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Abstract

T he aim of this thesis is to explore the capabilities of Machine Learning al-

gorithms in the task of electricity price forecasting. The focus is on the

Hungarian wholesale electricity market (HUPX), which is considered a benchmark

power exchange in the region of SE Europe. Taking advantage of the available do-

main expertise, a really extended dataset was built, consisting of 69 features. For

the scope of this paper, several traditional machine learning algorithms as well as

artificial neural networks were implemented, using some well-known python libraries

such as scikit-learn and keras.

Moving from traditional to more sophisticated methods, it turns out that per-

formance is constantly improving. Starting with a MAPE of 15% we managed to

get down to the levels of 6% MAPE, thanks to the contribution of artificial neural

networks, which proved their capabilities to effectively approximate a mapping func-

tion from input variables to output variable. In our effort to quantify the impact of

domain expertise on the shaping of the results, a sensitivity analysis was performed,

which confirmed the significant contribution of each feature category to improving

the performance of the algorithms.

Finally, taking into account the results of other price forecasting studies in the

Balkan markets, HUPX is concluded to be the most predictable power exchange,

which is probably explained by the greater maturity of this power market.
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Chapter 1

Introduction

Electricity price forecasting (EPF) is a branch of energy forecasting which focuses

on predicting the spot and forward prices in wholesale electricity markets. Since the

inception of competitive power markets two decades ago, electricity price forecasting

has gradually become a fundamental process for energy companies’ decision making

mechanisms. Furthermore, the recent penetration of renewables has had the effect of

increasing the uncertainty of future supply, demand and prices. All parties involved

in the electric industry have come to understand that probabilistic electricity price

forecasting is now more important for energy systems planning and operations than

ever before. The field of machine learning has developed considerably in recent

years, indicating able to bring satisfactory results in tasks such as electricity price

forecasting.

1.1 Domain background

Since the early 1990’s, the process of deregulation and the introduction of com-

petitive markets have been reshaping the landscape of the traditionally monopolistic

and government-controlled power sectors. In many countries worldwide, electricity

is nowadays traded under market rules using spot and derivative contracts. How-

ever, electricity remains a very special commodity. It is economically non-storable,

and power system stability requires a constant balance between production and

consumption.
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1.1 : Domain background

Figure 1.1: Power system stability requires a constant balance between production and
consumption

At the same time, electricity demand depends on weather (temperature, wind

speed, precipitation, etc.) and the intensity of business and everyday activities

(on-peak vs. off-peak hours, weekdays vs. weekends, holidays and near-holidays,

etc.). These unique and specific characteristics lead to price dynamics not observed

in any other market, exhibiting seasonality at the daily, weekly and annual levels,

and abrupt, short-lived and generally unanticipated price spikes. This has encour-

aged researchers to intensify their efforts in the development of better forecasting

techniques.

At the corporate level, electricity price forecasts have become a fundamental

input to energy companies’ decision making mechanisms. As the California crisis of

2000–2001 [2] showed, electric utilities are the most vulnerable, since they generally

cannot pass their costs on to the retail consumers. Extreme price volatility, which

can be up to two orders of magnitude higher than that of any other commodity

or financial asset, has forced market participants to hedge not only against volume

risk but also a against price movements. Price forecasts from a few hours to a few

months ahead have become of particular interest to power portfolio managers. A

generator, utility company or large industrial consumer who is able to forecast the

volatile wholesale prices with a reasonable level of accuracy can adjust its bidding

- 2 -



Chapter 1 : Introduction

strategy and its own production or consumption schedule in order to reduce the risk

or maximise the profits in day-ahead trading.

1.2 Problem description

Electricity price forecasting focuses on predicting the spot and forward prices in

wholesale electricity markets. The problem to be studied in this thesis is to forecast

the hourly day-ahead market clearing price of the Hungarian wholesale electricity

market, which is announced every day at the Hungarian Power Exchange (HUPX)

[3]. HUPX is considered a benchmark power market in the region of SE Europe.

Being the oldest one, it is the most mature market providing participants with

adequate liquidity on a daily basis. All active traders in the Balkan region try every

day to predict the HUPX price in the best possible way.

Figure 1.2: Hungarian hourly spot price in EUR/MWh

Both traditional machine learning (e.g. regression trees) and more sophisticated

deep-learning algorithms are utilized to establish a forecasting model for wholesale

electricity prices with respect to the Hungarian power market on an hourly ba-

sis. The study is interested in highlighting how prediction accuracy improves as

we move from traditional algorithms to more complex ones and to inform and en-

courage future ML-based methods. As a policy tool, such models could be used by

energy traders, transmission system operators and energy regulators for an enhanced
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1.3 : Thesis structure

decision-making process.

1.3 Thesis structure

In the next chapter, after giving some machine learning background, we present

the several methods that have been tried for EPF, while extensive reference is made

to studies that explore the capabilities of machine learning algorithms in the task

of electricity price forecasting.

In Chapter 3 the several dataset components are presented. Specific explanations

are provided regarding the feature selection. More specifically 7 categories of features

are used, which includes 69 features in total.

In the fourth chapter several experimental runs and the respective results are

presented, after being applied to the HUPX electricity price forecasting task. It turns

out that moving from traditional to more sophisticated methods, an increasingly

better performance is achieved.

Chapter 5 includes on the one hand the conclusions of this work and on the other

hand various thoughts for possible extensions.

- 4 -



Chapter 2

Electricity Price Forecasting

2.1 Machine Learning Background

The task of predicting electricity prices belongs to supervised learning, as the

training set we feed into the algorithm includes the desired solutions, called labels.

Our goal is to predict a numerical target value, such as the value of electricity

in HUPX, given a set of features called predictors. This type of work is called

regression. To train the system, we must give it many examples, including their

predictors and labels.

In this chapter our objective is to present the several algorithms to be used for the

task of electricity price forecasting. In section 2.1.1 we describe the characteristics

of some of the most popular machine learning algorithms, which are considered

sufficient to meet the requirements of a regression task. In section 2.1.2, the most

powerful ensemble machine learning algorithms are presented, which are promising

as they have been proven effective in a wide range of tasks. In section 2.1.3 the

characteristics of Artificial neural networks (ANNs) are given, which are at the very

core of Deep Learning. Being powerful they are good at scaling up with samples

and at fitting non-linearities in the data.
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2.1 : Machine Learning Background

2.1.1 Traditional Machine Learning Algorithms

Regression algorithms belong to the family of supervised machine learning algo-

rithms which is a subset of machine learning algorithms. One of the main features

of supervised learning algorithms is that they model the dependencies and relation-

ships between the target output and the input features to predict the value for new

data. Regression algorithms predict output values based on input characteristics

from the data fed into the system. According to the prevailing methodology, a

model is built by an algorithm using the training data features and then the model

is used for predictions on unseen data.

Some of the popular types of regression algorithms are linear regression, decision

trees, support vector machines and nearest neighbors.

2.1.1.1 Linear Models

The models presented in this section are a set of algorithms intended for regression

in which the target variable is expected to be a linear combination of the features.

The mathematical notation, if ŷ is the predicted value, is:

ŷ(w, x) = w0 + w1x1 + ...+ wpxp

The vector w = (w1, ..., wp) is designated as coefficient and w0 as intercept.

Linear Regression

Linear regression is a statistical approach that enables studying the relationships

between continuous variables. It is a linear model that assumes a linear relationship

between the input variables (X) and the single output variable (y). Here y can be

calculated from a linear combination of input variables (X). When there is an input

variable (x), the method is called simple linear regression. When there are many

input variables, the process is referred to as multiple linear regression.

