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Abstract

The Sun’s surface is very dynamic, even on periods of weak solar activity, producing a

variety of magnetic structures, amongst them structures that can cause plasma to exhibit

vortex-like motions. These so-called solar vortex flows have been widely observed on the

Sun’s photosphere and chromosphere as well as on upper solar atmospheric levels. Their

existence is highly connected with the creation of magnetohydrodynamic (MHD) waves,

a primary candidate for channeling energy and plasma from the photosphere up to the

low corona. Therefore, the automatic detection of solar vortex flows is fundamental for

proper investigation of the lower solar atmosphere dynamics and the estimation of upwards

energy transfer. Previous detection approaches utilized a criterion, like vorticity, based

on the frequently inconsistent and often erroneous derivation of the velocity field from the

solar observations. The aim of the present thesis is the implementation of an automated

methodology for the detection of solar vortex flows that is based on the morphological

characteristics they present.

The approach followed is the application of a series of pre-processing methods aiming

to remove non-dynamic or almost linear structures not related to vortex flows from a

solar data set (consisting of a sequence of frames depicting a specific solar region). Such

methods include the Robust Principal Component Analysis (RPCA), in order to retrieve

the dynamic parts of the solar data as well as the removal of components that relate to

almost linear structures and thus are not part of a vortex flow. Subsequently, the output

produced by the sequential application of the pre-processing methods is aggregated and

evaluated so that the primary candidate region for vortex flow existence is detected.

The evaluation of the produced results on an actual solar data set proves that the pro-

posed methodology succeeds in identifying the primary solar vortex flow region. More

importantly, a promising analysis of the distribution of dynamic, vortex-like structures on

the observational sequence is produced that can be used, by further future extensions of

the current work, for the detection of multiple structures within the investigated field of

view. It is concluded that the presented methodology constitutes an efficient alternative

way for the identification of solar vortex flows, especially after all proposed improvements

and extensions are properly implemented.
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Chapter 1

Introduction

1.1 Motivation

Without any doubt, the Sun constitutes the most extraordinary object in our solar system.

The importance of our nearest star has long been recognized and acknowledged as vital for

the creation of life on Earth. Throughout human history, people have been unceasingly

observing the Sun and attempting to explain its numerous mysteries. Even today, the

Sun remains one of the most fascinating fields of study in Astrophysics and constitutes a

cosmological laboratory for understanding the physics that also govern the dynamics of

other stars.

Upon the discovery of the first telescopes, scientists were able to observe the Sun from

a closer view. In recent years, more detailed images were obtained with solar telescopes

and dedicated instruments launched into space. A wild and unpredictable environment

was revealed by examining the Sun in different wavelengths also beyond the visible spec-

trum. Numerous complex phenomena on the Sun surface and atmosphere have been widely

observed and the underlying mechanisms that create them have been thoroughly investi-

gated. Such phenomena include the well-known Sunspots in active regions of the Sun and

the most recently observed and less studied solar vortex flows that constitute part of the

quiet Sun fine solar structure.

However, the Sun still holds secrets that scientists seek to unlock. One of the greatest ones

is widely known as the coronal heating problem and revolves around the mechanisms that

contribute to the rapid increase of the Sun’s corona temperature to millions of degrees, a

1



1.2. Aims and Objectives 2

temperature 200 to 500 times higher than that on the surface. There exist many theories

attempting to explain the coronal heating suggesting several factors that contribute to

this sudden increase of temperature. Among them, it has been widely suggested that a

considerable amount of energy is transferred to the corona through magnetohydrodynamic

(MHD) waves. A substantial fraction of such waves could be produced by ubiquitous solar

vortex flows existing on the Sun’s surface and its chromosphere.

Solar vortex flows have been observed through several, mainly ground-based, instruments

viewing the Sun at different wavelengths and exhibit different (mainly small) spatial scales

and lifetimes (see following chapter for details). Their exact occurrence rate is still un-

known and differs in most studies. More importantly, solar vortex flows are observed both

on the Sun’s photosphere and chromosphere and in some cases also spanning to higher

atmospheric layers up to the low corona. This is very intriguing since vortex flows could

therefore provide a mechanism for transferring energy, mass and momentum from the

subsurface levels of the Sun higher up.

It is thus clear that solar vortex flows constitute a very important part of the Sun’s

fine-scale environment. Due to their smaller scale in comparison e.g. to Sunspots, their

detection is a far more difficult task. Nonetheless, it is imperative that solar vortex flows

on the Sun’s surface and atmosphere are more broadly detected, so that an in-depth study

of their characteristics as well as their contribution to the solar small-scale dynamics can

be better established.

1.2 Aims and Objectives

Datasets including time series of solar observations on a specific wavelength for a certian

region of the Sun, where vortex structures sometimes can be detected even by visual

inspection, can be acquired from a variety of instruments attached on solar telescopes.

However, due to the huge volume of such data, the detection of vortex structures by visual

inspection is infeasible. Thus, the need for automated processing methods arises. The aim

of the current thesis is the development of an automated methodology for the detection

of solar vortex flows.

The proposed automated method receives as an input a time series consisting of grey-
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scale images depicting a specific region of the Sun. The grey-scale data correspond to

the amount of photons at the observed wavelength, that were collected by the detection

instrument for a restricted period of time. In chromospheric lines, such as H-alpha and

Ca, the data are very dense, complex and detailed, containing information that does not

facilitate the detection of vortical motions as they include several other fine-scale structures

and dynamic phenomena.

To this end, the first and most important step on the proposed detection method is the

removal of excessive information from the dataset that is irrelevant to vortex flows. This is

achieved by utilizing a number of techniques including robust principal component analysis

(RPCA), filtering and removal of linear features from the data set, as it will analysed in

detail further on. The processed data set is then evaluated and the primary candidate

region for the existence of a vortex flow is detected.

It is worth noting that, unlike the majority of solar vortex detection methods that have

been proposed up to this date, which depend on velocity criteria (e.g. [1], [2], [3]), the

proposed method extracts information using the morphological characteristics of vortex

flows.

1.3 Overview of the structure

In the current subsection, a quick overview of the thesis structure is provided.

The second chapter contains a brief description of the physical problem of solar vortex

flows. The mechanism that produces such vortex flows is discussed. The characteristics

of the main wavelengths that solar vortex flows have been observed so far are described

shortly and an overview of all observations up to this date is presented. Lastly, the

characteristics of the specific vortex flow used as input for the developed detection methods

are briefly discussed.

The third chapter provides a brief overview of the state of the art concerning automated

vortex flow detection methods and of the different practices that have been employed so

far. Also, a short comparison between those methods and the method proposed in the

current thesis is provided.

In the fourth chapter, the various methods utilized for processing and extracting informa-
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tion from the solar data are discussed. The combination of the different techniques in order

to create a step by step detection methodology is described in detail. Also, the evaluation

of the proposed swirling detection methodology is discussed in this chapter.

The fifth chapter includes the results produced from the application of each one of the

knowledge extraction techniques discussed on the previous section on the original data

set. The pre-processing methods are also combined and run sequentially following the

proposed swirling detection methodology. The results produced as well as the output of

the presented evaluation mechanism are presented in the sixth chapter.

In the seventh chapter, the proposed methodology for the detection of solar vortex flows

and the results it produces are discussed in detail. Lastly, thoughts on further extensions

of the work are also included in the seventh chapter. The eight chapter contains the

conclusions and final thoughts on the present thesis’s aims and contributions.



Chapter 2

Physical Problem

2.1 Overview of Solar Vortex Flows

The surface of the Sun, known as the photosphere, is characterized by constant motion,

emergence of small-scale and larger scale magnetic fields and a variety of often magnetic-

related plasma flows. The most common features observed in the photosphere even by

naked eye are Sunspots that correspond to large-scale magnetic structures appearing on

the solar surface [4]. More detailed views of the Sun’s surface also reveal granular motions,

which originate from the convection zone of the Sun that lies below the photosphere. Bright

granules represent motions of hot plasma rising from the convection zone that cools down

when it reaches the solar surface and then descends in the intergranular lanes often in

a vortex-like motion [5]. This phenomenon, also known as the bathtub effect, produces

intergranular vortex flows, that upon the right conditions (which will be further analyzed

in a following section) can expand to the chromosphere, transition region, and even the

low corona in the form of atmospheric vortex flows [6].

Such vortex flows are present both on active regions of the Sun but mainly on regions

that demonstrate weak solar activity, widely known as the quiet Sun. They have been

detected at different layers of the Sun’s atmosphere at a variety of temporal and spatial

resolutions [7]. Such vortex flows also appear in most simulations of the Sun surface and

atmosphere, as it will be discussed later on and their existence has been also anticipated

by theory [8].

The study of solar vortex flows in the photosphere and the chromosphere is important as it

5



2.2. Formation of vortex flows 6

can reveal an alternative mechanism of channeling energy from the lower layers of the solar

atmosphere to its upper ones. The exact mechanisms that contribute to the rapid increase

of the temperature to millions of degrees on the Sun’s corona, a temperature 200 to 500

times higher than the one on the surface, are still very poorly understood. Consequently,

the detection and study of such vortex flows could shed further light on the heating of the

Sun corona and provide a complementary explanation on this mystery.

2.2 Formation of vortex flows

The Sun can be divided in the following regions in terms of structure: the core, the

radiative zone, the convection zone, the visible surface (photosphere) and the atmosphere.

The solar atmosphere comprises of the chromosphere, the solar transition region and the

corona. A schematic representation of the solar structure can be found in Figure 2.1.

Figure 2.1: The solar structure

In the core of the Sun, where the temperature is about 15 millions degrees Celsius, ther-

monuclear fusion takes place. The energy produced in the core is transferred via photons

taking about 170,000 years to get from the core to the top of the convection zone. This is

due to the high density of the radiation zone that results in bouncing effects by continuous

absorption and re-emission of the photons.



2.2. Formation of vortex flows 7

The convection zone is the outer-most layer of the interior of the Sun, where convective

currents develop and transfer energy towards the solar surface. Plasma-β, i.e., the ratio of

the plasma pressure (p = nkBT ) to the magnetic pressure (pmag = B2/2µ0) and is high in

the convection zone. Moving towards the surface and continuing through the atmospheric

levels, the value of plasma-β gradually drops, as the density of plasma decreases far more

quickly than the corresponding decrease of the magnetic field. Plasma-β is a fundamen-

tal physical quantity concerning stellar atmospheres as it is an indicator of the balances

between magnetic versus thermodynamic processes on the plasma motion [9].

The process of solar vortex flow formation begins when material at the transition layer

between the radiation and the convection zone heats up and expands, rising towards the

surface. As a result, thermal cells are produced that move upwards and finally reach

the photosphere. Those cells are known as granules and are responsible for the grainy

appearance of the solar photosphere. A high resolution image, where the aforementioned

granulation on the solar surface is apparent, taken by the Daniel K. Inouye Solar Telescope

(DKIST) on January 20, 2020 can be found in Figure 2.2.

Within the granules, warm plasma ascends to the solar surface, where it cools radiatively

just beneath the photospheric surface and its density increases, causing it to sink back

into the convection zone within the intergranular lanes. There, it heats up again and the

process repeats, effectively creating the solar convective cycle [10].

