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Abstract 

In 2008, a partially burned wooden shipwreck, dating from the 12th century, 

was discovered off the port of Rhodes, Greece.  

The shipwreck timbers presented a varied degree of charring consisting of 

uncharred, charred and semi-charred material, often encountered on the same 

piece of wood, which indicates considerably different consolidation 

requirements and poses a great challenge for their future conservation.  

This study was set to characterize the morphology, and the physical, chemical 

and mechanical properties of the material, in order to assist in the 

development of an appropriate remedial conservation strategy. 

The morphology of the archaeological wood was documented via scanning 

electron microscopy (SEM). The main physical properties were estimated 

gravimetrically whereas its porosity was evaluated by mercury intrusion 

porosimetry (MIP). For the charred and the semi-charred wood, proximate 

analysis was also undertaken. The mechanical properties were investigated 

using a modified Janka test and a fruit penetrometer. The chemistry of wood 

was examined with Fourier transform infrared spectroscopy (FTIR) for the 

organic part of wood, and energy dispersive spectroscopy (EDS) for its 

inorganic composition. Alterations on cellulose crystallinity were also 

assessed with X-ray diffraction (XRD). 

Results regarding the morphology, clearly demonstrated the three distinct 

charring degrees of the material that exhibited significant ultrastructural 

differences, although the basic cellular anatomy of wood had been preserved. 

More specifically, the uncharred material showed signs of severe 

biodeterioration which is typical in waterlogged wood, while the semi-

charred and charred wood exhibited alterations mainly owed to thermal 

exposure rather than bacterial or fungal decay. In addition, the semi-charred 

samples presented a varied degree of thermal degradation, reflecting its 

diverse exposure to the fire front, whereas the charred material presented 

“plastic deformation” that indicated fast pyrolysis of a wet wood, at high 

temperatures. 
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Physical properties confirmed that the exposure of wood to heat and its burial 

in the marine environment, has created three different waterlogged 

“materials”. In particular among the three charring conditions, the uncharred 

wood presented the lowest basic density, the highest shrinkage and an 

increased porosity mainly due to biodeterioration. In contrast, the semi-

charred and the charred wood presented extremely low shrinkage, which was 

even lower than sound wood of the same species, whereas their porosity was 

only slightly increased.  

All three charring conditions showed low hardness compared to sound wood, 

attributed either to biodeterioration or/and to thermal degradation. 

Furthermore, hardness values of the semi-charred wood were in accordance 

with the morphological observations, showing the transitional nature of the 

material, extending from the charred to the uncharred zone. The results 

obtained regarding the residual chemistry of the material were highly 

correlated with its physico-mechanical properties and its morphology. 

Uncharred wood was found to be chemically similar to biodeteriorated wood, 

with depleted carbohydrates, increased relative lignin content, and elevated 

sulfur and iron concentrations. The semi-charred material presented a 

chemical profile comparable to thermally modified wood where 

hemicelluloses were reduced, cellulose crystallinity was increased, and lignin 

was not significantly altered compared to sound wood. In contrast in charred 

wood, polysaccharides and lignin were almost absent due to pyrolysis, 

making its organic chemistry similar to charcoals. The inorganic chemistry of 

the wood exposed to the fire showed that, towards the charred areas, sulfur, 

iron and oxygen concentrations were decreasing, while the carbon content 

was increasing.  

Based on the results of the present study, it is evident that uncharred wood 

requires remedial conservation using consolidants, whereas semi-charred and 

charred wood may be left to air-dry without treatment. Nevertheless, a great 

challenge arises for conservators as the three charring conditions often coexist 

and the low porosity of the outer charred layer is not expected to facilitate the 

penetration of consolidants into the uncharred core of wood and impede its 

consolidation.  
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1. Introduction 

1.1 The medieval shipwreck discovered in Rhodes harbor 

In 2008, during a routine survey conducted by the Hellenic Ephorate of 

Underwater Antiquities (EUA) in the commercial harbor of  Rhodes Island, a 

shipwreck was exposed in muddy deposits (Koutsouflakis 2017b; 

Koutsouflakis and Rieth 2021)  as a result of the high-energy hydrodynamic 

conditions prevailing at the site. Referred to as “Wreck No4”,  (Koutsouflakis 

2017b; Koutsouflakis and Rieth 2021), it was one of several shipwrecks found 

in the harbor  (Koutsouflakis 2017b). Located adjacent to the main wharf of 

the harbor, the shipwreck rests at a depth of 12-13 meters (figure 1.1), 

(Koutsouflakis and Rieth 2021). 

 

Fig. 1.1 The location of the shipwreck pined on Google Earth map (Map data: 2017© 

Google) 

During the survey, a trial trench was dug , and the early results indicated the 

uniqueness of the find (Koutsouflakis and Rieth 2021). No further research 

or protective actions were held at that time (Koutsouflakis and Rieth 2021), 
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despite the risks posed for its preservation due to the high-energy 

environment. 

Five years later, in 2013, an expedition was undertaken under the 

“MERMAID” project – Saving Wood Shipwrecks in the Mediterranean 

Marine Ecosystems: Research, Development and Application of Innovative 

Methods of In Situ Protection’ (Pournou 2016), funded by the European 

program Thales/NSRF 2007-2013 (Koutsouflakis and Rieth 2021). The 

project was coordinated by the Department of Conservation of Antiquities 

and Works of Art of the TEI of Athens, currently University of West Attica, 

and it was implemented in collaboration with the Institute of Oceanography 

and Marine Biology of the Hellenic Center for Marine Research (HCMR), the 

Department of History, Archaeology and Cultural Resources Management of 

the University of the Peloponnese and the EUA (Pournou 2016; 

Koutsouflakis and Rieth 2021). During the project, the wreck was partially 

excavated and reburied with geotextiles for its in situ protection (Pournou 

2016; Koutsouflakis and Rieth 2021).  

The excavated area was of approximately 90 m2, covering both sides of the 

southern end of the hull (Koutsouflakis and Rieth 2021). The exact size of the 

ship has not been assessed, as during the 2013 season, the northern end, was 

not visible. Nonetheless, based on the shipbuilding elements of the excavated 

part, it is believed that the ship could have exceeded 30 m in length 

(Koutsouflakis 2017b; Koutsouflakis and Rieth 2021). The ship cargo was 

consisted mostly of the well-known type of “Günsenin 3” amphorae, 

indicating that it was a merchant ship of the last quarter of the 12th century 

(Koutsouflakis and Rieth 2021). The excavation in 2013, focused primarily 

on the structural elements of the wreck, and not on the fragmented cargo, as 

this would be time-consuming and would not permit a study of the 

shipbuilding technology  (Koutsouflakis and Rieth 2021). The results though 
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were uncertain, as the limited time of excavation permitted only the  partial 

study of the ship’s construction technology (Koutsouflakis and Rieth 2021).  

Rhodes wreck No4 is important not only for Rhodes’s history and medieval 

seafaring in the eastern Mediterranean, but also for the naval architecture of 

this era (Koutsouflakis and Rieth 2021). Based on archaeological data, it 

seems that Rhodes wreck No4 had probably departed from a major port of 

mainland Greece for the markets of the southern Aegean and possibly further 

east, to the direction of Cyprus and the Levant. This ship diversifies from the 

vessels of the same period as it is of massive construction (Koutsouflakis 

2017a), of approximately 35 m long while the known Byzantine vessels of all 

kinds are up to 15 m (Koutsouflakis and Rieth 2021). Nevertheless, its size is 

not the only exceptional construction find, as the surviving planking, of 120 

mm thickness, appears to be the thicker than that of the known ancient ships 

(Koutsouflakis and Rieth 2021). Moreover, the shipbuilding of such an 

enormous vessel is expected to differ from the known shipbuilding 

technology of smaller vessels, thus requiring further investigation 

(Koutsouflakis and Rieth 2021). 

The west side of the ship was more buried than the east one, thus being 

preserved to a greater extent (Koutsouflakis and Rieth 2021). However, the 

preservation of the eastern side is owed not only to the burial conditions but 

also to a fire event that is believed to have potentially caused the sinking.  

This is indicated by the charring traces found on the excavated southern end 

timbers (figure 1.2),  as well as by the condition of the majority of the lifted 

artifacts (Koutsouflakis 2017a; Koutsouflakis and Rieth 2021). The charring 

of timbers was inhomogeneous, as its extent and depth was shown to be 

different on the various construction elements of the ship  (Mitsi and Pournou 

2019; Koutsouflakis and Rieth 2021). More specifically, in the western side, 
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the charring is obvious at the upper part of the frames (figure 1.3), whereas at 

their lower parts was superficial.   

 

Figure 1.3 Frames of the west side, where the upper parts are severely charred (Photo: V. 

Mentogiannnis, EUA©, with permission from Dr. G. Koutsouflakis) 

 

 
Figure 1.2 Wooden elements that shows traces of charring (Photo: V Mentogiannnis, 

EUA©, with permission from Dr. G. Koutsouflakis)  
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Furthermore, at the eastern side of the ship, the lower parts of the hull where 

charred; in contrast to the upper parts that were uncharred (Koutsouflakis and 

Rieth 2021). This diverse degree and extent of charring in the various 

elements throughout the wreck,  could be suggestive of the way that the fire 

was spread and probably of how the ship was sunk (Mitsi and Pournou 2019; 

Koutsouflakis and Rieth 2021).  

At present, the wreck is reburied with the use of geotextiles (Koutsouflakis 

2017a). Nonetheless, its long-term preservation is not secured, even though 

the performance of geotextiles has been proven successful in preserving 

wooden shipwrecks in situ (Pournou 2018). This is mainly owed to Rhodes’s 

underwater environment, where enormous cruise ships pass and anchor daily 

near No4 wreck’s location (Koutsouflakis and Rieth 2021). This high-energy 

underwater environment, due mostly to scouring caused by ships' propellers, 

does not offer stable and protective burial conditions. The periodic 

movements of the sediment can lead to the uncovering of the wreck, which 

was the reason of its discovery (Koutsouflakis and Rieth 2021).  In such an 

environment, the integrity of the wreck is in danger (Koutsouflakis and Rieth 

2021), as the re-exposure of the wood in the water column is very hazardous, 

especially in the Mediterranean, as it could lead to the complete loss of the 

material due to biodeterioration (Pournou et al. 2001; Pournou 2016; Pournou 

2018).  

The raising of the hull is not possible at present mainly due to the lack of 

funding. However,  even if funding is provided, the peculiar preservation state 

of the ship that presents various charring conditions (Mitsi and Pournou 2019) 

is quite problematic as there is also a lack of previous experience in handling 

and conserving charred waterlogged wood. Therefore, it appears that studying 

the material in order to develop an adequate remedial conservation plan is 

very important as the in situ protection method appears to be only a temporary 
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solution due to the high-energy hydrodynamic conditions prevailing at the 

site (Koutsouflakis and Rieth 2021). 

1.2. Remedial conservation of waterlogged archaeological wood  

Archaeological wood buried in waterlogged anoxic sediments, typically 

appears intact or in good condition after exposure (Gregory et al. 2012; Broda 

and Hill 2021). However as the material is usually deteriorated and its 

physical, mechanical, chemical and structural properties are altered (Hedges 

1989; Florian 1990; Schniewind 1990), upon uncontrolled drying, it will 

undergo permanent deformations caused by collapse and shrinkage, that will 

threaten its structural integrity (Grattan and Clarke 1987; Gregory et al. 2012; 

Collis 2015; Broda and Hill 2021). Therefore, remedial conservation 

treatments are needed in order to remove the water from the material, and 

concurrently preserve its dimensions and make it durable, in terms of 

mechanical  strength, and resistance to biodeterioration (Grattan and Clarke 

1987; Broda and Hill 2021). For choosing the most suitable conservation 

method, several factors need to be considered. These include, reversibility 

(Grattan and Clarke 1987; Broda and Hill 2021) or at least re-treatability 

(Broda and Hill 2021), preservation of color and texture (Gregory et al. 2012; 

Collis 2015) so that the treated object could be interpretable by the viewer 

(Grattan and Clarke 1987), factors such as the hazard and the cost (Gregory 

et al. 2012; Broda and Hill 2021), as well as basic conservation ethics, like 

the “minimum intervention” principle (Grattan and Clarke 1987). 

Remedial conservation treatments are usually grouped into i) impregnation 

and bulking methods where a consolidation agent penetrates into the wood, 

ii)  drying methods, and iii) combination of both impregnation and drying 

(Grattan and Clarke 1987; Kaye 1995; Broda and Hill 2021).  

The first group includes numerous consolidation agents,   but by far the most 

widely accepted and applied one, is the polyethylene glycol (PEG) of various 
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molecular weights (MW)  (Kaye 1995; Gregory et al. 2012; Collis 2015; 

Broda and Hill 2021). PEG provides good dimensional stability (Grattan and 

Clarke 1987; Collis 2015; Broda and Hill 2021), it is low in toxicity, of 

relatively low cost and it is mostly reversible (Collis 2015; Broda and Hill 

2021). However, there are also some concerns such as the hygroscopic nature 

of its low MW grades and the dark and waxy appearance of the treated wood 

(Gregory et al. 2012; Collis 2015; Broda and Hill 2021).   

Among the impregnation agents used for waterlogged wood it is worth 

mentioning a) the  “alum”, which was the first one used in large scale but is 

no longer in use (Grattan and Clarke 1987; Kaye 1995), b) the melamine-

formaldehyde resin, applied in large-scale projects such as the Pisa wrecks 

and the Yenikapi wrecks, which despite the dimensional stability and 

durability that provides it is  disputed due to health and safety concerns and 

irreversibility (Collis 2015; Broda and Hill 2021; Vlata and Pournou 2023) 

and c) the sugars such as sucrose, trehalose, lactitol, etc. (Grattan and Clarke 

1987; Gregory et al. 2012; Broda and Hill 2021)  which are of low cost, but 

of high susceptibility to microbial and insect attack (Gregory et al. 2012; 

Broda and Hill 2021). Besides the above-mentioned consolidation agents, 

there are proposals for new consolidants, however the adequate research to 

consider them reliable for application is lacking  (Broda and Hill 2021).  

Drying methods on the other hand include a) the air-drying often referred to 

as slow-drying (Grattan 1982; Grattan and Clarke 1987) or as controlled air-

drying (Gregory et al. 2012; Broda and Hill 2021),  b) the freeze-drying under 

vacuum (Grattan 1982; Grattan and Clarke 1987; Kaye 1995; Gregory et al. 

2012; Broda and Hill 2021), c) the atmospheric (non-vacuum) freeze drying 

(Grattan and Clarke 1987; Gregory et al. 2012), d) the supercritical-drying 

(Kaye 1995; Gregory et al. 2012; Broda and Hill 2021), and e) the solvent-

exchange drying (Grattan and Clarke 1987; Broda and Hill 2021).  



8 

 

Usually, a combination of a consolidation and a drying method is adopted 

with the PEG/controlled air-drying, and the PEG/freeze drying to be the most 

common ones (Grattan 1982; Hoffmann 1986; Grattan and Clarke 1987; 

Gregory et al. 2012; Broda and Hill 2021).  

Up to now, the majority of shipwrecks and boats’ conservation, such as the 

Vasa, the Mary Rose, the Bremen Cog, the Hasholme logboat, etc. have been 

conserved with PEG (by spraying or immersion) followed primarily by 

controlled air-drying, though  freeze-drying has been also  used  (Broda and 

Hill 2021). 

1.3 Rationale for the study  

In situ preservation of wreck sites is the recommended primary option 

suggested by the 2001 UNESCO Convention for the Protection of the 

Underwater Cultural Heritage (UCH). However, when in situ preservation is 

not possible the need for a rescue excavation and recovery is recognized 

(Gregory et al. 2012; Broda and Hill 2021). In case of recovery, the design of 

the preservation strategy prior to any action is required. For the design of the 

strategy it is advised to predefine the end use of the UCH  (Grattan and Clarke 

1987; Gregory et al. 2012; Collis 2015); in the case of wooden shipwrecks, it 

is mandatory to acknowledge the preservation state of the wood (Gregory et 

al. 2012), as this will define not only the conservation method but also the 

raising technique. Furthermore, for all projects a thorough planning of each 

phase is required and an adequate funding, which is of paramount importance, 

should be guaranteed (Grattan and Clarke 1987). 

Rhodes wreck No 4, as already pointed out, is not expected to survive in 

foreseeable future, as its burial environment despite the protective action 

taken, cannot ensure the stability of the site. Thus, in order to preserve the 

shipwreck, appropriate measures and strategies should be designed such as its 

lifting followed by remedial conservation (EN 16873 2016), or at least the 
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reburial of the wreck in a safer marine environment. Examination of the state 

of preservation of the material is required for both strategies     (Jensen and 

Gregory 2006). The literature regarding charred wood conservation and 

condition assessment is limited, especially for wet or waterlogged charred 

wood (Caple and Murray 1994; Triantafyllou et al. 2010). The most 

commonly applied methods on charred wood, are those typically applied on 

waterlogged wood, with most frequent the use of PEGs (Caple and Murray 

1994; Jover 1994; Triantafyllou et al. 2010). 

On this basis, a preliminary investigation on conservation methods for the 

material was conducted during a BSc final year project entitled “Comparative 

Study of Conservation Treatments for Charred Waterlogged Wood from 

Medieval Shipwreck in the Port of Rhodes Island” at the Department of 

Conservation of Antiquities and Works of Art , at the University of West 

Attica in 2019 (Mitsi 2020). This work was also partially presented at the 14th 

ICOM-CC Wet Organic Archaeological Materials (WOAM) Conference at 

Portsmouth, UK in 2019 (Mitsi and Pournou 2019). This work demonstrated 

that Rhodes wreck timbers presented concurrently charred and uncharred 

areas and in many cases an inner uncharred core was found surrounded by a 

charred outer layer (Mitsi and Pournou 2019; Mitsi 2020). Results  showed 

as anticipated  that the two charring conditions (uncharred and charred)  have 

different physicochemical properties and also indicated the presence of a third 

charring condition, mostly located at the charred/uncharred interface (Mitsi 

and Pournou 2019; Mitsi 2020). Furthermore, results on potential 

conservation methods, showed that almost all PEG treatments irrespective of 

the drying method are capable of stabilizing uncharred wood dimensions, 

except low MW PEG (PEG 400). In contrast, charred material did not require 

any consolidation. Therefore, timbers with a charred outer layer and 

uncharred inner core may not permit PEG diffusion, as charred material is 

expected to have lower porosity. It was also indicated the presence of a third 
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charring condition, termed semi-charred wood, that existed at the interface of 

the charred and uncharred material (Mitsi 2020).   

