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Abstract 
 

Ultra-low frequency (ULF) magnetospheric plasma waves play a key role in the dynamics of 

the Earth’s magnetosphere and, therefore, their importance in Space Weather studies is 

indisputable. Magnetic field measurements from recent multi-satellite missions (e.g. Cluster, 

THEMIS, Van Allen Probes and Swarm) are currently advancing our knowledge on the physics 

of ULF waves. In particular, Swarm satellites, one of the most successful mission for the study 

of the near-Earth electromagnetic environment, have contributed to the expansion of data 

availability in the topside ionosphere, stimulating much recent progress in this area. Coupled 

with the new successful developments in artificial intelligence (AI), we are now able to use 

more robust approaches devoted to automated ULF wave event identification and 

classification. The goal of this effort is to use a deep learning method in order to classify ULF 

wave events using magnetic field data from Swarm. We construct a Convolutional Neural 

Network (CNN) that takes as input the wavelet spectrum of the Earth’s magnetic field 

variations per track, as measured by each one of the three Swarm satellites, and whose 

building blocks consist of two convolution layers, two pooling layers and a fully connected 

(dense) layer, aiming to classify ULF wave events in four different categories: 1) Pc3 wave 

events (i.e., frequency range 20-100 MHz), 2) non-events, 3) false positives, and 4) plasma 

instabilities. Our primary experiments show promising results, yielding successful 

identification of almost 90% accuracy. We are currently working on producing larger 

training/test datasets, by analyzing Swarm data from the mid-2014 onwards, when the final 

constellation was formed, aiming to construct a dataset comprising of more than 50000 

wavelet image inputs for our network. 
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Περίληψη 
 

Τα κύματα εξαιρετικά χαμηλής συχνότητας, γνωστά ως κύματα ULF (Ultra-Low Frequency 

waves) παίζουν σημαντικό ρόλο στη δυναμική της γήινης μαγνητόσφαιρας, και επομένως η 

σημασία τους στη μελέτη του διαστημικού καιρού είναι αδιαμφισβήτητη. Μετρήσεις 

μαγνητικού πεδίου από πρόσφατες δορυφορικές αποστολές (π.χ. Cluster, THEMIS, Van Allen 

Probes και Swarm) συμβάλουν σημαντικά στην διεύρυνση των γνώσεών μας πάνω στη 

φυσική που διέπει τα κύματα ULF. Πιο συγκεκριμένα, οι δορυφόροι Swarm, μία από τις πιο 

επιτυχημένες δορυφορικές αποστολές για τη μελέτη του ηλεκτρομαγνητικού περιβάλλοντος 

γύρω από τη Γη, έχει συμβάλει στη επέκταση των διαθέσιμων δεδομένων που αφορούν την 

ανώτερη (topside) ιονόσφαιρα, οδηγώντας πρόσφατα σε μεγάλη πρόοδο στον τομέα. Σε 

συνδυασμό με τη μεγάλη εξέλιξη στον τομέα της μηχανικής μάθησης (machine learning), 

είμαστε πλέον σε θέση να χρησιμοποιούμε προηγμένες μεθόδους που αποσκοπούν στην 

αυτοματοποιημένη αναγνώριση και ταξινόμηση των διάφορων ULF γεγονότων. Στόχος της 

παρούσας εργασίας είναι η χρήση μίας μεθόδου βαθιάς μάθησης (deep learning), για την 

ταξινόμηση γεγονότων ULF χρησιμοποιώντας δεδομένα μαγνητικού πεδίου από την 

αποστολή Swarm. Κατασκευάζουμε ένα συνελικτικό νευρωνικό δίκτυο (convolutional neural 

network) το οποίο δέχεται ως είσοδο μία σειρά εικόνων, που αναπαριστούν τα φάσματα της 

ισχύος συναρτήσει της συχνότητας και του χρόνου, οι οποίες έχουν προκύψει ύστερα από 

wavelet μετασχηματισμούς στις χρονοσειρές μαγνητικού πεδίου ανά δορυφορική τροχιά. Η 

βασική αρχιτεκτονική του δικτύου έχει ως εξής: δύο συνελικτικά επίπεδα (convolutional 

layers) και δύο επίπεδα χωρικής υποδειγματοληψίας (pooling layers), εναλλασσόμενα 

μεταξύ τους, και ένα πλήρως συνδεδεμένο επίπεδο (fully connected layer) στο τέλος 

προκειμένου να δημιουργήσει το μοντέλο απόφασης (classification). Σκοπός του δικτύου 

είναι να ταξινομήσει γεγονότα ULF σε 4 κατηγορίες: 1) κύματα ULF κατηγορίας Pc3 (εύρος 

συχνοτήτων 20-100 MHz), 2) θόρυβος, 3) ψευδώς θετικά γεγονότα, και 4) ηλεκτρομαγνητικές 

αστάθειες του πλάσματος. Τα πρωταρχικά μας πειράματα δίνουν πολύ αισιόδοξα 

αποτελέσματα, αποδίδοντας επιτυχή αναγνώριση γεγονότων ULF με ακρίβεια σχεδόν 90%. 

Μελλοντικός στόχος είναι η επέκταση της εργασίας κατασκευάζοντας μεγαλύτερα σύνολα 

δεδομένων (training/test datasets), με την ανάλυση δεδομένων Swarm από τα μέσα του 2014 

και έπειτα, όπου πραγματοποιήθηκε η τελική διαμόρφωση του σχηματισμού των τριών 

δορυφόρων, για τη δημιουργία τουλάχιστον 50000 δειγμάτων εισόδου (50000 ζεύγη που το 

καθένα αποτελείται από μία φασματική εικόνα και την κατηγορία στην οποία αυτή ανήκει 

(class label)) για το δίκτυό μας. 
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Chapter 1:  Introduction 

Ultra-low frequency (ULF) waves are produced by processes in the Earth’s magnetosphere and 

solar wind. The broader class of ULF waves are quasi-sinusoidal and exist for several periods; 

these are classified as continuous and are further broken down into five subcategories, Pc1-

5, depending upon their frequency (Jacobs et al., 1964). Their energy source is either in the 

solar wind or within the magnetosphere. The magnetosphere is a resonant cavity and 

waveguide for waves that either originate within or propagate through the system. 

Magnetospheric ULF waves have a profound effect on charged particle dynamics in the 

radiation belts (Mann, 2016). For instance, ULF waves may accelerate electrons with MeV 

energies in the radiation belts.  These electrons may penetrate spacecraft shielding, generate 

a build-up of static charge within electrical components resulting in subsystem damage, and 

ultimately can even cause the total loss of Earth-orbiting satellites (Mann, 2016). As radiation 

belts variability has a direct impact on spacecraft and humans in space, ULF waves are of 

particular importance for space weather.  

The study of ULF waves is a very active field of space research and much has yet to be learned 

about the processes that generate these waves. Recent studies for the analysis of ULF waves 

(e.g. Balasis et al., 2013, 2019) have stimulated much progress in this area. In Balasis et al. 

2013, a wavelet-based spectral analysis tool has been developed for the classification of ULF 

wave events using data from the low-Earth orbit (LEO) CHAMP satellite, in preparation of the 

Swarm mission, while in Balasis et al. 2019, a machine learning technique based on Fuzzy 

Artificial Neural Networks has been employed in order to detect ULF waves in the time series 

of the magnetic field measurements on board CHAMP. The analysis of isolated ULF wave 

events— especially those detected in the Pc3 frequency range (20–100 mHz) that a topside 

ionosphere mission, like the Swarm mission, efficiently resolves—can help to elucidate the 

processes that play a crucial role in the generation of waves and their most defining 

propagation characteristics. 

Machine learning techniques have been successfully introduced in the fields of Space Physics 

and Space Weather, yielding highly promising results in modeling and predicting many 

disparate aspects of the geospace environment. A promising machine learning method to 

solve image classification problems is Convolutional Neural Networks (CNN/ConvNets). 

Therefore, we want to study the capability of ConvNets to classify ULF wave events 

represented on images. To do so, we create an image dataset, starting from magnetic field 

time series from Swarm satellite measurements and applying a wavelet transform that allows 

us to go from one-dimensional (i.e., time series) to two-dimensional space (i.e., images).  

The ConvNets are not a new idea; for example, in 1989 LeCun et al. used a ConvNet to 

recognize handwritten digits in mails, but the hype around ConvNets started in 2012 after the 

incredible winning of Krizhevsky et al. on the ImageNet challenge for classification of images 

into 1000 categories. The ConvNet solution of Krizhevsky et al. had a top-5 error-rate of 15.3% 

compared to the second place with 26.17%. Since this, the error rate is further decreased with 

other ConvNet designs and further research on the training of Neural Networks.  ConvNets 

have not only reached good results on ImageNet and other image classification tasks, but they 

are also applied successfully on non-image tasks, e.g., in natural language processing 

(Collobert & Weston, 2008).  

ConvNets, or rather Neural Networks (NN), are very interesting machine learning methods. 

They have a layered structure, and every layer could learn an abstract representation of the 
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input. This ability is called Feature Learning or known as Representation Learning (LeCun et 

al., 2015).  Feature Learning is a method, that allows a machine to learn from raw data. The 

machine takes the raw data as input and learns automatically the needed features to solve 

the machine learning problem.  For example, in image classification the raw data is an image, 

which is represented by an array of pixels. These arrays are fed to the ConvNet, and the 

ConvNet learns useful features from these images to solve the machine learning problem.  

There are numerous variants of CNN architectures in the literature. However, their basic 

components are very similar. Taking the famous LeNet-5 as an example (LeCun et al., 1998), 

it consists of three types of layers, namely convolutional, pooling, and fully-connected layers. 

The convolutional layer aims to learn feature representations of the inputs. In the first layer, 

the ConvNet could learn to detect low-level features such as edges and curves, while in higher 

layers the ConvNet could learn to encode more abstract features. By stacking several 

convolutional and pooling layers, we could gradually extract higher-level feature 

representations. The last layer of CNNs is a fully connected layer (FC), which gives the final 

output. For classification tasks, the Softmax operator is commonly used (Gu et al., 2018). 

In traditional image classification, useful features must be extracted from the image, which 

are then used on machine learning algorithms like a Support Vector Machine (SVM). These 

handcrafted features must be carefully chosen, otherwise, the classification has a bad 

performance. This problem of carefully chosen features is not present in NNs, but they have 

other difficulties. One of the difficulties is the right choice of hyperparameters and of the 

architecture. These have direct influence on the performance. 

In this thesis, we use a Convolutional Neural Network (ConvNet) to classify ULF wave events 

in four different categories. We develop our own ConvNet architecture that is simple and fast, 

and that can be implemented with a relatively small input dataset, consisting of small images, 

due to the limited resource of time and computational power. We use Swarm magnetic field 

measurements for the year 2015. Specifically, we use the magnetic field vector, measured in 

the North-East-Center (NEC) frame, with 1 second sampling rate. One Swarm magnetic field 

data file corresponds to 24-hour measurements. We cut these data per satellite track (i.e. 

from -90° to +90° latitude, ~45 minutes) to zoom in the occurring events that the satellite may 

measure, and then apply a high-pass filter to isolate the Pc3 ULF waves (20–100 mHz). Next, 

by performing a wavelet transform, we get the final spectra images. The four different 

categories we define are: “Pc3 ULF waves”, “Non-ULF signals”, “False Positives”, and “Plasma 

Instabilities”. For a good classification performance, ConvNets need a dataset of enough 

images that are carefully labeled. Therefore, we need to spend much time for the correct 

separation of the wavelet spectrum images in the four different categories, and especially for 

the “Plasma Instabilities” class definition, which presents difficulties due to its similarity with 

the Pc3 ULF wave class.  

In the next chapter, information about the Swarm mission is presented and the basics of 

Earth’s magnetic field, magnetosphere, space weather and ULF waves is introduced. In 

Chapter 3, the basics of machine learning is introduced, and Artificial Neural Networks and 

Convolutional Neural Networks are explained. After this, in Chapter 4, the preprocessing 

pipeline for the preparation of the images before they are applied to the ConvNet is described. 

In the same chapter we also present our ConvNet architecture as well as the evaluation of the 

developed ConvNet and accuracy results. Finally, in the last chapter a conclusion of this thesis 

and an outlook for future work is given. 
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Chapter 2:  The Swarm mission, Earth’s 

magnetosphere & ULF waves 

2.1. Swarm Mission 

Swarm is a satellite constellation comprising three identical spacecraft that was launched on 

November 22, 2013 (12:02:29 UTC) on a Rockot vehicle from the Plesetsk Cosmodrome in 

north-western Russia. It is ESA's first constellation mission for Earth Observation (EO). The 

mission is operated by ESA's European Space Operations Centre (ESOC), in Germany, via the 

primary ground station in Kiruna, Sweden 1. 

The objective of the Swarm mission is to provide the best-ever survey of the geomagnetic field 

and its temporal evolution, in order to gain new insights into the Earth system by improving 

our understanding of the Earth’s interior and environment. Each of the three Swarm satellites 

are making high-precision and high-resolution measurements of the strength, direction and 

variation of the magnetic field, complemented by precise navigation, accelerometer, plasma 

and electric field measurements. These observations are provided as Level-1b data, which are 

the calibrated and formatted time series of e.g. the magnetic field measurements taken by 

each of the three Swarm satellites. These Level-1b data, as well as the higher-Level Swarm 

data products, are distributed by ESRIN (Frascati/I) (Olsen et al., 2013). 

Swarm satellites obtain simultaneously a space-time characterization of both the internal field 

sources in the Earth and the ionospheric-magnetospheric current systems. The research 

objectives assigned to the mission are: (a) studies of core dynamics, geodynamo processes, 

and core-mantle interaction; (b) mapping of the lithospheric magnetisation and its geological 

interpretation; (c) determination of the 3-D electrical conductivity of the mantle; and (d) 

investigation of electric currents flowing in the magnetosphere and ionosphere (Olsen et al., 

2013). A more precise description of the mission objectives follows in the next section. 

