

Development of a real-time tool for deriving the optical properties of aerosol particles in PANGEA observatory, using ground-based passive remote sensing measurements

Thesis Supervisor

Dr. V. Amiridis – Research Director IAASARS National Observatory of Athens

Anastasia Georgiou – NOA (MSc SSTA)

Master thesis 18 September 2020, Athens

- \blacksquare Thesis Scope
- **E** Aerosol research
- PANhellenic GEophysical observatory of Antikythera (PANGEA)
- **E** AErosol RObotic NETwork (AERONET)
- \blacksquare Developed tool and implementation
- \blacksquare Results
- \blacksquare Future work
- \square Summary

Aerosol Research

Aerosols can affect Earth's energy budget, by directly so absorbing and emitting the incoming solar radiation, and by influencing the cloud properties.

The atmospheric aerosols play an important role to:

http://www.cas.manchester.ac.uk/resactivities/aerosol/

- This work calculates the optical properties of aerosol particles.
- The **importance** of aerosol optical properties for climate studies.
- a) Because aerosol impact the Earth-atmosphere budget
- b) Their chemical reaction affect the weather and can harm human health

Tool description

Tool description: Development of a tool for deriving the optical properties of aerosol particles in PANGEA observatory at near-realtime, using ground-based passive remote sensing measurements.

Development steps:

- ¤ **Create** a tool that automatically downloads the sun-photometer measurements from the Antikythera AERONET station (at PANGEA), in near real-time.
- \Box **Display** them in graphical plots.
- ¤ Use the **Mie scattering code** to calculate the particle optical properties: the extinction, absorption, scattering and backscatter coefficients.

Create a new **tool** that:

¤ **Automatically downloads** the AERONET sun-photometer products (size and refractive index of aerosol particles) derived from measurements at PANGEA.

 \Box **Display** them in graphical plots in near real-time.

 \Box **Calculate** the optical properties of the particles, when they have spherical shapes.

ext_all=8.326684453680716e-05 sca_all=7.411795168585089e-05 abs_all=9.14889285095627e-06 bac_all=1.7400255234561573e-06 ext_f=7.183912358268646e-05 sca_f=6.622154404926358e-05 abs_f=5.617579533422876e-06 bac_f=1.4251190852857044e-06 ext c=1.1427720954120696e-05 sca c=7.896407636587302e-06 abs c=3.531313317533394e-06 bac c=3.1490643817045284e-07

\blacksquare It is a **near real-time tool**

The tool can calculate in few seconds the optical properties of aerosols after the data are published in the AERONET

PANhellenic **GΕ**ophysical observatory of **A**ntikythera

PANGEA

PANGEA observatory in Antikythera island has been installed by the **National Observatory of Athens** (NOA) in order to respond to the scientific need for accurate climatic observations in the Mediterranean.

Why **Antikythera** ?

- ¤ crossroad of Europe, Africa and Asia
- \blacksquare anthropogenic activities are very few, due to its population
- **□** ideal place for monitoring natural aerosols
- \blacksquare transported anthropogenic aerosols from big cities in Greece and the surrounding Mediterranean countries

Antikythera NOA equipment (from National Documentation Centre, www.ekt.gr)

- Available instruments in PANGEA: ¤ **PolyXT lidar** (EARLINET)
	- ¤ **CIMEL sun-photometer** (AERONET)

What does CIMEL Sun-Photometer do?

\blacksquare Provides:

- ¤ AOD from **direct-sun measurements**
- Microphysical properties of the aerosol particles from **diffused light measurements**
- **How** does CIMEL Sun-Photometer **acquire measurements**?
- \blacksquare Every day between sunlight and dawn
- ¤ In **nine spectral bands:**
	- 340, 380, 440, 500, 670, 870, 940, 1020 and 1640 nm.

It's a **passive remote sensing** instrument

CIMEL sun-photometer (from https://aeronet.gsfc.nasa.gov)

The CIMEL sun-photometer products provide us with the microphysical properties the developed tool uses for the calculation of the aerosol optical properties.

AErosol **RO**botic **NET**work

AERONET

What is the AERONET?

