
- 1 -

UNIVERSITY OF THE PELOPONNESE &

NCSR “DEMOCRITOS”

MSC PROGRAMME IN DATA SCIENCE

Document Data Analysis via Machine/Deep Learning

techniques
by

Angelos Spyratos

2022201704021

A thesis submitted in partial fulfillment

of the requirements for the MSc

in Data Science

Supervisor: Georgios Petasis

Athens, January 2021

2

Document Data Analysis via Machine/Deep Learning techniques

Aggelos Spyratos

MSc. Thesis, MSc. Programme in Data Science

University of the Peloponnese & NCSR Democritos", January 2021

Copyright © 2021 Aggelos Spyratos. All Rights Reserved.

3

UNIVERSITY OF THE PELOPONNESE &

NCSR “DEMOCRITOS”

MSC PROGRAMME IN DATA SCIENCE

Document Data Analysis via Machine/Deep Learning

techniques
by

Aggelos Spyratos

2022201704021

A thesis submitted in partial fulfillment

of the requirements for the MSc

in Data Science

Supervisor: Georgios Petasis

Approved by the examination committee on January, 2021.

Athens, January 2021

Georgios Petasis

Anastasia Krithara Konstantinos Vassilakis

……………….. ……………….. ………………..

4

5

UNIVERSITY OF THE PELOPONNESE &

NCSR “DEMOCRITOS”

MSC PROGRAMME IN DATA SCIENCE

Declaration of Authorship

(1) I declare that this thesis has been composed solely by myself and that it has

not been submitted, in whole or in part, in any previous application for a

degree. Except where stated otherwise by reference or acknowledgment, the

work presented is entirely my own.

(2) I confirm that this thesis presented for the degree of Bachelor of Science in

Informatics and Telecommunications, has

(i) been composed entirely by myself

(ii) been solely the result of my own work

(iii) not been submitted for any other degree or professional qualification

(3) I declare that this thesis was composed by myself, that the work contained

herein is my own except where explicitly stated otherwise in the text, and

that this work has not been submitted for any other degree or processional

qualification except as specified.

Aggelos Spyratos

Athens, January 2021

6

ABSTRACT

Job advert aggregators gather millions of adverts every single day, by scraping job

boards and various other sources across the globe. Aggregators are getting visited by

millions of active job seekers every day, that wish to find their perfect match in order

to land a job, according to their skills and field of studies. With such high volume of

visitors seeking to find their optimal match, proper categorization of job adverts

becomes a must have feature for any aggregator in order to help their users have a

smooth experience while searching for their perfect job match. However, due to the

huge volume of data and the nature of the job adverts themselves, where each job

description can possibly match with multiple categories and similar positions might

have huge variations in the language used to describe them, the proper classification

of such data comes to be a hard task. In this work, various machine learning, deep

learning, data processing and data augmentation methods are used in order to try and

classify job adverts in one of the twenty-nine categories of the Adzuna company.

Towards this, a real-world private dataset, consisting of about 234.000 job adverts

from the United Kingdom, containing titles, descriptions and hand-crafted categories,

is provided by the Adzuna company. Our main results show that Deep Learning

models outperform all kinds of conventional Machine Learning approaches such as

Support Vector Classifiers, Multinomial Naïve Bayes and Decision Trees. In addition,

training custom word2vec embeddings helps achieve higher accuracy metrics

compared to using pretrained embeddings such as Glove 100. However, the model

selection (choosing a Deep Learning model against a conventional Machine Learning

model) is of higher impact towards better metrics than using embeddings and

sequences of words. The model that achieved the highest weighted average F1-Score

(80%) and the highest testing accuracy (80.5%) was the Feedforward Neural Network

trained on Bag of Words (TF-IDF) representations of lowercased and stemmed job

descriptions. Specifically, this model achieved a weighted average Precision of 80%,

a weighted average Recall of 81%.

Keywords: Text Classification, Deep Learning, Machine Learning, Natural Language

Processing

7

LIST OF TABLES

Table 1: The job categories used by Adzuna, serving as labels in the classification

task ... 16

Table 2: Parameters of models used for BoW representations 49

Table 3: Parameters of trained models on sequences of words 50

Table 4: Summary of trained models ... 51

Table 5: Average metrics of MNB on BoW and lower case descriptions 53

Table 6: Average metrics of MNB on BoW and lower case and stemmed descriptions

.. 55

Table 7: Average metrics of Decision Tree on BoW and lower case and stemmed

descriptions .. 57

Table 8: Average metrics of Decision Tree on BoW and lower case and stemmed

descriptions .. 59

Table 9: Average metrics of SVC on BoW and lower case descriptions 61

Table 10: Average Metrics of SVC on BoW and lower case and stemmed descriptions

.. 63

Table 11: Average Metrics of FNN on Bow and lower case descriptions 65

Table 12: Average Metrics of FNN on BoW and lowercased and stemmed

descriptions .. 67

Table 13: Average Metrics for FNN on Google's word2vec (Glove) embeddings with

lower case descriptions .. 69

Table 14: Average Metrics for FNN custom word2vec embeddings (skipgram) with

lower case descriptions .. 71

Table 15: Average Metrics for FNN custom word2vec embeddings (skipgram) with

lower case descriptions .. 73

Table 16: Average Metrics for CNN on Glove embeddings with lower case

descriptions .. 75

Table 17: Average Metrics for CNN on custom word2vec embeddings with lower

case descriptions .. 77

Table 18: Average Metrics for CNN on custom word2vec embeddings with lower

case descriptions .. 79

8

Table 19: Average Metrics for RNN on Glove embeddings with lower case

descriptions .. 81

Table 20: Average Metrics for RNN on custom word2vec embeddings with lower

case descriptions .. 83

Table 21: Average Metrics for RNN on custom FastText embeddings with lower case

descriptions .. 85

Table 22: Most common misclassifications among the models 90

Table 22: Python libraries used.. 91

9

LIST OF FIGURES

Figure 1: An example of transforming text Data to BoW vectors 20

Figure 2: An example of TF-IDF vectors .. 21

Figure 3: MNB example on text data with alpha value equal to 1 24

Figure 4: A simple example of 2d space and SVM hyperplane with linear kernel 27

Figure 5: Comparison of margin when choosing different margins: Increasing the C

parameters, the margin shrinks .. 28

Figure 6: Activation functions ... 33

Figure 7: An example architecture of a feedforward multilayer perceptron. 34

Figure 8: Example architecture of a skip-gram training for word2vec embedding 37

Figure 9: Example of word2vec representation ... 37

Figure 10: An example of recurrent architecture ... 39

Figure 11: A simple recurrent unit in standard RNNs ... 39

Figure 12: LSTM gate: A sigmoid neural network layer and a pointwise multiplication

operation .. 40

Figure 13: A LSTM cell ... 42

Figure 14: An example of convolution with 2x2 filter on 4x4 input and stride length 2

on both axes ... 44

Figure 15: An example of convolution with 2x2 filter on 3x3 input and stride length 1

on both axes with zero padding ... 44

Figure 16: Max and Average Pooling over 3x3 convolved feature with 2x2 kernel ... 44

Figure 17: CNN architecture example ... 45

Figure 18: Class distribution of available training and testing Data 46

Figure 19: Classification Report of MNB on BoW and lower case descriptions 54

Figure 20: Classification Report of MNB on BoW and lower case and stemmed

descriptions .. 56

Figure 21: Classification Report of Decision Tree on BoW and lower case

descriptions .. 58

Figure 22: Classification Report of Decision Tree on BoW and lower case and

stemmed descriptions ... 60

Figure 23: Classification Report of SVC on BoW and lower case descriptions 62

10

Figure 24: Classification Report of SVC on BoW and lower case and stemmed

descriptions .. 64

Figure 25: Loss per training epoch for FNN with lower case descriptions 65

Figure 26: Accuracy per training epoch for FNN with lower case descriptions 65

Figure 27: Classification Report for FNN with lower case descriptions 66

Figure 28: Loss per training epoch for FNN with lower case and stemmed

descriptions .. 67

Figure 29: Accuracy per training epoch for FNN with lower case and stemmed

descriptions .. 67

Figure 30: Classification Report for FNN with lower case and stemmed descriptions

.. 68

Figure 31: Loss per training epoch for FNN on Google's word2vec (Glove)

embeddings with lower case descriptions .. 69

Figure 32: Accuracy per training epoch for FNN on Google's word2vec (Glove)

embeddings with lower case descriptions .. 69

Figure 33: Classification Report for FNN on Google's word2vec (Glove) embeddings

with lower case descriptions .. 70

Figure 34: Loss per training epoch for FNN custom word2vec embeddings (skipgram)

with lower case descriptions .. 71

Figure 35: Accuracy per training epoch for FNN custom word2vec embeddings

(skipgram) with lower case descriptions.. 71

Figure 36: Classification Report for FNN custom word2vec embeddings (skipgram)

with lower case descriptions .. 72

Figure 37: Loss per training epoch for FNN with custom FastText embeddings

(skipgram) with lower case descriptions.. 73

Figure 38: Accuracy per training epoch for FNN with custom FastText embeddings

(skipgram) with lower case descriptions.. 73

Figure 39: Classification Report for FNN with custom FastText embeddings

(skipgram) with lower case descriptions.. 74

Figure 40: Loss per training epoch for CNN with Glove embeddings with lower case

descriptions .. 75

11

Figure 41: Accuracy per training epoch for CNN with with Glove embeddings with

lower case descriptions .. 75

Figure 42: Classification Report for CNN with Glove embeddings with lower case

descriptions .. 76

Figure 43: Loss per training epoch for CNN custom word2vec embeddings

(skipgram) with lower case descriptions.. 77

Figure 44: Accuracy per training epoch for CNN custom word2vec embeddings

(skipgram) with lower case descriptions.. 77

Figure 45: Classification Report for CNN with custom word2vec embeddings (with

skipgram) with lower case descriptions ... 78

Figure 46: Loss per training epoch for CNN with custom FastText embeddings

(skipgram) with lower case descriptions.. 79

Figure 47: Accuracy per training epoch for CNN with custom FastText word2vec

embeddings (skipgram) with lower case descriptions .. 79

Figure 48: Classification Report for CNN with custom FastText embeddings (with

skipgram) with lower case descriptions ... 80

Figure 49: Loss per training epoch for RNN on Glove embeddings with lower case

descriptions .. 81

Figure 50: Accuracy per training epoch for RNN on Glove embeddings with lower

case descriptions .. 81

Figure 51: Classification Report for RNN on Glove embeddings with lower case

descriptions .. 82

Figure 52: Loss per training epoch for RNN on custom word2vec embeddings with

lower case descriptions .. 83

Figure 53: Accuracy per training epoch for RNN on custom word2vec embeddings

with lower case descriptions .. 83

Figure 54: Classification Report for RNN on custom word2vec embeddings with

lower case descriptions .. 84

Figure 55: Loss per training epoch for RNN on custom FastText embeddings with

lower case descriptions .. 85

Figure 56: Accuracy per training epoch for RNN on custom FastText embeddings

with lower case descriptions .. 85

12

Figure 57: Classification Report for RNN on custom FastText embeddings with lower

case descriptions .. 86

Figure 58: Model comparison with respect to metrics (weighted) 88

Figure 59: Testing accuracy per embedding type .. 89

Figure 60: Confusion Matrix of MNB on BoW and lower case descriptions 100

Figure 61: Confusion Matrix of MNB on BoW and lower case and stemmed

descriptions .. 100

Figure 62: Confusion Matrix of DT on BoW and lower case descriptions 101

Figure 63: Confusion Matrix of DT on BoW and lower case and stemmed

descriptions .. 101

Figure 64: Confusion Matrix of SVC on BoW and lower case descriptions 102

Figure 65: Confusion Matrix of SVC on BoW and lower case and stemmed

descriptions .. 102

Figure 66: Confusion Matrix of FNN on BoW and lower case descriptions............. 103

