
Ph.D. Thesis

Data analytics on graphs

Author:

Konstantinos Theocharidis

Supervisor:

Professor Spiros Skiadopoulos

July 31, 2022

Ανάλυση σε δεδομένα γράφων

Διδακτορική Διατριβή

του

Κωνσταντίνου Θεοχαρίδη

Διπλωματούχου Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείου

Θεσσαλίας (2012) και MSc Πολυτεχνείου Θεσσαλίας (2013)

Συμβουλευτική Επιτροπή: Σπύρος Σκιαδόπουλος Επιβλέπων καθηγητής

Παναγιώτης Καρράς

Μανώλης Τερροβίτης

Εγκρίθηκε από την επταμελή εξεταστική επιτροπή την 18/07/2022

Όνομα Βαθμίδα Ίδρυμα

Σπύρος Σκιαδόπουλος Καθηγητής Παν. Πελοποννήσου

Παναγιώτης Καρράς Αν. Καθηγητής Παν. Άαρχους

Μανώλης Τερροβίτης Ερευνητής Β ΙΠΣΥ / Ε.Κ. ΑΘΗΝΑ

Κώστας Βασιλάκης Καθηγητής Παν. Πελοποννήσου

Χρήστος Τρυφωνόπουλος Αν. Καθηγητής Παν. Πελοποννήσου

Θοδωρής Δαλαμάγκας Ερευνητής A ΙΠΣΥ / Ε.Κ. ΑΘΗΝΑ

Ειρήνη Φουντουλάκη Ερευνήτρια Β Ίδρυμα Τεχνολογίας & Έρευνας

Copyright © Κωνσταντίνος Θεοχαρίδης, 2022.

Διδάκτωρ τμήματος Πληροφορικής και Τηλεπικοινωνιών, Παν. Πελοποννήσου.

Με επιφύλαξη παντός δικαιώματος - All rights reserved.

Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή της παρούσας διατριβής, εξ

ολοκλήρου ή τμήματος αυτής, για εμπορικό σκοπό. Επιτρέπεται η ανατύπωση,

αποθήκευση και διανομή για σκοπό μη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής

φύσης, υπό την προϋπόθεση να αναφέρεται η πηγή προέλευσης και να διατηρείται το

παρόν μήνυμα. Ερωτήματα που αφορούν τη διατριβή για κερδοσκοπικό σκοπό πρέπει

να απευθύνονται προς τον συγγραφέα. Η έγκριση της διδακτορικής διατριβής από το

Πανεπιστήμιο Πελοποννήσου δε δηλώνει αποδοχή των απόψεων του συγγραφέα.

Ευχαριστίες

Αρχικά, θα ήθελα να ευχαριστήσω τον επιβλέποντα καθηγητή μου, Δρ. Σπύρο Σκιαδό-

πουλο, για την πoλύτιμη βοήθεια του καθ’όλη τη διάρκεια της διδακτορικής διατριβής

μου. Ιδιαίτερα, επίσης, ευχαριστώ τον Δρ. Μανώλη Τερροβίτη από το Ινστιτούτο Πληρο-

φοριακών Συστημάτων του Ερευνητικού Κέντρου Αθηνά, τον Δρ. Παναγιώτη Καρρά

από το Πανεπιστήμιο του Άαρχους, και τον Δρ. Γιάννη Λιαγούρη από το Πανεπιστήμιο

της Βοστώνης, για την συνεργασία μου μαζί τους στο περιεχόμενο της διατριβής μου.

Τέλος, πάνω απ’όλα ευχαριστώ θερμά την οικογένεια μου για την αδιάκοπη στήριξη.

v

Abstract

Nowadays, there is an increasing need for brands (stakeholders) to effectively and

efficiently connect with their customers in both spatial and social domains so as to

grow their revenues. In the spatial field, there are a variety of location-based services

(e.g., Google Maps, Uber, Foursquare) for utilization by brands, whereas in social

area, there are several social networks (e.g., Facebook, Instagram, VK) in which

brands can maintain their own social network pages for advertising. In this thesis, we

analyze and study fundamental spatial and social data operations on graphs that can

significantly contribute to the successful connection among brands and customers.