 \blacksquare It is a network of **ground-based** sun photometers

The worldwide spatial distribution of the AERONET stations

 \blacksquare It provides observations of the **optical** and **microph properties** of the atmospheric aerosols

How the AERONET data products **can be accessed** ?

- \Box Through the **AERONET** web download tool in AERON https://aeronet.gsfc.nasa.gov/
- ¤ Through the **AERONET web services**

AERONET…Aerosol products

AERONET data display uses a **user-friendly interface** that includes **graphical representations** to display the optical and microphysical properties of the aerosol particles.

AERONET DATA PRODUCTS

AERONET INVERSION DATA PRODUCTS

Developed tool and implementation

What is our aim?

- ¤ To calculate the **optical properties of spherical aerosol particles** in PANGEA observatory based on the AERONET measurements
	- The **scattering** coefficient
	- The **backscatter** coefficient
	- The **absorption** coefficient
	- o The **extinction** coefficient

Fine

Coarse

for **fine (**diameter <2.5 µm **) and coarse (**diameter >2.5 µm **)** mode.

- **u What** data are used from Antikythera_NOA AERONET station?
	- \blacksquare The **microphysical properties** of the aerosols
		- o The **volume size distribution** (dv/dlnr)
		- o The **complex refractive index**
		- o The **sphericity percentage**
- ¤ **How often the station gives data**?

if **there are clouds**

- ¤ **What** data are used from Antikythera_NOA AERONET station?
	- \blacksquare The **microphysical properties** of the aerosols
		- o The **volume size distribution** (dv/dlnr)
		- o The **refractive index**
		- o The **sphericity percentage**
- ¤ **How often the station gives data**?

Software implementation tools

¤ Programming language: **Python version 3.7**

- o Open Source
- o Object Oriented
- o Big Supported Community
- o Easy to learn

¤ Scientific Python development environment: **Spyder with Anaconda**

¤ In the **case that there are data**, there is an **iteration**, because **there can be more than one measurements (at different times) in the day**.

AERONET product Parameters

1st step

The **blue line** represents the **22-size-bin Volume Size Distribution** (dv/dlnr) acquired from the AERONET product (product.siz).

Master thesis, September 18 2020 – **Anastasia Georgiou** NOA (MSc SSTA) 23

2nd step

Based on **the (six) parameters** of the bimodal lognormal fit of the 22-size-bin volume size distribution, we calculate the dv/dlnr fit:

$$
\frac{dV}{dlnr} = \frac{volc_f}{\sqrt{2\pi} \ln(std_f)} exp\left(-\frac{(\ln(r) - \ln (vmr_f))^2}{2\ln(std_f)^2}\right) + \frac{volc_c}{\sqrt{2\pi} \ln(std_c)} exp\left(-\frac{(\ln(r) - \ln (vmr_c))^2}{2\ln(std_c)^2}\right)
$$

where $\frac{dV}{d\ln r}$: the particle volume size distribution $volc_f$: the total volume concentration of fine mode volc_c : the total volume concentration of coarse mode vmr_f : volume geometric mean radius of fine mode vmr_c : volume geometric mean radius of coarse mode std_f: geometric standard deviation of fine mode std_c: geometric standard deviation of coarse mode

2nd step

The **orange line** is the **bimodal log-normal fit of the 22-size-bin Volume Size Distribution (dv/dlnr_fit). It** fits the blue line using only **six parameters** (volc_f, volc_c, vmr_f, vmr_c, std_f, std_c).

Master thesis, September 18 2020 – **Anastasia Georgiou** NOA (MSc SSTA) 25

2nd step

Why we need this step?

Because the **Mie** scattering **code** has as **input** a **bimodal lognormal size distribution**.

This size distribution is described based on these six parameters.

