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Abstract 
This master thesis explores the application of Deep Metric Learning (DML) for creating effective 
audio representations in tasks like audio classification, music retrieval, and speech recognition. 
DML uses deep neural networks to learn hierarchical representations from raw audio waveforms, 
capturing intricate relationships between audio samples. The thesis evaluates different deep 
neural network architectures and loss functions, including triplet loss and contrastive loss. The 
models are tested using various distance metrics and normalization techniques. The research 
aims to enhance our understanding of DML for audio representations and its potential 
applications. The findings contribute valuable insights to guide the design of powerful audio 
representations for diverse audio-related tasks.
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1. Introduction 
In recent years, there has been a surge of interest in developing powerful and discriminative audio 
representations for various applications, including audio classification, music retrieval, speech 
recognition, and audio-based recommendation systems. Deep Metric Learning (DML) has 
emerged as a promising approach to address the challenge of learning effective representations 
that capture the underlying semantic structure of audio data.

Deep Metric Learning aims to learn a metric space where the similarity between audio samples is 
explicitly modeled. Unlike traditional approaches that rely on handcrafted features or shallow 
representations, DML leverages deep neural networks to automatically learn hierarchical 
representations from raw audio waveforms. By exploiting the rich hierarchical structures within 
audio data, DML enables the discovery of intricate relationships and fine-grained similarities 
between audio samples.

The primary objective of DML is to learn a representation space where semantically similar audio 
samples are projected closer together, while dissimilar samples are pushed further apart. This 
facilitates various downstream tasks such as audio retrieval, clustering, and classification, by 
providing a compact and discriminative representation that captures the intrinsic properties of the 
audio data.

One of the key challenges in DML for audio lies in designing appropriate loss functions that can 
effectively measure the similarity or dissimilarity between audio samples. Various loss functions 
have been proposed, such as triplet loss, contrastive loss, and angular loss, each with its own 
strengths and limitations. These loss functions aim to optimize the embedding space by explicitly 
enforcing the desired proximity relationships among audio samples.

Furthermore, the choice of the deep neural network architecture plays a crucial role in DML for 
audio. Convolutional Neural Networks (CNNs) have been widely adopted due to their ability to 
capture local and global dependencies in audio signals. Recurrent Neural Networks (RNNs) are 
also employed to model temporal dependencies, particularly in tasks involving sequential audio 
data, such as speech recognition.

This thesis aims to investigate and explore the efficacy of different DML techniques in the context 
of audio representations. Specifically, we will analyze the performance of various deep neural 
network architectures and loss functions in learning discriminative audio embeddings. We will 
evaluate these representations on benchmark audio datasets and compare them against state-of-
the-art methods to assess their effectiveness in audio-related tasks.

Overall, this research contributes to the growing field of Deep Metric Learning for audio 
representations and aims to enhance our understanding of the underlying principles and 
techniques involved. The findings from this study will not only provide valuable insights into the 
design and optimization of audio representations but also have the potential to advance audio-
related applications in diverse domains.


1.1. Motivation 
The motivation behind this thesis stems from the fundamental human desire to explore and 
uncover meaningful connections within the vast realm of music. Music holds a unique power to 
evoke emotions, transcend language barriers, and create profound experiences for individuals 
across cultures and backgrounds. With the ever-expanding digital music landscape, there arises a 
pressing need for advanced techniques that can effectively navigate and harness the wealth of 
musical content available to us. Deep Metric Learning (DML) emerges as a promising approach to 
address this challenge by enabling the development of machine learning models capable of 
understanding the intricate relationships between songs based on their underlying audio features. 
By leveraging the power of DML, we aim to create intelligent systems that can not only classify 
and categorize music but also provide personalized recommendations and facilitate novel music 
discovery experiences. By training ML models to accurately identify and retrieve the most similar 
songs to a given input, we strive to enhance the accessibility and enjoyment of music for both 
casual listeners and industry professionals alike. Furthermore, this research has the potential to 
contribute to a wide range of applications, including music recommendation systems, playlist 
generation, and content-based music retrieval, ultimately transforming the way we interact with 
and appreciate music in the digital age.
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1.2. Related Work 
In paper [1] a novel angular loss for deep metric learning is proposed. The angular loss is based 
on the idea of measuring the similarity between two feature vectors as the cosine of the angle 
between them. This makes the angular loss more robust to variations in scale and rotation than 
traditional distance-based losses. The paper also shows that the angular loss can achieve better 
performance than traditional distance-based losses on a variety of image classification and 
retrieval tasks.


Paper [2] presents a general framework for distance metric learning that is based on the large 
margin nearest neighbour classification (LMNN) algorithm. The LMNN algorithm learns a distance 
metric that maximizes the margin between the nearest neighbours of positive and negative 
examples. The margin is a measure of the separation between the two classes, and a larger 
margin indicates that the two classes are more well-separated. The paper shows that the LMNN 
algorithm can achieve good performance on a variety of classification tasks.


This paper [3] proposes a deep learning-based approach to face recognition and clustering. The 
FaceNet model learns a 128-dimensional embedding for each face image. This embedding is 
used to represent the face image in a high-dimensional space where faces that are similar in 
appearance are close together. The FaceNet model has been shown to achieve state-of-the-art 
performance on face recognition and clustering tasks.


In the pages of this publication [4], a new objective function for deep metric learning is proposed,  
called Deep InfoMax. Deep InfoMax is based on the idea of maximizing the mutual information 
between the representations of positive and negative pairs of examples. The mutual information is 
a measure of how much information one random variable contains about another random 
variable. The paper shows that Deep InfoMax can achieve good performance on a variety of 
metric learning tasks.


This research [5] proposes a simple framework for contrastive learning of visual representations 
called SimCLR. SimCLR is based on the idea of using a siamese network to learn to distinguish 
between augmented versions of the same image. The augmented versions of the image are 
created by applying random transformations to the image, such as cropping, flipping, and color 
jittering. The siamese network is trained to predict whether two augmented versions of the same 
image come from the same image or not.


Paper [6] proposes a new method for unsupervised visual representation learning called MoCo. 
MoCo is based on the idea of using a siamese network to learn to distinguish between positive 
and negative pairs of examples. The positive pairs are examples that are augmented versions of 
the same image, while the negative pairs are examples that are from different images. The 
siamese network is trained to predict whether two augmented versions of the same image come 
from the same image or not.


This research [7] proposes a novel loss function for siamese networks called N-pair loss. The N-
pair loss is based on the idea of having a siamese network learn to distinguish between N positive 
pairs and N negative pairs of examples. The positive pairs are examples that belong to the same 
class, while the negative pairs are examples that belong to different classes. The N-pair loss is 
formulated as follows:


loss = sum(max(d(anchor, positive) - d(anchor, negative) + margin, 0)) 
where d is a distance metric, anchor is the anchor example, positive is the positive example, and 
negative is the negative example. The margin is a hyperparameter that controls the separation 
between the two classes.

The N-pair loss has been shown to be more effective than the triplet loss for siamese networks on 
a variety of metric learning tasks. The paper also provides a theoretical analysis of the N-pair loss, 
which shows that it can be used to learn a more discriminative embedding space for siamese 
networks.


In paper [8], a novel approach to few-shot learning is proposed, called the relation network. The 
relation network is a siamese network that is trained to learn a similarity function between pairs of 
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examples. The similarity function is then used to predict the class label of a new example, given a 
set of support examples.

The relation network is able to achieve good performance on few-shot learning tasks by learning 
to compare examples in a discriminative way. The paper shows that the relation network can 
outperform other few-shot learning methods on a variety of benchmark datasets.


Paper [9] proposes a novel approach to person re-identification called contrastive multiview 
coding. The contrastive multiview coding approach is based on the idea of using a siamese 
network to learn to distinguish between augmented versions of the same person. The augmented 
versions of the person are created by using different views of the person, such as front view, side 
view, and top view.

The contrastive multiview coding approach has been shown to be effective for person re-
identification in challenging scenarios, such as when the person is partially occluded or when the 
lighting conditions are poor. The paper shows that the contrastive multiview coding approach can 
outperform other person re-identification methods on a variety of benchmark datasets.


1.3. Proposed Methodology 
In this study, we aim to train deep learning models on audio representations for unsupervised 
learning in the context of music. The dataset comprises songs from diverse genres, providing a 
comprehensive representation of musical styles. The primary objective is to develop models 
capable of identifying similar audio samples from a given database when presented with a target 
audio input.

To achieve this, we will employ deep metric learning techniques. Specifically, we will explore loss 
functions that encourage the models to learn discriminative embeddings for audio 
representations. By optimizing these loss functions, the models will be trained to minimize the 
distance between embeddings of similar audio samples and maximize the distance between 
embeddings of dissimilar samples.

The training process will involve feeding the audio representations into deep neural network 
architectures. These architectures will be designed to learn hierarchical representations from the 
audio data. We will experiment with different network architectures and hyperparameters to 
identify the optimal configuration that yields the most effective similarity learning.

Overall, this proposed methodology aims to leverage unsupervised deep learning techniques on 
audio representations to develop models capable of finding similar audio samples from a 
database given a target audio input. By exploring various loss functions and training strategies, 
we expect to enhance the models' ability to capture and understand the underlying patterns and 
similarities within the diverse musical genres present in the dataset.


1.4. Next Sections 
The next chapters are organized in the following way:

	 In chapter 2 we introduce various audio representations commonly used in deep learning 
applications. We discuss time and frequency domain features that form the inputs of our models, 
exploring their significance in capturing audio information effectively. 
	 In chapter 3 we provide a theoretical background on deep learning models commonly 
employed in audio applications. We reference notable architectures found in literature to highlight 
their relevance in audio representation learning.

	 In chapter 4 we delve into distance metrics used for evaluating the similarity of audio 
representations. We explore the theoretical foundations of various distance measures.

	 In chapter 5 we discuss various audio augmentation techniques that enrich the training 
data and enhance the generalisation capabilities of our models.

	 In chapter 6 we present our methodology in detail. We outline the selection and 
implementation of loss functions used for deep metric learning with audio data. Additionally, we 
describe the data preparation process and the choice of model architectures used in our 
experiments. Furthermore, we discuss the training procedure and the evaluation metrics 
employed to assess the model's performance.
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	 Finally, in chapter 7 we present our experiments. We describe the datasets used for 
training and testing the models, along with their characteristics. We present the results obtained 
from the evaluation of the models using various distance metrics and normalization techniques. 
The observations from these experiments are thoroughly discussed, providing insights into the 
models' performance and effectiveness in capturing audio similarities.
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2. Background 
2.1. Audio Representations 
Audio representations [10] play a fundamental role in the analysis, processing, and understanding 
of audio signals. These representations aim to capture and encode the intricate characteristics of 
sound waves, enabling effective manipulation and interpretation of audio data. In recent years, 
with the rapid advancement of deep learning techniques, audio representations have garnered 
significant attention, driving breakthroughs in various audio-related tasks such as speech 
recognition, music information retrieval, and sound event detection.