Figure 67: Confusion Matrix of FNN on BoW and lower case and stemmed

descriptions .. 103

Figure 68: Confusion Matrix of FNN trained on Google's word2vec (Glove)

embeddings with lower case descriptions .. 103

Figure 69: Confusion Matrix of FNN trained on custom word2vec embeddings (with

skipgram) with lower case descriptions ... 104

Figure 70: Confusion Matrix of FNN trained on custom FastText embeddings (with

skipgram) with lower case descriptions ... 105

Figure 71: Confusion Matrix of CNN trained on Google's word2vec (Glove)

embeddings with lower case descriptions .. 105

Figure 72: Confusion Matrix of CNN trained on custom word2vec embeddings (with

skipgram) with lower case descriptions ... 106

Figure 73: Confusion Matrix of CNN trained on custom FastText embeddings (with

skipgram) with lower case descriptions ... 106

Figure 74: Confusion Matrix of RNN trained on Google's word2vec (Glove)

embeddings with lower case descriptions .. 107

Figure 75: Confusion Matrix of RNN trained on custom word2vec embeddings (with

skipgram) with lower case descriptions ... 107

13

Figure 76: Confusion Matrix of RNN trained on custom FastText embeddings (with

skipgram) with lower case descriptions ... 108

14

Contents

1 INTRODUCTION.. 16

2 TEXT CLASSIFICATION ... 18

2.1 EXISTING WORK ON THE PROBLEM .. 18

3 DATA REPRESENTATION AND ALGORITHMS 20

3.1 BAG OF WORDS (BOW) AND TERM FREQUENCY-INVERSE DOCUMENT

FREQUENCY (TF-IDF) ... 20

I. MULTINOMIAL NAÏVE BAYES ... 22

II. DECISION TREES.. 24

III. SUPPORT VECTOR MACHINES .. 26

IV. FEEDFORWARD NEURAL NETWORKS ... 29

3.2 SEQUENCES OF WORDS AND WORD EMBEDDINGS ... 34

I. RECURRENT NEURAL NETWORKS .. 38

II. CONVOLUTIONAL NEURAL NETWORKS ... 42

4 DATASET ... 46

5 METHODOLOGY .. 48

5.1 BAG OF WORDS ... 48

5.2 SEQUENCES OF WORDS AND PRE-TRAINED EMBEDDINGS 49

5.3 SEQUENCES OF WORDS AND CUSTOM EMBEDDINGS 51

5.4 EVALUATION METRICS .. 52

15

6 RESULTS AND DISCUSSION .. 53

6.1 CLASSIFICATION RESULTS PER MODEL (ACCURACY, RECALL, PRECISION AND

F1-SCORE) .. 53

6.2 MODEL COMPARISON .. 87

7 IMPLEMENTATION ISSUES .. 91

8 CONCLUSION AND FUTURE WORK ... 92

9 BIBLIOGRAPHY .. 94

APPENDIX .. 99

16

1 Introduction

The purpose of this Thesis is the evaluation of different Machine Learning and

Deep Learning algorithms on the classification of job adverts to a general category.

This work is motivated by the immediate need for application of such a tool in a real-

world use case: Adzuna [1] is a search engine for job advertisements with millions of

entries, which uses web scraping for collecting and processing of open job positions.

As in many other search engines, Adzuna offers job seekers the opportunity to

discover open job offerings by a general category (from a total of 29 categories),

which can help narrow down searches to a viable amount with respect to the seeker’s

needs. Such tools – often called “browse by category” - are found very often in all

kinds of search engines, making them vital for almost any web-based platform with

advertisements. The used job categories are presented in Table 1. As millions of new

ads get collected and displayed every day in the search engine, there is an emerging

need for developing fast and efficient auto-categorization methodologies.

Category id Category id

Accounting/finance 1 Logistics/Warehousing 16

Admin 2 Maintenance 17

Agriculture/Fishing/Forestry 3 Manufacturing 18

Consultancy 4 Other/General 19

Creative/Design 5 Public relations/Advertising/Marketing 20

Customer Services 6 Property 21

Domestic Help/Cleaning 7 Retail 22

Energy/Oil/Gas 8 Sales 23

Engineering 9 Scientific/Quality Assurance 24

Graduate 10 Security/Protective Services 25

Human Resources 11 Social Work 26

Healthcare/Nursing 12 Teaching 27

Hospitality/Catering 13 Trade/Construction 28

Information Technology 14 Travel 29

Legal 15

Table 1: The job categories used by Adzuna, serving as labels in the classification

task

Adzuna was using a rule-based approach where ads were categorized with

respect to the source in which they were scraped. Every time a new source of ads got

integrated within the scrapping framework, the developer would choose one of the

17

categories for the whole source based on his personal beliefs about the proper

category for the source. That said, there were multiple occasions where one source of

1000 ads for example would be marked as it-jobs simply because 600 of them were it

related. This would mean that then rest 400 ads would be misclassified as it-jobs. The

data science team of the company suggested that this system has an accuracy score of

about 55% and that any machine learning system with a score of at least 75% would

suffice as a replacement. Besides the low classification accuracy, the old

implementation has also other bottlenecks. The first disadvantage is the bias that is

introduced via the choice of the developer which assigns the category to the source of

the ads. Secondly, it is highly impossible that a specific source contains ads of only

one category. Even in the cases of sources that display domain specific ads such as the

National Health System (NHS) of the UK, the distribution of real job categories is

high. For instance, the NHS job site [2] (and therefore every ad scraped from there)

would be mapped by the old implementation to the healthcare job category. This has

led to major misclassifications, as the NHS job site contains also other types of

offerings, such as ads seeking for sanitors and warehouse employees to work in the

healthcare facilities. As a result, there was a need for an approach which could relate

job description to the job categories with better generalization ability. To this end, this

Thesis explores the capabilities of various Machine Learning and Deep Learning

techniques in addressing the issue of classifying automatically new job advertisements

into one of the pre-defined classes (job categories).

18

2 Text Classification

The methodology of the current work is subject to Text Classification, which

is a field of study of Natural Language Processing. In general, Text Classification in

Computer Science deals with the task of assigning a document to one or more classes

algorithmically [3]: There is a set of entries of dimension N, where

each entry is labeled with a class withing the range of discrete class values indexed by

 [4]. With respect to the mathematical representation of the input Data, the

goal is to develop a classification model, which finds an estimate function which best

describes the relation between the input feature representation and the classes.

Depending on the classification algorithm that is used, the prediction may be

accompanied by a probability (confidence measure), which indicates how strong the

prediction is. In terms of Machine Learning principles, the input to the model training

is set of hand labeled text documents along with the respective classes {(d1,c1) , … ,

(dm,cm)} and the output is learned classifier {y: d → c}.

2.1 Existing work on the problem

Text classification with Machine Learning has been widely researched in the

last two decades. There are hundreds of applications including target marketing,

medical diagnosis, news group filtering and document organization [3]. With respect

to the purpose of the developed classifiers, the most used applications can be divided

into two broader categories, which are topic classification and sentiment

classification.

Topic classification is the task of text classification where the class to be

predicted is a topic. It finds numerous applications such as news recommendation [5]

and social media posts classification [6, 7]. It has also been applied in Social Science,

where it was shown that the use of Machine Learning can help lower the costs of

classifying large numbers of complex documents by 80% or more [8]. Additionally,

text classifiers which predict the topic of a given document are also applied in the

Legal Science for the classification of legal concepts [9]. Finally, Topic classification

https://en.wikipedia.org/wiki/Document
https://en.wikipedia.org/wiki/Class_(philosophy)
https://en.wikipedia.org/wiki/Algorithmically

19

is found also in the automated email classification, where inbox emails are classified

as per their content (e.g. offerings, travelling etc.) [10].

In sentiment classification, the goal is to predict the sentiment (label) of

textual documents. It has been applied in social media in order to gain insights on how

users think regarding a specific matter [6, 11, 12]. Via this, social media posts can be

automatically classified to both the topic and then the sentiment (negative, neutral or

positive). Variations of this application are also found: researchers have tried to train

regression models in order to predict a continuous value within a range, which

represents the sentiment. Such classifiers are also applied in movie reviews, in order

to automatically extract conclusions on the viewers thoughts regarding specific

movies [13, 14].

Finally, there are other categories of text classification such as spam detection,

where the task is to classify inbox mail or messages as spam (or unwanted) [15, 16].

Unsupervised learning has also been applied for such purposes [17]. This has been

further extended in social media, where developed classifiers are used to determine on

whether a review comment is deceptive. Specifically, text classifiers are trained to

detect synthesized reviews in product pages and identify spammers who try to

promote some products or demote competitors’ products [18, 19]. User profiles of

social media which make spam posts are also being identified with help of text

classification techniques [20]. Text Classification techniques have also been applied

for the identification of the author of online messages, taking into consideration

various features of the writing style such as lexical, syntactic, structural, and

content‐specific features [21].

20

3 Data representation and algorithms

There are numerous conventional Machine Learning and Deep Learning

algorithms that are used for text classification tasks. However, the algorithm that is

used depends usually on the input data representation that is selected. Textual

information needs to be converted into numbers, in order to be used as input to any

algorithm. To that end, Text Classification includes an important first step:

Transformation of the text data to an appropriate numerical representation. It is

essential to define and describe the two data representations that are used in this work.

3.1 Bag of words (BoW) and Term Frequency-Inverse

Document Frequency (TF-IDF)

 BoW is a form of representing text in numbers. Essentially, BoW

results in vectors for each textual instance. The first step of the BoW methodology is

to identify all unique words that exist in the entire corpus of collected Data. Then, we

can represent each entry in our Data with a vector of length equal to the number of

unique words present in the entire corpus. Each point of the instance vector can take

then the value 0 (does not exist) or 1 (exists) with respect to the existence of the

respective word in the instance. Figure 1 below illustrates an example of BoW.

Figure 1: An example of transforming text Data to BoW vectors

21

Term frequency–inverse document frequency (TF-IDF), is a numerical

statistic that highlights the importance of a word to a document in a collection or

corpus [22]. In order to calculate the TF-IDF value, we need first to calculate the

Term Frequency (TF) and Inverse Document Frequency (IDF). TF is a measure of

how frequently a term, t, appears in a document d and is calculated by the following

equation:

, where is the number of times that the term t appears in the corpus d. The

IDF is used for introducing a value that reflects the importance of term. Specifically,

it is computed by:

Finally, the TF-IDF of a term in a specific document is calculated by:

The final feature representation of every instance is again a vector of length

equal to the number of unique terms (words) in the entire corpus. Here, the value of

each point in the vector is the and not 0 or 1 as in simple BoW. Figure 2

illustrates an example.

 Figure 2: An example of TF-IDF vectors

22

I. Multinomial Naïve Bayes

The TF-IDF vectors are very often used as input data representation for

feeding classification algorithms. Multinomial Naïve Bayes (MNB) is a classic

algorithm in text classification. It originates from the Bayes Theorem, which

describes the probability of an event to occur, based on prior knowledge of conditions

relevant to the event [23]. It is described by the following mathematical formula

which calculates conditional probabilities:

Where A and B are events and P(B) is not zero. is the likelihood of

event A to occur given that event B is true. is the likelihood of event B to

occur given that event A is true. Both and are also called a

conditional probability. P(A) and (PB) are the probabilities of observing A and B

respectively. They are also called marginal probabilities.

To apply Bayes’ Rule to documents and classes, we transform introduce the

class c and the document d to theorem as bellow [24]:

Then, the most likely class (in a given prediction) will be:

, where P(d) can be considered equal to 1. The subscript “MAP” in the class c

on the left if the above equation refers to “maximum a posteriori” (most likely class).

If we represent the document d as features (x1, … , xn), we get:

The above equation is the fundamental principle of Multinomial Naïve Bayes

Classifiers applied on BoW representations. It can be transformed to:

23

There are two assumptions of MNB applied on BoW representations. Firstly,

the position does not matter; this is an assumption bound to the representation.

Secondly, conditional independence is an MNB assumption: we assume that the

feature probabilities P(xi|cj) are independent given the class c, which means:

The first step of the algorithm is to extract the vocabulary of the entire dataset.

Then we calculate the P(cj) terms for each class cj in C (list of classes) as below:

 , where docsj are the documents with

class j.

Then we calculate the P(wk|cj) terms (fraction of times word wk appears

among all words in documents of class cj) for each word wk in the Vocabulary V:

, where nk is the number of occurrences of wk in Corpusj (single document

containing all documents with class j). The term “a” is called alpha value for

smoothing of the MNB algorithm and is introduced to discard the influence of words

absent in the vocabulary. Setting a greater or equal to zero helps prevent zero

probabilities in further computations [25]. In case where a equal to 1, it is called

Laplace smoothing, while α<1 is called Lidstone smoothing. Figure 3 illustrates an

example of applying MNB to text documents (the BoW representation is skipped for

better visualization).

24

Figure 3: MNB example on text data with alpha value equal to 1

Naïve Bayes classifiers have worked well in many real-world problems

(multiclass classifications) and have a good reputation in the field of text

classification (topic classification and spam filtering) [26, 27]. In addition, they

usually require a small amount of training Data in order to achieve decent results.

They are also fast and have low computational requirements. However, there are some

disadvantages that need to be taken into consideration: Naïve Bayes assumes that all

features are independent, which sometimes may not be realistic. In addition, NB

algorithms assigns zero probability to features (words in our case) that have not been

seen in the training data. When lots of Data are available, other more sophisticate

algorithms are preferred such as Support Vector Classifier [24].

II. Decision Trees

Another popular algorithm which is used for text classification is the ID3

Algorithm, which belongs to the general category of Decision Trees (DT). DTs are

non-parametric and are used for both classification and regression tasks. It is based on

learning decision rules (multiple if nodes) from the input data. DTs consist of nodes,

branches and leaves. In every node, there is a test for a feature value: there is one

branch for every possible value that a feature can have [28]. All nodes (and branches)

25

lead finally to a leave, which represents a specific class label. The objective is to

develop multiple classification rules that can determine the output variable[29]. The

classification of the instances is done by sorting them down to the developed tree

from the root node all the way down to a leaf node, after testing all if statements on

the path.