Parameters

- o **Total volume concentration** $(volc f, volc c)$
- o **Volume geometric mean radius** (vmr_f, vmr_c)
- o **Geometric standard deviation** (std_f, std_c)

2nd step

More specifically

The **input** of the **Mie** scattering **code is a bimodal lognormal number size distribution.**

And how can I calculate it?

$$
\frac{dN}{dlnr} = \frac{Nc_f}{\sqrt{2\pi} \ln(std_f)} exp\left(-\frac{(\ln(r) - \ln (nmr_f))^2}{2\ln(std_f)^2}\right) + \frac{Nc_c}{\sqrt{2\pi} \ln(std_c)} exp\left(-\frac{(\ln(r) - \ln (nmr_c))^2}{2\ln(std_c)^2}\right)
$$

2nd step

In order to **calculate the six parameters of the number size distribution** (Nc_f, Nc_c, nmr_f, nmr_c, std_f, std_c) **based on** the six parameters of the **volume size distribution** (volc f, volc c, vmr f, vmr c, std f, std c) we use these formulas:

where

 Nc_f : the total number concentration of fine mode

 Nc c: the total number concentration of coarse mod

$$
Nc_f = \sum \left(radius_AER_dif
$$

$$
\left(\frac{1}{radius_AER_mean} \frac{volc_f}{\sqrt{2\pi} std_f} \frac{exp(-\frac{((\ln(radius_AER_mean) - \ln(vm_f))^2)}{2std_f^2})}{\frac{4\pi}{3} radius_AER_mean^3} \right) \right)
$$

$$
Nc_{_}c = \sum \Biggl(radius_{_} AER_{_}df \cdot
$$

 $\frac{volc_{c}c}{\sqrt{2\pi}std_{c}c}\frac{\exp{(-\frac{((\ln(radius_{c}AER_{c}mean)-\ln(vmr_{c}))^{2})}{2std_{c}c^{2}})}}{\frac{4\pi}{3}radius_{c}AER_{c}mean^{3}}$ $radius_AER_mean \sqrt{2\pi}std_c$

2nd step

In order to **calculate the six parameters of the number size distribution** (Nc_f, Nc_c, nmr_f, nmr_c, std_f, std_c) **based on** the six parameters of the **volume size distribution** (volc f, volc c, vmr f, vmr c, std f, std c) we use these formulas:

$$
nmr_f = \frac{\exp(\ln(2 - \nu mr_f) - 3std_f^2)}{2}
$$

where

nmr_f, nmr_c: the number mean

radius for fine and

 $nmr_{c} = \frac{\exp{(\ln(2 - \text{vm}r_{c}) - 3\text{std}_{c}^{2})}}{2}$

coarse mode The **geometric standard deviation** ("std_f" and "std_c") **does not change** for number and volume size distributions.

2nd step

After calculating dN/dlnr with the formulas presented in the previous slides, we calculate the volume size distribution using the following formula:

This formula uses the assumption **that the size does not change within the size bin and is equal to the mean radius of the size bin (radius_AER_mean)**.

3ed step

The **green line**, is the **reproduction of the bimodal volume size distribution**, using the calculated number size distribution. This line is used to verify our calculations $\frac{dN}{dlnr}$, since in the ideal case it should coincide with the orange line (i.e. the bimodal log-normal fit of the 22-size-bin volume size distribution).

> Antikythera NOA, N 35.861, E 23.310, Alt 193 m Size Distribution Almucantar Level 1.5; 05-09-2020 15-11-06 Reproduce AERONET SD - Wavelength=0.675

3ed step

This does not happen all the times, mainly due to the limitation in equation to use a representative value for the radius of the size bin.

4th step

Mie scattering code

Inputs

 \Box The user-defined wavelength

- \Box The parameters of the number size distribution (Nc_f , Nc_c , nmr_f , nmr_c , std_f and std_c)
- \Box The real and imaginary part of the refractive index (considered to be the same for fine and coarse particles)

4th step

The mie_code() function **calculate**s:

o The **number concentration in each sub-bin** for fine and coarse mode respectively based on the following formula:

$$
dcon_c = Nc_c \exp\left(-1\left(\ln\frac{r}{nmr_c}\right)^2/(2\,std_c{}^2)\right) \frac{1}{r\,std_c\sqrt{2\pi}}
$$

where dcon c: the number concentration in each bin for coarse mode Nc_c : the total number concentration of coarse mode nmr_c : number geometric mean radius of coarse mode r : bin center radii std_c: geometric standard deviation of coarse mode