2.1.1. Swarm Objectives 

The primary research topics to be addressed by the Swarm mission include: 

• Core dynamics, geodynamo processes, and core-mantle interaction: The goal is to improve 

the models of the core field dynamics by ensuring long-term space observations with an even 

better spatial and temporal resolution. Combining existing Ørsted, CHAMP and Swarm 

observations allows also more generally the investigation of all magnetohydrodynamic 

phenomena potentially affecting the core on sub-annual to decadal scales, down to 

wavelengths of about 2000 km. Of particular interest are those phenomena responsible for 

field changes that cannot be accounted for by core surface flow models. 

• Lithospheric magnetization and its geological interpretation: The increased resolution of the 

Swarm satellite constellation allows, for the first time, the identification from satellite altitude 

of the oceanic magnetic stripes corresponding to periods of reversing magnetic polarity. Such 

a global mapping is important because the sparse data coverage in the southern oceans has 

 
1  http://earth.esa.int/swarm  

http://earth.esa.int/swarm
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been a severe limitation regarding our understanding of plate tectonics in the oceanic 

lithosphere. Another important implication of improved resolution of the lithospheric 

magnetic field is to derive global maps of heat flux. 

• 3-D electrical conductivity of the mantle: Our knowledge of the physical and chemical 

properties of the mantle can be significantly improved if we know its electrical conductivity. 

Due to the sparse and inhomogeneous distribution of geomagnetic observatories, with only 

few in oceanic regions, a true global picture of mantle conductivity can only be obtained from 

space. 

• Currents flowing in the magnetosphere and ionosphere: Simultaneous measurements at 

different altitudes and local times, as foreseen with the Swarm mission, allows better 

separation of internal and external sources, thereby improving geomagnetic field models. In 

addition to the benefit of internal field research, a better description of the external magnetic 

field contributions is of direct interest to the science community, in particular for space 

weather research and applications. The local time distribution of simultaneous data fostered 

the development of new methods of co-estimating the internal and external contributions. 

The secondary research objectives include: 

• Identification of the ocean circulation by its magnetic signature: Moving sea water produces 

a magnetic field, the signature of which contributes to the magnetic field at satellite altitude. 

Based on state-of-the-art ocean circulation and conductivity models it has been demonstrated 

that the expected field amplitudes are well within the resolution of the Swarm satellites. 

• Quantification of the magnetic forcing of the upper atmosphere: The geomagnetic field 

exerts a direct control on the dynamics of the ionized and neutral particles in the upper 

atmosphere, which may even have some influence on the lower atmosphere. With the 

dedicated set of instruments, each of the Swarm satellites is able to acquire high-resolution 

and simultaneous in-situ measurements of the interacting fields and particles, which are the 

key to understanding the system 2. 

As well as furthering science, the measurements delivered by the three Swarm satellites can 

be valuable for a range of other applications. For example, the data are used to help improve 

the accuracy of navigation systems including those systems carried on satellites or even to 

improve the efficiency of drilling for natural resources 3. 

Table 1: The mission's primary and secondary objectives (https://earth.esa.int/swarm) 

Swarm mission main objectives 

Mission’s primary objectives 

Studies of core dynamics, geodynamo processes and core-
mantle interaction 

Mapping of the lithospheric magnetisation and its geological 
interpretation 

Determination of the 3D electrical conductivity of the mantle 

Investigation of electric currents flowing in the 
magnetosphere and ionosphere 

Mission’s secondary objectives 
Identifying the ocean circulation by its magnetic signature 

Quantifying the magnetic forcing of the upper atmosphere 

 
2 EO Portal Directory (Earth Observation information discovery platform), Satellite Missions Database, 

https://earth.esa.int/eoportal/swarm  
3 Swarm: ESA's Magnetic Field Mission brochure, 2013, Online, https://esamultimedia.esa.int/BR-302/ 

https://earth.esa.int/swarm
https://earth.esa.int/web/eoportal/satellite-missions/s/swarm#foot23%29
https://esamultimedia.esa.int/multimedia/publications/BR-302/
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2.1.2. Swarm satellite orbit  

As well as the advanced technology the satellites carry, their carefully selected orbits are 

essential to the success of the mission. Two of the Swarm satellites, Swarm Alpha and Swarm 

Charlie, are flying almost side-by-side in near-polar orbits of inclination 87.4° at an altitude of 

about 465 km (in November 2015) –  but descending to around 300 km over the life of the 

mission – and above a mean radius of 6371.2 km. The East–West separation of their orbits is 

1.4° in longitude, corresponding to 155 km at the equator. The third satellite, Swarm Bravo, 

flies at a slightly higher (about 520 km altitude in November 2015) orbit of inclination 88° 

(Olsen et al., 2016). 

The lower the satellites are, the more sensitively they can measure small magnetic features 

in the crust. The Sun generates typical day and night patterns in the ionosphere between the 

satellites and Earth. Magnetic storms resulting from solar activity also cause irregular 

disturbances in the ionosphere and magnetosphere. The satellites’ drifting orbits mean that 

all the magnetic signals originating from Earth and those caused by the Sun are captured.  

2.1.3. Swarm satellite structure & instruments  

The three identical satellites have a rather unusual shape: trapezoidal with a long boom that 

was deployed once they went in orbit. Developed on behalf of ESA by an industrial consortium 

led by EADS Astrium GmbH, each satellite is about 9 m long, including the boom, with the 

surface at the front only measuring about 1 m2. This is to reduce the effect of air drag and to 

cut down on the amount of propellant needed to stay at the correct altitude. Below around 

500 km, air drag tends to slow satellites down and lower the orbit. The boom, which accounts 

for almost half the length of the satellite, trails at the back. This is because the front surface 

is needed for the electric field instrument so that it can collect and measure the speed and 

direction of incident ions along the orbital path. Once the boom has been deployed, the 

satellite has no moving parts. This ensures that there are no vibrations that could influence 

the measurements made by the accelerometer, which is fixed at the very centre of the 

satellite. Likewise, the solar panels are fixed, forming the satellite ‘roof’. Magnetic cleanliness 

is of paramount importance to the mission, so the sensitive scalar magnetometers are 

mounted at the end of the boom, far away from any magnetic disturbance that the electrical 

units on the body may cause. The optical bench holding the VFM and the three startrackers is 

mounted halfway along the boom.  

 

 

 
Figure 1: Side-view of instrumentation on the Swarm satellites. The satellite flies with the boom trailing 
at the rear. (http://earth.esa.int/swarm) 

 

http://earth.esa.int/swarm
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Table 2: The on-board sensors of the Swarm satellites.  (https://earth.esa.int/swarm) 

Swarm satellite sensors 

Vector Field Magnetometer (VFM) Provides vectorial measurements of the magnetic field 

Advanced Scalar Magnetometer (ASM) 
Provides the total magnetic field (used to calibrate 
vector measurements); experimental vector mode 

Electric Field Instruments (EFI) 
Provides (after processing) vectorial electric field 
measurements based on ion temperature & density, 
electron temperature 

Accelerometer (ACC) 
Provides 3 degree-of-freedom measurements of non-
conservative forces; used to derive atmospheric density 
and winds 

GPS Receiver (GPSR) 
Provides 8-channel positioning data for precise orbit 
determination (positioning) 

Laser Retro-Reflector (LRR) 
Provides positioning information through ground-based 
satellite laser ranging (via ILRS) 

Star Tracker (STR) 
Provides attitude data that determines the orientation of 
the optical bench 

 

Each of the three Swarm satellites is equipped with magnetic sensors, which can be thought 

of as a 3D compass. Each provides precise and detailed measurements of the strength and 

direction of the magnetic field. Magnetic sensors measure a tangle of the core field with other 

signals from magnetised rocks in the crust, electrical currents flowing in the ionosphere, 

magnetosphere and oceans, and currents inside Earth induced by external fields. The 

challenge here is to separate the different sources of magnetism. GPS receivers, an 

accelerometer and an electric field instrument deliver supplementary information to study 

the interaction between Earth’s magnetic field and the solar wind. 4 

Specifically, each of the three satellites carries an Absolute Scalar Magnetometer (ASM) 

measuring Earth’s magnetic field intensity, a Vector Fluxgate Magnetometer (VFM) measuring 

the magnetic vector components and a three-head Star Tracker (STR) mounted close to the 

VFM to obtain the attitude needed to transform the vector measurements of the VFM 

magnetometer to a known coordinate frame. Time and position are obtained by on-board GPS 

(Olsen et al., 2016). All the sensors onboard the Swarm satellites are presented in Table 3. A 

more precise description of the Swarm magnetometers (VFM and ASM) follows on the next 

paragraphs. 

Vector Field Magnetometer: This magnetometer is the mission’s core instrument. It makes 

high-precision measurements of the magnitude and direction of the magnetic field, i.e. the 

field’s vector. The orientation of the vector is determined by the startracker assembly, which 

provides attitude data. The VFM and the startrackers are both housed on an ultra-stable 

structure called an optical bench, halfway along the satellite’s boom. The design of the bench 

and carefully selected material make it possible to keep the instruments aligned to 1 arcsec. 

Absolute Scalar Magnetometer: This novel instrument measures the strength of the magnetic 

field to greater accuracy than any other magnetometer. The ASM is an ‘optically-pumped 

metastable helium-4 magnetometer’, developed and manufactured by CEA-Leti in France 

 
4 Swarm: ESA's Magnetic Field Mission brochure, 2013, Online, https://esamultimedia.esa.int/BR-302/ 

https://earth.esa.int/swarm
https://earth.esa.int/web/guest/missions/esa-eo-missions/swarm/instruments/vfm
https://earth.esa.int/web/guest/missions/esa-eo-missions/swarm/instruments/asm
https://earth.esa.int/web/guest/missions/esa-eo-missions/swarm/instruments/efi
https://earth.esa.int/web/guest/missions/esa-eo-missions/swarm/instruments/acc
https://earth.esa.int/web/guest/missions/esa-eo-missions/swarm/instruments/gpsr
https://earth.esa.int/web/guest/missions/esa-eo-missions/swarm/instruments/lrr
https://earth.esa.int/web/guest/missions/esa-eo-missions/swarm/instruments/str
https://esamultimedia.esa.int/multimedia/publications/BR-302/
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under contract with the French space agency, CNES. It provides scalar measurements of the 

magnetic field to calibrate the VFM 5.  

 

Figure 2: The Vector Field Magnetometer (VFM) measures the magnetic field vector at the tip of the 

optical bench on the boom. (https://earth.esa.int/swarm) 

2.1.4. Swarm Data Products 

The Swarm Level 1b and Swarm Level 2 data products include Swarm magnetic field models, 

ionospheric and thermospheric products, and Precise Orbit Solutions including supporting 

information. 

The Swarm Level 1b data products are the corrected and formatted output from each of the 

three Swarm satellites. By a complex assimilation of these individual satellite measurements 

into one set of products for the satellite constellation, the Swarm Level 2 Processor ensures a 

very significant improvement of the quality of the final scientific data products.  

In accordance with ESA Earth Observation Data Policy, all Swarm Level 1b and Level 2 products 

are freely accessible to all users via anonymous access. They can be downloaded: 

• via any HTTP browser at http://swarm-diss.eo.esa.int 

• directly via an ftp client at ftp://swarm-diss.eo.esa.int 

The top-level structure is divided into the 'Level1b', 'Level2daily', and 'L2longterm' and 

'Advanced' directories. Within the 'Level1b' and 'Level2daily' directories, the structure 

presents first the 'Latest baselines' and 'Entire_mission_data' folders, then a Simplified 

datatype list, and finally, the satellite ID, if applicable. A short explanation on these data 

follows in the next paragraphs. 

- LATEST BASELINES FOLDER: the user will find all the interoperable products generated in 

a consistent way with the application of all significant data quality improvements, but not 

necessarily covering the entire mission. 

- ENTIRE MISSION DATA FOLDER: the users will find the full data coverage of the entire 

mission, regardless of any consideration of interoperability among the same product type. 

In other words, the data might have been produced with strategies or knowledge that 

does not make the products necessarily interoperable for certain types of science. This 

information can still be captured by looking at the Product Baseline number. 

- PRODUCT BASELINE: is a number associated with a specific product type and satellite. The 

Product Baseline is identified by the first two of the four digits placed at the end of the 

file name, i.e. the first two digits of the File_Version field represent the Product Baseline, 

while the last two represent an incremental File Counter. Here is an example: 

“SW_OPER_STRCATT_1B_20140218T000000_20140218T235959_0301_MDR_SAT_AT.cdf” 

where 03 is the Product Baseline number, while 01 is only an incremental File Counter 6. 

 
5 Swarm: ESA's Magnetic Field Mission brochure, 2013, Online, https://esamultimedia.esa.int/BR-302/ 
6 https://earth.esa.int/swarm/data-handbook  

https://earth.esa.int/swarm
http://swarm-diss.eo.esa.int/
ftp://swarm-diss.eo.esa.int/
https://esamultimedia.esa.int/multimedia/publications/BR-302/
https://earth.esa.int/web/guest/missions/esa-eo-missions/swarm/data-handbook
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2.2. The Earth’s Magnetic Field 

As already mentioned, the Swarm mission aims to unravel one of the most mysterious aspects 

of our planet: the magnetic field. Although invisible, the magnetic field and electric currents 

in and around Earth generate complex forces that have immeasurable impact on everyday 

life. The field can be thought of as a huge bubble, protecting us from cosmic radiation and the 

charged particles that bombard Earth through the solar wind. Without this protective shield, 

the atmosphere as we know it would not exist, rendering life on Earth practically impossible.  

Even as it is, strong solar storms have the potential to cause power and communication 

blackouts and can also damage satellites orbiting Earth. A visible display of what happens 

when charged particles collide with atoms and molecules in the upper atmosphere can be 

seen as waves of luminous green light in the polar skies – the aurora borealis in the north and 

aurora australis in the south.  

Earth’s magnetic field is in a permanent state of flux. Magnetic north wanders, and every few 

hundred thousand years the polarity flips so that a compass would point south instead of 

north. Moreover, the strength of the magnetic field constantly changes – and it is currently 

showing signs of significant weakening.  

