cases

Figure 7.9: Cross-validation accuracy for sex, age and income prediction.

age and income prediction respectively. Despite the fact that a larger dataset would
generate more confident results, it is safe to conclude to that predicting the age and
income of a shower-taker based solely on her showers is a non-trivial task. On the
other hand, sex is easier to predict as it directly affects the actions of a person during

a shower.

7.4 Summary

In this chapter, we have presented a novel distributed processing framework, which
supports a probabilistic classification and a regression approach. Its core algorithm is
an extension of a distributed approximate kNN implementation, optimized to operate
efficiently in a single distributed session. It was implemented with the Apache Flink
scalable data processing engine.

We have conducted a detailed experimental evaluation in order to assess the
framework in terms of wall-clock completion time and scalability, comparing it with
similar approaches based on Apache Spark and Apache Hadoop. Our framework out-
performed all competing implementations, managing to execute significantly faster
on the same workloads and scale better for larger datasets, as a result of our opti-
mizations and its ability to execute in a single distributed session. Furthermore, we
performed two water consumption related real-world case studies, demonstrating our
framework’s potential in knowledge extraction tasks on data of very high volume.

The next chapter concludes this thesis and presents possible future directions.
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Chapter 8

Conclusions and Future work

In this thesis, we focused on scalable hybrid indexing, querying and exploration on
big time series data, geolocated or not. We also developed a framework for efficient
data analysis and knowledge extraction from Big Data. Section 8.1 concludes this
work, while in Section 8.2 we present our main future directions.

8.1 Conclusions

Our main focus lies on geolocated time series, a novel data type that combines time
series data with a spatial extend. First, we introduced the BTSR-tree index, a hybrid
index for geolocated time series. Then, we proposed a variety of new hybrid queries
that utilize BTSR-tree to apply certain thresholds both on the spatial and time series
domain. To efficiently explore large datasets of geolocated time series, we developed
two summarization approaches for efficient visual exploration, named bundle and
tilemap summary. Next, we introduced the measure of local similarity, that considers
two time series similar if the pairwise distance of their values per timestamp does
not exceed a given threshold during a pre-defined time interval. Based on this new
measure, we introduced two approaches for pair and bundle discovery on time series
datasets. We also used local similarity for a new type of hybrid similarity search on
large geolocated time series data, using the BTSR-tree index and a modified version
of it, named SBTSR-tree. Finally, we developed a novel distributed framework for
analytics, named FML-ANN. The framework applies kNN joins on Big Data of various
data types to allow efficient mining and knowledge extraction.

In more details, regarding hybrid indexing and querying;:

e We introduced the TSR-tree, an extension of the R-tree spatial index. In the
TSR-tree, each node is augmented with additional information corresponding
to the bounds of the time series contained in its subtree, in addition to the
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standard Minimum Bounding Rectangle (MBR), denoting the spatial bound of
its contents. Maintaining both kinds of bounds in each node allows to prune the
search space simultaneously in the spatial and in the time series dimension while
traversing the index. Thus, the number of required node accesses is significantly
reduced, since we only retrieve the contents of nodes that may actually contain
objects satisfying both types of predicates.

e We proposed the BTSR-tree, an optimized variant of TSR-tree, with its nodes
having entries with more refined bounds by bundling together similar time
series. This allows to compute and maintain tighter bounds for each individual
bundle, hence increasing the pruning effectiveness. To allow for a larger number
of bundles in nodes at higher levels in the tree hierarchy, we exploit Piecewise
Aggregate Approximation | , | to trade off between the number
of bundles and the resolution of the bounding time series for each bundle.

e We utilized BTSR-tree to answer a variety of hybrid similarity queries on large
geolocated time series datasets. To do so, we leveraged its hybrid indexing
potential, allowing for more aggressive pruning in the spatial and time series

domains simultaneously.

e We introduced the hybrid similarity join query that retrieves pairs of geolocated
time series among two datasets such that both the distance between their loca-
tions and the distance between the time series themselves do not exceed certain
given thresholds. We utilized the BTSR-tree index to speed up the computations
and, since similarity join on time series is an inherently expensive procedure, we
further proposed a space-driven data partitioning scheme that enables a parallel
and distributed approach for hybrid similarity joins. Our method leverages hy-
brid indexing methods to efficiently handle similarity join queries locally within
each partition. This is then combined with an optimization that minimizes the
amount of data transferred between worker nodes at query time without false

misses.

e We evaluated all the above on several real-world and synthetic datasets, as-
sessing various metrics, such as node accesses, indexing size and build time,

execution time and scalability.
Regarding our approaches on geolocated time series visual exploration:

e We introduced two geolocated time series summarization approaches for visual
exploration, named bundle and tile map summary. These are supported and
driven by two appropriate hybrid indices that speed up the result computation,
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providing efficient exploration of geolocated time series data. They consist of a
spatial and a time series summary that jointly facilitate knowledge extraction
and insight gaining. The spatial summary is similar for both and consists of
MBRs of geolocated time series, according to a specific predicate (i.e., spatial
proximity, or time series similarity). Each MBR is associated with a counter

denoting the number of time series it contains.