2.1.1. Time-domain representations


Time-domain representations [11] capture the audio signal in its original waveform form. They 
represent the variation of the audio signal over time. Common time-domain representations 
include the raw audio waveform and its variations, such as amplitude envelopes or temporal 
features extracted using windowing techniques.




2.1.2. Frequency-domain representations


Frequency-domain representations [13] transform the audio signal from the time domain to the 
frequency domain. They provide information about the spectral content of the audio signal. 
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Figure 2.1 - Time domain representation of original .wav signal [12]



Examples of frequency-domain representations include spectrograms, which provide a visual 
representation of the frequencies present in the signal over time, and power spectral density 
(PSD) estimates, which represent the distribution of signal power across different frequencies.


2.1.3. Mel-scale representations


Mel-scale representations [14] are based on the mel-frequency scale, which simulates the non-
linear human perception of pitch. Mel-frequency cepstral coefficients (MFCCs) are a popular 
example of mel-scale representations. MFCCs capture the perceptual characteristics of audio by 
applying a series of transformations, including a Mel-scale filterbank and the Discrete Cosine 
Transform (DCT), to obtain a compact representation of the audio signal.
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Figure 2.2 - Frequency domain representation of original .wav signal [12] 



2.1.4. Transform-based representations


Transform-based representations [16] involve applying mathematical transforms to the audio 
signal to extract specific features. The Fourier transform, such as the Short-Time Fourier 
Transform (STFT), provides a frequency-domain representation. Other transform-based 
representations include the wavelet transform, which captures both time and frequency 
information, and the constant-Q transform (CQT), which provides a logarithmic frequency 
resolution.
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Figure 2.3 - Mel Spectrogram [15]



2.1.5. Statistical representations


Statistical representations [18] involve characterizing the audio signal using statistical measures. 
For instance, statistical features like mean, variance, skewness, or kurtosis can be computed on 
the audio signal or its transformed representations to capture different aspects of its statistical 
properties.


2.1.6. Deep learning representations


With the advent of deep learning, representations learned by deep neural networks have gained 
prominence. Deep learning representations [16] can be derived from raw audio waveforms or 
transformed representations, such as spectrograms or MFCCs. Deep architectures, such as 
Convolutional Neural Networks (CNNs) or Recurrent Neural Networks (RNNs), learn hierarchical 
representations from audio data, enabling automatic feature extraction and capturing complex 
patterns. Specifically, Wave2vec [19] and Trillson [20] are two state-of-the-art deep learning 
models for audio representation learning. Wave2vec is a self-supervised learning model that 
learns to represent speech signals in a way that is useful for automatic speech recognition (ASR). 
Trillson is a deep metric learning framework for music information retrieval (MIR) tasks. Both 
Wave2vec and Trillson can be used to learn powerful audio representations that can be used for a 
variety of downstream tasks. 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Figure 2.4 - Operations during Fourier Transformation [17]



2.1.7. Hybrid representations


Hybrid representations [16] combine multiple types of audio representations to capture diverse 
aspects of the audio signal. For example, a hybrid representation might include a combination of 
spectrograms and MFCCs to capture both the spectral content and perceptual characteristics of 
the audio signal.
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Figure 2.5 - Audio representation using time and frequency transformations. [21]



2.2. Deep Learning 

2.2.1. Introduction


Deep learning is a subset of machine learning that has revolutionised various fields by enabling 
the development of highly complex and sophisticated models. It involves training neural networks 
with multiple layers to learn hierarchical representations from raw data. By leveraging the power of 
deep neural networks, deep learning models can automatically extract intricate patterns and 
features from data, allowing them to capture nuanced relationships and make accurate 
predictions. Deep learning algorithms, such as Convolutional Neural Networks (CNNs) and 
Recurrent Neural Networks (RNNs), have demonstrated exceptional performance in tasks such as 
image and speech recognition, natural language processing, and recommender systems. These 
models have pushed the boundaries of what is possible in these domains, achieving human-level 
or even superhuman performance in some cases.

Deep learning has benefited from significant advancements in hardware and the availability of 
large-scale datasets. The development of powerful Graphics Processing Units (GPUs) and 
specialised hardware accelerators, along with the rise of distributed computing, has enabled the 
training of deeper and more complex models. Additionally, the proliferation of diverse and 
abundant data sources has facilitated the training of deep learning models on massive datasets. 
This combination of computational resources and data availability has played a crucial role in 
unlocking the potential of deep learning and driving its widespread adoption across industries.

The impact of deep learning spans across various domains. In healthcare, deep learning models 
have been employed for medical imaging analysis, disease diagnosis, and drug discovery. In 
autonomous driving, deep learning algorithms have revolutionised perception systems and 
enabled significant progress in autonomous navigation. Deep learning has also revolutionised 
natural language processing, leading to advancements in machine translation, sentiment analysis, 
and voice recognition. In finance, deep learning models have been used for fraud detection, 
algorithmic trading, and risk assessment. These are just a few examples of the extensive 
applications of deep learning, highlighting its transformative potential and the continuous 
exploration and improvement of deep learning techniques to address increasingly complex 
problems.


2.2.2. Convolutional Neural Networks


Convolutional Neural Networks (CNNs) [22] have revolutionised the field of deep learning by 
enabling effective analysis of visual and sequential data. CNNs are particularly well-suited for 
tasks such as image classification, object detection, and natural language processing. Their ability 
to automatically learn hierarchical representations from raw data, capturing local and global 
dependencies, has made them indispensable in various applications. By leveraging convolutional 
layers, pooling layers, and non-linear activations, CNNs excel at extracting and recognizing 
meaningful patterns, making them a powerful tool for audio, image, and video analysis.
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2.2.3. Common Architectures


2.2.3.1. RESNET 

ResNet (Residual Neural Network) [23] models have significantly advanced the training of deep 
neural networks. By introducing skip connections that allow the flow of information directly from 
earlier layers to subsequent layers, ResNet models enable the training of much deeper 
architectures. This addresses the vanishing gradient problem and facilitates the optimisation of 
extremely deep networks with hundreds of layers. ResNet models have achieved remarkable 
success in image classification, object detection, and other visual tasks, surpassing the 
performance of shallower networks. Their ability to effectively learn hierarchical representations 
and handle complex data distributions has made ResNet models a crucial component of deep 
learning applications.


2.2.3.2. LENET 

LeNet-5 [24] is one of the pioneering CNN architectures, introduced by Yann LeCun in 1998. It 
consists of multiple convolutional layers followed by fully connected layers. LeNet-5 was 
specifically designed for handwritten digit recognition and played a crucial role in establishing the 
effectiveness of CNNs in image classification tasks.


2.2.3.3. ALEXNET 

AlexNet [25], proposed by Alex Krizhevsky et al. in 2012, gained significant attention for its 
breakthrough performance in the ImageNet Large-Scale Visual Recognition Challenge. It 
comprises multiple convolutional layers, pooling layers, and fully connected layers. AlexNet 
introduced the use of rectified linear units (ReLU) as activation functions and demonstrated the 
effectiveness of deep CNNs in image classification tasks.


17

Figure 2.6 - Convolutional Neural Network Architecture 



2.2.3.4. VGGNET 

VGGNet [26], developed by the Visual Geometry Group (VGG) at the University of Oxford in 2014, 
is known for its simplicity and depth. It consists of a series of stacked convolutional layers with 
small 3x3 filters and pooling layers. VGGNet explores the impact of increasing network depth and 
demonstrates that deeper networks can improve performance on various image recognition tasks.


2.2.3.5. GOOGLENET 

GoogLeNet [27], introduced by Szegedy et al. from Google Research in 2014, introduced the 
concept of inception modules. These modules consist of parallel convolutional layers with 
different filter sizes, allowing the network to capture information at multiple scales. GoogLeNet 
addresses the challenge of computational efficiency and demonstrates the effectiveness of 
"network-in-network" architectures.


2.2.3.6. DENSENET 

DenseNet [28], presented by Huang et al. in 2016, rethinks the connectivity pattern in CNNs. It 
employs dense blocks, where each layer is directly connected to all subsequent layers within the 
block. This dense connectivity facilitates feature reuse, reduces the number of parameters, and 
enhances gradient flow throughout the network. DenseNet exhibits strong performance and 
parameter efficiency.


2.2.3.7. MOBILENET 

MobileNet [29], introduced by Howard et al. in 2017, focuses on efficiency for deployment on 
mobile and embedded devices. It utilises depth-wise separable convolutions, which split the 
standard convolution into separate depth-wise and point-wise convolutions. This technique 
significantly reduces the computational complexity while maintaining good accuracy, making it 
suitable for resource-constrained environments.

2.2.3.8. EFFICIENTNET 

EfficientNet [30], proposed by Tan et al. in 2019, addresses the challenge of scaling CNN models 
effectively. It employs a compound scaling method that balances network depth, width, and 
resolution. By systematically scaling these dimensions, EfficientNet achieves state-of-the-art 
performance while maintaining computational efficiency.


2.2.4. Transformers


Transformer [31] models have emerged as a groundbreaking architecture in natural language 
processing and have found success in other domains as well. Unlike traditional recurrent neural 
networks (RNNs), Transformers employ a self-attention mechanism to capture dependencies 
between elements in a sequence simultaneously, allowing for efficient parallelisation and handling 
of long-term dependencies. This attention-based approach enables Transformers to capture 
contextual relationships and achieve state-of-the-art performance in tasks such as machine 
translation, text generation, and sentiment analysis. Their ability to model global interactions has 
also led to their adoption in other domains, including audio and image processing.





18



2.2.5. Contrastive Learning


Contrastive learning is a prominent paradigm in the field of machine learning, particularly within 
the domain of computer vision, that has garnered significant attention and made substantial 
contributions to the advancement of representation learning. This approach has proven to be 
instrumental in various applications, such as image recognition, object detection, and natural 
language processing. The fundamental principle underlying contrastive learning revolves around 
the notion of enhancing the discriminative power of feature representations by leveraging the 
relationships between positive and negative pairs of data points. Through this process, 
contrastive learning seeks to imbue representations with semantic information that facilitates 
downstream tasks.