By analysing the different characteristics of the observed field, the Swarm mission has led to 

new insight into many natural processes, from those occurring deep inside the planet, to space 

weather caused by solar activity. In turn, this information can yield a better understanding of 

why the magnetic field is weakening.  

In simple terms, Earth’s magnetic field behaves as if there were a powerful dipolar bar magnet 

at the centre of the planet, tilted at about 11° to the axis of rotation. In reality, however, the 

processes involved in generating the field are far more complex. The magnetic field is thought 

to be largely generated by an ocean of superheated, swirling liquid iron that makes up the 

outer core 3000 km under our feet. Acting like the spinning conductor in a bicycle dynamo, it 

generates electrical currents, which in turn, generate our continuously changing 

electromagnetic field. Other sources of magnetism are the minerals in Earth’s mantle and 

crust, while the ionosphere and the magnetosphere also play an important role. Since salt 

water is conductive, oceans make an additional, albeit weak, contribution to the magnetic 

field. 

The geomagnetic field is far from static and varies both in strength and direction. For example, 

recent studies have shown that the position of the north magnetic pole is changing rapidly. 

Furthermore, over the last 200 years, the magnetic field has lost around 9% of its strength on 

a global average. A large region of reduced magnetic intensity has developed between Africa 

and South America and is known as the South Atlantic Anomaly 7. 

 
7 Swarm: ESA's Magnetic Field Mission brochure, 2013, Online, https://esamultimedia.esa.int/BR-302/ 

https://esamultimedia.esa.int/multimedia/publications/BR-302/
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Figure 3: The different sources that contribute to the magnetic field measured by Swarm. The coupling 
currents or field-aligned currents flow along magnetic field lines between the magnetosphere and 
ionosphere. The ionosphere is 85–600 km above Earth, while the magnetosphere is 60 000–120 000 km 
from Earth. (ESA/DTU Space) 

2.2.1. Structure of Earth’s magnetosphere 

The geospace environment extends from the Sun’s surface to the Earth’s ionosphere. The 

dynamics of the Geospace region are governed by the interaction between the Earth’s 

magnetic field and the solar wind. In this region all matter is in the plasma state8. The region 

over which the geomagnetic field is a dominant influence is the magnetosphere. Earth’s 

magnetosphere is never in a truly steady state. It is a dynamic and constantly changing 

structure (Walker et al., 2005). The individual parts of the magnetosphere are described 

below. 

Bow shock: It forms the outermost layer of the magnetosphere; the boundary between the 
magnetosphere and the ambient medium. 

 
8 In physics, the word plasma designates a fully or partially ionized gas consisting of electrons and ions. The term 

plasma was introduced 80 years ago by Irving Langmuir (1881–1957) to describe the charge-neutral part of a gas 

discharge. David A. Frank-Kamenezki identified plasma as the fourth state of matter. From a phenomenological 

point of view, the identification of plasma as a new state of matter can be justified because the splitting at high 

temperature of neutral atoms into electrons and ions is associated with a new energy barrier, the ionization energy. 

Today we know that plasma is not only the hot, disordered state of matter described above. Rather, we have 

learned during the last 20 years that plasma systems can attain gaseous, liquid and even solid phases. The plasma 

state, as an electrically conductive medium, possesses a number of new properties that distinguish it from neutral 

gases and liquids. The plasma state is a gaseous mixture of positive ions and electrons. Plasmas can be fully ionized, 

as the plasma in the Sun, or partially ionized, as in fluorescent lamps, which contain a large number of neutral 

atoms (Piel, 2017). 
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Magnetosheath: It is the region of the magnetosphere between the bow shock and the 
magnetopause. It is formed mainly from shocked solar wind, though it contains a small 
amount of plasma from the magnetosphere. It is an area exhibiting high particle energy flux, 
where the direction and magnitude of the magnetic field varies erratically.  
Magnetopause: It is the area of the magnetosphere wherein the pressure from the planetary 
magnetic field is balanced with the pressure from the solar wind. It is the convergence of the 
shocked solar wind from the magnetosheath with the magnetic field of the object and plasma 
from the magnetosphere. Because both sides of this convergence contain magnetized plasma, 
the interactions between them are complex. The magnetopause changes size and shape as 
the pressure from the solar wind fluctuates. 
Magnetotail: Opposite the compressed magnetic field is the magnetotail, where the 
magnetosphere extends far beyond the Earth. It contains two lobes, referred to as the 
northern and southern tail lobes. The northern tail lobe points towards the Earth and the 
southern tail lobe points away. The tail lobes are almost empty, with few charged particles 
opposing the flow of the solar wind. The two lobes are separated by a plasma sheet, an area 
where the magnetic field is weaker and the density of charged particles is higher 9. 

 
Figure 4: A simplified representation of the structure of Earth’s magnetosphere (High Altitude 

Observatory (HAO),  National Center for Atmospheric research (NCAR), Colorado, www2.hao.ucar.edu) 

2.2.2. Solar Wind & Space Weather  

The solar wind consists of plasma streaming outwards from the Sun.  It can be regarded as the 

outer part of the Sun’s atmosphere. The shape of the Earth's magnetosphere is the direct 

result of being blasted by solar wind 10. It carries with it a frozen-in magnetic field originating 

from the Sun. This field is variable in magnitude and direction. It has been extensively 

observed by in situ satellites which provide information on the plasma composition, velocity, 

temperature, and density, and the three components of the magnetic field. The irregular and 

gusty nature of the solar wind observed near the Earth means that magnetic field, plasma 

velocity, density, and temperature vary on a wide range of spatial and temporal scales (Walker 

et al., 2005). 

The term “space weather” is to describe the dynamic conditions in the Earth’s outer space 

environment, in the same way that “weather” and “climate” refer to conditions in Earth’s 

 
9 Space Environment lecture notes 2019, National Observatory of Athens, MSc in SSTA 
10 https://www.nasa.gov/sunearth/magnetosphere  

https://www2.hao.ucar.edu/sites/default/files/users/whawkins/SW101_6_Magnetosphere.pdf
https://www.nasa.gov/mission_pages/sunearth/multimedia/magnetosphere.html
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lower atmosphere. Space weather includes all conditions and events on the Sun, in the solar 

wind, in near-Earth space and in our upper atmosphere that can affect space-borne and 

ground-based technological systems and through these, human life and endeavor. 

Modern society depends on a variety of technologies susceptible to the extremes of space 

weather. Strong electrical currents driven along the Earth’s surface during auroral events 

disrupt electric power grids and contribute to the corrosion of oil and gas pipelines. Changes 

in the ionosphere during geomagnetic storms interfere with high-frequency radio 

communications and Global Positioning System (GPS) navigation. During polar cap absorption 

events caused by solar protons, radio communications can be compromised for commercial 

airliners on transpolar crossing routes. Exposure of spacecraft to energetic particles during 

solar energetic particle events and radiation belt enhancements cause temporary operational 

anomalies, damage critical electronics, degrade solar arrays, and blind optical systems such as 

imagers and star trackers.  

Human and robotic explorers across the solar system are also affected by solar activity. 

Research has shown, in a worst-case scenario, astronauts exposed to solar particle radiation 

can reach their permissible exposure limits within hours of the onset of an event. Surface-to-

orbit and surface-to-surface communications are sensitive to space weather storms 11. 

2.2.3. ULF waves 

Ultra-low frequency (ULF) waves are magnetohydrodynamic (MHD) plasma waves in the 

frequency range of approximately 1 mHz ≤ f ≤ 10 Hz. Generated by a variety of instabilities, 

ULF waves transport and couple energy throughout the system, and are readily recorded 

throughout the Earth’s magnetosphere and on the ground.  

ULF waves provide a convenient probe and diagnostic monitor of the magnetosphere. The 

availability of multipoint measurements from spacecraft, ionospheric sounders and ground 

magnetometer arrays and the increasing sophistication of modeling tools have stimulated 

much recent progress in this area. Nevertheless, fundamental questions remain regarding the 

generation, propagation and consequences of these waves (Menk et al., 2011). 

ULF waves are also of great importance for Space Weather. They play a critical role in 

magnetospheric dynamics due to wave-particle interactions in radiation belts, responsible for 

electron acceleration and loss 11. 

Magnetospheric ULF waves are large-scale phenomena – they can be excited by the solar wind 

with a scale size of the whole magnetosphere and can have a strong impact on charged 

particle dynamics in the radiation belts (Mann, 2016). For instance, radial diffusion caused by 

ULF waves may accelerate electrons with MeV energies in the radiation belts. These electrons 

may penetrate spacecraft shielding, generate a build-up of static charge within electrical 

components resulting in subsystem damage, and ultimately can even cause the total loss of 

Earth-orbiting satellites (Mann, 2016). Therefore, studies of the excitation, propagation and 

global characteristics of ULF waves, as well as their impact on MeV electron dynamics remain 

an active area of research (Mann, 2016). There has been also a number of studies addressing 

the monitoring of ULF waves from low-Earth orbit (LEO) satellites (for recent reviews see 

Balasis et al., 2015; Papadimitriou et al., 2018) as well as from the ground (Bogoutdinov et al., 

2018). 

In principle, simultaneous observations at many locations are needed to understand in depth 

their generation and propagation. In particular, continuous pulsations with periods in the 

range 0.2 to 600 s, denoted as Pc 1-2 (0.2–10 s), Pc 3 (10–45 s), Pc 4 (45–150 s), and Pc 5 (150–

 
11 https://www.nasa.gov/sunearth/spaceweather  

https://www.nasa.gov/mission_pages/sunearth/spaceweather/index.html#q11
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600 s), have been extensively studied using measurements from both space-borne and 

ground-based instruments for many years 12. 

ULF plasma waves are broadly of two types, depending on whether their energy source 
originates in the solar wind or from processes within the magnetosphere. Evidence for the 
former comes from the dependence of daytime power in the Pc3 (20–100 mHz), Pc4 (7–20 
mHz) and Pc5 (1.7–7 mHz) ranges on solar wind speed and interplanetary magnetic field (IMF) 
clock angle (e.g. Odera 1986; Engebretson et al. 1987; Mathie and Mann 2001; Kessel et al. 
2004; Francia et al. 2009). Solar wind density also plays an important role in controlling Pc3 
activity (Heilig et al. 2010). Substorms and other instabilities in the tail form an important 
source of ULF waves on the nightside (Menk et al., 2011). 

Table 4: Classification of magnetospheric pulsations wrt their frequency (Jacobs et al., JGR 1964) 

ULF pulsations Period range (s) Frequency (mHz) 

Continuous 
pulsations 

Pc1 0.2 - 5 200-500 
Pc2 5 - 10 100-200 
Pc3 10 - 45 22-100 
Pc4 45 – 150 7-22 
Pc5 150 - 600 2-7 

Impulsive 
pulsations 

Pi1 1 - 40 25-200 
Pi2 40 - 150 7-25 

 

 

 
 

  

 
12 Space Environment lecture notes 2019, National Observatory of Athens, MSc in SSTA 



13 
  

Chapter 3:  Deep Learning  &  Convolutional Neural 

Networks 

3.1. Introduction 

In recent years, deep learning has garnered tremendous success in a variety of application 

domains. This new field of machine learning has been growing rapidly, and has been applied 

to most traditional application domains, as well as some new areas that present more 

opportunities. Different methods have been proposed based on different categories of 

learning, including supervised, semi-supervised, and unsupervised learning. Experimental 

results show state-of-the-art performance using deep learning when compared to traditional 

machine learning approaches in the fields of image processing, computer vision, speech 

recognition, art, medical imaging, bio-informatics, natural language processing (NLP), and 

many others (Alom et al., 2018). This chapter starts with an introduction of the general 

concepts related to Deep Neural Networks (DNN) and concludes focusing on Convolutional 

Neural Networks (CNN), which is the core methodology used in this thesis. 

Machine learning (ML) in general is in its golden age today for the simple reason that methods, 

algorithms, and tools, studied and designed during the last two decades have started to 

produce unexpectedly good results, exploiting the historically unique combination of big data 

availability and cheap computing power. Practically, we can think of machine learning as the 

set of methods and algorithms that can be used for the following problems: (1) make 

predictions in time or space of a continuous quantity (regression); (2) assign a datum to a class 

within a pre-specified set (classification); (3) assign a datum to a class within a set that is 

determined by the algorithm itself (clustering); (4) reduce the dimensionality of a dataset, by 

exploiting relationships among variables; and (5) establish linear and nonlinear relationships 

and causalities among variables (Camporeale et al., 2018). 

Learning is a key importance concept in ML. More specifically, the learning procedure 

estimates the parameters of a certain model that describes the task under study, so that the 

learned model (the model having as parameter values, those estimated by the learning 

process) can perform a specific task. For example, in Artificial Neural Networks (ANN), the 

parameters are the weights of the synapses between nodes. A part of increased significance 

of Machine Leanring (ML) developed largely from 2006 onward, is that of Deep Learning (DL). 

The associated with DL architectures are very complex, a fact that gives them the ability to 

learn very complex tasks, such as, feature learning and pattern classification (Schmidhuber, 

2014; LeCun et al., 2015). 

DL on the other hand consists of several layers in between the input and output layer which 

allows for many stages of non-linear information processing units with hierarchical 

architectures to be present that are exploited for 

ML and its newer subfield, DL, has been utilized in space weather applications at least since 

the 1990s. For example, several attempts have been made to use neural networks and linear 

filters for predicting geomagnetic indices and radiation belt electrons (Baker, 1990; Valdivia 

et al., 1996; Sutcliffe, 1997; Lundstedt, 1997, 2005; Boberg et al., 2000; Vassiliadis, 2000; 

Gleisner and Lundstedt, 2001; Li, 2001; Vandegriff, 2005; Wing et al., 2005). A feature that 

makes space weather very remarkable and perfectly fit in the machine learning framework is 
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the huge amount of data that is usually publicly available and that the released datasets are 

often of very high quality and require only a small amount of preprocessing. 

The machine learning applications to space weather and space physics can generally be 

divided into the following categories (Camporeale et al., 2018): 

• Automatic event identification: Space weather data is typically imbalanced, with 

many hours of observations covering uninteresting/quiet times, and with only a small 

percentage of data of useful events. The identification of events is still often carried out 

manually, following time-consuming and non-reproducible criteria. As an example, 

techniques such as convolutional neural networks can help in automatically identifying 

interesting regions like solar active regions, coronal holes, coronal mass ejections, and 

magnetic reconnection events, as well as to select features. 