In order to minimize the residual sum of squares between the observed targets in

the dataset and the targets predicted by the linear approximation, linear regression
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Chapter 2 : Electricity Price Forecasting

fits a linear model with coefficients w = (w1, ..., wp). The mathematical expression

of the problem to be solved is:

minw ||Xw − y||22

Ridge Regression

Some of the problems of Ordinary Least Squares are addressed by using Ridge

regression, which imposes a penalty on the coefficients size. The target is the mini-

mization of a penalized residual sum of squares by the ridge coefficients:

minw ||Xw − y||22 + α||w||22

The amount of shrinkage is controlled by the complexity parameter α ≥ 0: as the

value of α gets larger, the amount of shrinkage gets greater as well and so the

coefficients’ robustness to collinearity increases.

Figure 2.1: Ridge coefficients as a function of the regularization

Lasso

Least Absolute Selection Shrinkage Operator or LASSO algorithm has a con-

straint on parameters for defining the shrinkage. In order to obtain the subset of

predictors that minimizes prediction error for a quantitative response variable, the
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2.1 : Machine Learning Background

algorithm imposes a constraint on the model parameters. As a result, the regression

coefficients for some variables shrink to zero.

After the shrinkage process, variables with a regression coefficient equal to zero

are excluded from the model. The response variable is finally most strongly as-

sociated with Variables with non-zero regression coefficients. This lasso regression

analysis, being a shrinkage and variable selection method, helps analysts to deter-

mine which of the predictors are most important.

Mathematically, a regularization term is added to a linear model to constitute

LASSO model. The objective function for the minimization is as follows:

minw
1

2nsamples
||Xw − y||22 + α||w||1

The lasso estimate thus solves the minimization of the least-squares penalty with

α||w||1 added, where α is a constant and ||w||1 is the `1-norm of the coefficient vector

[4].

Elastic-Net

ElasticNet belongs to linear regression models. Its training is performed with

both `1 and `2-norm regularization of the coefficients. As a result, a sparse model

is learned, where few of the weights are non-zero (like in Lasso case), while still

maintaining the regularization properties of Ridge. The convex combination of `1

and `2 is controlled using the l1 ratio parameter.

In case of multiple features which are correlated each other, Elastic-net is proved

really useful. While Lasso is likely to pick one of these at random, elastic-net will

possibly pick both. An advantage of trading-off between Ridge and Lasso is that it

allows Elastic-Net to inherit some of Ridge stability under rotation.

The objective function to minimize is in this case:

minw
1

2nsamples
||Xw − y||22 + αρ||w||1 + α(1−ρ)

2
||w||22

Due to the fact that Lasso behaves often erratically when several features are

strongly correlated or when the number of features is greater than the number of

training examples, Elastic-net is preferred in general over Lasso.
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Chapter 2 : Electricity Price Forecasting

Figure 2.2: Lasso and Elastic-Net paths

2.1.1.2 Decision Trees

Used mainly for regression and classification, Decision Trees are a non-parametric

supervised learning algorithm. The target is to build a model that make predictions

of the value of a target variable by learning simple decision rules derived from the

data features. As the tree gets deeper, the decision rules become more complex and

the model better fits.

The use of decision trees implies several advantages. Compared to other algo-

rithms decision trees require little data preparation, while it is considered relatively

simple to understand and to interpret them. Furthermore, the cost of using the tree

is logarithmic in the number of data points used to train the tree. Moreover, deci-

sion trees have capabilities not only to handle both numerical and categorical data

but also to manage effectively multi-output problems. On the other hand, overfit-

ting lurks in the corner when creating over-complex trees that do not generalise the

data well. There are nevertheless solutions such as pruning, which sets either the

minimum samples required at a leaf node or the maximum tree’s depth in order to

avoid this problem. Small variations in the data might result in the development of

a completely different tree, while they may create biased trees especially in case of

- 9 -



2.1 : Machine Learning Background

presence of dominant classes. Hence, balancing the dataset prior to fitting with the

decision tree is highly recommended.

Figure 2.3: Decision Tree Regression

2.1.1.3 Nearest Neighbors

Nearest neighbor methods have the objective to find a predetermined number of

training samples closer to the new point and predict the label from them. The num-

ber of samples can be defined by the user (k-nearest neighbor learning), or may vary

based on the local density of points (radius-based neighbor learning). For defining

the distance, any metric measure can be used, with standard Euclidean distance

being the most common option. Neighbors-based algorithms simply “remember”

all of its training instances, that is why they are well known as non-generalizing

machine learning methods.

Two different neighbors regressors are being implemented by scikit-learn: Us-

ing KNeighborsRegressor, the user specifies an integer k and then the learning

process is based on the k nearest neighbors of each query point. Using Radius-

NeighborsRegressor, the user defines a floating-point value to a variable r and

then learning is based on the nearest neighbors within a fixed radius r of the query

- 10 -



Chapter 2 : Electricity Price Forecasting

point.

Uniform weights are used by the basic nearest neighbors regression. This means

that each point in the local neighbourhood contributes uniformly to the classification

of a query point. In some cases, it may be advantageous to weight points such

that nearby points contribute more to the regression than faraway points. This

can be achieved through the weights keyword. The default value, weights =

“uniform”, assigns equal weights to all points. weights = “distance” assigns

weights depending on the inverse of the distance from the query point. Alternatively,

a user-defined function of the distance may be provided, which will be used to

calculate the weights.

Figure 2.4: Changing value of the ”weights” parameter in the KNeighborsRegressor

2.1.1.4 Support Vector Machines

A Support Vector Machine (SVM) is a powerful and flexible machine learning model.

It is widely used for performing linear or nonlinear classification, regression and

outlier detection.

Use of support vector machines has many advantages, since SVM are effective in

high dimensional spaces and also effective in cases where number of dimensions is

- 11 -



2.1 : Machine Learning Background

greater than the number of samples. SVM method uses a subset of training points

in the decision function (called support vectors), so it is also memory efficient.

Moreover, they are versatile, since different Kernel functions can be specified for the

decision function.

Support Vector Regression, retaining all the significant properties from Support

Vector Machines, attempts to find a curve given data points. In SVR, a match is

found between some vector and the position on the curve, unlike the classification

problem where having the curve act as a decision boundary. Support vectors are

also involved in finding the closest match between the data points and the actual

function they represent. Intuitively, maximizing the distance between the regressed

curve and the support vectors, we get closer to the real curve (we consider always

some noise present in the statistical samples).

For the needs of our study, SVR library is used from scikit-learn. The SVR

implementation in scikit-learn has a parameter, epsilon, that controls the loss func-

tion. Quoting from the documentation, “it specifies the epsilon-tube within which

no penalty is associated in the training loss function with points predicted within a

distance epsilon from the actual value.”

2.1.1.5 Gaussian Processes

Gaussian Processes (GP), being a generic supervised learning method, have been

designed to address regression and probabilistic classification problems.

Gaussian processes have the following advantages:

• The forecast is probabilistic (Gaussian) so that one can calculate empirical

confidence intervals and make decisions based on those if one should redefine

the prediction in some area of interest.

• The prediction interpolates the observations.

• They are versatile, given that different kernels can be specified.

The disadvantages of GPs are:
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Chapter 2 : Electricity Price Forecasting

• They are not sparse, meaning that in order to perform the prediction they use

the whole samples/features information.

• In high dimensional spaces they lose efficiency, mainly when the number of

features exceeds a few dozen.

The GaussianProcessRegressor from scikit-learn implements Gaussian processes

(GP) for regression purposes.

2.1.2 Ensemble Machine Learning Algorithms

Combining the predictions of several basic estimators which are built with a given

learning algorithm, ensemble methods have the target to improve generalizability /

robustness compared to a single estimator.