One of the seminal frameworks in the realm of contrastive learning is the SimCLR (SimCLR: A 
Simple Framework for Contrastive Learning of Visual Representations) [5], which has been 
instrumental in elucidating the principles and techniques involved in this paradigm. SimCLR,, 
introduces a novel perspective on contrastive learning by emphasizing the importance of data 
augmentation and the construction of positive and negative pairs. It employs a siamese network 
architecture to learn feature representations that maximize similarity among positive pairs and 
minimize it among negative pairs. SimCLR's architecture encapsulates the idea of self-supervised 
learning, where positive pairs are derived from augmentations of the same image, fostering a rich 
understanding of the underlying data distribution. This self-supervised paradigm has gained 
considerable traction, largely due to its ability to capitalize on large-scale unlabeled datasets and 
its compatibility with transfer learning tasks.


Another noteworthy contrastive learning framework is the Momentum Contrast (MoCo) [6]. MoCo 
innovatively addresses the issue of constructing negative pairs by introducing a dynamic 
dictionary queue, which circumvents the need for maintaining a fixed set of negative samples. 
This architecture relies on a momentum encoder and a query encoder, where the momentum 
encoder lags behind the query encoder, thus promoting the accumulation of informative features 
over time. The MoCo framework not only enhances the efficiency of contrastive learning but also 
showcases the significance of a momentum update mechanism in the context of training deep 
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Figure 2.7 - Transformers Architecture



neural networks. It has demonstrated its efficacy in various computer vision benchmarks, 
underscoring its capacity to yield state-of-the-art performance in a multitude of tasks.


In summary, contrastive learning is an influential paradigm within the field of machine learning, 
with SimCLR and MoCo standing as prominent exemplars of its application. These frameworks 
have significantly advanced our understanding of how to learn powerful feature representations 
through the judicious construction of positive and negative pairs and the employment of data 
augmentation techniques. Their contributions extend beyond the realm of computer vision, with 
implications for a wide array of domains, making them pivotal in contemporary research efforts 
aimed at harnessing the full potential of contrastive learning for enhancing the performance of 
machine learning models.
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Figure 2.8 - Contrastive Learning



2.3. Distances 
Distances play a pivotal role in deep learning and hold particular significance in music information 
retrieval (MIR) when employing deep metric learning on audio representations. In the context of 
MIR, audio data is often transformed into high-dimensional feature spaces where the choice of 
distance metric directly impacts the model's ability to capture meaningful similarities and 
differences between audio samples. Deep metric learning leverages these distances to learn 
embeddings that optimize the similarity between similar audio instances while maximizing the 
dissimilarity between dissimilar ones. This is crucial for tasks like music recommendation and 
similarity-based search, where understanding nuanced audio relationships is paramount. 
Additionally, distances enable the model to generalize effectively, making it adaptable to diverse 
audio content. Therefore, careful consideration and customization of distance metrics in deep 
metric learning are essential for enhancing the performance and relevance of MIR systems, 
aligning them more closely with human perception and preferences.


2.3.1. Introduction


Distances play a pivotal role in machine learning and deep learning, serving as fundamental 
measures for quantifying the similarity or dissimilarity between data points. These metrics enable 
the assessment of proximity or separation of samples within the feature space, crucial for various 
tasks in these domains. In the context of machine and deep learning, a range of distance metrics 
are utilised, each with its own characteristics and applicability.


2.3.2. Euclidean Distance


The Euclidean distance, one of the most widely utilised metrics, measures the straight-line 
distance between two points in a multidimensional space. By computing the square root of the 
sum of squared differences between corresponding coordinates, it provides a reliable measure of 
dissimilarity. Euclidean distance finds extensive application in tasks such as clustering, 
classification, and dimensionality reduction.





2.3.3. Manhattan Distance (Cityblock Distance)


The Manhattan distance, also known as the Cityblock distance or L1 distance, evaluates 
dissimilarity by summing the absolute differences between corresponding coordinates. This 
distance metric proves particularly valuable when dealing with data that follows a grid-like 
structure or when movement is constrained to vertical and horizontal paths. Manhattan distance 
is applied in diverse domains, including image recognition, time series analysis, and 
recommendation systems.





2.3.4. Chebyshev Distance


The Chebyshev distance, often referred to as maximum norm or L∞ norm, determines dissimilarity 
by considering the maximum absolute difference between corresponding coordinates. This metric 

d = (x2 − x1)2 + (y2 − y1)2

d = |x2 − x1 | + |y2 − y1 |
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captures the maximum shift required along any dimension to align two points. Chebyshev 
distance finds applications in image processing, anomaly detection, and clustering algorithms.





2.3.5. Minkowski Distance


The Minkowski distance represents a generalised distance metric that encompasses both 
Euclidean and Manhattan distances as special cases. It introduces a parameter, p, allowing the 
adjustment of distance calculation based on specific requirements. When p=2, Minkowski 
distance is equivalent to the Euclidean distance, while p=1 corresponds to the Manhattan 
distance. Minkowski distance offers flexibility and is used in various domains, including pattern 
recognition, feature selection, and clustering.





2.3.6. Hamming Distance


Hamming distance specialises in comparing binary data, evaluating dissimilarity by counting the 
number of positions at which two binary strings differ. This metric is extensively employed in error 
detection and correction, DNA sequence analysis, and data clustering tasks.





2.3.7. Cosine Similarity


Cosine similarity quantifies the similarity between two vectors in a high-dimensional space. By 
calculating the cosine of the angle between the vectors, it captures the cosine of their similarity. 
Cosine similarity is widely used in natural language processing, recommendation systems, and 
information retrieval.





2.3.8. Correlation Distance


The correlation distance measures dissimilarity by considering the correlation coefficient between 
two vectors. It quantifies the linear relationship between variables and determines dissimilarity 

d = ma x( |x2 − x1 | , |y2 − y1 | )

d = (
n

∑
i=1

|x i
2 − xi

1 |ρ )
1/ρ

d =
n

∑
i=1

|x i
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based on the lack of correlation. This distance metric finds application in various domains, 
including data analysis, image processing, and feature selection.





2.3.9. Seuclidean Distance


The Seuclidean distance, also known as standardized Euclidean distance, adjusts the Euclidean 
distance by scaling each dimension based on its standard deviation. It accounts for the different 
scales of features and emphasizes the impact of features with higher variability. Seuclidean 
distance is valuable in scenarios where feature scaling plays a significant role, such as in 
bioinformatics, medical imaging, and sensor data analysis.





2.3.10. Kulsinski Distance


The Kulsinski distance is a statistical distance metric that evaluates dissimilarity between two 
binary vectors. It takes into account the number of matching elements and non-matching 
elements, considering the distribution of ones and zeros in the vectors. This distance is commonly 
employed in clustering, data mining, and pattern recognition tasks.





In machine and deep learning, the selection of an appropriate distance metric depends on the 
specific characteristics of the data and the objectives of the task at hand. These diverse distance 
measures, including Euclidean, Manhattan, Chebyshev, Minkowski, Hamming, Cosine, Cityblock, 
Seuclidean, Correlation, and Kulsinski, offer versatile tools for assessing similarity and dissimilarity 
between data points, enabling accurate and effective analyses in various applications.


2.4. Audio Augmentation 

2.4.1. Introduction


Audio augmentations play a crucial role in enhancing the performance and generalization 
capabilities of deep learning models for audio-related tasks. These techniques involve applying 
various transformations and modifications to the audio data during the training process. By 
introducing controlled variations, such as additive noise, random masking, time stretching, pitch 
shifting, and other augmentations, the models can learn to capture robust and invariant 
representations that are more resilient to real-world challenges. Augmentations help address data 
limitations, alleviate overfitting, and improve the model's ability to handle variations in audio 
content, duration, pitch, background noise, and other acoustic factors. By incorporating audio 

d = 1 −
(x ⋅ y)

∥x∥∥y∥
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n

∑
i=1

(x i
2 − xi

1)
2

d =
1
n

n

∑
i=1

|xi − yi |
xi + yi

23



augmentations into the training pipeline, deep learning models can learn more effectively from 
diverse and realistic audio datasets, resulting in improved performance and greater adaptability in 
real-world audio applications.


2.4.2. Additive Noise


Additive noise augmentation introduces random background noise to the audio signal. It involves 
superimposing a low-level noise signal onto the original audio waveform, emulating environmental 
or recording conditions. By adding controlled levels of noise, the model can learn to be robust 
against varying noise levels and improve its ability to extract relevant features in noisy audio 
environments.


2.4.3. Random Masking


Random masking augmentation randomly masks segments of the audio, either in the time or 
frequency domain. This technique involves selectively zeroing out specific temporal or spectral 
regions of the audio signal. By masking certain parts of the audio, the model is encouraged to 
focus on other unmasked segments, forcing it to learn from different parts of the audio 
spectrogram and enhancing its ability to handle partial or missing information.


2.4.4. Time Stretching


Time stretching augmentation alters the playback speed of the audio while preserving its pitch. It 
can compress or expand the temporal duration of the audio, thereby introducing variations in the 
rhythm and tempo. This augmentation helps the model learn to recognize and handle different 
audio durations, making it more resilient to speed variations in real-world audio recordings.


2.4.5. Pitch Shifting


Pitch shifting augmentation modifies the pitch of the audio while maintaining its duration. It 
involves changing the fundamental frequency of the audio, introducing variations in the tonal 
characteristics. This technique enables the model to learn representations that are invariant to 
pitch variations and improves its ability to generalize across different musical tones and voices.


2.4.6. Time and Frequency Masking


Time and frequency masking augmentation involves selectively masking temporal or spectral 
regions of the audio spectrogram. Temporal masking zeros out specific time segments, while 
frequency masking masks certain frequency bins. By removing segments in the time or frequency 
domain, this augmentation encourages the model to focus on different temporal or spectral 
components, promoting robustness to missing or noisy segments.
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2.4.7. SpecAugment


Inspired by computer vision, SpecAugment randomly masks segments of the audio spectrogram. 
It introduces horizontal and vertical masks that cover consecutive time steps or frequency bins, 
encouraging the model to learn from various parts of the spectrogram. This technique helps the 
model generalize to variations in acoustic features and improves its robustness against small 
perturbations in the input spectrogram.