Therefore, further research was considered necessary, in order to investigate 

in-depth, the different properties of the three identified charring conditions 

(uncharred, semi-charred, and charred), which would permit the design of an 

efficient conservation plan, capable of conserving all charring conditions 

concurrently while preserving the historic, aesthetic and physical integrity of 

the ship.   

1.4 Aims and Objectives 

The principal aim of this work is to assess the condition of Rhodes medieval 

shipwreck’s timbers in order to enable the development of an effective 

conservation plan that would be applied if the shipwreck is raised. For 

achieving this aim the following objectives should be met. 

• Characterization of the state of preservation of shipwreck timbers 

through physicochemical analysis. This will include documentation of 

the morphological features at a cellular level with scanning electron 

microscopy (SEM), determination of materials’ residual chemistry 

with Fourier transform infrared spectroscopy (FTIR) for its organic 

composition,  investigation on cellulose crystallinity alterations with 

X-ray diffraction (XRD), examination of its inorganic chemistry 

and/or the inorganic elements present with energy dispersive 

spectroscopy (EDS), and assessment of its physical properties with 

gravimetric and volumetric methods as well as with proximate 

analyses for the thermally altered material (semi-charred and charred).  

• Assessment of wood properties related to the handling and the 

employment of remedial conservation treatments such as hardness 

and porosity. 
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• Correlating the physicochemical and mechanical characterization of 

the material with properties related to treatment, in order to resolve 

practical aspects involved in conservation of waterlogged organics 

such as impregnation and consolidation.  
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2. Materials and Methods 

The waterlogged wood used in the present study came from a frame of the 

Rhodes wreck No4 that was made of Pinus halepensis Mill. (Aleppo pine) or 

Pinus brutia Ten. (Turkish pine) (Koutsouflakis 2017b; Koutsouflakis and 

Rieth 2021). Samples were produced from a frame part that was retrieved 

from the wreck in 2013 and it was kept waterlogged at 5°C until investigation. 

All samples used were taken from the surface of the frame inwards, at least 

50 annual rings away from the pith, in order to correspond to the sapwood of 

the tree trunk, and represented the three different degrees of wood charring 

that have been identified on the wreck timbers. 

The following investigation has been conducted at the facilities of the 

Department of Conservation of Antiquities and Works of Art, University of 

West Attica.  

2.1 Morphological Alterations at a Cellular Level 

2.1.1 Scanning Electron Microscopy (SEM) 

Uncharred and semi-charred waterlogged archaeological samples were cut in 

subsamples of approximately 2x2x3 mm using a double-edged razor blade, 

whereas charred samples were fractured also to ~ 2x2x3 mm subsamples. All 

samples were then dehydrated in a series of ethanol solutions of increasing 

concentrations until water-free alcohol was reached and then left to air-dry in 

a desiccator. They were then mounted on aluminum stubs using a double-

sided carbon conductive tape, gold-coated in a sputter coater (Polaron 

SC7640), and examined at an acceleration voltage of 20 kV under low 

vacuum (33 Pa) using a JEOL JSM-6510LV scanning electron microscope. 
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2.2 Physical Properties 

2.2.1 Moisture Content, Density and Shrinkage Determination 

For assessing the density of the material, waterlogged samples of uncharred, 

semi-charred, and charred condition were weighed in air and in water and 

their relative density (rRg) was estimated according to equation 1. The basic 

density (Rg) was also calculated according to equation 2, where the 

waterlogged volume of samples was recorded by water displacement method, 

and the dry weight by oven-drying the samples at 103 ± 2 °C for 48 h until 

constant (ASTM D2395-14). 

For measuring shrinkage1 (ß), stainless steel insect pins were placed on the 

transverse plane to mark the tangential and radial direction, and the distance 

between the pins was recorded with a vernier caliper (0,02 mm). Samples 

were then air-dried to a constant weight at 21 ±2 °C and 45 ±5% RH, and the 

distance between the pins was measured again. The cross-sectional shrinkage 

(ßcross) was estimated by summing the tangential and radial shrinkage (ß), 

which were calculated by equation (3). 

Lastly for the equilibrium moisture content (EMC), and the moisture content 

(MC), waterlogged samples of all charring conditions were first air-dried at 

21± 2 °C 45 ±5% RH and when they reached equilibrium, EMC was 

estimated based on the equation (4). Following, air-dried samples were oven-

dried at 103 ± 2 °C for 48 h until constant (ASTM D2395-14) and MC was 

calculated based on the equation (5).  

For the evaluation of all physical properties, four replicates of each condition 

were used. 

rRg. = 3× Wsub/ (Ww -Wsub)  (Cook and Grattan 1990) (1) 

 
1 In this study, shrinkage refers to the total dimensional reduction measured during drying that includes 

both cell collapse occurring above the fiber saturation point (FSP) and the cell wall shrinkage occurring 

bellow the FSP. 
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where Wsub = waterlogged weight submerged in water, and Ww = waterlogged weight in air. 

Rg = Wo /V    (Kollmann and Côté 1968) (2)  

where Wo= oven-dry weight at 102 ± 3°C after three consecutive constant measurements, 

and V= waterlogged volume measured by water displacement. 

ß% = [(ßw – ßA.D.)/ßw] × 100    (Tsoumis 1991) (3) 

where ßw=waterlogged dimensions and ßA.D.=air-dried dimensions. Shrinkage was calculated 

for tangential and radial direction and their sum equals the cross-sectional shrinkage.  

EMC% = [(WA.D.-Wo)/Wo] × 100 (Kollmann and Côté 1968) (4)  

where WA.D.= air-dried weight at 23 ± 2 °C after three consecutive constant measurements. 

MC% = [(Ww - Wo)/ Wo] × 100  (Grattan 1987)  (5) 

2.2.2 Mercury Intrusion Porosimetry (MIP) 

Mercury intrusion porosimetry (MIP) was carried out with a Quantachrome 

PoreMaster 60, on uncharred, semi-charred and charred samples. Reference 

samples of Pinus halepensis and Pinus brutia were also used. The 

archaeological samples of the three charring conditions that measured ~ 

5x5x5 mm, were freeze-dried prior to porosity measurements, as their air 

drying was anticipated to affect their porosity due to the cell wall collapse and 

shrinkage (Broda et al. 2021b). Freeze -dried samples were stored in a 

desiccator until porosity measurements. Low pressure was first applied to 50 

MPa and then samples were placed into the high-pressure station where 

pressure up to 400MPa was and equilibration time of 10s. Surface tension and 

mercury wetting angle were set at 0.485 Nm-1 and 140° respectively. 

Wood porosity is defined by two size classes of pores, based on the IUPAC 

classification (Sing et al 1985), the macropores with diameter >50 nm, (r >25 

nm) and the mesopores with diameters from 2 nm to 50 nm (1 nm < r > 25 

nm). Nonetheless, in wood science the pore size distribution is often 

categorized in relation to wood ultrastructure (Thygesen et al. 2010; Plötze 
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and Niemz 2011; Zauer et al. 2014; Vitas et al. 2019), thus, an anatomy-based 

categorization was adopted in this study which is consited of three pore 

classes; the macrovoids that include the lumen of tracheids and the resin 

canals with radii ranging from to 5 μm to ~ 200 μm, the microvoids that 

encompass pit apertures, pit chambers and other small voids with radii from 

5 nm to ~ 5 μm, and the nanovoids that comprise the cell wall porosity with 

radii < 5 nm (Thygesen et al. 2010; Yin et al. 2015).  

2.2.3 Proximate Analysis 

Proximate analysis was implemented on charred and semi-charred wood 

samples according to ASTM D 1762-84 (2011). Samples were air-dried to a 

constant weight at 21± 2 °C and 45 ±5% RH. They were then grinded with 

the use of an agate mortar and pestle and sieved to ~100 μm (No 140-mesh 

size). The determination of moisture content, ash content, volatile matter, and 

fixed carbon was duplicated. For moisture content (M), approximately 1 g of 

each charring condition was placed in a porcelain crucible and weighed to the 

nearest 0.1 mg. Crucibles and covers were previously dried in a muffle 

furnace at 750 °C for 10 min and cooled in a desiccator for 1 h. Crucibles 

containing grinded samples were then placed uncovered in an oven at 105 °C 

for 2 h. Dried samples were cooled covered in a desiccator for 1 h and 

weighed. Samples were considered oven-dried when the decrease in weight 

was ≤0.0005 g. Succeeding drying periods were 1 h. Moisture content was 

calculated based on Equation (6).  

M% = [(A - B)/A] × 100   (ASTM D 1762-84 2011) (6) 

where A = grams of air-dry sample, and B = grams of the sample after drying at 105 °C. 

For volatile matter (VM), crucibles with lids in place and containing the 

samples used for moisture determination were placed in a muffle furnace 

heated to 950 °C. They were first positioned, with the furnace door open, for 

2 min on the outer ledge of the furnace (300 °C), and then for 6 min with the 
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muffle door closed. Samples were then cooled in a desiccator for 1 h and 

weighed. The percentage of volatile matter in the sample was calculated based 

on equation (7). 

VM% = [(B - C)/B] × 100   (ASTM D 1762-84 2011) (7) 

where C = grams of the sample after drying at 950 °C. 

For ash content, lids and uncovered crucible used for the volatile matter 

determination containing the samples were placed in a muffle furnace at 750 

°C for 6 h. Samples were cooled with lids in place covered in a desiccator for 

1 h and weighed. Samples were repeatedly burned with succeeding 1-h 

periods until results showed a loss of less than 0.0005 g. The percentage of 

ash content was calculated based on equation (8). 

Ash% = (D/B) × 100    (ASTM D 1762-84 2011) (8) 

where D = grams of residue. 

Fixed carbon (Fixed C) was calculated on a dry basis according to ASTM 

E870–82 based on equation (9). 

Fixed C% = 100 - [VM% + Ash%]  (ASTM D 1762-84 2011) (9) 

2.3 Mechanical Properties 

Based on the literature the most widely applied methods for the determination 

of wood hardness are i) the “Brinell test”, using a  10 mm ball (Hirata et al. 

2001; Skyba et al. 2009; Riggio and Piazza 2010; Lykidis et al. 2016; Sedlar 

et al. 2019; Sydor et al. 2020; Vörös and Németh 2020) or a 2.5 mm one 

(Hirata et al. 2001; Stanzl-Tschegg et al. 2009; Babic et al. 2017) and ii) the 

“Janka test” using a 11.3 mm ball (Green et al. 2006; Riggio and Piazza 2010; 

Lykidis et al. 2016; Vörös and Németh 2020). Nonetheless,  rarely, the  

“Vickers test”,  is also being used for measuring hardness of wood (Li 2015; 

Aşıkuzun and Karagöz İşleyen 2019).  
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The hardness of waterlogged archaeological wood is not uniform, as it is 

dependent on the preservation state (Schniewind 1990), which differentiates 

greatly with depth (Gregory et al. 2007; High and Penkman 2020). The above-

mentioned tests, characterize the “surface” hardness (< 1 cm) and they cannot 

therefore demonstrate the hardness gradient in deteriorated waterlogged 

archaeological wood. However, in this work all three methods were trialed, 

not for recording this decay gradient, but differences among uncharred, semi-

charred and charred material. However, only a modified Janka test was found 

appropriate for the hardness of the material under investigation. 

2.3.1 Force-controlled Hardness Test Methods- Brinell and 

Vickers  

Based on  the EN 1534 (2000) for the Brinell test, a 10 mm diameter ball 

indenter with a load of 1 kN (101,972 kgf) is required  to produce the 

calculable indentation on wood. Nonetheless, the dimensions of the 

archaeological available samples did not permit the use of a ball of this 

diameter and thus a 2.5 mm Ø ball was used instead. Brinell hardness test was 

conducted on a Zwick/Roell 8187.5 LKV Universal Hardness Testing 

Machine. The ISO 6506-1 (2005) issued for metallic materials, specifies that 

the applied force shall be adjusted to create an indentation with a diameter (d) 

in the range of 0.24 D and 0.6 D (where D is the diameter of the ball indenter). 

Thus, several preliminary experiments were run with a full load dwell set to 

10 seconds in order to determine the appropriate force that complies with this 

ISO. Due to the limited range of forces available in the Zwick/Roell machine, 

these experiments were also conducted on an Instron 3367, dual-column 

universal testing machine with a 2 kN load cell and compression platens of 

100 kN maximum load on both upper and lower connection. On the upper 

platen a 2.5 mm ball, was attached using a neodymium magnet. After each 

force loading tested, the diameter (d) of the imprint was measured as the mean 
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value of two perpendicular diagonals (d1 and d2) as shown in figure 2.1a, 

using the built-in microscope of the Zwick/Roell instrument. 

Preliminary experiments with the Vickers method were also conducted using 

the Zwick/Roell 8187.5 LKV Universal Hardness Testing Machine, with the 

full load dwell mode set to 10 seconds and an applied load of 3 and 10 kgf.  

After each indentation, the diagonal length of the imprint was measured 

(figure 2.1b), using the built-in microscope of the instrument. 

     a                                                                             b 

 

Figure 2.1 Graphic representation of the imprint created by the (a) Brinell and (b) Vickers 

indenter. For each, the perpendicular diagonals (d1 and d2) are noted.  

 

2.3.2 Depth-controlled Hardness Test Method- Janka  

The Janka hardness test was implemented based on the ASTM D143 and the 

ASTM D1037. However, a 2.5 mm ball used instead of the typical 11.3 mm 

due to the limited dimensions of the available archaeological samples. The 

test was conducted on an Instron 3367, dual-column universal testing 

machine with a 2 kN load cell and compression platens of 100 kN maximum 

load on both upper and lower connection. On the upper platen, the 2.5 mm 

ball was adjusted using 0.6 mm high neodymium ring magnet (outer Ø: 0.8 

mm, inner Ø: 1.9 mm).  The test speed was set at 0,1 mm/s rate (ASTM D 
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143 1994) and a 1.2 mm extension was selected to achieve the final 

penetration of ½ the ball diameter. The load-extension data were recorded per 

0,1 s with the BlueHill 3 software. However, for most of the measurements 

conducted on the semi-charred and charred samples cracks or/and failure was 

recorded at a minimum extension of 0.70 mm, and so the data were obtained 

at the 0.62 mm extension that equals to a penetration of ~ ¼ the ball diameter 

(Esteves et al. 2011; Esteves et al. 2014).  

Hardness test was conducted on all three charring conditions and on reference 

samples of sound Pinus halepensis and Pinus brutia for comparative reasons. 

Measurements were taken on end grain and both side planes (radial and 

tangential) in order to determine end and side hardness respectively. The use 

of the 2.5 mm ball allowed on the reference samples the documentation of 

differences between earlywood and latewood, and thus two replicate 

measurements were taken per growing period, their average was also 

calculated for each plane. Two samples from each charring condition were 

examined. Uncharred, and charred samples measured ~2T x2R x2L cm 

(Tangential x Radial x Longitudinal), whereas the semi-charred ~2T x1.5R 

x2L cm. For every condition, one sample was tested, at the waterlogged state 

to acquire knowledge for their handling before and during conservation and 

the second one at the freeze-dried state, to assess the residual hardness of the 

material without bi-as by the contained water. Earlywood and latewood were 

rarely distinguishable in the archaeological material; thus, two replicate 

measurements were taken per plane. 

Hardness is expressed as the ratio of the applied force (F) to the projected area 

of contact (A) (equation 10), and as was determined under load included both 

the plastic and elastic deformation of the material (Doyle and Walker 1985; 

De Assis et al. 2017; Sydor et al. 2020). The projected contact area is treated 

as the area of a circle created by the ball intender at the wood surface, using 

equation 11. Typically, in Janka test, the ball is pressed into half its diameter 
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(ASTM D 143 1994; ASTM D1037 1999), so the radius of the projected area 

(r) equals to the radius of the indenter (R), whereas in the modified Janka test, 

where ball is pressed to the ¼ of its diameter, r value is lower than ball radius 

(figure 2.2). Hence, the radius of the projected contact area was geometrically 

calculated based on scheme of figure 2.3 and the Pythagoras’ theorem.  

Hardness = F/A    (Doyle and Walker 1985) (10) 

where F = the force recorded at 0.62 extension, and A= the projected contact area 

A =  πr2    (Doyle and Walker 1985) (11) 

where π = the mathematical constant (~ 3.14159), and r = the radius of the projected contact 

area

 

Figure 2.2 Graphic representation of (a) the ball penetrated at ½ and ¼ of its diameter, and 

(b) their projected contact area with radius R and r respectively.  

 

   

Figure 2.3 Diagram of the geometrical calculation of the projected contact area’s radius 

(r). R = ball radius, e = extension recorded by Instron, and h = R – e. Based on Pythagoras’ 

theorem, r =√𝑅2 − ℎ2 
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2.3.3 Penetrometer 

For assessing the preservation state of waterlogged wood, the “pin test” is 

often applied by conservators (Christensen 1970; Hoffmann 1982; Florian 

1990; Panter and Spriggs 1997; Schindelholz et al. 2009). This type of manual 

assessment is rather subjective; therefore wood resistance to penetration can 

be instead measured with penetrometers (Petrou and Pournou 2018). These 

instruments can assess the hardness of a material at a given depth and they 

can also indirectly asses its density. In this work a penetrometer was used for 

assessing differences in resistance to penetration of the three charring 

conditions, at a greater depth than Janka permits. 

Resistance to penetration was recorded on a part of a shipwreck frame, 

measuring approximately 9 cm Ø and 15 cm in length, which included all 

three charring conditions. A Fruit Hardness Tester, FR-5105, with a 

maximum load capacity up to 5000g was used. The penetrometer was 

equipped with a needle of 3 cm length and 0.75 mm diameter, of which 1 cm 

was fasten inside a custom-made holder in order to allow penetration at a 

constant depth of 2 cm. Six measurements per condition were recorded using 

the peak hold mode, on the transverse section of the part, as this was the only 

section, where each charring zone was visible, accessible and could allow 

penetration into each zone at the same depth without bias. 