The formation of solar vortex flows is tightly connected with the aforementioned process.

As it is described in [11], the conservation of angular momentum dictates that when cool

plasma sinks down through the intergranular lanes, a mechanism producing a vortex flow

is often initiated that highly resembles the swirling patterns the water manifests on a

sink of a bathtub. Due to this resemblance, this hydrodynamic phenomenon is commonly

referred to as the “bathtub” effect. For further reference, the hydrodynamics concerning

the solar convection have been analyzed in depth in [12].

Such solar vortex flows that mainly expand vertically have been called intergranular vor-

tex flows (IVFs) in [11] and also referred to as “inverted tornadoes” in [12]. They are

expected to appear with greater probability at the vertices of integranular lanes due to

the convergence of plasma from neighboring granules. At those vertices, both horizontal

and vertical vortex flows are generated. However, the horizontal flows frequently sink
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Figure 2.2: High-resolution image of the Sun’s surface featuring solar granulation taken
by the 4-meter Daniel K. Inouye Solar Telescope (DKIST) in Hawaii, USA.

through the intergranular lanes and are converted to vertical flows by the force of the

different kinds of downflows that surround them [13].

These kind of vortex tubes play a fundamental role in solar magnetic flux dynamics and

are a key factor in the generation of other kinds of solar vortex flows higher up in the

solar atmosphere. More specifically, atmospheric vortex flows can be generated, should an

intergranular vortex flow co-exist with the footprint of a magnetic field for long enough.

As it was previously mentioned, in the upper layer of the solar convection zone the gas is

greatly ionized and the value of plasma-β is high. That essentially means that the plasma

dominates over the magnetic field and drags it along. As a result, intergranular vortex

flows and magnetic lines often coincide locally. Exact co-location can result in the swirling

of magnetic field structures that expand in the chromosphere and can even reach the upper

levels of the solar atmosphere and the corona. On higher atmospheric heights, the value of

plasma-β is low, since the plasma density decreases rapidly. There, the rotating magnetic

field drags the plasma with it and chromospheric swirls are formed.

In Figure 2.3, a schematic representation of the aforementioned mechanism is illustrated.

In this vortex system, particles move upwards and downwards. The magnetic field lines

are “frozen-in” and plasma can propagate between the two vortex systems.
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Figure 2.3: Schematic double-nature of vortex flows [11]

2.3 Observational detection of vortex flows

In order to study the different elements and structures on the Sun’s surface and atmo-

sphere, observations at different wavelengths take place on a wide range of the electromag-

netic spectrum. A composite picture of the temperature ranges in the material around the

sun is possible by using specialized organs like spectrometers on solar telescopes.

More specifically, the Sun contains a variety of atoms and ions, that emit light (photons)

at specific wavelengths upon reaching a particular temperature. By observing the pho-

tons arriving at a solar instrument, one can identify the temperature on the region they

originated from and in a sense the corresponding vertical layer of the solar structure.

Each element and its ions have unique patterns of spectral lines that characterize them

[14]. In a uniform and continuous spectrum, a spectral line can be observed as a dark or

bright line, depending on whether it has resulted from an absorption or an emission of

light in that narrow frequency range.

The main spectral lines at which solar vortex flows have been observed are the follow-

ing:

• H-alpha

H-alpha (Ha) is a spectral line with a wavelength of 656.28 nm or 6562.8 Å [15],

which corresponds to visible deep-red light. It is the first spectral line in the Balmer
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Figure 2.4: This collage of solar images from NASA’s Solar Dynamics Observatory (SDO)
shows how observations of the sun in different wavelengths help to highlight different
aspects of the sun’s surface and atmosphere. Credits: NASA/SDO/Goddard Space Flight
Center.

series, which compromise a set of spectral lines describing the emissions of the atom

of Hydrogen. When an electron transitions from a state with a principal quantum

number of n ≥ 3 to n = 2, which is the closest orbit to the nucleus, photons of

different wavelength are emitted. H-alpha light occurs when an electron falls from

the third (n = 3) to the second (n = 2) energy level and it is the brightest hydrogen

line in the visible spectral range.

The H-alpha line is one of the most popular candidates for studying the solar chro-

mosphere, since it is one of the most prominent spectral lines originating from that

atmospheric layer [16]. The average formation height of the H-alpha spectral line is

debatable and it is generally considered as a weak measure of the actual formation

of the H-alpha line core. Among other estimations, it is considered to be between

1500 km to 2700 km in [17] while a more recent analysis places it between 750 km

and 1500 km [16].

• Ca

The Ca spectral lines are ones of the most commonly used spectral lines for ob-

servation of the solar chromosphere. Among them, Ca K and H, located at 3933
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Å and 3968 Å, are two of the deepest and broadest absorption lines of the solar

spectrum. They were first observed by the German physicist Joseph von Fraun-

hofer (1787–1826) and provide great insight on the structure and properties of the

chromosphere [18].

Additionally, the Ca II spectral line, located at 8542 Å and emitted from singly

ionized Calcium, is another candidate for studying the chromosphere. It occurs

when an electron falls from the forth (n = 4) to the third (n = 3) energy level in the

ionized Calcium. Ca II 8542 Å constitutes one of the best observational tools for

investigating the lower levels of the sun’s atmosphere. Its average formation height

is estimated to be around 1200 km from the sun’s surface [19]. It is worth noting

that the Ca II 8542 Å core is formed in a lower layer of the atmosphere than the

H-alpha line core.

• G-band

The G-band is another one of the spectral absorption lines observed and named by

Joseph von Fraunhofer, while examining the solar spectrum. The G-band is a broad

spectral line in the wavelength range 429.5 nm – 431.5 nm. It mainly occurs due to

absorption by carbon-hydrogen (CH) molecules as well as by neutral iron (Fe) [20].

This particular band is the main candidate for observing magnetic bright points,

since their contrast appears higher in those wavelenghts [21]. More specifically,

magnetic bright points are structures on the solar surface that are thought to trace

kG magnetic concentrations [22] and are abundant in the integranular lanes. They

appear as bright areas and are good tracers of magnetic elements [23]. At the

photospheric level, vortex flows are primarily detected by studying magnetic bright

points at the surface of the Sun with the G-band.

• Mg II

The magnesium spectral lines at 2795.53 Å and 2802.71 Å are called Mg II k and

Mg II h respectively. They occur when singly ionised magnesium experiences 3s-3p

transitions from upper levels to the ground state [24]. Mg II k and h are placed in

the near Ultraviolet (NUV) spectral range and demonstrate a complex line profile.

They consist an excellent tool for observing multiple layers of the solar atmosphere
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and their systematic observation has greatly contributed in unveiling structures in

the transition region.

2.4 Observations of vortex flows

Solar vortex flows have been observed widely both in the Sun’s photosphere and the

chromosphere. In 1988, Brand et al. reported observations of a vortex structure with

a 1.5 hour duration in the intergranular lanes of the photosphere, by examining bright

points’ motions [25]. The data were obtained by the Swedish 1-m Solar Observatory on

La Palma (Canary Islands).

More recently (2008), Bonet et al. [26] identified vortexes of a smaller scale (≤ 0.5Mm)

between the intergranular lanes in the photospheric layer that were reported to manifest a

logarithmic motion behavior as they sink back in the convection zone. They estimated that

the small scale vortex flows on the photosphere have a lifetime of around 5 minutes and an

occurrence rate of 1.8× 10−3 vortex Mm−2min−1. Images in the G-band (a 10.8 Å wide

filter centered at 4305.6 Å) and in Ca H core and continuum obtained with the Swedish

Solar Telescope (SST) [27] were used for this research. In [28], Bonet et al. enhanced their

previous occurrence rate estimations by a factor of 1.7 using images obtained with the

Imaging Magnetograph eXperiment (IMaX) mounted on the 1-m balloon-borne SUNRISE

telescope1 in 2010.

In 2009, Attie et al. [29] discovered larger scale vortex flows in the photosphere, utilizing

blue continuum and G-band images from the Solar Optical Telescope (SOT) on-board the

Hinode satellite2. They discovered wider vortex flows (∼ 20 Mm) that were reported to

have a lifetime of more than an hour.

In 2011, Vargas Domı́nguez et al. [30] analyzed the nature of vortex flows observed in

G-band (centered at 4305.6 Å) images obtained with the Swedish 1-m Solar Telescope in

2007. They estimated that vortex flows exist in the photosphere with an occurrence rate

of ∼ 1.5× 10−3 vortex Mm−2min−1.

Requerey et al. (2018) in [30], examined images at the Na I D1 589.6 nm line obtained

with the Hinode in 2010 using the Narrowband Filter Imager (NFI) on board it. They

1http://www2.mps.mpg.de/en/projekte/sunrise/
2https://www.nasa.gov/mission_pages/hinode/index.html
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Figure 2.5: Sequence of snapshots corresponding to the event analyzed in detail in Bonet
et al. [26]. The snapshots are separated by 15 s, and the bar on the lower left image
corresponds to 1 Mm on the Sun. Two sets of two nearby BPs are marked, so that it is
easy to visualize how the two BPs rotate with respect to each other. The bright structures
in each snapshot depict a spiral pattern resembling the vortex derived from BP proper
motions.

reported the detection of long lasting vortex flows (> 24 hours) that exist at supergranular

vertexes, with a diameter of around 5 Mm.

Vortex flows have also been widely observed at the chromosphere as well. In [31], Wedemeyer-

Böhm and Rouppe van der Voort observed chromospheric flows on the Ca II 854.2 nm

spectral line while analyzing images obtained with the CRisp Imaging Spectro-Polarimeter

(CRISP) at the SST. They reported small scale formations (arcs, rings, spiral arms) with

an average size of 1.5 Mm. In [6], it is estimated that 1.1 × 104 swirls exist in the chro-

mosphere at any given time. This is based on observations obtained with the CRISP

featuring 14 swirls with an average lifetime of ∼ 12 minutes. A close up of these Ca II

854.2 nm observations is presented in Figure 2.6.

In [32], Park et al. reported simultaneous observations of a small scale vortex flow in

the spectral lines of H-alpha (for the first time), Ca II 8542 Å, and Mg II k. The obser-

vations were obtained on June 7, 2014 during a coordination between the ground-based

CRISP/SST and the space-based Interface Region Imaging Spectrograph (IRIS) satellite
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Figure 2.6: Close-ups (field of view 13′′ × 13′′) of the Ca II 854.2 nm line core maps for
each of the 14 swirls described in [6].

that permitted the examination of a vortex flow spanning from the chromosphere to up-

per atmospheric levels. In the small scale vortex observed, two consecutive upflow events

were also recorded during a ∼ 5 minute period. Further H-alpha observations of a vortex

flow, used during this study (see Section 2.6 for details), were more recently obtained by

Tziotziou et al. [7] with CRISP/STT.

2.5 Simulations of vortex flows

The physics describing the plasma dynamics in vortex flows and its response/signature

in photospheric and chromospheric lines is very complicated. A number of simulations

attempting to adequately describe these complex structures of the Sun’s surface and at-

mosphere have been developed over the years.