2.4.8. Resampling


Resampling augmentation involves changing the sample rate of the audio signal. It can upsample 
or downsample the audio, altering its frequency content and temporal resolution. Resampling 
introduces variations in the audio quality and can help the model adapt to different sample rates 
encountered in real-world scenarios.
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3. Methodology 
3.1. Problem Definition and Solution Approach 
This thesis addresses the critical challenge of developing robust and discriminative audio 
representations for a range of applications, including audio classification, music retrieval, and 
speech recognition. In an era marked by the exponential growth of digital audio content, the need 
for effective methods to navigate and harness this wealth of information is paramount. Deep 
Metric Learning (DML) emerges as a promising avenue to meet this challenge by harnessing the 
capabilities of machine learning models to decipher intricate relationships within audio data. The 
primary objective of this research is to delve into the realm of DML and its application in creating 
meaningful audio representations. To achieve this goal, the study will explore a variety of deep 
neural network architectures and loss functions, including the widely-used triplet loss and 
contrastive loss. These architectural and loss function variations will be rigorously evaluated, 
offering insights into their effectiveness in producing audio embeddings capable of capturing the 
intrinsic characteristics of the data.

One of the central tenets of this research involves the selection and assessment of appropriate 
deep neural network architectures. Convolutional Neural Networks (CNNs) are renowned for their 
ability to capture both local and global dependencies within audio signals. By experimenting with 
various architectural configurations, this study seeks to identify the most suitable architecture that 
optimally encodes audio data for downstream tasks. This investigation is pivotal to understanding 
the nuances of different neural network structures and their role in achieving effective audio 
representations.

In tandem with architectural exploration, this thesis will thoroughly investigate the choice of loss 
functions, a critical component in DML for audio. Triplet loss and contrastive loss, among others, 
will be evaluated to discern their impact on the quality of learned audio embeddings. The 
objective is to uncover which loss function(s) yield embeddings that most accurately reflect the 
semantic relationships among audio samples. Subsequently, these learned representations will be 
subjected to rigorous testing using various distance metrics and normalization techniques. The 
effectiveness of these embeddings, as determined by distance-based evaluation using 
established benchmark datasets, will serve as a pivotal measure of their utility for diverse audio-
related tasks.  Ultimately, this research aims to provide invaluable insights into the design and 
optimization of audio representations, with a keen focus on their relevance to music information 
retrieval and content-based similarity tasks.


 
3.2. Loss Functions 

3.2.1. Triplet Loss

Triplet Loss [32] has emerged as a prominent technique in the field of Deep Metric Learning 
(DML), offering a powerful means of learning effective representations for similarity-based tasks. 
With the increasing availability of large-scale music collections, the need for robust models 
capable of capturing intricate relationships between songs has become imperative. In this 
context, Triplet Loss serves as a cornerstone for training machine learning models that can 
accurately measure the similarity between musical inputs.


Triplet Loss operates on the principle of learning embeddings, which map input instances into a 
high-dimensional space, where distances reflect their inherent similarity or dissimilarity. By 
employing triplets of instances—comprising an anchor, a positive, and a negative—the objective 
is to ensure that the anchor is closer to the positive instance compared to the negative one. The 
triplet formulation provides a fine-grained supervisory signal for the model to optimize the 
embedding space, aligning it with the desired similarity relationships.


The efficacy of Triplet Loss lies in its ability to facilitate discriminative learning, where embeddings 
of similar instances are brought closer together while pushing dissimilar instances apart. This 
process enables the model to capture subtle nuances in the audio features of songs, 
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transcending conventional categorical labels and providing a more nuanced representation of 
similarity.


Moreover, Triplet Loss has shown notable success in addressing challenges associated with the 
curse of dimensionality. By leveraging the triplet structure, the model is encouraged to learn 
compact representations, where semantically similar instances are densely clustered, enhancing 
retrieval performance and computational efficiency.


In the realm of music, the application of Triplet Loss holds tremendous potential. By exploiting the 
rich audio content of songs, DML models trained with Triplet Loss can offer personalized music 
recommendations, facilitate content-based music retrieval, and contribute to various music-
related tasks such as playlist generation and music similarity analysis.


This thesis aims to delve into the realm of Deep Metric Learning for music retrieval, focusing 
specifically on the application of Triplet Loss. By investigating novel techniques and strategies for 
leveraging Triplet Loss in the context of music similarity, we strive to advance the state-of-the-art 
in music recommendation systems and enhance the overall user experience in navigating and 
discovering music in the digital age.





3.2.2. Contrastive Loss


Contrastive Loss [33] has emerged as a key component in Deep Metric Learning (DML) 
algorithms, offering a powerful framework for training models that can effectively capture similarity 
relationships between instances. In the context of music retrieval, where the goal is to identify and 
recommend similar songs based on their audio content, Contrastive Loss provides a valuable 
mechanism to learn discriminative embeddings that preserve the inherent structure of the music.


The underlying principle of Contrastive Loss is to encourage similarity for pairs of instances 
belonging to the same class, while enforcing dissimilarity for pairs of instances from different 
classes. By formulating a loss function that maximizes the similarity between positive pairs and 
minimizes the similarity between negative pairs, the model is incentivized to learn embeddings 
that effectively separate distinct musical instances while bringing similar instances closer together.


One of the key advantages of Contrastive Loss lies in its ability to mitigate the challenges posed 
by high-dimensional spaces. By learning embeddings that are optimized for pairwise 
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comparisons, Contrastive Loss helps to reduce the computational complexity of similarity-based 
tasks. Furthermore, the learned embeddings can capture subtle variations in audio features and 
preserve the semantic relationships between songs, facilitating accurate music retrieval and 
recommendation.


In the field of music, Contrastive Loss holds significant promise for a wide range of applications. 
By leveraging its ability to learn meaningful representations, models trained with Contrastive Loss 
can provide personalized music recommendations, enable content-based music retrieval, and 
support tasks such as music similarity analysis and genre classification.


The primary objective of this thesis is to explore and investigate the effectiveness of Contrastive 
Loss in the context of music retrieval and recommendation systems. By employing innovative 
strategies and techniques, we aim to enhance the performance and efficiency of existing 
approaches, ultimately contributing to the advancement of music recommendation technology 
and improving the overall user experience in discovering and enjoying music in the digital era.





3.3. Data Preparation 
Here, we will describe in detail the process of creating the training dataset for our experiment.Our 
initial dataset consists of 1139 songs in the WAV format. To extract meaningful representations 
from each song, we employ two libraries: pyaudio and deep-audio-features. These libraries 
provide us with the necessary tools to extract high-level features and representations from audio 
data.


To create our ground truth files, we construct quartets of songs. Each quartet comprises three 
different songs, and the fourth song within the quartet is one of the first three. However, in this 
case, the fourth song is intentionally chosen to be the least similar among the three. This quartet 
structure enables us to establish a clear contrast between similar and dissimilar songs within our 
training data.
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For the implementation of triplet loss, we form triplets. Each triplet consists of representations 
from three songs: an anchor, a positive, and a negative. The anchor serves as the reference point, 
while the positive represents a song similar to the anchor. Conversely, the negative represents a 
song that is dissimilar to the anchor. By using these triplets, we train our model to learn a metric 
space where the distance between the anchor and positive songs is minimized, while the distance 
between the anchor and negative songs is maximized.


In addition to triplet loss, we also utilize contrastive loss during our training process. Each training 
batch comprises representations of N songs randomly selected from the entire database. This 
means that each batch includes a diverse set of songs, allowing the model to learn to distinguish 
between various instances and develop robust representations that capture the inherent 
similarities and differences among the songs.


By employing these approaches, we aim to train our machine learning models to effectively learn 
the underlying structure of the audio data, enabling them to identify and rank the most similar 
songs given an input.


3.4. Models 
In this master thesis, various convolutional neural network (CNN) architectures, in combination 
with linear layers, were employed to tackle the task of music similarity and retrieval. Specifically, a 
total of five distinct CNN models were utilized, each incorporating a different number of CNN 
layers and linear layers.

Each of these five models featured Dropout regularization applied after the last CNN layer. 
Dropout is a technique used to prevent overfitting by randomly deactivating a certain proportion 
of neurons during training. By applying Dropout, the models were able to enhance their 
generalization capability and reduce the risk of overfitting.

One of the models implemented in this study was a CNN architecture comprising six CNN layers. 
Each CNN layer consisted of a convolutional layer, a Batch Normalization layer (BatchNorm2d), a 
LeakyReLU activation function, and a MaxPooling layer (MaxPool2d). This architecture was 
designed to capture intricate audio features through multiple levels of convolutional and pooling 
operations.

In addition to the CNN layers, this particular model was equipped with three linear layers. Each 
linear layer included a Dropout layer, a linear transformation (Linear), and a LeakyReLU activation 
function, except for the last linear layer, which solely utilized a linear transformation and a 
LeakyReLU activation. The incorporation of linear layers allowed the model to learn complex 
relationships and patterns within the learned features.

Furthermore, two ResNet models, namely ResNet-18 and ResNet-50, were employed in this 
study. These models are renowned for their deep architectures and residual connections, which 
enable effective feature extraction and learning. In order to accommodate the specific 
requirements of the music dataset, the first convolutional layer of both ResNet models was 
modified. The modified layer was defined as 'nn.Conv2d(1, 64, kernel_size=(7, 7), stride=(2, 2), 
padding=(3, 3), bias=False)', facilitating the handling of the input music data.

The ResNet-18 and ResNet-50 models were employed to train models using both Contrastive 
Loss and Triplet Loss. Contrastive Loss, a technique used in Deep Metric Learning (DML), 
encourages similar instances to be closer together and dissimilar instances to be farther apart. 
Triplet Loss, another DML technique, focuses on optimizing the relative distances between triplets 
of instances, ensuring that positive instances are closer to an anchor instance compared to 
negative instances. By utilizing these loss functions, the ResNet models aimed to learn 
discriminative embeddings that effectively capture the similarity relationships between songs.

In contrast, the other models in this study were solely trained using Triplet Loss, emphasizing the 
exploration of this loss function's efficacy in the context of music retrieval and similarity analysis.

The utilization of various CNN architectures, including the aforementioned models with different 
layer configurations, alongside the application of Contrastive Loss and Triplet Loss, showcases a 
comprehensive approach to address the challenges of music similarity and retrieval. Through this 
research, we seek to advance the field by exploring novel combinations of network architectures 
and loss functions, thereby enhancing the performance and accuracy of music recommendation 
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systems and enabling users to discover and engage with music in a more personalized and 
satisfying manner.