2.4 Chemistry  

2.4.1 Energy Dispersive Spectroscopy (EDS) 

Samples of approximately 1x1x1 cm including all three conditions, were 

dehydrated in a series of ethanol solutions of increasing concentrations until 

water-free alcohol was reached and then left to air-dry in a desiccator, prior 

mounting on aluminum stubs using a double-sided carbon conductive tape. 

Energy dispersive X-ray spectroscopy (EDS) was performed using a JEOL 

JSM-6510LV scanning electron microscope, equipped with an Inca x-act 
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silicon drift detector (SDD) with PentaFET® Precision (Oxford Instruments, 

Oxford, UK), at an acceleration voltage of 20 kV under low vacuum (33 Pa). 

The analytical data were obtained with Inca® software. Bulk analysis was 

applied on every wood charring condition, whereas line scans and mapping 

were applied on samples where the three charring conditions coexisted.  

2.4.2 Fourier-Transform Infrared Spectroscopy (FTIR) 

Uncharred, semi-charred, and charred waterlogged archaeological wood were 

air-dried to a constant weight at 21± 2 °C and 45 ±5% RH, and together with 

reference sound wood samples of Pinus halepensis Mill. and Pinus brutia 

Ten., were finely pulverized manually with the use of an agate mortar and 

pestle to ~100 μm (No 140-mesh size). Wood powder was then mixed with 

potassium bromide powder (KBr, Merck), and pressed into 13 mm discs with 

a hydraulic press. FTIR analysis was conducted on discs with a Perkin Elmer 

Spectrum GX spectrometer, equipped with DTGS (deuterated diglycine 

sulfate) detector. Spectra were recorded and edited with the Perkin Elmer 

Spectrum v.5.3.1 software. 

2.4.3 X-ray Diffraction (XRD)  

Uncharred, semi-charred, and charred waterlogged archaeological wood were 

air-dried to a constant weight at 21± 2 °C and 45 ±5% RH, and together with 

reference sound wood samples of Pinus halepensis Mill. and Pinus brutia 

Ten., were finely pulverized manually with the use of an agate mortar and 

pestle to ~100 μm (No140 mesh size). X-ray diffraction spectra of wood 

powder were recorded with an InXitu BTX II Benchtop X-ray Diffraction/X-

ray Fluorescence hybrid system, using a Cobalt source (Kα1 1.78897 Å). All 

spectra were recorded in duplicate after the completion of >1200 scan cycles 

from 5 to 50 degrees 2θ. The crystallinity index (CrI) was calculated based 

on the method developed by Segal et al. in 1959 (Segal et al. 1958) using the 

height ratio between the crystalline intensity, expressed as the difference 
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(I200-Iam) and the total intensity (I200), Equation (12). Diffractograms were 

baseline-corrected with the XPowder software and consequently analyzed 

using the Perkin Elmer Spectrum v.5.3.1 software with no further processing 

of peak heights at the (200) plane and at the amorphous region. The total 

intensity that corresponds to both crystalline and amorphous material (I200), 

is assigned at 2θ~25.6°, whereas the amorphous intensity (Iam) is assigned at 

2θ~20.6°, angles corresponding to Cobalt source radiation. 

%CrI =(I(200) – I(am)/I(200)) × 100  (Segal et al. 1958)  (12) 

The apparent crystallite size L (nm) was estimated using the Scherrer 

Equation (13) (Scherrer and Debye 1918), where K is the Scherrer constant, 

for which, the value of 0.94 was typically adopted; λ is the X-ray wavelength 

(1.78897 Å for Co Kα1 radiation); b is the full width at half maximum 

(FWHM) of the diffraction band calculated after curve deconvolution using 

the Thermo GRAMS suite v.9.0 at the ~11–30.5 2q range using a 1:1 

Gaussian-Lorenzian profile; and q is the Bragg angle corresponding to the 

(200) plane. 

L =K ×λ/β × cosθ   (Scherrer and Debye 1918) (13) 
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3. Results 

3.1 Morphological Alterations at a Cellular Level 

3.1.1 Scanning Electron Microscopy (SEM) 

Examination of the morphology demonstrated three distinctly different 

conditions of wood owed to charring, uncharred, semi-charred and charred. 

Uncharred wood 

Examination of the uncharred wood revealed severe decay of the material that 

was recorded as a wavy appearance of the cells due to distortion (figure 3.1a); 

and as an extensive degradation of the secondary cell wall layer (figure 3.1 

b). The later was demonstrated via i) detachment of the wall from the middle 

lamella (ML) (figure 3.1 a, b), ii) reduction of its thickness (figure 3.1 a, b) 

and iii) its granular texture (figure 3.1b). Moreover, biodeterioration was 

evident with the presence of both fungi (fig. 3.2.) and bacteria (figure 3.3). 

 

Figure 3.1. (a) earlywood and (b) latewood showing distortion and degradation. Degradation 

recorded on the secondary cell wall as detachment from the ML [d], thickness reduction [r], 

and granular texture [gt]. 
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Figure 3.2 Fungal decay, evident with the presence of fungal hyphae [fg]. 

 

Figure 3.3 Bacterial decay. (a) Rod-shape bacteria [bc]. (b) Bacterial degradation patterns [p] 

on bordered pits. 

 

Semi-charred wood 

The general typical ultrastructure of the semi-charred wood samples 

observed, was rather intact. Distortion of cells’ shape was limited, detachment 

of the secondary walls from the ML was rare, whereas the cell boundaries 

were clearly visible (figure 3.4). Although biodeterioration patterns were 

evident (figure 3.5 a), microorganisms such as fungal hyphae and bacteria 

(figure 3.5) were rarely detected. However, the examination of the semi-

charred samples revealed a wide variation in the preservation of its 

morphology (figure 3.6).  
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Figure 3.4 (a) Earlywood and (b) latewood showing only minor alterations. 

 

Figure 3.5 Fugal and bacterial degradation patterns. Rare presence of fungal hyphae (fg) and 

bacteria (bc) were recorded. 

 

Figure 3.6 Diferent morphology observed in the transverse plane among the semi-charred 

zone. 

Charred wood 

Charred wood cells showed severe distortion in both early- and latewood 

(figure 3.7). The secondary walls appeared to coalesce with the ML and cells 

demonstrated a distinct vitreous appearance (figure 3.7). Bacterial 
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deterioration patterns were seen seldom (figure 3.8 a) and were mainly 

observed around pit membranes (figure 3.8 b). Microorganisms that were 

rarely spotted, were rod-shape bacteria (figure 3. 8 b) of a ~0.25 μm Ø cross 

section. Furthermore, numerous small rounded formations, of ~0.22-0.28 μm 

Ø, possibly attributed to bacillus cross-section or to warty layer were 

abundant (figure 3.8 b, c). 

 

Figure 3.7 (a) earlywood and (b) latewood showing coalescence of the ML secondary wall. 

Distortion was also recorded as a characteristic wavy appearance (a). 

 

Figure 3.8 (a) Bacterial degradation patterns were seen seldom. (b) Bacteria [bc] were rarely 

detected.  Small rounded formations around pit chambers (b,c) or in the tracheid wall (c), 

possibly attributed to bacillus cross-section or warty layer. 

 

3.2 Physical Properties  

3.2.1 Moisture Content, Density and Shrinkage Determination 

Results on the physical properties of the archaeological material are presented 

in table 3.1 and figure 3.9. Archaeological samples of all charring conditions 
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examined (uncharred, semi-charred, charred) presented lower basic density 

(Rg) and higher moisture content (MC) compared to the reference samples of 

sound Pinus brutia and Pinus halepensis.  

Regarding shrinkage (βcross), uncharred wood was shown to be severely 

shrank with a βcross value of 81,49%. In contrast, the βcross values recorded for 

semi-charred and charred samples were even lower than the reference 

material. 

The equilibrium moisture content (EMC) of the uncharred wood was slightly 

higher compared to the reference samples, whereas the EMC of both the semi-

charred and charred wood was significantly lower than the uncharred wood 

EMC. 

The basic density (Rg) of the archaeological material varied greatly among 

the three charring conditions, where the uncharred wood presented the lowest 

values, followed by the semi-charred and the charred wood.  The non-

destructive determination of wood’s density (rRG) presented similar results 

Samples 
MC (%) 

 

EMC (%) 

45± 5% RH 

rRg 

(g/cm3) 

Rg 

(g/cm3) 

βcross 

(%) 

Pinus brutia 150b ~8-9a - 0.46c 12d 

Pinus halepensis 150b ~8-9a - 0.46c 12 d 

Uncharred 
590.46 

(±28.33) 

10.13 

(±0.58) 

0.19 

(±0.02) 

0.15 

(±0.01) 

81.49 

(±0.15) 

Semi-charred 
232.48 

(±28.33) 

6.49 

(±1.88) 

0.32 

(±0.02) 

0.33 

(±0.02) 

10.38 

(±0.33) 

Charred 
188.23 

(±24.80) 

6.43 

(±0.47) 

0.38 

(±0.02) 

0.40 

(±0.04) 

8.55 

(±0.40) 

Table 3.1 Physical properties recorded for archaeological wood (average of 4 replicates) 

and controls of Pinus brutia and Pinus halepensis.  a:(Glass and Zelinka 2010), 

b:Umax=[(1/Rg)-0,67] × 100 (Tsoumis 1991), c:(Crivellaro and Schweingruber 2013), 

d:(Tsoumis 1983),  Values in brackets represent the standard deviation. 
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to the destructive calculation (Rg), however for the uncharred wood the rRg 

calculation gave slightly higher values than the Rg (table 3.1). 

 

 

Figure 3.9 Graphic representation of equilibrium moisture content (EMC), moisture 

content at the waterlogged state (MC), basic density (Rg), and shrinkage (βcross) of 

uncharred, semi-charred and charred wood compared to reference samples of Pinus brutia 

and Pinus halepensis   

 

3.2.2 Mercury Intrusion Porosimetry (MIP) 

The results of MIP are presented in histograms of intruded pore volume as a 

function of the pore radius for the reference samples of Pinus brutia and Pinus 

halepensis, and for the archaeological uncharred, semi-charred and charred 

wood (figure 3.10). Based on the histograms, it is apparent that the pore size 

distribution among the archaeological wood and the controls of Pinus brutia 

and P. halepensis, is considerably different (figure 3.10). Controls’ porosity 

is mostly constituted by microvoids (5nm -5μm), macrovoids (5 μm ~ 200 

μm) to a much lesser extent, and few nanovoids (< 5 nm). In contrast, in 

archaeological wood macrovoids prevail noticeably, as the general porosity 

had shifted towards larger pores > 1μm (dotted line) (figure 3.10). Differences 

in the pore size distribution as a function of the intruded volume have been 
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also observed among the three charring conditions (figure 3.10). Uncharred 

wood demonstrated a similar porosity to semi-charred material, while both 

showed a higher porosity compared to charred wood that appeared to have 

few large pores, located mostly at the narrow range of 5 to 15 μm.  

 

Figure 3.10 Histograms of intruded pore volume as a function of the pore radius of the 

controls of Pinus brutia and Pinus halepensis (left) and the archaeological uncharred, 

semi-charred and charred wood (right). The IUPAC categorization is presented versus the 

pore size categorization adopted in the present study. 

The increased porosity of the archaeological material compared to fresh 

reference samples, becomes clearer with the differential pore-size distribution 

curves and the cumulative intruded volume curves (figure 3.11), in which all 

three conditions showed a higher total pore volume compared to controls of 

Pinus halepensis (0.50 cc/g), and Pinus brutia (0,92 cc/g). Differences, in 

porosity among the three charring conditions were again evident, as the 

uncharred wood showed the highest intruded Hg volume (4,45 cc/g) 

compared to semi-charred (2,05 cc/g) and charred wood (1,40 cc/g) (figure 

3.11). 
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Figure 3.11 Differential pore-size distribution curves and cumulative intrusion curves of 

controls (Pinus brutia and Pinus halepensis) and the three conditions of the archaeological 

wood (uncharred, semi-charred and charred). 

 

3.2.3 Proximate Analysis 

The results of proximate analysis conducted on semi-charred and charred 

wood, for moisture content, volatile matter, ash content, and fixed carbon, are 

presented in table 3.2. For the moisture content, no difference was recorded 

among the two charring conditions, while the volatile matter was lower in 

fully charred material. Additionally, ash and fixed carbon content appeared 

to increase with combustion. 

Sample M VM Ash Fixed C 

Semi-charred 6.53 75.07 1.87 16.51 

Charred 6.71 24.16 3.53 65.59 

Table 3.2 Proximate analysis results for charred and semi-charred samples. Percentages 

values of moisture content (M), volatile matter (VM), ash content (Ash) and fixed carbon 

(Fixed C) are the average of 2 replicates. Fixed carbon was calculated on dry basis. 
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3.3 Mechanical Properties 

3.3.1 Force-controlled Hardness Test Methods- Brinell and 

Vickers  

The Brinell hardness test, proved not to be suitable for the archaeological 

material under investigation mainly due to the extremely varied hardness 

demonstrated by the three charring conditions. More specifically, the force 

that produced a measurable indentation mark with diameter in the range of 

0.24 D and 0.6 D (International Standard 2005) on charred wood, on 

uncharred wood was penetrating the wood in a depth larger than the ball 

diameter resulting in an ‘out of travel’ error message. Similarly, the force 

required to produce an indentation on uncharred wood, meeting the test 

specifications, was inadequate to create an indentation on charred wood. 

The Vickers hardness test, presented similar restrictions to the Brinell 

hardness test in terms of measurements, as the same force could not produce 

measurable indentations on all three substrates tested.   

3.3.2 Depth-controlled Hardness Test Method- Janka 

Results of end, radial and tangential hardness for the reference Pinus brutia 

and Pinus halepensis samples are presented in figure 3.12 and table 3.3. End 

hardness was higher than side (radial and tangential) hardness in both species. 

Additionally, latewood hardness, measured on both end and side planes, were 

higher than the earlywood one. Generally, Pinus halepensis presented higher 

hardness values compared to Pinus brutia except for the latewood tangential 

hardness that appeared slightly lower, though the high standard deviation 

(table 3.3) exhibited for this result makes this low value questionable.   
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Figure 3.12 End, radial and tangential hardness of the reference Pinus brutia and Pinus 

halepensis measured at both earlywood and latewood. Results are the average of two 

replicates. 

 

Hardness (N/mm2) End Radial Tangential 

Pinus halepensis 
EW 60.19 (± 1.26) 24.62 (± 1.33) 16.66 (± 2.33) 

LW 95.16 (± 10.06) 54.04 (± 3.24) 26.19 (± 5.84) 

Pinus brutia 
EW 37.94 (± 5.87) 15.53 (± 0.67) 20.31 (± 1.22) 

LW 81.58 (± 9.67) 43.53 (± 3.80) 47.87 (± 2.60) 

Table 3.3 End, radial and tangential hardness measured with the modified Janka test. All 

values are the average of 4 replicates. Values in brackets represents standard deviation. 

Regarding the hardness recorded among the three charring conditions (figure 

3.13, table 3.4), the obtained results on the freeze-dried (FD) material, showed 

that the highest hardness was recorded for charred wood, followed by the 

semi-charred and the uncharred wood for all three planes. However, it has to 

be noted that both radial and tangential values of uncharred and semi-charred 

samples were similar. 

For the waterlogged (W) material, the highest values were recorded on the 

semi-charred wood, followed by charred, and uncharred wood. In that state, 

difference between uncharred and semi-charred wood was significant. 
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Figure 3.13 End, radial and tangential hardness of waterlogged archaeological uncharred, 

semi-charred and charred wood on both freeze dried (FD) and waterlogged (W) state. 

Results are the average of two replicates. * Single value due to material’s failure.   

Hardness values recorded for the archaeological material, irrespective of the 

containing water, charring condition, and plane were ranging from 0.35 to 

13.06 MPa (Table 3.4). On the other hand, hardness respective values of the 

reference samples were ranging from 15.53 to 60.19 MPa for EW, and from 

15.53 to 95.16 MPa for LW (table 3.3). As measurements for the 

archaeological material were not able to be conducted on a defined growing 

season, in figure 3.14 and table 3.4, results on the FD and W archaeological 

material hardness, are presented comparatively to the average hardness of 

EW-LW of Pinus brutia and Pinus halepensis. By this comparison, it 

becomes apparent that all archaeological samples presented significantly 

lower hardness than references.  

The end hardness measurements on charred wood for both moisture content 

states, were rather problematic as the FD material failed upon testing and the 

W material presented hardness with extremely high standard deviation. This 

is more evident in force-penetration graphs presented in figure 3.15. 

 

* 
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Figure 3.14 End, radial and tangential hardness of the archaeological wood, at the freeze-

dried (FD) and at the waterlogged (W) state, in comparison to the hardness of Pinus 

halepensis and Pinus brutia of which EW-LW values were averaged.  * Single value due 

to material’s failure.   

 

Hardness (N/mm2) End Radial Tangential 

Pinus halepensis   77.68 (± 21.02) 39.33 (± 17.10) 21.43 (± 6.59) 

Pinus brutia   59.76 (± 26.02) 29.53 (± 16.32) 34.09 (± 16.00) 

Uncharred 
FD 2.57 (± 0.87) 1.07 (± 0.26) 1.41 (± 0.07) 

W 0.76 (± 0.18) 0.35 (± 0.02) 0.37 (± 0.00) 

Semi-charred 
FD 5.32 (± 1.02) 1.73 (± 0.13) 1.14 (± 0.20) 

W 13.06 (±3.18) 6.86 (± 4.09) 4.37 (± 0.04) 

Charred 
FD 11.76* 5.25 (± 1.44)  3.55 (± 0.01) 

W 4.98 (± 3.46) 3.16 (± 1.15) 3.17 (± 1.07) 

Table 3.4 Hardness measured with the modified Janka test. Values of reference Pinus 

halepensis and Pinus brutia are the average of 8 replicates (4 on EW and 4 on LW), while 

of archaeological samples of 2 replicates, *: a single value due to material’s failure under 

testing. Values in brackets represents standard deviation. 

Only few samples produced smooth lines with constant slopes (mainly in 

tangential planes), while the majority of samples presented a fluctuated 

strength under increasing load. The failure of one of the two end replicates 

was recorded at the graph as a flat line at zero force after a 0.3 mm penetration. 