For instance, Kitiashvili et al. [13] utilized the 3D radiative MHD “SolarBox” code de-

veloped by Alan Wray et al. [33] at the NASA/Ames Research Center and the Stanford

Center in order to study vortex tubes formation. Moll et al. [34] simulated the properties

of MHD waves produced by solar surface convection, by utilizing the 3D magnetohydro-

dynamics simulation code (named MURaM code) that was implemented by Vögler et al.

[35], in an attempt to facilitate the study of the solar photosphere and the convection zone.

Wedemeyer et al. [6] analyzed the properties of vortex structures and their formation by

using the CO5BOLD simulation code implemented by Freytag et al. [36].

The aforementioned simulations, as other numerous numerical simulations not explicitly

mentioned here, produce very realistic results that are in good agreement with observations

as they take into account detailed physics governing the subsurface, solar surface and

atmospheric layers, where vortex structures are generated and reside, in great depth.
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As time progresses, their efficiency improves even further and nowadays they pose an

invaluable tool for studying the dynamics of solar vortices.

2.6 Characteristics of the Studied Vortex flow

In the current thesis, a specific solar vortex flow is studied and used as input in the

detection methods that will be discussed in the following sections. This particular vortex

flow and its characteristics have been extensively described in [7].

The vortex flow was detected by utilizing a set of multi-wavelength data obtained with

the CRisp Imaging SpectroPolarimeter (CRISP) instrument at the Swedish 1-m Solar

Telescope (SST). A region of the quiet Sun in the south-west hemisphere was observed on

June 7, 2014, between 07:32 UT–08:21 UT and 08:28 UT–09:16 UT. The retrieved data

include spectral images in the H-alpha (6562.81 Å) and the Ca II 8542 Å line profiles,

both sampled at seven different wavelengths. The location of the region of interest (ROI)

and the observations in the aforementioned wavelengths at a selected point in time are

presented in Figure 2.7.

The studied vortex flow has an almost circular shape and manifests a clockwise rotation. It

has a variable centre around the position (124.8′′,−592′′) of the solar plane. The particular

vortex flow demonstrates some unique characteristics compared to previous studies that

are analyzed in detail in [7]. The chromospheric flow has a radius of ∼ 3′′, which is at

the large end in comparison to earlier observations, that in their vast majority include

vortexes of a radius of ∼ 0.5′′ − 2′′, as it was discussed above.

Moreover, the vortex flow presents a remarkably long duration of ∼ 100 minutes, which

constitutes the longest duration ever reported for a small-scale solar vortex. As it was

previously mentioned, typical solar vortex flows last around 15 minutes. In addition to

its long duration, the studied vortex flow is also clearly visible for almost the entire ∼ 1.7

hour duration of the observations, rendering it very persistent.

Lastly, it is worth noting that the vortex flow presents an interesting substructure, as it

can be revealed by examining more closely the time series of the spectral data. Inside the

large vortex flow or in high proximity, four smaller swirls can be observed. Those swirls are

not as persistent as the large vortex flow but tend to reappear approximately around the
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Figure 2.7: Top left: SDO/AIA He II 304 Å image with an overplotted rectangle marking
the full FOV of the CRISP observations. Top right: co-temporal full FOV CRISP H-alpha
line centre sample image with an overplotted rectangle marking the ROI. The bottom two
rows show the ROI in the seven different wavelengths along the H-alpha and the Ca II 8542
Å profiles, while the overplotted yellow circle in the line-centre H-alpha panel indicates
the location of the analysed vortex flow [7].

same locations. They have a shorter duration and a radius that is more consistent with the

chromospheric swirl characteristics that have been reported by other observations.

For the purpose of this thesis, the time series of the described vortex flow in the center of

the H-alpha spectral line will be utilized and further processed, in an attempt to develop

an automated method for detecting solar vortex flows.



Chapter 3

State of the Art

This chapter provides a short literature review on the automated techniques for identifying

solar vortex flows that have been developed up to this date, showing the state of the art

in the solar vortex automated detection.

A variety of methods have been proposed so far, aimed to enable the easier and more

efficient detection of solar vortex structures. Prior to the development of such techniques,

vortex flows had been identified via visual inspection, a time-consuming, biased approach

that fails to detect the majority of solar vortex flows present in the data. All methods are

based on the development of a criterion to determine the existence of one or more vortex

flows in a data set. The most common one is the “vorticity” ω, which is formally defined

as the curl of the velocity field υ:

ω = ∇× υ (3.1)

Vorticity is a good indicator of the existence of vortex flows, as it is highly correlated with

the flow’s circulation. However, it has been shown that vorticity is not an ideal criterion

for the detection of solar vortex flows, as it also obtains high values in the presence of

shear flows that are often present in the Sun’s atmosphere. Consequently, its usage can

result in false detection of solar vortex flows [37].

In order to overcome this issue, a more sophisticated criterion that is not affected by the

presence of shear flows has been used in more recent studies for the detection of vortex

flows. The “vorticity strength” or “swirling strength”, introduced by Zhou et al. [38], is

the imaginary part resulting from the eigenanalysis of the velocity gradient tensor. The

17
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swirling strength does not detect shear flows and has been succesfully used in a number

of studies [34], [1], [3] etc. More specifically, Moll et al. in [34] identified vortices in

simulations by using the swirling strength λci. They detected vortices in regions where

the eigenanalysis of the velocity field produced a pair of complex conjugate eigenvalues.

High values of the imaginary part of those eigenvalues (λci) indicated strong vorticity

and were therefore identified as regions that contained a vortex. Moreover, they defined

a criterion for categorizing the detected vortices to diverging or converging flows that

presented either inward or outward motion based on the values of the eigenvalues.

Kato & Wedemeyer in [1] described and compared two automatic detection methods that

identified solar vortex flows by using as the detection criteria an enhanced version of

vorticity and the vorticity strength. Their approach was based on the determination of

the velocity field by applying local correlation tracking (LCT) [39] on solar simulations.

Using the derived velocity field, they extracted the vorticity, the vorticity strength and the

streamlines present due to flows in the simulation data. The enhanced vorticity was then

calculated as the convolution of vorticity with the extracted streamlines. Furthermore,

a visualization technique known as Line Integral Convolution (LIC) was applied on the

enhanced vorticity maps and the vorticity strength maps produced. LIC is a technique

proposed by Cabral & Leedom in [40] that enables the visualization of turbulent flows

and thus facilitates visual as well as automatic detection of vortices. Kato & Wedemeyer

concluded that the vorticity strength method produced better results than the enhanced

vorticity method in most aspects of their study. The vorticity strength method detected

vortices with a higher success rate and provided more accurate results in terms of vortex

localization as well as structure prediction. This is also apparent in Figure 3.1 produced

during the application of their methods on a simulated isolated swirling motion. However,

it is worth noting that the enhanced vorticity method was able to detect a number of

rotating structures with low vorticity, discarded with the vorticity strength method, that

might play an important role in certain case studies.

In [2], Giagkiozis et al. presented an automated method for the identification of vor-

tex flows that was heavily based on a methodology known as Γ detection introduced by

Graftieaux et al. [41] and primarily used for the detection of vortices in turbulent motions.

This method is based on the definition of two functions, Γ1 and Γ2, that can identify vor-
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Figure 3.1: Examples of the detection procedure proposed by Kato et al. [1] for a vortex
with a solid body rotation by using the enhanced vorticity method (left column) and the
vorticity strength method (right column). The diameter of the rotating feature D0 is 200
km for a) and b), 400 km for c) and d), and 1000 km for e) and f), respectively. Red and
green crosses and circles indicate the location and the size of detected vortices, respectively.
The vortex diameter estimated by the vorticity strength method is more accurate than
the one produced with the enhanced vorticity method.

tices and estimate a number of their characteristics when applied on the velocity vector. In

order to obtain the velocity field from actual photospheric intensity data, Giagkiozis et al.

proceeded with a variety of preprocessing techniques, including local correlation tracking

and image histogram equalization, in order to remove atmospheric effects that might be

present in the observations. Using the Γ1 and Γ2 functions, the identification procedure

produced results concerning the lifetime, diameter and location of the detected vortices.

Giagkiozis et al. reported that the proposed method identified a greater number of vor-

tices present in the data set than other previously-proposed methodologies. Nonetheless,

they underlined that their findings were highly depended on the accuracy of the velocity

field derivation, which is only an approximation of the solar dynamics and thus may not
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reflect the actual solar environment.

Figure 3.2: Giagkiozis et al. [2] estimation of velocity field based on the Fe I continuum
(intensity shown in gray scale) using LCT. The identified vortices and their boundaries
produced by the proposed LAVD detection method are also illustrated. The circles denote
the vortex center, with the red circles referring to the counterclockwise vortices (positive)
and the blue circles to the clockwise vortices (negative).

In [42], Silva et al. proposed an automatic detection method for solar vortex flows based

on a technique developed by Haller et al. [43] known as Lagrangian Averaged Vorticity

Deviation (LAVD). This method seeks to identify the boundaries of detected vortices in

an objective manner. Silva et al. utilized LAVD in order to develop a method for vortex

identification that takes into account the variance that the velocity field presents through

time. The LAVDmethod employs the averaged vorticity deviation as the vorticity criterion

that has as follows:

LAV D t0+τ
t0

(x0) =

∫ t0+τ

t0

|ω(x(t), t)− 〈ω(t)〉|dt (3.2)

where ω is the vorticity, x(t) denotes the particle position function extacted from the ve-

locity field and 〈·〉 is the instantaneous spatial mean. Vortices are subsequently detected

in the local maxima of the LAVD function. Moreover, based on the streamlines geometry

of the displacement vector, a new parameter d was introduced in order to account for

falsely identified vorticies when combined with the LAVD methodology. Silva et al. com-
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pared the results of the proposed method with the results produced by two alternative

methodologies based on the “vorticity strength” criterion and Γ detection respectively.

They reported that the LAVD method was superior to the other two mainly due to its

ability to differentiate persistent vortex flows from other non-lasting swirling structures.

Their results, comparing the three methodologies, are shown in Figure 3.3. It is also worth

noting that in a number of cases the vortices detected by LAVD were different in terms

of amount and shape from the ones extracted by the other methods. This was attributed

to the fact that LAVD mainly focuses on the dominant swirling structure present in every

neighborhood.

Figure 3.3: Vortex detection by the normal and corrected Eulerian and Lagrangian meth-
ods by Silva et al. [42]. Vortex detection by the vorticity strength criterion (VSC) and the
corrected VSC+d method are shown in figures (a) and (b). Vortex detection by the nor-
mal LAVD method and the corrected LAVD+d method are shown in (c) and (d). Vortex
detection by Γ-2 and by the Γ method after selection by the Γ-1 criterion are presented
in (e) and (f) respectively. The LAVD+d method identifies more vortices than the other
two methods.
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More recently, Cuissa et al. proposed a novel dynamical equation for describing the

swirling strength in [3]. The analytical evolution equation of the vorticity strength was

derived from modifications to the momentum equation of the system. It was subsequently

applied on numerical simulations of magnetohydrodynamic fields and it was reported to be

more reliable in vortex identification than previous methods. Cuissa et al. also compared

two methodologies based on the evolution equations of the vorticity and the vorticity

strength criteria respectively. They concluded that the vorticity strength method proved

more efficient in vortex detection, especially in simulations of the solar convection zone

where shear flows are present that bias the results produced by the vorticity.