3.4.1. Architectures:


3.4.1.1 TRIPLET LOSS 

For training with Triplet Loss, the following models were utilized:


Model1 

Model2 

Layer no. Type Output 
Channels

Kernel Size Stride Activation

conv1 Conv2d 32 1x1 1 ReLU

conv2 Conv2d 64 1x1 1 ReLU

max_pool1 Max_Pool2d - 1 1 -

dropout1 Dropout2d - - - -

fc1 Linear 128 - - -

Number of parameters: 7.4M

Layer no. Type Output 
Channels

Kernel Size Stride Activation

conv1 Conv2d 32 1x1 1 ReLU

conv2 Conv2d 64 1x1 1 ReLU

conv3 Conv2d 128 1x1 1 ReLU

max_pool1 Max_Pool2d - 1 1 -

dropout1 Dropout2d - - - -

fc1 Linear 512 - - -

fc2 Linear 256 - - -

fc3 Linear 128 - - -

Number of parameters: 59.5M
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Model3 

Model4 

Layer no. Type Output 
Channels

Kernel Size Stride Activation

conv1 Conv2d 32 1x1 1 ReLU

conv2 Conv2d 64 1x1 1 ReLU

conv3 Conv2d 128 1x1 1 ReLU

conv4 Conv2d 128 1x1 1 ReLU

max_pool1 Max_Pool2d - 1 1 -

dropout1 Dropout2d - - - -

fc1 Linear 512 - - -

fc2 Linear 256 - - -

fc3 Linear 128 - - -

Number of parameters: 59.6M

Layer no. Type Output 
Channels

Kernel Size Stride Activation

conv1 Conv2d 32 1x1 1 ReLU

conv2 Conv2d 64 1x1 1 ReLU

conv3 Conv2d 128 1x1 1 ReLU

conv4 Conv2d 128 1x1 1 ReLU

max_pool1 Max_Pool2d - 1 1 -

dropout1 Dropoutd2d - - - -

fc1 Linear 1024 - - -

fc2 Linear 512 - - -

fc3 Linear 256 - - -

Fc4 Linear 128 - - -

Number of parameters: 119.5M
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Model5 

Model6 

Layer no. Type Output 
Channels

Kernel Size Stride Activation

conv1 Conv2d 32 1x1 1 ReLU

conv2 Conv2d 64 1x1 1 ReLU

conv3 Conv2d 128 1x1 1 ReLU

conv4 Conv2d 128 1x1 1 ReLU

conv5 Conv2d 64 1x1 1 ReLU

max_pool1 Max_Pool2d - 1 1 -

dropout1 Dropoutd2d - - - -

fc1 Linear 2048 - - -

fc2 Linear 1024 - - -

fc3 Linear 512 - - -

fc4 Linear 256 - - -

fc5 Linear 128 - - -

Number of parameters: 121.6M

Layer no. Type Output 
Channels

Kernel Size Stride Activation

conv_layer1: Sequential

conv2d Conv2d 32 1x1 1 LeakyReLU

batchnorm2d BatchNorm2d - - - -

maxpool2d MaxPool2d - 1 1 -

conv_layer2: Sequential

conv2d Conv2d 64 1x1 1 LeakyReLU

batchnorm2d BatchNorm2d - - - -

maxpool2d MaxPool2d - 1 1 -

conv_layer3: Sequential

conv2d Conv2d 128 1x1 1 LeakyReLU

batchnorm2d BatchNorm2d - - - -
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Model7 

ResNet18

Number of parameters: 11.7M


Model8 

ResNet50

Number of parameters: 25.6M


In the implementation of ResNet-18 and ResNet-50, the default architectural configuration was 
maintained with the exception of the initial convolutional layer. Specifically, the original first 
convolutional layer was replaced with a customized layer defined as:


maxpool2d MaxPool2d - 1 1 -

conv_layer4: Sequential

conv2d Conv2d 64 1x1 1 LeakyReLU

batchnorm2d BatchNorm2d - - - -

maxpool2d MaxPool2d - 1 1 -

linear_layer1: Sequential

dropout Dropout2d - - - -

linear Linear 1024 - - LeakyReLU

linear_layer2: Sequential

dropout Dropout2d - - - -

Linear Linear 256 - - LeakyReLU

linear_layer3: Sequential

linear Linear 126 - - LeakyReLU

Number of parameters: 59.7M

Layer no. Type Output 
Channels

Kernel Size Stride Padding

conv2d Conv2d 64 7x7 2x2 3x3
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3.4.1.2. CONTRASTIVE LOSS 

For training with Contrastive Loss, the following models were utilized:


Model1 

ResNet50 

Number of parameters: 11.7M


Model2 
ResNet50

Number of parameters: 25.6M


In the implementation of ResNet-18 and ResNet-50, the default architectural configuration was 
maintained with the exception of the initial convolutional layer. Specifically, the original first 
convolutional layer was replaced with a customized layer defined as:


  

3.4.2. Training


The training process for this experiment involved training machine learning models using triplet 
loss and contrastive loss techniques. The models were optimized using the Adam optimizer, 
which is a widely used algorithm in deep learning. The Adam optimizer combines techniques such 
as momentum and adaptive learning rates to efficiently update the model's parameters during 
training. A learning rate of 1e^-5 was chosen for the training process. The learning rate 
determines the step size taken during parameter updates and can significantly impact the 
convergence and performance of the model. By carefully selecting a suitable learning rate and 
leveraging the benefits of the Adam optimizer, the training process aimed to find an effective 
balance between rapid convergence and accurate learning of the audio representations.


3.4.2.1. TRIPLET LOSS 

This section outlines the training methodology for models utilizing the Triplet Loss function, a 
fundamental component in various applications of similarity learning. Triplet loss facilitates the 
learning of semantically meaningful representations by constraining the distances between anchor 
and positive samples while maximizing those between anchor and negative samples.


1. Batch Splitting

In the initial phase, each batch of training data is meticulously partitioned into three constituent 
subsets: anchor, positive, and negative samples. These subsets are pivotal for the subsequent 
steps in the training procedure.

Anchor Sample: The anchor sample is considered the point of reference for comparative analysis 
throughout the training process. It serves as the baseline against which similarity and dissimilarity 
are assessed.

Positive Sample: The positive sample represents an audio data point that is closely related or 
similar to the anchor sample. This similarity aids in reinforcing the desired representations.

Negative Sample: In contrast, the negative sample is deliberately chosen to be dissimilar or 
distinct from the anchor sample. This disparity is instrumental in guiding the model towards 
learning discriminative representations.


Layer no. Type Output 
Channels

Kernel Size Stride Padding

conv2d Conv2d 64 7x7 2x2 3x3
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2. Model Inference

Following batch splitting, the three sample subsets - anchor, positive, and negative - are 
propagated through the trained model to derive their respective output representations. This step 
harnesses the model's ability to transform input data into meaningful feature representations.


3. Triplet Loss Calculation

The Triplet Loss function is the cornerstone of this training procedure. It takes as input the output 
representations of the anchor, positive, and negative samples. These representations are fed into 
the loss function in a predefined order: anchor, positive, negative.

The Triplet Loss function is designed to compute a scalar loss value based on the distances or 
similarities between the anchor and positive representations, in conjunction with the anchor and 
negative representations. The overarching objective is to minimize the distance between anchor 
and positive representations while concurrently maximizing the distance between anchor and 
negative representations. This dual constraint fosters the development of highly discriminative 
embeddings.


4. Backpropagation and Parameter Update

To enable learning, gradients of the Triplet Loss with respect to the model's parameters are 
meticulously computed. Subsequently, the backpropagation algorithm is employed to efficiently 
propagate these gradients through the neural network. The model's parameters are iteratively 
updated to minimize the Triplet Loss.

This parameter update is achieved through an optimization algorithm, such as the widely-used 
Adam optimizer, which leverages the calculated gradients and the designated learning rate to 
fine-tune the model parameters. This iterative optimization process progressively refines the 
model's ability to generate representations that conform to the desired similarity constraints.


5. Iteration and Continuation

The entire training procedure is repeated for each batch of training data in an iterative fashion. 
This cyclic process entails the successive passage of batches through the model, computation of 
the Triplet Loss, and the consequential parameter updates. Training continues until convergence 
or until a predefined stopping criterion is met.

The training procedure utilizing the Triplet Loss function is a robust and versatile method for 
cultivating semantically meaningful representations in various applications. It is characterized by 
the careful selection and manipulation of anchor, positive, and negative samples, which, when 
coupled with gradient-based optimization, empowers models to learn highly discriminative 
embeddings.


By following this training loop, the model gradually learns to generate discriminative audio 
representations that effectively capture the similarity relationships between the anchor and 
positive samples. The triplet loss drives the model to minimize the distances between similar pairs 
and maximize the distances between dissimilar pairs, facilitating the development of embeddings 
suitable for audio similarity and retrieval tasks.


3.4.2.2. CONTRASTIVE LOSS 
 

This section elucidates the training methodology for models employing the Contrastive Loss 
within the SimCLR framework. The objective is to foster the acquisition of robust audio 
representations through data augmentation, model inference, and the optimization of contrastive 
loss. This process yields embeddings that facilitate effective discrimination among audio samples.


1. Data Augmentation

The foundation of this training procedure lies in data augmentation. Each sample in the training 
dataset undergoes a twofold augmentation process, enhancing the dataset's diversity and 
enabling the model to generalize more effectively. Two specific augmentation techniques are 
applied:

Additive Noise: A controlled level of additive noise is injected into each sample, with a prescribed 
strength parameter of 0.5. This augments the samples by introducing controlled variations, 
enhancing the model's robustness.
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Random Masking: A random masking strategy is employed with a probability of 0.2. This 
technique randomly masks portions of the audio, further diversifying the dataset.


2. Model Inference

The augmented versions of each sample are then provided as inputs to the trained model. The 
model, which has been crafted within the SimCLR framework, is adept at extracting intricate 
audio representations capable of capturing high-level features.

Outputs Generation: The model processes each augmented sample and generates corresponding 
output representations. These representations encapsulate the extracted audio characteristics, 
and their quality is improved through the use of the SimCLR architecture.


3. Contrastive Loss Calculation

The output representations obtained from the model serve as inputs to the contrastive loss 
function. This critical step assesses the similarity or dissimilarity between pairs of augmented 
samples.

Contrastive Loss Function: The contrastive loss function, an essential element of SimCLR, 
quantifies the relationships between pairs of representations. It encourages the model to minimize 
the distance between positive pairs (representations from the same sample) while simultaneously 
maximizing the distance between negative pairs (representations from different samples). This 
loss function facilitates the creation of embeddings that inherently encode the distinctiveness of 
audio samples.


4. Backpropagation and Parameter Update

The gradients of the contrastive loss concerning the model's parameters are meticulously 
computed. These gradients fuel the backpropagation process, allowing the efficient propagation 
of information through the network.

Parameter Updates: The model's parameters are updated through an optimization algorithm, 
typically employing the Adam optimizer. This optimization process aims to minimize the 
contrastive loss iteratively, enabling the model to learn discriminating audio representations.