• Knowledge discovery: Methods used to study causality and relationships within 

highly dimensional data, and to cluster similar events, with the aim of deepening our physical 

understanding. Information theory and unsupervised classification algorithms fall into this 

category. 

• Forecasting: Machine learning techniques capable of dealing with large class 

imbalances and/or significant data gaps to forecast important space weather events from a 

combination of solar images, solar wind, and geospace in situ data. 

• Modeling: This is somewhat different from forecasting and involves a higher level 

approach where the focus is on discovering the underlying physical and long-term behavior of 

the system. Historically, this approach tends to develop from reduced descriptions based on 

first principles, but the methods of machine learning can in theory also be used to discover 

the nonlinear map that describes the system evolution. 

 

3.2. The image classification problem 

Since our task in this thesis is to classify a set of images, we are solving an image classification 

problem: the task of assigning to an input image a label out of a fixed set of categories. This is 

one of the core problems in Computer Vision that, despite its simplicity, has a large variety of 

practical applications. Moreover, many other seemingly distinct Computer Vision tasks (such 

as object detection, segmentation) can be reduced to image classification.  

An image classification model takes a single image and assigns probabilities to a number of 

labels. Hence, our task is to turn a considerable amount of numbers (which represent the 

intensity of the pixels of the image) into a single label, such as “ULF-wave Event”.  

The approach we follow is referred to as a data-driven approach, since it relies on first 

accumulating a training dataset of labeled images. The complete image classification pipeline 

can be formalized as follows13: 

Input: Our input consists of a set of N images, each labeled with one out of K different classes. 

We refer to this set as the training set. 

Learning: Our task is to use the training set to learn what every one of the classes looks like 

(this implicitly assumes that a sort of knowledge concerning each class will be built). We refer 

to this step as training a classifier, or learning a model. 

Evaluation: In the end, we evaluate the performance of the classifier by asking it to predict 

labels for images with a priori known labels, which have not been used for the training of the 

 
13 F.-F. Li, A. Karpathy, and J. Johnson, “Stanford CS class notes CS231n: Convolutional Neural Networks 

for Visual Recognition” (2020), http://cs231n.stanford.edu/.  

http://cs231n.stanford.edu/
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model (they constitute the test set). We will then compare the true labels of these images to 

the ones predicted by the classifier. Intuitively, we’re hoping that a lot of the predictions 

match up with the true answers (which we call the ground truth). Specifically, high 

classification rates implies that the model generalizes well on images that were not used for 

its training, and thus, it can be trusted for operational purposes (where we do not know the 

label of a certain image and we rely on the classification performed by the classifier). 

3.3. (Parameterized) Mapping from Images to Label Scores 

We could start by defining a simple classifier for image classification that we will eventually 

naturally extend to entire Neural Networks and Convolutional Neural Networks. The approach 

will have two major components: a score function that maps the raw data to class scores, and 

a loss function that quantifies the agreement between the predicted scores and the ground 

truth labels. We will then cast this as an optimization problem in which we will minimize the 

loss function with respect to the parameters of the score function. 

3.3.1. The score function 

The first component of this approach is to define the score function that maps the pixel values 

of an image to confidence scores for each class. We assume a training dataset of images 𝑥𝑖 ∈

ℝ𝐷, each associated with a label 𝑦𝑖  with 𝑖 = 1…𝑁 and 𝑦𝑖 ∈ {1…𝐾}. That is, we have N 

examples (each with a dimensionality D) and K distinct categories. We will now define the 

score function 𝑓:ℝ𝐷 ⟶ ℝ𝐾 , 𝑓(𝑥𝑖 ;𝑊),  that maps the raw image pixels to class scores, i.e., 

a k-dimensional vector containing the scores associated with the classes for the image under 

study (hopefully, the class with the highest score will be the correct one for the image at 

hand).  

The simplest possible function is a linear mapping: 14 

 𝑓(𝑥𝑖  ;𝑊, 𝑏) = 𝑊𝑥𝑖 + 𝑏 (2.1) 

In the above equation, we are assuming that the image  𝑥𝑖 has all of its pixels flattened out to 

a single column vector of shape [D x 1]. The matrix W (of size [K x D]), and the vector b (of size 

[K x 1]) are the parameters of the function. The parameters in W are often called the weights, 

and b is called the bias vector because it influences the output scores, but without interacting 

with the actual data  𝑥𝑖.  

Our goal will be to set these parameters in such way that the computed scores match the 

ground truth labels across the whole training set. Specifically, we wish the correct class to 

have a score that is higher than the scores of incorrect classes. 

Looking at the above equation, we can say that a linear score function computes the score of 

a class as a weighted sum of all of the pixel values of the image across all of its color channels.  

Convolutional Neural Networks will map image pixels to scores exactly as shown above, but 

the mapping (𝑓) will be more complex and will contain more parameters. 

3.3.2. The loss function 

In the previous section we defined a function from the pixel values to class scores, which was 

parameterized by a set of weights (W and b). Now, we want to set those weights so that the 

 
14 In contrast to the general notation used before, in this specific case the parameters are 

contained in the matrix W and the vector b. 



16 
  

predicted class scores are consistent with the ground truth labels in the training data. To do 

so, we define a loss function, through which we will compare the score 𝑓(𝑥𝑖 ;𝑊, 𝑏) with the 

true label  𝑦𝑖. Intuitively, high loss values indicate poor quality data classification, while low 

loss values indicate good classification ability. Hence, in order to find the best possible values 

for these weights, we need to minimize our loss function. This can be done through certain 

optimization methods, as will be discussed later. 

Summary 

Training data: {𝑥𝑖 , 𝑦𝑖} 𝑖 = 1,… , 𝑁,  𝑥𝑖 ∈ ℝ𝐷,  𝑦𝑖 ∈ {1…𝐾} 

Prediction: 𝑓(𝑥𝑖 ,𝑊, 𝑏) 𝑊, 𝑏 - learned parameters 

Loss: 𝐿(𝑓(𝑥𝑖 ,𝑊, 𝑏), 𝑦𝑖) small loss  good predictions 

 

Cross-entropy loss, or log loss, which measures the performance of a classification model 

whose output is a probability value between 0 and 1. Cross-entropy loss increases as the 

predicted probability diverges from the actual label. A perfect model would have a log loss of 

0 15. 

The cross-entropy formula takes in two distributions, 𝑝(𝑥), the true distribution, and 𝑞(𝑥), 

the estimated distribution, defined over a discrete variable x, and is given by  

 𝐻(𝑝, 𝑞) = −∑𝑝(𝑥) 𝑙𝑜𝑔(𝑞(𝑥))

𝑥

 (2.2) 

For a neural network, we usually see the equation written in a form where 𝒚 is the ground 
truth vector and 𝒚̂ is the estimate. For a single example, it would look like this: 

 𝐿 = −𝑦 ⋅ 𝑙𝑜𝑔(𝑦̂) (2.3) 

where ⋅ is the inner product. We often see this equation averaged over all examples as a cost 
function. It is not always strictly adhered to in descriptions, but usually a loss function is lower 
level and describes the degree of accuracy the adopted model responds to a single instance 
or component, whilst a cost function is higher level and describes the degree of accuracy of 
the adopted model over the while data set. A cost function based on multiclass log loss for a 
data set of size N might look like this16: 

 𝐽 = −
1

𝑁
(∑𝑦𝑖 ⋅ 𝑙𝑜𝑔(𝑦̂𝑖)

𝑁

𝑖=1

) (2.4) 

3.4. Artificial Neural Networks (ANNs) 

Artificial neural networks are models inspired by the way the human brain is constructed. 

Their building block is the artificial neuron, which try to mimic the behavior of the human 

brain cells. The basic structure of a node is shown in Figure 1. Specifically, the node receives 

inputs from external sources, and has some internal parameters (including weights and biases 

that are learned during training) which adjust the outputs. This computational unit is called a 

perceptron (Alom et al., 2018). Perceptrons are simple examples of the so-called learning 

machines, that is, structures whose free parameters are updated by a learning algorithm, in 

order to “learn” a specific task, based on a set of training data (Theodoridis & Koutroumbas, 

2003). 

 
15 https://ml-cheatsheet.readthedocs.io/en/latest/   
16 https://datascience.stackexchange.com/  

https://ml-cheatsheet.readthedocs.io/en/latest/loss_functions.html#:~:text=Cross%2Dentropy%20loss%2C%20or%20log,diverges%20from%20the%20actual%20label
https://datascience.stackexchange.com/questions/20296/cross-entropy-loss-explanation
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Returning to Figure 1, let us describe the basic operation of a single neuron. We can see two 

distinct operations: the one is a linear combination of input features and parameters, 𝑧 =

𝑤𝑇𝑥 + 𝑏, and the other is a nonlinear operation, performed by an activation function, 𝑔(𝑧), 

such as a sigmoid. The most well-known class of ANNs are the Multilayer Perceptrons (MLP), 

which contain one or more hidden layers with multiple hidden units (neurons) in each of them. 

 
Figure 5: Basic model of an artificial neuron and its relationship with the human brain. 

(http://cs231n.stanford.edu/) 
 

The notation and indices used in Neural Networks is the following17: 𝑓𝑜𝑜[ℓ] with brackets 

denoting anything associated with layer ℓ, 𝑥(𝑖) with parenthesis refers to the 𝑖𝑡ℎ  training 

example, and 𝑎𝑗
[ℓ] referring to the activation of the 𝑗𝑡ℎ unit in layer ℓ. 

For example, the first hidden unit in the first hidden layer will perform the following 

computation: 

 𝑧1
[1]

= 𝑊1
[1]

𝑥 + 𝑏1
[1]

 and 𝛼1
[1]

= 𝑔 (𝑧1
[1]

) (2.5) 

where 𝑊 is a matrix of parameters and 𝑊1 refers to the first row of this matrix. The 

parameters associated with the first hidden unit is the vector 𝑊1
[1]

∈ ℝ𝑁 and scalar 𝑏1
[1]

∈ ℝ. 

The second hidden unit in the first hidden layer will perform: 

 𝑧2
[1]

= 𝑊2
[1]

𝑥 + 𝑏2
[1]

 and 𝛼2
[1]

= 𝑔 (𝑧2
[1]

) (2.6) 

and so on. Each hidden unit has its corresponding parameters 𝑊 and 𝑏. 

 
Figure 6: Basic architecture of a Neural Net. 

In practice, when implementing the algorithm, we want to avoid for-loops in order to perform 

efficiently the neural network computations. The solution to this is to transform the input 

data, as well as the parameters and the activation functions in a vectorized form.  

 
17 Ng A. & Katanforoosh K. (2018), “Stanford lecture notes CS229: Deep Learning”, 

http://cs229.stanford.edu/summer2020/cs229-notes-deep_learning.pdf 

http://cs231n.stanford.edu/
http://cs229.stanford.edu/summer2020/cs229-notes-deep_learning.pdf
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So, for a single training example, it is represented by (𝑥, 𝑦), where 𝑥 ∈ ℝ𝑛𝑥 and label 𝑦 ∈ ℝ𝑛𝑦, 

where ℝ𝑛𝑥 and ℝ𝑛𝑦 are sets of real 𝑛-vectors (𝑛x1 matrices).  But for the training set  𝑚 , with 

training examples {(𝑥(1), 𝑦(1)), (𝑥(2), 𝑦(2)), … , (𝑥(𝑚), 𝑦(𝑚))}, we define a 𝑛𝑥 x 𝑚 dimensional 

matrix, by stacking them all together in columns: 

 𝑋 = [

│        │         │        │

𝑥(1)      𝑥(2)    ⋯    𝑥(𝑚)

│        │         │        │

]   ,  𝑋 ∈ ℝ𝑛𝑥 x 𝑚 (2.7) 

The labels 𝑦  are usually converted to one-hot encoding, e.g., in the case we have 4 classes, 

Labels 𝑦 0 1 2 3 

one-hot 
encoding 

[

1
0
0
0

] [

0
1
0
0

] [

0
0
1
0

] [

0
0
0
1

] 

 

As for the parameters, for each layer, 𝑊[ℓ], 𝑏[ℓ], we are stacking them as follows: 

 
𝑊[ℓ] =

[
 
 
 
 
   ─   𝑊1

[ℓ]𝑇
  ─  

  ─   𝑊2
[ℓ]𝑇

  ─  

⦙

  ─   𝑊𝑛
[ℓ]𝑇

  ─  ]
 
 
 
 
 

  ,  𝑏[ℓ] =

[
 
 
 
 
 𝑏1

[ℓ]𝑇

𝑏2
[ℓ]𝑇

⦙

𝑏𝑛
[ℓ]𝑇

]
 
 
 
 
 

 

 

(2.8) 

We can then combine this into a single unified formulation: 

 𝑍[ℓ] = [

│          │            │          │

𝑧[ℓ](1)      𝑧[ℓ](2)    ⋯    𝑧[ℓ](𝑚)

│          │            │          │

] = 𝑊[ℓ]𝑋 + 𝑏[ℓ] (2.9) 

where in this case, we refer to the first layer where the input is the training examples (ℓ = 0, 

𝑎[0] = 𝑋). To compute the activation 𝑎[1] without a for-loop, we can leverage vectorized 

libraries in Matlab or Python which compute 𝑎[1] = 𝑔(𝑧[1]) very fast by performing parallel 

element-wise operations. For example, we defined the sigmoid function 𝑔(𝑧) as: 

 𝑔(𝑧) =
1

1+𝑒−𝑧 where  𝑧 ∈ ℝ (2.10) 

However, the sigmoid function can be defined not only for scalars but also for vectors. In a 

Matlab-like pseudocode, we can define the sigmoid as: 

 𝑔(𝑧)  =  1 ./ (1 + 𝑒𝑥𝑝(−𝑧))  where  𝑧 ∈ ℝ𝑛 (2.11) 

where ./ denotes element-wise division. With this vectorized implementation, 𝑎[1] = 𝑔(𝑧[1]) 

can be computed very quickly. 