* 
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Figure 3.15 Force-penetration graph of charred wood in freeze-dried and waterlogged state 

The respective graphs for uncharred and semi-charred material at both FD 

and W sate are presented in figure 3.16 where it is demonstrated that under 

load the material produced smoother lines with almost constant slopes. Semi-

charred wood at the waterlogged state was also checked at opposite tangential 

plane than originally tested and presented before, due to the high standard 

deviation recorded at both end and radial plane. The second tangential 

conducted at the less charred side and showed significantly lower maximum 

force than the originally tested side (~15 N), but similar to the tangential of 

the FD sample (~ 5 N). 

 

Figure 3.16 Force-penetration graph of uncharred (a), and semi-charred (b) wood in freeze-

dried and waterlogged state 
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3.3.3 Penetrometer 

Results obtained with the fruit penetrometer for each charring condition are 

presented in figure 3.17 and table 3.5. Uncharred wood demonstrated the 

lowest resistance to penetration (ranged from 430 to 699 g), semi-charred 

wood presented almost double values (ranged from 903 to 1156 g), whereas 

charred wood demonstrated the highest resistance to penetration (ranged from 

1147 to 1452 g). All measurements indicate the maximum load recorded, 

which however wasn’t documented at the same penetration depth of 2cm as 

intended, due to materials’ limitations. Uncharred wood allowed full 

penetration of the needle (2cm), whereas in the semi-charred the needle 

penetrated only partially (~0.5 - 1 cm), and charred wood allowed only 

superficial penetration the needle penetrated only partially (~0.0 – 0.3 cm). 

Therefore, results cannot be interpreted as hardness values as in needle 

hardness test either the force (Vörös and Németh 2020) or the penetration 

depth (Kollmann and Côté 1968; Vörös and Németh 2020) must be kept 

stable. 

Furthermore, among the three charring conditions, resistance to penetration 

measurements showed a correlation with the Rg values (figure 3.18). 

Correlation between Rg and resistance to penetration has been reported for 

waterlogged archaeological wood (Gregory et al. 2007; Petrou and Pournou 

2018), and is also anticipated to exist for semi-charred and charred material. 

However, further research is required to confirm this assumption. 

Charring 

condition 

Replicates 

1 2 3 4 5 6 

Uncharred 430 g 466 g 537 g 561 g 597 g 699 g 

Semi-charred 903 g 909 g 1062 g 1101 g 1140 g 1156 g 

Charred 1147 g 1152 g 1174 g 1228 g 1310 g 1452 g 

Table 3.5 Resistance to penetration values recorded on each charring condition. 
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Figure 3.17 Graphic representation of resistance to penetration. Uncharred wood (iii) 

ranged from 430 to 699 g, semi-charred wood (ii) from 903 to 1156 g, and charred wood 

(i) from 1147 to 1452 g. 

 

 

Figure 3.18 Correlation between resistance to penetration and Rg for the three charring 

conditions of uncharred, semi-charred and charred archaeological wood. Each penetration 

point is plotted against the average Rg values of each condition calculated using four 

replicates. The error bars represent the standard deviation of Rg. 
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3.4 Chemistry  

3.4.1 Energy Dispersive Spectroscopy (EDS)  

Bulk analysis of all charring conditions showed the presence of calcium (Ca), 

magnesium (Mg), silica (Si), sulfur (S) and iron (Fe), (figure 3.19), while 

sulfur (S) and iron (Fe) were the most abundant. In terms of topochemistry, it 

was shown that the concentration of all elements decreased towards the 

charred areas. Moreover, aluminum (Al) was only detected at uncharred area.  

Elemental mapping and line scan on samples on which all charring conditions 

coexisted (figure 3.20) also confirmed that the presence of S and Fe is more 

pronounced in uncharred areas. Moreover, mapping revealed often the close 

coexistence of S and Fe. Another finding revealed by EDS was the different 

concentrations of carbon (C) and oxygen (O2) due to charring (Figure 3.21). 

The C percentage is much higher than O, which is almost depleted in charred 

 

Figure 3.19 Macroscopic image (a) and SEM micrograph (b) of a sample where charred 

(i), semi-charred (ii), and uncharred (iii) material coexisted; (c) EDS spectrum of each 

condition. 
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area (Figure 3.21 a). On the other hand, in semi-charred and uncharred area 

the O to C ratio (O/C) is constant, but relatively low in the latter (Figure 3.21 

a). 

 

Figure 3.20 EDS line-scan and mapping of a sample where all 

conditions coexisted. (a) Line scan of Fe (red) and S (green) (left to 

right the transition from charred to uncharred (i–iii); (b) mapping of Fe 

(red) and S (green). 

 

 

Figure 3.21 EDS Line-scan and mapping of a sample where all conditions coexisted. 

(a) Line scan of carbon (yellow) and oxygen (blue) (left to right the transition from 

charred to uncharred (i–iii); (b) mapping of carbon (yellow) and oxygen (blue). 
 



41 

 

3.4.2 Fourier-Transform Infrared Spectroscopy (FTIR) 

Spectra obtained from uncharred, semi‐charred, and charred archaeological 

samples along with reference spectra of Pinus halepensis and Pinus brutia 

are presented in Figure 3.22 

 

Figure 3.22 Infrared spectra recorded for reference samples, (a) Pinus halepensis Mill. 

and (b) Pinus brutia Ten. (c) uncharred (d) semi-charred, and (e) charred archaeological 

samples. 

In the uncharred wood spectrum (spectrum c, Figure 3.22), the lignin bands 

at 1605, 1510, 1269, 1220, and 1030 cm-1 are pronounced, in contrast to the 

carbohydrate bands at 1737, 1370, 1158, 1060, and 895 cm-1, which are 

decreased in intensity. Development of new bands at ~1140 and 855 cm-1 was 

also recorded.  

On the semi-charred wood spectrum, many carbohydrate bands such as those 

at ~1371, ~1160, and 1110 cm-1 showed no significant difference in intensity 

while the band at 1060 cm-1 was increased. On the other hand, the intensity 

of hemicelluloses ester carbonyl peak at 1737 cm-1 is evidently decreased as 

so the cellulose peak at ~895 cm-1. Similarly, the lignin bands, approximately 

at 1464, 1316, 1269, and 1223 cm-1 showed no intensity differences, whereas 
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an increase in absorption at 1030 and 1060 cm-1 and also a slight rise of some 

bands at 1603, 1510, and 1425 cm-1 has been observed.  

On the charred wood spectrum, the broad band at 3400–3320 cm-1 represents 

the –OH stretching vibration of water and the peaks at 3000–2800 cm-1, due 

to aliphatic C-H stretching vibration derived from methyl, methylene, and 

methine group, are absent. Characteristic bands of wood components such as 

hemicelluloses (~1737 cm-1), lignin (~1510 and 1269 cm-1), and cellulose 

(1026 and ~898 cm-1) and roughly all bands of the wood fingerprint region 

(1500-900 cm-1) were also absent. However, broad bands at ~1708 cm-1 

assigned to the acidic C=O groups and 1610–1590 cm-1 assigned to lignin 

aromatic C=C skeletal vibrations are present.  

3.4.3 X-ray Diffraction (XRD)  

Diffractograms regarding the typical wood cellulose lattice planes reflections 

(11̅0), (110), (102), (200), and (004)  (Anderson et al. 2004; Park et al. 2010; 

Agarwal et al. 2013) for the two reference samples (P. halepensis and P. 

brutia) along with charred, semi-charred, and uncharred archaeological 

waterlogged samples are shown in  figure 3.23. All cellulose reflection peaks 

were evident at both reference samples, and at the semi-charred 

diffractograms. On the other hand, the uncharred sample diffractogram 

showed a considerably flattened line-shape on the (11̅0) and (110) plane, 

while a more prominent peak on the (200) plane reflection was observed. 

Similarly, the charred sample diffractogram appeared flattened but with a 

weak broad peak on the (200) reflection plane and a shifted vague maximum 

at ~30°. 

The crystallinity index (CrI) of the material examined varied greatly (table 

3.6). The higher cellulose CrI value was calculated for the uncharred material 

and followed by semi-charred wood and by the reference samples. For 

charred wood CrI was not calculated as no cellulose is expected to be 
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preserved in the material due to the high thermal exposure. Furthermore, CrI 

values were not in accordance with the respective crystallite sizes (L), as for 

the uncharred material, L presented the lowest value. 

 

Figure 3.23 X-ray diffraction pattern of (a) Pinus halepensis Mill. and (b) Pinus brutia 

Ten. reference samples in comparison with (c) uncharred, (d) semi-charred, and (e) 

charred waterlogged samples. The 2θ values correspond to Cobalt source reflections. 

 

Sample 2θ (I200) a 2θ (Iam) a CrI L (nm) 

Pinus brutia 25.49 19.83 41.7% 2.29 

Pinus halepensis 25.70 20.70 41.8% 2.51 

Uncharred 26.16 21.05 53.2% 1.10 

Semi-charred 25.27 21.08 47.4% 2.75 

Charred b - - - - 

Table 3.6. Band positions of the maximum total intensity (I200) and the minimum intensity 

of the amorphous cellulose (Iam). CrI represents the crystalline index based on Segal’s 

method and L correspond to the crystallite size. 

a 2θ values are expressed as Cο-source, b CrI was not calculated as no cellulose is expected 

to be preserved with charring above 400 °C. 
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4. Discussion and Conclusions  

4.1 Morphological Alterations at a Cellular Level 

4.1.1 Scanning Electron Microscopy (SEM) 

The ultrastructure of the archaeological material observed with SEM, 

demonstrated the existence of three distinctly dissimilar materials, uncharred, 

semi-charred and charred. Uncharred waterlogged wood appeared to be 

severely deteriorated, as extensive biodeterioration was documented 

attributed to fungi and bacteria based on the recorded decay patterns and the 

identified microorganisms (Pournou 2020).  

On the other hand, in semi-charred wood evidence on biodeterioration is rare 

and its general morphology seems rather intact. This different deterioration 

degree of the semi-charred wood in comparison to the uncharred material is 

considered to be more likely owed to the thermal alterations of the former that 

probably made it less prone to biodeterioration (Li et al. 2017; Gao et al. 

2018). However, some of the samples present differences in morphology 

indicating multiple preservation conditions, most likely related to a different 

thermal degradation. Although the present study examined the semi-charred 

wood as a single condition, this should have been expected as wood charring 

results in a final material organized in layers of descending thermal exposure 

from the fire front surface towards the inner core (Tsai 2010; Friquin 2011; 

Bartlett et al. 2019) where some layer can be extremely thin (35 mm) (Friquin 

2011). It is though unclear whether this morphology is owed directly to the 

thermal alterations (Bakar et al. 2013) or to their possible consequences, such 

as different degree of resistance to biodeterioration (Hill 2006; Kymäläinen 

et al. 2018b). Further investigation is required in order to clarify this aspect 

of the morphology.   

In charred wood, no biodeterioration patterns were observed, although 

bacteria were rarely present, indicating a material resistant to 
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biodeterioration. The small rounded formations that were abundant in the 

tracheid wall and around the pit chambers it is uncertain if they belong to the 

warty layer (Liese 1963; Terziev and Daniel 2002), or if they are cross-

sections of bacilli. The severe distortion that was observed, resembling a 

material that had suffer plastic deformation indicating fast pyrolysis of wet 

wood at high temperatures (Caple and Murray 1994). The recorded 

coalescence of secondary cell walls with the middle lamella, is a feature 

commonly reported in chars (Cutter et al. 1980; Connor and Daria 1993; 

Caple and Murray 1994; Tamburini et al. 2020). This disappearance of the 

discrete cell wall layers, also referred as amalgamation, has been reported to 

initiates at temperatures close to 300°C (Boocock and Kosiak 1988). Zickler 

et al. (2006) reported that above 400°C wood resembles a glass-like 

carbonaceous residue which may corresponds to the characteristic vitreous 

appearance observed in SEM results. However the exact temperature on 

which the material was exposed cannot be defined as amalgamation 

temperature depends on several factors such as the heating rate (Cutter et al. 

1980; Connor and Daria 1993). Nonetheless, it can be safely stated that the 

ultrastructure of the charred wood corresponds to wood that was subjected to 

thermal exposure of at least 300°C. Similarly, as both middle lamellae and 

secondary walls were clearly discrete in semi-charred wood, it is suggested 

that was exposed at a temperature < 300°C.  

4.2 Physical Properties  

4.2.1 Moisture Content, Density and Shrinkage Determination 

Deviation of the physical properties examined among the archaeological 

uncharred, semi-charred and charred samples was also apparent. The 

moisture content (MC) values of uncharred, semi-charred, and charred wood 

showed that they were waterlogged. However, one should expect that MC 

values of semi-charred and charred samples should be lower than reference 

ones due to charring (Kamperidou 2019), but after prolonged exposure to wet 



46 

 

conditions, like burial in the marine environment, elevated MC is justified 

(Ronewicz et al. 2017; Cai 2020). The MC values of uncharred wood (590) 

were indicating a highly degraded material (De Jong1977; Florian 1990; 

McConnachie et al. 2008; Broda and Hill 2021). Lower MC values were 

recorded for  the semi-charred (232.48%) and the charred wood (188.23%),   

suggesting  that their exposure to heat has influence their  water holding 

capacity (Kymäläinen et al. 2018a; Chen et al. 2019).  

Equilibrium moisture content (EMC) of the uncharred archaeological wood 

at 45 ±5% RH was slightly higher compared to the reference samples, which 

is a find that have been frequently reported for degraded waterlogged 

archaeological wood (Hoffmann 1985; Schniewind 1990; Esteban et al. 2009; 

Broda et al. 2019; Han et al. 2020; Cao et al. 2023). This is linked to greater 

sorption sites availability due to increased cell wall porosity caused by the 

action of microorganisms, which increases bound water and the fiber 

saturation point (FSP) of the waterlogged wood (Broda et al. 2019; Han et al. 

2020; Broda et al. 2021a; Cao et al. 2023), and/or to cellulose degradation to 

shorter molecules (Broda et al. 2019; Han et al. 2020).   

For  the semi-charred and charred wood, the EMC values recorded are in line 

with the literature regarding wood exposed to temperature up to 300°C (Hill 

2006; Esteves et al. 2007; Akyildiz and Ates 2008; Ates et al. 2009; Stanzl-

Tschegg et al. 2009; Kymäläinen et al. 2014; Chen et al. 2019; Cai 2020; 

Nhacila et al. 2020) and above 300°C (Kymäläinen et al. 2014). The primary 

reason for this is connected with the depletion of hemicelluloses, due to 

biodeterioration in the marine environment (Pournou 2020) and/or heat 

exposure (Hill 2006; Kymäläinen et al. 2014) that is negatively correlated to 

wood EMC in terms of both temperature and duration (Esteves et al. 2007; 

Akyildiz and Ates 2008; Ates et al. 2009; Kamperidou 2019; Nhacila et al. 

2020).  



47 

 

As it was anticipated the uncharred waterlogged samples presented the lowest 

basic density (Rg) due to degradation (Borgin et al. 1979; Grattan 1987; 

Schniewind 1990; Broda and Hill 2021), which is also negatively correlated 

to the MC (Hoffmann 1982; Kohdzuma et al. 1996; Broda et al. 2021b). On 

the other hand, the Rg values of the semi-charred and charred samples were 

lower than the reference samples, which however is considered to be mostly 

due to charring (White and Schaffer 1978; Cutter and Mcginnes 1981; Brewer 

et al. 2014; Ronewicz et al. 2017) and to a lesser extent to biodeterioration as 

shown by SEM results. The non-destructive determination of relative density 

(rRg) gave similar results to the basic density (Rg) for all three charring 

conditions, and demonstrated that it can be adopted in cases where the oven 

dried weight cannot be calculated.  

Cross shrinkage (βcross) for the uncharred waterlogged wood was high as 

expected, and negatively correlated with basic density (Borgin et al. 1979; 

Grattan 1987; Schniewind 1990; Kohdzuma et al. 1996; Broda et al. 2018; 

Broda et al. 2021b). The same correlation was also recorded for the semi-

charred and charred material. However, the βcross of semi-charred and charred 

material was found to be lower than uncharred wood, and it was even lower 

than sound wood, indicating that the charred areas of shipwreck timbers can 

demonstrate high dimensional stability upon drying, a result that should be 

considered under the conservation perspective.  

4.2.2 Mercury Intrusion Porosimetry (MIP)  

Based on the porosimetry results, it becomes apparent a shifting of porosity 

towards larger pores (> 1 μm) for all charring conditions of the archaeological 

material. This was rather anticipated, as both charring (Rutherford et al. 2005; 

Grioui et al. 2007; de Assis et al. 2016) and biodeterioration in the marine 

environment (Pournou 2020), may increase the total porosity of 

archaeological wood (Grattan 1987; Florian 1990; Broda et al. 2019; Broda 

and Hill 2021).  
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More specifically, uncharred wood showed the highest porosity (total pore 

volume of 4,45 cc/g), which is more likeley due to biodeteriaoration as was 

evident by SEM results. In contrast  charred wood showed the lowest porosity 

among the three charring conditions (total pore volume of 1,40 cc/g), but still, 

an increased porosity compared to controls of Pinus halepensis (0.50 cc/g), 

and Pinus brutia (0,92 cc/g). This most likely occurred due to carbonization 

(Rutherford et al. 2005; Grioui et al. 2007; de Assis et al. 2016), where the 

main volume of macrovoids with radii > 5 μm was developed. Similarly, for 

semi-charred material, the thermal modification also increased its porosity 

(2,05 cc/g), as upon heat exposure, the porosity augments as a function of 

temperature (Pfriem et al. 2009; Zauer et al. 2014). Furthermore as shown by 

SEM results, the semi-charred material was still susceptible to 

biodeterioration, thus its porosity was most likely increased further during 

burial. Information on the performance of thermally modified wood in the 

marine environment is lacking (Godinho et al. 2021), however, there are some 

studies demonstrating that thermal modification makes the wood more 

resistant to soft rot (Li et al. 2017; Gao et al. 2018). This may probably explain 

why the porosity of the semi-charred wood was considerably lower compared 

to the uncharred material, which presented the highest porosity recorded, 

principally due to biodeterioration but higher than the charred wood. The 

porosity of uncharred and semi-charred material is in accordance with 

physical properties results. However, as porosity greatly affects the 

impregnation rate (Thanh et al. 2018) and the polymer retention during wood 

treatments, especially inside pores with diameters > 0.1 μm (Ding et al. 2008), 

it is expected that uncharred  archaeological wood will be more permeable 

and will promote diffusion and eventually better consolidation. In contrast, it 

is considered that charred material will be resistant to diffusion even by low 

MW polymers. 
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4.2.3 Proximate Analysis 

Almost negligible difference was recorded between the moisture content (M) 

of semi-charred (6.53%) and charred wood (6.71%). These results are almost 

identical to the previously mentioned results of EMC for semi-charred 

(6.94%) and charred wood (6.43%). The differences between EMC and M for 

each charring condition are not statistically significant based on t-test (p=0.15 

for semi-charred, and p=0.20 for charred wood), indicating a reduced ability 

of water absorption after air-drying. 