4th step

$$
dcon_c = Nc_c \exp\left(-1\left(\ln\frac{r}{nmr_c}\right)^2/(2\,std_c\,t^2)\right)\frac{1}{r\,std_c\sqrt{2\pi}}
$$

The mie_code() function **calculates**:

o The **volume size distribution** (__) for fine and coarse mode based on the following formula:

$$
SD_dv_dlnr = r\left(\frac{4\pi}{3}\right)r^3dcon
$$

and a **fourth line** is created in the plot.

4th step Download data Antikythera NOA, N 35.861, E 23.310, Alt 193 m Size Distribution Almucantar Level 1.5: 05-09-2020 15-11-06 Reproduce AERONET SD - Wavelength=0.675 **AERONET Data** VSD AER calc Read data 0.030 VSD AER calc new Fine - Coarse Mode 0.025 dV/dlnR (um³ um²) Do the 0.020 **Calculations &** 0.015 Create the plots 0.010 if (sphericity) 0.005 factor $> 98\%$) 0.000 10^{-2} 10^{-1} 10° $10¹$ $10²$ then mie_code() radius (um)

> The **pink line** is a **verification** point in the algorithm (it should coincide with the green line), showing that the size distribution we provide in the input is indeed the one that is used in the Mie calculations.

4th step

The mie_code() function uses **the bhmie() function** that calculates the **optical properties** of the **individual particle**, with specific size and refractive index.

The bhmie() function that was used in this thesis, was written in 1983 from **Craig F. Bohren and Donald R. Huffman.**

4th step

The mie_code() function uses **the bhmie() function** that calculates the **optical properties** of the **individual particle**, with specific size and refractive index.

Inputs

 \Box The size parameter

- \square The refractive index
- \Box The number of scattering angles

4th step

The mie_code() function uses **the bhmie() function** that calculates the **optical properties** of the **individual particle**, with specific size and refractive index.

Outputs

q The **extinction efficiency**

q The **scattering efficiency**

q The **backscatter efficiency**

q The **absorption efficiency**

5th step

In this step we calculate the **optical properties** of the **particle ensemble**, taking into account the size distribution of the particles in the ensemble:

□ The extinction coefficient

$$
\varepsilon_{ext} = \int N(r) \sigma_{ext} dr = \int N(r) Q_{ext} \pi r^2 dr
$$

q **The scattering coefficient**

$$
\varepsilon_{sca} = \int N(r) \sigma_{sca} dr = \int N(r) Q_{sca} \pi r^2 dr
$$

q **The backscatter coefficient**

$$
\varepsilon_{bck} = \int N(r) Q_{bck} \left(\frac{\lambda}{\pi r}\right)^2 dr
$$

q **The absorption coefficient**

$$
\varepsilon_{abs} = \int N(r) \sigma_{abs} dr = \int N(r) Q_{abs} \pi r^2 dr
$$

Results of the study

On the date of 27 of April on 2020, there are **no** available **data** from the Antikythera AERONET station, and the user is informed with the following message:

Start date is: year=2019&month=4&day=27 End date is: $year2=2019\&month2=4\&day2=27\&ho^2=23$ Wavelength is: 0.675 https://aeronet.gsfc.nasa.gov/cgi-bin/print_web_data_inv_v3? site=Antikythera_NOA&AVG=10&ALM15=1&if_no_html=1&product=SIZ&year=201 9&month=4&day=27&year2=2019&month2=4&day2=27&hour2=23 https://aeronet.gsfc.nasa.gov/cgi-bin/print_web_data_inv_v3? site=Antikythera_NOA&AVG=10&ALM15=1&if_no_html=1&product=VOL&year=201 9&month=4&day=27&year2=2019&month2=4&day2=27&hour2=23 https://aeronet.gsfc.nasa.gov/cgi-bin/print_web_data_inv_v3? site=Antikythera_NOA&AVG=10&ALM15=1&if_no_html=1&product=ASY&year=201 9&month=4&day=27&year2=2019&month2=4&day2=27&hour2=23 https://aeronet.gsfc.nasa.gov/cgi-bin/print_web_data_inv_v3? site=Antikythera_NOA&AVG=10&ALM15=1&if_no_html=1&product=RIN&year=201 9&month=4&day=27&year2=2019&month2=4&day2=27&hour2=23 Site=Antikythera_NO no data is available in this period: starting date=27/4/2019 and ending date=27/4/2019