Finally, for any layer ℓ, its output can be represented mathematically as follows: 

 𝛼[ℓ] = 𝑔[ℓ](𝑊[ℓ]𝑎[ℓ−1] + 𝑏[ℓ]) (2.12) 

Where 𝑎[ℓ−1] represents the concatenation of the activations computed by all the neurons of 

the previous layer.  
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3.5. Output Activation Functions 

The activation functions used in ANNs play an important role in the convergence of the 

learning algorithms (Gomes et al., 2011; Dabal Pedamonti, 2018), and enhance their 

representation capabilities. As we already saw, these functions transform the output score 

vectors before the loss computation in the training phase. An activation function introduces 

the non-linearity in the model. Without non-linear activation functions, the neural network 

will simply perform linear regression 18. An activation has to be a continuous differentiable 

function. As we will see later, differentiation enters into the scene as a requirement for 

performing cost function minimization (Theodoridis & Koutroumbas, 2003). 

a) Sigmoid 

A popular family of continuous differentiable functions, which approximate the step function, 

is the family of sigmoid functions. A typical representative is the logistic function (Theodoridis 

& Koutroumbas, 2003). Its domain is the set of real numbers while its range of values is the 

interval (0,1). It is often used in ANNs in binary classification problems. Sigmoid is applied 

independently to each element of the output vector, 𝑧𝑗, of a certain layer of nodes:  

 𝑓(𝑧𝑗) =
1

1 + 𝑒−𝑧𝑗
 (2.13) 

 
One of the problems of using sigmoid functions during the training, arises in the regions where 

the slope of the function is nearly zero, meaning that learning becomes really slow when 

gradient descent is implemented. In other words, the gradient in these regions is nearly zero 

and the parameters change very slowly yielding to very slow learning (gradient vanishing 

problem). 

b) Softmax 

Softmax takes as input a vector of arbitrary real-valued scores (input vector z, of K real 

numbers) and squashes it into a vector of normalized values between zero and one that sum 

to one. In other words, it normalizes the vector z into a probability distribution consisting of 

K probabilities proportional to the exponentials of the input numbers.  

Hence the output can be viewed as a probability distribution, since it fulfills the relative 

requirements. Therefore, the cross-entropy loss can be applied. For a given score 𝑧𝑗, the 

Softmax function gives: 

 
𝜎𝑗(𝑧) = 𝑃(𝑦 = 𝑗|𝑧) =

𝑒𝑧𝑗

∑ 𝑒𝑧𝑘𝐾
𝑘=1

 

for  𝑗 = 1,… , 𝐾  and  𝑧 = (𝑧1, … , 𝑧𝐾) ∈ ℝ𝐾 

(2.14) 

where 𝐾 is the number of classes. We should note that the Softmax computation, for a given 

score 𝑧𝑗, depends on all the scores in 𝑧, i.e. it is not applied independently to each element 𝑧𝑗. 

 
18 Ng A. & Katanforoosh K. (2018), “Stanford lecture notes CS229: Deep Learning”, 

http://cs229.stanford.edu/summer2020/cs229-notes-deep_learning.pdf 

http://cs229.stanford.edu/summer2020/cs229-notes-deep_learning.pdf
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In other words, this function will calculate the probabilities of each target class over all 

possible target classes. Moreover, looking at the equation, we can see that the exponential 

function (numerator) combined with the normalization (denominator) results high scores in 𝑧 

to become much more probable than low scores. 

The softmax function is often used in the final layer of a neural network-based classifier. For 

a binary classification, using sigmoid is same as softmax and hence we could say that softmax 

is a generalization of sigmoid. For multi-class classification, we use softmax with cross-

entropy. 

c) ReLU 

The Rectified Linear Unit has become very popular in the past few years. Despite its name and 

appearance, it is not linear in its domain and provides the same benefits as Sigmoid but with 

better performance. It is often used within hidden layers of a neural network model, and in 

fact, it is the most popular activation function for deep neural networks. 

 𝑅(𝑧) = max (0, 𝑧) (2.15) 

 

In other words, the activation is simply thresholded at zero (see image above). There are 

several pros in using the ReLUs, some of them are the following 19: 

1. It was found to greatly accelerate (e.g. a factor of 6 is reported in Krizhevsky et al. 2012) 

the convergence of stochastic gradient descent compared to the sigmoid/tanh functions. 

It is argued that this is due to its linear, non-saturating form. 

2. Sparse activation: For example, in a randomly initialized network, only about 50% of 

hidden units are activated (have a non-zero output). 

3. Efficient computation: Compared to tanh/sigmoid neurons that involve expensive 

operations (exponentials, etc.), the ReLU can be implemented by simply thresholding a 

matrix of activations at zero. 

4. Better gradient propagation: Fewer vanishing gradient problems compared to sigmoidal 

activation functions that saturate in both directions. 

3.6. Parameter learning – Backpropagation 

As we already saw, the two steps to define a neural network to learn a specific task are the 

following: (i) establishments of the network architecture, which defines how many layers, how 

many neurons, and how the neurons are connected and (ii) the estimation of the involved the 

parameters (that is, the weights and the biases of the nodes of the network). In this section, 

we will see how to adjust the parameters so that the network to learn the task under study. 

This task involves a parameter initialization phase and the main optimization phase. 

 
19 F.-F. Li, A. Karpathy, and J. Johnson, “Stanford CS class notes CS231n: Convolutional Neural Networks 

for Visual Recognition” (2020), http://cs231n.stanford.edu/. 

http://cs231n.stanford.edu/
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3.6.1. Parameter Initialization 

Before we start training the neural network, we must select an initial value for each of the 

parameters. We do not use the value zero as the initial value because the output of the first 

layer will always be the same and this will cause problems later on when we try to update 

these parameters (i.e., the gradients will all be the same). Usually, we randomly initialize the 

parameters to small values (e.g., normally distributed around zero;  𝒩(0; 0.1)).  

In practice, it turns out there is something even better than random initialization. It is called 

Xavier/He initialization and initializes the weights:  

 𝑤[ℓ] ~ 𝒩 (0,√
2

𝑛[ℓ] + 𝑛[ℓ−1]
) (2.16) 

where 𝑛[ℓ]  is the number of neurons in layer ℓ . This acts as a mini-normalization technique. 

For a single layer, if the variance of the input to the layer is 𝜎(in) and the variance of the output 

(i.e., activations) of the layer 𝜎(out), Xavier/He initialization encourages  𝜎(in)  to be similar 

to 𝜎(out) 20.  Once the parameters have been initialized, we can begin training the neural 

network with gradient descent. 

3.6.2. Optimization 

Optimization is the process of finding the set of parameters 𝜃 = {𝑊, 𝑏} that minimize the loss 

function. A popular general optimization algorithm that, among others, have been used for 

the training of neural networks, is that of gradient descent (GD), which is briefly described 

below. 

• Gradient descent (GD):  

The gradient descent approach is a first order optimization algorithm which is used for finding 

the local minima of an objective function. Algorithm I explains the concept of gradient 

descent: 

Algorithm I. Gradient descent 

Inputs: loss function ℒ, learning rate 𝒶, dataset 𝑋, 𝑦 and the model ℎ(𝜃, 𝑥)    

Outputs: Optimum 𝜃 which minimizes ℒ 

REPEAT until converge: 

𝑦̂𝑖 =  ℎ(𝜃, 𝑥𝑖);         (i = 1,…,N) 

𝜃 ∶= 𝜃 − 𝒶 ∙  
1

𝑁
∑

𝜕ℒ(𝑦𝑖 , 𝑦̂𝑖)

𝜕𝜃

𝑁

𝑖=1

 

End 

 

However, gradient descent requires a long training time, especially in the case where the size 

of the data is very high. An alternative of GD that deals with this problem is the stochastic 

gradient descent scheme. 

 
20 Ng A. & Katanforoosh K. (2018), “Stanford lecture notes CS229: Deep Learning”, 

http://cs229.stanford.edu/summer2020/cs229-notes-deep_learning.pdf 

http://cs229.stanford.edu/summer2020/cs229-notes-deep_learning.pdf
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• Stochastic Gradient Descent (SGD):  

The SGD approach is a well-established technique from the 50s, which nowadays is used for 

training Deep Neural Networks (DNN) (Bottou, 2012). Algorithm II explains SGD in detail: 

Algorithm II. Stochastic Gradient Descent (SGD) 

Inputs: loss function ℒ, learning rate 𝒶, dataset 𝑋 = {(𝑥𝑖, 𝑦𝑖), 𝑖 = 1, . . . , 𝑁}, 
and the model ℎ(𝜃, 𝑥)    

Outputs: Optimum 𝜃 which minimizes ℒ 

REPEAT until converge: 

For each example, select randomly a sample; 

Compute  𝑦̂𝑖 =  ℎ(𝜃, 𝑥𝑖); 

𝜃 ∶= 𝜃 − 𝒶 ∙  
𝜕ℒ(𝑦𝑖 , 𝑦̂𝑖)

𝜕𝜃
 

End 

Stochastic gradient descent attempts to approximate the gradient from (full) gradient 

descent.  

In practice, a compromise between GD and SGD is used, giving rise to the mini-batch gradient 

descent. In the mini-batch gradient descent case, the cost function 𝐽𝑚𝑏 is defined as follows21:  

 𝐽𝑚𝑏 =
1

B
∑ℒ(𝑖)

B

𝑖=1

 (2.17) 

where 𝐵 is the number of examples in the mini batch. 

3.6.3. Back-propagation algorithm 

Deep neural networks (DNNs) are trained with the popular backpropagation (BP) algorithm 

(Rumelhart et al., 1998). Actually, this is a GD algorithm, which can be viewed under either 

the classical GD or the SGD framework. The pseudocode of the basic backpropagation is given 

in Algorithm III.  

In the case of MLPs, we can easily represent NN models using computation graphs which are 

directive acyclic graphs. We can use the chain-rule to efficiently calculate the gradient from 

the top to the bottom layers with BP as shown in Algorithm III for a single path network. For 

example (Alom et al., 2018): 

 𝑦 = 𝑓(𝑥) = 𝑔(𝑊[𝐿] …𝑔(𝑊[2]𝑔(𝑊[1]𝑥 + 𝑏[1]) + 𝑏[2])…+ 𝑏[𝐿]) (2.18) 

This is the composite function for 𝐿 layers of a network. In case of  𝐿 = 2 , then the function 

can be written as 

 𝑦 = 𝑓(𝑥) = 𝑓(𝑔(𝑥)) (2.19) 

According to the chain rule, the derivative of this function can be written as 

 

 
21 Ng A. & Katanforoosh K. (2018), “Stanford lecture notes CS229: Deep Learning”, 

http://cs229.stanford.edu/summer2020/cs229-notes-deep_learning.pdf 

 
𝜕𝑦

𝜕𝑥
=

𝜕𝑓(𝑥)

𝜕𝑥
= 𝑓′(𝑔(𝑥)) · 𝑔′(𝑥) (2.20) 

http://cs229.stanford.edu/summer2020/cs229-notes-deep_learning.pdf
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Algorithm III. Backpropagation (SGD version) 

Input: A network with ℓ layers, the activation function 𝑔(𝑧[ℓ]), 

the outputs of hidden layer 𝛼[ℓ] = 𝑔(𝑊[ℓ]𝑎[ℓ−1] + 𝑏[ℓ])  and 

the network output 𝑦̂ = 𝛼[ℓ]  

Compute the gradient: 𝛿  
𝜕ℒ(𝑦𝑖,𝑦̂𝑖)

𝜕𝑦
  

For 𝑖  ℓ down to 1 do  

Calculate gradient for present layer:  

𝜕ℒ(𝑦,𝑦̂)

𝜕𝑊[ℓ] =
𝜕ℒ(𝑦,𝑦̂)

𝜕𝑎[ℓ]

𝜕𝑎[ℓ]

𝜕𝑊[ℓ] = 𝛿
𝜕𝑎[ℓ]

𝜕𝑊[ℓ]  

𝜕ℒ(𝑦,𝑦̂)

𝜕𝑏[ℓ] =
𝜕ℒ(𝑦,𝑦̂)

𝜕𝑎[ℓ]

𝜕𝑎[ℓ]

𝜕𝑏[ℓ] = 𝛿
𝜕𝑎[ℓ]

𝜕𝑏[ℓ]  

Apply gradient descent using 
𝜕ℒ(𝑦,𝑦̂)

𝜕𝑊[ℓ]  and 
𝜕ℒ(𝑦,𝑦̂)

𝜕𝑏[ℓ]   

Update the parameters: 

𝑊[ℓ] ≔ 𝑊[ℓ] −  𝒶
𝜕ℒ(𝑦,𝑦̂)

𝜕𝑊[ℓ]   

𝑏[ℓ] ≔ 𝑏[ℓ] −  𝒶
𝜕ℒ(𝑦,𝑦̂)

𝜕𝑏[ℓ]   

Back-propagate gradient to the lower layer:  

𝛿   
𝜕ℒ(𝑦,𝑦̂)

𝜕𝑎[ℓ]

𝜕𝑎[ℓ]

𝜕𝑎[ℓ−1] = 𝛿
𝜕𝑎[ℓ]

𝜕𝑎[ℓ−1]  

End  

Actually, the name backpropagation indicates the way the updating of the parameters takes 

place. Thus, the gradient terms corresponding to the nodes of the output layer are computed 

first, then the gradient terms corresponding to the nodes of the previous layer are computed 

and so on, until the first layer parameters is reached. 

3.6.4. Learning rate (𝓪) 

The learning rate is an important component for training DNN (as explained in Algorithm I and 

II). The learning rate is the step size considered during training which controls the training 

process. The performance of BP is very sensitive to the choice of the learning rate. For 

example: if a larger value for 𝒶 is chosen, the network may diverge or oscillate, instead of 

converging. On the other hand, if a smaller value for 𝒶 is chosen, it will take more time for the 

network to converge. In addition, it may easily get stuck in local minima. The typical solution 

for this problem is to reduce the learning rate during training (Bottou, 2012). 