Proximate analysis results showed that the volatile matter values, of charred 

material (24.16%) was lower than the semi-charred (75.07%) one, as the 

volatile mater  is negatively correlated with temperature (Fuwape 1996; Ruiz-

aquino et al. 2019; Dias Junior et al. 2020). This is also supported by the 

higher volatile matter that have been recorded by Şensöz and Can (2002) for 

sound samples of Pinus brutia (87.04%).  Volatile matter differentiates 

among the species (Ruiz-aquino et al. 2019), and since no volatile matter 

values for Pinus halepensis or Pinus brutia  charcoals have been detected in 

the literature, no further conclusions could be driven. However, based on 

references regarding the volatile matter of Eucalyptus saligna which in 

uncharred state have been reported to be ~ 90% (Senelwa and Sims 1999), 

while after pyrolysis at 450 °C to be 29.8% (Dias Junior et al. 2020), it could 

hypothesized the combustion temperature of the charred wood in the present 

study was at or below 450 °C. Nonetheless, as volatile matter is also 

temperature and time dependent (FAO 1985), further investigation is required 

to understand the pyrolysis conditions under which the material of the study 

produced. The difference of volatile matter estimated between semi-charred 

and charred condition can be attributed to the presence of the outer charred 

layer which is commonly produced and acts as a barrier that slows the thermal 

decomposition of the inner areas (Mikkola 1991; Friquin 2011; Lowden and 
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Hull 2013).Thus the semi-charred material was protected against thermal 

exposure and volatile loss by the presence of the charred material.  

Ash content is species dependent (FAO 1985; Smołka-Danielowska and 

Jabłońska 2022). For sound samples of Pinus brutia Pinus halepensis an ash 

content of 0.45% have been recorded for sapwood, and of 0.54% for 

heartwood (Benouadah et al. 2019), while in another research an ash content 

of 0.40% and 0.42% have been recorded for sapwood close to the bark at 

different heights of the log (Antonović et al. 2018). The only available data 

regarding thermally exposed samples of those species detected at Liodakis et 

al. (2005) which examined the ash content of both hardwood and softwood 

species ashes prepared at various temperatures (600°C, 800°C and 1000°C). 

At 600°C Pinus brutia and Pinus halepensis presented an ash content of 

2.39% and 3.27% respectively (Liodakis et al. 2005). At this study (Liodakis 

et al. 2005) ash content reduces as temperature increases on all samples 

examined which is in contrast to other researchers finds for hardwood 

samples exposed up to 600°C (Fuwape 1996; Ruiz-aquino et al. 2019), which 

could possibly indicate that up to 600°C the ash content is positively 

correlated to temperature while above that limit is  negatively correlated. In 

the present study, a positive correlation observed as semi charred wood 

presented lower ash content (1.87%) than charred wood (3.53%), indicating 

a thermal exposure up to 600°C. However, it need to be noted that ash content 

of the samples might be altered by sediment contamination (FAO 1985). 

Likewise, fixed carbon content of the charred material was 65.59% while of 

the semi-charred was 16.51% indicating a positive correlation with 

combustion temperature. This is in accordance with results of other 

researchers (Fuwape 1996; Ruiz-aquino et al. 2019; Dias Junior et al. 2020) 

who also found an increase of fixed carbon at higher temperatures. This 

increase is suggested to be a result of pyrolytic process which favors the 
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volatile removal and consequently the elevation of ash-minerals and carbon 

(Fuwape 1996). 

4.3 Mechanical properties 

4.3.1 Force-controlled Hardness Test Methods- Brinell and 

Vickers  

The difficulties faced by both Brinell and Vickers tests are attributed to 

materials’ characteristics and methods’ principles. As indicated by the 

conducted preliminary trials, uncharred, semi-charred and charred wood 

required distinctly dissimilar force in order to acquire data and thus are not 

appropriate for assessing hardness for the material under investigation. 

Hence, a depth-controlled method not only better describes the performance 

of the wood as it determines plastic and elastic deformation (Sydor et al. 

2020), but in this case is the only way to acquire comparable results.   

4.3.2 Depth-controlled Hardness Test Method- Janka 

Results obtained by employing the modified Janka hardness test on reference 

samples were rather anticipated, as Pinus halepensis demonstrated higher 

hardness values than Pinus brutia (Rousodimos 1997). The only exception 

observed for the tangential hardness, on both earlywood (EW) and latewood 

(LW). This was indicating some local anomaly, which was later confirmed 

by macroscopic observation. Hence this result is not representative of the 

material’s hardness. Moreover, the LW values were found higher than the 

EW (Wimmer et al. 1997; Hirata et al. 2001; Peng et al. 2016) despite the 

species and plane examined. It is evident that hardness of archaeological 

wood was considerably lower compared to the reference samples of Pinus 

halepensis and P. brutia as expected. This was rather justified as low hardness 

is commonly reported for deteriorated waterlogged archaeological wood 

(Schniewind 1990) and because thermal exposure also  reduces wood 
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hardness (Ates et al. 2009; Kymäläinen et al. 2018a; Kamperidou 2019; 

Sedlar et al. 2019; de Abreu Neto et al. 2021).  

The hardness values recorded for the semi-charred material show to deviated 

in relation to the other two charring conditions. This is considered to be owed 

to the multiple layers consisting this charring condition as previously 

mentioned in the SEM. The resolution of the hardness test applied (~ 1 mm 

indentation) could demonstrate small hardness differences, and so it revealed 

changes in respect to the heat source and thus, values variated depending on 

how far the area tested was from the uncharred or the charred part of the 

wood. 

The highly irregular behavior of charred wood as well as the failure recorded 

on the end side is indicating a brittle nature which by definition is more 

favorable along the grain and also increases at increasing temperature 

(Hughes et al. 2015) 

4.3.3 Penetrometer 

Although the penetrometer results cannot be interpreted as hardness, they 

demonstrated successfully the three distinct charring conditions and thus it is 

indicated that the fruit penetrometer, if properly calibrated, could be 

developed in to a useful portable tool for identifying the existence of different 

charring conditions among the shipwreck timbers. Furthermore, resistance to 

penetration measurements showed a correlation with the Rg values among the 

three charring conditions. Correlation between Rg and resistance to 

penetration is commonly reported for waterlogged archaeological wood 

(Squirrell and Clarke 1987; Schniewind 1990; Gregory et al. 2007; Petrou 

and Pournou 2018) and is also anticipated to exist for semi-charred and 

charred material. However, further research is required to confirm this 

assumption and potentially implement a curve to assist in the documentation 

of different charring degrees. This could be very challenging as although 
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uncharred wood is distinctly differentiated by the other two conditions, the 

limit between semi-charred and charred wood could not be easily 

distinguished. This could be owed to the testing procedure, which is not 

taking into account, the wood depth where data were acquired. Nonetheless, 

the effect of the semi-charred’s transitional nature could not excluded.  

4.4 Chemistry 

4.4.1 Energy Dispersive Spectroscopy (EDS)  

All elements detected in bulk analysis (S, Fe, Ca, Si, Al) presented the highest 

concentration in the uncharred region, the lowest in the charred area, whereas 

an intermediate concentration has been recorded in semi-charred zone. 

However, Al was not detected in semi-charred and charred areas.  The fact 

that the Fe and S coexist at the exact same spots, could be owed to the 

probability that they both belong to the same compound (Fors 2008; 

Rémazeilles et al. 2013). Except S, which presence is related to the action of 

sulfate-reducing bacteria (Sandström et al. 2002), all the other elements 

detected are constituents of the seawater and chemical components of the 

sediment (Florian 1987; Sandström et al. 2002; Monachon et al. 2020) and 

thus their high concentration in the uncharred wood is most likely owed to its 

higher  porosity and consequently permeability, that has been documented 

with MIP. The possible concurrent presence of S and Fe in the material, 

recorded with EDS, is expected to cause severe post-excavation and post-

conservation problems (Fors 2008; Fors et al. 2008; Rémazeilles et al. 2013; 

Collis 2015; High and Penkman 2021).  

Moreover, the concentration of C and O appears also to be charring-

depended. In accordance with the proximate analysis results on fixed carbon 

content, the C percentage increases with charring (Valenzuela-Calahorro et 

al. 1987; Rutherford et al. 2005; Todaro et al. 2015), while O decreases 

(Valenzuela-Calahorro et al. 1987; Rutherford et al. 2005). The 
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increase/decrease rate of the O/C ratio is also dependent on both temperature 

and heating duration (Rutherford et al. 2005). Moreover, the relative 

concentrations of these two elements showed that in charred material carbon 

is much higher than oxygen, indicating that the oxygen‐containing organic 

moieties such as polysaccharides and lignin are depleted as shown also by 

other researchers (Inari et al. 2006; Kocaefe et al. 2012). In semi charred areas 

the O/C ratio is constant, indicating the presence of both carbohydrates and 

lignin (Kocaefe et al. 2012). Uncharred areas also present a constant O/C ratio 

which however is relatively low, indicating the presence of organic matter, 

which most likely attributed to lignin (Kocaefe et al. 2012).  

4.4.2 Fourier Transform Infrared Spectroscopy (FTIR) 

Fourier Transform Infrared Spectroscopy demonstrated that the spectrum of 

the uncharred material is a typical spectrum of a biodeteriorated waterlogged 

wood, where lignin bands appear pronounced and carbohydrates’ bands 

appeared decreased. This chemical profile is indicative  of wood deteriorated 

by erosion bacteria or/and soft-rot fungi, which thrive in the marine 

environment (Pournou 2020), as erosion bacteria decay has been often 

reported to be associated with lignin bands’ increment and carbohydrate 

bands’ decrement (Gelbrich et al. 2008; Pedersen et al. 2015) and  soft-rotters 

also degrade carbohydrates in preference to lignin (Pournou 2020). Most of 

soft-rotters are unable to degrade guaiacyl lignin, found predominantly in 

softwoods, except for the cavity-forming species (Nilsson et al. 1989). In the 

uncharred wood, guaiacyl lignin presence is indicated by the newly developed 

bands at ~855 cm-1 which associated with the C-H out-of-plane vibrations 

(Traoré et al. 2018), and at ~1140 cm-1 which in combination with the increase 

at 1030 cm-1 and the decrease in the intensity at 1060 is an indication of wood 

decay (Pandey and Pitman 2003), and is attributable to the relative increase 

of guaiacyl lignin compared to carbohydrates (C–H deformation in the 

guaiacyl unit, with C–O deformation in primary alcohol).  
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The semi-charred material spectrum is very similar to spectra of thermally 

modified wood as most of the carbohydrate bands show no significant 

changes except the hemicelluloses’ ester carbonyl peak at 1737 cm-1, and the 

cellulose peak at ~895 cm-1, due to C-H deformations at the glycosidic 

linkage, which were decreased. However, these alterations were also expected 

as the xylan-linked acetyl groups are commonly cleaved with increasing 

temperature and time during the burning of wood (Tjeerdsma and Militz 

2005; Esteves et al. 2013; Popescu et al. 2013; Özgenç et al. 2018; Kubovsk 

and Kaˇ 2020), and the cellulose peak at ~895 cm-1, has been previously 

connected with thermal exposure (Kotilainen et al. 2000; Esteves et al. 2013; 

Özgenç et al. 2018). It should be mentioned though, that part of 

carbohydrates’ reduction could be owed to abiotic or biotic processes 

occurring in the marine environment during the service life of the ship or 

during burial (Kim 1990; Pedersen et al. 2015; Pournou 2020). The moist 

environment in which fire occur has also been reported to favors the 

hydrolysis of hemicelluloses and amorphous cellulose (Hill 2006). 

Furthermore, the lignin bands showed no intensity difference as reported for 

thermally modified wood (Özgenç et al. 2018) whereas the slight rise 

observed for some is mainly due to the increase in relative lignin content 

(Kotilainen et al. 2000). Nonetheless, the increase in absorption at 1030 and 

1060 cm-1 has been observed indicating respectively the pronounced aromatic 

nature of the semi-charred wood, since this absorption band also indicates 

aromatic in-plane C-H deformation and changes in cellulose structure 

(Kotilainen et al. 2000; Kubovsk and Kaˇ 2020) along with the formation of 

aliphatic alcohols during heating (Kotilainen et al. 2000; Popescu et al. 2013). 

The charred wood spectrum is typical of charcoals as the bands at 3400-3320 

cm-1 and at 3000–2800 cm-1  were decreased in intensity, a common chemical 

effect of increasing temperature (Guo and Bustin 1998; Poletto et al. 2012; 

Tintner et al. 2018; Constantine et al. 2021) . In addition the reduction of 
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characteristic bands (e.g. ~1737 cm-1, ~1510 and 1269 cm-1, 1026 and ~898 

cm-1) assigned to wood components such as hemicelluloses, lignin and 

cellulose (High and Penkman 2021), and the fingerprint region (1500–900 

cm-1) bands (Poletto et al. 2012), indicates the chemical changes caused by 

pyrolysis (Tintner et al. 2018). Furthermore, the broad band at ~1708 cm-1, 

due to the acidic C=O groups,   characteristic of low-temperature charcoals’ 

spectra (Guo and Bustin 1998; Constantine et al. 2021) and the broad band at 

1610–1590 cm-1, due to lignin aromatic C=C skeletal vibrations, which have 

been also reported to increase in intensity with increasing charring (Tintner 

et al. 2018), are indicating a relative low charring temperature.  

The FTIR results for all three charring conditions are in accordance with O/C 

ratio observations of EDS. Moreover, the reduced hygroscopicity 

demonstrated by the physical properties is justified by the depletion of 

hemicelluloses owed either to the biodeterioration in the marine environment 

(Pournou 2020) or to the heat exposure (Hill 2006; Kymäläinen et al. 2014), 

as both temperature and duration are negatively correlated to wood EMC 

(Esteves et al. 2007; Akyildiz and Ates 2008; Ates et al. 2009; Kamperidou 

2019; Nhacila et al. 2020).  

FTIR results of uncharred wood are in line with the material ultrastructure 

observed with SEM, as the lignin-rich middle lamellae is preserved and the 

cellulose-rich secondary cell walls are degraded by erosion bacteria (Björdal 

2012)  

4.4.3 X-ray Diffraction (XRD)  

The peaks typical of wood cellulose reflection planes (Anderson et al. 2004; 

Park et al. 2010; Agarwal et al. 2013) were detected in both reference samples 

and in the semi-charred material. On the other hand, in uncharred and charred 

wood only the peak on the (200) plane reflection is more evident for the 

former, while for the latter exists is broad and weak.  
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The different crystallinity index (CrI) of the material examined, which was 

higher than reference samples for both semi-charred and uncharred wood, 

depends on the charring degree and biodeterioration respectively.  However, 

the considerably high CrI of uncharred material was not anticipated, as in 

archaeological wood the crystallinity usually decreases with decay (Giachi et 

al. 2003; Popescu et al. 2010; Zhou et al. 2018; High and Penkman 2021). 

Nonetheless, crystallinity’s increase has been reported by other authors in 

initial stages of degradation due to the dramatic loss of amorphous cellulose 

regions (Howell et al. 2009; Popescu et al. 2010; High and Penkman 2021). 

It is believed however that this explanation does not justify the high CrI 

values of uncharred material as the diffractogram line-shape, the FTIR results 

and the lowest crystallite size (L) recorded, indicate that in the material 

investigated, cellulose is probably completely destroyed. Therefore, it 

appears that the Segal method for CrI calculation cannot successfully apply 

to severely deteriorated material. This could be due to several reasons related 

to the deficiency of the Segal method (Thygesen et al. 2005; Park et al. 2010; 

French and Santiago Cintrón 2013); nonetheless, it is considered that is 

principally owed to the highly depleted cellulose fraction. It is recommended 

for this type of material to examine the use other methods such as the two-

dimensional X-ray diffraction. 

The relative higher CrI of semi-charred material compared to reference 

samples of Pinus brutia and Pinus halepensis, is considered that is due to 

amorphous cellulose degradation, which occurs during the initial stages of 

heating and progresses as the heat temperature rises (Sivonen et al. 2002; 

Esteves and Pereira 2009; Tarmian and Akbar Mastouri 2019). This is in 

accordance with the high L value that corresponds to relatively larger crystal 

that the other materials examined. Moreover, indicates that the charring 

temperature for semi-charred material was lower that ~300 °C as above this 
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threshold, cellulose crystalline part is expected to degrade severely (Kwon et 

al. 2009; Wang et al. 2017).  

The relative increase of CrI recorded for semi-charred wood, due to 

amorphous cellulose degradation, results in rearrangement of the cellulose 

molecules and cross-linkage with lignin (Kymäläinen et al. 2018a), thus is 

possibly connected with low hygroscopicity, which is in accordance with low 

EMC recorded. Moreover, the small cellulose crystallite length recorded in 

uncharred wood may also be related to its hygroscopic nature recorded by 

EMC, as cellulose degradation to shorter polymers creates new sorption sites 

(Broda et al. 2019; Han et al. 2020).  

Both XRD and FTIR results justify the recorded dimensional stability, and 

reduced hygroscopicity of semi-charred wood  due to thermal modification 

(Esteves et al. 2007; Akyildiz and Ates 2008; Ates et al. 2009; Kymäläinen 

et al. 2018a; Cai 2020; Nhacila et al. 2020). Similarly, the thermal degradation 

of carbohydrates in charred wood are reducing the hygroscopicity of the 

material by limiting the sorption sites mainly to those contained in lignin 

(Carll and Wiedenhoeft 2009; Engelund et al. 2013) and hence increase its 

dimensional stability.    