The study of Cuissa et al. focused on identifying vortices present in simulation data.

Nonetheless, they reported that their method could also be applied on data derived from

observations, by extracting the velocity field in the three-dimensions space using tech-

niques such as local correlation tracking (LCT). However, they raised concerns that such

an approach could lack in accuracy since multiple spectral data are required for the three-

dimensional velocity field extraction and consequently the noise present in the data would

highly increase. Nonetheless, they concluded that the proposed approach would still pro-

duce significant results even when applied on a two-dimensional velocity field in an attempt

to reduce the noise in the data set.

Conclusively, it is clear that all the automated detection methods of solar vortex flows

described in this chapter share a common ground. They all define a criterion, such as

the vorticity or the swirling strength, that is based on the derivation of the velocity

field present due to solar motions. Consequently, these detection methods require prior

knowledge of the rotational velocity, which is a highly-challenging quantity to extract from

solar observations.

It is therefore apparent that, while these velocity-dependent methods perform well on

simulated data, their efficiency highly depends on the accuracy of the velocity vector esti-

mation when applied on data sets of actual observations. As a result, they might produce

inconsistent or unrelated results to the actual solar environment. To this end, in the cur-

rent thesis a morphological method that does not require the knowledge of the velocity

field is proposed. By eliminating the dependency of the velocity field derivation from the

procedure, the development of a robust methodology that performs equally well on data
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derived from synthetic profile simulations and actual observations is attempted.



Chapter 4

Proposed Detection Methods

A number of diverse processing methods have been utilized as ingredients in an attempt to

create an automated procedure for detecting solar vortex flows, using as an input spectral

data depicting the solar surface or chromosphere. The first step towards this aim is to

remove redundant information from the data set that does not contribute to the detection

of vorticity. To this end, Robust Principal Component Analysis (RPCA) is applied on the

frames data set, in an attempt to extract information related to swirling motions from the

dense and complex original data. RPCA is a statistical procedure that has been widely

used as a tool to extract the foreground from the background in video applications, as it

will be analyzed later on. In the current context, RPCA is applied on the data set in order

to differentiate the slow-moving parts of the frame sequence from the faster-moving.

In addition to RPCA, selected edge detection filters applied on digital images are also

utilized in an attempt to reduce the volume of information each frame contains. Such

filters include the Canny edge detector and the Sobel filter, both of which retrieve the

edges present in an image. It is anticipated that by extracting the edges in each frame,

the vorticity-related information will be preserved while the complexity will decrease

rapidly.

Moreover, in order to further eliminate structures that are unrelated to vortex flows, the

“almost linear” components of each frame, which are the result of other motions manifest-

ing on the solar photosphere and chromosphere, are identified and removed from the data

set. This is achieved by first identifying candidate “almost linear” components and then

24
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removing those of them that present high linearity, according to a linear regression-based

criterion.

Lastly, apart from the major preprocessing methods discussed above, additional techniques

are also utilized and combined in order to develop a step by step methodology for the

automatic detection of solar vortex flows. All the techniques utilized for this purpose are

described in detail in the following sections.

4.1 Robust Principal Component Analysis (RPCA)

In the last few decades, the volume of scientific information available for research has risen

dramatically. Consequently, the need for efficient knowledge extraction out of very high

volume data sets (big data problem) is nowadays more crucial than ever. A wide range of

practices has been designed and implemented for this purpose, constituting an essential

tool for processing a data set prior to further analysis. Amongst them, sparse signal

recovery and low rank matrix completion, which seek for multiple subspace structures

in the data, have been a primary candidate for knowledge extraction in an number of

applications.

One of the most widely-used statistical procedures, the Principal Component Analysis

(PCA) attempts to retrieve the closest low rank representation to a given data set. How-

ever, PCA can be quite brittle upon dealing with grossly corrupted observations. A more

robust alternative called Robust PCA (RPCA), has been proposed in recent years, that

performs ideally upon dealing with this kind of data. Specifically, RPCA aims to recover a

low-rank component and a sparse component from the data set, with the sparse component

corresponding to the corrupted measurements.

Robust PCA has been widely used in a broad range of image and video processing applica-

tions such as video surveillance, face recognition and image denoising. The main principle

upon which it operates is the recovery of a low-rank matrix L and a sparse one S from a

data matrix X, so that X = L+S. The RPCA problem is stated more formally as follows

4.1:

min
L,S

rank(L) + λ ‖S‖0 subject to X = L+ S (4.1)
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where rank(L) denotes the rank of the matrix L, ‖S‖0 is the l0 “norm” 1 of the sparse

component, λ is a regularization parameter and {X,L, S} ∈ Rm×n.

However, this is a non-convex, NP-hard problem [44]. One way to deal with this issue, is

to consider a relaxed convex version of the above problem [45]. The convex relaxation can

be achieved by relaxing the rank constraint rank(L) in the optimization problem to the

nuclear norm ‖L‖∗ and the sparsity constraint ‖S‖0 to the ℓ1 norm ‖S‖1. This relaxation

problem is mostly known as Principal Component Pursuit (PCP) and it is described in

equation 4.2:

min
L,S

‖L‖
∗
+ λ ‖S‖1 subject to X = L+ S (4.2)

where the nuclear norm ‖L‖∗ is equal to the sum of the singular values σi(L) of the matrix,

that is, ‖L‖∗ =
∑

i σi(L), ‖S‖1 is the ℓ1 norm 2 of the sparse component and {X,L, S} ∈

Rm×n. The parameter λ is a regularization parameter and choosing λ = 1√
max(m,n)

([45])

has been proven to work well for most applications using PCP. For the purposes of this

work, this value will be used for λ, as well.

In order to solve the minimization problem described in 4.2, an optimization technique

called Alternating Direction Method of Multipliers (ADMM) [46] can be used. ADMM

is an algorithm that solves convex optimization problems efficiently by combining previ-

ously established optimization techniques like dual decomposition [47] and the Method of

Multipliers [48]. The main principle upon which it operates is the optimization of a dual

problem featuring the augmented Lagrangian of the original problem. ADMM works in

an iterative manner, by solving a minimization problem per variable (or set of variables)

in an alternating fashion.

ADMM is one of the main candidates for handling PCP and the procedure for solving

the optimization problem in 4.2 is described in detail in [49]. The augmented Lagrangian

for the PCP problem presented in equation 4.2, with a penalty parameter ρ > 0, is the

1The l0 “norm” of a matrix is defined as the total number of its nonzero elements.
2The ℓ1 norm of a matrix is defined as the sum of the absolute values of its columns.
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following:

Lρ(L, S, Y ) = ‖L‖
∗
+ λ ‖S‖1 +Tr(Y T (L+ S −X)) +

ρ

2
‖L+ S −X‖2F

= ‖L‖
∗
+ λ ‖S‖1 +

ρ

2
‖L+ S −X +W‖2F + const

(4.3)

where Y ∈ Rm×n is the dual variable and W ∈ Rm×n is defined as W = ρ−1Y for

simplicity. The value of the penalty parameter ρ is more commonly selected as shown in

equation 4.4 [50]. This value will also be used in the current thesis.

ρ =
1

4|X|
, where |X| =

∑m
i=1

∑n
j=1 xij

mn
(4.4)

Initializing S and W, the updatings in each iteration are described by the following equa-

tions:

L(k+1) := argmin
L

Lρ(L, S
(k), Y (k))

:= argmin
L

(‖L‖
∗
+

ρ

2

∥

∥

∥
L+ S(k) −X +W (k)

∥

∥

∥

2

F
)

(4.5)

S(k+1) := argmin
S

Lρ(L
(k+1), S, Y (k))

:= argmin
S

(λ ‖S‖1 +
ρ

2

∥

∥

∥
L(k+1) + S −X +W (k)

∥

∥

∥

2

F
)

(4.6)

W (k+1) := W (k) + (L(k+1) + S(k+1) −X) (4.7)

In order to further reduce the complexity of the problem at hand, proximal operators

[51] will be utilized as they pose an excellent tool for dealing with optimization problems.

More specifically, equation 4.5 can be interpreted as a proximal operator 3

of the nuclear norm of L, evaluated at the value X − S(k) −W (k). Accordingly, equation

4.6 can be alternatively viewed as the proximal operator of the ℓ1 norm of S evaluated at

X − L(k+1) −W (k).

3The proximal operator of a function f from a Hilbert space X to (−∞,+∞] is defined as:

proxf (u) = argmin
u∈X

{f(u) +
1

2
‖u− x‖2} for any x ∈ X . (4.8)



4.1. Robust Principal Component Analysis (RPCA) 28

These proximal operators (which will offer the updating of L and S in each iteration) can be

calculated using Singular Value Decomposition (SVD) and a soft thresholding operator.

SVD is a technique that factorizes a given m × n matrix M in a form M = UΣV ∗,

where:

• U is an m×m (real or complex) unitary matrix

• V is an n× n (real or complex) unitary matrix

• Σ is an m× n diagonal matrix with non-negative diagonal entries

and the diagonal values σi ≡ Σii of Σ are called the singular values of the matrix M .

The soft thresholding operator STκ, where κ > 0, is defined as follows:

STκ(x) =























x− κ if x > κ

0 if |x| ≤ κ

x+ κ if x < −κ

(4.9)

In the light of 4.7 and 4.9, it can be proved that equations 4.5 and 4.6 can be rewritten

using their proximal operator’s interpretations:

L(k+1) := U diag(ST1/ρ(σ1), . . . , ST1/ρ(σn)) V
T (4.10)

where σ1, . . . , σn are the singular values of X − S(k) −W (k) = UΣV ∗ and

S
(k+1)
ij := STλ/ρ(Xij − L

(k+1)
ij −W

(k)
ij ) (4.11)

where S is computed element-wise for every Sij , i = 1, . . . , m and j = 1, . . . , n.

Overall, the algorithm that has been implemented for Robust PCA in the scope of the

current thesis can be found in Algorithm 1.

RPCA is most commonly utilized for the detection of movement in videos, where the

retrieved low-rank component corresponds to the static background of the video and the

sparse component to the detected motion. In order to provide an appropriate input for the

RPCA analysis, the transformation of each video frame to a vector is required so that a

2-D matrix with the frame vectors as columns is calculated. A similar procedure will also
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Algorithm 1 ADMM for PCP

Input: X, ρ > 0, λ > 0
1: Initialization k = 0, S = S(0), W = W (0)

2: repeat

3: Perform SVD on X − S(k) −W (k) = UΣV ∗

4: L(k+1) := U diag(ST1/ρ(σ1), . . . , ST1/ρ(σn)) V
T

5: S
(k+1)
ij := STλ/ρ(Xij − L

(k+1)
ij −W

(k)
ij )

6: W (k+1) := W (k) + (L(k+1) + S(k+1) −X))
7: k = k + 1
8: until convergence

Output: L̂ = Lk+1, Ŝ = Sk+1

by followed for the computation of a suitable input matrix for the application of RPCA

on the selected solar data, as it will be discussed in the results section.