There are usually two sets of ensemble methods:

• In averaging methods, the basic principle is to create different estimators in-

dependently and then take the average of their predictions. It turns out that

the variance of the combined estimator is reduced, hence its performance is

usually better than any of the single base estimator. Forests of randomized

trees and Bagging methods are examples of averaging methods.

• In boosting methods, a sequential building of the base estimators is followed.

Each of them tries to reduce the bias of the combined estimator. According to

this approach, a powerful ensemble method is produced by combining several

weak models. AdaBoost and Gradient Tree Boosting are examples of boosting

methods.

In our exercise, we make use of Random Forest, AdaBoost and Gradient Boost-

ing.

A Random Forest, being a meta estimator, fits a number of decision trees in

different sub-sets of the dataset and then uses averaging in order to control over-

fitting and improve the accuracy of the predictions. An AdaBoost regressor is a

meta-estimator that firstly fits a regressor on the original dataset. As a second step,

- 13 -



2.1 : Machine Learning Background

AdaBoost fits additional copies of the regressor on the same dataset, in which the

weights of instances are modified according to the current prediction error. Hence,

next regressors focus more on difficult cases. Gradient Boosting, being an additive

model in a forward stage-wise fashion, allows for the arbitrary differentiable loss

functions to be optimized. Each stage includes a regression tree which is fit on the

negative gradient of the given loss function.

2.1.3 Deep Learning Algorithms

Artificial Neural Networks (ANNs) are at the core of Deep Learning. Being powerful,

versatile and scalable, they are ideal to tackle large and complex Machine Learning

tasks such as classifying millions of images (e.g. Google Images [5]), providing speech

recognition services (e.g. Apple’s Siri [6]), recommending to hundreds of millions of

users the best videos to watch on a daily basis (e.g. Youtube) or learning to beat

the world champion in the Go game (DeepMind’s AlphaGo [7]).

Deep learning neural networks have several interesting capabilities, since they

can support multiple inputs and outputs and automatically learn arbitrary complex

mappings from inputs to outputs. Such powerful features sounds a lot of promising

for time series predictions, especially on tasks with complex nonlinear dependencies,

multivariate inputs and forecasting with multiple steps. These features together with

the capabilities of state-of-the-art neural networks may offer great expectations such

as the native support for sequence data provided by recurrent neural networks and

the automatic feature learning in convolutional neural networks.

The Multilayer Perceptron or MLP is an artificial neural network and its job is

to approximate a mapping function from input variables to output variables. This

general ability is valuable for time series tasks for several reasons:

• Robust to Noise: ANNs show robustness to noise in the mapping function

and in input data and even in the presence of missing values they can support

learning and prediction.

• Nonlinear: ANNs do not make strong assumptions about the mapping function

and easily learn linear and non-linear relationships.
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More specifically, ANNs can provide direct support to multivariate inputs,

since they can be configured to effectively approximate an arbitrary defined but

fixed number of inputs and outputs in the mapping function. Specifying an arbi-

trary number of input features, they provide direct support for multivariate fore-

casting. They also support multi-step forecasts. An arbitrary number of output

values can be specified, providing direct support for multi-step and even multivari-

ate forecasting. For all these capabilities, feedforward neural networks are useful for

time-series forecasting.

2.2 Electricity Price Forecasting in Literature

A variety of methods and ideas have been tried for Electricity Price Forecasting

over the last 15 years, with varying degrees of success. They can be broadly classified

into six groups.

• Multi-agent models: Multi-agent models simulate the operation of a system

with heterogeneous agents (generating units, retail companies), who interact

with each other. These models approach the price process by matching the

supply and demand in the market [8]. This class includes equilibrium or game

theoretic approaches (like the Nash-Cournot framework, supply function equi-

librium), cost-based models and agent-based models. In general, multi-agent

models focus less on quantitative results rather than on qualitative issues.

They pose problems if more quantitative conclusions have to be drawn, espe-

cially if electricity prices need to be predicted with a high degree of accuracy.

In the Nash-Cournot framework, electricity is treated as a homogeneous

commodity and the balance of the market is determined through the capacity

determination decisions of the suppliers. Unfortunately, these models tend to

provide prices higher than are actually observed. By introducing the concept

of conjectural variations, researchers have addressed this problem. This idea

aims to capture the fact that rivals react to high electricity prices by increasing

their production. The results show that the expected values of prices increase

by a significant amount, as the number of firms in the market decreases.
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2.2 : Electricity Price Forecasting in Literature

Supply function equilibrium method performs the price modelling as the

equilibrium of companies bidding with supply curves (and possibly demand

curves) into the wholesale market. A set of differential equations need to be

solved for the calculation of the supply function equilibrium or SFE. Thus,

these models have significant limitations regarding their numerical detectabil-

ity. One way to make faster computations is to aggregate the demand into

blocks. But this method would leave out of the analysis the extreme values,

which is considered not acceptable when focusing on electricity price forecast-

ing or risk management. Moreover, only if the demand uncertainty, or another

source of uncertainty, leads to an ex-ante undetermined equilibrium, then the

supply curve bidding will lead to results which differ from the Nash-Cournot

equilibrium. Otherwise, the supply bidding collapses to a point, which cor-

responds to the Nash-Cournot equilibrium. Linear SFE models have been

proposed so far, aiming to reduce the numerical complexity of the general

SFE models. In such models, demand and marginal costs are expected to

be linear, while the SFE can be obtained either in terms of linear or affine

supply functions. All market participants receive the marginal clearing price

for their supply. Under such market clearing conditions, the social welfare is

maximized as long as there is no transmission congestion, since the supply

functions are non-decreasing and the price that clears the market is identical

for all companies. This framework has limited application to electricity price

forecasting, but on the contrary it has been widely used for the analysis of

bidding strategies, market design, market power and congestion management.

In case of strategic production-cost model or SPCM, agents’ bidding

strategies are taken into account based on conjectural variation. Each producer

seeks to maximize its profits, taking into account on one hand the structure

of its cost and on the other hand the expected behavior of the other market

players, which is modelled through a parameter that represents the slope of

the residual demand function for each level of the production. During the sim-

ulation of the supply curve building process, the SPCM makes the assumption

that the agent is simply aware of its cost and its conjecture about the deriva-
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tive of its residual demand function. As there are no iterations, companies

do not have the opportunity to improve their bids and take into account the

reactions of their competitors, as in the case of SFE models. SPCM is suitable

for real-time analysis, because its main advantage is its computational speed,

in comparison to the Nash-Cournot and SFE models.

In energy economics, agent-based computational economics (ACE) has proved

to be a widely used approach to solving both practical and theoretical tasks

over the last two decades. A class of computational rules and structures is

the basic tool of ACE, so as the interactions of autonomous agents (either

individuals or groups/organizations) to be simulated, with the ultimate goal

being to assess their impact on the whole system.

Multi-agent models are considered, on the one hand, a class of extremely flex-

ible tools for analyzing strategic behavior in electricity markets. This freedom

is also a weakness, on the other hand, as it requires the simulation assump-

tions to be justified, both empirically and theoretically. Some elements need

to be defined, such as the players, the way in which they interact, their poten-

tial strategies and the set of payoffs. Apparently, there is a significant risk of

modelling.

• Fundamental models: Fundamental methods aim to capture the basic phys-

ical and economic relationships that exist in the trading and production of

electricity [9]. Functional correlations among fundamental drivers (load, sys-

tem parameters, weather data, etc.) are supported and fundamental inputs are

formulated and predicted independently, often through computational intel-

ligence, statistical or reduced-form techniques. In general, two subcategories

of fundamental models can be identified: parsimonious structural models

and parameter rich models of demand and supply.