4.5 Conclusions 

In the present study, the  morphology of the material confirmed the existence 

of three distinct charring conditions: uncharred, semi-charred and charred 

wood (Mitsi et al. 2023). Charred wood morphology indicated a material 

exposed to temperatures exceeding 300°C, while uncharred wood a material 

severely biodeteriorated in the marine environment. Morphological 

examination of the semi-charred wood did not show either the 

biodeterioration patterns observed in uncharred wood, or the amalgamation 

of the secondary cell walls observed in charred wood. However, semi-charred 

samples presented great variations in the state of preservation of their cellular 
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morphology indicating different degrees of charring and biodeterioration, 

reflecting their different exposure to the fire front. 

The three charring conditions presented considerably different 

physicomechanical properties (Mitsi et al. 2023). The uncharred wood 

showed the lowest density, hardness and resistance to penetration, and the 

highest moisture content, shrinkage and porosity. In contrast, charred wood 

showed the lowest moisture content, shrinkage and porosity, and the highest 

density, dry hardness and resistance to penetration. Again, the semi-charred 

wood demonstrated a transitional character in all abovementioned properties.  

Results obtained on the chemistry of the archaeological material (Mitsi et al. 

2021), justified the morphological differences observed and the dissimilar 

physico-mechanical properties recorded. The uncharred wood was 

chemically similar to biodeteriorated waterlogged wood, as carbohydrates 

were dramatically decreased and lignin was found increased. The charred 

wood, was chemically similar to low-temperature charcoals, with both its 

carbohydrates and lignin almost being completely depleted. The semi-charred 

wood, presented a transitional chemistry between the charred and uncharred 

wood, and showed a chemical profile analogous to thermally modified wood 

heated at temperatures < 300°C, as all major components of the cell wall were 

still present (Mitsi et al. 2021). 

The abovementioned results on the morphological, chemical and physico-

mechanical propertied of Rhodes’ waterlogged wood, indicated different 

conservation requirements among the three charring conditions. Uncharred 

wood is in need of remedial conservation with a consolidating agent, while 

the charred and the semi-charred wood demonstrated negligible shrinkage 

values indicating that they might be safely air-dried (Mitsi et al. 2023).  

These three dissimilar charring conditions are often coexist in the case of 

Rhodes’ wreck timbers. Therefore, the conservation plan should be 
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formulated based on the needs of the most vulnerable material to drying, 

which is the uncharred wood even though this could be a difficult task as it is 

expected that  the charred material will be refractory to impregnation even by 

low MW polymers.  

Moreover, the recorded elemental composition is considered of paramount 

importance and should be bore in mind while developing the conservation 

strategy of the wreck, as the presence of Fe and S is associated with post-

conservation acidity in wood and degradation of both cellulose and PEG.  

The conservation of the semi-charred wood, even if it appears more intricate, 

is more likely that would not implicate the conservations treatments as it 

represents a quite narrow transition zone, approximately ranging from ~0.8 

to ~1.5 cm, between the charred and uncharred wood. Nonetheless further 

research is required of this transitional zone in order to enhance understanding 

of its role and the possible implications it may have on future conservation 

efforts.  

Lastly it is considered necessary to further investigate the penetrability of 

both charred and semi-charred wood and the diffusion of PEGs into these 

charring conditions, as well as the efficacy of conservation methods 

employed via impregnation, in cases when all three charring conditions 

coexist  
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Abstract: In 2008, a medieval wooden shipwreck was discovered at the port of Rhodes, Greece. The
shipwreck was party burned, presenting a challenge for conservators, as uncharred, semi-charred
and charred waterlogged wood were often encountered on the same piece of timber. In seeking the
most appropriate conservation method for this unusual material, its chemical characterization was
considered necessary. This study examined the chemistry of the three dominant wood conditions
found in the wreck. Fourier transform infrared spectroscopy and X-ray diffraction analysis were
implemented in comparison to reference samples. Energy dispersive analysis was also used for
assessing the inorganic composition of each condition. Moreover, for charred and semi-charred
wood, proximate analysis was undertaken. Results obtained regarding the organic moieties of the
waterlogged archaeological material, demonstrated that charred samples were chemically compa-
rable to charcoals, semi-charred material showed similarity to thermally modified wood, whereas
uncharred waterlogged wood was proven to have an analogous chemistry to biodeteriorated wood.
Elemental analysis results also diversified among the three shipwreck’s conditions. Sulfur, iron,
and oxygen decreased in charred areas, whereas carbon increased. Proximate analysis showed that
ash and fixed carbon content increased with charring, whereas volatile mater decreased. This work
proved major chemical differences among shipwreck timbers’ conditions owing to different degree
of charring. These are anticipated to influence not only conservation methods’ efficacy, but also the
post-treatment behavior of the material. Further investigation is needed for correlating the chemistry
of the archaeological material to its physical properties in order to contribute to practical aspects
of conservation.

Keywords: medieval shipwreck; waterlogged wood; charred wood; chemical analysis; EDS; FTIR;
XRD; proximate analysis

1. Introduction

During a routine survey in 2008, a late-12th-century ship was discovered at the
commercial port of Rhodes by the Greek Ephorate of Underwater Antiquities [1,2]. The
shipwreck lay at a maximum depth of 13–14 m and was found half-buried in muddy
sediment [1].

In 2013, a partial excavation of the shipwreck revealed that it was a merchant ship
loaded with a cargo of amphorae and made apparent that a fire event took place before
the vessel sunk [1]. Extensive or superficial traces of burning were recorded on many
constructional elements of the ship, such as frames, ceiling planking, and stringers, and
almost on every artifact recovered [1,2].

Excavated wooden hull members, identified as Pinus halepensis Mill. or Pinus brutia
Ten. [1], showed a varied preservation state, as the degree and depth of charring was
not homogenous among ship timbers due to the fire progression [3]. The coexistence
of uncharred, semi-charred, and charred wood, often encountered on the same timber,

Forests 2021, 12, 1594. https://doi.org/10.3390/f12111594 https://www.mdpi.com/journal/forests

https://www.mdpi.com/journal/forests
https://www.mdpi.com
https://orcid.org/0000-0002-6008-2410
https://orcid.org/0000-0001-9237-041X
https://orcid.org/0000-0002-5394-2355
https://doi.org/10.3390/f12111594
https://doi.org/10.3390/f12111594
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/f12111594
https://www.mdpi.com/journal/forests
https://www.mdpi.com/article/10.3390/f12111594?type=check_update&version=1


Forests 2021, 12, 1594 2 of 12

poses a great challenge for the ship’s future conservation as wood responds differently to
impregnation and drying, depending on its charring degree [3]. However, literature on the
conservation of waterlogged charred wood is scarce and there are no studies associating the
conservation requirements with material’s physical and chemical properties. Nonetheless,
it is well known that thermal decomposition of wood is accompanied by major chemical
changes in hygroscopicity, viscosity, cell wall structure, color, density, and loss of mass and
strength [4–8]. Moreover, it is also documented that these alterations depend on variables
related not only on the wood, such as density, moisture content, permeability, species,
size, grain direction, and surface protection [7,9], but also on the heating scenario, which
incorporates the heat flux (temperature and duration) and the environment surrounding
the wood like the oxygen concentration [7,9–13]. All these factors which influence pyrolysis,
combustion, and the charring rate of wood justify the coexistence of charred, semi-charred,
and uncharred wood in the shipwreck.

Preliminary experiments undertaken for the conservation of this material with polyethy-
lene glycol followed by air or freeze drying have demonstrated a very dissimilar response
to consolidation [3]. This was rather anticipated because as wood reaches elevated tem-
peratures, the thermally degraded structural and chemical components affect greatly its
behavior [4–6,12,14].

Therefore, this study was set to characterize the chemistry of this dissimilarly charred
material in order to help understand its behavior and provide insights towards the devel-
opment of a successful conservation method.

2. Materials and Methods

Waterlogged wood examined in this study belonged to a wreck’s frame made of
Pinus halepensis Mill. (Aleppo pine) or Pinus brutia Ten. (Turkish pine) [1]. Part of the
frame was retrieved in 2013, and was kept waterlogged at 5 ◦C until sampling. The
material presented a varied degree of charring, as its outer surface was charred, its inner
core was uncharred, and layers in between were semi-charred [3]. Samples used for the
chemical characterization were taken from the surface inwards, at least 50 annual rings
away from the pith, to correspond to the sapwood of the mature pine, and contained all
three charring conditions.

2.1. Energy Dispersive Analysis (EDS)

Uncharred and semi-charred waterlogged archaeological samples were cut in sub-
samples using a double-edged razor blade, whereas charred samples were fractured.
Subsamples were then dehydrated in a series of ethanol solutions of increasing concentra-
tions until water-free alcohol was reached and left to air-dry in a desiccator. They were
then mounted on aluminum stubs using a double coated carbon conductive tape and
energy dispersive X-ray spectroscopy (EDS) was performed at an acceleration voltage of
20 kV under low vacuum (33 Pa) using a JEOL JSM-6510LV scanning electron microscope,
equipped with an Inca x-act silicon drift detector (SDD) with PentaFET® Precision (Oxford
Instruments, Oxford, UK). The analytical data were obtained with Inca® analysis software.
Bulk analysis was applied on every wood condition, whereas line scans and mapping were
applied on samples where all conditions coexisted.

2.2. Fourier Transform Infrared Spectroscopy (FTIR)

Uncharred, semi-charred, and charred waterlogged archaeological wood was air-
dried, and along with sapwood of sound wood of mature Pinus halepensis Mill. and Pinus
brutia Ten. were finely grounded manually with the use of an agate mortar and pestle
to ~100 µm (No 140-mesh size). Wood powder was then mixed with potassium bromide
powder (KBr, Merck), and pressed into 13 mm discs with a hydraulic press. Disc samples
were placed in the FTIR system sample chamber for analysis.
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All samples were analyzed with a Perkin Elmer Spectrum GX spectrometer, equipped
with DTGS (deuterated diglycine sulfate) detector. Spectra were recorded and edited with
the Perkin Elmer Spectrum v.5.3.1 software.

2.3. X-Ray Diffraction Analysis (XRD)

Air-dried uncharred, semi-charred, and charred, waterlogged archaeological samples
along with sapwood of sound wood of mature Pinus halepensis Mill. and Pinus brutia Ten.
were finely grounded manually with the use of an agate mortar and pestle to ~100 µm
(No 140 mesh size).

X-ray diffraction spectra of wood powdered samples were recorded with the help
of InXitu BTX II Benchtop X-ray Diffraction/X-ray Fluorescence hybrid system using a
Cobalt source (Kα1 1.78897 Å). All spectra were recorded in duplicate after the completion
of >1200 scan cycles from 5 to 50 degrees 2θ.

The crystallinity index (CrI) was calculated based on the method developed by Segal
et al. in 1959 [15] using the height ratio between the crystalline intensity, expressed as
the difference (I200−Iam) and the total intensity (I200), Equation (1). Diffractograms were
baseline-corrected with the XPowder software and consequently analyzed using the Perkin
Elmer Spectrum v.5.3.1 software with no further processing of peak heights at the (200)
plane and at the amorphous region. The total intensity that corresponds to both crystalline
and amorphous material (I200), is assigned at 2θ~25.60◦, whereas the amorphous intensity
(Iam) is assigned at 2θ~20.60◦, angles corresponding to Cobalt source radiation.

%CrI =
I(200) − Iam

I(200)
× 100 (1)

The apparent crystallite size L (in nm) was estimated using the Scherrer Equation (2) [16],
where K is the Scherrer constant, for which, the value of 0.94 was typically adopted; λ is
the X-ray wavelength (1.78897 Å for Co Kα1 radiation); β is the full width at half maximum
(FWHM) of the diffraction band calculated after curve deconvolution using the Thermo
GRAMS suite v.9.0 at the ~11–30.5 2θ range using a 1:1 Gaussian-Lorenzian profile; and θ is
the Bragg angle corresponding to the (200) plane.

L =
K × λ

β × cosθ
(2)

2.4. Proximate Analysis

Proximate analysis was implemented on charred and semi-charred wood samples
according to ASTM D1762-84. Samples were air-dried to a constant weight at 21 ◦C and
65% RH. They were then grounded manually with the use of an agate mortar and pestle,
to ~100 µm (No 140-mesh size). Determination of moisture, ash, volatile matter, and fixed
carbon was duplicated.

For moisture, approximately 1 g of each condition was placed in a porcelain crucible
and weighed to the nearest 0.1 mg. Crucibles and covers were previously dried in a muffle
furnace at 750 ◦C for 10 min and cooled in a desiccator for 1 h. Crucibles containing
grounded samples were then placed uncovered in an oven at 105 ◦C for 2 h. Dried samples
were cooled covered in a desiccator for 1 h and weighted. Samples were considered oven-
dried when the decrease in weight was ≤0.0005 g. Succeeding drying periods were 1 h.
Moisture content was calculated based on Equation (3).

Moisture% = [(A − B)/A] × 100 (3)

where A = grams of air-dry sample used, and B = grams of sample after drying at 105 ◦C.
For volatile matter, crucibles with lids in place and containing the samples used for

moisture determination were placed in a muffle furnace heated to 950 ◦C. They were first
positioned, with the furnace door open, for 2 min on the outer ledge of the furnace (300 ◦C),
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then for 3 min on the edge of the furnace (500 ◦C) and finally to the rear of the furnace
for 6 min with the muffle door closed. Samples were then cooled in a desiccator for 1 h
and weighed. The percentage of volatile matter in the sample was calculated based on the
Equation (4)

Volatile matter% = [(B − C)/B] × 100 (4)

where C = grams of sample after drying at 950 ◦C.
For ash, lids and uncovered crucible used for the volatile matter determination con-

taining the samples were placed in a muffle furnace at 750 ◦C for 6 h. Samples were cooled
with lids in place covered in a desiccator for 1 h and weighed. Samples were repeatedly
burned with succeeding 1-h periods until results showed loss of less than 0.0005 g.

The percentage of ash content was calculated based on the Equation (5)

Ash% = (D/B) × 100 (5)

where D = grams of residue.
Fixed carbon was calculated on a dry basis according to ASTM E870–82 based on the

Equation (6).
Fixed Carbon% = 100 − [Volatile Matter% + Ash%] (6)

3. Results and Discussion
3.1. EDS

Bulk analysis of uncharred, semi-charred, and charred material (Figure 1a,b) showed
the presence of aluminum (Al), calcium (Ca), magnesium (Mg), and silica (Si) (Figure 1c).
Moreover, both sulfur (S) and iron (Fe) concentrations were shown to decrease in charred ar-
eas. This is more likely owed to the different porosity/permeability of the material, which is
charring-dependent [17] and that did not allow Fe found in the burial environment [18,19]
and S produced by the action of sulfate-reducing bacteria [18] to penetrate into the
material uniformly.
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Figure 1. Macroscopic image (a) and SEM micrograph (b) of a sample where charred (i), semi-charred
(ii), and uncharred (iii) material coexisted; (c) EDS spectrum of each condition.

Elemental mapping and line scans on samples where all conditions coexisted (Figure 2)
also confirmed that the presence of S and Fe is more intense in uncharred areas. Moreover,
mapping revealed the coexistence of S and Fe in some spots, which possibly indicates
their co-occurrence in the same compound [20,21]. This concurrent presence of S and
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Fe in the material is expected to cause severe post-excavation and post-conservation
problems [20–23].
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Figure 2. EDS line-scan and mapping of a sample where all conditions coexisted. (a) Line scan of Fe
(red) and S (green) (left to right the transition from charred to uncharred, i–iii); (b) mapping of Fe
(red) and S (green).

Another find reveled by EDS was the different concentration of carbon (C) and oxy-
gen (O2) due to charring (Figure 3). As expected, C percentage increases in charred
material [17,24,25] while O decreases [17,24]. The increase/decrease rate of C and O is
dependent on both temperature and heating duration [17]. Moreover, the relative con-
centrations of these two elements (Figure 3a) showed that in charred material carbon is
much higher than oxygen, indicating that oxygen-containing organic moieties such as
polysaccharides and lignin are depleted [26,27]. In contrast, in uncharred areas the ratio of
O to C is constant but relatively low, indicating the presence of organic matter, most likely
lignin [27], which is in accordance with FTIR results.
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3.2. FTIR

Spectra obtained from uncharred, semi-charred, and charred archaeological samples
along with reference spectra of Pinus halepensis and Pinus brutia are presented in Figure 4.
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The charred archaeological sample infrared spectrum (Figure 4e) appears typical to
charcoals where the broad band at 3400–3320 cm−1 representing the –OH stretching vibra-
tion of water and the peaks at 3000–2800 cm−1, due to aliphatic C-H stretching vibration
derived from methyl, methylene, and methine group, are absent, as these bands decrease
in intensity with increasing temperature [11,13,28,29]. Moreover, specific bands assigned
to wood components such as hemicelluloses (~1737 cm−1), lignin (~1510 and 1269 cm−1)
and cellulose (1026 and ~898 cm−1) [23] and generally all bands in the “fingerprint” region
1500–900 cm−1 [23,28] are absent, displaying the chemical changes caused by pyrolysis as
well [29]. Nonetheless, the charred sample spectrum presents broad bands at ~1708 cm−1,
due to the acidic C=O groups, characteristic of low temperature charcoals’ spectra [11,13]
and a broad band at 1610–1590 cm−1 due to lignin aromatic C=C skeletal vibrations, which
have been also reported to increase in intensity with increasing charring [29].

Semi-charred material spectrum appears comparable to spectra of thermally modi-
fied wood. The intensity of hemicelluloses ester carbonyl peak at 1737 cm−1 is evidently
decreased, as most of the xylan-linked acetyl groups are expected to be cleaved with in-
creasing temperature and time during the burning of wood [30–34]. The cellulose peak at
~895 cm−1 due to C-H deformations at the glycosidic linkage was also decreased, which
has been reported to occur when wood is exposed to heat [32,33,35]. It should be men-
tioned though, that part of carbohydrates’ reduction could be owed to abiotic or biotic
processes occurring in the marine environment during the service life of the ship or during
burial [36–38]. Other carbohydrate bands at ~1371, ~1160, and 1110 cm−1 showed no signif-
icant difference in intensity. Similarly, the major lignin bands, approximately at 1603, 1510,
1464, 1425, 1371, 1316, 1269, and 1223 cm−1 showed no intensity differences as reported for
thermally modified wood [33] whereas the slight rise observed for some (1603, 1510, and
1425 cm−1) is mainly due to the increase in relative lignin content [35]. Nonetheless, an
increase in absorption at 1030 and 1060 cm−1 has been observed indicating respectively
the pronounced aromatic nature of the semi-charred wood, since this absorption band also
indicates aromatic in-plane C-H deformation and changes in cellulose structure [34,35]
along with the formation of aliphatic alcohols during heating [31,35].