The methodology, with which the ranking (priority) of the feature value tests

are assigned to the leaves, is called Information Gain. It is a statistical property and is

used to determine the next attribute to split the decision tree on. Information Gain is

calculated for each feature: features of high importance split the input data to sets that

are relatively (to other features’ splits) pure in one label. In other words, Information

Gain measures how well a given feature separates the training instances with respect

to the output variables [28]. Information Gain is calculated with the help of Entropy.

Given a set of examples S, the entropy is calculated by:

, where pi is the probability of S belonging to class i and c the set of all labels.

Information Gain G(S,A) of an attribute A in a set of examples s can then be

calculated by:

,

, where Values(A) is a set with all observed values of the feature A. Sv is the

subset of the entire S set, for which the attribute A has the value v. After calculating

Information Gain for every available feature, we rank them as per their priority in the

Decision Tree’s node tests. Specifically, attributes with higher Information Gain are

tested first. We split the set into subsets using the attribute for which the resulting

information gain is maximized. Then, we create a node for this attribute: this node

will have a number of branches equal to the number of observed values of the

attribute in the training set. For each possible branch (feature value), we recurse with

creating again subsets with the remaining set. The main advantages of using Decision

Trees include the low computational cost of prediction (logarithmic in the number of

instances used to train the tree) and the ability to handle both numerical and

categorical data. In addition, DTs are easy to understand and interpret: in contrast to

26

artificial neural networks and other more sophisticated algorithms, DTs decisions are

easy to explain with Boolean logic. There also variations of DTs which can help

address multi class outputs. On the other hand, are prone to over-fitting. In addition,

DTs are also very sensitive: small changes in the training data may result into

completely different trees. Ensemble methods are used for addressing such issues.

Finally, DTs are usually biased towards dominant classes (in the training set),

meaning that over or down sampling methods may be required before training. In this

work, we experiment with the CART Decision Tree algorithm, which is based upon

the C4.5 algorithm. C4.5 is the successor to ID3 and removed the restriction that

features must be categorical by dynamically defining a discrete attribute (based on

numerical variables) that partitions the continuous attribute value into a discrete set of

intervals. C4.5 converts the trained trees into sets of if-then rules. The accuracy of

each rule is then evaluated to determine the order in which they should be applied.

Pruning is done by removing a rule’s precondition if the accuracy of the rule improves

without it. CART constructs binary trees using the feature and threshold that yield the

largest information gain at each node.

III. Support Vector Machines

Another algorithm that is suitable to be trained on the BoW data representation

are the Support Vector Machines (SVMs), which are used both for regression and

classification. They have been used in topic classification and sentiment analysis [30,

31] and is considered to be effective in text classification [32]. SVMs have also been

proven to perform well on imbalanced text datasets for text classification [33].

Finally, a comparison study between various conventional Machine Learning

algorithms and their ability to discriminate the subtopics of Stock Exchange texts

showed that SVMs along with Logistic Regression outperform all other algorithms

when trained on TF-IDF data representations [34]. There are several reasons why

SVMs outperform usually the rest of the traditional Machine Learning algorithms in

text classification. These are the ability of the SVMs to handle high dimensional input

space (and therefore text) in such a way, that no overfitting occurs [35]. Additionally,

sometimes in text classification, only a few features are irrelevant for determining the

class. A good performing classifier should use as many features as possible, which

27

SVM are proven to do [35]. As mentioned previously, resulted text vectors (BoW

etc.) are sparse, as they usually contain only a few non zero values. SVMs have an

inductive bias and are therefore highly appropriate in such cases [36]. Finally, many

text classification tasks are linearly separable. Finding such a linear separator is the

objective of SVMs with linear kernel [35].

The objective of SVMs is to find a hyperplane which best separates the

instances into the classes (where best means minimum value of a given loss function).

Depending on the kernel type (explained later), the hyperplane can be of different

shape. The data points that are closest to the hyperplane are called Support Vectors. In

the case of a 2-dimensional space and a linear kernel, this hyperplane is a line (linear

function of one dimension) and the data points (2d vectors) with minimum distance to

this line are the Support Vectors. In other words, any kernel type SVM tries to

maximize the distance between the classes by learning one or more decision

boundaries. The region which is defined between the Support Vectors and the line (or

the hyperplane) is called the margin. Then, for a new previously not seen instance, the

SVM assigns to it the class of the respective decision boundary it is in. An example of

linear kernel SVM applied on a 2-dimensional space is illustrated in Figure 5 below.

Figure 4: A simple example of 2d space and SVM hyperplane with linear kernel

For the case of the 2 dimensional space, SVM algorithm finds all lines that

best classify (in terms of loss) the training data and finally choose the one, which has

the greatest distance to the nearest data points (Support Vectors). In addition, SVMs

have a parameter, called C, which allows the margin to get wider or narrower. Higher

values of C take the margin region closer to the hyperplane. This can help classify

28

correctly more training Data. On the other hand, choosing a lower C value allows for

errors, thus being a good choice when overfitting needs to be addressed (Figure 6).

Figure 5: Comparison of margin when choosing different margins: Increasing the C

parameters, the margin shrinks

The above description of the SVM algorithm refers to data that is linearly

separable in the 2d case. In other cases, SVMs project the data to a space where they

become linearly separable. The idea behind this is that by adding extra dimensions,

there is a chance of getting linearly separable data. Projecting the data into higher

dimensions is a job of the SVM kernels. Note that the described 2d case of above is

using a linear kernel, which is the case where we do not do any projection to another

space. Linear kernels simply compute the dot products in the original space. A kernel

is a function which takes as input two points in the original space and computes the

dot product in the projected space. Kernels essentially transform input data

representation to the appropriate form with respect to the dimensional space we are

investigating. Kernels can be linear, non-linear, polynomial, radial basis function

(RBF) and sigmoid. The RBF kernel is defined as [37]:

, where σ is a free parameter. The polynomial

kernel function is defined as:

, where d is the degree of the polynomial function we wish

to choose, x1 and x2 the vectors from the original input space. “c” is a free parameter.

The linear kernel is a polynomial kernel function with d =1:

Finally, the sigmoid kernel is defined as:

29

 , where both a and c are free parameters [38].

IV. Feedforward Neural Networks

The last algorithm used for the BoW data representation are Artificial neural

networks (ANNs). ANNs are named after biological neural network of animal brains:

they consist of nodes (called neurons) in which numbers (equivalent to signals in

brain) come into and are transformed to an output via a non-linear function of the sum

of input numbers. Nodes communicate with each other, just like neurons in the brain

do. In the case of ANNs, nodes are connected with edges, which have weights that

adjust while being trained on Data. The weight of each edge can be considered as a

threshold above which the signal passes from one neuron to another; the next neuron

will be activated. Essentially, ANNs have multiple layers of neurons. Different

transformation (non-linear functions) may be present in each layer. Neurons of one

layer communicate with the neurons of the next layer. This is called a feedforward

network (FNN): Information passes in one direction from the first layer to the last one

[39]. The first layer is called input layer, the last layer is called output layer and every

layer in between belongs to the hidden layers. There are also other types of ANNs in

which information can persist by forming cycles from different layers: such ANNs are

the recurrent networks.

For the multi-layer feedforward neural networks, each neuron is connected to

the neurons of the next layer. The learning process is based on the back-propagation

algorithm, in which the output values are compared each time with the true value

(expected) and the loss (error) is calculated. Subsequently, the calculated error is fed

back (back-propagation) in the opposite direction: via this, the weights at each edge

are adjusted in such a way that the error is reduced. Weights are adjusted with help of

the non-linear optimization methods such as Gradient Descent: The derivative of the

loss function with respect to the weights is calculated in order to find the direction

(positive or negative) of change that needs to be made in the respective weight in

order to reduce the error [40]. While fitting the training Data to the network, the

backpropagation algorithm calculates the gradient of the chosen loss function with

respect to each weight by the chain rule, which is by computing the gradient one layer

https://en.wikipedia.org/wiki/Chain_rule

30

at a time, iterating backward from the last layer [41]. Finally, there is Stochastic

Gradient Descent (SGD), which is an algorithm for learning (new weights) using the

gradient calculated by back-propagation [41]: SGD takes a mini-batch of data,

updates the weights (including biases) based on the average gradient from the batch

(gradients of the batch calculated by back-propagation). After repeating this process

(feed-forward-ing the inputs and backpropagating the error), the network reaches a

point where the error is not being reduced any further while adjusting the weights: this

is called converging.

Feedforward Neural Networks are usually organized in layers: the input layer,

some hidden layers and an output layer. Absence of hidden layers defines a single-

layer perceptron, whereas one or more hidden layers define a Multilayer Perceptron.

Figure XX illustrates a feedforward neural network architecture with m hidden layers.

The input space is d-dimensional vector . Here, we have n-

dimensional hidden layers: every hidden layer has exactly n neurons. There are no

connections between neurons of the same layer. In the neurons of the network (x1, xd ,

s1,1 etc.), a mathematical transformation is taking place by a function called activation

function. Every neuron in layer l sl,j is connected to every neuron in layer l-1. Every

neuron depends on the output of all the neurons in the previous layer. In each of such

connections, there are weights and bias. For instance, s1,1 is connected with x1 with

wx1,s11 and bx1,s11. In each connection, the input value is multiplied by the weight and

then the bias is added. This is denoted as , with j being the neuron and k the layer.

This product is then given input to the activation function g. There are various

activation functions which are used serving as gates in between input to a neuron and

its output to the next layer. Activation functions can be simple enough, such as the

binary step function, which are threshold-based, in which if the input value is above

(or below) a certain threshold, the current neuron is activated and the exact same

signal is sent to the next layer. In the case of multiclass classification, this cannot be

used as output layer activation function, as it cannot support classifying to one of the

many categories. Additionally, there are linear activation functions: they take the

input and create an output signal which is proportional (y=bx) to the input. They

allow for multiple output (not just binary output like the binary step functions) but

https://en.wikipedia.org/wiki/Iteration

31

they have major bottlenecks when coming to training: It is not possible to use them

with the backpropagation algorithm, as they result in constant derivatives of the error

function. Finally, there are non-linear activation functions. They are appropriate for

backpropagating the error and identifying the updates needed for the weights and

biases. Sigmoid function is one of the non-linear activation functions. It is defined as

. It can be used also for the output layer. Output values range between 0

and 1 which also is a way of normalizing the output of each neuron. A great

advantage of using sigmoid activation function relies on the fact that for high positive

or negative values (-2<x<2), the output value is close to 0 or 1, which enables clear

predictions. On the other hand, sigmoid activation function can result in the

phenomenon called vanishing gradient, where for very high or very low values of

input, there is no change to the prediction. This can lead to vanishing gradient (just

small changes to the error), meaning the network does not learn any further or learn

slowly. In addition, sigmoid functions can be computationally expensive. Last but not

least, sigmoid functions do not offer zero centered outputs, which can be problematic

in some tasks. When in need of zero centered output, one can use the hyperbolic

tangent activation function, which is a good choice when there are polarized values

(strongly negative, neutral and positive) in the input. Hyperbolic tangent activation

function is defined as: . Tanh can also be computationally

expensive. On of the most common activation functions used is the rectified linear

unit (ReLu) activation function. It is more efficient computationally compared to

sigmoid and tanh and often helps the network converge quickly. It is defined as:

. Although it allows for backpropagation, it can sometimes prevent

the network from learning further: when inputs are zero or negative, the gradient of

the function becomes zero and backpropagation cannot be performed. This can be

avoided with use of a variation of ReLu called leaky ReLu, which has a small positive

slope in the negative values, such to enable backpropagation. Leaky ReLu is defined

as . Finally, softmax activation function is another non-liner

activation function, which is commonly used for training neural networks. It is able to

handle multiclass problems. It also gives a probabilistic output (probability of the

32

input value being a class). This is why it is often used only as output layer activation

function in networks which learn to predict multiple classes. It is defined as

for j = 1, …, K, where x is the input vector of K real numbers.

Figure 7 illustrates the activation functions described here.

33

Figure 6: Activation functions

The output for this node is denoted as . If we define as rk the number of

nodes in layer k, we can denote weights of a specific neuron j in layer k are

highlighted as vectors: . Respectively, the output vector for

layer k can be denoted as vector . In the beginning of the training,

the input layer is initialized with output values which are equal to the input vector

, i.e. .

Then, the product sums and output of each hidden layer are calculated as

described next. For every hidden layer (1 to m) k, we compute

, where i takes all values between 1 and rk (number of neurons

in layer k). The is fed to the activation function g and the output is calculated:

 for i in range 1 and rk. The activation function g can differ from layer to

layer. Depending on the output type we need, we can also choose different activation

functions in the output layer and the hidden layers. In any case, the output of the

neural network will be: .