In the spatial domain, our contribution is the development of a spatial RDF system

named SRX that extends the popular RDF-3X store to provide spatial RDF data

operations. RDF-3X itself does not support spatial RDF data. In particular, SRX

supports three types of spatial queries: range selections (e.g., find entities within a

given polygon), distance joins (e.g., find pairs of entities whose locations are close

to each other), and k nearest neighbors (e.g., find the three closest entities from a

given location). Further, SRX supports spatial updates (e.g., deletions, insertions,

and modifications of spatial RDF triples). SRX relies its good performance on a grid-

scheme that approximates the geometries of the spatial entities inside their integer

IDs. We extensively evaluate the performance of SRX for both queries and updates

by comparing it with the systems RDF-3X, Virtuoso, GraphDB, and Strabon on

LGD and YAGO datasets. Our results show that SRX outperforms other systems for

queries and updates, while it incurs just a little overhead to RDF-3X for updates.

In the social domain, we contribute by studying three novel content-aware recom-

mendation problems relative to the Influence Maximization (IM) problem. IM seeks

for the k users who can maximize the influence of a given post in a social network.

The first problem we study, named Content-Aware Influence Maximization (CAIM),

is the inverse variant of IM and seeks for the k features that can form the content of

a non-given post so as to make it popular in a social network. The diffusion of the

post starts from a given set of initial adopters (subscribers of brand’s social network

page). We prove that CAIM does not have influence guarantees, and for that we

deploy heuristic methods to solve it. Our experimental results on Gnutella and VK

vii

datasets show that our advanced heuristic algorithm is more influential than simple

heuristics and it is also much faster than a conventional greedy approach.

The second problem we study is an adaptive (online) version of CAIM, named

Adaptive Content-Aware Influence Maximization (ACAIM), and aims to maximize

the cumulative influence achieved in a social network over a number of rounds. In

each round, the content of a post is sought (comprising k features) and the influence

feedback of posts in the previous rounds is utilized for the content decision of posts

in the next rounds. To solve ACAIM, we integrate Online Learning to Rank (OLR)

techniques to our machine learning IM framework. To achieve that, we deploy a

propagation model, a simulator that runs the model to generate realistic feedback,

and three ACAIM learners. Our thorough experimental study on various VK datasets

for several brands shows that ACAIM is solvable in big social networks.

Finally, the third problem we study relates with how brands can maximize their

subscription (instead of influence as happens in CAIM and ACAIM) in social net-

works. Specifically, we propose a content recommendation policy to brands for Gain-

ing Subscribers by Messaging (GSM). The goal of the GSM problem is to maximize

the cumulative subscription gain in a social network over a series of rounds. In each

round, GSM recommends to brands what content (consisting of k features) to publish

in their social network pages and which m users to notify of that content. We develop

three GSM solvers, and by conducting a rich experimental evaluation on different

VK datasets, we ascertain the importance and practical value of GSM.

Περίληψη

Στις μέρες μας, υπάρχει ολοένα και μεγαλύτερη ανάγκη να συνδέονται οι εταιρείες

αποτελεσματικά και αποδοτικά με τους πελάτες τους, σε χωρικό αλλά και σε κοινωνικό

επίπεδο, για να αυξήσουν τα έσοδα τους. Στο χωρικό πεδίο, υπάρχουν διάφορες εφαρμογές

που χρησιμοποιούν τοποθεσία (π.χ., Google Maps, Uber, Foursquare) από τις οποίες

μπορούν να επωφεληθούν οι εταιρείες. Αντίστοιχα στο κοινωνικό πεδίο, υπάρχουν αρκετά

κοινωνικά δίκτυα (π.χ., Facebook, Instagram, VK) στα οποία οι εταιρείες μπορούν να

διατηρούν τις κοινωνικές σελίδες τους για διαφημιστικούς λόγους. Στη διατριβή αυτή,

παρουσιάζουμε χρήσιμες χωρικές και κοινωνικές λειτουργίες γράφων που μπορούν να

συνεισφέρουν σημαντικά στην επιτυχή σύνδεση των εταιρειών με τους πελάτες τους.