4.2 Filtering

Among the various filtering operations applied on a digital image, the one that identifies

the edge pixels in it is of increased interest. Two of the most widely used filters of the this

kind are the Canny edge detector and the Sobel filter, which will be briefly commented in

the sequel.

4.2.1 Canny Edge Detector

The Canny Edge Detector, or Canny filter for simplicity, is a technique widely used in

computer vision applications for the detection of edge pixels in images. The Canny filter

was developed in 1986 by John F. Canny and first presented in [52].

Like other proposed edge detection algorithms, the Canny Edge Detector is an important

tool for image processing applications that focus on object morphology and the detection

of boundaries between components in an image. By retrieving the edge pixels and dis-

carding the rest 4, the volume of the data is reduced and as a result processing is further

accelerated, while the majority of the crucial structural information required for that kind

of applications is preserved.

The Canny Edge Detector achieves the detection of edge pixels in an image with a multiple

stage procedure that can be broken down to the following steps:

4Of course, this refers to applications where edges are of special interest.
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• Noise reduction

The first step required in the Canny Edge Detector procedure is the removal of

noise that might be present in the image. In order to reduce the degrading noise

impacting the data, a Gaussian filter is utilized for blurring the original image. The

Gaussian filter is defined by a kernel (square window) of a size (2k + 1)× (2k + 1).

The selection of the kernel size is an important factor as it can highly affect the

performance of the edge detector. Selecting a large size value can reduce the edge

detection accuracy in terms of localization, while small kernel sizes present lower

efficiency in removing noise. A size of 5 × 5 (that is k=2) is reported to work well

in most case scenarios. It should also be noted that in the process of smoothing the

image in order to remove noise, the Gaussian filter also smooths the edges existing,

which can result in oversight of weak edges. However, noise removal is a step that,

in general, greatly improves the efficiency of the edge detection and certain adaptive

Gaussian filters that have been proposed can minimize the aforementioned oversight

of weak edges due to smoothing (see [53]).

• Gradient calculation

After the blurring has been applied to the original image, the Canny edge detector

proceeds with identifying edge pixels in four different orientations (horizontal, verti-

cal and the two diagonals). In order to do so, the image is processed using an edge

detection operator (eg. Sobel, Roberts etc.) for the extraction of the first derivative

in the vertical (Gy) and the horizontal (Gx) direction at each pixel (more details are

given in section 4.2.2 below). Using these values, the gradient of the image pixels as

well as their direction can be calculated as follows:

G =
√

Gx
2 +Gy

2 (4.12)

Θ = arctan(Gy, Gx) (4.13)

The gradient direction, which is always perpendicular to the edge that it corresponds

to in the image, is rounded to the closest one of the four angles (vertical, horizontal
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and the two diagonals).

• Non-maximum suppression

On the gradient intensity matrix produced from the previous step, an edge thinning

technique called non-maximum suppression is applied. The main principle upon

which this method operates is the identification of the local maximum in a region

(in terms of intensity) and the suppression of the rest of the pixel values in that

neighborhood and gradient direction. The resulting image after this procedure con-

tains only thin edges that indicate the strongest intensity changing points in the

data. Those edges represent a close approximation to the actual edges of the origi-

nal image. However, there are still exist edges produced due to noise or variation of

color in the image. Two more steps are required to identify the actual edges present

in the data.

• Double threshold

In order to filter out identified edges that do not correspond to actual edges of the

original image, a double threshold approach is applied on the processed data. That

is, a high and the low threshold are defined and pixels are categorized as follows

regarding their gradient intensity value:

– Strong edge pixels: pixels with a gradient intensity value over the high threshold

– Weak edge pixels: pixels with a gradient intensity value between the low thresh-

old and the high threshold

– Irrelevant pixels: pixels with a gradient intensity value lower than the low

threshold

The strong edge pixels are instantly classified as edge pixels in the final output. The

irrelevant pixels are suppressed and no longer considered for this procedure. Weak

edge pixels are re-evaluated at the final step, in order to decide whether they will be

identified as edge pixels or not.

An important aspect of the double threshold step is the selection of the threshold

values. At some applications, empirical determination of the threshold values takes

place, that highly depends on the input image. In this thesis, the implementation of
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the Canny filter uses a technique known as Otsu’s method for the determination of

the high threshold. Otsu’s method is one of the most popular techniques for image

thresholding in an automated manner. It was proposed by Nobuyuki Otsu and

thoroughly explained in [54]. Having defined the high threshold, the low threshold

is set equal to the half of the high threshold.

• Edge Tracking by Hysteresis

In the last step of the Canny Edge Detector procedure, the weak edge pixels are

evaluated to determine whether they should be preserved as edge pixels in the output.

The criterion used for this decision is whether the weak edge pixels have at least one

strong edge pixel in their neighborhood. More specifically, if there exists at least

one strong edge pixel among the eight pixels surrounding the evaluated one, then

the latter is preserved in the final output as an edge pixel. This is a good indicator

since noise pixels, that are most probably unconnected and random, are suppressed

by this criterion. The output of this step, which is the also the final output of the

algorithm, is an image including the detected edge pixels.

4.2.2 Sobel Operator

The Sobel operator, or more appropriately the Sobel–Feldman operator, is an operator

used in computer vision applications mainly for the extraction of edges in images. It was

first presented by Irwin Sobel and Gary Feldman at a talk at Stanford Artificial Intelligence

Laboratory in 1968. More formally, it has been described in detail in [55].

The Sobel operator produces an isotropic gradient estimate of the image. The gradient in-

tensity at each pixel is approximated in a 3x3 neighborhood by calculating the convolution

of the 3x3 part of the image centered at the pixel under consideration, with the 3x3 kernels

defined for this purpose. At each point, the vector sum of the eight directional derivative

vectors is estimated. The two following kernels in the horizontal and vertical direction

respectively have been defined and their usage in the Sobel filter has been demonstrated
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in [55]:
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(4.14)

By defining the horizontal and vertical derivative approximations of the image as Gx =

Kx ∗ A and Gy = Ky ∗ A, where A is the original image, the gradient intensity at each

pixel can be computed by the equations 4.12, 4.13 that were previously presented in the

Canny filter section.

The operator is very computationally efficient since it is based on simple image convolution

and thus it has been widely used in edge detection algorithms (e.g. the Canny edge detector

mentioned in the previous section). It is worth noting, however, that the gradient intensity

estimation that is generated is not always the sharpest, especially in images that present

high-frequency variations [56].

4.2.3 Other filters

Apart from the above, two additional filters were applied on the data set, the Difference

of Gaussians (DOG) filter and the Madmax filter.

The DOG filter is band-pass filter that is frequently utilized as a feature-enhancer. Its

implementation involves the calculation of two blurred versions of the original image that

are produced by convolving the image with distinct Gaussian kernels with a different

standard deviation. The DOG filter output is then calculated by subtracting the one

blurred image from the other, less blurred image. As a result, the information that is

preserved in the output of the DOG filter lies between the two thresholds above which

all frequencies are suppressed due to the convolution with each Gaussian kernel (low-pass

filters). This procedure can also be visualized in Figure 4.1.

The Madmax filter is a multi-directional maximum gradient operator proposed by Koutchmy

and Koutchmy [57]. Its implementation is based on modifying a second derivative spatial

filter. Madmax has been mainly utilized for increasing the contrast of images depicting so-

lar structures. Apart from enhancing the features present in an image, it also considerably

5https://micro.magnet.fsu.edu/primer/java/digitalimaging/processing/diffgaussians/index.html
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Figure 4.1: The plot of two Gaussian curves with different standard deviations and their
difference. 5

reduces the background noise [58].

4.3 Removal of “almost linear” structures

In order to further facilitate the detection of solar vortex flows from the processed data,

a procedure aiming to remove the “almost linear” features present in each frame is pro-

posed. These features represent in real observations mainly fibril-like structures (e.g.

mottles/spicules) that are not completely removed by RPCA and filtering as they can also

be quite dynamic. A quick overview of the steps comprising this procedure followed by a

more in-depth description of each step is provided below.

Initially, the connected components of each frame (a definition will be given shortly)

need to be determined. Subsequently, for each connected component it should be decided

whether it is linear or non-linear. To this end, linear regression is applied on the set of

the pixel coordinates that comprise each component in order to resolve its best-fit line.

To this end, the euclidean distances of each pixel are calculated so that a criterion based

on the standard deviation of these distances can be set that can adequately describe the

linearity of each component. Finally, a threshold is established that is utilized to remove

components that present a criterion value above it.

In greater detail, a criterion should be set for determining when two pixels will be treated as

connected. In binary images, two pixels are considered connected when they are neighbors
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sharing the same value. The neighborhood of a pixel is most commonly defined as all the

surrounding pixels that are accessible from it by one or two orthogonal hops at most.

The number of orthogonal hops required for two pixels to be perceived as connected is

frequently referred to as the connectivity value and determining which value to use (1 hop

or 2 hops) can greatly affect the produced results of the procedure. In the current thesis,

the connectivity value for extracting the connected components of an image is selected on

a per case basis as it will be discussed in the results section.

Subsequently, after all the connected components of the frame have been determined,

each one should be evaluated as linear or non-linear so that it can be further decided

whether it will be removed from the frame. In order to determine the linearity of each

component, linear regression is utilized. Linear regression is a statistical tool for modeling

the relationship between a dependent variable and one or more independent variables that

utilizes a linear predictor function as the relationship model. More specifically, the model

describing the relationship between the dependent and independent variables is defined as

a linear combination of the independent variables and a set of unknown coefficients [59].

These coefficients are then estimated from the data.

There exist a variety of approaches for determining the coefficients of a linear regression

model, depending on multiple factors such as prior knowledge on the distribution of the

data. The most common approach that is bound to work well in most cases is called Ordi-

nary least squares Linear Regression (OLR). OLR is based on the least squares principle,

meaning that the model’s unknown parameters are estimated by minimizing the sum of

the squares of the differences between the dependent variable values as provided by the

data and the ones predicted by the linear model.

If there exists only one independent variable (like in the current case), the linear regression

procedure is simplified and thus called simple linear regression. In this case, the linear

model can be written as follows:

y = α+ βx (4.15)

where x is the independent variable, y is the dependent variable, α and β are the unknown

model parameters. By minimizing the sum of squared differences between the actual
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and the predicted values of the dependent variable y, the parameters α and β can be

estimated. More formally, the estimates of α and β, α̂ and β̂ are the solutions of the

following minimization problem:

min
α,β

n
∑

i=1

(yi − α− βxi)
2 (4.16)

By solving the above minimization problem, α̂ and β̂ are calculated as follows:

α̂ = y − β̂ x (4.17)

β̂ =

∑n
i=1 (xi − x)(yi − y)
∑n

i=1 (xi − x)2
(4.18)

where x and y are the average values of all xi and yi for i = 1, . . . , n respectively in the

original data.