3.7. Cross-validation  

Cross-validation is mainly used as a more sophisticated technique for hyperparameter tuning 

(it can be used also for a more accurate error rate estimation), especially in cases where the 

size of the training data (and therefore also the validation data) might be small. The idea is 

that instead of splitting arbitrarily once the whole data set we have at our disposal to a training 
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and a validation set (e.g. arbitrarily picking the first e.g. 1000 datapoints to be the validation 

set and rest training set), we can get a better and less noisy estimate of how well a certain 

value of a hyperparameter k works by iterating over different validation sets and averaging 

the performance across these. For example, in 5-fold cross-validation, we would split the 

training data into 5 equal folds, use 4 of them for training, and 1 for validation. We would then 

iterate over which fold is the validation fold, evaluate the performance, and finally average 

the performance across the different folds22. 

3.8. Convolutional Neural Networks (CNNs / ConvNets) 

The Convolutional Neural Network structure is a special neural network architecture that was 

first proposed by Fukushima in 1988. It was not widely used however due to limits of  

hardware for training the network. In the 1990s, LeCun et al. applied a gradient-based learning 

algorithm to CNNs and obtained successful results for the handwritten digit classification 

problem (LeCun et al., 1998). After that, researchers further improved CNNs and reported 

state-of-the-art results in many recognition tasks. CNNs have several advantages over DNNs, 

including being more similar to the human visual processing system, being highly optimized in 

structure for processing 2D and 3D images, and being effective at learning and extracting 

abstractions of 2D features. Moreover, being composed of sparse connections with tied 

weights, CNNs involve significantly fewer parameters than a fully connected (FC) network of 

similar size (Alom et al., 2018). 
Convolutional Neural Networks are very similar to ordinary Neural Networks: they are made 

up of neurons that have learnable weights and biases. Each neuron receives some inputs, 

performs a dot product, which (optionally) passes through a non-linearity. The whole network 

still expresses a single differentiable score function: from the raw image pixels on one end to 

class scores at the other. And they still have a loss function (e.g. SVM/Softmax) on the last 

(fully-connected) layer and all the tips/tricks for learning regular Neural Networks still apply. 

The difference is that ConvNet architectures make the explicit assumption that the inputs are 

images, which allows us to encode certain properties into the architecture. These then make 

the forward function more efficient to implement and vastly reduce the amount of 

parameters in the network 23. 

Images can be represented as a matrix with number of elements equal to the number of pixels. 

Color images are digitally represented as a volume (e.g., three-channels or three matrices 

stacked on each other for an RGB image). Hence, in general, an image is of size (𝑥, 𝑦, 𝑐), where 

𝑥, 𝑦 are its spatial and 𝑐 its spectral dimensions. To input such an image in a neural network, 

it must be flattened into a single vector containing  𝑥 ∗ 𝑦 ∗ 𝑐  elements. 

Convolutional Neural Networks take advantage of the fact that the input consists of the raw 

images, of size (𝑥, 𝑦, 𝑐), and therefore they constrain the architecture in a more sensible way. 

In particular, unlike a regular Neural Network, the layers of a ConvNet have neurons arranged 

in 3 dimensions: width, height, depth. The neurons in a CNN layer will only be connected to a 

small region of the layer before it, instead of all of the neurons in a fully-connected manner. 

Moreover, the final output layer would be one-dimensional, because by the end of the 

 
22 F.-F. Li, A. Karpathy, and J. Johnson, “Stanford CS class notes CS231n: Convolutional Neural Networks 

for Visual Recognition” (2020), http://cs231n.stanford.edu/. 
23 F.-F. Li, A. Karpathy, and J. Johnson, “Stanford CS class notes CS231n: Convolutional Neural Networks 

for Visual Recognition” (2020), http://cs231n.stanford.edu/. 

http://cs231n.stanford.edu/
http://cs231n.stanford.edu/
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ConvNet architecture, the full image is mapped into a single vector of class scores, arranged 

along the depth dimension. 

3.8.1. Layers used to build ConvNets 

A simple ConvNet is a sequence of layers, and every layer of a ConvNet transforms one volume 

of activations to another through a differentiable function. Three main types of layers are used 

to build ConvNet architectures: Convolutional Layer, Pooling Layer, and Fully-Connected 

Layer (exactly as seen in regular Neural Networks). These layers are stacked together to form 

a full ConvNet architecture. 

 
Figure 7: The two major processes in a Convolutional Neural Net: convolution & max pooling. 

• Convolutional Layer 

The Conv layer is the core building block of a Convolutional Network that does most of the 

computational heavy lifting. The CONV layer’s parameters consist of a set of learnable filters. 

Every filter is small spatially (along width and height), but extends through the full spectral 

depth of the input volume. For example, a typical filter on a first layer of a ConvNet might 

have size 5x5x3 (i.e. 5 pixels width and height, and 3 because RGB images have depth 3, the 

color channels). During the forward pass, we slide (more precisely, convolve) each filter across 

the width and height of the input volume and compute dot products between the entries of 

the filter and the input at any position. As we slide the filter over the width and height of the 

input volume we produce a 2-dimensional activation map that gives the responses of that 

filter at every spatial position. Intuitively, the network will learn filters that activate when they 

see some type of visual feature such as an edge of some orientation or a blotch of some color 

on the first layer, or eventually entire honeycomb or wheel-like patterns on higher layers of 

the network. Now, we have an entire set of filters in each CONV layer (e.g. 12 filters), and each 

of them produce a separate 2-dimensional activation map. We stack these activation maps 

along the depth dimension and produce the output volume. Some important issues of the 

CONV layer are now presented in the next paragraphs. 

Local Connectivity: When dealing with high-dimensional inputs such as images, it is 

impractical to connect neurons to all neurons in the previous volume. Instead, we connect 

each neuron to only a local region of the input volume. The spatial extent of this connectivity 

is a hyperparameter called the receptive field of the neuron (equivalently this is the filter size). 

The extent of the connectivity along the depth axis (spectral axis) is always equal to the depth 

of the input volume. It is important to emphasize again this asymmetry in how we treat the 

spatial dimensions (width and height) and the depth dimension: The connections are local in 

space (along width and height), but always full along the entire depth of the input volume. 

For example, suppose that the input volume has size [32x32x3]. If the receptive field (or the 

filter size) is 5x5, then each neuron in the Conv Layer will have weights to a [5x5x3] region in 
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the input volume, for a total of 5*5*3 = 75 weights (and a bias parameter). The extent of the 

connectivity along the depth axis must be 3, since this is the depth of the input volume. 

Spatial arrangement: We saw the connectivity of each neuron in the Conv Layer to the input 

volume, but we haven’t yet seen how many neurons there are in the output volume or how 

they are arranged. Three hyperparameters control the size of the output volume: the depth, 

stride and zero-padding.  

1. First, the depth of the output volume is a hyperparameter: it corresponds to the number 

of filters we would like to use, each learning to identify different aspects in the input. For 

example, if the first Convolutional Layer takes as input the raw image, then different 

neurons along the depth dimension may activate in presence of various oriented edges, 

or blobs of color. We refer to a set of neurons that are all looking at the same region of 

the input as a depth column. 

2. Second, we must specify the stride with which we slide the filter. When the stride is 1 

then we move the filters one pixel at a time (that is, from the current pixel we move to its 

neighboring one). When the stride is 2 (or uncommonly 3 or more, though this is rare in 

practice) then the filters jump 2 pixels at a time as we slide them around. This will produce 

smaller output volumes spatially. 

3. Sometimes it is convenient to pad the input volume with zeros around the border. The 

size of this zero-padding is a hyperparameter. The nice feature of zero padding is that it 

will allow us to control the spatial size of the output volumes (most commonly we use it 

to exactly preserve the spatial size of the input volume so the input and output width and 

height are the same). 

We can compute the spatial size of the output volume as a function of the input volume size 

(𝑊), the receptive field size of the Conv Layer neurons (i.e., the filter size, 𝐹), the stride with 

which they are applied (𝑆), and the amount of zero padding used (𝑃) on the border. The 

number of neurons that “fit” is given by  (𝑊 − 𝐹 + 2𝑃) 𝑆 + 1⁄ . For example, for a 7x7 input 

and a 3x3 filter with stride 1 and zero padding, we would get a 5x5 output. With stride 2 we 

would get a 3x3 output. In general, setting zero padding to be  𝑃 = (𝐹 − 1)/2  when the stride 

is 𝑆 = 1 ensures that the input volume and output volume will have the same size spatially. 

Constraints on strides: The spatial arrangement of hyperparameters have mutual constraints. 

For example, when the input has size 𝑊 = 10, no zero-padding is used 𝑃 = 0, and the filter 

size is  𝐹 = 3, then it would be impossible to use stride 𝑆 = 2, since (𝑊 − 𝐹 + 2𝑃) 𝑆 + 1⁄ =

(10 − 3 + 0)/2 + 1 = 4.5, i.e. a fractional value, indicating that the neurons don’t “fit” neatly 

and symmetrically across the input. Therefore, this setting of the hyperparameters is 

considered to be invalid, and a ConvNet library could e.g. throw an exception or zero pad the 

rest to make it fit, or crop the input to make it fit. Sizing the ConvNets appropriately so that 

all the dimensions “work out” can be a real headache, which the use of zero-padding around 

the border might significantly alleviate.  

Parameter Sharing: Parameter sharing scheme is used in Convolutional Layers to control the 

number of parameters. It turns out that we can dramatically reduce the number of parameters 

by making the following reasonable assumption: if one feature is useful to compute at some 

spatial position (x,y), then it should also be useful to compute at a different position (x2,y2). 

In other words, denoting a single 2-dimensional slice of depth as a depth slice, we are going 

to constrain the neurons in each depth slice to use the same weights and bias. With this 

parameter sharing scheme, the first Conv Layer in our example would now have only one 

unique set of weights for each depth slice. Alternatively, all neurons in each depth slice will 

now be using the same parameters. In practice during backpropagation, every neuron in the 
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volume will compute the gradient for its weights, but these gradients will be added up across 

each depth slice and only update a single set of weights per slice. 

So if all neurons in a single depth slice are using the same weight vector, then the forward 

pass of the CONV layer can in each depth slice be computed as a convolution of the neuron’s 

weights with the input volume (Hence the name: Convolutional Layer). This is why it is 

common to refer to the sets of weights as a filter (or a kernel), that is convolved with the input. 

Summary for the Conv Layer 

Accepts a volume of size 𝑊1 × 𝐻1 × 𝐷1 

Requires four hyperparameters: 
o Number of filters 𝐾, 
o their spatial extent 𝐹, 
o the stride 𝑆, 
o the amount of zero padding 𝑃. 

Produces a volume of size 𝑊2 × 𝐻2 × 𝐷2 where: 
o 𝑊2 = (𝑊1 − 𝐹 + 2𝑃)/𝑆 + 1 
o 𝐻2 = (𝐻1 − 𝐹 + 2𝑃)/𝑆 + 1 (i.e. width and height 

are computed equally by symmetry) 
o 𝐷2 = 𝐾 

With parameter sharing, it introduces 𝐹 ⋅ 𝐹 ⋅ 𝐷1 weights per 
filter, for a total of (𝐹 ⋅ 𝐹 ⋅ 𝐷1) ⋅ 𝐾 weights and 𝐾 biases. 

In the output volume, the 𝑑-th depth slice (of size 𝑊2 × 𝐻2) is 
the result of performing a valid convolution of the 𝑑-th filter over 
the input volume with a stride of 𝑆, and then offset by 𝑑-th bias. 

• Pooling Layer 

It is common to periodically insert a Pooling layer in-between successive Conv layers in a 

ConvNet architecture. Its function is to progressively reduce the spatial size of the 

representation to reduce the amount of parameters and computation in the network, and 

hence to also control overfitting. The Pooling Layer operates independently on every depth 

slice of the input and resizes it spatially, using the MAX operation (other operations are also 

used; see below). The most common form is a pooling layer with filters of size 2x2 applied 

with a stride of 2 downsamples every depth slice in the input by 2 along both width and height, 

discarding 75% of the activations. Every MAX operation would in this case determining max 

over 4 numbers (small 2x2 region in some depth slice). The depth dimension remains 

unchanged.  

Summary for the pooling Layer 

Accepts a volume of size 𝑊1 × 𝐻1 × 𝐷1. 

Requires two hyperparameters: 
o their spatial extent 𝐹, 
o the stride 𝑆. 

Produces a volume of size 𝑊2 × 𝐻2 × 𝐷2 where: 
o 𝑊2 = (𝑊1 − 𝐹)/𝑆 + 1 
o 𝐻2 = (𝐻1 − 𝐹)/𝑆 + 1 
o 𝐷2 = 𝐷1. 

Introduces zero parameters since it computes a fixed function of the input. 

For pooling layers, it is not common to pad the input using zero-padding. 
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General pooling: In addition to max pooling, the pooling units can also perform other 

functions, such as average pooling or even L2-norm pooling. Average pooling was often used 

historically but has recently fallen out of favor compared to the max pooling operation, which 

has been shown to work better in practice. 

• Fully-connected layer 

Neurons in a fully connected layer have full connections to all activations in the previous layer, 

as seen in regular Neural Networks. Their activations can hence be computed with a matrix 

multiplication followed by a bias offset.  

It is worth noting that the only difference between FC and CONV layers is that the neurons in 

the CONV layer are connected only to a local region in the input, and that many of the neurons 

in a CONV volume share parameters. However, the neurons in both layers still compute dot 

products, so their functional form is identical. 

3.8.2. Layer Sizing Patterns 

The common rules of thumb for sizing the architectures are the following: 

The input layer (that contains the image) should be divisible by 2, many times. Common 

numbers include 32 (e.g. CIFAR-10), 64, 96 (e.g. STL-10), or 224 (e.g. common ImageNet 

ConvNets), 384, and 512. 

The conv layers should be using small filters (e.g. 3x3 or at most 5x5), using a stride of 𝑆 = 1, 

and crucially, padding the input volume with zeros in such way that the conv layer does not 

alter the spatial dimensions of the input. That is, when 𝐹 = 3, then using 𝑃 = 1 will retain the 

original size of the input. When  𝐹 = 5, 𝑃 = 2. For a general 𝐹, it can be seen that  𝑃 =

(𝐹 − 1) 2 ⁄  preserves the input size. It is not common to use larger filter sizes (such as 7x7 or 

so), except the very first conv layer that is looking at the input image. 