The spectrum of uncharred waterlogged wood appears typical of biodeteriorated
waterlogged wood, where significantly pronounced lignin bands 1605, 1510, 1269, and
1220 cm−1 appear with a corresponding decrease in the intensities of carbohydrate bands
at 1737, 1370, 1158, and 895 cm−1. More specifically, it is indicated that shipwreck timbers
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have been deteriorated by erosion bacteria or/and soft-rot fungi, which thrive in the marine
environment [37]. Erosion bacteria decay has been often reported to be associated with
lignin bands’ increment and carbohydrates bands’ decrement [38,39]. Soft-rotters also
degrade carbohydrates in preference to lignin [37] and most of them are unable to degrade
guaiacyl lignin, found predominantly in softwoods, with the exception of the cavity-
forming species [40]. This probably explains the new band developed at ~1140 cm−1, which
in combination with the decrease in the intensity at 1060 and the increase at 1030 cm−1,
may be attributable to the guaiacyl lignin relative increase compared to carbohydrates [41]
(C–H deformation in the guaiacyl unit, with C–O deformation in primary alcohol). This
is also in accordance with another band present in uncharred wood sample at ~855 cm−1

that is associated with the C-H out-of-plane vibrations in guaiacyl lignin [42].

3.3. XRD

Diffractograms regarding the (110), (110), (102), (200), and (004) reflections of the
two reference samples (P. halepensis and P. brutia) along with charred, semi-charred, and
uncharred archaeological waterlogged samples are shown in Figure 5. Both reference
samples and semi-charred diffractograms showed all peaks typical of reflection planes
of wood cellulose [43–45]. In contrast, the uncharred sample diffractogram showed a
considerably flattened line-shape; nonetheless, it showed a more prominent peak on the
(200) plane reflection with respect to the (110) and (110). The charred sample diffractogram,
as reported by other researchers [46], appeared also flattened with a weak and broad peak
regarding the (200) reflection plane, with a shifted vague maximum at ~30◦.
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Crystallinity index (CrI) of the material examined varied greatly depending on the
charring degree (Table 1). The higher cellulose CrI value was calculated for the uncharred
material, and followed by semi-charred wood and by controls. However, CrI values were
not in accordance with the respective crystallite sizes (L), as for the uncharred material, L
presented the lowest value.

Table 1. Band positions of the maximum total intensity (I200) and the minimum intensity of the
amorphous cellulose (Iam). CrI represents the crystalline index based on Segal’s method and L
correspond to the crystallite size.

Sample 2θ (I200) a 2θ (Iam) a CrI L (nm)

Pinus brutia 25.49 19.83 41.7% 2.29
Pinus halepensis 25.70 20.70 41.8% 2.51
Semi-charred 25.27 21.08 47.4% 2.75

Uncharred 26.16 21.05 53.2% 1.10
Charred b - - - -

a 2θ values are expressed as Co-source. b CrI was not calculated as no cellulose is expected to be preserved with
charring above 400 ◦C.

The considerably high CrI of uncharred material was not anticipated, as in archae-
ological wood the crystallinity usually decreases with decay [23,47–49]. Nonetheless,
crystallinity’s increase has been reported by other authors in initial stages of degrada-
tion due to the dramatic loss of amorphous cellulose regions [23,48,50]. It is believed
though that this explanation does not justify the high CrI values of uncharred material as
the diffractogram line-shape, the FTIR results and the lowest crystallite size (L) recorded
point out to a material in which cellulose is probably completely destroyed. Therefore, it
appears that the Segal method for CrI calculation cannot successfully apply to severely
deteriorated material. This could be due to several reasons related to the deficiency of
the Segal method [44,51,52]; nonetheless, it is considered that is principally owed to the
highly depleted cellulose fraction. It is recommended for this type of material to use other
methods such as the two-dimensional X-ray diffraction.

The relative higher CrI of semi-charred material compared to references is considered
that is due to amorphous cellulose degradation, which occurs during the initial stages
of heating and progresses as the heat temperature rises [53–55]. This is in accordance
with the high L value that corresponds to relatively larger crystal that the other materials
examined. Moreover, indicates that the charring temperature for semi-charred material
was lower that ~300 ◦C as above this threshold, cellulose crystalline part is expected to
degrade severely [46,56].

3.4. Proximate Analysis

Proximate analysis’ results on moisture content, volatile matter, ash content and fixed
carbon are presented in Table 2 for both semi-charred and charred conditions. For the
moisture content, no difference was recorded among samples. As it was anticipated,
the volatile matter was lower in fully charred material as it is negatively correlated
with temperature [57–59]. Similar values for volatile matter have been recorded by Dias
Junior et al. (2020) [59] indicating combustion at/over 450 ◦C. The difference of volatile
matter between the two conditions can be attributed to the barrier role of charred layer
over the inner areas [60,61].
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Table 2. Proximate analysis results for charred and semi-charred samples. Percentages values of
moisture content, volatile matter, ash content and fixed carbon are the average of 2 replicates. Fixed
carbon was calculated on dry basis.

Sample Moisture
Content Volatile Matter Ash Content Fixed Carbon

Semi-charred 6.53 75.07 1.87 16.51
Charred 6.71 24.16 3.53 65.59

Ash content appears to increase with combustion as expected [57,58]. Likewise, fixed
carbon content appears to increase as combustion progresses and it is in accordance with
results of other researchers [57–59] and with the EDS results obtained in the present study.
This increase is suggested to be a result of pyrolytic process which favors the volatile
removal and consequently the elevation of ash-minerals and carbon [57].

4. Conclusions

This work demonstrated major chemical differences among shipwreck timbers’ due
to charring. Three distinct conditions, consisting of uncharred, semi-charred, and charred
wood, were documented which were directly related to the fire heat flux (temperature and
duration) and the surrounding oxygen concentration.

Regarding the organic chemistry of the archaeological material, charred samples
showed an analogous profile to charcoals, where both polysaccharides and lignin were
almost absent due to pyrolysis. Semi-charred material showed a chemical similarity to
thermally modified wood, where hemicelluloses were reduced, cellulose crystallinity was
increased, and lignin showed no large differences compared to sound wood. Uncharred
waterlogged wood chemistry was analogous to biodeteriorated wood, as carbohydrates
were dramatically depleted, and the relative lignin content appeared increased.

The inorganic chemistry of the archaeological wood, based on elements’ concentrations
and topography also varied among the three conditions. Sulfur and iron concentrations
were found increased in uncharred areas and their topochemistry indicated their possible
co-existence in the same compounds. This concurrent presence of S and Fe it is considered
that has the potential to cause severe post-excavation problems.

Finally, proximate analysis also demonstrated differences among conditions, as ash
content and fixed carbon was higher in charred compared to semi-charred samples.

All chemical differences documented are awaited to be taken into consideration when
developing the conservation plan of this shipwreck, as it is anticipated to influence not
only conservation methods’ efficacy but also the post-treatment behavior of the material.

It is believed, however, that further investigation is required in order to correlate
this diverse chemistry to physical properties such as porosity, permeability, density, and
shrinkage, in order to provide a more practical contribution to the shipwreck conservation.
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Abstract: In 2008, a late-12th-century merchant ship was discovered off the commercial port of
Rhodes. The vessel caught fire before sinking and thus numerous hull timbers were found charred.
Three main degrees of charring have been recorded that presented major chemical differences which
indicated different conservation requirements. This study investigated the correlation between
the chemistry of the waterlogged timbers and their physico-mechanical properties, to assist in the
development of an appropriate conservation strategy. Scanning electron microscopy documented
the morphology of charred, semi-charred and uncharred samples. Moisture content and density
were measured gravimetrically, while porosity was evaluated using mercury intrusion porosimetry.
Hardness was assessed using a modified Janka test and a penetrometer. The results obtained showed
that differences in chemistry were highly correlated to the physico-mechanical properties of the
timbers. The charred wood presented the lowest moisture content, shrinkage and porosity among
the three charring conditions and it also had the highest density, Janka hardness and resistance to
penetration. The exact reverse properties were recorded for the uncharred material, which was typical
of badly preserved, waterlogged wood. The semi-charred wood presented transitional features. These
results indicate that the uncharred wood is in need of consolidation, in contrast to the charred and
semi-charred material, which may be left to air-dry untreated.

Keywords: waterlogged wood; charred wood; pyrolysis; thermal degradation; physical properties;
porosimetry; Janka hardness; SEM

1. Introduction

In 2008, during an underwater survey conducted by the Greek Ephorate of Underwater
Antiquities, a late-12th-century merchant ship was discovered off the commercial port
of Rhodes, at a depth of ~14 m [1]. Excavation of the shipwreck revealed that the vessel
caught fire before sinking, as evidence of burning was recorded on almost every recovered
artifact and on numerous construction elements of the ship [1,2].

The excavated elements of the wooden hull presented a varied state of preservation [3,4],
as the fire affected differently the degree and depth of wood charring. Thus, coexistence of
uncharred, semi-charred and charred wood was often encountered even on the same timber
element [3].

This inhomogeneous charring of the wreck is due to several parameters including fire
factors, such as the heat flux, temperature and duration [5–11]; the ambient parameters
surrounding the wood [5,8,9,12]; and wood variables, such as density, moisture content,
permeability, species, size, grain direction and surface protection [5,8,13–15], which also
influence the charring rate and depth.

Chemical analysis conducted by Mitsi et al. [4] on the main three charring conditions of
the timbers, demonstrated that the charred areas are chemically similar to charcoals, semi-
charred parts to thermally modified wood and the uncharred material to biodeteriorated
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waterlogged wood. Furthermore, Mitsi et al. [4] showed that in charred areas opposed to
uncharred ones, elements such as sulfur, iron and oxygen decrease, while carbon increases.

This dissimilar chemistry of the material is principally due to differing exposure to
the fire, which, in addition to the chemistry, is likely to have affected the structure and
properties of the wood [7,16–18]. Therefore, it is anticipated that the three main charring
conditions identified on the Rhodes shipwreck will also present dissimilar physical and me-
chanical properties and consequently will have quite different conservation requirements.

This study was set up to investigate the physico-mechanical properties of the Rhodes
shipwreck timbers in order to further assess their degree of degradation and contribute to
the development of a successful conservation strategy.

2. Materials and Methods

The waterlogged wood examined in this study came from one frame of the Rhodes
wreck, which was made of Pinus halepensis Mill. (Aleppo pine) or Pinus brutia Ten. (Turkish
pine) [1]. The outer layer of the frame was charred, the inner core was uncharred and in
between there was a semi-charred zone. The part of the frame used (Figure 1) measured
~9 cm Ø × 15 cm length. It was retrieved in 2013 and since then it had been kept water-
logged at 5 ◦C. Samples produced corresponded to sapwood and represented the three
main charring conditions.
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Figure 1. The frame part used, presenting an outer charred layer, an uncharred inner core and a
semi-charred zone in between.

2.1. Morphological Alterations at a Cellular Level
Scanning Electron Microscopy (SEM)

Uncharred and semi-charred waterlogged wood was cut into samples measuring
~0.2 cm × 0.2 cm × 0.3 cm using a double-edged razor blade, whereas charred wood was
fractured to produce samples of the same dimensions. Four samples per plane of each
charring condition were investigated. All samples were dehydrated in a series of ethanol
solutions of increasing concentrations until water-free alcohol was acquired and then left to
air-dry in a desiccator. They were then mounted on aluminum stubs using a double-sided
carbon conductive tape, gold-coated in a sputter coater (Polaron SC7640) and examined
at an acceleration voltage of 20 kV under low vacuum (33 Pa) using a JEOL JSM-6510LV
scanning electron microscope.
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2.2. Physical Properties
2.2.1. Moisture Content, Density and Shrinkage Determination

Waterlogged samples, ~2 cm × 2 cm × 2 cm (tangential (T) × radial (R) × longitudinal
(L)), of uncharred, semi-charred and charred wood were used for the determination of
moisture content, density and shrinkage.

For the moisture content (MC), samples were weighed in their waterlogged state
and oven-dried at 103 ± 2 ◦C to constant weight [19]. The MC was calculated based on
Equation (1) [20].

For the equilibrium moisture content (EMC), the waterlogged samples were air-dried
at 21 ± 2 ◦C and 45 ± 5% RH until they reached equilibrium. The EMC was then calculated
based on Equation (2) [21].

The basic density (Rg) of the material was calculated according to Equation (3) [21],
based on its constant oven-dry weight, at 103 ± 2 ◦C, and its waterlogged volume, recorded
by water displacement [19]. Relative density (rRg) was estimated based on the weight in
air and in water of the waterlogged material according to Equation (4) [22].

For measuring shrinkage, stainless steel insect pins were placed on the transverse
plane to mark the tangential and radial direction, and the distance between the pins
was recorded with a Vernier caliper (0.02 mm). Samples were then air-dried to constant
weight at 21 ± 2 ◦C and 45 ± 5% RH, and the distance between the pins was measured
again. The cross-sectional shrinkage (ß cross) was estimated by summing the tangential
and radial shrinkage (ß), which had been calculated with Equation (5) [23]. It has to be
noted that shrinkage in this study refers to the total reduction of dimensions measured
upon air-drying, which includes both cell collapse and cell wall shrinkage.

For evaluating the above-mentioned physical properties, four replicates of each char-
ring condition were used.

MC (%) = [(WW − WOD)/WOD] × 100 (1)

where MC = moisture content, WW = waterlogged weight and WOD = oven-dry weight at
102 ± 3 ◦C after three consecutive constant measurements.

EMC (%) = [(WAD − WOD)/WOD] × 100 (2)

where EMC = equilibrium moisture content, WAD = air-dried weight at 21 ± 2 ◦C and
45 ± 5% RH after three consecutive constant measurements and WOD = oven-dry weight
at 102 ± 3 ◦C after three consecutive constant measurements.

Rg (g/cm3) = WOD/V (3)

where Rg = basic density, WOD = oven-dry weight at 102 ± 3 ◦C after three consecutive
constant measurements and V = waterlogged volume measured by water displacement.

rRg = 3 × Wsub/(Wair − Wsub) (4)

where rRg = relative density, Wsub = waterlogged weight in water and Wair = waterlogged
weight in air.

ß (%) = [(lW − lAD)/lW] × 100 (5)

where ß = shrinkage, lW = waterlogged distance between pins and lAD = air-dried distance.
Shrinkage was calculated for the tangential (ßt), and for the radial (ßr) direction; for

the cross-sectional shrinkage (ßcross), the sum, ßt + ßr, was calculated.

2.2.2. Mercury Intrusion Porosimetry (MIP)

Mercury intrusion porosimetry (MIP) was carried out with a Quantachrome PoreMas-
ter 60 on uncharred, semi-charred and charred samples. The archaeological samples of the
three charring conditions, measuring approximately 0.5 cm × 0.5 cm × 0.5 cm (T × R × L),
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were freeze-dried prior to porosity measurements. This was decided to maintain as much
as possible the “original” waterlogged pore structure, as air drying would greatly affect
the wood porosity due to collapse and shrinkage. Reference samples of P. halepensis and
P. brutia of the same dimensions were also examined. All samples were stored in a des-
iccator prior to porosity measurements. Low pressure was first applied at 50 MPa and
then samples were placed in the high-pressure station, where pressure up to 400 MPa was
employed in equilibration time of 10 s. Surface tension and mercury wetting angle were set
at 0.485 Nm−1 and 140◦, respectively.

2.3. Mechanical Properties
2.3.1. Janka Hardness Test

The methods commonly used for assessing the “surface” hardness (< 1 cm) of wood
and especially of thermally-modified wood, are the “Brinell” and the “Janka”, which are
force- and depth-controlled ball tests, respectively [24–30]. The Brinell test was found
inappropriate for the material under investigation as the same force could not produce
measurable indentations for all three charring conditions. Therefore, a Janka test was
adopted in order to investigate differences in the “surface” hardness for uncharred, semi-
charred and charred material.

The Janka hardness test was implemented based on the ASTM D143 [31] and the ASTM
D1037 [32], with a modification on the ball diameter, using a 2.5 mm ball instead of the
standard 11.3 mm, due to the limited size of the available archaeological material. The test
was conducted on an Instron 3367 dual-column universal testing machine, with a 2 kN load
cell and compression platens of 100 kN maximum load on upper and lower connections.
On the upper platen, the 2.5 mm ball was adjusted using a cylindrical neodymium magnet
(outer Ø: 0.8 mm, inner Ø: 1.9 mm) of 0.6 mm length. The test speed was set at 0.1 mm/s
rate and a 0.62 mm extension was selected to achieve a final ball penetration into the
specimen equal to ~ 1

4 of the ball diameter (D). The load-extension data were recorded per
0.1 s with Bluehill 3 software.

A hardness test was conducted for all three charring conditions and on reference
samples of sound P. halepensis and P. brutia for comparison. Measurements were conducted
on end grain and at both radial and tangential planes. The use of the 2.5 mm ball on the
sound reference samples allowed documentation of differences between earlywood and
latewood, and thus, two replicate measurements were taken per growing period and their
average was calculated for each plane. Two samples from each charring condition were
examined. Uncharred and charred samples measured ~2 cm × 2 cm × 2 cm (T × R × L),
whereas the semi-charred measured ~2 cm × 1.5 cm × 2 cm (T × R × L). For every
condition, one sample was tested at the waterlogged state to acquire knowledge on the
handling of the material before and during conservation and a second one at the freeze-
dried state to assess the residual hardness of the material without bias by the water presence.
Earlywood and latewood were rarely distinguishable in the archaeological material; thus,
two replicate measurements were taken per plane.

Hardness is expressed as the ratio of the applied force to the projected area of contact
and it was calculated based on Equation (6) [33]. The projected contact area is treated as
the area of a circle created by the ball indenter at the wood surface, and as is typical in the
Janka test, the ball is pressed into half of its diameter [31,34]; the radius of the projected
area (r) equals the radius of the indenter (R). In the modified Janka test used, the ball was
pushed to a depth of 1

4 of the ball’s diameter (Figure 2a), because beyond this limit many of
the charred wood samples cracked or/and failed. As the r value is lower than ball radius
(Figure 2b), the radius of the projected contact area was geometrically calculated based on
the scheme of Figure 2b and Pythagoras’ theorem.