Στο χωρικό πεδίο, η συνεισφορά μας έγκειται στην ανάπτυξη ενός χωρικού RDF

συστήματος, με όνομα SRX, που επεκτείνει το δημοφιλές σύστημα RDF-3X για να

μπορέσει να παρέχει λειτουργίες χωρικών RDF δεδομένων. Το RDF-3X από μόνο

του δεν υποστηρίζει χωρικά RDF δεδομένα. Συγκεκριμένα, το SRX υποστηρίζει τρία

είδη χωρικών ερωτημάτων: επιλογές εμβέλειας (π.χ., βρείτε τις οντότητες εντός ενός

πολυγώνου), ενώσεις με βάση την απόσταση (π.χ., βρείτε ζευγάρια οντοτήτων που έχουν

κοντινές τοποθεσίες), και k κοντινότερων γειτόνων (π.χ., βρείτε τις τρεις πλησιέστερες

οντότητες σε μια τοποθεσία). Επιπλέον, το SRX υποστηρίζει χωρικές ενημερώσεις

(π.χ., διαγραφές, εισαγωγές, και τροποποιήσεις χωρικών RDF τριπλέτων). Η καλή

απόδοση του SRX οφείλεται σε ένα σχήμα πλέγματος που προσεγγίζει τις γεωμετρίες

των χωρικών οντοτήτων μέσα στα ακέραια αναγνωριστικά τους. Αξιολογούμε εκτενώς

την απόδοση του SRX και στα ερωτήματα και στις ενημερώσεις, συγκρίνοντας το με τα

συστήματα RDF-3X, Virtuoso, GraphDB, και Strabon στα σύνολα δεδομένων LGD

και YAGO. Τα αποτελέσματα δείχνουν ότι το SRX υπερτερεί των άλλων συστημάτων

στην ταχύτητα διαχείρισης των ερωτημάτων και των ενημερώσων, ενώ επιφέρει μόλις

μια μικρή επιβάρυνση στο RDF-3X στις ενημερώσεις.

Στο κοινωνικό πεδίο, μελετούμε τρία καινοτόμα προβλήματα σύστασης βάσει περιεχο-

μένου που σχετίζονται με το πρόβλημα τηςΜεγιστοποίησης Επιρροής (ΜΕ). Το πρόβλη-

μα ΜΕ ψάχνει τους k χρήστες που μπορούν να μεγιστοποιήσουν την επιρροή μιας

δεδομένης ανάρτησης σε ένα κοινωνικό δίκτυο.

Το πρώτο πρόβλημα που εξετάζουμε, ονομάζεται Μεγιστοποίηση Επιρροής Βάσει

ix

Περιεχομένου (ΜΕΒΠ), και αποτελεί την αντίστροφη παραλλαγή του ΜΕ. Το πρόβλημα

ΜΕΒΠ ψάχνει τα k χαρακτηριστικά που μπορούν να σχηματίσουν το περιεχόμενο μιας

μη-δεδομένης ανάρτησης έτσι ώστε αυτή να μπορεί να γίνει δημοφιλής σε ένα κοινωνικό

δίκτυο. Η διάδοση της ανάρτησης ξεκινάει από ένα δεδομένο σύνολο συνδρομητών

της κοινωνικής σελίδας της εκάστοτε εταιρείας. Αποδεικνύουμε ότι το ΜΕΒΠ δεν

έχει εγγυήσεις επιρροής, οπότε υλοποιήσαμε ευρετικές μεθόδους για να το λύσουμε.

Τα πειραματικά μας αποτελέσματα στα σύνολα δεδομένων Gnutella και VK δείχνουν

ότι ο ενισχυμένος ευρετικός αλγόριθμος μας σημειώνει μεγαλύτερη επιρροή από απλές

ευρετικές λύσεις και είναι πολύ πιο γρήγορος από συμβατικές άπληστες προσεγγίσεις.

Το δεύτερο πρόβλημα που εξετάζουμε είναι μια προσαρμοστική σε πραγματικό χρόνο

εκδοχή του ΜΕΒΠ, ονομάζεται Προσαρμοστική Μεγιστοποίηση Επιρροής Βάσει Περιε-

χομένου (ΠΜΕΒΠ), και στοχεύει να μεγιστοποιήσει την συνολική επιρροή σε ένα

κοινωνικό δίκτυο που επιτυγχάνεται σε πολλούς γύρους. Σε κάθε γύρο, αναζητείται

το περιεχόμενο μιας ανάρτησης που αποτελείται από k χαρακτηριστικά, ενώ η ανάδραση

επιρροής των αναρτήσεων σε προηγούμενους γύρους αξιοποιείται στη δημιουργία περιεχο-