The pool layers are in charge of downsampling the spatial dimensions of the input. The most 

common setting is to use max-pooling with 2x2 receptive fields (i.e. 𝐹 = 2), and with a stride 

of 2 (i.e. 𝑆 = 2). This discards exactly 75% of the activations in an input volume (due to 

downsampling by 2 in both width and height). Another slightly less common setting is to use 

3x3 receptive fields with a stride of 2 (this is also called overlapping pooling). It is very 

uncommon to see receptive field sizes for max pooling that are larger than 3 because the 

pooling is then too lossy and aggressive. This usually leads to worse performance. 

The use of stride = 1: Smaller strides work better in practice. Additionally, stride 1 allows us to 

leave all spatial down-sampling to the POOL layers, with the CONV layers only transforming 

the input volume depth-wise. Stride > 1 may apply on data with high resolution. 

The use of padding: In addition to the benefit of keeping the spatial sizes constant after CONV, 

doing this actually improves performance. If the CONV layers were to not zero-pad the inputs 

and only perform valid convolutions, then the size of the volumes would reduce by a small 

amount after each CONV, and the information at the borders would be “washed away” too 

quickly24.  

 

 

 
24 F.-F. Li, A. Karpathy, and J. Johnson, “Stanford CS class notes CS231n: Convolutional Neural Networks 

for Visual Recognition” (2020), http://cs231n.stanford.edu/. 

http://cs231n.stanford.edu/
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3.9. The k-Nearest Neighbors (kNN) and the Support Vector Machine (SVM) 

classifiers 

To validate our methodology and the accuracy we obtained through the ConvNet classifier 

implementation, we had to compare it with other popular and competitive classifiers. For this, 

we used k-Nearest Neighbors (kNN) and Support Vector Machines (SVM). Here, we briefly 

describe the theory behind those two methods. 

• k-Nearest Neighbors 

The algorithm for the so-called nearest neighbor rule is summarized as follows (Theodoridis & 

Koutroumbas, 2006). Given an unknown feature vector 𝒙 and a distance measure, then: 

- Out of the N training vectors, identify the 𝑘 nearest neighbors, irrespective of class 

label. 𝑘 is chosen to be odd for a two-class problem, and in general not to be a multiple 

of the number of classes M. 

- Out of these k samples, identify the number of vectors, 𝑘𝑖, that belong to class 𝜔𝑖, 𝑖 =

1, 2, . . . , 𝑀. Obviously, ∑ 𝑘𝑖𝑖 = 𝑘. 

- Assign 𝒙 to the class 𝜔𝑖  with the maximum number  𝑘𝑖   of samples. 

Remarks 

- Various distance measures can be used, including the Euclidean and Mahalanobis 

distance. The simplest version of the algorithm is for 𝑘
= 1, known as the Nearest 

Neighbor (NN) rule. In other words, a feature vector 𝒙 is assigned to the class of its 

nearest neighbor. Provided that the number of training samples is large enough, this 

simple rule exhibits good performance.  

- A serious drawback associated with (k)NN techniques is the complexity in search of 

the nearest neighbor(s) among the N available training samples. The problem 

becomes particularly severe in high-dimensional feature spaces follows (Theodoridis 

& Koutroumbas, 2006). 

 

• Support Vector Machines 

This algorithm searches for a hyperplane that best separate two classes that are linearly 

separable. Due to some interesting properties of this method, we can also extend its 

application to non-linear classification problems. It can be also extended in multi-class 

classification problems. A very sensible choice for the hyperplane classifier would be the one 

that leaves the maximum margin from both classes. A hyperplane is defined by its direction 

(determined by w) and its exact position in space (determined by w0). Our goal is to search for 

the direction that gives the maximum possible margin. For each 𝒙𝑖 , we denote the 

corresponding class indicator by 𝑦𝑖  (+1 for 𝜔1, -1 for 𝜔2).  

Initially, we can define an optimization problem as follows: Compute the parameters 𝒘 , 𝑤0 

of the hyperplane so that to (Theodoridis & Koutroumbas, 2006): 

- minimize   𝐽(𝒘) =
1

2
‖𝒘‖2 

- subject to 𝑦𝑖(𝒘
𝑇𝒙𝑖 + 𝑤0) ≥ 1,  𝑖 = 1, 2, … , 𝑁 
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Obviously, minimizing the norm makes the margin maximum. This is a nonlinear (quadratic) 

optimization task subject to a set of linear inequality constraints.  

The vector parameter 𝒘 of the optimal solution is a linear combination of 𝑁𝑠 ≤ 𝑁 feature 

vectors which are associated with 𝜆𝑖 ≠ 0, where 𝜆𝑖 are the Lagrange multipliers. That is, 𝒘 =

∑ 𝜆𝑖𝑦𝑖𝒙𝑖
𝑁𝑠
𝒊=𝟏 . These are known as support vectors and the optimum hyperplane classifier as a 

support vector machine (SVM). The margin is finally defined as the distance between the pair 

of parallel hyperplanes described by:  𝒘𝑇𝒙 + 𝑤0 = ±1. 

 
Figure 8: An example of a linearly separable two-class problem with two possible linear classifiers. The 
margin for direction 2 is larger than the margin for direction 1 (Theodoridis & Koutroumbas, Pattern 

Recognition, 2006). 

After a bit of algebra our optimization task can be summarized as (Theodoridis & 

Koutroumbas, 2006):  

max
𝜆

(∑ 𝜆𝑖
𝑁
𝑖=1 −

1

2
∑ 𝜆𝑖𝜆𝑗𝑦𝑖𝑦𝑗𝒙𝑖

𝑇𝒙𝑗𝑖,𝑗 ) ,   subject to ∑ 𝜆𝑖𝑦𝑖 = 0𝑁
𝑖=1  ,    𝝀 ≥ 0 ,   where 𝝀 the 

vector of the Lagrange multipliers.  

Remarks 

- The training vectors enter into the game in pairs, in the form of inner products. This 

is most interesting. The cost function does not depend explicitly on the dimensionality 

of the input space. This property allows for efficient generalizations in the case of 

nonlinearly separable classes. 

- Although the resulting optimal hyperplane is unique, there is no guarantee about the 

uniqueness of the associated Lagrange multipliers 𝜆𝑖 (Theodoridis & Koutroumbas, 

2006).    
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Chapter 4:  Preprocessing steps  &  ConvNet Model 

Implementation 

All the preprocessing steps, from the first familiarization with Swarm data to the generation 

of the final product, i.e. the wavelet spectrum images, were implemented in MATLAB, while 

the input dataset (i.e., the labeled images) and the CNN model were implemented using 

Python and its ML/DL framework TensorFlow25.  

4.1. Preprocessing 

The preprocessing includes: 

• Familiarization with Swarm satellite measurements: 

o Plots of magnetic field measurements using data from VFM and ASM 

instruments of the three Swarm satellites; 

o Comparison between “quiet” time periods and periods when a 

magnetospheric storm had occurred (e.g., March 2015); 

o Use of CHAOS-6 geomagnetic field model 26 on Swarm time series, in order to 

isolate each magnetic field contribution, i.e., magnetic field source from 

Earth’s core, crust, magnetosphere; 

o Comparison with various indices of magnetic activity such as Dst and Kp 27. 

 

 
satA, quiet day, 09-03-2015 satA, stormy day, 17-03-2015 

  

  
Figure 9: Example plots of Swarm-Alpha magnetic field measurements (total magnitude calculated from VFM 
instrument) per day (first row), and subtracting CHAOS-6 model internal sources (core & crust contributions), for 
two different days of March 2015, a quiet day (left column) and a stormy day (right column).   

 
25 https://www.tensorflow.org/  
26 http://www.spacecenter.dk/files/magnetic-models/CHAOS-6/  
27 https://omniweb.gsfc.nasa.gov/ 

https://www.tensorflow.org/
http://www.spacecenter.dk/files/magnetic-models/CHAOS-6/
https://omniweb.gsfc.nasa.gov/form/dx1.html
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Figure 10: Magnetic field vector components, NEC frame. Core, crust and external sources derived from CHAOS-6 

model (up), subtracted from Swarm-A total magnetic field vector components, NEC frame (middle), and “zoomed-
in” ±50 deg. latitude (down), for the 9th of March 2015 (“quiet” day). 
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Figure 11: Magnetic field vector components, NEC frame. Core, crust and external sources derived from CHAOS-6 

model (up), subtracted from Swarm-A total magnetic field vector components, NEC frame (middle), and “zoomed-
in” ±50 deg. latitude (down), for the 17th of March 2015 (“stormy” day). 
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Figure 12: Example plots of the Earth’s external magnetic field source using the CHAOS-6 model in combination 

with Swarm data, and comparison with the Dst index, for the period 15-22 March 2015, where a magnetic storm 
has occurred (started on 17 of March). 

 

• Familiarization with various methods on time series analysis, such as filtering, Fourier 

and Wavelet transform; 

• Plots of magnetic field time series per day for each satellite and then cut per satellite 

track (i.e., -90° to +90° latitude), in order to “zoom in” the occurring events; 

• Segmented into mid-latitudinal tracks (i.e., -45° to +45°  latitude), in order to exclude 

the influence of polar FACs that might affect the measurements; 

• High pass (HP) filtering, using Butterworth filter, with a cutoff frequency of 16 mHz, in 

order to isolate the Pc3 ULF pulsations; 

• Wavelet analysis on the produced time series, which gives us the final 3D images. 
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Figure 13: Example plots of the filtered magnitude (derived from Swarm ASM instrument) per satellite track, its 
wavelet transform, and the Swarm electron density measurement along with satellite latitude, wrt time. 
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4.2. CNN Model Implementation 

The CNN model implementation includes the following steps: 

• The creation of the input dataset (X, y), where X the wavelet spectrum images and y 

their labels. To do so, we split the wavelet images in four different categories and give 

each category a different label, as follows: 

o label y = 0: “Pc3 ULF wave events”     →   wavelet spectrum image x represents 

a Pc3 ULF wave event (16-100 mHz); 

o label y = 1: “non-ULF signals”  →   wavelet spectrum image x doesn’t show 

any significant wave activity (mainly background noise); 

o label y = 2: “False Positives” (FP)  →   wavelet spectrum image x shows 

anomalous signals due to e.g.  spikes or discontinuities in the measurements; 

o label y = 3: “Plasma Instabilities” (PI)   →   wavelet spectrum image x 

represents plasma instabilities, i.e., events that are influenced or caused by 

Equatorial Spread F (ESF) irregularities (Stolle et al., 2006; Park et al., 2013) or 

in general by other, unclassified anomalies in the ionosphere, in near-

equatorial, night-side areas. 

 
Figure 14: Examples of the four categories used in our classification problem. 

• The construction of the CNN building blocks. An abstract representation of the CNN 

architecture is the following:  

𝐶𝑂𝑁𝑉1 → 𝑅𝐸𝐿𝑈 → 𝑃𝑂𝑂𝐿1 → 𝐶𝑂𝑁𝑉2 → 𝑅𝐸𝐿𝑈 → 𝑃𝑂𝑂𝐿2 →   

𝐹𝐿𝐴𝑇𝑇𝐸𝑁 →  𝐹𝑈𝐿𝐿𝑌𝐶𝑂𝑁𝑁𝐸𝐶𝑇𝐸𝐷 → 𝑆𝑂𝐹𝑇𝑀𝐴𝑋. 

In the first stage of the CNN model, each image from the input data X, (of size (𝑛𝐻 x 

𝑛𝑊 x 𝑛𝐶 x m), where 𝑛𝐻 and 𝑛𝑊 the image height and width respectively (spatial 

dimensions), 𝑛𝐶  the number of channels (spectral dimensions), and m the number of 

training examples) passes through convolution operations with 8 filters of size 𝑓 = 4, 

stride s = 1, and zero-padding with p = (𝑓−1)/2 (“same” padding) in order to give the 

same spatial size output. The result then passes through a non-linear operation 

(ReLU), which doesn’t change the input dimensions. The output of the non-linear 

activation function gets through a pooling layer, which implements a max-pooling 
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operation using a kernel of size 8x8, stride 8 and zero-padding, to give an output 

volume with smaller spatial size and same spectral size.  

Next, we are moving to the second stage of the CNN model where we have the same 

sequence of layers with slight different parameters: convolution operations with 16 

filters of size 2x2, stride 1 and “same” zero-padding, followed by a ReLU activation 

function, followed by a max-pooling operation with kernel size 4x4, stride 4 and 

“same” zero-padding. 

The output volume then passes through a flattening process, which converts it into a 

1D feature vector. The top layer is a fully connected layer (FC), with one output unit 

per class label (Ciresan et al., 2011), i.e. four neurons, since we have four different 

classes. The non-linearity in the FC layer is introduced through the Softmax activation 

function. 

• Training the model - Backpropagation: 

We train our model (update the parameters and minimize the cost) using Adam 

optimization, instead of the classical stochastic gradient descent procedure, with 64-

sized mini-batches (64 examples per batch) and a cross-entropy loss function. The 

initial learning rate of the optimization is 0.009. The model is trained for 100 epochs, 

i.e. we update the parameters in the optimization loop 100 times. 

 

 

Figure 15: A simple representation of the Convolutional Neural Net architecture: Two convolutional followed by 

max pooling layers and one fully connected layer were used.  

In the FC layer we use a regularization technique in order to avoid overfitting. Overfitting can 

be reduced by using “Dropout” (see Figure 15) to prevent complex co-adaptations on the 

training data (Hinton et al., 2012).  

In general, when a large feedforward neural network is trained on a small training set, it 

typically performs poorly on held-out test data. This “overfitting” is found that can be greatly 

reduced by randomly omitting half of the feature detectors on each training case. More 

precisely, on each presentation of each training case, each hidden unit is randomly omitted 

from the network with a probability of 0.5, so a hidden unit cannot rely on other hidden units 

being present (Hinton et al., 2012). 