During training, a feedforward network tries to learn by updating the values of

the weights and the biases . Given a set of training examples

, each time these parameters are updated, the mean

squared error is calculated:

, where oi signifies the prediction made by the

network regarding the input vector and yi the true value. The goal is to minimize

the MSE(X). In each of such updates (iteration), the weights and biases are calculated

with help of the gradient descent:

 and

34

The partial derivatives of the above equations are computed with help of

backpropagation, which is an algorithm for calculating the error function (in this case

MSE) with respect to the network’s weights and biases. One single iteration of the

network includes the following steps: First, all values are calculated for

every input vector . Then, the backward values are calculated with help of

backpropagating the error. Specifically, the partial derivatives of the error function are

computed. Then, according to these derivatives, the weights and biases (and)

are updated.

Figure 7: An example architecture of a feedforward multilayer perceptron.

3.2 Sequences of words and word embeddings

Another popular input representation of textual Data are word embeddings,

which have been widely used in Text classification [42-44]. However, due their

dimensions the use of more sophisticated Neural Networks such as Convolutional

Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) is preferred [45-

47]. In order to transform textual data to the appropriate format, the text is represented

35

as a multidimensional vector. Each of its dimensions are a one-dimensional vector

which represents a word. These dense vectors are called word embeddings. Word or

sequences of words from the available vocabulary of a task are mapped to vectors,

which are a learned representation for text where words that have the same meaning

also have a similar representation. Word2Vec, FastText and Glove are some of the

most popular word embeddings that are used in NLP tasks.

Word2Vec representation is learned by the word2vec algorithm, which is an

unsupervised algorithm which detects synonymous words and learns associations

between words in a given corpus. In this input representation, each unique word (or

lemma) is represented as a one-dimensional vector of numbers. The cosine similarity

metric between two vectors A and B gives the level of semantic similarity between

the respective words:

Obtaining a Word2Vec representation can be done with two ways: using

the continuous bag-of -words (CBOW) and the skip-gram model. Given a corpus, the

model of word2vec loops on the words of each sentence and tries to use the current

word in order to predict the neighboring words (context). If we can represent our text

as a sequence of words:

Then, for word wj (called central), the context of wj is given by its left and

right neighboring words:

where M is a selected parameter and represents the half-size of the context

window, which is the number of words in each context. To each word wi, a vector

representation v is assigned. Also, we define the probability that wo is in the context

of wi as the softmax of their vector product:

36

Skip-gram models try to predict the context of central words, by finding the

set of vectors v which minimize the loss function:

 where Ci is the context of

word wi.

Skip-gram model is a Neural Network, which has as input layer a vector of

length X, where X is the number of unique words in the corpus. Each word has its

own vector, with initially a “1” value in the position of the same word and zeros in

every other position. The output vector has also length X and contains for every

unique word in the corpus the probability that a randomly selected nearby word is the

same word. The output layer uses the softmax described above. If two different

words have very similar contexts, then the model will output similar vector results.

Hidden layer units do not have activation functions. An example architecture of skip-

gram modelling is illustrated in Figure 9. Finally, besides of the context window size

(M) described above, there are also some other parameters that are important when

training a word2vec representation with skip-gram model. These include both

word2vec specific parameters such as the length of the representation vector as well

as common neural network parameters such as the learning rate and the number of

training epochs. Figure XX illustrates an example of word2vec representation. Note,

that stopwords such as “is” and “this” are usually excluded from training and

representing text as rarely capture any relevant information. Finally, we need to

mention a major bottleneck of Word2Vec representations: the Out-Of-Vocabulary

issue. As one embedding is created for each word, new words not seen during

skipgram (or CBOW) training cannot be handled and are therefore assigned a zero

value.

GloVe (Global Vectors for Word Representation) is a method for creating

word2vec-like representations. It origins from the Stanford University and has various

available open-source pre-trained embeddings such as the GloVe 100d (word

embeddings of length 100) [48]. Glove model is trained on a matrix, which consists of

word-word co-occurrence non zero values. This matrix essentially highlights how

frequently word co-occur with other words within a corpus. GloVe tries to capture

both global and local statistics of the given corpus [49].

37

Figure 8: Example architecture of a skip-gram training for word2vec embedding

Figure 9: Example of word2vec representation

Another popular technique for learning complex representations of text with

temporal information is FastText. FastText was built upon Word2Vec and is based on

the fact, that each word is not treated as a whole (as in Word2Vec) but as a

38

composition of multiple ngrams. For instance, if we choose n equal to 3 the word

“manufacturing” is treated as a vector of all 3-grams:

The special characters < and > are introduced in FastText at the beginning and

end of original words. FastText representations can help overcome common

Word2Vec issues such as a word being not in the vocabulary. FastText

representations (embeddings) can be trained with skip-gram and CBOW [44]. Finally,

Gensim Library provides open-source software for training both Word2Vec and

FastText embeddings [50].

I. Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are a category of Deep Neural Networks

which can help capture temporal information in the text, i.e. relationships between

words and their position in the job advertisement. Long Short-Term Memory (LSTM)

networks are a special case of RNNs. RNNs have been used for text classification

tasks such as context sensitive email classification and web site indexing [51]. In

addition, LSTMs have outperformed other methods achieving 87% classification

accuracy in the binary task of classifying social media messages to one of the two

United States political parties’ leanings [46]. Sentiment Classification of user reviews

is another problem which LSTMs have addressed efficiently [52, 53]. As mentioned

before, RNNs are a general category of deep learning architecture. For the purposes of

this work, we investigate specifically the LSTM architecture.

LSTMs are very popular for text classification tasks. They were developed

explicitly to capture long-term dependencies and as a need to address the vanishing

gradient problem: deep networks with multiple layers suffer from zero valued

gradients of the loss function due to the activation functions applied, which leads to

challenges in training (during backpropagation) [54]. In other words, the gradients

decrease (or increase) exponentially while being multiplied consecutively in great

numbers of layers. LSTMs use a technique called “gradient clipping” which deals

with vanishing gradient problem by capping the maximum value for the gradient.

LSTMs can learn long-term dependencies between input and output due to some

architectural units called forget (or recurrent in general) gates. As in any RNN,

39

LSTMs have loops in their units. An example of a typical RNN architecture is

illustrated in Figure 11 below. All RNNs consist of repeating modules (units), which

are presented in Figure 12. In standard RNNs, these modules have a similar and

simple structure. Input xt is feeded in a unit A and the output is ht. In contrast to

Feedforward Networks, there are loops in some (or all) units, allowing previous

output to be used as inputs while having hidden states. For any timestep t, the

activation (or input to unit) at and output ht are defined as:

 and , where g1 and

g2 are some activation functions and Wax, Waa, Wha, ba, bh are coefficients that are

shared temporally. Commonly used activation function are the sigmoid, the tanh and

the ReLU functions.

 Figure 10: An example of recurrent architecture

Figure 11: A simple recurrent unit in standard RNNs

40

The total loss function (all time steps) is calculated via all losses of every time

step t:

Backpropagating occurs also at every time step T:

LSTMs have also a chain-like structure regarding the unit layout. However,

the units have different structure themselves. In every unit (called cells or memory

blocks), there are two states that are transferred to the next cell: these are the cell state

and the hidden state (Ct and ht). The cell state run straight through the entire cell,

where three operational units called gates are adding or deleting information to it.

Gates (Figure 13) consist of a sigmoid neural network layer and a pointwise

multiplication operation. This layer output a value between zero and one (like any

sigmoid function). This output value describes how much of the input should be

passed through.

Figure 12: LSTM gate: A sigmoid neural network layer and a pointwise

multiplication operation

Firstly, ht-1 hidden state from previous cell is coming in the cell. Through a

sigmoid layer called “forget gate layer”, the network decides on what information will

be thrown away from the cell state. This is done by “looking” at ht-1 and xt and output

a number between zero and one, where a zero means getting completely rid of the

41

previous hidden state and a one signifies keeping the hidden state as is. The forget

gate layer is a function defined as:

Subsequently, the network decides what new information is going to be stored

in the cell state. This step consists of two sequential operations. At first, a sigmoid

layer it (called input gate layer) decides which values will be updated. Afterwards, a

tanh layer computes the candidate values that could be added to the cell state.

These two operations are defined as:

 and

Next, the old cell state Ct-1 is updated and “integrated” to the new cell state Ct

based on the operations done so far. Specifically, the old state is multiplied first by ft,

which results in “forgetting” the information that ft function decided to forget. Next,

the product of it and is added to the cell state Ct. The addition of

signifies the new candidate values (scaled by how much the network decided

to update the cell state. Ct is given thus by:

The final step is to compute an output hidden state ht which will be used in the

next cell (if any) along with Ct. First, a sigmoid layer decides which parts of the cell

state are going to be out-put (ot). A tanh function squishes the cell state values

between -1 and 1 (tanh()). The outputs of these two operations are multiplied in

order to apply the earlier decision on what parts to ouput and the final ht is calculated:

 and

42

 Figure 13: A LSTM cell

II. Convolutional Neural Networks

Convolutional neural networks (CNNs) have been used for text classification

on word sequences input representation, showing good classification results compared

to Long Short Term Memory models [3] and other conventional Machine Learning

approaches [55]. Compared to the previous input representation (BoW) described,

CNNs have been proved to outperform them on word sequences with at least 15% in

terms of classification accuracy [47]. The depth of the model seems to be of high

importance for better results in the task of classifying text with CNNs: very deep

CNNs have outperformed existing state-of-the-art results [56]. Finally, CNNs have

been combined with LSTMs for representing input sentences and classifying them

[57, 58]. This approach was able to capture both important local (low level) features

as well as global and temporal relationships with CNNs and LSTMs respectively

achieving state of the art results in some real-world use cases [55, 57]. The main

results of applying LSTMs (and RNNs in general) together with CNNs for the task of

text classification show that CNNs can be very efficient at extracting features that are

43

irrelevant with the position of the words, whereas RNNs and LSTMs can model

sequential relationships [59].

CNNs consist of an input layer, one output layer and one or more hidden

layers. However, CNNs differ essentially from feedforward multilayer perceptrons, as

their layer are convolutional: they convolve with a multiplication or some other dot

product. The convolutional operation occurs in the first part of the convolutional layer

and is carried out by the Kernel (or filter), which is a matrix. The kernel begins on the

top left of the input matrix, performs the convolution on the same length sub-matrix

over which it is hovering and moves on to the right with respect to a certain stride

value. When it parses the width of the input matrix, it continues from the next row of

the input matrix. This continues until the entire input matrix is parsed. Kernels

transform the input data to some other shape which captures neighboring

relationships. Therefore, CNNs can capture the spatial or/and temporal dependencies

in input data by applying filters. Usually, the first layers of convolution capture low

level dependencies whereas the last convolutional layers capture more high level

representations. These multiple convolution result in reducing the dimensionality of

the input data. To avoid shrinking output due to loss of information, CNNs can be

equipped with padding layers, which adds extra values on the input matrix (usually

zeros), so as to result in same length convolved features (same padding). Typically,

after having the convolutional filter applied on the input matrix, an activation function

such as ReLU is passed over the convolved feature.

44

Figure 14: An example of convolution with 2x2 filter on 4x4 input and stride length 2

on both axes

Figure 15: An example of convolution with 2x2 filter on 3x3 input and stride length 1

on both axes with zero padding

CNNs also have Pooling layers which reduce the dimensions of the convolved

feature in order to extract further dominant features and to reduce the computational

needs. We can discriminate two types of pooling functions. Max Pooling returns the

minimum from the sub matrix covered by the convolutional kernel. Max Pooling also

helps towards removing noise as it discards noisy activation by selecting always the

maximum value of the neighborhood. Average Pooling returns the average of all

values inside the sub matrix covered by the convolutional kernel. Average Pooling

can also help regarding noise reduction.

Figure 16: Max and Average Pooling over 3x3 convolved feature with 2x2 kernel

To sum up, every hidden layer of a CNN consists of the convolutional

operation along with the pooling layer. The final output is given as input to a regular

45

feedforward neural network in order to proceed with the classification. Before this,

the final output needs to be flattened out, as after the convolutional layers it is

represented as matrix. Therefore, an MxN matrix output of CNN convolutional layers

is flattened out through a flattening layer into MxN vector {x1, …, xMN}. This vector

is then fed to a feedforward ANN. There, every step described regarding the ANNs it

taking place (gradient descent, backpropagation etc.). Finally, during training, CNNs

try to learn filter values, which is equivalent to learning weights and biases in ANNs.

CNN neurons can share the same filter, which makes CNNs much less

computationally expensive [60]. Applied on text classification and specifically the

sequence of words (with embeddings) input representation, the CNN has an

equivalent architecture like Figure XX below: An MxN pre-trained word embeddings

representation of the text is the input matrix. Multiple convolutional layers

(convolution, ReLu) and pooling layers are following. The output is flattened and

given as input to a feedforward multilayer perceptron, which has a softmax function

in the output layer for classifying to one of the 29 categories.