μένου για τις αναρτήσεις των επόμενων γύρων. Για να λύσουμε το ΠΜΕΒΠ, ενσωματώ-

νουμε τεχνικέςΠραγματικού Χρόνου Μάθησης Βάσει Κατάταξης στο μηχανικής μάθησης

πλαίσιο εργασίας μας που σχεδιάσαμε για μεγιστοποίηση επιρροής. Για να το πετύχουμε

αυτό, υλοποιήσαμε ένα μοντέλο διάδοσης, έναν προσομοιωτή που τρέχει το εν λόγω

μοντέλο για την παραγωγή ρεαλιστικής ανάδρασης, και τρεις αλγορίθμους μάθησης. Η

εξονυχιστική πειραματική μελέτη μας σε ποικίλα σύνολα δεδομένων VK για αρκετές

εταιρείες δείχνει ότι το ΠΜΕΒΠ είναι επιλύσιμο σε μεγάλα κοινωνικά δίκτυα.

Τέλος, το τρίτο πρόβλημα που εξετάζουμε σχετίζεται με το πως οι εταιρείες μπορούν

να μεγιστοποιήσουν την συνδρομή τους (αντί για την επιρροή τους όπως συμβαίνει στα

ΜΕΒΠ και ΠΜΕΒΠ) στα κοινωνικά δίκτυα. Συγκεκριμένα, προτείνουμε μια πολιτική

σύστασης περιεχομένου στις εταιρείες για τηνΑπόκτηση Συνδρομητών μέσωΜηνυμάτων

(ΑΣΜ). Ο στόχος του προβλήματος ΑΣΜ είναι η μεγιστοποίηση της συνολικής απόκτη-

σης συνδρομητών σε ένα κοινωνικό δίκτυο θεωρώντας πολλούς γύρους. Σε κάθε γύρο, το

ΑΣΜ συστήνει στις εταιρείες το περιεχόμενο (αποτελούμενο από k χαρακτηριστικά) που

πρέπει να δημοσιεύσουν στις κοινωνικές σελίδες τους και τους m χρήστες που πρέπει να

ειδοποιήσουν για το εν λόγω περιεχόμενο. Για να λύσουμε το ΑΣΜ, υλοποιήσαμε τρεις

αλγορίθμους, ενώ πραγματοποιώντας μια εκτενή πειραματική αξιολόγηση σε διάφορα

σύνολα δεδομένων VK, διαπιστώνουμε την σημαντική αξία του ΑΣΜ.