In order to apply the simple regression model procedure that is described above in the

current setting the following approach is used: for every component of the frame under

study, the coordinates of each pixel belonging to that component are utilized as the inde-

pendent (x coordinate) and dependent variables (y coordinate) respectively. Subsequently,

the linear model that best fits the component at hand is determined, which in the current

two-dimensional problem constitutes a simple line.

Still a universal criterion remains to be defined for the characterization of each component

as linear or non-linear. To this end, the euclidean distance di of each pixel from the

best-fit line of the component it belongs to is calculated. More formally, for a pixel with

coordinates (xi, yi) and a line described by the equation Ax + By + C = 0, this distance

is calculated as follows:

di =
|Axi +Byi + C|√

A2 +B2
(4.19)

For every connected component of the frame, the euclidean distances of its pixels from the

best-fit line are calculated and then their standard deviation is computed. More specifi-
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cally, for a component c consisting of N pixels that have distance di, for i = 1, . . . , N

from the best-fit line, their standard deviation STDc is defined as follows:

STDc =

√

√

√

√

1

N

N
∑

i=1

(di − d)
2

(4.20)

where d is the average of di, i = 1, . . . , N .

It is obvious that low values of the standard deviation suggest high linearity of the com-

ponent. In order to determine which components will be regarded as “almost linear” in

every frame and consequently removed, a threshold for their linearity should be defined.

All components presenting a standard deviation STDc lower than that threshold value

will be treated as “almost linear” and will be retained from the frame.

4.4 Evaluation mechanism

The primary aim of the current thesis is the design of a robust procedure/methodology

that can detect regions where vortex flows exist when provided with a set of solar data

(image cube). To this end, the final step of the implementation procedure is the creation

of an evaluation mechanism that receives the processed data (that is, the data where most

linear elements have been removed) as input and as an output it predicts which regions

constitute the primary candidates for vortex motion.

More specifically, the set of the processed frames is provided as input to the evaluation

mechanism. The first step towards evaluating the data is the aggregation of these frames

in terms of time. To this end, the mean frame Fmean is calculated from the processed time

series of frames. In this mean frame, the value of each pixel is computed as the average

of the values of all the pixels that share the same spatial coordinates on each one of the

original frames. In a sense, the mean frame can be perceived as the average of all frames

as the time progresses, thus holding aggregated information of the entire time series.

After the mean frame Fmean has been determined, the regions where Fmean presents the

higher activity should be identified. These regions will then be considered the primary

candidates for the existence of vortex flows. This can be supported by the fact that the

preceding processing stages removed (hopefully) most of the information not related to
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vortex motion. As a result, regions with high valued pixels on the mean frame are antic-

ipated to depict dynamic, non-linear components that most likely correspond to swirling

motions.

In order to identify such regions, a rolling window methodology is applied on Fmean. More

specifically, a window of certain shape and size is selected. This window is shifted by a step

of one pixel (either horizontally or vertically) until the whole Fmean image is traversed.

On each sub-image identified by the rolling window, an objective function is calculated.

For the purposes of this evaluation procedure, the objective function selected is the sum-

mation of the pixel values contained in the aforementioned window. The higher the value

of the objective function, the more probable it is that the region depicted contains swirling

dynamic structures, since most relevant pixels were preserved by the pre-processing pro-

cedures. The output of this procedure is a new image, where the pixels associated with

high objective function values (visualized as intensity), are likely to denote possible vortex

locations.

Figure 4.2: Rolling window on a 2D image. Credits: Miriam Leeser and Haiqian Yu. 6

After the objective function has been estimated on all possible windows of the Fmean image,

a visualization of the probability function concerning the possibility of vortex flow existence

in every region is feasible. Each window value calculated by the objective function can be

perceived as a pixel in an image consisting of as many pixels as the windows that were

produced by traversing the Fmean image during the rolling window procedure. This image

will be hereafter referred to as the Probability Distribution Image.

By identifying the maximum value on the Probability Distribution Image, one can correlate

the coordinates of this value to the coordinates of the corresponding window in the mean

6https://sites.google.com/site/hsi2013logan99/computer-vision/implementation
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frame. Thus, the primary candidate region for the existence of a vortex flow can be

detected. Additionally, more than one candidate regions, that can even present different

sizes, can be identified by utilizing the Probability Distribution Image. However, this

procedure is not investigated in the present thesis and will be further analyzed in the

“Future Work” section.

Two different approaches were followed for the selection of the window shape. The first

one is the use of a simple square where the window size corresponds to the size of the

square’s sides. Additionally, a circular window was also utilized with a diameter equal to

the window size. The usage of a circular rolling window was motivated by the fact that

swirling motions most commonly present close to circular shapes.

The proposed evaluation mechanism is utilized on the data that have been produced after

the application of the different pre-processing techniques that were described above. The

results produced highly depend on the efficiency of the preceding procedures, as it will be

apparent in the results section. Moreover, the selection of a suitable window size is crucial

for the accurate detection of the primary vortex flow, if such a flow exists, on the provided

solar data.

4.5 Toy models

Last but not least, a number of toy models were designed in an attempt to guide the

implementation procedure proposed in the current thesis. Such toy models include simple

linear structures as well as more complex structures like rings and vortices. The imple-

mentation of these toy models aims to approximate the formations/patterns that might

be present in solar data. By applying a variety of motions on such simple structures, one

can better understand the dynamics of more composite structures and thus facilitate the

process of identifying them.

In addition to simple toy models, various syntheses of more than one toy components were

also implemented in an attempt to perceive the effects produced when different structures

are simultaneously present in the data. It is worth noting that patterns produced by the

toy models were also detectable in the considered solar data set. It is clear, however, that

additional analysis is required so that one can have a better insight on the original data
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by the utilization of such toy models. The aforementioned results will be briefly presented

in the results section.

4.6 Computational tools and characteristics

The presented methodology has been implemented using the Python programming lan-

guage (version 3.6). The developed algorithms were run on a Linux machine with 16 GB

RAM and a 16-core processor. The approximate running times of the individual imple-

mentations of each method described above with an input of a (699, 330, 300) matrix have

as follows:

Method Running time

RPCA ∼ 30 min
Filtering < 5 sec
Linear Removal < 10 sec

Each one of the presented pre-processing methods is applied separately on the original data

set and the results produced can be found in the following chapter. Subsequently, after

close examination of the aforementioned results, a complete step-by-step methodology is

designed consisting of the sequential application of choice of the analyzed techniques. The

output of this methodology is then provided as input to the detection mechanism and the

produced results depicting the detected candidate regions for vortex flows are presented

in chapter 6.



Chapter 5

Evaluation results

This chapter contains the collective results that were produced by applying the processing

methods discussed in the previous section on the selected data set. Such results include

the end-products produced by applying each methodology separately as well as results

generated by the combination of different methods in a sequential manner.

The data set that has been utilized for evaluating the proposed detection methodology of

solar vortex flows is a video of 699 greyscale frames (images) of size 330x300 pixels. A

selection of frames from the original data set, where the conspicuous vortex flow is visible,

can be found in Figure 5.1.

5.1 Robust PCA

The first method that was applied on the original data is the Robust PCA. As it was

already discussed, RPCA is utilized in order to retrieve the low-rank component of a data

set and the sparse one that correspond, respectively, to the static and the more dynamic

parts of the frame sequence.

However, the studied solar data are characterized by complex dynamics and no static

structures exist. Thus the purpose of applying RPCA on this data set is the separation

of the more dynamic components from the less dynamic ones. The sparse component

containing the more dynamic structures will be utilized for purposes of this thesis. This

is justified from the fact that the vortex flows relate to a highly dynamical behaviour and

as a result preserving the more dynamic structures will certainly maintain features related

41
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(a) Frame 174 (b) Frame 178 (c) Frame 182

(d) Frame 302 (e) Frame 306 (f) Frame 310

(g) Frame 434 (h) Frame 438 (i) Frame 442

(j) Frame 557 (k) Frame 561 (l) Frame 565

Figure 5.1: Frames of the original data depicting the conspicuous vortex at various stages.
The primary vortex flow is highlighted for easier identification.
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to vorticity.

RPCA was applied on the original data as well as on processed data resulting after the

application of the additional methods presented in the previous chapter, as it will be

further discussed in Section 6.1. The RPCA implementation has been described in the

previous chapter (Algorithm 1).

In order to provide a suitable input to the RPCA algorithm, the original data set of

699 frames, where each frame has dimensions 330x300 (a 3-D matrix), is reshaped to

a 2-D tall matrix where each row contains a single pixel’s values over time and each

column holds the pixel values of each frame. Thus, the input matrix X has dimensions

(m,n) = (99000, 699). Accordingly, the values that were selected for the regularization

parameter λ and the penalty parameter ρ have as follows:

λ =
1

√

max(m,n)
(5.1)

ρ =
1

4|X|
, where |X| =

∑m
i=1

∑n
j=1 xij

mn
(5.2)

The procedure is terminated either when convergence is achieved or after 500 iterations.

The results that were produced for the sparse S and low-rank L components of the original

data for Frames 174 and 302 are shown in Figures 5.2 and 5.3 respectively. Also a set of

selected frames for the sparse and the low-rank component can be found in Figures 5.4

and 5.5, respectively.

It is obvious that while the sparse component holds reduced information on each frame,

the features that exhibit vorticity are preserved. Less dynamic structures are resolved as

part of the Low-rank component. Consequently, RPCA is a valuable tool in the proposed

procedure as it preserves more dynamic structures while discarding static or almost-static

ones.
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(a) Frame 174

(b) Frame 174 - Low Component (c) Frame 174 - Sparse Component

Figure 5.2: The original frame 174 as well as the Sparse and Low component that were
resolved after the RPCA application.
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(a) Frame 302

(b) Frame 302 - Low Component (c) Frame 302 - Sparse Component

Figure 5.3: The original frame 302 as well as the Sparse and Low component that were
resolved after the RPCA application.
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(a) Frame 174 (b) Frame 178 (c) Frame 182

(d) Frame 302 (e) Frame 306 (f) Frame 310

(g) Frame 434 (h) Frame 438 (i) Frame 442

(j) Frame 557 (k) Frame 561 (l) Frame 565

Figure 5.4: Frames depicting the Sparse component as it was resolved after the RPCA
application on the original data set frames of Figure 5.1.
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(a) Frame 174 (b) Frame 178 (c) Frame 182

(d) Frame 302 (e) Frame 306 (f) Frame 310

(g) Frame 434 (h) Frame 438 (i) Frame 442

(j) Frame 557 (k) Frame 561 (l) Frame 565

Figure 5.5: Frames depicting the Low-rank component as it was resolved after the RPCA
application on the original data set frames of Figure 5.1..
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5.2 Filters

A number of filters were also applied on the original data set, as it was discussed in the

previous chapter. All filters were applied on each frame separately and the frames where

then merged on a frame sequence.

Specifically for the Canny Edge Detector a Gaussian kernel of size 7× 7 was selected for

the noise reduction step. As it was already discussed the double thresholds required were

calculated by using Otsu’s method.