e The bundle summary consists of sets of MBTS, that is a band with upper
and lower bounds that encloses all time series of a set, providing a notion of a
range of the time series values throughout the time axis. For providing prompt
visualizations of summaries over geolocated time series data and minimizing
latency when drawing the relevant graphic elements, we need early access to
both spatial and time series information while traversing the index. For this
purpose, we adapted our BTSR-tree index so as to also include aggregates per
node, i.e., the number of time series pertaining to each bundle. Subsequently,
we introduced a new traversal algorithm for efficient retrieval of a given number

of bundles that are the most representative in the map area.

e The tile map summary is driven by geo-iSAX, a hybrid index we introduced.
It constitutes a hybrid variant of the iSAX index, augmented with spatial at-
tributes of its nodes’ children, to combine spatial and time series information.
In each node, besides the SAX word that describes all its children time series,
geo-iSAX keeps also the MBR that they form. To minimize the size and overlap
of the MBRs, we proposed a spatial splitting policy, that instead of choosing
the splitting dimension in a round-robin fashion (as in iSAX), it does so by
selecting the dimension that produces the smallest overlap and overall size of
the two generated MBRs. We introduced a traversal algorithm for applying
timebox search on large (both vertically and horizontally) geolocated time se-
ries datasets. The traversal algorithm is applied on our geo-iSAX index and
returns a tile map-like summary of the qualifying geolocated time series, by
taking advantage of the SAX representation’s properties.

e We evaluated our methods’ efficiency, scalability, accuracy using real-world and
synthetic datasets. We also assessed the quality of the information they provide,
through mock-up visualization examples.

In the field of pair/bundle discovery and local similarity search:

e We introduced the measure of local similarity, that can be applied on co-
evolving (i.e., time aligned) time series. Two co-evolving time series are locally

similar if the pairwise distance of their values per timestamp does not exceed a
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given threshold during a time interval, that lasts at least a pre-defined number

of consecutive timestamps.

e Based on local similarity, we introduced two methods for pair and bundle dis-
covery on co-evolving time series datasets. Since discovering all possible pairs
and bundles of locally similar time series within large sets is a computationally
expensive process, we employed a value discretization approach that divides
the value axis in ranges equal to the value difference threshold, in order to
reduce the number of candidate pairs or bundles that need to be checked per
timestamp. We also introduced a more aggressive filtering that only checks at
selected checkpoints across time, but ensuring that no false negatives ever occur.
To further reduce the number of examined candidates, we proposed a strategy
that judiciously places these checkpoints across the time axis in a more efficient

manner.

e We extended our previous approach on hybrid queries over geolocated time
series to support local similarity, thus allowing more flexible and fine-grained
queries and analyses. We introduced local similarity score between two time
series, which is defined as the maximum number of consecutive timestamps
during which their respective values do not differ by more than a user-specified
threshold. For evaluating such queries, we employed the BTSR-tree index. To
further enhance the evaluation performance, we introduced an improvement to
the BTSR-tree index, named SBTSR-tree. It is based on temporally segment-
ing the time series bounds within each node and deriving tighter bounds per
segment. Once the time series bounds in each node become more fine-grained,
pruning the search space for local similarity queries proves much more effective.

e We evaluated the efficiency and scalability of our methods in terms of execution
time, using real-world and synthetic datasets.

Finally, regarding scalable kNN joins:

e We introduced FML-ENN, a framework of methods for scalable management,
analysis and mining on Big Data collections. The framework implements a
probabilistic classifier and a regressor. Specifically, we introduced a MapReduce-
based version of kNN joins, which reduces file operations for large amounts of
data and is uniquely initialized upon launch. Our approach is unified in a single
session to reduce space occupation and cluster overloading.

e We evaluated our framework on real-world and synthetic datasets against sim-
ilar approaches, showing that the proposed method achieves high prediction
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precision and better scalability, while providing with useful knowledge extrac-
tion capabilities.

8.2 Future Work

In the following, we provide several possible future directions for our work, pre-
sented in this thesis.

e We plan to expand the indexing capabilities of BTSR~tree on multi-dimensional
feature spaces over distributed processing frameworks and also explore adap-
tivity to query workloads.

e Regarding visual exploration of geolocated time series, we will research and sup-
port more detailed visual analytics and identify more fine-grained patterns. An
interesting direction would be to support drilling-down in a particular summa-
rized result and discover whether there are differentiations in the distributions
of its constituent, more detailed patterns, both in spatial and time series do-
mains. Moreover, we will focus on supporting more complex time series distance

measures that may boost the quality of our summaries.

e For pair and bundle discovery, we plan to further improve the scalability of our
algorithms to extend their applicability over very large time series datasets,

both in terms of cardinality, as well as in terms of length.

e Regarding local similarity search, we plan to study the applicability of SBTSR-
tree on various other hybrid query types, enlarging its potential in geolocated

time series exploration.

e Finally, we will perform extended case studies using FML-ANN on more datasets
from various sources, in order to establish our framework’s ability in performing
ad-hoc data mining tasks. Furthermore, we will explore its applicability on
data stream mining applications, where the input is a continuous flow of data
records. We will also enhance our framework’s knowledge discovery capacity, by
extending it with more distributed machine learning approaches, in an attempt
to raise its potential on the continuously growing field of Big Data analytics.
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