x

Contents

Abstract vii

Περίληψη ix

1 Introduction 1

1.1 Spatial Data . 3

1.2 Social Data . 5

1.3 Contributions . 7

1.4 Organization . 11

2 Related Work 13

2.1 RDF Indexing, Querying, and Spatial Support 13

2.2 Influence Maximization and Variants 16

2.3 Online Learning to Rank . 22

3 SRX: Efficient Management of Spatial RDF Data 23

3.1 Introduction . 23

3.2 Preliminaries . 26

3.3 A Basic Spatial Extension . 28

3.4 Encoding the Spatial Dimension . 31

3.5 Query Evaluation . 33

3.5.1 Spatial Range Filtering . 34

3.5.2 Spatial Join Filtering . 35

3.5.3 Spatial Merge Join on Encoded Entities 36

3.5.4 Spatial Hash Join on Encoded Entities 39

3.5.5 Spatial kNN on Encoded Entities 39

3.6 Query Optimization . 44

3.6.1 Augmenting the Query Graph 45

3.6.2 Spatial Join Operators . 47

3.6.3 Spatial Query Optimization . 48

3.6.4 Selectivity Estimation . 48

xi

Contents

3.6.5 Runtime Optimizations . 48

3.7 Updates . 49

3.8 Experimental Evaluation . 52

3.8.1 Queries Setup . 52

3.8.2 Queries Comparison . 54

3.8.3 Updates Setup . 62

3.8.4 Updates Comparison . 63

3.9 Conclusion . 67

4 Content Recommendation for Viral Social Influence 69

4.1 Introduction . 69

4.2 Motivation . 71

4.2.1 Idea Habitats . 71

4.2.2 Digital Influence . 72

4.2.3 Distinctiveness . 73

4.3 Problem Statement . 73

4.3.1 Content-Aware Cascade Model 73

4.3.2 Content-Aware Influence Maximization 75

4.4 Hardness and Inapproximability . 75

4.5 The Explore-Update Algorithm . 80

4.6 Experimental Study . 84

4.6.1 Influence spread . 86

4.6.2 Runtime . 87

4.6.3 Effect of Seed Size . 87

4.6.4 Effect of θ . 87

4.6.5 Comparison to the Optimal Solution 88

4.6.6 Real-World Examples . 89

4.7 Conclusion . 90

5 Adaptive Content-Aware Influence Maximization through Online

Learning to Rank with Business Analytics 91

5.1 Introduction . 92

5.2 Problem Statement . 93

5.2.1 TRM Click Model in Social Networks 93

5.2.2 CATRID Propagation Model 94

5.2.3 ACAIM Problem . 95

5.3 CATRID Simulator . 96

5.4 ACAIM Learners . 98

5.4.1 The Learner RANDOM . 98

xii

Contents

5.4.2 The Learner TRIM_C . 98

5.4.3 The Learner TRIM_E . 101

5.5 Experimental Evaluation . 106

5.5.1 Setup . 106

5.5.2 Reliability . 108

5.5.3 Scalability . 113

5.5.4 Business Applicability . 115

5.6 Conclusion . 119

6 A Content Recommendation Policy for Gaining Subscribers 121

6.1 Introduction . 121

6.2 GSM Solvers . 124

6.2.1 The Solver RANDOM . 125

6.2.2 The Solver SCAN . 125

6.2.3 The Solver SUBSTITUTE . 125

6.3 Experimental Evaluation . 129

6.3.1 Setup . 129

6.3.2 Results . 130

6.4 Conclusion . 133

7 Conclusion 135

7.1 Summary . 135

7.2 Future Work . 136

8 Appendix 137

8.1 Spatial distribution of geometries . 137

8.2 Queries . 137

8.2.1 Spatial range queries . 139

8.2.2 Spatial distance join queries . 139

8.2.3 Spatial kNN queries for Encoding, Baseline, and Basic 140

8.2.4 Spatial kNN queries for Virtuoso 141

8.2.5 Spatial kNN queries for GraphDB and Strabon 142

8.3 Deltas between different dataset versions 142

Bibliography 145

xiii

Contents

xiv

List of Figures

2.1 Use of Dictiorary. 14

3.1 Example of RDF data and three spatial queries. 27

3.2 Possible query plans in the basic extension. 29

3.3 Spatial encoding of entity IDs. 32

3.4 Plan for the query of Fig. 3.1b. 35

3.5 Plan for the query of Fig. 3.1c. 36

3.6 Example of SMJ. 38

3.7 An example grid (a) with 64 cells at the bottom level (11-bit encoding)

ordered according to the Hilbert curve and organized in CPM zones

(Li, Ri, Ui, Di) around a query point p in cell 28. The entity IDs are

shown on the right (b) in binary and decimal format. 44

3.8 Augmenting a query graph. 45

3.9 Latency (ms) of processing batches of size b on LGD. 64

3.10 Latency (ms) of processing batches of size b on YAGO. 65

3.11 Latency (ms) of processing batches of size 1K triples on two different

subsets (a) and (b) of LGD; the former dataset is a subset of the latter. 66

4.1 A graph instance demonstrating that the CAIM problem is NP-hard. . 76

4.2 Increasing and decreasing marginal returns. 77

4.3 A graph instance demonstrating that it is NP-hard to approximate the

optimal solution to the CAIM problem. 79

4.4 Participating and non-participating edges. 82

4.5 Influence spread and runtime results. 86

4.6 Influence spread and runtime vs. seed set size and θ on Gnutella in

(a), (b), and (c). Influence spread on reduced network in (d). 88

5.1 Flow of TRIM_C for |L| = 5 and k = 4. 99

xv

List of Figures

5.2 Flow of TRIM_E. Each step digests new evidence (feature path, red); in
step 7, (K, D) eliminates features in grey; in step 9, the eliminated D