5. Iteration and Continuation

The training procedure unfolds through an iterative process. Augmentation, model inference, 
contrastive loss calculation, and parameter updates are conducted repeatedly for multiple training 
iterations or epochs.

Epoch Progression: Each iteration advances the model's capacity to produce effective audio 
representations. The procedure continues until convergence is achieved, or predefined 
convergence criteria are met.


The training procedure for Contrastive Loss-based models, as orchestrated within the SimCLR 
framework, is a robust strategy for enhancing audio representations. It leverages data 
augmentation to diversify the training dataset and employs the contrastive loss function to 
enforce representations that effectively discriminate between audio samples. This iterative 
process culminates in the acquisition of embeddings capable of capturing the intricate nuances of 
audio data.


This iterative process allows the model to gradually learn discriminative audio representations that 
capture the underlying similarities and differences in the augmented samples.

By following this training loop with contrastive loss and utilizing the SimCLR framework, the 
model is trained to generate audio representations that effectively capture the similarity 
relationships between augmented samples. The combination of data augmentation and 
contrastive loss optimization enhances the model's ability to learn robust and discriminative 
representations, facilitating accurate audio retrieval and similarity ranking.
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3.4.3. Evaluation


3.4.3.1. DISTANCES 

In this master thesis, we comprehensively evaluated the trained models using a diverse range of 
distance metrics and scalers to assess their performance in various audio similarity scenarios. 
The goal was to understand how the models trained with Triplet Loss and Contrastive Loss are 
performing across different combinations of distance metrics and scalers.

The distances utilized for evaluation are as follows:

• Chebyshev Distance

• Euclidean Distance

• Minkowski Distance

• Hamming Distance

• Cosine Similarity

• Cityblock/Manhattan Distance

• Standardized Euclidean Distance

• Correlation Distance

• Kulsinski Distance

Furthermore, each distance metric was combined with three different scalers to observe the 
models' behavior under various normalization conditions:

• MinMaxScaler

• StandardScaler

• Normalizer

To effectively evaluate the models, we conducted a systematic analysis, assessing their 
performance using each distance-scaler pair on the testing dataset comprising 3223 audio 
representations. By doing so, we could obtain a comprehensive understanding of how the models 
generalize to unseen data and how the choice of distance metric and scaler impacts their 

performance.


3.4.3.2. SCORE CALCULATION 

To quantitatively evaluate the performance of the trained machine learning models, we developed 
a rigorous scoring methodology centered around the notion of audio similarity. Our evaluation 
process hinged on the utilization of carefully curated triplets of audio representations, each 
comprising two similar audio samples and one dissimilar sample. These triplets were designed 
with known ground truth, specifying which two audio representations should be considered as 
similar and which one as dissimilar.

For each triplet, we passed the audio representations through the trained models to obtain their 
embeddings. Subsequently, we employed various distance metrics and scalers. To measure the 
similarity between the embeddings. The pivotal criterion for scoring was as follows: if the distance 
between the two audio representations designated as similar was smaller than the distance 
between the dissimilar pair, the model received a correct classification score for that triplet. This 
process was systematically repeated for every triplet in our test dataset.

By summing the correct classifications and normalizing the count with respect to the total number 
of triplets, we calculated a percentage score, providing a comprehensive assessment of each 
model's capability to capture intricate audio similarity relationships. This scoring mechanism 
offered valuable insights into the models' proficiency in distinguishing between similar and 
dissimilar audio representations, facilitating a quantitative evaluation of their performance across 
diverse distance metrics and normalization techniques.
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3.4.4. Implementation Details


The codebase employed in this thesis is part of the mir (Multimedia Information Retrieval) [34] 
repository, specifically within the similarity section. The mir repository is maintained by the 
Multimedia Analysis Group of the Computational Intelligence Lab (MagCIL) at the Institute of 
Informatics and Telecommunications, part of the National Center for Scientific Research 
“Demokritos."

The core functionality of the similarity section of the repository focuses on the extraction of audio 
representations from audio files and the execution of similarity queries. These queries are 
designed to identify the most similar audio files based on a given input audio file.

The exact codebase can be found here.


The proposed methodology was implemented in Python using the following libraries:  
- Models were implemented and trained using PyTorch

- The SimCLR framework was utilised in training with Contrastive Learning

- Models trained on Apple M1 Pro, Total Number of GPU Cores: 14
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4. Experiments 
4.1. Dataset 
The dataset used for this master thesis consists of a total of 4362 audio representations of songs. 
These audio representations have been split into two distinct sets for training and testing 
purposes. The training set comprises 1139 audio representations, while the testing set consists of 
3223 audio representations.

The primary objective of the thesis is to train and evaluate models using two prominent loss 
functions, Triplet Loss and Contrastive Loss, with the aim of learning meaningful embeddings 
from the audio representations. During the training phase, the models were exposed to the 1139 
audio representations in the training set, leveraging their inherent pairwise similarities and 
dissimilarities to optimize the embeddings. Subsequently, the models were tested using the larger 
testing set containing 3223 audio representations, which were unseen during the training phase.


4.2. Results 
To assess the performance of each model in our study, for both Triplet Loss training and 
Contrastive Loss training, we have employed the computed distances utilizing the various 
distance metrics, as well as the corresponding scaling techniques as outlined previously. In our 
evaluation, a higher score signifies a superior performance of the model.

The scores achieved by each model are presented as follows:


4.2.1. Triplet Loss


Model1 - batch size = 32, learning rate = 0.00001


In the evaluation of the first model, the top-performing combinations, ranked by higher similarity 
scores, are as follows:

• chebyshev-Normalizer: Demonstrating a prominent performance with a similarity score of 

50.9%.

• cosine-Normalizer: Achieving a score of 49.7%.

• minkowski-Normalizer: Earning a score of 49.7%.

These outcomes highlight the effectiveness of utilizing the "Normalizer" scaling technique.

For more information, see Table 1 in Appendix A.


 
Model2 - batch size = 32, learning rate = 0.00001


Distance Score

chebyshev-Normalizer 50.9%

cosine-Normalizer 49.7%

minkowski-Normalizer 49.7%

cityblock-StandardScaler 49.6%

correlation-MinMaxScaler 48.3%

Distance Score

seuclidean-MinMaxScaler 39.8%

seuclidean-StandardScaler 39.8%
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In the evaluation of the second model, the top-performing combinations, ranked by higher 
similarity scores, are as follows:

• seuclidean-MinMaxScaler: Demonstrating the highest performance with a similarity score of 

39.8%.

• seuclidean-StandardScaler: Achieving a score of 39.8%.

• euclidean-Normalizer: Earning a score of 39.5%.

For more information, see Table 2 in Appendix A.


Model3 - batch size = 128, learning rate = 0.00001


In the evaluation of the third model, the top-performing combinations, ranked by higher similarity 
scores, are as follows:

• cosine-Normalizer: Demonstrating the highest performance with an impressive similarity score 

of 64.1%.

• euclidean-Normalizer: Achieving an outstanding score of 64.1%, indicating a substantial level of 

audio resemblance.

• minkowski-Normalizer: Earning a commendable score of 64.1%, reflecting strong capabilities in 

audio similarity assessment.

These results underscore, again, the notable effectiveness of the "Normalizer" scaling technique.

For more information, see Table 3 in Appendix.


Model4 - batch size = 128, learning rate = 0.00001


In the evaluation of the fourth model, the top-performing combinations, ranked by higher similarity 
scores, are as follows:

• cityblock-Normalizer: Demonstrating the highest performance with a notable similarity score of 

63.2%.


euclidean-Normalizer 39.5%

cosine-Normalizer 39.5%

cityblock-MinMaxScaler 39.4%

Distance Score

cosine-Normalizer 64.1%

euclidean-Normalizer 64.1%

minkowski-Normalizer 64.1%

cityblock-Normalizer 64.0%

chebyshev-Normalizer 63.8%

Distance Score

cityblock-Normalizer 63.2%

seuclidean-Normalizer 63.0%

cosine-Normalizer 63.0%

minkowski-Normalizer 63.0%

chebyshev-Normalizer 62.5%
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• seuclidean-Normalizer: Achieving a strong score of 63.0%, indicating a substantial level of audio 
resemblance.


• cosine-Normalizer: Earning a commendable score of 63.0%, reflecting robust capabilities in 
audio similarity assessment.


These results emphasize the efficacy of the "Normalizer" scaling technique in conjunction with 
specific distance metrics within the fourth model, facilitating effective audio similarity 
identification.

For more information, see Table 4 in Appendix A.


Model5 - batch size = 128, learning rate = 0.00001


In the evaluation of the fifth model, the top-performing combinations, ranked by higher similarity 
scores, are as follows:

• euclidean-MinMaxScaler: Demonstrating the highest performance with a notable similarity score 

of 62.2%.

• minkowski-MinMaxScaler: Achieving a strong score of 62.2%, indicating a substantial level of 

audio resemblance.

• cosine-Normalizer: Earning a commendable score of 62.1%, reflecting robust capabilities in 

audio similarity assessment.

For more information, see Table 5 in Appendix A.


Model6 - batch size = 64, learning rate = 0.00001


In the evaluation of the sixth model, the top-performing combinations, ranked by higher similarity 
scores, are as follows:

• chebyshev-Normalizer: Demonstrating the highest performance with an impressive similarity 

score of 62.6%.

• cosine-Normalizer: Earning a commendable score of 61.5%, reflecting robust capabilities in 

audio similarity assessment.

• euclidean-Normalizer: Achieving a strong score of 61.5%, indicating a substantial level of audio 

resemblance.

These results highlight the efficacy of the "Normalizer" scaling technique in conjunction with 
specific distance metrics within the sixth model, contributing to effective audio similarity 
identification.

For more information, see Table 6 in Appendix A.


Distance Score

euclidean-MinMaxScaler 62.2%

minkowski-MinMaxScaler 62.2%

cosine-Normalizer 62.1%

euclidean-Normalizer 62.1%

chebyshev-Normalizer 61.9%

Distance Score

chebyshev-Normalizer 62.6%

cosine-Normalizer 61.5%

euclidean-Normalizer 61.5%

minkowski-Normalizer 61.4%

seuclidean-Normalizer 61.4%
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Model7 - batch size = 128, learning rate = 0.00001


In the evaluation of the seventh model, the top-performing combinations, ranked by higher 
similarity scores, are as follows:

• correlation-MinMaxScaler: Demonstrating the highest performance with a notable similarity 

score of 55.9%.

• cosine-MinMaxScaler: Earning a commendable score of 55.7%, reflecting robust capabilities in 

audio similarity assessment.