Two important challenges arise in the practical application of fundamental

models. Data availability is the first challenge. Depending on the mar-

ket, more or less information (e.g. plant capacities, costs, demand patterns,

transmission capacities, etc.) is available to the researcher or professional to

- 17 -



2.2 : Electricity Price Forecasting in Literature

build such a model. Due to the nature of fundamental data, pure fundamen-

tal models are more suitable for medium-term forecasts than short-term ones.

This also applies to the parsimonious structural models, which are usually

calibrated to daily data ignoring the fine relationships with hourly resolution.

In general, their application is limited to derivatives pricing and risk man-

agement. Incorporation of stochastic fluctuations of the fundamental

drivers is the second challenge. During the construction of the model, spe-

cific assumptions are made about the physical and economic relationships in

the market, and therefore the price forecasts produced by the models are very

sensitive to violations of these assumptions. In addition, the more detailed the

model, the more effort is required to adjust the parameters. Consequently, in

the application of the fundamental approach there is a significant modelling

risk.

• Reduced-form models: The statistical properties of electricity prices over

time are characterized by the reduced-form models, which have as ultimate

goal the risk management and the valuation of derivatives. [10].

A common characteristic of the finance-inspired reduced form models of price

dynamics is that their main purpose is not to provide accurate price forecasts

on a hourly basis, but rather to reproduce the main features of daily electricity

prices, such as marginal distributions in future time points, price dynamics,

and correlations between commodity prices. Such models are at the core of

risk management and derivatives pricing systems. It is very possible to have

unreliable model results, if the selected pricing procedure is not suitable for

capturing the main features of electricity prices. At the same time, if the com-

plexity of the model is too high, then the computational burden will inevitably

prevent its use in trading departments. On the one hand, the tools used are

rooted in methods developed to model other energy products or interest rates.

On the other hand, they incorporate actuarial or econometric approaches. It

can be said that the Markov regime-switching models and the jump-diffusion

models are able to combine the two worlds: in order to capture the unique

characteristics of electricity prices, they are trade-offs between model adequacy
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and parsimony.

In general, reduced-form models are not expected to accurately predict hourly

prices, but are expected to recover the main features of spot electricity prices,

usually on a daily time scale. They are commonly used for risk analysis and

derivatives pricing, providing a simplified but reasonably realistic picture of

price dynamics. Interestingly, in terms of forecasts of volatility or price spikes,

the reduced form models have been reported to perform quite well.

• Statistical models: Statistical methods predict the current prices using a

mathematical combination of the previous prices and values of exogenous fac-

tors, such as consumption, production or weather data. [1]. Statistical models

allow engineers and system operators to understand their behavior, because

some physical interpretation can be attached to their components. Criticism

is frequently exercised for their poor performance to adequately represent the

usual non-linear behavior of electricity prices and related fundamental vari-

ables. However, in practical applications, their accuracy is comparable to that

of non-linear alternatives.

Additive and multiplicative models are the two most important categories.

In case of additive models, the predicted price is the sum of a number of

components, while multiplicative models calculate the predicted price as the

product of some factors. Additive models are much more popular, although

the two types of models are closely related, because a multiplicative model for

prices can be converted to an additive model for log-prices.

Statistical methods include similar-day and exponential smoothing mod-

els, regression models, threshold autoregressive models, AR-type

time series models, ARX-type time series models and heteroskedas-

ticity and GARCH-type models.

Statistical models are often classified by some authors as technical analysis

tools. Technical analysts do not try to estimate an asset’s intrinsic or funda-

mental value. Instead, looking at price charts for indicators and patterns, they

will determine the future performance of an asset. In financial markets, the

- 19 -



2.2 : Electricity Price Forecasting in Literature

effectiveness and usefulness of technical analysis is frequently questioned, but

in electricity markets is more likely to have a better chance, due to the sea-

sonality of electricity price processes during normal, non-spiky periods. When

trying to predict spikes, however, statistical methods have a rather poor per-

formance. This applies mainly to price-only models, but even models with

fundamental variables do not perform well. In the literature it is not clear if

price spikes need to be part of the estimation procedure of statistical mod-

els, although there is no doubt that price spikes should be captured using an

appropriate stochastic model.

• Computational intelligence (CI) models: Computational intelligence tech-

niques include artificial intelligence-based, machine learning, non-parametric

or non-linear statistical methods. These techniques, combining elements of

learning, fuzziness and evolution, are regarded as ”intelligent” because they

are able to adapt to complex dynamic systems. Artificial neural networks [11],

support vector machines (SVM) and fuzzy systems are undoubtedly the main

categories of computational intelligence techniques in the task of electricity

price forecasting.

The ability of computational intelligence methods to handle non-linearity and

complexity proves to be their major strength. Hence, CI methods are better

than the statistical techniques at modelling these features of electricity prices.

This flexibility is also, at the same time, their main weakness. Being able to

adapt to nonlinear, spiky behaviors does not necessarily lead to better point

forecasts. In addition, all the available CI tools are so diverse that it is difficult

to find an optimal solution. Moreover, it is difficult to compare the various

CI methods in detail. Even if the forecasting accuracy is reported for the

same test period and the same market, the errors of the individual techniques

are not really comparable, and therefore they cannot be used to make general

statements about the effectiveness of a method. Instead, conclusions can only

be drawn for the performance of a specific implementation of a method, with

certain parameters and for a given calibration dataset. Although this criticism

is not limited to CI methods, in their case it is especially true due to their
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multiparameter specifications and their non-linearity.

• Hybrid models: It is very common in the literature to meet hybrid solutions

trying to approach the task of electricity price forecasting. Such approaches

combine techniques from two or more of the methods listed above, while their

classification is non-trivial, if possible at all. As an example of hybrid model,

AleaModel (developed by AleaSoft) combines Neural Networks and Box Jenk-

ins models [12].

Figure 2.5: A taxonomy of electricity price forecasting and modeling approaches accord-
ing to Weron [1]

2.3 ML in Electricity Price Forecasting

According to [1], statistical and machine learning methods have been shown to

work best in the task of electricity price forecasting. A disadvantage of statisti-

cal models is that they are usually linear forecasters, and therefore, they may not

perform well in data where the frequency is high, e.g. hourly data with rapid fluc-

tuations. According to [13], while statistical techniques show good performance if
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the data frequency is low, e.g. weekly patterns, the nonlinear behavior of hourly

prices can become too complex to predict. Different machine learning methods have

been proposed, in order to address this issue and predict the nonlinear behavior of

hourly prices. The academic literature includes a large collection of machine learn-

ing approaches, from more traditional to more sophisticated techniques, while often

combining two or more methods to produce a hybrid model. It turns out that more

complicated algorithms (e.g. deep learning methods) achieve usually better perfor-

mance compared to classic ML techniques, which in turn are proved more effective

than the statistical methods.

Support Vector Machines (SVMs) belong to traditional ML algorithms, which

are quite popular to researchers, who often test their effectiveness in the task of

electricity price forecasting. In [14], a hybrid model is proposed that combines

both auto-regressive integrated moving average (ARIMA) and SVR models to take

advantage of the unique power of ARIMA and SVR models in linear and nonlinear

modelling. SVR is used to capture non-linear patterns. The experimental results

show that the proposed model outperforms the traditional ARIMA models based

on the mean absolute percentage error. [15] proposes a method for short-term

electricity price forecasting based on a two-stage hybrid network of support-vector

machine (SVM) and self-organised map (SOM). In the first step, the input data are

grouped into multiple subsets in an unsupervised manner, using a SOM network.