A selection of frames produced by the application of the Canny, Sobel, DOG and Mad-

max filters are provided in Figures 5.6, 5.7, 5.8 and 5.9, respectively. It is obvious that

redundant information that does not contribute to the vortex detection is discarded by

the application of these filters. The edge pixels detected are sufficient for the purposes of

the proposed detection methodology.

Our analysis suggests that the Canny and the Sobel filter provide more satisfactory results

than the other two filters and thus will provide with more reliable input if combined with

other processing techniques. Subsequently, only these two filters will be further considered

in our analysis.



5.2. Filters 49

(a) Frame 174 (b) Frame 178 (c) Frame 182

(d) Frame 302 (e) Frame 306 (f) Frame 310

(g) Frame 434 (h) Frame 438 (i) Frame 442

(j) Frame 557 (k) Frame 561 (l) Frame 565

Figure 5.6: Frames of the data (similar to those of Figure 5.1) after applying the Canny
filter depicting the conspicuous vortex at various evolutionary stages.
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(a) Frame 174 (b) Frame 178 (c) Frame 182

(d) Frame 302 (e) Frame 306 (f) Frame 310

(g) Frame 434 (h) Frame 438 (i) Frame 442

(j) Frame 557 (k) Frame 561 (l) Frame 565

Figure 5.7: Frames of the data (similar to those of Figure 5.1) after applying the Sobel
filter depicting the conspicuous vortex at various evolutionary stages.
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(a) Frame 174 (b) Frame 178 (c) Frame 182

(d) Frame 302 (e) Frame 306 (f) Frame 310

(g) Frame 434 (h) Frame 438 (i) Frame 442

(j) Frame 557 (k) Frame 561 (l) Frame 565

Figure 5.8: Frames of the data (similar to those of Figure 5.1) after applying the DOG
filter depicting the conspicuous vortex at various evolutionary stages.
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(a) Frame 174 (b) Frame 178 (c) Frame 182

(d) Frame 302 (e) Frame 306 (f) Frame 310

(g) Frame 434 (h) Frame 438 (i) Frame 442

(j) Frame 557 (k) Frame 561 (l) Frame 565

Figure 5.9: Frames of the data (similar to those of Figure 5.1) after applying the Madmax
filter depicting the conspicuous vortex at various evolutionary stages.
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5.3 Removal of “almost linear” structures

The removal of “almost linear” components is applied on the processed data produced

after the application of the Canny and the Sobel filters. Different combinations of the

input parameters were used and the produced results were visually examined in order

to address which combination preserves non-linear components while discarding “almost

linear” more efficiently.

Among the input parameters, the connectivity value, describing when two pixels will be

considered connected, proved to highly affect the derived results. Additionally, the selec-

tion of different threshold values (for discarding components with a standard deviation

STDc below the chosen threshold value) produced a variety of outputs. High thresh-

old values result in discarding a greater number of components which could lead to the

accidental removal of structures related to vortices. On the other hand, low threshold

values preserve most of the components and the “almost linear” removal procedure is

inefficient.

For the Canny filter, a connectivity value of 2 and a threshold of 1.2 for STDc produced

the best results (the threshold value has been selected experimentally). Selected results

of this procedure can be seen in Figure 5.10, where some frames are depicted before and

after the application of the “almost linear” components removal procedure.

As far as the Sobel filter is concerned, a connectivity value of 2 also produced the best

results. Additionally, a threshold value of 2.5 provided the most efficient removal of

“almost linear” structures. Respective results are shown in Figure 5.11.

It is obvious that most structures that present a high linearity are removed from the

frames. However, there still exist some components that appear to be “almost linear”

and survived the procedure. Such components are most likely perceived as connected

with other structures from the algorithm, even if they appear as visually separated. As

a result, the larger connected components might acquire higher values than the selected

STD threshold and thus they will not be discarded. Nonetheless, such a level of removal

of the “almost linear” components is satisfactory for the purposes of this thesis.
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(a) Frame 174
(b) Frame 174 after “almost linear” re-
moval

(c) Frame 302
(d) Frame 302 after “almost linear” re-
moval

(e) Frame 438
(f) Frame 438 after “almost linear” re-
moval

Figure 5.10: Frames of the Canny processed data before (left column) and after the “almost
linear” removal procedure (right column).
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(a) Frame 174
(b) Frame 174 after “almost linear” re-
moval

(c) Frame 302
(d) Frame 302 after “almost linear” re-
moval

(e) Frame 438
(f) Frame 438 after “almost linear” re-
moval

Figure 5.11: Frames of the Sobel processed data before (left column) and after the “almost
linear” removal procedure (right column).



Chapter 6

Swirl detection methodology

The methods presented in the previous chapter are evaluated and a processing sequence

of the solar data is decided, that is based on these analyzed techniques. The output of

this sequence is provided as input to the proposed detection mechanism. This chapter

contains the evaluation results depicting the estimated region of vortex activity produced

by this procedure. Additionally, the toy models that were implemented as a guidance tool

and their relevance with the actual data are also briefly presented and discussed.

6.1 Detection mechanism

The methods described and presented separately in the previous chapter should be run se-

quentially in order to provide a suitable input for the detection mechanism. The processing

sequence selected is the following:

• Application of the Canny (or Sobel) filter on the original data set

• Removal of the “almost linear” structures

• RPCA analysis

From the RPCA analysis results, the sparse component is the one preserved and evaluated.

A sample set of frames produced by the methodology sequence (the sparse component

of the Canny filter and the Sobel filter after the “almost linear” removal) are shown in

Figures 6.1 and 6.2, respectively. These data sets will be utilized as input for the detection

mechanism.
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The first step of the procedure is the calculation of the mean frame Fmean of the input

data, as it was defined in the previous chapter. The mean frames are calculated for both

the Canny and the Sobel filters and can be found in Figures 6.3 and 6.4, respectively.

Even from the mean frames, it is apparent that the preprocessing methods applied are

efficient in removing “almost linear” and non-dynamic structures that were irrelevant to

the vortex flows present. On both filters, especially the Canny one, the vortex region is

clearly distinguishable in the Fmean.

Using the mean frame, the Probability Distribution Image (PDI) can be created as it was

discussed in the previous chapter. Different PDIs calculated for a variety of window sizes

and shapes (square and circular) are shown in Figure 6.5 for the Canny processed Fmean.

Respectively, a selection of different PDIs for the Sobel Fmean can be found in Figure

6.6. All combinations of window sizes and shapes succeed in identifying the greater vortex

region, since the values obtained by such windows close to this region are significantly

higher than rest of the image. Also, it is apparent, especially with larger window sizes,

that the circular-shaped windows provide greater detail in the region detection and are

thus more efficient for the purposes of this thesis, as it was anticipated. We note that PDIs

also depict significant substructure within this vortex flow already noticed and thoroughly

described by Tziotziou etal. in [7].

Finally, the exact region corresponding to the maximum window square value can be

identified, as each window can be correlated back to the region it represents. The regions

of the maximum window value for the Canny Fmean are shown in Figure 6.7 for various

square window sizes and in Figure 6.8 for various circular windows. The corresponding

figures for the Sobel Fmean are presented in Figures 6.9 and 6.10, respectively.

It is obvious that the detection procedure successfully identifies the primary vortex flow for

large window sizes. However, for smaller window sizes the main vortical region is closely

missed and a proximal region is detected instead. This is attributed to the fact that more

than one vortices exist on the selected data set (see [1]) and thus a more sophisticated

approach for identifying all exact locations and their respective sizes is required. However,

this requires additional steps that are out of the scope of the present work and it will be

discussed in the “Future work” section.
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(a) Frame 174 (b) Frame 178 (c) Frame 182

(d) Frame 302 (e) Frame 306 (f) Frame 310

(g) Frame 434 (h) Frame 438 (i) Frame 442

(j) Frame 557 (k) Frame 561 (l) Frame 565

Figure 6.1: Sample frames (similar to those in Figure 5.1) of the Sparse component of the
Canny processed data after the “almost linear” removal procedure.
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(a) Frame 174 (b) Frame 178 (c) Frame 182

(d) Frame 302 (e) Frame 306 (f) Frame 310

(g) Frame 434 (h) Frame 438 (i) Frame 442

(j) Frame 557 (k) Frame 561 (l) Frame 565

Figure 6.2: Sample frames (similar to those in Figure 5.1) of the Sparse component of the
Sobel processed data after the “almost linear” removal procedure.
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Figure 6.3: The mean frame Fmean of the Canny Sparse component’s frames (after the
“almost linear” removal).

Figure 6.4: The mean frame Fmean of the Sobel Sparse component’s frames (after the
“almost linear” removal).
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(a) Window size: 25, window shape: square (b) Window size: 25, window shape: circle

(c) Window size: 35, window shape: square (d) Window size: 35, window shape: circle

(e) Window size: 50, window shape: square (f) Window size: 50, window shape: circle

Figure 6.5: The Probability Distribution Image from the Canny mean frame for various
window sizes and shapes
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(a) Window size: 25, window shape: square (b) Window size: 25, window shape: circle

(c) Window size: 35, window shape: square (d) Window size: 35, window shape: circle

(e) Window size: 50, window shape: square (f) Window size: 50, window shape: circle

Figure 6.6: The Probability Distribution Image from the Sobel mean frame for various
window sizes and shapes
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(a) Window size: 25 (b) Window size: 35

(c) Window size: 50 (d) Window size: 75

(e) Window size: 100 (f) Window size: 120

Figure 6.7: The region corresponding to the maximum square window value for the Canny
Fmean.
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(a) Window size: 25 (b) Window size: 35

(c) Window size: 50 (d) Window size: 75

(e) Window size: 100 (f) Window size: 120

Figure 6.8: The region corresponding to the maximum circular window value for the Canny
Fmean.
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(a) Window size: 25 (b) Window size: 35

(c) Window size: 50 (d) Window size: 75

(e) Window size: 100 (f) Window size: 120

Figure 6.9: The region corresponding to the maximum square window value for the Sobel
Fmean.
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(a) Window size: 25 (b) Window size: 35

(c) Window size: 50 (d) Window size: 75

(e) Window size: 100 (f) Window size: 120

Figure 6.10: The region corresponding to the maximum circular window value for the
Sobel Fmean.
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6.2 Toy models

Due to the complexity of the studied solar data set, a set of simulated toy models was

implemented so that the analyzed methodologies can be evaluated in a more controlled

environment and a better insight on the studied structure’s features can be achieved. In

this section, a few of these toy models are discussed. The shapes of the toy models that were

considered are approximations of the estimated shapes of actual quiet-Sun solar structures.

All toy models have 650 frames and exhibit circular and/or diagonal movement.

A variety of linear, circular and elliptical shapes were implemented as well as toy ex-

amples of vortex shapes. Finally, also syntheses of two or more of the aforementioned

moving shapes were used. A selection of frames from three such toy models depicting

their evolution as the time progresses can be found in Figures 6.11, 6.12 and 6.13.