Figure 17: CNN architecture example

46

4 Dataset

 In order to train the described algorithms, we collected 233.997 job

descriptions of real-world job advertisements from the “Find a Job” application of the

UK government [61]. Adzuna is the official provider and maintainer of all Data.

These Data are free text job descriptions of length between 8 and 676 words that have

been scraped by Adzuna. The labelling of the training Data is handcrafted: Every job

description is manually annotated with one of the 29 categories (Table 1) that are

used. For the evaluation of results, it is necessary to highlight the class distribution in

the training, validation and testing dataset (Figure 19).

Figure 18: Class distribution of available training and testing Data

As presented in Figure 19 above, there is significant imbalance in the instance

amount distribution among the job categories. Specifically, the categories of

47

Hospitality-Catering, Other-General, Trade-Construction, Logistics-Warehouse, IT,

Domestic Help and Admin have 90% of the available Data. On the other hand, there

are some categories, such as Consultancy, Travel and Agriculture-Fishing-Forestry

which are minority classes with significantly low amount of data. These observations

can be useful for the interpretation of later results, in cases of significant

differentiations in class wise metrics or overfitting in one or more predominant

categories. Finally, the presented distribution among the classes is due to the nature of

the UK job market at the time that they were made available for the purposes of this

work. Data Augmentation techniques such as under-sampling or synthetic data

generation are considered for future work.

Regarding word embeddings, we experimented both with existing pre-trained

word vectors as well as custom ones trained on our job advert Data. In the first case,

we used the GloVe 100d pre-trained word vectors [49, 62].

48

5 Methodology

As described previously, 2 different input data representations are examined, namely

Bag of Words (BoW) with TF-IDF weights and sequences of words with word

embeddings. Depending on the input representation, different Machine Learning and

Deep Learning techniques are used. The methodology of processing the Data,

transforming them into the desired format and training/tuning the models is described

here. In all cases, we split the Data to 72% for training, 20% for testing and 8% for

development. In the following cases of non Deep Learning architectures, the Data

used were the training set and the test set. In Deep Learning approaches, we also used

the development dataset.

5.1 Bag of Words

 4 different algorithmic approaches are applied on the Bag of Words

representation, namely the Multinomial Naïve Bayes, CART Decision Tree algorithm,

Support Vector Classifier and a Feedforward Neural Network. In all following cases,

the 4 approaches had the same parameters, which are presented in Table 2.

Approach Parameter

Multinomial

Naïve Bayes

• The additive (Laplace/Lidstone) smoothing parameter

alpha was set to 1

Decision Tree

• function to measure the quality of the splits is the Gini

impurity

• minimum number of samples required to split an internal

node was set at 500

• The number of features to consider when looking for the

best split was set to the number of input features

• No pruning

• The strategy used to choose the split at each node was the

best split that can be achieved

Support Vector

Classifier

• Regularization parameter (C) was set at 0.1

• Linear kernel

• Size of kernel cache was set at 200MB

• Use of shrinking heuristic

Feedforward • 2 hidden layers

• Activation function in all layers except for output layer is

49

Neural Network ReLU

• 256 neurons in input layer

• 128 neurons in first hidden layer

• 64 neurons in second hidden layer

• 29 neurons in out put layer (number of categories)

• One dropout layer after every hidden layer with dropout

value 0.3

• Loss used categorical cross-entropy

• Output activation is softmax

• Optimizer is Adam

Table 2: Parameters of models used for BoW representations

 Each of the described models was used two times: each model was first

trained on BoW TF-IDF representations of lowercased job descriptions and secondly

on BoW TF-IDF representations of lowercased and stemmed job descriptions.

Lowercasing was applied in order to avoid that words with capital letters (starting a

sentence etc.) are treated differently when appeared later in a sentence without a

capital letter. Stemming is a technique for removing the suffix off a word, thus

transforming it to a linguistic root (e.g. the stem of the word “transformer” is

“transform”). In both described cases, punctuation and stopwords were removed.

 Therefore, the first step here was to preprocess the Data by removing

stopwords and punctuation. Then, we continued by firstly just lowercasing the text

data and obtaining the first processed dataset and secondly by also stemming the

lowercased data and obtaining a second processed dataset. After training the models

on the two datasets, we obtained 8 trained models in total.

5.2 Sequences of words and pre-trained embeddings

 After finishing with BoW representation, we experimented with word

embeddings and padded sequences. The preprocessing steps here were lowercasing

and stemming (with removal of stopwords and punctuation). First, we used pre-

trained word embeddings, namely Google’s word2vec embeddings (Glove 100d).

After transforming the text data into the described format, we trained three different

deep learning architectures on them, namely a Feedforward Neural Network, a

Convolutional Neural Network and a Recurrent Neural Network. The parameters of

50

these models are presented in Table 3. After this process, we obtained another three

trained models.

Approach Parameter

Feedforward

Neural

Network

• 3 hidden layers

• The length of the embedding vector is 100

• Activation function in all layers except for output layer is ReLU

• Embedding layer serves as input layer

• 512 neurons in first hidden layer

• 256 neurons in second hidden layer

• 128 neurons in third hidden layer

• 29 neurons in output layer (number of categories)

• One dropout layer after every hidden layer with dropout value 0.5

• Loss used categorical cross-entropy

• Output activation is softmax

• Optimizer is Adam

Convolutional

Neural

Network

• Embedding layer serves as input layer (length of embedding vector is

100)

• 3 parallel convolutional layers with 1, 5, 10 window sizes (filters)

respectively

• After the first two convolutional layers, there is a max pooling

function with pooling size 5

• After the 3rd convolutional layer, there is a max pooling function with

pooling size 30

• There are two more convolutional layers with window sizes (filters) 3

• All convolutional layers are of size 128

• dense layer (128 neurons)

• output dense layer (20 neurons)

• Activation function in all layers except for output layer is ReLU

• Loss used categorical cross-entropy

• Output activation is softmax

• Optimizer is Adam

Recurrent

Neural

Network

• Embedding layer serves as input layer (length of embedding vector is

100)

• LSTM layer with 64 LSTM units

• Dense layer with 32 neurons with ReLU activation

• Output dense layer with 29 neurons

• Loss used categorical cross-entropy

• Output activation is softmax

• Optimizer is Adam

Table 3: Parameters of trained models on sequences of words

51

5.3 Sequences of words and custom embeddings

Finally, we trained our own custom embeddings and re-trained the three deep

learning architectures of Table 3. Specifically, we used the skipgram algorithm to

train custom word2vec embeddings on the lowercased dataset of the first step. In

addition, we used the skipgram algorithm to train custom FastText embeddings on the

lowercased dataset of the first step. After obtaining the two custom embeddings

(word2vec and FastText), we applied the three Deep Learning models of Table 2 on

them, which resulted in another 6 models. The Table 4 summarizes all trained models.

Model Input Data Representation

MNB BoW (TF-IDF) on lowercased job descriptions

MNB BoW (TF-IDF) on lowercased and stemmed job descriptions

DT BoW (TF-IDF) on lowercased job descriptions

DT BoW (TF-IDF) on lowercased and stemmed job descriptions

SVC BoW (TF-IDF) on lowercased job descriptions

SVC BoW (TF-IDF) on lowercased and stemmed job descriptions

FNN BoW (TF-IDF) on lowercased job descriptions

FNN BoW (TF-IDF) on lowercased and stemmed job descriptions

FNN Lowercased job descriptions and Glove word embedding layer

FNN Lowercased job descriptions and custom word2vec embedding layer

FNN Lowercased job descriptions and custom FastText embedding layer

CNN Lowercased job descriptions and Glove word embedding layer

CNN Lowercased job descriptions and custom word2vec embedding layer

CNN Lowercased job descriptions and custom FastText embedding layer

RNN Lowercased job descriptions and Glove word embedding layer

RNN Lowercased job descriptions and custom word2vec embedding layer

RNN Lowercased job descriptions and custom FastText embedding layer

Table 4: Summary of trained models

52

5.4 Evaluation metrics

All models were evaluated with use of Recall, Precision, F1-Score and

Accuracy both class-wise and with averaging over all classes. If we define as True

Positives (TP) of a class X the number of correct classifications (predicted as X while

being actually X), as False Positives (FP) of a class X the amount of predictions X

that were not actually X, as False Negatives (FN) of a class X the number of

predictions not equal to X that were actually X and as True Negatives (TN) of a class

X the number of predictions not equal to X that were actually not X, then Precision,

Recall and F1-Score of the Class X are defined as:

Precision is used to measure how accurate the model is in predicting positives, which

means how many positive predictions of the Class X were indeed positive. High

Precision is needed when the cost of False Positives is high, i.e. when there is a high

need not predict Negatives as Positives (e.g. spam detection). Recall measures how

many of the actual Positives were classified as Positives. High Recall is needed when

there is a high need of not having False Negatives (e.g. sick patient detection). F1-

Score is a measure that is used when there is a need to balance between good

Precision and good Recall. For the purposes of evaluating the models, we used

Precision, Recall and F1-Score of each class as well as the testing and training

accuracies of the model. Accuracy is defined as:

For the purposed of the models’ evaluation, we also used the macro average and

weighted average of the Recall, Precision and F1-Scores of all classes within a model.

Macro average for a metric measures the average value of the metric for all classes.

The weighted average calculates the average metric’s value using a weight that

depends on the number of true labels for each class: For instance, Macro F1 and

weighted F1 are:

53

6 Results and Discussion

6.1 Classification results per model (Accuracy, Recall,

Precision and F1-Score)

1) Multinomial Naïve Bayes trained on Bag of Words TF-IDF with lower case

descriptions

The Multinomial Naïve Bayes on BoW representation of lower-case descriptions

achieved a training accuracy of 73.7% and a testing accuracy of 72.1%. The macro

average Precision, Recall and F1-Score were 65%, 48% and 49% respectively. The

weighted average Precision, Recall and F1-Score were 72%, 72% and 72%

respectively. The Precision, Recall and F1-Score of each class are highlighted in

Figure 19. The confusion matrix is available at the Appendix. The average F1-Score,

Precision and Recall of the model are presented in Table 5 below:

 Precision Recall F1-Score

Macro average 65% 48% 49%

Weighted average 72% 72% 72%

Table 5: Average metrics of MNB on BoW and lower case descriptions

54

Figure 19: Classification Report of MNB on BoW and lower case descriptions

55

2) Multinomial Naïve Bayes trained on Bag of Words TF-IDF with lower case

stemmed descriptions

The Multinomial Naïve Bayes on BoW representation of lower case and stemmed

descriptions achieved a training accuracy of 73.8% and a testing accuracy of 72.4%.

The macro average Precision, Recall and F1-Score were 65%, 48% and 49%

respectively. The weighted average Precision, Recall and F1-Score were 73%, 72%

and 71% respectively. The Precision, Recall and F1-Score of each class are

highlighted in Figure 20. The confusion matrix is available at the Appendix. The

average F1-Score, Precision and Recall of the model are presented in Table 6 below:

 Precision Recall F1-Score

Macro average 65% 48% 49%

Weighted average 73% 72% 71%

Table 6: Average metrics of MNB on BoW and lower case and stemmed descriptions

56

Figure 20: Classification Report of MNB on BoW and lower case and stemmed

descriptions

57

3) Decision Tree trained on Bag of Words TF-IDF with lower case descriptions

The Decision Tree algorithm on BoW representation of lower case descriptions

achieved a training accuracy of 74.1% and a testing accuracy of 68.1%. The macro

average Precision, Recall and F1-Score were 57%, 48% and 50% respectively. The

weighted average Precision, Recall and F1-Score were 68%, 68% and 68%

respectively. The Precision, Recall and F1-Score of each class is highlighted in Figure

21. The confusion matrix is available at the Appendix. The average F1-Score,

Precision and Recall of the model are presented in Table 7 below:

 Precision Recall F1-Score

Macro average 57% 48% 50%

Weighted average 68% 68% 68%

Table 7: Average metrics of Decision Tree on BoW and lower case and stemmed

descriptions

58

Figure 21: Classification Report of Decision Tree on BoW and lower case

descriptions

59

4) Decision Tree trained on Bag of Words TF-IDF with lower case and stemmed

descriptions

The Decision Tree algorithm on BoW representation of lower case and stemmed

descriptions achieved a training accuracy of 73.1% and a testing accuracy of 67.6%.