• euclidean-MinMaxScaler: Achieving a solid score of 55.4%, indicative of a substantial level of 

audio resemblance.

These results highlight the efficacy of the "MinMaxScaler" scaling technique in conjunction with 
specific distance metrics within the seventh model, contributing to effective audio similarity 
identification.

For more information, see Table 7 in Appendix A.


Model8 - batch size = 128, learning rate = 0.00001


In the evaluation of the eighth model, the top-performing combinations, ranked by higher 
similarity scores, are as follows:

• euclidean-StandardScaler: Demonstrating the highest performance with a notable similarity 

score of 48.1%.

• minkowski-StandardScaler: Achieving a score of 48.1%.

• cityblock-MinMaxScaler: Earning a score of 47.3%.

For more information, see Table 8 in Appendix A.


Distance Score

correlation-MinMaxScaler 55.9%

cosine-MinMaxScaler 55.7%

euclidean-MinMaxScaler 55.4%

minkowski-MinMaxScaler 55.4%

chebyshev-MinMaxScaler 55.3%

Distance Score

euclidean-StandardScaler 48.1%

minkowski-StandardScaler 48.1%

cityblock-MinMaxScaler 47.3%

cosine-MinMaxScaler 47.3%

chebyshev-StandardScaler 46.9%
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4.2.2. Contrastive Loss


Model1 - batch size = 32, learning rate = 0.00001


In the evaluation of the first model, the top-performing combinations, ranked by higher similarity 
scores, are as follows:

• euclidean-Normalizer: Demonstrating the highest performance with an impressive similarity 

score of 48.7%.

• cosine-Normalizer: Achieving a strong score of 48.7%.

• cityblock-MinMaxScaler: Earning a commendable score of 48.3%.

For more information, see Table 9 in Appendix A.


Model2 - batch size = 32, learning rate = 0.00001


In the evaluation of the second model, the top-performing combinations, ranked by higher 
similarity scores, are as follows:

• correlation-MinMaxScaler: Demonstrating the highest performance with an impressive similarity 

score of 51.6%.

• euclidean-MinMaxScaler: Achieving a strong score of 51.5%, indicating a substantial level of 

audio resemblance.

• minkowski-MinMaxScaler: Earning a commendable score of 51.4%, reflecting robust 

capabilities in audio similarity assessment.

These results highlight the efficacy of the "MinMaxScaler" scaling technique in conjunction with 
specific distance metrics within the second model, contributing to effective audio similarity 
identification.

For more information, see Table 10 in Appendix A.


Distance Score

euclidean-Normalizer 48.7%

cosine-Normalizer 48.7%

cityblock-MinMaxScaler 48.3%

minkowski-Normalizer 48.7%

chebyshev-StandardScaler 48.3%

Distance Score

correlation-MinMaxScaler 51.6%

euclidean-MinMaxScaler 51.5%

minkowski-MinMaxScaler 51.4%

cityblock-MinMaxScaler 51.4%

cosine-MinMaxScaler 51.4%
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4.2.3. Comparison of Best-Performing Loss Functions.


In our evaluation, we observed that the Contrastive loss yielded the highest performance with a 
score of 51.6% when applied to our top-performing model (Resnet50). Conversely, the Triplet 
loss, implemented with our leading CNN-based model, achieved an impressive score of 64.1%, 
highlighting its efficacy in capturing intricate audio relationships.


4.3. Observations 
In this master thesis, we investigated the performance of two popular loss functions, Triplet Loss 
and Contrastive Loss, and their effectiveness in learning meaningful embeddings for image 
similarity tasks. The primary objective was to compare the models trained using these loss 
functions and evaluate their performance using various distance metrics and scalers.

For the Triplet Loss experiments, a total of eight different models were trained using Convolutional 
Neural Networks (CNNs) architecture. The models were trained with the goal of optimizing the 
embeddings such that the anchor points are closer to their respective positive samples while 
being distant from negative samples. During the experimentation phase, we assessed the impact 
of different distance metrics and scalers on the model's performance.

Among the trained Triplet Loss models, the third model emerged as the most successful, 
exhibiting superior performance across several distance metrics when combined with the 
Normalizer scaler. Specifically, the third model achieved remarkable results with the euclidean 
distance-Normalizer, minkowski distance-Normalizer, and cosine distance-Normalizer. This 
outcome highlights the effectiveness of the Triplet Loss function when used in conjunction with 
CNNs for deep metric learning tasks, particularly when normalized embeddings are employed.

Turning our attention to the Contrastive Loss experiments, two distinct models were trained, 
leveraging the powerful ResNet50 architecture. Contrastive Loss aims to minimize the distance 
between similar samples and maximize the distance between dissimilar samples. Similar to the 
Triplet Loss experiments, we explored the impact of different distance metrics and scalers on the 
model's performance.

The results revealed that the second model trained with Contrastive Loss outperformed the other 
variant, achieving remarkable scores with the correlation distance when paired with the 
MinMaxScaler. The successful performance of the ResNet50 model demonstrates the ability of 
Contrastive Loss to yield highly discriminative embeddings for image similarity tasks.

Overall, the findings of this master thesis underscore the importance of selecting appropriate loss 
functions and architectures for deep metric learning tasks. While both Triplet Loss and Contrastive 
Loss have demonstrated their effectiveness in learning meaningful embeddings, the choice of the 
best model depends on the specific requirements of the application and the nature of the data. 
Furthermore, the use of different distance metrics and scalers during evaluation further highlights 
the sensitivity of the models to the choice of these parameters.

The outcomes presented in this research contribute valuable insights to the field of deep metric 
learning and provide a foundation for further exploration and refinement of loss functions and 
architectures in image similarity tasks. Additionally, the evaluation of multiple distance metrics and 
scalers enriches the understanding of their influence on model performance and guides 
researchers in making informed decisions when designing and evaluating deep metric learning 
models in real-world applications.


Triplet Loss (Model 3 - CNN) Contrastive Loss (Model 2 - ResNet50)
Distance Score Distance Score

cosine-Normalizer 64.1% correlation-MinMaxScaler 51.6%
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5. Conclusion 
In this master thesis, we delved into the domain of deep metric learning, specifically focusing on 
its application to audio data in the form of audio representations of songs. The primary objective 
of our research was to compare the performance of two prominent loss functions, Triplet Loss and 
Contrastive Loss, in learning meaningful embeddings that capture the underlying similarities and 
dissimilarities between songs.

Throughout our investigation, we trained and evaluated multiple models using Triplet Loss and 
Contrastive Loss in an effort to obtain embeddings that preserve the pairwise similarities present 
in the audio data representations. Understanding the importance of selecting appropriate loss 
functions and architectures for deep metric learning tasks, we designed experiments with audio 
data to explore the impact of different distance metrics and scalers on model performance.

Our results shed light on the effectiveness of Triplet Loss when paired with Convolutional Neural 
Networks in generating discriminative audio embeddings. Notably, the third Triplet Loss model 
emerged as the most successful among the trained models, achieving superior scores on 
distance metrics like euclidean, minkowski, and cosine, especially when combined with the 
Normalizer scaler. This finding showcases the capability of Triplet Loss in learning audio 
embeddings that preserve the inherent similarities between songs, and the normalization step 
proved to be a crucial factor in enhancing the model's performance.

In parallel, the Contrastive Loss models, implemented with the robust ResNet50 architecture, 
demonstrated their potential to learn meaningful embeddings by emphasizing pairwise 
comparisons between audio samples. The second Contrastive Loss model excelled in preserving 
song similarities, particularly when evaluated with the correlation distance metric, and benefited 
significantly from the application of the MinMaxScaler. This outcome highlights the ability of 
Contrastive Loss to effectively capture the pairwise relationships present in audio data 
representations, offering discriminative embeddings suitable for audio similarity tasks.

The comparisons drawn between Triplet Loss and Contrastive Loss underscore the significance of 
selecting the most appropriate loss function depending on the nature of the audio data and the 
specific requirements of the task. Triplet Loss, with its emphasis on relative comparisons between 
samples, proved to be a potent choice, particularly when normalized audio embeddings were 
utilized. On the other hand, Contrastive Loss, focusing on pairwise comparisons, demonstrated 
its effectiveness in capturing the inherent pairwise similarities in audio data representations.

Furthermore, the evaluation of various distance metrics and scalers revealed their substantial 
impact on the performance of the models. The choice of distance metric should align with the 
nature of the audio data and the specific similarity task at hand. At the same time, selecting an 
appropriate scaler played a vital role in optimizing the models to learn meaningful embeddings 
from audio data representations.

In conclusion, our research contributes valuable insights into the domain of deep metric learning 
applied to audio data, particularly audio representations of songs. The findings demonstrate that 
both Triplet Loss and Contrastive Loss can be valuable tools for capturing song similarities in their 
respective ways. The knowledge gained from this study will serve as a foundation for further 
advancements in deep metric learning for audio similarity tasks, offering researchers and 
practitioners guidance in selecting appropriate loss functions, architectures, and evaluation 
methodologies to achieve optimal performance in various audio-related applications, such as 
music recommendation, audio retrieval, and content-based audio search. As the field continues to 
evolve, we anticipate further refinements in loss functions, network architectures, and evaluation 
techniques that will continue to push the boundaries of deep metric learning and its applications 
in the realm of audio data analysis.
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7. Appendix A 
Table 1


Distance Score

chebyshev-MinMaxScaler 47.714%

chebyshev-StandardScaler 46.971%

chebyshev-Normalizer 50.857%

euclidean-MinMaxScaler 47.657%

euclidean-StandardScaler 48.000%

euclidean-Normalizer 49.657%

minkowski-MinMaxScaler 47.657%

minkowski-StandardScaler 48.000%

minkowski-Normalizer 49.657%

hamming-MinMaxScaler 35.257%

hamming-StandardScaler 35.257%

hamming-Normalizer 35.257%

cosine-MinMaxScaler 47.600%

cosine-StandardScaler 47.086%

cosine-Normalizer 49.657%

cityblock-MinMaxScaler 47.543%

cityblock-StandardScaler 48.000%

cityblock-Normalizer 49.600%

seuclidean-MinMaxScaler 46.343%

seuclidean-StandardScaler 46.343%

seuclidean-Normalizer 48.114%

correlation-MinMaxScaler 48.286%

correlation-StandardScaler 46.914%

correlation-Normalizer 49.371%

kulsinski-MinMaxScaler 35.771%

kulsinski-StandardScaler 35.257%

kulsinski-Normalizer 35.257%
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Table 2