remains as intermediate; in step 11, the cycle caused by (W, B) cancels

paths containing subpath <B, (D), E, W>. 102

5.3 Reliability results of RANDOM, TRIM_C, and TRIM_E in datasets A1, A2,
and A3 for k = 3, 4, and 5. 109

5.4 Reliability results of RANDOM, TRIM_C, and TRIM_E in datasets B1, B2,
and B3 for k = 3, 4, and 5. 110

5.5 Scalability results of TRIM_E for the nine most popular VK brands

(depicted in increasing |S|) in datasets A1, A2, and A3 for k = 3, 4,

and 5. 113

5.6 Scalability results of TRIM_E for the nine most popular VK brands

(depicted in increasing |S|) in datasets B1, B2, and B3 for k = 3, 4,

and 5. 114

6.1 An example that shows the basic execution components of GSM solvers

for k = 2 features and m = 3 users. 123

6.2 SG per round and Time per round results of RANDOM, SCAN, and SUB-

STITUTE for |L| = 27, |V | = 80, and k = 1, 2, and 3. 130

6.3 SG per round and Time per round results of RANDOM, SCAN, and SUB-

STITUTE for |L| = 27, |V | = 100, and k = 1, 2, and 3. 130

6.4 SG per round and Time per round results of RANDOM, SCAN, and SUB-

STITUTE for |L| = 54, |V | = 80, and k = 1, 2, and 3. 131

6.5 SG per round and Time per round results of RANDOM, SCAN, and SUB-

STITUTE for |L| = 54, |V | = 100, and k = 1, 2, and 3. 131

8.1 Spatial distribution of geometries in LGD. LGD contains geometries

for entities in the United Kingdom with highest density in the area

around London. 138

8.2 Spatial distribution of geometries in YAGO. YAGO’s geometries spread

all over the globe with highest density in North America and Europe. 138

xvi

Chapter 1

Introduction

A constant aim of brands (stakeholders) is to effectively and efficiently connect

with their customers (simple users) in order to increase their revenues. Customers also

want to easily and instantly consume the services/products of brands. Nowadays, with

the prevalence of smartphones and social networks, such a connection can be really

fruitful for both sides in the spatial and social fields. Specifically, in the previous years

(without smartphones and social networks) the typical way for a brand to advertise

itself is first to build a website. Then, the owners of brand contact the brand’s website

to their close friends to gain the initial subscribers to that site. Last, the owners send

informative or promotional emails to subscribed users to keep them engaged. By doing

that, they also hope these users to advertise the brand further to their friends, and so

on. However, these days things are much more simplified for brands to become further

known to the public. Namely, users now have already installed mobile-applications

(in brief, apps) to theirs smartphones that can be leveraged by brands to engage the

attention of users. Further, each app is also provided as a complete software program

for main computers (desktops, laptops, etc.). For instance, a user now can quickly find

in a spatial platform like Google Maps (exists also as an app) the stores of various

brands that located at a specific region (coastal, central, etc.). As well, a brand can

easily integrate its website to a social network of users such as Facebook (is also

provided as an app) to boost its visibility. The spatial field offers the chances for the

physical stores of brands to effectively be explored by users, while the social field

significantly enhances the presence of brands on the internet. Therefore, the overall

goal of this thesis is to empower brands with spatial and social graph operations to

connect with their customers in a meaningful, practical, and beneficial way.

In the spatial domain, data can be modeled as graphs that consist of directed

edges. The source node of an edge is a brand and the destination node of the edge

contains a piece of information (non-spatial or spatial) for that brand. The edge itself

contains a property that connects the nodes. Let depict by a b c an edge from node a to

1

node c with a property b. For example, the edge Starbucks hasCoffee “Americano” pro-
vides non-spatial information denoting that Starbucks serves a kind of coffee named

“Americano”. Yet, the edge Starbucks hasGeometry “POINT(19.9, 39.6)” depicts spatial
information that mentions to a Starbucks store located in Corfu. The combination

of non-spatial and spatial information enables a connector to execute useful spatial

queries relative to brands having a geometry. A connector is a spatial data man-

agement system that connects brands with customers. Such a spatial system benefits

both sides when it provides efficient spatial query operations as also dynamic support

of spatial updates. As a complete example, assume that a customer uses the Uber

application (connector) in her mobile to get a nearby taxi to her location and wants

to book such a taxi instantly without waiting. To achieve that, Uber has utilized

beforehand a kind of range and nearby spatial queries to satisfy any customer along

with a variety of other data analytics, such as user preferences, traffic estimation,

etc. Yet, even all such analytics are available, when a customer searches for a taxi in

real time, all the respective queries should be executed as fast as possible. Since Uber

provides such kind of real-time operations, Uber successfully connects customers with

taxi drivers who play the role of brands in this example. Note that Uber is also a

brand and as connector it benefits from both sides. Additionally, spatial distance join

queries such as “find the pairs of hotels and restaurants in the city that are not further

to each other than a given distance” are also leveraged by Uber for a variety of cases.