Then in the second stage, a group of SVMs is used to fit the training data of each

subset in a supervised way. To confirm its effectiveness, the proposed model was

trained and tested on historical energy price data from the New England electricity

market.

Over the last few years, emphasis has been placed on the use of artificial neural

networks (ANNs), exploring their potential for better electricity price forecasting.

Researchers often combine different architectures in order to achieve the optimal

result. [16] proposed an Enhanced Radial Basis Function Network (ERBFN), which

combines the Radial Basis Function Network (RBFN) and Orthogonal Experimen-

tal Design (OED), applied in the PJM area of United States. By applying OED

to ERBFN learning rates, the prediction error can be reduced during the training
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process to improve both accuracy and reliability. This would mean that even the

“spikes” could be closely monitored. The simulation results showed the effectiveness

of the proposed ERBFN for providing quality information in a volatile price environ-

ment. In [17], a hybrid model for short-term electricity price forecasting is proposed,

based on modified wavelet neural network (WNN) and singular spectrum analysis

(SSA). The proposed algorithm optimizes the initial weights and the parameters of

dilation and translation in WNN, while for the evaluation of the method case stud-

ies of half-hourly electricity price data are applied. [18] proposes an electricity price

forecasting approach, combining two deep neural networks, the Long Short-Term

Memory (LSTM) and the Convolutional Neural Network (CNN). The results of the

experiments showed that compared to other traditional machine learning methods

(e.g. SVM, DT, RF), the performance of the model’s prediction proves to be bet-

ter. More specifically, the proposed algorithm achieved MAE 8.85, while DT and RF

achieved MAE 9.74 and 9.20 respectively. The paper uses PJM Zone data to perform

the training of the model. In [19], LSTM with the differential evolution (DE) algo-

rithm, which is designated as DE-LSTM, is used to predict electricity prices. DE is

designed to identify suitable hyperparameters for LSTM. Experiments are performed

to verify the performance of the DE–LSTM model, building the necessary datasets

with the electricity prices in New South Wales, France. and Germany/Austria. Re-

sults indicate that the proposed DE–LSTM model outperforms both statistical and

other ANN methods. The proposed algorithm achieves MAPE of 9.52%, while its

competitors, BPNN and SVM, achieve MAPE of 14.94% and 12.09% respectively.

In [20], different deep learning models are proposed for predicting electricity prices,

leading to improvements in predictive accuracy. Deep learning forecasters include

the deep neural network (DNN), the LSTM and the gated recurrent unit (GRU). All

of them are shown to achieve a predictive accuracy that is statistically significantly

better than traditional models. The empirical study is being conducted in the day-

ahead market of Belgium. The proposed architectures outperform the statistical

methods (MAPE>15%) achieving a MAPE of 12-13%.

In the region of SE Europe, there are not many studies that have been performed

to explore the effectiveness of machine learning algorithms in the task of electricity
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price forecasting. In [21], 24-hours ahead forecasting of the electricity price in the

newly established power exchanges of SE Europe is performed, using simple artificial

neural networks. The study focuses on the Bulgarian, Croatian and Serbian power

markets. The results show that among the three neighboring markets, the price in

Bulgarian power exchange is the most unpredictable one (MAPE 21%), while the

price in the Serbian power exchange is the most predictable one (MAPE 9.28%).

The price in the Croatian power exchange is in the middle, achieving a MAPE of

17%.
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Data Analysis and Input Variable

Selection

Our goal is to build a really extended dataset, taking advantage of the available

domain expertise. We aim to include every possible driver behind the formulation

of the HUPX electricty price. In general, day-ahead electricity prices are affected

by fuel prices, level of consumption, production level of renewables (mainly photo-

voltaics and wind energy), availability of conventional units (e.g. nuclear plants,

CCGTs), available capacity in neighboring interconnections and fundamentals of

nearby electric systems. The final dataset includes seven feature categories which

have 69 features in total. The usual drivers that are used in similar studies in-

clude mainly consumption and RES production data. Therefore, we expect that the

more sophisticated content of our dataset will contribute to the performance of the

forecasts.

3.1 Target Variable

Our target variable is the Hungarian electricity spot price in euros per MWh

(EUR/MWh), as announced on a daily basis from the Hungarian Power Exchange

[3]. The study period is from January 1st, 2019 to June 30th, 2020. The follow-

ing table give us some descriptive statistics, that summarize the central tendency,

dispersion and shape of the target variable’s distribution.
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Count 13128

mean 44.77

standard deviation 19.45

min -8.12

25th percentile 31.85

50th percentile 42.30

75th percentile 56.22

max 138.82

Table 3.1: Target variable descriptive statistics

The boxplot below give us some further statistical information regarding the

Hungarian wholesale electricity price. The horizontal axis is the hour of the day,

while the vertical one is the electricity price in EUR/MWh. As can be seen, during

off-peak hours (hours 1-7) prices are usually lower, while during peak-hours prices

are not only higher but also more volatile.

Figure 3.1: Boxplot: HUPX spot price per hour of a day

Apart from their volatility during the day, electricity prices are also sensitive to

other factors, like the electricity demand, which is usually higher during summer and

winter months. The heatmap that follows presents the hourly average spot price in

HUPX for each of the 18 months of the study period, starting from January 2019.
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Figure 3.2: Heatmap: Hourly Average HUPX spot price per month

3.2 Input Variables

Variable selection is a very important topic in the electricity price forecasting.

There are a lot of factors that have, more or less, impact on the electricity price. The

wholesale price of electricity is affected by other prices (e.g. gas price, carbon price),

the seasonality in consumption, the level of production of the several technologies

(e.g. RES, nuclear) and the available capacity in the interconnections with the

neighbouring countries.

Figure 3.3: Electricity generation by source, Hungary 1990-2019 (Source: IEA)

In Hungary, the electricity production remained stable in recent years at around

30 TWh per year, mainly based on nuclear energy, which provides approximately

half of the electricity produced in the country. The generation from gas and coal

follows it in importance. In 2019, almost 90% of all the electricity generated was
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produced by these three technologies.

On the other hand, despite representing only 2.5% of the total production of

the year 2019, it is worth noting the rapid increase in recent years in solar energy

genaration.

Figure 3.4: Solar PV electricity generation, Hungary 2007-2019 (Source: IEA)

Hungary’s electricity demand increased by 4.0% in the last four years, from 41.8

TWh in 2016 to 43.5 TWh in 2019. However, the country’s electricity production

is enough to cover up to 75% of its electricity demand. This places Hungary as a

major importer of electricity to cover a very significant part of its demand.

Figure 3.5: Electricity consumption, Hungary 1990-2019 (Source: IEA)

In 2019 Hungary imported 12.7 TWh more of electricity than it exported. The

electricity imports of Hungary mainly came from Slovakia, Austria and Ukraine,

which contributed 45%, 32% and 20%, respectively, to the 19.5 TWh of electricity
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imported that year. In contrast, Croatia, Romania and Serbia received 61%, 28%

and 11%, respectively, of Hungary’s electricity exports.

In this study, we have chosen seven categories of features, each of which has

several variables that can contribute to the forecast of the target variable. Most

of the data are available on the website of the European Network of Transmission

System Operators for Electricity (ENTSO-E)[22]. In the table 3.2, the several types

of features are presented.

Feature category Number of
features

General 2

Prices 2

Consumption 9

Residual Load 6

Production 8

Cross-border HU 14

Cross-border 28

Table 3.2: Feature Categories
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3.2.1 “General” feature category

The “General” feature category includes 2 features:

• Weekday: This feature represents the day of the week and takes values from

1 (for Sunday) to 7 (for Saturday).