Distance Score

chebyshev-MinMaxScaler 38.229%

chebyshev-StandardScaler 37.771%

chebyshev-Normalizer 38.171%

euclidean-MinMaxScaler 39.143%

euclidean-StandardScaler 38.400%

euclidean-Normalizer 39.486%

minkowski-MinMaxScaler 39.143%

minkowski-StandardScaler 38.400%

minkowski-Normalizer 39.486%

hamming-MinMaxScaler 35.200%

hamming-StandardScaler 35.200%

hamming-Normalizer 35.314%

cosine-MinMaxScaler 39.029%

cosine-StandardScaler 38.057%

cosine-Normalizer 39.486%

cityblock-MinMaxScaler 39.143%

cityblock-StandardScaler 38.914%

cityblock-Normalizer 39.429%

seuclidean-MinMaxScaler 39.771%

seuclidean-StandardScaler 39.771%

seuclidean-Normalizer 39.543%

correlation-MinMaxScaler 39.714%

correlation-StandardScaler 38.000%

correlation-Normalizer 39.371%

kulsinski-MinMaxScaler 34.686%

kulsinski-StandardScaler 35.257%

kulsinski-Normalizer 35.257%
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Table 3

Distance Score

chebyshev-MinMaxScaler 58.686%

chebyshev-StandardScaler 58.400%

chebyshev-Normalizer 63.829%

euclidean-MinMaxScaler 62.686%

euclidean-StandardScaler 61.657%

euclidean-Normalizer 64.057%

minkowski-MinMaxScaler 62.686%

minkowski-StandardScaler 61.657%

minkowski-Normalizer 64.057%

hamming-MinMaxScaler 35.257%

hamming-StandardScaler 35.257%

hamming-Normalizer 35.257%

cosine-MinMaxScaler 62.800%

cosine-StandardScaler 59.886%

cosine-Normalizer 64.057%

cityblock-MinMaxScaler 63.086%

cityblock-StandardScaler 62.400%

cityblock-Normalizer 64.000%

seuclidean-MinMaxScaler 62.286%

seuclidean-StandardScaler 62.286%

seuclidean-Normalizer 63.657%

correlation-MinMaxScaler 62.629%

correlation-StandardScaler 60.000%

correlation-Normalizer 63.943%

kulsinski-MinMaxScaler 35.771%

kulsinski-StandardScaler 35.257%

kulsinski-Normalizer 35.257%

51



Table 4

Distance Score

chebyshev-MinMaxScaler 59.314%

chebyshev-StandardScaler 57.714%

chebyshev-Normalizer 62.514%

euclidean-MinMaxScaler 61.543%

euclidean-StandardScaler 61.257%

euclidean-Normalizer 62.971%

minkowski-MinMaxScaler 61.543%

minkowski-StandardScaler 61.257%

minkowski-Normalizer 62.971%

hamming-MinMaxScaler 35.257%

hamming-StandardScaler 35.257%

hamming-Normalizer 35.257%

cosine-MinMaxScaler 61.371%

cosine-StandardScaler 58.914%

cosine-Normalizer 62.971%

cityblock-MinMaxScaler 61.600%

cityblock-StandardScaler 61.086%

cityblock-Normalizer 63.200%

seuclidean-MinMaxScaler 61.771%

seuclidean-StandardScaler 61.771%

seuclidean-Normalizer 63.029%

correlation-MinMaxScaler 61.371%

correlation-StandardScaler 58.857%

correlation-Normalizer 63.029%

kulsinski-MinMaxScaler 35.714%

kulsinski-StandardScaler 35.257%

kulsinski-Normalizer 35.257%
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Table 5

Distance Score

chebyshev-MinMaxScaler 60.343%

chebyshev-StandardScaler 59.714%

chebyshev-Normalizer 61.886%

euclidean-MinMaxScaler 62.171%

euclidean-StandardScaler 61.771%

euclidean-Normalizer 62.057%

minkowski-MinMaxScaler 62.171%

minkowski-StandardScaler 61.771%

minkowski-Normalizer 62.057%

hamming-MinMaxScaler 35.257%

hamming-StandardScaler 35.257%

hamming-Normalizer 35.257%

cosine-MinMaxScaler 61.886%

cosine-StandardScaler 59.543%

cosine-Normalizer 62.057%

cityblock-MinMaxScaler 61.943%

cityblock-StandardScaler 61.771%

cityblock-Normalizer 61.943%

seuclidean-MinMaxScaler 62.286%

seuclidean-StandardScaler 62.286%

seuclidean-Normalizer 62.286%

correlation-MinMaxScaler 61.600%

correlation-StandardScaler 59.543%

correlation-Normalizer 61.943%

kulsinski-MinMaxScaler 34.971%

kulsinski-StandardScaler 35.257%

kulsinski-Normalizer 35.257%

53



Table 6

Distance Score

chebyshev-MinMaxScaler 54.400%

chebyshev-StandardScaler 47.029%

chebyshev-Normalizer 62.571%

euclidean-MinMaxScaler 60.286%

euclidean-StandardScaler 58.743%

euclidean-Normalizer 61.486%

minkowski-MinMaxScaler 60.286%

minkowski-StandardScaler 58.743%

minkowski-Normalizer 61.486%

hamming-MinMaxScaler 35.257%

hamming-StandardScaler 35.257%

hamming-Normalizer 35.257%

cosine-MinMaxScaler 60.400%

cosine-StandardScaler 59.600%

cosine-Normalizer 61.486%

cityblock-MinMaxScaler 60.800%

cityblock-StandardScaler 60.171%

cityblock-Normalizer 61.029%

seuclidean-MinMaxScaler 61.314%

seuclidean-StandardScaler 61.314%

seuclidean-Normalizer 61.371%

correlation-MinMaxScaler 60.171%

correlation-StandardScaler 59.429%

correlation-Normalizer 61.429%

kulsinski-MinMaxScaler 36.000%

kulsinski-StandardScaler 35.257%

kulsinski-Normalizer 35.257%
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Table 7

Distance Score

chebyshev-MinMaxScaler 55.257%

chebyshev-StandardScaler 52.629%

chebyshev-Normalizer 50.286%

euclidean-MinMaxScaler 55.371%

euclidean-StandardScaler 53.429%

euclidean-Normalizer 51.657%

minkowski-MinMaxScaler 55.371%

minkowski-StandardScaler 53.429%

minkowski-Normalizer 51.657%

hamming-MinMaxScaler 35.200%

hamming-StandardScaler 35.200%

hamming-Normalizer 35.257%

cosine-MinMaxScaler 55.714%

cosine-StandardScaler 50.000%

cosine-Normalizer 51.657%

cityblock-MinMaxScaler 53.200%

cityblock-StandardScaler 51.543%

cityblock-Normalizer 51.486%

seuclidean-MinMaxScaler 49.486%

seuclidean-StandardScaler 49.486%

seuclidean-Normalizer 51.200%

correlation-MinMaxScaler 55.886%

correlation-StandardScaler 49.943%

correlation-Normalizer 51.657%

kulsinski-MinMaxScaler 37.200%

kulsinski-StandardScaler 35.257%

kulsinski-Normalizer 35.257%
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Table 8

Distance Score

chebyshev-MinMaxScaler 44.800%

chebyshev-StandardScaler 46.857%

chebyshev-Normalizer 43.371%

euclidean-MinMaxScaler 47.314%

euclidean-StandardScaler 48.057%

euclidean-Normalizer 45.086%

minkowski-MinMaxScaler 47.314%

minkowski-StandardScaler 48.057%

minkowski-Normalizer 45.086%

hamming-MinMaxScaler 35.257%

hamming-StandardScaler 35.257%

hamming-Normalizer 35.257%

cosine-MinMaxScaler 47.314%

cosine-StandardScaler 45.257%

cosine-Normalizer 45.086%

cityblock-MinMaxScaler 47.314%

cityblock-StandardScaler 47.314%

cityblock-Normalizer 44.800%

seuclidean-MinMaxScaler 44.914%

seuclidean-StandardScaler 44.914%

seuclidean-Normalizer 44.571%

correlation-MinMaxScaler 47.143%

correlation-StandardScaler 45.314%

correlation-Normalizer 45.086%

kulsinski-MinMaxScaler 36.229%

kulsinski-StandardScaler 35.257%

kulsinski-Normalizer 35.257%
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Table 9

Distance Score

chebyshev-MinMaxScaler 44.800%

chebyshev-StandardScaler 48.286%

chebyshev-Normalizer 47.371%

euclidean-MinMaxScaler 48.171%

euclidean-StandardScaler 48.057%

euclidean-Normalizer 48.686%

minkowski-MinMaxScaler 48.171%

minkowski-StandardScaler 48.057%

minkowski-Normalizer 48.686%

hamming-MinMaxScaler 35.257%

hamming-StandardScaler 35.257%

hamming-Normalizer 35.257%

cosine-MinMaxScaler 47.943%

cosine-StandardScaler 46.171%

cosine-Normalizer 48.686%

cityblock-MinMaxScaler 48.343%

cityblock-StandardScaler 48.114%

cityblock-Normalizer 47.657%

seuclidean-MinMaxScaler 47.829%

seuclidean-StandardScaler 47.829%

seuclidean-Normalizer 46.914%

correlation-MinMaxScaler 47.657%

correlation-StandardScaler 46.057%

correlation-Normalizer 48.571%

kulsinski-MinMaxScaler 35.543%

kulsinski-StandardScaler 35.257%

kulsinski-Normalizer 35.257%
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Table 10

Distance Score

chebyshev-MinMaxScaler 48.514%

chebyshev-StandardScaler 48.571%

chebyshev-Normalizer 45.886%

euclidean-MinMaxScaler 51.543%

euclidean-StandardScaler 50.914%

euclidean-Normalizer 50.400%

minkowski-MinMaxScaler 51.543%

minkowski-StandardScaler 50.914%

minkowski-Normalizer 50.400%

hamming-MinMaxScaler 35.257%

hamming-StandardScaler 35.257%

hamming-Normalizer 35.257%

cosine-MinMaxScaler 51.371%

cosine-StandardScaler 46.686%

cosine-Normalizer 50.400%

cityblock-MinMaxScaler 51.371%

cityblock-StandardScaler 50.629%

cityblock-Normalizer 49.771%

seuclidean-MinMaxScaler 50.400%

seuclidean-StandardScaler 50.400%

seuclidean-Normalizer 47.429%

correlation-MinMaxScaler 51.600%

correlation-StandardScaler 46.743%

correlation-Normalizer 50.000%

kulsinski-MinMaxScaler 34.971%

kulsinski-StandardScaler 35.257%

kulsinski-Normalizer 35.257%
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