The macro average Precision, Recall and F1-Score were 59%, 48% and 50%

respectively. The weighted average Precision, Recall and F1-Score were 68%, 68%

and 67% respectively. The Precision, Recall and F1-Score of each class is highlighted

in Figure 22. The confusion matrix is available at the Appendix. The average F1-

Score, Precision and Recall of the model are presented in Table 8 below:

 Precision Recall F1-Score

Macro average 59% 48% 50%

Weighted average 68% 68% 67%

Table 8: Average metrics of Decision Tree on BoW and lower case and stemmed

descriptions

60

Figure 22: Classification Report of Decision Tree on BoW and lower case and

stemmed descriptions

61

5) Support Vector Classifier with linear kernel trained on Bag of Words TF-IDF

with lower case descriptions

The Support Vector Classifer on BoW representation of lower case descriptions

achieved a training accuracy of 79.5% and a testing accuracy of 77.3%. The macro

average Precision, Recall and F1-Score were 73%, 56% and 59% respectively. The

weighted average Precision, Recall and F1-Score were 78%, 77% and 77%

respectively. The Precision, Recall and F1-Score of each class is highlighted in Figure

23. The confusion matrix is available at the Appendix. The average F1-Score,

Precision and Recall of the model are presented in Table 9 below:

 Precision Recall F1-Score

Macro average 73% 56% 59%

Weighted average 78% 77% 77%

Table 9: Average metrics of SVC on BoW and lower case descriptions

62

Figure 23: Classification Report of SVC on BoW and lower case descriptions

63

6) Support Vector Classifier with linear kernel trained on Bag of Words TF-IDF

with lower case and stemmed descriptions

The Support Vector Classifer on BoW representation of lower case descriptions

achieved a training accuracy of 79.5% and a testing accuracy of 77.3%. The macro

average Precision, Recall and F1-Score were 72%, 57% and 60% respectively. The

weighted average Precision, Recall and F1-Score were 78%, 77% and 77%

respectively. The Precision, Recall and F1-Score of each class is highlighted in Figure

24. The confusion matrix is available at the Appendix. The average F1-Score,

Precision and Recall of the model are presented in Table 10 below:

 Precision Recall F1-Score

Macro average 72% 57% 60%

Weighted average 78% 77% 77%

Table 10: Average Metrics of SVC on BoW and lower case and stemmed

descriptions

64

Figure 24: Classification Report of SVC on BoW and lower case and stemmed

descriptions

65

 7) Feedforward Neural Network trained on Bag of Words TF-IDF with

lower case descriptions

The Feedforward Neural Network on BoW representation of lower case descriptions

achieved a training accuracy of 79.5% and a testing accuracy of 80.37%. The macro

average Precision, Recall and F1-Score were 74%, 64% and 65% respectively. The

weighted average Precision, Recall and F1-Score were 80%, 80% and 80%

respectively. The Precision, Recall and F1-Score of each class is highlighted in Figure

27. The confusion matrix is available at the Appendix. The average F1-Score,

Precision and Recall of the model are presented in Table 11 below:

 Precision Recall F1-Score

Macro average 74% 64% 65%

Weighted average 80% 80% 80%

Table 11: Average Metrics of FNN on Bow and lower case descriptions

The model loss (train and test) and model accuracy (train and test) with respect to the

training epochs are presented in Figures 26 and 27 respectively.

Figure 25: Loss per training epoch for FNN

with lower case descriptions

Figure 26: Accuracy per training epoch for FNN

with lower case descriptions

66

Figure 27: Classification Report for FNN with lower case descriptions

67

8) Feedforward Neural Network trained on Bag of Words TF-IDF with lower

case and stemmed descriptions

The Feedforward Neural Network on BoW representation of lower case and stemmed

descriptions achieved a training accuracy of 79.5% and a testing accuracy of 80.5%.

The macro average Precision, Recall and F1-Score were 76%, 63% and 65%

respectively. The weighted average Precision, Recall and F1-Score were 80%, 81%

and 80% respectively. The Precision, Recall and F1-Score of each class is highlighted

in Figure 30. The confusion matrix is available at the Appendix. The average F1-

Score, Precision and Recall of the model are presented in Table 12 below:

 Precision Recall F1-Score

Macro average 76% 63% 65%

Weighted average 80% 81% 80%

 Table 12: Average Metrics of FNN on BoW and lowercased and stemmed

descriptions

The model loss (train and test) and model accuracy (train and test) with respect to the

training epochs are presented in Figures 28 and 29 respectively.

Figure 28: Loss per training epoch for FNN with

lower case and stemmed descriptions

Figure 29: Accuracy per training epoch for FNN with

lower case and stemmed descriptions

68

Figure 30: Classification Report for FNN with lower case and stemmed descriptions

69

9) Feedforward Neural Network trained on Google's word2vec (Glove)

embeddings with lower case descriptions

The Feedforward Neural Network on sequences of words and on Google's word2vec

(Glove) embeddings of lower case descriptions achieved a training accuracy of

66.86% and a testing accuracy of 66.63%. The macro average Precision, Recall and

F1-Score were 42%, 40% and 40% respectively. The weighted average Precision,

Recall and F1-Score were 64%, 67% and 64% respectively. The Precision, Recall and

F1-Score of each class is highlighted in Figure 33. The confusion matrix is available

at the Appendix. The average F1-Score, Precision and Recall of the model are

presented in Table 13 below:

 Precision Recall F1-Score

Macro average 42% 40% 40%

Weighted average 64% 67% 64%

Table 13: Average Metrics for FNN on Google's word2vec (Glove) embeddings with

lower case descriptions

The model loss (train and test) and model accuracy (train and test) with respect to the

training epochs are presented in Figures 31 and 32 respectively.

Figure 31: Loss per training epoch for FNN on

Google's word2vec (Glove) embeddings with lower

case descriptions

Figure 32: Accuracy per training epoch for FNN on

Google's word2vec (Glove) embeddings with lower

case descriptions

70

Figure 33: Classification Report for FNN on Google's word2vec (Glove)

embeddings with lower case descriptions

71

10) Feedforward Neural Network trained on custom word2vec embeddings (with

skipgram algorithm) with lower case descriptions

The Feedforward Neural Network on sequences of words and on custom word2vec

embeddings of lower case descriptions achieved a training accuracy of 73.25% and a

testing accuracy of 73.66%. The macro average Precision, Recall and F1-Score were

52%, 48% and 48% respectively. The weighted average Precision, Recall and F1-

Score were 72%, 74% and 72% respectively. The Precision, Recall and F1-Score of

each class is highlighted in Figure 36. The confusion matrix is available at the

Appendix. The average F1-Score, Precision and Recall of the model are presented in

Table 14 below:

 Precision Recall F1-Score

Macro average 52% 48% 48%

Weighted average 72% 74% 72%

Table 14: Average Metrics for FNN custom word2vec embeddings (skipgram) with

lower case descriptions

The model loss (train and test) and model accuracy (train and test) with respect to the

training epochs are presented in Figures 34 and 35 respectively.

Figure 34: Loss per training epoch for FNN custom

word2vec embeddings (skipgram) with lower case

descriptions

Figure 35: Accuracy per training epoch for FNN

custom word2vec embeddings (skipgram) with lower

case descriptions

72

Figure 36: Classification Report for FNN custom word2vec embeddings (skipgram)

with lower case descriptions

73

11) Feedforward Neural Network trained on custom FastText embeddings (with

skipgram algorithm) with lower case descriptions

The Feedforward Neural Network on sequences of words and on custom FastText

embeddings of lower case descriptions achieved a training accuracy of 73.38% and a

testing accuracy of 72.65%. The macro average Precision, Recall and F1-Score were

47%, 47% and 47% respectively. The weighted average Precision, Recall and F1-

Score were 71%, 73% and 72% respectively. The Precision, Recall and F1-Score of

each class is highlighted in Figure 39. The confusion matrix is available at the

Appendix. The average F1-Score, Precision and Recall of the model are presented in

Table 15 below:

 Precision Recall F1-Score

Macro average 47% 47% 47%

Weighted average 71% 73% 72%

Table 15: Average Metrics for FNN custom word2vec embeddings (skipgram) with

lower case descriptions

The model loss (train and test) and model accuracy (train and test) with respect to the

training epochs are presented in Figures 37 and 38 respectively.

Figure 37: Loss per training epoch for FNN with

custom FastText embeddings (skipgram) with lower

case descriptions

Figure 38: Accuracy per training epoch for FNN with

custom FastText embeddings (skipgram) with lower

case descriptions

74

Figure 39: Classification Report for FNN with custom FastText embeddings

(skipgram) with lower case descriptions

75

12) Convolutional Neural Network trained on Google's word2vec (Glove)

embeddings with lower case descriptions

The Convolutional Neural Network on sequences of words and on Google's

word2vec (Glove) embeddings of lower case descriptions achieved a training

accuracy of 72.58% and a testing accuracy of 73.5%. The macro average Precision,

Recall and F1-Score were 62%, 49% and 50% respectively. The weighted average

Precision, Recall and F1-Score were 73%, 73% and 72% respectively. The Precision,

Recall and F1-Score of each class is highlighted in Figure 42. The confusion matrix is

available at the Appendix. The average F1-Score, Precision and Recall of the model

are presented in Table 16 below:

 Precision Recall F1-Score

Macro average 62% 49% 50%

Weighted average 72% 73% 71%

Table 16: Average Metrics for CNN on Glove embeddings with lower case

descriptions

The model loss (train and test) and model accuracy (train and test) with respect to the

training epochs are presented in Figures 40 and 41 respectively.

Figure 40: Loss per training epoch for CNN with

Glove embeddings with lower case descriptions

Figure 41: Accuracy per training epoch for CNN with

with Glove embeddings with lower case descriptions

76

Figure 42: Classification Report for CNN with Glove embeddings with lower case

descriptions

77

13) Convolutional Neural Network trained on custom word2vec embeddings

(with skipgram algorithm) with lower case descriptions

The Convolutional Neural Network on sequences of words and on custom word2vec

embeddings (trained with skipgram) of lower case descriptions achieved a training

accuracy of 76. 8% and a testing accuracy of 76.17%. The macro average Precision,

Recall and F1-Score were 65%, 54% and 56% respectively. The weighted average

Precision, Recall and F1-Score were 75%, 76% and 77% respectively. The Precision,

Recall and F1-Score of each class is highlighted in Figure 45. The confusion matrix is

available at the Appendix. The average F1-Score, Precision and Recall of the model

are presented in Table 17 below:

 Precision Recall F1-Score

Macro average 65% 54% 56%

Weighted average 75% 76% 77%

Table 17: Average Metrics for CNN on custom word2vec embeddings with lower

case descriptions

The model loss (train and test) and model accuracy (train and test) with respect to the

training epochs are presented in Figures 43 and 44 respectively.

Figure 43: Loss per training epoch for CNN custom

word2vec embeddings (skipgram) with lower case

descriptions

Figure 44: Accuracy per training epoch for CNN

custom word2vec embeddings (skipgram) with lower

case descriptions

78

Figure 45: Classification Report for CNN with custom word2vec embeddings (with

skipgram) with lower case descriptions

14) Convolutional Neural Network trained on custom FastText embeddings

(with skipgram algorithm) with lower case descriptions

The Convolutional Neural Network on sequences of words and on custom FastText

embeddings (trained with skipgram) of lower case descriptions achieved a training

79

accuracy of 76.27% and a testing accuracy of 75.65%. The macro average Precision,

Recall and F1-Score were 65%, 53% and 54% respectively. The weighted average

Precision, Recall and F1-Score were 75%, 76% and 74% respectively. The Precision,

Recall and F1-Score of each class is highlighted in Figure 48. The confusion matrix is

available at the Appendix. The average F1-Score, Precision and Recall of the model

are presented in Table 18 below:

 Precision Recall F1-Score

Macro average 65% 53% 54%

Weighted average 75% 76% 74%

Table 18: Average Metrics for CNN on custom word2vec embeddings with lower

case descriptions

The model loss (train and test) and model accuracy (train and test) with respect to the

training epochs are presented in Figures 46 and 47 respectively.

Figure 46: Loss per training epoch for CNN with

custom FastText embeddings (skipgram) with lower

case descriptions

Figure 47: Accuracy per training epoch for CNN with

custom FastText word2vec embeddings (skipgram)

with lower case descriptions

80

Figure 48: Classification Report for CNN with custom FastText embeddings (with

skipgram) with lower case descriptions

81

15) Recurrent Neural Network trained on Google's word2vec (Glove)

embeddings with lower case descriptions

The Recurrent Neural Network on sequences of words and on Glove embeddings with

lower case descriptions achieved a training accuracy of 81.08% and a testing accuracy

of 78.25%. The macro average Precision, Recall and F1-Score were 68%, 61% and

63% respectively. The weighted average Precision, Recall and F1-Score were 77%,

78% and 77% respectively. The Precision, Recall and F1-Score of each class is

highlighted in Figure 51. The confusion matrix is available at the Appendix. The

average F1-Score, Precision and Recall of the model are presented in Table 19 below:

 Precision Recall F1-Score

Macro average 68% 61% 63%

Weighted average 77% 78% 77%

Table 19: Average Metrics for RNN on Glove embeddings with lower case

descriptions

The model loss (train and test) and model accuracy (train and test) with respect to the

training epochs are presented in Figures 49 and 50 respectively.