We also use the Batch Normalization technique, which normalize layer inputs, allowing us to 

use much higher learning rates and be less careful about parameter initialization. It also acts 

as a regularizer, in some cases eliminating the need for Dropout. The normalization is 
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performed for each training mini-batch, before the activation function (Ioffe & Szegedy, 

2015). 

 
Figure 16: Dropout Neural Net Model. Left: A standard neural net with 2 hidden layers. Right: An example of a 
thinned net produced by applying dropout to the network on the left. Crossed units have been dropped. (Srivastava 
et. al., JMLR 2014) 

 

Table 5: Details of the ConvNet model architecture. 

Layer Layer Operation & Details Notation & Dimensions 

ℓ=1  
CONV 

Input 𝑥 = 𝑎[0] Wavelet spectrum image 𝑛𝐻
[0]

 x 𝑛𝑊
[0]

 x 𝑛𝐶
[0]

 85 x 109 x 3 

Weights 𝑊[1]
   

8 filters, 4x4 kernel,  
stride = 1, zero-padding, 
“same” 

𝑓[1] x 𝑓[1] x 𝑛𝐶
[0]

 x 𝑛𝐶
[1]

 4 x 4 x 3 x 8 

activation 𝑎[1]
   ReLU(𝑧[1]) 𝑔[1](𝑊[1]𝑥) 85 x 109 x 8 

POOL maxpooling 
8x8 kernel, stride = 8,  
zero-padding, “same” 𝑛𝐻

[1]
 x 𝑛𝑊

[1]
 x 𝑛𝐶

[1]
 11 x 14 x 8 

ℓ=2 
CONV 

Weights 𝑊[2]   
16 filters, 2x2 kernel,  
stride = 1, zero-padding, 
“same” 

𝑓[2] x 𝑓[2] x 𝑛𝐶
[1]

 x 𝑛𝐶
[2]

 2 x 2 x 8 x 16 

activation 𝑎[2]   ReLU(𝑧[2]) 𝑔[2](𝑊[2]𝑎[1]) 11 x 14 x 16 

POOL maxpooling 
4x4 kernel, stride = 4,  
zero-padding, “same” 

𝑛𝐻
[2]

 x 𝑛𝑊
[2]

 x 𝑛𝐶
[2]

 3 x 4 x 16 

ℓ=3 

FLATTEN flattening 
convert to 1D feature 
vector 

𝑛𝐻
[2]

 x 𝑛𝑊
[2]

 x 𝑛𝐶
[2]

  →  

(𝑛𝐻
[2]

∙ 𝑛𝑊
[2]

∙ 𝑛𝐶
[2]

) x 1   
192 x 1 

FC 

Weights 𝑊[3]   fully connected, dense layer 4  x  𝑛[2] 4 x 192 

activation 𝑎[3] 
Classifier, Softmax (𝑧[3]),  
Dropout prob = 0.6  

𝑔[3](𝑊[3]𝑎[2]) 4 x 1 

Final output Label  𝑛[3] x  1 4 x 1 
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Figure 17: Dropout hyper-parameter tuning, in various cases where different types of classes were used. 
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4.3. Coding Steps 

• Pre-processing (MATLAB) 

1. Load multiple cdf files in MATLAB. Each cdf file corresponds to one day of Swarm satellite 

measurements.  

2. Cut the loaded data in satellite orbits (  3̴2 orbits/day) using the latitude information. 

3. Discard latitudes that are out of our area of interest, i.e., out of ±45° latitude. Hence, the 

final magnetic field time series that we used in the next steps correspond to mid-

latitudinal satellite tracks only. 

4. Apply a Butterworth high pass (HP) filter on the magnetic field measurement, with cutoff 

frequency of 16 mHz. 

5. Implement the wavelet transformation on the filtered magnetic field measurement. 

6. Split the wavelet images in the four classes and create a vector containing their 

corresponding labels. 

• Model Implementation (Python – TensorFlow) 

7. Load training and test datasets (Xtrain, ytrain, Xtest, ytest). 

8. Convert labels to one-hot encoding and normalize the intensity of each image pixels by 

dividing it with 255. 

9. Initialize the parameters (weights/filters) of each layer using Xavier initializer. 

10. Forward propagation, to build the following model: CONV2D → RELU → MAXPOOL → 

CONV2D → RELU → MAXPOOL → FLATTEN → FULLYCONNECTED, using TensorFlow’s 

built-in functions 28. 

11. Compute the Softmax entropy loss and sum the losses over all the examples to get the 

overall cost. 

12. Back-prop: define an optimizer using TensorFlow’s AdamOptimizer that minimize the 

cost. Initial learning rate defined at 0.009.  

13. Train the model for a number of epochs using a for-loop, for one mini-batch of data each 

time using another for-loop. 

14. Calculate the accuracies on training and test sets through the comparison of the known 

labels (ground truth) and the predicted labels. 

• Extra notes 

15. The Dropout function is used only in the fully connected layer, before the Softmax (Park 

and Kwak, 2017), with a probability p = 0.6. If we want to apply Dropout in the CONV 

layers also, it should be applied with much smaller p, after every convolution layer (before 

pooling). 

16. The batch normalization can be applied inside the activation function, e.g., 

relu(batch_normalization(x)). 

  

 
28  https://docs.w3cub.com/tensorflow~python/tf/ 

https://docs.w3cub.com/tensorflow~python/tf/
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4.4. Results 

Table 6.1a: Summary information about the training of the network 

Data used: 

Total magnitude, extracted from Swarm Vector Field 

Magnetometer (VFM) measurements, NEC frame, 1s sampling rate, 

(data extracted from the year 2015). 

Number of total samples: 1500 samples, manually annotated in 4 classes 

Input: Wavelet power spectra images with their annotation (class label) 

Training – Test set:  80% – 20% 

Layers: 2 convolutional, 2 pooling, 1 fully connected (FC) 

Parameter initializer: Xavier Initialization 

Activation functions: ReLU, Softmax 

Cost function: Cross -entropy (Log Loss) 

Optimizer: Adam Optimization 

Extra: Batch Normalization, Dropout Regularization 

Table 6.1b:  Summary information about the 
layers of the network 

Layers Details 

Conv1 8 filters,  f = 4, s = 1 

Pool1 f = 8, s = 8 

Conv2 16 filters,  f = 2, s = 1 

Pool2 f = 4, s = 4 

FC 
Classifier,  4-neuron 
output 

 

 

The final dataset consists of 1500 samples 

manually annotated, i.e. 1500 pairs of 

spectral images with their annotation 

(class label). The whole dataset was split in 

training/test sets at an 80/20% ratio, 

respectively. The training was performed 

for 100 epochs. The obtained accuracy, 

89.7% on the training set and 88.5% on the 

test set, is presented in Table 7. The cost 

function and the accuracies at every 

training epoch are shown in the next 

figure. 
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Figure 18: The cost function of the training set (left), and the accuracies of the training and test sets (right), with 

respect to the iterations of the optimization loop. 

 

Table 7: The ConvNet performance after 100 epochs of training. 

Training set accuracy % 89.7 

Test set accuracy % 88.5 
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Chapter 5:  Discussion on the results  &  further possible 

improvements 

 

5.1. Summary of the method 

In this study, we used a wavelet power spectrum image dataset, created with data from the 

Swarm satellite mission, to classify ULF wave events in the Earth’s magnetosphere, with 

Convolutional Neural Networks. We have manually created a 4-class dataset, by using time 

series magnetospheric data from all the three Swarm satellites. Specifically, we used the total 

magnitude, extracted from the Swarm Vector Field Magnetometer (VFM), which is measuring 

in the NEC frame with 1 second sampling rate, for the year 2015.  

Furthermore, we showed our preprocessing pipeline for the preparation of an image, before 

it is applied on our ConvNet. The data were first segmented into mid-latitudinal tracks,     i.e., 

-45° to +45° latitude, and then filtered using a HP Butterworth filter with a cutoff frequency 

of 16 mHz. Next, we performed wavelet analysis on the produced time series. Hence, from 1-

D time series features we went to 2-D image features (time & frequency).  

These wavelet images were split manually in 4 different classes. That is, instead of creating 

only two classes, “ULF wave events” and “non-ULF signals”, we defined two more classes, 

“False Positives” (FP) and “Plasma Instabilities” (PI). We have seen in the evaluation that the 

“PI” class is not so well defined and has therefore increased the classification error. A possible 

solution to this is to add extra information during preprocessing to help on the accurate 

definition and separation of the “PI” class images.  

Having prepared our 4-class image dataset, we went to the development of our ML model. 

We used a ConvNet architecture with 2 convolutional stages, composed of convolutional and 

pooling layers, and one fully-connected (FC) stage giving the final output, i.e. the predicted 

class. To initialize the model’s parameters, we used Xavier initialization. To learn the model’s 

parameters during Backprop, we used the Adam optimization method to minimize our cost 

function, implemented in mini-batches of the data.  

The Swarm data analysis was performed in the MATLAB environment, while the ConvNet 

model was implemented in Python using TensorFlow framework. In general, our developed 

ConvNet is well designed. The Dropout technique in the FC layer helped to improve the overall 

performance, reducing overfitting. But with such a small dataset and a class that has not been 

perfectly defined (the “PI” class), the error could not further decrease. Growing the dataset 

and adopting a more robust definition of the classes, the overall performance of the method 

can be further improved. 

As a final step, we need to compare our ConvNet model with other machine learning 

classifiers, using exactly the same input dataset. For this, we have implemented four different 

versions of the popular k-Nearest Neighbors (kNN) classifier, for k = 1, 3, 5, 7, and the very 

competitive Support Vector Machine (SVM) classifier. The accuracies obtained with these 

methods compared with our ConvNet accuracy of 88.5% (see Table 8), are a good indication 

and proof that ConvNets are a very powerful ML method that can be definitely used for the 

ULF wave analysis.  
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Table 8: Comparison of classifiers: various versions of k-Nearest Neighbors, Support Vector Machines, 
and our Convolutional Neural Network. Overall accuracy on the test set. 

ML Classifier Accuracy (%) 

kNN (k = 1) 54.8 

kNN (k = 3) 56.5 

kNN (k = 5) 57.5 

kNN (k = 7) 54.5 

SVM 80.7 

ConvNet 88.5 

 

 

 

Figure 19: Bar chart showing the accuracy achieved by each one of the classifiers. Clearly our ConvNet 
model shows the best result. 

 

 

5.2. Further notices on processing & results, Future directions 

• Accuracy 

For an input dataset of m = 1500 examples and a 4-classes output, the achieved accuracy on 

the test set is acctest = 88.5% while the accuracy on the training set is acctrain = 89.7%, using 

Dropout regularization with probability p = 0.6. When the Dropout probability is larger (i.e. 

we keep more hidden units on the training phase), then we have higher variance and lower 

bias (i.e. higher accuracy on the training set and lower accuracy on the test set). For example, 

for p = 0.8, acctrain = 95.5% and acctest = 86.5%. Therefore, for a relatively small input dataset, 
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the Dropout regularization technique seems to work, reducing overfitting. Apart from the 

overall accuracy, it is crucial to calculate more quantities, such as a confusion matrix, in order 

to better understand which classes are not well separated. 

• Cross-Validation 

Another way to achieve better performance of the estimator, is to insert a cross-validation 

step in the training phase. That is, split the training set in a number of smaller batches and 

evaluate different settings (i.e. different values for the hyperparameters of the model) on 

each batch. Then, use the hyperparameters that achieved the highest accuracy in a specific 

batch, to train the model (using the whole training set). This way, we could better tune 

hyperparameters such as the kernel size or the number of kernels in the CONV layer, kernel 

size of the POOL layer, etc., and achieve better performance on the test set. Another reason 

why cross-validation is crucial to be inserted in our methodology, is to decrease the statistical 

fluctuation in the final error estimations. 

• Dimensions of input images 

In order for our CNN model to work more efficiently, we should take better care of the 

dimensions of the input images. We should try: (1) use 1-D grayscale images that represent 

the “power” matrix of the wavelet transform output, instead of 3-D RGB images which might 

contain redundant information, slowing down the model’s performance; (2) reshape the 

spatial dimensions to a more appropriate size for the CNN model. As already been said, the 

input layer (that contains the image) should be divisible by 2 many times. Common numbers 

include 32 (e.g. CIFAR-10), 64, 96 (e.g. STL-10), or 224 (e.g. common ImageNet ConvNets), 384, 

and 512. Hence, instead of using images of size 85 x 109 x 3, we should try to create 

rectangular images of size e.g. 96 x 96 x 1. 

• The “Plasma Instabilities” class 

As a further development and examination of the method, we performed the following 

experiments: training of the network by having split the data into only 2-classes datasets, (1) 

“ULF Events vs. All” and (2) “Non-ULF events (i.e. background noise) vs. All” (see Figure 16), 

and comparing the results with the ones obtained by using our initial 4-classes dataset. The 

results show an indication that the class “Plasma Instabilities” (PI) seems to “damage” the 

model performance, unsurprisingly, because many “PI” wavelet spectrum images are very 

similar optically with many “ULF wave Events” spectrum images, making it difficult to 

distinguish between them and annotate the images with the correct class label. To solve this, 

we should consider inserting some useful information during preprocessing that will help us 

differentiate PIs from ULF Events, such as the electron density product from Swarm 

measurements, or the nightside and dayside location information of the satellite track. 

Equatorial Spread-F (ESF) or plasma bubbles are a post-sunset phenomenon (i.e., 18:00-06:00 

MLT or even 20:00-06:00 MLT) and also a seasonal effect (i.e., Fall/Spring have more ESF 

events than Winter/Summer (Stolle et al., 2006)). 

• Dataset 

Finally, when we consider all of the possible improvements mentioned above, the most crucial 

thing to do is to re-train our network using a much larger dataset, exploiting all the Swarm 

magnetic field data, from the beginning of the mission onwards. This will give us a dataset 

with almost 50000 examples. Training a network with a larger dataset may help improve the 

obtained accuracy and the generalization performance of our deep learning model whilst the 

whole methodology will be much more well-established. 
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