A possible case could be the arrangement of a number of taxis to be ready to service

tourists in the city that often move from their hotels to visit some good restaurants

located out of the city center. Last, spatial updates are also an inherent component

of the system since data analysts of Uber constantly add more venues, remove others

that proved not useful, or modify existing ones by enhancing their spatial accuracy.

In our work, we deploy a spatial graph system that efficiently covers all mentioned

cases of a system like Uber that supports spatial queries and spatial updates.

In the social domain, data are inherently modeled as graphs in which the nodes

represent the social network users and the edges among them depict their friendships.

In these networks, when a user finds a post interesting and marks it as liked (in short,

a user likes the post) then that post propagates to the friends of user. Brands want

to exploit this diffusion mechanism to make their services/products further known

to the public. For that, brands tend to maintain their own social network pages in

social networks and share in these pages appealing content with their subscribers

(the social network users who selected to follow the brand’s page). This content is

either created by a brand or recommended to that brand. In the former case, the

brand can search for a set of influential users to maximize the promotion of its

own content to a network. In the latter case, the brand can use a content-aware

recommendation service to find a set of engaging features to form its content for

2

Chapter 1. Introduction

optimal advertising to that network. Commonly, the brand’s subscribers participate

in both cases; some of them are contacted to initialize the influence process of a

given content or the content itself defines which of them will be the initial adopters,

respectively. Further, a brand may decide to propagate content once, many times, or

adjust the content to repetitively influence certain users such as they opt at some

time to follow the brand’s page (become subscribers of brand). In our work, we focus

on the case where the content is sought (not created by the brand) and we handle all

the mentioned influence scenarios. Namely, we devise content-aware recommendation

services that enable brands to maximize influence in one round, many rounds, or

repetitively personalize such influence to specific users to gain their subscription.

The content we recommend via our services comprises features corresponding to social

network pages. We contend that these pages can inspire the advertiser of a brand to

create influential content in each case. When we consider that features have weights

then the content is ranked, meaning the higher the rank of a feature the higher its

portion degree within content. Else, when we treat all features the same then the

content can be seen as a simple set of equal features that occupy the same amount

of space in it. For instance, suppose that the features Rafael Nadal, Paris, Artistic

photography, and Street city life are recommended in that specific ranked order to

form the content of a new post for the brand GoPro. The advertiser of GoPro can take

a look at the recent content published in these pages so as to obtain knowledge and

inspiration for the content creation. For instance, a possible post could be a GoPro

campaign that depicts Rafael Nadal (wearing a GoPro camera) exercising for a tennis

tournament by running in the central streets of Paris located in artistic background

areas. This post will give more focus to GoPro, then to Rafael Nadal, thereafter to

Paris, afterwards to artistic pics, and finally to the city life on streets.

In the following, we present more specific details about the spatial and social data

operations deployed in our work. Then, we conclude this introductory chapter with

the contributions and the organization structure of the thesis.

1.1 Spatial Data

Spatial data consist of tuples related with entities that have a geometry. When

this geometry is just a point, we call it a location geometry, while any other kind

of geometry (e.g., polygon, line, multipoint) is mentioned as extent geometry. Users

can execute several queries on spatial data management systems. The most popular

spatial queries are the range selections, the distance joins, and the k nearest neighbors.

For example, a user can type an address at Google Maps and have a look at a concrete

area (associated with various points of interest having a geometry) in the vicinity of

3

1.1. Spatial Data

the location specified by the address. Then, the user may zoom in (e.g, by using a

mouse) to that area to view the venues that exist in a smaller piece of the initial area.

Also, the user can enlarge the current area to see a bigger set of venues by selecting

to zoom out the respective area. Each time that the user zooms in to decrease an area

or zooms out to increase an area, the user implicitly runs a range selection query to

the area derived from zooming. In addition, a distance join query takes as input two

collections of objects (e.g., roads and rivers) and a spatial relationship (e.g., intersects)

and finds the pairs of objects from the two sets that satisfy the condition (e.g., pairs

or road segments and river segments that cross each other). Moreover, a k nearest

neighbor query requests for the set of closest objects to a reference location. For

instance, mobile users often use location-based services to browse the closest points

of interest to their current location (e.g., k nearest banks, k nearest restaurants, etc.).