Figure 49: Loss per training epoch for RNN on

Glove embeddings with lower case descriptions

Figure 50: Accuracy per training epoch for RNN on

Glove embeddings with lower case descriptions

82

Figure 51: Classification Report for RNN on Glove embeddings with lower case

descriptions

83

16) Recurrent Neural Network trained on custom word2vec embeddings (with

skipgram algorithm) with lower case descriptions

The Recurrent Neural Network on sequences of words and on custom word2vec

embeddings (trained with skipgram) with lower case descriptions achieved a training

accuracy of 81.74% and a testing accuracy of 79.38%. The macro average Precision,

Recall and F1-Score were 71%, 63% and 65% respectively. The weighted average

Precision, Recall and F1-Score were 78%, 79% and 78% respectively. The Precision,

Recall and F1-Score of each class is highlighted in Figure 54. The confusion matrix is

available at the Appendix. The average F1-Score, Precision and Recall of the model

are presented in Table 20 below:

 Precision Recall F1-Score

Macro average 71% 63% 65%

Weighted average 78% 79% 78%

Table 20: Average Metrics for RNN on custom word2vec embeddings with lower

case descriptions

The model loss (train and test) and model accuracy (train and test) with respect to the

training epochs are presented in Figures 52 and 53 respectively.

Figure 52: Loss per training epoch for RNN on custom

word2vec embeddings with lower case descriptions

Figure 53: Accuracy per training epoch for RNN on

custom word2vec embeddings with lower case

descriptions

84

Figure 54: Classification Report for RNN on custom word2vec embeddings with

lower case descriptions

85

17) Recurrent Neural Network trained on custom FastText embeddings (with

skipgram algorithm) with lower case descriptions

The Recurrent Neural Network on sequences of words and on custom FastText

embeddings (trained with skipgram) with lower case descriptions achieved a training

accuracy of 82.22% and a testing accuracy of 79.22%. The macro average Precision,

Recall and F1-Score were 71%, 63% and 65% respectively. The weighted average

Precision, Recall and F1-Score were 79%, 79% and 79% respectively. The Precision,

Recall and F1-Score of each class is highlighted in Figure 57. The confusion matrix is

available at the Appendix. The average F1-Score, Precision and Recall of the model

are presented in Table 21 below:

 Precision Recall F1-Score

Macro average 71% 63% 65%

Weighted average 79% 79% 79%

Table 21: Average Metrics for RNN on custom FastText embeddings with lower case

descriptions

The model loss (train and test) and model accuracy (train and test) with respect to the

training epochs are presented in Figures 55 and 56 respectively.

Figure 55: Loss per training epoch for RNN on custom

FastText embeddings with lower case descriptions

Figure 56: Accuracy per training epoch for RNN on

custom FastText embeddings with lower case

descriptions

86

Figure 57: Classification Report for RNN on custom FastText embeddings withc

87

6.2 Model comparison

 A summarized model-wise comparison of achieved metrics is presented in

Figure 58. The model that achieved the highest weighted average F1-Score was the

Feedforward Neural Network trained on BoW (TF-IDF) representations of

lowercased and stemmed job descriptions. Spefically, this model achieved a weighted

average Precision of 80%, a weighted average Recall of 81%, a weighted average F1-

Score of 80% and a total test accuracy of 80.5%. The other Feedforward Neural

Network trained on BoW (on just lowercased job description) had similar results:

weighted average Precision of 80%, a weighted average Recall of 81%, a weighted

average F1-Score of 80% and a total test accuracy of 80.37%. In this case, the

stemming of job descriptions does not seem to give significantly better results. In all

other cases of BoW representations, this is also obvious: If we examine each model

family (MNB, DT, SVC) separately, we conclude that training on lowercased and

training on lowercased and stemmed job descriptions results in similar metrics. For

instance, the SVC on BoW representation of lowercased descriptions and the SVC on

BoW representation of lowercased and stemmed description achieved exactly the

same test accuracy and weighted average F1-Score.

 The results show that Deep Learning models outperform all kinds of

conventional Machine Learning approaches. Specifically, for BoW (TF-IDF)

representation of lowercased and stemmed job descriptions, the trained Feedforward

Neural Network achieved weighted average Precision, Recall and F1-Score were

80%, 81% and 80% respectively outperforming all trained Support Vector Classifiers,

Decision Trees and Multinomial naïve Bayes models. Regarding strictly the

conventional Machine Learning approaches, the Support Vector Classifier with linear

kernel trained on BoW representation of lower case descriptions achieved a training

accuracy of 79.5% and a testing accuracy of 77.3% outperforming all other Decision

Trees and Multinomial Naïve Bayes models. The Decision Trees had the lowest

metrics among all Machine Learning models (and among all trained models).

88

Figure 58: Model comparison with respect to metrics (weighted)

 If we examine just the Feedforward Neural Networks and the 5 different input

representations we fed into them, then we conclude that FFNs trained on any BoW

representation outperform all kinds of approaches with FNNs and embeddings.

However, we cannot generalize this into the assumption that BoW representations

give better results compared to embeddings and sequences of words. This is due to the

fact that all other kinds of NNs (RNNs and CNNs) when trained on sequences of

words with any kind of embedding layer outperformed all types of conventional

Machine Learning model trained on BoW input (MNB, DT and SVC). It seems that

the model selection is of higher importance in our sample of trained models and their

metrics. Specifically, all Deep Learning models rank higher in terms of metrics

compared to conventional Machine Learning algorithms.

 Investigating strictly just the different embeddings used, we conclude that

custom trained word2vec embeddings give better testing accuracies than any other

embedding (custom trained FastText and pretrained Glove) for each separate neural

network architecture (feedforward, convolutional and recurrent). As presented in

Figure 59, for all types of neural network architectures, the custom word2vec

embedding always achieves higher testing accuracies. Additionally, pre-trained Glove

89

always gives the lowest testing accuracy. However, for Recurrent Neural Networks,

the Glove embedding achieves similar testing accuracy with the other two embedding

types. Finally, the custom FastText embedding achieves close testing accuracy (and

weighted average metrics) with custom word2vec embeddings. Among Neural

Networks trained on embeddings, the Recurrent Neural Networks trained on

lowercased job descriptions and custom word2vec embedding layer is the best

performing model as it achieves a testing accuracy of 79.38% and weighted average

Precision, Recall and F1-Score were 78%, 79% and 78% respectively.

Figure 59: Testing accuracy per embedding type

The most frequent and dominant misclassifications per class among all models are

presented in Table 22 below:

Actual Predicted

Admin Accounting, Customer Services, Human Resources,

Other General, Sales

Engineering Trade and Construction, Manufacturing,

Maintenance, Other General

Domestic Help and Cleaning Other General

Healthcare Social Work, Other General

Hospitality and Catering Other and General

Logistics and Warehousing Other and General

Manufacturing Trade and Construction

90

Teaching Other and General

Manufacturing Engineering

Table 22: Most common misclassifications among the models

Some of these false classifications can be interpreted by the similar content of the

categories. For instance, healthcare and social work jobs as well as admin and

accounting jobs can have common job descriptions. This is due to use of same hint

words, that exist in both sectors. The rates of misclassifications between the described

categories seem to decrease when using Deep Learning models rather than

conventional Machine Learning models.

 In addition, some categories have zero Precision and Recall (and therefore

zero F1) when predicted by some conventional Machine Learning models. This is due

to the significant lower training data available for these categories. The categories of

Agriculture/Fishing/Forestry, Property, Graduate and Travel are such categories:

Multinomial Naïve Bayes preformed poorly on theses classes. Deep Learning models

seem to balance these phenomena, as minority classes have higher True Positive rates.

Specifically, RNNs achieve low recall and precisions for these 4 classes rather than

zeros.

 Furthermore, there are some categories which show good Precisions and

significantly low Recall such as Energy-Oil-Gas and Consultancy. This means that

there are plenty of False Positives, which can be due to some kind of overfitting to

these classes. These phenomena, again, seem to be more intense in the cases of SVC,

Multinomial Naïve Bayes and Decision Trees. Finally, there are some minority

classes such as Healthcare and Legal jobs that have good metrics despite the

significantly low available data.

91

7 Implementation Issues

All described Deep Learning and Machine Learning methodologies were

implemented using Python 3.7.1 and the Keras open-source library (version 2.2.4-tf)

running on top of the Tensorflow Deep Learning framework (version 2.0.0) [63, 64].

The infrastructure used was an ASUS ROG GL704GV Laptop with 16GB of

Random-access memory (RAM), a solid-state drive (SSD) of 256GB capacity, a

solid-state drive (SSD) of 1000GB capacity, a graphics card NVIDIA RTX 2060

(laptop version) and an Intel Core i7-8750H Processor. Both SSDs were configured to

act as extra RAM space dynamically in case of full RAM. The essential python

libraries used for the purposes of data preprocessing, training and inferencing the

models and processing and visualizing results are presented in Table 22.

NLTK Seaborn

Pandas Matplotlib

Sklearn Plotly

Imblearn Numpy

Table 23: Python libraries used

92

8 Conclusion and Future Work

 Our main results show that Deep Learning models outperform all kinds of

conventional Machine Learning approaches such as Support Vector Classifiers,

Multinomial Naïve Bayes and Decision Trees. In addition, training custom word2vec

embeddings helps achieve higher accuracy metrics compared to using pretrained

embeddings such as Glove 100. However, the model selection (choosing a Deep

Learning model against a conventional Machine Learning model) is of higher impact

towards better metrics than using embeddings and sequences of words. The model

that achieved the highest weighted average F1-Score (80%) and the highest testing

accuracy (80.5%) was the Feedforward Neural Network trained on Bag of Words

(TF-IDF) representations of lowercased and stemmed job descriptions. These metrics

are significantly higher than the metrics achieved by the current implementation of

job categorization. Specifically, this model achieved a weighted average Precision of

80%, a weighted average Recall of 81%.

 Deep Learning models on custom trained embeddings seem to be working

good in predominant classes. There are plenty of misclassification among related job

categories, which are more often in the predictions of the conventional Machine

Learning models. In addition, there are some categories which show good Precisions

and significantly low Recall due to the imbalance of the dataset and the high context

similarity among specific categories. Furthermore, all types of models perform poorly

on specific minority classes, specifically Agriculture/Fishing/Forestry, Property,

Graduate and Travel job categories. Finally, there is high imbalance between achieved

Recall and Precision among the classes.

 The first action to achieve more balanced precision and recall results among

all classes is to increase the training data in currently minority classes. Experimenting

with undersampling or oversampling as well as data augmentation techniques such as

synthetic data generation could be also promising towards increasing metrics of

minority classes. It could also be beneficial if we get rid of some categories, for

instance by being merged into some other related category.

 Another method to achieve better results is to use some kind of ensemble

method: Some models seem to be better in predicting specific classes, while being bad

93

at predicting other. We could experiment with creating model layers in a bigger

architecture. For instance, we could have a first layer of trained models, which can

only predict two classes and an “other” class. If the prediction being made by this first

layer is the “other” class, then we proceed to the next layer, which is built upon

another model. This kind of “prediction filtering” can help train separate and less

complex models.

 Using probabilistic algorithms (with probabilistic output) could also be

beneficial. For instance, we could use these outputs in order to create different

confidence levels per class prediction. An example could be to fine tune all these

thresholds with respect to achieved metrics and accept each classification only if the

probability of prediction is higher than the tuned class specific threshold. In the other

case, we would automatically assign to the instance an “unknown” category. This

could help decrease the False Positive rates, as we would accept only strong

predictions. This method would, however, require tuning of 29 probability thresholds

which increases the computational cost of training and development.

 Finally, as the main contextual information for job adverts by nature seems to

be the skillset required for each different vacancy, one could try to extract the skills

from each document and use them to train a model instead of the whole document.

This way, there is a significant reduction in the dimensionality of the dataset and a

possibility that the classes would become more distinct, as in theory, job adverts from

different categories would consist of different required skillsets too.

94

9 BIBLIOGRAPHY

[1] Adzuna website, available at: https://www.adzuna.co.uk/, last accessed on

January 2021

[2] National Health System, available at: https://www.nhs.uk/, last accessed on

January, 2021

[3] Zhang, X., Zhao, J., & LeCun, Y. (2015). Character-level convolutional

networks for text classification. arXiv preprint arXiv:1509.01626.

[4] Aggarwal, C. C., & Zhai, C. (2012). A survey of text classification algorithms.

In Mining text data (pp. 163-222). Springer, Boston, MA.

[5] Li, L., Wang, D., Li, T., Knox, D., & Padmanabhan, B. (2011, July). Scene: a

scalable two-stage personalized news recommendation system. In Proceedings of

the 34th international ACM SIGIR conference on Research and development in

Information Retrieval (pp. 125-134).