• Hour: This feature represents the hour of the day and takes values from 1 to

24. The relative timezone is the Central European Time (CET).

The figure below shows that during Saturday and Sunday we usually have lower

prices in the Hungarian wholesale electricity market.

Figure 3.6: HUPX spot price (EUR/MWh) per hour and per weekday

3.2.2 “Prices” feature category

The “Prices” feature category includes 2 features:

• TTF: This feature represents the TTF price, which reflects the cost of the

gas-fired power plants in the whole Europe. TTF is a virtual trading point
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for natural gas in the Netherlands. Such an enormous volume of gas is traded

using TTF that it has become a benchmark hub for gas prices in Europe. Even

the rest of the world keeps a close eye on what is happening at TTF. Twice as

much gas is traded through the TTF hub as on all other continental European

gas trading platforms combined. Every single day, more than 100 gas traders

and financial parties can be found buying and selling large volumes of gas on

this virtual exchange. Gas at TTF trades in euros per megawatt hour, while

data are available on the website of ICE Exchange[23].

Figure 3.7: Evolution of TTF price

• EUA: EU Allowances (EUA) are climate credits (or carbon credits) used in the

European Union Emissions Trading Scheme (EU ETS)[24]. EU Allowances are

issued by the EU Member States into Member State Registry accounts. By

April 30 of each year, operators of installations covered by the EU ETS must

surrender an EU Allowance for each ton of CO2 emitted in the previous year.

The emission allowance is defined in Article 3(a) of the EU ETS Directive as

being “an allowance to emit one tonne of carbon dioxide equivalent during

a specified period, which shall be valid only for the purposes of meeting the

requirements of this Directive and shall be transferable in accordance with the

provisions of this Directive”. EUAs, that affect the cost of all the thermal

power-plants, are traded in euros per ton of CO2, while data are available on

the website of ICE Exchange[25].
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Figure 3.8: Evolution of EUA price

3.2.3 “Consumption” and “Residual Load” feature categories

The “Consumption” feature category is related to the electric load, which is con-

sidered among the main drivers that affect the formation of the electricity price.

Feature Description

HU - CON Hourly Load of Hungary

DE - CON Hourly Load of Germany

CZ - CON Hourly Load of Czech Republic

SK - CON Hourly Load of Slovakia

AT - CON Hourly Load of Austria

SI - CON Hourly Load of Slovakia

HR - CON Hourly Load of Croatia

RS - CON Hourly Load of Serbia

RO - CON Hourly Load of Romania

Table 3.3: “Consumption” feature category

This feature category includes 9 features, that corresponds to the consumption

of Hungary, Germany, Czech Republic, Slovakia, Austria, Slovenia, Croatia, Serbia

and Romania, as presented on Table 3.3.

It is considered as a common practice, in the daily business of the power markets,

for the TSOs to provide their view of the hourly System Load of the next day. Market

participants take this information into account in order to make their projections for

the day-ahead level of electricity prices. Load and electricity price have a positive
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correlation, as Figure 3.9 shows. Hourly Load is measured in MW, while all data

for this feature category are available on ENTSO-E website.

Figure 3.9: Correlation between HUPX price and Load

Residual load is an indicator in a power system. It shows how much capacity

is left for conventional power plants to operate. Traditionally, when Variable Re-

newable Energy (VRE) sources are small in scale compared to the demand load,

conventional power plants vary their power output in accordance with the demand

load curve. As the capacity of VRE grows, its power output begins to affect the load

balance of the power system. A new indicator was needed to describe the situation,

giving birth to this terminology. The first use of the term “residual load” probably

originates in a 2009 German study from Fraunhofer[26]. It used the German term

“residuale Last”. A common definition for residual load is “what is left after sub-

stracting those generators who have to produce electricity (must run) and those that

generate with (almost) no marginal costs (variable renewables like wind, solar and

hydro)”. Therefore, residual load (or residual demand) is defined as demand load

minus renewable power output.

The “Residual Load” feature category includes 6 features, that corresponds

to the residual demand of Germany, Czech Republic, Austria, Slovenia, Serbia and

Romania, as presented on Table 3.4.

- 33 -



3.2 : Input Variables

Feature Description

DE - RDL Residual Load of Germany

CZ - RDL Residual Load of Czech Republic

AT - RDL Residual Load of Austria

SI - RDL Residual Load of Slovakia

RS - RDL Residual Load of Serbia

RO - RDL Residual Load of Romania

Table 3.4: “Residual Load” feature category

3.2.4 “Production” feature category

In this feature category we include the production level of the most significant types

of power plants within the region of CEE and SEE. Their available capacity plays a

critical role in the formation of the wholesale electricity prices, not only at HUPX

but in the whole region.

The “Production” feature category includes 8 features, as presented on Table

3.5.

Feature Description

HU - NUC Nuclear generation in Hungary

HU - WND Wind generation in Hungary

CZ - NUC Nuclear generation in Czech Re-
public

AT - ROR RoR generation in Austria

HR - ROR RoR generation in Croatia

RS - ROR RoR generation in Serbia

RO - NUC Nuclear generation in Romania

RO - ROR RoR generation in Romania

Table 3.5: “Production” feature category

As can be seen in figure 3.10, critical technologies of the wider area differ in both

level of production and volatility. Data are available on the website of ENTSO-E[22].
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Figure 3.10: Electricity production of critical technologies in CEE and SEE

3.2.5 “Cross-border” features

Electricity interconnections are the physical links which allow the transfer of elec-

tricity across borders. Cross-border power trading is responsible for the flow of elec-

tricity from cheaper to more expensive countries. Therefore, the available capacity

of the interconnections plays a significant role in the formation of the wholesale

electricity prices.

Hungary has a lot of neighbouring countries (Slovakia, Ukraine, Romania, Serbia,

Croatia, Slovenia, Austria), hence it has a lot of electricity interconnections, as

depicted in Figure 3.11. For the task of HUPX price forecasting, it is crucial to take

into account the available capacity of all interconnections in the region of CEE and

SEE, that we consider that has impact on the price. For the purposes of this work,

we have considered two feature categories related to cross-border information.

The first cross-border feature category is called “Cross-border HU” and has

to do only with the Hungarian borders. That means it includes features that refer

to the hourly available capacity of the interconnections that connect Hungary with

Austria, Slovakia, Croatia, Serbia and Romania.
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Figure 3.11: Electricity Transmission System of Hungary

The second cross-border feature category is called “Cross-border” and is re-

lated to the interconnections of the wider area, excluding the Hungarian ones. It

includes information on the interconnections of the following borders:

• Germany - Czech Republic

• Austria - Czech Republic

• Poland - Czech Republic

• Slovakia - Czech Republic

• Germany - Austria

• Slovenia - Austria

• Italy - Austria

• Bulgaria - Serbia

• Bulgaria - Romania

• Croatia - Serbia

• Romania - Serbia
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Experimental Runs and Results

In this chapter we explore the performance of traditional machine learning, ensemble

machine learning and deep learning algorithms in the task of HUPX electricity price

forecasting. In addition, a sensitivity analysis is performed in order to examine the

effect of individual features on the final result.

4.1 Implementation issues

Scikit-learn is used extensively in our study for the development of the several

models and the implementation of the experiments. It is the most useful library for

ML in Python, containing a lot of efficient tools for ML and statistical modeling

including classification, regression, clustering and dimensionality reduction.