Hardness = F/πr2 (6)

where F = the force recorded at 0.62 extension, π = the mathematical constant (~3.14159)
and r = the radius of the projected contact area.
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2.3.2. Penetrometer

For assessing the state of preservation of waterlogged archaeological wood, conserva-
tors often use the “pin test” [35–39]. This type of manual evaluation is rather subjective;
therefore, wood resistance to penetration can be measured with penetrometers instead [40].
These instruments using a minimally invasive procedure can in situ assess the hardness
of a material at a given depth and can also indirectly assess its density. In this work, a
penetrometer was used for assessing differences in resistance to penetration of the three
charring conditions.

Resistance to penetration was recorded on the part of the shipwreck frame (~9 cm
Ø, 15 cm length) which included all three charring conditions. A Fruit Hardness Tester,
FR- 5105, with a maximum load capacity up to 5000 g was used. The penetrometer
was equipped with a needle of 3 cm length and 0.75 mm diameter, of which 1 cm was
fasten inside a custom-made holder in order to allow penetration at a constant depth of
2 cm. Six measurements per condition were recorded using the “peak hold” mode on the
transverse section of the part, as this was the only section where all charring zones were
visible, accessible and could allow discrete penetration into each zone at the same depth
without bias.

3. Results and Discussion
3.1. Morphological Alterations at a Cellular Level
Scanning Electron Microscopy (SEM)

The morphology of the archaeological wood observed with SEM demonstrated the
existence of three distinctly dissimilar materials, the uncharred (Figure 3a–c), the semi-
charred (Figure 3d–f) and the charred wood (Figure 3g–i). Uncharred waterlogged wood
appeared to be severely deteriorated as cells were deformed, while their secondary wall
layer presented a granular texture and was commonly detached from the middle lamellae
(Figure 3a). In addition, in both tangential (Figure 3b) and radial (Figure 3c) sections,
extensive biodeterioration was documented, caused by marine fungi and bacteria, based
on the recorded decay patterns [41].

The semi-charred wood was found to be rather intact. Cells appeared to retain their
structural integrity and no deformation in their general anatomy was observed (Figure 3d).
Cell wall layers were discrete and detachment fissures alongside the middle lamella were
rarely detected (Figure 3d). Occasionally, and mostly in longitudinal sections patterns
attributed to bacterial and fungal decay were detected (Figure 3e,f).

The differences in the degree of deterioration between uncharred and semi-charred
wood are probably because ‘thermal modification’ of the latter rendered the material less
prone to biodeterioration by soft rotters [42,43].
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Figure 3. SEM micrographs of uncharred, semi-charred and charred wood. Uncharred material
(a–c) presented a granular texture (gr) of the secondary cell walls, which were often detached (dt) from
the middle lamellae; semi-charred wood (d–f) showed intact cell walls with rare detachment fissures
(fs); and charred wood (g–i) presented a vitreous appearance without evident biodeterioration signs.
On both uncharred (b,c) and semi-charred (e,f) material, biodeterioration patterns caused by bacteria
(bc) and fungi (fg) were recognized. All bars are 10 µm.

Lastly, the morphological features observed in charred wood differed greatly from
both the uncharred and the semi-charred material. The wood appeared “vitreous” with no
signs of deterioration caused by fungi or bacteria (Figure 3g–i). The latter was anticipated,
as due to charring most of the organic part of the material had been depleted and thus
during burial very few organisms could utilize it. In the transverse section (Figure 3g),
cells were slightly distorted possibly indicating fast combustion of wet wood at high tem-
peratures [44]. The middle lamellae appeared to coalesce with the secondary cell walls, a
feature that is commonly reported in charred wood [44–50]. This coalescence, also referred
to as amalgamation, has been reported to initiate at approximately 300 ◦C [46,51]. The
amalgamation temperature of the material investigated cannot be defined with certainty as
it depends on several factors [45–47], nonetheless, it can be safely stated that the charred
wood examined has been subjected to temperature ≥ 300 ◦C. Furthermore, as this feature
was absent in the semi-charred material, it could be hypothesized that the exposure temper-
ature was <300 ◦C, an assumption which is in accordance with its chemical profile studied
by Mitsi et al. [4].

3.2. Physical Properties
3.2.1. Moisture Content, Density and Shrinkage Determination

Results for the physical properties of the archaeological material are presented in
Figure 4 and Table 1 along with reference values of sound P. brutia and P. halepensis.
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Figure 4. Moisture content (MC), equilibrium moisture content (EMC), basic density (Rg) and cross
shrinkage (βcross) values recorded for uncharred, semi-charred and charred archaeological material,
juxtaposed to controls of P. brutia and P. halepensis.

Table 1. Moisture content (MC), equilibrium moisture content (EMC), relative density (rRg), basic
density (Rg) and cross shrinkage (βcross) recorded on the archaeological wood and the reference
sound wood of P. brutia and P. halepensis. Values for the archaeological samples are the averages of
four replicates. Values in brackets represent the standard deviation.

Samples MC (%) EMC (%) rRg Rg (g/cm3) βcross (%)

Uncharred 590.46 (±28.33) 10.13 (±0.58) 0.19 (±0.02) 0.15 (±0.01) 81.49 (±0.15)
Semi-charred 232.48 (±20.58) 6.94 (±1.88) 0.31 (±0.02) 0.33 (±0.02) 10.38 (±0.33)

Charred 188.23 (±24.80) 6.43 (±0.47) 0.38 (±0.02) 0.40 (±0.04) 8.55 (±0.40)
Pinus brutia 150.00 a 8.00–9.00 b - 0.46 c 12.00 d

Pinus halepensis 150.00 a 8.00–9.00 b - 0.46 c 12.00 d

a Umax = [(1/Rg)−0.67] × 100 [23]; b [52]; c [53]; d [54].

The MC of uncharred, semi-charred and charred wood (Table 1) confirmed the wa-
terlogged nature of the material. Furthermore, the values of uncharred wood (590%)
were indicative of a highly degraded material [37,55–57]. The values of the semi-charred
(232.48%) and the charred wood (188.23%) were lower in comparison to the uncharred
material, suggesting that their different exposure to heat had influenced their water holding
capacity. More specifically for the semi charred material, the lower MC may partially
be attributed to the reduction of hemicelluloses caused by its thermal degradation [4],
as the hygroscopicity of wet wood subjected to heat-treatment may be irreversibly re-
duced [58–61]. Similarly, for the charred material the reduced moisture uptake could be
also attributed to the physicochemical alterations caused by the pyrolytic process [62–65].

The equilibrium moisture content (EMC) of the uncharred archaeological wood, at
45 ± 5% RH, was slightly higher compared to the reference samples. In contrast the EMC
of both the semi-charred and charred wood was lower than reference samples (Figure 4).
High EMC values have been frequently reported for degraded waterlogged archaeological
wood [66–71]. This can be justified by the increased cell wall porosity caused by the action
of microorganisms, which increases the bound water of wood [68–70] and consequently
the measured values of the “fiber saturation point” (FSP) of waterlogged wood [70]. Fur-
thermore, the small cellulose crystallite length of the material [4] could also be related to a
greater availability of sorption sites and thus to the higher EMC values [68,69].

For the semi-charred and charred wood, the reduction of EMC recorded is in line with
the reduced water holding capacity of wood exposed to temperatures up to 300 ◦C [17,72–79]
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and above 300 ◦C [75]. This could be due to the depletion of hemicelluloses, either by biodete-
rioration in the marine environment [41] or by the heat exposure [17,80], which is negatively
correlated to wood EMC as a function of both temperature and duration [72–74,77,81,82].
Nonetheless, it has been shown in heat-treated wood that the EMC reduction is owed to
additional mechanisms in addition to the reduced accessibility of OH groups in the cell wall
matrix [59,60,83].

Basic density (Rg) values (Table 1) were found to be very low for the uncharred water-
logged samples due to degradation in the marine environment [20,57,66,84]. As anticipated,
Rg was also negatively correlated to the MC [36,57,70]. The Rg values of the semi-charred
and charred samples were also lower than the references, which is considered to be due prin-
cipally to the thermal decomposition of the materials at elevated temperatures [27,73,85–88]
and to a lesser extent to biodeterioration.

The non-destructive determination of relative density (rRg) gave similar results to
the basic density (Rg) for all three charring conditions, and demonstrated that it can be
successfully adopted in cases where the oven-dried weight cannot be measured.

Cross shrinkage (βcross) values for the uncharred waterlogged wood were extremely
high (Figure 4), as expected, and negatively correlated with basic density [20,66,84,89]. The
same correlation was also recorded for the semi-charred and charred material (Figure 4).
However, their shrinkage values were found to be much lower than the uncharred wood
values, and to be even lower than the sound reference wood values. This dimensional
behavior of the semi-charred wood is more likely to be associated with the low MC of the
material that has resulted from thermal degradation.

The results on shrinkage indicate that the semi-charred and charred areas of the wreck
are dimensionally stable upon drying, an outcome that should be seriously considered in
the conservation strategy of the shipwreck timbers.

3.2.2. Mercury Intrusion Porosimetry (MIP)

The pore size distribution recorded according to the IUPAC classification [90] indicates
two size classes of pores: the macropores with diameter > 50 nm, (r > 25 nm) and the
mesopores with diameters from 2 nm to 50 nm (1 nm < r > 25 nm) (Figure 5). Nonetheless,
in wood science the pore size distribution is often categorized in relation to wood struc-
ture [91–94]. Therefore, for the softwoods investigated, an anatomy-based categorization
has been adopted with three classes (Figure 5): the macrovoids that include the lumen of
tracheids and of resin canals with radii ranging from 5 µm to ~200 µm; the microvoids
that encompass pit apertures, pit chambers and other small voids with radii from 5 nm to
~5 µm; and the nanovoids that comprise the cell wall porosity with radii < 5 nm [91,95].

Based on the obtained histograms, it is apparent that the pore size distribution among
the archaeological wood and the reference P. brutia and P. halepensis differs considerably
(Figure 5). The porosity of reference samples is mainly represented by microvoids, and to
a much lesser extent by macrovoids and nanovoids. In contrast, in archaeological wood
macrovoids prevailed noticeably as the porosity showed to be shifted towards pores > 1 µm
(dashed line). This shifting of the archaeological wood porosity was to be anticipated, as
both charring [49,96,97] and biodeterioration in the marine environment may increase
wood porosity and permeability [20,37,57,68,70,98].

More specifically, the increased porosity in charred wood is considered to have oc-
curred due to pyrolytic process [49,96,97], where the main volume of macrovoids with
radii > 5 µm was created (Figure 5).

Similarly, in the semi-charred material the porosity increase may also be due to the
heat exposure, as upon thermal modification the porosity augments as a function of
temperature [99,100]. Nonetheless, as most of the organic moieties of the semi-charred
wood were shown to be preserved [4], the material was still susceptible to biodeterioration
by microorganisms, and it is very likely that its porosity was further increased during
burial. Information on thermally modified wood performance against marine fungi and
bacteria is scarce [17,101]; however, there are some studies demonstrating that thermal
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modification could make wood more resistant to terrestrial soft rot fungi [42,43]. This could
probably explain why the porosity of the semi-charred wood was lower compared to the
uncharred material.
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Lastly, uncharred material presented the highest porosity recorded. As mentioned
earlier, this was principally due to biodeterioration, as evident from SEM examination.
Furthermore, its porosity was slightly higher than the semi-charred material and much
higher in comparison to the charred wood, which had the smallest number of large pores,
located mostly at the narrow range of 5 to 15 µm.

Porosity differences among the three charring conditions were also demonstrated
with the pore size distribution curves as a function of the intruded volume (Figure 6). In
these curves it became clear that the porosity of all three charring conditions increased
compared to the reference samples of P. halepensis (0.50 cc/g) and P. brutia (0.92 cc/g).
Furthermore, differences among the three charring conditions were again evident as the
uncharred wood showed the highest intruded Hg volume (4.45 cc/g) compared to the
semi-charred (2.05 cc/g) and the charred wood (1.40 cc/g).

The porosity of all three charring conditions, as anticipated, was inversely correlated
with the basic density values recorded, as the denser a material, the less likely there will be
voids present within.

Based on these results, and the fact that porosity greatly affects the impregnation
rate [98] and the polymer retention during wood treatments, especially inside pores with
diameters > 0.1 µm [102], it is expected that uncharred archaeological wood will be perme-
able and thus it will promote diffusion and allow a successful consolidation. In contrast, it
is considered that the charred material will be resistant to diffusion even by low molecular
weight polymers.
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3.3. Mechanical Properties
3.3.1. Janka Hardness Test

Results obtained by employing the modified Janka test on the shipwreck material
showed that the hardness of archaeological wood was considerably lower compared to the
reference samples of P. halepensis and P. brutia (Figure 7, Table 2). This was rather justified
as low hardness has been reported for deteriorated waterlogged archaeological wood [66]
and because thermal exposure can also reduce hardness [24,27,73,77,86–88,103].
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Table 2. Hardness values obtained with the modified Janka test. Values for sound P. brutia and
P. halepensis are the average of four replicates. For the archaeological material, two replicates were
used (* a single value due to material’s failure). Values in brackets represent standard deviation.

Hardness (N/mm2) End Radial Tangential

Pinus halepensis 77.68 (±21.02) 39.33 (±17.10) 21.43 (±6.59)
Pinus brutia 59.76 (±26.02) 29.53 (±16.32) 34.09 (±16.00)
Uncharred FD 2.57 (±0.87) 1.07 (±0.26) 1.41 (±0.07)

W 0.76 (±0.18) 0.35 (±0.02) 0.37 (±0.00)
Semi-charred FD 5.32 (±1.02) 1.73 (±0.13) 1.14 (±0.20)

W 13.06 (±3.18) 6.86 (±4.09) 4.37 (±0.04)
Charred FD 11.76 * 5.25 (±1.44) 3.55 (±0.01)

W 4.98 (±3.46) 3.16 (±1.15) 3.17 (±1.07)

The hardness values obtained among the three charring conditions varied as well
(Figure 7). At the freeze-dried state, charred wood presented the highest hardness value,
uncharred demonstrated the lowest and the semi-charred demonstrated an intermediate
hardness. In contrast, at the waterlogged state, the hardness of the semi-charred material
was the highest among the three charring conditions, followed by the charred and the
uncharred material, which was again the lowest recorded.

The higher hardness of the semi-charred material compared to the charred could
be also attributed to the different exposure of the materials to heat (temperature and
duration), which may affect greatly the mechanical properties of the wood [73,88]. Wood
subjected to thermal modification at temperatures from 180 to 250 ◦C can demonstrate
lower hardness than unheated wood [24,27,73,77,88], and as above 250 ◦C the material is
thermally degraded rather than modified [60], wood exposed to temperatures above 300 ◦C
also presents a conspicuous decrease in hardness [86,87,103].

The hardness values recorded for the semi-charred material deviated between the two
states (dry and waterlogged). This can be attributed to the transitional nature of the semi-
charred material itself. The resolution of the hardness test applied (~1 mm indentation)
could demonstrate small hardness differences in respect to its thermal degradation, and
thus, values varied depending on how far the area tested was from the fire front. Thus, it
is quite possible that for the freeze-dried sample, measurements were taken towards the
uncharred decayed zone, whereas in the waterlogged sample towards the charred zone.

Lastly it should be noted that the high standard deviation values recorded for the
reference samples (Table 2) demonstrate differences between earlywood (EW) and latewood
(LW) [104–106].

3.3.2. Penetrometer

Results obtained with the fruit penetrometer for the three charring conditions are
graphically presented in Figure 8. Uncharred wood demonstrated the lowest resistance to
penetration (430–699 g), semi-charred wood presented almost a double increase in resistance
(903–1156 g), whereas charred wood demonstrated the highest resistance (1147–1452 g).
However, it should be noted that although a full-length penetration (2 cm) was attempted,
the final penetration depth was not the same for all charring conditions. Uncharred wood
allowed a 2 cm depth penetration, the semi-charred a partial penetration (~0.5–1 cm),
whereas the charred wood allowed only a superficial penetration (~0–0.3 cm). Hence,
results cannot be interpreted as hardness values as in hardness tests either the force [28] or
the penetration depth [21,28] must be kept constant.
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Nonetheless, the results obtained demonstrated clearly the three distinct charring
conditions, indicating that the fruit penetrometer, if properly calibrated, could be developed
as a portable minimally invasive tool for identifying the existence of different charring
conditions among the timbers.

Furthermore, among the three charring conditions, resistance to penetration measure-
ments showed a correlation with the Rg values (Figure 9). Correlation between Rg and
resistance to penetration has been reported for waterlogged archaeological wood [40,107],
and is also anticipated to exist for semi-charred and charred material. However, further
research is required to confirm this assumption.
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4. Conclusions

This study demonstrated that the physico-mechanical properties of the Rhodes ship-
wreck timbers varied greatly among the three charring conditions, and they were correlated
to the residual chemistry of the wood.

The uncharred material showed typical physical properties of severely deteriorated
waterlogged wood. It presented the highest moisture content and shrinkage and the lowest
density among the other conditions. Its low hardness and resistance to penetration along
with its increased porosity indicates that remedial conservation with a consolidation agent
is required.

Charred wood, in contrast, presented the lowest moisture content and shrinkage and
the highest density and resistance to penetration among the three charring conditions.
It also showed the lowest porosity, suggesting low permeability and thus resistance to
consolidation via diffusion. Nonetheless, based on the negligible shrinkage values, it is
anticipated that the material may be safely air-dried without treatment.

The semi-charred wood was shown to be a transitional zone between the charred
and the uncharred material, and thus, it predictably demonstrated intermediate values
for almost all physicomechanical properties investigated in respect to uncharred and
charred material. Regarding its conservation requirements, it is possible that the material
can be air-dried untreated, nonetheless further research is considered necessary due its
transitional nature.

Lastly, it became apparent that the most problematic timbers of the shipwreck are
those where all three charring conditions coexist. For these timbers, the consolidation of
the inner uncharred core will be rather problematic as the outer charred layer is expected
to restrain the diffusion of even low molecular weight consolidants.
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