The toy models were also visualized as tall images where each column holds the pixels of

a single frame and each row the progression of a single pixel’s values over time. These

tall images were inspected and compared with the respective tall images of actual solar

data. Patterns that are created by vortex toy models were also detectable in the real solar

data, as it can be seen in Figure 6.14, were small arcs, representing such vortical flows,

can be found repeatedly in both representations. Thus, comparison of toy models with

actual data suggests that there exists further information in the acquired RPCA images

that properly combined with the present analysis and procedures could result in further

improvements on the discussed automated vortex detection method.
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(a) Frame 1 (b) Frame 20

(c) Frame 40 (d) Frame 60

(e) Frame 80 (f) Frame 100

Figure 6.11: Frames of the toy model featuring a ring rotating and swinging diagonally.
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(a) Frame 1 (b) Frame 20

(c) Frame 40 (d) Frame 60

(e) Frame 80 (f) Frame 100

Figure 6.12: Frames of the toy model featuring a vortex rotating and swinging diagonally.
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(a) Frame 1 (b) Frame 20

(c) Frame 40 (d) Frame 60

(e) Frame 80 (f) Frame 100

Figure 6.13: Frames of the toy model featuring 2 vortices and dynamic linear structures.
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(a) Tall image of actual solar data (sparse
component after RPCA)

(b) Tall image of a toy model depicting a
rotating vortex.

Figure 6.14: Comparison of the solar data sparse component after RPCA and a vortex toy
model. Both are visualized in tall image depictions (see text), where each column holds
the pixels of a single frame. The patterns expected from the toy model are also visible in
the actual solar data.



Chapter 7

Discussion and Future Work

In the current section, the produced results of the robust methodology proposed in this

thesis are discussed as well as additional steps that can be implemented in the future for

the improvement and further extension of the present work.

It is apparent from the results presented in the previous chapter that the proposed method-

ology is very efficient in predicting a major region of vorticity in solar data. The conspicu-

ous vortex flow observed by Tziotziou et al. [7] is closely detected, especially when larger

window values are utilized in the estimator mechanism. Subsequently, the presented work

succeeds in identifying the primary vortex flow region when provided with a set of solar

data. An expert’s opinion through visual inspection or further automatic steps involving

criteria based on physical characteristics of vortex flows are then required for the actual

classification of the candidate region as a vortex flow or not. We note, that the proposed

method seems also to detect the complex substructure (see [7] for details) that the analysed

vortex flow exhibits.

As is was already underlined, the presented methodology mainly takes advantage of the

morphological features that vortex flows exhibit, unlike other methodologies proposed

up to this date that depend on the velocity flow derivation. The main features that the

proposed methodology relies on are the dynamic nature of vortex flows and their non linear

formations/structure. To this end, the pre-processing methods attempt to eliminate all

structures that do not exhibit such characteristics.

However, there still exist multiple aspects of the pre-processing procedure that could
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be improved or further expanded. For example, applying the pre-processing steps in a

different order would potentially produce a different input for the evaluation mechanism

that might lead to better results. Nonetheless, it should be noted, though, that for certain

other candidate sequences additional techniques might be required.

For instance, in order to apply the “almost linear” removal procedure, a binary input is

required. Subsequently, if the RPCA analysis intervened between the filters application

and the “almost linear” removal procedure, the input provided would be the produced

non-binary sparse component. As a result, an additional technique would be required to

transform the sparse frames to binary ones. This could be achieved by the application

of a Gaussian blur with a relatively small standard deviation and then the use of a mask

with a selected threshold value. However, it is apparent that this procedure would intro-

duce additional complexity and an increased investigation overhead in order to detect the

optimal parameter and threshold values.

Furthermore, additional improvements to the “almost linear” removal procedure could

greatly affect the produced results. The current implementation appears to be satisfactory

for the selected data set but its relative crudeness could affect the evaluation of data

were linear structures are denser or more interconnected with other structures. Further

evaluation of different combinations of parameters and their products should take place

in order to maximize the method’s efficiency. Also, different techniques could be utilized

in order to detect components that the current methodology evaluates as connected but

should instead be perceived as separated and therefore should be possibly broken in smaller

linear and non-linear parts.

Lastly, it is obvious that the application of additional pre-processing methods could greatly

improve the produced results of the detection mechanism. By eliminating a greater number

of structures that are unrelated to vortex flows, the proposed methodology could prove

more robust and efficient in detecting vorticity. Such techniques could include the removal

of other structures based on their morphology, for instance using extra knowledge provided

by relevant toy models. However, it is apparent that the implementation of such techniques

could prove much more complex and their utilization would require extra cautiousness, so

that no vortex structures are eliminated during the process.

As far as the vortex detection is concerned, there exist a variety of aspects that could
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benefit from future improvements. The current implementation only accounts for the

detection of the primary vortex flow present in the input data set, if such a flow exists.

However, more than one vortices can exist on such a spatial range (as it is also the case

with the reference solar data set, where two or three vortices are captured). Therefore,

additional effort is required for the identification of more than one windows containing

vortex flow candidates. Such windows should not overlap with each other, or in case of

overlap, a larger candidate window should be produced by merging them. As a result, the

output of the detection mechanism would be a set of windows of variable sizes, that is

bound to perform better and detect the majority of vortex flows when applied on different

input data sets. A method also could be envisaged that performs detections in sub-images,

resulting from an appropriate, possibly adaptive splitting of the original larger-size image

where only one swirling candidate could by construct exist and therefore detected.

Additionally, the evaluation mechanism can be further improved by allowing a more flex-

ible time window selection for the detection of vorticity. More specifically, the current

proposed mechanism takes into account the entire frame sequence in order to identify

the candidate vortex flow regions. However, vortex flows are quite dynamic and might

be present only in a subset of sequential frames of the data set. Knowledge about the

observed vortex lifetimes could be utilized in order to create a time-rolling window that

would detect vortexes spatially as well as temporally. This improvement could also further

facilitate the detection procedure, as irrelevant structures, that co-exist with vortex flows

spatially would be easier to be detected and removed.

In possible future extensions of the current work, it is strongly suggested that the spatial

window size is decided with reference to the most common radius sizes that have been

derived from observed swirling motions. Additionally, the vortex flow radius estimation

could also be utilized as a tool for classifying the candidate vortex region as a vortex or

not. By comparing the detected window size with the most commonly observed vortex

flow radius, one could argue with greater confidence on the existence of a vortex flow

in the identified region. Still, an expert’s opinion or additional routines would remain

indispensable for the final classification of the candidate region.

Last but not least, it is of utmost importance that the proposed methodology is fur-

ther evaluated using additional solar data sets as input, that might contain or not one
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or more vortex structures. The results could provide valuable feedback and an impor-

tant insight on the required improvements for increasing the efficiency of the presented

methodology.



Chapter 8

Conclusions

The present thesis aimed to develop a robust procedure for the automatic detection of

solar vortex flows. Based on the results produced by the proposed methodology, it can be

concluded that this objective is achieved on a sufficient degree, as the primary vortex region

is correctly identified by the presented detection mechanism. It is therefore apparent that

the current work poses a very promising starting point for a fully automated and consistent

detection of solar vortex flows.

The main contribution of the current thesis is the development of a novel methodology

that is independent from the derivation of velocity flows from the provided solar data and

it is instead based on the morphological features of vortex flows. Previous state-of-the-

art approaches depended on the derivation of the velocity field, which is an error-prone

procedure and can reduce efficiency as it has already been discussed in the relevant section.

Consequently, the implementation of a methodology that can successfully detect vortex

flows by using alternative techniques is an important asset.

Still, further future work is required in order to extend and improve the proposed method-

ology so that it produces more efficient results and detailed detections when presented

with a variety of different data sets. The dynamic vortex nature and characteristics can

be further incorporated in the detection procedure thus providing greater flexibility on the

number of the vortex flows detected, as well as their spatial and temporal scale. Extended

evaluation and fine-tuning of the proposed procedure on additional data sets is of course

still further required.
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As a final note, it should be underlined once more that the detection of solar vortex flows is

a fundamental task that can lead to a greater understanding of solar dynamics and provide

valuable insight on still poorly understood solar mechanisms, like the corona heating, as

ubiquitous vortex structures are believed to significantly contribute to the transfer energy

to higher layers of the solar atmosphere. Thus, future extension of the present work is

strongly encouraged so that it can be established without doubt whether the proposed

procedure can produce the promising results expected. By facilitating the easy automatic

detection of solar vortex flows, the current work might allow for an in-depth study of their

characteristics and dynamics that can have a substantial impact of the understanding we

currently possess about the finest structures of our nearest star, the Sun.
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dun, and R. Erdélyi. Magnetic tornadoes as energy channels into the solar corona.

Nature, 486:505–8, June 2012.

[7] Kostas Tziotziou, G. Tsiropoula, Ioannis Kontogiannis, Eamon Scullion, and J. Doyle.

A persistent quiet-sun small-scale tornado. i. characteristics and dynamics. Astronomy

& Astrophysics, 618, July 2018.

[8] J. O. Stenflo. A model of the supergranulation network and of active region plages.

Solar Physics, 42(1):79–105, May 1975.

[9] Philippe-A Bourdin. Plasma beta stratification in the solar atmosphere: A possible

explanation for the penumbra formation. The Astrophysical Journal Letters, 850:L29,

November 2017.

78



BIBLIOGRAPHY 79

[10] O. Steiner, M. Franz, N. Gonzalez, Christian Nutto, Reza Rezaei, V. Mart́ınez-Pillet,

J. Navarro, J. Iniesta, V. Domingo, M. Knölker, Wolfgang Schmidt, P. Barthol, and

and Gandorfer. Detection of vortex tubes in solar granulation from observations with

sunrise. The Astrophysical Journal Letters, 723:L180, October 2010.

[11] Sven Wedemeyer and Oskar Steiner. On the plasma flow inside magnetic tornadoes

on the sun. Publications of the Astronomical Society of Japan, 66, June 2014.

[12] A. Nordlund. Solar Convection. Solar Physics, 100:209, October 1985.

[13] I. Kitiashvili, A. Kosovichev, Neveen Mansour, Sanjiva Lele, and Alan Wray. Physica

Scripta - PHYS SCR, 86, December 2011.

[14] Chris Kitchin. Galaxies in Turmoil: The Active and Starburst Galaxies and the Black

Holes That Drive Them. 01 2007.

[15] A. Kramida, Yu. Ralchenko, J. Reader, and and NIST ASD Team. NIST Atomic

Spectra Database (ver. 5.7.1), [Online]. Available: https://physics.nist.gov/asd

[2020, June 4]. National Institute of Standards and Technology, Gaithersburg, MD.,

2019.

[16] Jorrit Leenaarts, Mats Carlsson, and Luc Voort. The formation of the Hα line in the

solar chromosphere. Astrophysical Journal, 749, 02 2012.

[17] O. R. White and P. R. Wilson. On the Height of Formation of H-Alpha in the Solar

Chromosphere. Astrophysical Journal, 146:250, October 1966.

[18] Jeffrey L. Linsky and Eugene H. Avrett. The Solar H and K Lines. The Astronomical

Society of the Pacific, 82(485):169, April 1970.

[19] Cauzzi, G., Reardon, K. P., Uitenbroek, H., Cavallini, F., Falchi, A., Falciani, R.,

Janssen, K., Rimmele, T., Vecchio, A., and Wöger, F. The solar chromosphere at
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