[6] Lee, K., Palsetia, D., Narayanan, R., Patwary, M. M. A., Agrawal, A., &

Choudhary, A. (2011, December). Twitter trending topic classification. In 2011

IEEE 11th International Conference on Data Mining Workshops (pp. 251-258).

IEEE.

[7] Quercia, D., Askham, H., & Crowcroft, J. (2012, June). Tweetlda: supervised

topic classification and link prediction in twitter. In Proceedings of the 4th Annual

ACM Web Science Conference (pp. 247-250).

[8] Hillard, D., Purpura, S., & Wilkerson, J. (2008). Computer-assisted topic

classification for mixed-methods social science research. Journal of Information

Technology & Politics, 4(4), 31-46.

[9] Wiltshire Jr, J. S., Morelock, J. T., Humphrey, T. L., Lu, X. A., Peck, J. M., &

Ahmed, S. (2002). U.S. Patent No. 6,502,081. Washington, DC: U.S. Patent and

Trademark Office.

https://www.adzuna.co.uk/
https://www.nhs.uk/

95

[10] Kumar, M., & Rangan, V. (2011). U.S. Patent No. 7,899,871. Washington,

DC: U.S. Patent and Trademark Office.

[11] Pang, B., Lee, L., & Vaithyanathan, S. (2002). Thumbs up? Sentiment

classification using machine learning techniques. arXiv preprint cs/0205070.

[12] Wang, S. I., & Manning, C. D. (2012, July). Baselines and bigrams: Simple,

good sentiment and topic classification. In Proceedings of the 50th Annual

Meeting of the Association for Computational Linguistics (Volume 2: Short

Papers) (pp. 90-94).

[13] Maas, A., Daly, R. E., Pham, P. T., Huang, D., Ng, A. Y., & Potts, C. (2011, June).

Learning word vectors for sentiment analysis. In Proceedings of the 49th annual meeting

of the association for computational linguistics: Human language technologies (pp. 142-

150).

[14] Pang, B., & Lee, L. (2004). A sentimental education: Sentiment analysis using

subjectivity summarization based on minimum cuts. arXiv preprint cs/0409058.

[15] Sahami, M., Dumais, S., Heckerman, D., & Horvitz, E. (1998, July). A Bayesian

approach to filtering junk e-mail. In Learning for Text Categorization: Papers from the

1998 workshop (Vol. 62, pp. 98-105).

[16] Rathod, S. B., & Pattewar, T. M. (2015, April). Content based spam detection in

email using Bayesian classifier. In 2015 International Conference on Communications

and Signal Processing (ICCSP) (pp. 1257-1261). IEEE.

[17] Sasaki, M., & Shinnou, H. (2005, November). Spam detection using text clustering.

In 2005 International Conference on Cyberworlds (CW'05) (pp. 4-pp). IEEE.

[18] Ren, Y., & Ji, D. (2017). Neural networks for deceptive opinion spam detection: An

empirical study. Information Sciences, 385, 213-224.

[19] Jindal, N., & Liu, B. (2007, May). Review spam detection. In Proceedings of the 16th

international conference on World Wide Web (pp. 1189-1190).

[20] Saidani, N., Adi, K., & Allili, M. S. (2019, November). Semantic representation based

on deep learning for spam detection. In International Symposium on Foundations and

Practice of Security (pp. 72-81). Springer, Cham.

[21] Zheng, R., Li, J., Chen, H., & Huang, Z. (2006). A framework for authorship

identification of online messages: Writing‐style features and classification

techniques. Journal of the American society for information science and

technology, 57(3), 378-393.

[22] Rajaraman, A., & Ullman, J. D. (2011). Mining of massive datasets. Cambridge

University Press.

[23] Stuart, A., Arnold, S., Ord, J. K., O'Hagan, A., & Forster, J. (1994). Kendall's

advanced theory of statistics. Wiley.

96

[24] Jurafsky, Dan, and C. Manning. "Text Classification and Naïve Bayes." Available at

http://www. stanford. edu/class/cs124/lec/naivebayes.pdf (last accede on January

2021) (2015).

[25] https://scikit-learn.org/stable/modules/naive_bayes.html

[26] Kibriya, A. M., Frank, E., Pfahringer, B., & Holmes, G. (2004, December). Multinomial

naive bayes for text categorization revisited. In Australasian Joint Conference on Artificial

Intelligence (pp. 488-499). Springer, Berlin, Heidelberg.

[27] Frank, E., & Bouckaert, R. R. (2006, September). Naive bayes for text classification

with unbalanced classes. In European Conference on Principles of Data Mining and

Knowledge Discovery (pp. 503-510). Springer, Berlin, Heidelberg.

[28] Bahety, A. (2014). Extension and evaluation of id3–decision tree algorithm. Entropy

(S), 2(1), 1-8.

[29] Hssina, B., Merbouha, A., Ezzikouri, H., & Erritali, M. (2014). A comparative study of

decision tree ID3 and C4. 5. International Journal of Advanced Computer Science and

Applications, 4(2), 13-19.

[30] Wang, Z. Q., Sun, X., Zhang, D. X., & Li, X. (2006, August). An optimal SVM-based

text classification algorithm. In 2006 International Conference on Machine Learning and

Cybernetics (pp. 1378-1381). IEEE.

[31] Moraes, R., Valiati, J. F., & Neto, W. P. G. (2013). Document-level sentiment

classification: An empirical comparison between SVM and ANN. Expert Systems with

Applications, 40(2), 621-633.

[32] Joachims, T. (2002). Learning to classify text using support vector machines (Vol.

668). Springer Science & Business Media.

[33] Sun, A., Lim, E. P., & Liu, Y. (2009). On strategies for imbalanced text classification

using SVM: A comparative study. Decision Support Systems, 48(1), 191-201.

[34] Wang, Y., Zhou, Z., Jin, S., Liu, D., & Lu, M. (2017, October). Comparisons and

selections of features and classifiers for short text classification. In IOP Conference

Series: Materials Science and Engineering (Vol. 261, No. 1, p. 012018). IOP Publishing.

[35] Joachims, T. (1998, April). Text categorization with support vector machines:

Learning with many relevant features. In European conference on machine learning (pp.

137-142). Springer, Berlin, Heidelberg.

https://scikit-learn.org/stable/modules/naive_bayes.html

97

[36] Kivinen, J., Warmuth, M. K., & Auer, P. (1997). The Perceptron algorithm versus

Winnow: linear versus logarithmic mistake bounds when few input variables are

relevant. Artificial Intelligence, 97(1-2), 325-343.

[37] Schölkopf, B., Tsuda, K., & Vert, J. P. (2004). Kernel methods in computational

biology. MIT press.

[38] Lin, H. T., & Lin, C. J. (2003). A study on sigmoid kernels for SVM and the training of

non-PSD kernels by SMO-type methods. submitted to Neural Computation, 3(1-32), 16.

[39] Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv

preprint arXiv:1412.6980.

[40] Svozil, D., Kvasnicka, V., & Pospichal, J. (1997). Introduction to multi-layer feed-

forward neural networks. Chemometrics and intelligent laboratory systems, 39(1), 43-62.

[41] Goodfellow, I., Bengio, Y., Courville, A., & Bengio, Y. (2016). Deep learning (Vol. 1,

No. 2). Cambridge: MIT press.

[42] Wang, G., Li, C., Wang, W., Zhang, Y., Shen, D., Zhang, X., ... & Carin, L. (2018).

Joint embedding of words and labels for text classification. arXiv preprint

arXiv:1805.04174.

[43] Stein, R. A., Jaques, P. A., & Valiati, J. F. (2019). An analysis of hierarchical text

classification using word embeddings. Information Sciences, 471, 216-232.

[44] Joulin, A., Grave, E., Bojanowski, P., & Mikolov, T. (2016). Bag of tricks for efficient

text classification. arXiv preprint arXiv:1607.01759.

[45] Lai, S., Xu, L., Liu, K., & Zhao, J. (2015, February). Recurrent convolutional neural

networks for text classification. In Proceedings of the AAAI Conference on Artificial

Intelligence (Vol. 29, No. 1).

[46] Rao, A., & Spasojevic, N. (2016). Actionable and political text classification using

word embeddings and lstm. arXiv preprint arXiv:1607.02501.

[47] Hughes, M., Li, I., Kotoulas, S., & Suzumura, T. (2017). Medical text classification

using convolutional neural networks. Stud Health Technol Inform, 235, 246-50.

[48] https://nlp.stanford.edu/projects/glove/

98

[49] Pennington, J., Socher, R., & Manning, C. D. (2014, October). Glove: Global vectors

for word representation. In Proceedings of the 2014 conference on empirical methods in

natural language processing (EMNLP) (pp. 1532-1543).

[50] https://radimrehurek.com/gensim/

[51] Arevian, G. (2007, November). Recurrent neural networks for robust real-world text

classification. In IEEE/WIC/ACM International Conference on Web Intelligence

(WI'07) (pp. 326-329). IEEE.

[52] Nowak, J., Taspinar, A., & Scherer, R. (2017, June). LSTM recurrent neural networks

for short text and sentiment classification. In International Conference on Artificial

Intelligence and Soft Computing (pp. 553-562). Springer, Cham.

[53] Rao, G., Huang, W., Feng, Z., & Cong, Q. (2018). LSTM with sentence

representations for document-level sentiment classification. Neurocomputing, 308, 49-57.

[54] Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural

computation, 9(8), 1735-1780.

[55] Lee, J. Y., & Dernoncourt, F. (2016). Sequential short-text classification with

recurrent and convolutional neural networks. arXiv preprint arXiv:1603.03827.

[56] Conneau, A., Schwenk, H., Barrault, L., & Lecun, Y. (2016). Very deep convolutional

networks for text classification. arXiv preprint arXiv:1606.01781.

[57] Zhou, C., Sun, C., Liu, Z., & Lau, F. (2015). A C-LSTM neural network for text

classification. arXiv preprint arXiv:1511.08630.

[58] Zhang, J., Li, Y., Tian, J., & Li, T. (2018, October). LSTM-CNN Hybrid Model for Text

Classification. In 2018 IEEE 3rd Advanced Information Technology, Electronic and

Automation Control Conference (IAEAC) (pp. 1675-1680). IEEE.

[59] Yin, W., Kann, K., Yu, M., & Schütze, H. (2017). Comparative study of CNN and RNN

for natural language processing. arXiv preprint arXiv:1702.01923.

[60] LeCun, Y. (2015). LeNet-5, convolutional neural networks. URL: http://yann. lecun.

com/exdb/lenet, 20(5), 14.

[61] UK government’s Find A Job Homepage, available at: https://www.gov.uk/find-a-job,

last accessed January 2021

https://radimrehurek.com/gensim/
https://www.gov.uk/find-a-job

99

[62] GloVe Homepage, Available at https://nlp.stanford.edu/projects/glove/, last accessed

January 2021

[63] Keras Official Website, available at: https://keras.io/, last accessed on January 2021

[64] Tensorflow Official Website, available at: https://www.tensorflow.org/, last accessed

on January 2021

APPENDIX

https://nlp.stanford.edu/projects/glove/
https://keras.io/
https://www.tensorflow.org/

100

Figure 60: Confusion Matrix of MNB on BoW and lower case descriptions

Figure 61: Confusion Matrix of MNB on BoW and lower case and stemmed

descriptions

101

Figure 62: Confusion Matrix of DT on BoW and lower case descriptions

Figure 63: Confusion Matrix of DT on BoW and lower case and stemmed

descriptions

102

Figure 64: Confusion Matrix of SVC on BoW and lower case descriptions

Figure 65: Confusion Matrix of SVC on BoW and lower case and stemmed

descriptions

103

Figure 66: Confusion Matrix of FNN on BoW and lower case descriptions

Figure 67: Confusion Matrix of FNN on BoW and lower case and stemmed

descriptions

Figure 68: Confusion Matrix of FNN trained on Google's word2vec (Glove)

embeddings with lower case descriptions

104

Figure 69: Confusion Matrix of FNN trained on custom word2vec embeddings (with

skipgram) with lower case descriptions

105

Figure 70: Confusion Matrix of FNN trained on custom FastText embeddings (with

skipgram) with lower case descriptions

Figure 71: Confusion Matrix of CNN trained on Google's word2vec (Glove)

embeddings with lower case descriptions

106

Figure 72: Confusion Matrix of CNN trained on custom word2vec embeddings (with

skipgram) with lower case descriptions

Figure 73: Confusion Matrix of CNN trained on custom FastText embeddings (with

skipgram) with lower case descriptions

107

Figure 74: Confusion Matrix of RNN trained on Google's word2vec (Glove)

embeddings with lower case descriptions

Figure 75: Confusion Matrix of RNN trained on custom word2vec embeddings (with

skipgram) with lower case descriptions

108

Figure 76: Confusion Matrix of RNN trained on custom FastText embeddings (with

skipgram) with lower case descriptions