Algorithm Function

Linear Regression sklearn.linear_model.LinearRegression

Ridge sklearn.linear_model.Ridge

Lasso sklearn.linear_model.Lasso

Elastic net sklearn.linear_model.ElasticNet

KNeighbors sklearn.neighbors.KNeighborsRegressor

Decision Tree sklearn.tree.DecisionTreeRegressor

SVR sklearn.svm.SVR

Table 4.1: Scikit-learn functions for traditional ML algorithms

The functions in the above table are used for the implementation of the tradi-

tional ML algorithms. The respective scikit-learn functions for the ensemble ML
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algorithms are presented in the table that follows.

Algorithm Function

Random Forest sklearn.ensemble.RandomForestRegressor

AdaBoost sklearn.ensemble.AdaBoostRegressor

Gradient Boosting sklearn.ensemble.GradientBoostingRegressor

Table 4.2: Scikit-learn functions for ensemble ML algorithms

The implementation of the ANN in our study, was based on TensorFlow 2 and

Keras. TensorFlow 2 is an end-to-end, open-source ML platform. It is an infras-

tructure layer for differentiable programming, that combines four key abilities:

• Efficiently executing low-level tensor operations on CPU, GPU, or TPU.

• Computing the gradient of arbitrary differentiable expressions.

• Scaling computation to many devices.

• Exporting programs to external runtimes such as servers, browsers, mobile

and embedded devices.

Keras is the high-level API of TensorFlow 2. It is an approachable, highly-

productive interface for solving ML problems, with a focus on modern deep learning.

It provides essential abstractions and building blocks for developing and shipping ML

solutions with high iteration velocity. The core data structures of Keras are layers

and models. Keras was initially developed as part of the research effort of project

ONEIROS (Open-ended Neuro-Electronic Intelligent Robot Operating System[27]).

A cross-validation (CV) procedure is followed to evaluate the ML algorithms.

KFold and cross_val_score functions are used from the scikit-learn library.

According to the k-fold approach, the training set is split into k smaller sets. The

following steps are followed for each of the k “folds”:

• A model is trained using k − 1 of the folds as training data.

• The resulting model is validated on the remaining part of the data.
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Figure 4.1: The cross-validation procedure

The performance measure reported by k-fold cross-validation is then the aver-

age of the values computed in the loop. In our experiments k is determined to

10 (k = 10). The scoring function selected for the cross-validation procedure is the

negative mean squared error, provided by scikit-learn. After the algorithm selec-

tion, a hyperparameter optimization is performed applying the grid-search process.

Grid-search defines a search space as a grid of hyperparameter values and evaluate

every position in the grid. The train_test_split function is used subsequently

for splitting the dataset for two different purposes: training and testing.
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4.2 Traditional ML Algorithms: Experiments and

Results

In this section, we examine the capabilities of classic machine learning algorithms

in the task of electricity price forecasting. Several algorithms are compared and the

one that prevails is used for the training of the model. An analysis is also performed

of the features’ contribution to the performance of the algorithm.

A cross-validation (CV) procedure is followed to evaluate the regression algo-

rithms. The following table presents the performance of the several machine learn-

ing algorithms (Gaussian process was excluded from the experiments due to its bad

performance in the cross-validation process):

Algorithm CV results - mean CV results - std

Linear Regression -269.34 446.42

Ridge -269.24 446.12

Lasso -120.95 46.81

Elastic net -118.56 41.41

KNeighbors -181.78 113.55

Decision Tree -214.92 95.98

SVR -191.19 146.67

Table 4.3: Cross-validation results of traditional ML algorithms

Figure 4.2: Boxplot: Cross-validation results of traditional ML algorithms
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The boxplot above summarizes the performance of the machine learning algo-

rithms in the cross-validation procedure.

Considering the results of the cross-validation procedure, the Elastic-net algo-

rithm is chosen to proceed with the training of the model. Elastic-net’s better

performance leads us to the conclusion that our dataset possibly includes multi-

ple features which are correlated with one another, which is a case in which the

particular algorithm can give better results.

The basic parameter of the Elastic-net algorithm is the alpha parameter. It is

a constant that multiplies the penalty terms. Its default value is 1.0. alpha = 0 is

equivalent to an ordinary least square, solved by a linear regression algorithm. The

Grid-search process is followed for the hyperparameter optimization. As figure 4.3

shows, the optimal value of the alpha parameter is 1.4.

Figure 4.3: Hyperparameter optimization

The dataset is splitted subsequently for two different purposes: training and

testing. The training subset is for building our model. The testing subset is for using

the model on unknown data to evaluate the performance of the model. Test_size

= 0.2 is selected for splitting the dataset. Next steps include the training of the

model using the training set and then the model evaluation using the test set.

For the training of the model, our first approach is to train using all the features

of the dataset. In the next step we will examine the model’s behavior with less
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features during the training process. For the evaluation of the model, we take into

account two different evaluation measures:

• Mean absolute error

• Mean absolute percentage error

The first measure computes the mean absolute error, which is a risk metric

corresponding to the expected value of the absolute error loss or l1-norm loss. The

second measure is a well-known evaluation metric for regression problems. The idea

of this metric is to be sensitive to relative errors. It is for example not changed by a

global scaling of the target variable. The table that follows presents the performance

of the Elastic-net algorithm.

Algorithm MAE MAPE

Elastic-net 5.94 15.12

Table 4.4: Traditional ML algorithm performance

Figure 4.4 compares the target-variable of the test set with the predicted one. It

turns out that it is difficult for a classic machine learning algorithm to predict well

extreme prices.

Figure 4.4: Test set versus predictions in traditional ML algorithm

Furthermore, we examine the performance of the model in several runs, removing

each time a feature category. This procedure help us understand the contribution

of the features to the efficiency of the model. More specifically, 6 different runs will

be performed as described below:

• Run 1: All features are included
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• Run 2: Cross-border features are excluded (Cross-border HU and Cross-border

feature categories)

• Run 3: In addition to 2nd Run, Prices feature category is excluded

• Run 4: In addition to 3rd Run, Production feature category is excluded

• Run 5: In addition to 4th Run, General feature category is excluded

• Run 6: In addition to 5th Run, Residual Load feature category is excluded

The following graph presents the model’s performance in the different runs. The

results prove the value of the extended dataset used in the training of the model,

showing at the same time the contribution of each feature category.

Figure 4.5: Model performance sensitivity removing features
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4.3 Ensemble ML Algorithms: Experiments and

Results

A cross-validation (CV) procedure is followed to evaluate the ensemble machine

learning algorithms. We keep both k = 10 and scoring = neg_mean_squared_error,

as in the case of classic ML algorithms. The table that follows presents the perfor-

mance of the several ensemble ML algorithms in the cross-validation process.

Algorithm CV results - mean CV results - std

Gradient Boosting -125.98 69.47

Random Forest -111.62 54.58

AdaBoost -204.75 89.31

Table 4.5: Cross-validation results of ensemble ML algorithms

The following boxplot summarizes the performance of the ensemble machine

learning algorithms in the cross-validation procedure.

Figure 4.6: Boxplot: Cross-validation results of ensemble ML algorithms

Random Forest is shown to be the best algorithm among the three ensemble

algorithms for the particular task of HUPX electricity price forecasting. A Grid-

search procedure is then implemented over the n_estimators parameter of the

RandomForestRegressor. This hyperparameter represents the number of trees in
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the forest. As the following graph shows, the optimal value is n_estimators = 110.

Figure 4.7: Hyperparameter optimization on Random Forest

Using the same metrics as in the case of classic ML algorithms, we proceed with

the performance evaluation of Random Forest algorithm. The table that follows

presents the performance of Random Forest algorithm.