In this case, the **start and end date** are the **same**. The day is the 18th of July on 2019 and the **wavelength of refractive index is equal to 0.675** µm. The data for this date is available as shown in the message below:

Start date is: year=2019&month=7&day=18 End date is: year2=2019&month2=7&day2=18 Wavelength is: 0.675 https://aeronet.gsfc.nasa.gov/cgi-bin/print_web_data_inv_v3? site=Antikythera_NOA&AVG=10&ALM15=1&if_no_html=1&product=SIZ&year=2019&month=7&da y=18&year2=2019&month2=7&day2=18 https://aeronet.gsfc.nasa.gov/cgi-bin/print_web_data_inv_v3? site=Antikythera_NOA&AVG=10&ALM15=1&if_no_html=1&product=VOL&year=2019&month=7&da y=18&year2=2019&month2=7&day2=18 https://aeronet.gsfc.nasa.gov/cgi-bin/print_web_data_inv_v3? site=Antikythera_NOA&AVG=10&ALM15=1&if_no_html=1&product=ASY&year=2019&month=7&da y=18&year2=2019&month2=7&day2=18 https://aeronet.gsfc.nasa.gov/cgi-bin/print_web_data_inv_v3? site=Antikythera_NOA&AVG=10&ALM15=1&if_no_html=1&product=RIN&year=2019&month=7&da y=18&year2=2019&month2=7&day2=18

This certain day, based on the AERONET site, there are **nine different retrievals** of the volume size distribution for different times during the day, as shown in the figure below: at 04:46:15, 05:11:43, 06:04:22, 07:34:38, 13:34:39, 14:41:06, 15:04:58, 15:57:42, 16:22:59 UTC

Creating plot for SIZ_Antikythera_NO_18-07-2019_04-46-15 SIZ_Antikythera_NO_18-07-2019_04-46-15 Sphericity_Factor 99.00 % volc_f=0.014000 vmr_f=0.148000 std_f=0.413000 volc_c=0.023000 vmr_c=3.132000 std_c=0.656000 rirp440=1.600000 rirp675=1.541400 rirp870=1.521200 rirp1020=1.524100 riip440=0.007420 riip675=0.006930 riip870=0.006592 riip1020=0.006531 RI 0.675

The **AERONET product for this case** provides the following aerosol properties:

- **□ Total volume concentration** of fine mode (volc_f) : 0.014000 cm³ cm⁻³
- q **Geometric mean volume radius** of fine mode (vmr_f): 0.148000 µm
- q **Geometric standard deviation** of fine mode (std_f): 0.413000
- **Total volume concentration** of coarse mode (volc_c): 0.023000 cm³ cm⁻³
- q **Geometric mean volume radius** of coarse mode (vmr_c): 3.132000 µm
- q **Geometric standard deviation** of coarse mode (std_c): 0.656000

Creating plot for SIZ Antikythera NO 18-07-2019 04-46-15 SIZ_Antikythera_NO_18-07-2019_04-46-15 Sphericity_Factor 99.00 % volc_f=0.014000 vmr_f=0.148000 std_f=0.413000 volc_c=0.023000 vmr_c=3.132000 std_c=0.656000 rirp440=1.600000 rirp675=1.541400 rirp870=1.521200 rirp1020=1.524100 riip440=0.007420 riip675=0.006930 riip870=0.006592 riip1020=0.006531 RI 0.675

The **AERONET product for this case** provides the following aerosol properties:

- q **Real part of the refractive index** at 440 nm (rirp440): 1.600000
- **Real part of the refractive index** at 675 nm (rirp675): 1.541400
- q **Real part of the refractive index** at 870 nm (rirp870): 1.521200
- q **Real part of the refractive index** at 1020 nm (rirp1020): 1.524100
- q **Imaginary part of the refractive index** at 440 nm (riip440): 0.007420
- q **Imaginary part of the refractive index** at 675 nm (riip675): 0.006930
- q **Imaginary part of the refractive index** at 870 nm (riip870): 0.006592
- q **Imaginary part of the refractive index** at 1020 nm (riip1020): 0.006531

ext_all=7.909338890331058e-05 sca_all=7.346999408914502e-05 abs all=5.623394814165551e-06 bac all=2.032112840574509e-06 ext f=6.52076043790471e-05 sca f=6.241395193588643e-05 $abs_f=2.7936524431606673e-06$ $bac_f=1.3391959966208895e-06$ $ext_c=1.388578452426348e-05$ sca_c=1.1056042153258596e-05 abs_c=2.829742371004884e-06 bac_c=6.929168439536193e-07

The calculated **outputs** for this case are the following:

- q **Extinction coefficient of the ensemble** (ext_all): 7.909338 Km-1
- q **Scattering coefficient of the ensemble** (sca_all): 7.346999 Km-1
- q **Absorption coefficient of the ensemble** (abs_all): 5.623394 Km-1
- **Backscatter coefficient of the ensemble** (bac_all): 2.032112 Km⁻¹ sr⁻¹
- q **Extinction coefficient of the fine mode** (ext_f): 6.520760 Km-1
- q **Scattering coefficient of the fine mode**(sca_f): 6.241395 Km-1
- q **Absorption coefficient of the fine mode** (abs_f): 2.793652 Km-1
- q **Backscatter coefficient of the fine mode** (bac_f): 1.339195 Km-1 sr-1

ext_all=7.909338890331058e-05 sca_all=7.346999408914502e-05 abs_all=5.623394814165551e-06 bac_all=2.032112840574509e-06 ext_f=6.52076043790471e-05 sca_f=6.241395193588643e-05 abs_f=2.7936524431606673e-06 bac_f=1.3391959966208895e-06 ext_c=1.388578452426348e-05 sca_c=1.1056042153258596e-05 abs_c=2.829742371004884e-06 bac_c=6.929168439536193e-07

The calculated **outputs** for this case are the following:

- q **Extinction coefficient of the coarse mode** (ext_c): 1.388578 Km-1
- q **Scattering coefficient of the coarse mode** (sca_c): 1.105604 Km-1
- q **Absorption coefficient of the coarse mode** (abs_c): 2.829742 Km-1
- q **Backscatter coefficient of the coarse mode** (bac_c): 6.929168 Km-1 sr-1

Time: 07:34:38

The developed tool focuses mainly on the lidar-related optical properties.

These properties can be used in the future step of this work, for combining the sun-photometer with lidar measurements for better characterization of aerosol vertical properties.

The goal of this work was to create an **automated tool** that calculates in near **real-time the optical properties** of aerosol particles observed in the **PANGEA observatory**, when the particles have **spherical shapes**. For this scope we use the **sun-photometer measurements** in the station, the **AERONET inversion products** and the **Mie scattering code.**

¤ My supervisor **Dr. Vassilis Amiridis**

¤ The postdoctoral researcher **Alexandra Tsekeri**

Questions ?

Backup Slides

AERONET data display uses a **user-friendly interface** that includes **graphical representations** to display the optical and microphysical properties of the aerosol particles.

There are **three versions** available for the **AERONET aerosol product**:

- \blacksquare Version 1.0
- \blacksquare Version 2.0
- \blacksquare Version 3.0

Data quality levels for Direct Sun algorithm:

- **<u>E** Level 1 (unscreened)</u>
- \blacksquare Level 1.5 (cloud-screened and quality controlled)
- **<u>E** Level 2.0 (quality-assured)</u>

Data quality levels for Direct Sun and Inversion algorithm:

- \blacksquare Inversion Level 1.5 (cloudscreened and quality controlled)
- **<u>¤**</u> Inversion Level 2.0 (quality-assured)

Time: 05:58:11