Algorithm MAE MAPE

Random Forest 3.33 8.06

Table 4.6: Ensemble ML algorithm performance

The figure 4.8 compares the target-variable of the test set with the predictions

of the RandomForestRegressor. It turns out that, besides the overall better per-

formance of an ensemble ML algorithm compared to a traditional one, an ensemble

method can approach more effectively the extreme electricity prices of the dataset.

Figure 4.8: Test set versus predictions in ensemble ML algorithm
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Furthermore, we are interested in exploring the sensitivity of the model’s per-

formance changing the maximum depth of the tree. Max_depth is one of the basic

parameters of the RandomForestRegressor. If its value is None, then nodes are

expanded until all leaves are pure. The figure that follows captures the course of

model’s performance as the maximum depth of the tree changes:

Figure 4.9: Model performance sensitivity changing max depth

Moreover, as in the case of traditional ML algorithms, we examine the perfor-

mance of the model in several runs, removing each time a feature category. Such

process highlights the contribution of the different features to the model effective-

ness. Keeping the same structure of the experimental runs, we get the following

results:

Figure 4.10: Random Forest performance sensitivity removing features

The results show the meaning of the existence of the different feature categories

in the structure of the dataset, proving that when domain expertise is taking into

account we can achieve better performance.
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4.4 Deep Learning Algorithms: Experiments and

Results

The implementation of the Artificial Neural Network (ANN) was based on Tensor

Flow 2 and Keras. The core data structures of Keras are layers and models. In

our case, the Sequential model was used, which is a linear stack of layers. A

Sequential model is created by passing a list of layers to the Sequential construc-

tor. Each layer may have a number of units.

First steps of the implementation included data preparation (by turning it into

NumPy arrays) and data preprocessing (e.g. feature normalization). In order to

approach the optimal model architecture, several experiments were performed for

different number of epochs, layers and units per layer. Keeping the number of epochs

constant (epochs = 500), we obtain the following results:

Figure 4.11: MLP results for several number of layers

According to the evaluation of the projections, MAPE was ranged between 6.1%

and 9.4%. In most of the cases, the smallest error was recorded for units = 500.

It is obvious that increasing the number of units per layer, a better performance is

achieved. The same is not clearly true when increasing the number of layers. The

addition of an extra layer to the model architecture did not have a clear positive

effect on the model performance. Another observation is that the training time

increases exponentially as further units are added to the model, as depicted in the

following graph:
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Figure 4.12: Training time results for several number of layers and units

Taking into account both error (MAPE in %) and training time, the best per-

formance is achieved for the combination of 3 layers, each of which has 500 units.

Keeping always the number of epochs at 500, the table that follows summarizes the

performance results of a 3-layer MLP, for several number of layer inputs:

Experiment 1st layer
units

2nd layer
units

3rd layer
units

Training
time (sec)

MAPE
(%)

1 30 30 30 78 8.73

2 50 50 50 85 8.59

3 80 80 80 87 8.97

4 100 100 100 100 7.07

5 150 150 150 108 6.90

6 200 200 200 134 6.60

7 250 250 250 150 6.58

8 300 300 300 172 6.44

9 400 400 400 200 6.27

10 500 500 500 242 6.14

11 600 600 600 569 6.17

Table 4.7: 3-layer MLP performance results

The final architecture includes a sequential model which includes 3 layers, each

of which contains 500 units. ReLU is the activation function that was selected,

because of its simplicity and its computational efficiency. For compiling the model

the SGD optimizer was selected. Keras provides the SGD class that implements

the stochastic gradient descent optimizer.

The following figure compares the target-variable of the test set with the pre-

- 48 -



Chapter 4 : Experimental Runs and Results

dictions. The resulting picture is even better than ensemble ML algorithms’ one,

proving the capabilities of MPLs to effectively approximate a mapping function from

input variables to output variables.

Figure 4.13: Test set versus predictions in MLP

Furhermore, as in the case of machine learning algorithms previously, we will

explore the sensitivity of MLP performance in several runs, removing each time a

feature category. Such process highlights the contribution of the different features

to the model effectiveness. Keeping the same structure of the experimental runs, as

described in chapter 4.2, we get the results that are presented in 4.14. Removing

each time the several feature categories, the forecasting error increases gradually

from 6% to 13%.

Figure 4.14: MPL performance sensitivity removing features
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Finally, let us summarize with the performance achieved from all algorithms used

in the task of Hungarian electricity price forecasting in this thesis.

Algorithm MAPE (%)

Classic ML Algorithm (Elastic-net) 15.12

Ensemble ML Algorithm (Random Forest) 8.06

Deep Learning Algorithm (Multilayer Perceptron) 6.14

Table 4.8: Algorithms performance
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Conclusions and Future Work

The goal of this thesis is to explore the course of the algorithms’ performance as

we move from traditional to more sophisticated methods for the task of electricity

price forecasting. Our focus is on the Hungarian wholesale electricity day-ahead

price, which is considered a benchmark index in the region of SE Europe. We are

also interested in quantifying the impact of domain expertise on the shaping of the

results.

Mean absolute percentage error (MAPE) was mainly used as evaluation metric,

which is a well-known metric for time-series forecasting tasks. What was confirmed

throughout this study are the capabilities of deep learning methods to more ef-

fectively approximate a mapping function from input variables to output variable.

From a MAPE of 15.12% achieved by a classic machine learning algorithm, we

reached a performance of 6.14% using a Multilayer Perceptron model. Pleasant sur-

prise was the behavior of the ensemble machine learning methods, which are proved

to be very competitive on the task of electricity price forecasting, achieving a MAPE

of 8.06%.

Domain expertise helped us to build a really extended dataset consisting of 69

features. These features are related to production, consumption, fuel cost and cross-

border interconnections data and in theory they affect the formation of electricity

prices. Performing a sensitivity analysis, the contribution of these feature categories

to the good performance of the algorithms was confirmed. Removing one category

- 51 -



at a time, the performance of the algorithms was getting worse and worse, reaching a

MAPE of 21.50%, 15.59% and 13% for classic, ensemble and deep machine learning

algorithms respectively.

Comparing the results of this thesis with those of [21], it turns out that the

Hungarian power exchange is the most predictable one in the region of SE Europe,

judging from the performance of 6.14% that has been achieved. In [21], MLPs are

also used to forecast the day-ahead electricity price, ranking the Serbian market as

the most predictable one with a MAPE of 9.28%. The Croatian and the Bulgarian

power exchanges follow with a MAPE of 17% and 21% respectively. Predictability

is probably related to the maturity of the power exchanges, since it is widely known

that HUPX (Hungarian power exchange) is the most mature and IBEX (Bulgarian

power exchange) is the most shallow market in the region of SE Europe.

Future work could include the use of recurrent neural networks in the task of

electricity price forecasting. Recurrent neural networks like the Long Short-Term

Memory network (or LSTM) add the explicit handling of order between observa-

tions when learning a mapping function from inputs to outputs, not offered by MLPs.

They are a type of neural network that adds native support for input data comprised

of sequences of observations. Instead of mapping inputs to outputs alone, the net-

work is capable of learning a mapping function for the inputs over time to an output.

LSTM is able to solve many time series tasks unsolvable by feedforward networks

using fixed size time windows. In addition to the general benefits of using neural

networks for time series forecasting, recurrent neural networks can also automati-

cally learn the temporal dependence from the data. Learning temporal dependence

means that the most relevant context of input observations to the expected output

is learned and can change dynamically. In the simplest case, the network is shown

one observation at a time from a sequence and can learn what observations it has

seen previously are relevant and how they are relevant to forecasting. The model

both learns a mapping from inputs to outputs and learns what context from the

input sequence is useful for the mapping, and can dynamically change this context

as needed.
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