The value of spatial queries is that they are also related with non-spatial components

in them. When a user searches for a restaurant, the user often interested for a specific

cuisine (e.g., Italian, Chinese) that exists in that restaurant. So, that query applies

a non-spatial selection (i.e., cuisine = Italian) before ranking the restaurants with

respect to their distance to the user location. Finally, we stress that updates also

occur for spatial data for two main reasons. First, there are platforms that enable

simple users to contribute to the collection of spatial data, and that is an efficient

process but error-prone too. Second, the complexity of several geometries is refined

over time by the system administrators to improve further their accuracy.

Two popular categories of spatial data management systems are the relational

databases and the RDF databases. The former store tuples in tables that have a spe-

cific schema and these tables connect among each other via relations also represented

by tables. Instead, RDF databases do not have any schema restrictions and they

simply store tuples in triples. Each triple has the form <subject, property, object>

where a subject is connected to an object via a property. Spatial RDF data comprise

subjects having as object the geometry of such subjects with the respective property

to be hasGeometry. Non-spatial RDF data consist of subjects that do not have a ge-

ometry. For instance, Prague hasGeometry “POINT(14.3, 50)” is a spatial RDF triple,
while Wagner performedIn Prague is a non-spatial RDF triple. The subjects of spatial
RDF triples are called spatial entities. In our work, we study spatial RDF data stores,

queries and updates on them. Since spatial entities can be related with other non-

spatial entities (e.g., Prague connects withWagner), the previous discussion on spatial
queries and updates also applies to spatial entities. Consider that the RDF data of

a database form a graph where nodes are subjects or objects and edges are their

properties. As a result, each RDF query can be seen as a specific subgraph pattern

match to the database graph. Further, RDF updates can be deletions, insertions, or

modifications of existing triples, as also they can convert a non-spatial entity to a

4

Chapter 1. Introduction

spatial one and vice versa. For example, if we remove the geometry of Prague then
Prague is not anymore a spatial entity. Also, if we find that Wagner did not performed
in Prague, but Leipzig instead, then we have a modification of Wagner triple; yet, if
Wagner also performed in Leipzig besides Prague, then we have a insertion of a new
triple for Wagner. Similar updates can be done for any kind of triples.
In this thesis, we implement a spatial RDF system that provides efficient man-

agement of range selections, distance joins, and k nearest neighbors queries as also

updates (deletions, insertions, and modifications) on spatial RDF data.

1.2 Social Data

Social data pertain to social networks such as Facebook, Instagram, VKontakte

(in brief, VK), etc. Each social network represents a graph in which the nodes denote

the social network users and the edges depict the friendships or followerships of users

in the network. When a user va is a friend of another user vb, then when va finds

appealing the content of a post and likes the post then va contributes that post to

be visible to vb. As vb is also friend of va, the same propagation effect happens from

vb to va in case vb likes a post. Yet, if vb is not a friend but a follower of va, then only

va can propagate a post to vb. Besides the connections among users, we also have

connections among users and brands in these networks. Specifically, brands maintain

their own social network pages for advertising purposes and the users can select to

follow these pages in order to stay tuned with the latest news of respective brands.

All the pages that a user follows constitute the preference set of user; each preference

maps to a specific page. Such preference set can be modeled as binary or weighted. In

the former case, a page is either included or not in the user preferences. In the latter

case, all pages of the network are included in the preference set of user in different

weights; even the pages that are not followed by users take a dummy weight value.

The assignment of weights usually depends on topic modeling techniques and past

activity responses of users in regards to the posts published by brands. For instance,

assume that Nike is the only brand of network. If va liked 10 posts of Nike and vb

liked 5 posts of Nike, then the weight of va for Nike is double the weight of vb. In

our work, we call such preferences as attributes or features, and we stress that each

feature corresponds to a specific social network page. In other words, whatever entity

has a social network page is treated as a brand and represents a feature in our case.

Moreover, the subscribers of a brand are all the users who follow its page and denote

the users that have instant access to the published posts of brand.

Due to the popularity of social networks, an increasing number of brands build

their pages in them. The brand agent or advertiser is the person or a team that

5

1.2. Social Data

is responsible for the posts (content) published in the page of a brand. The aim

is to share content with the brand’s subscribers that can collect many likes as via

this mechanism posts propagate further in the network and make more known the

brand to the public. When a user likes a post then that post influences the user; the

maximum the post propagates in the network the maximum the number of users that

post influences. Generally, there are two types of posts; the campaign of the month

and the daily content. The advertiser should make a campaign popular (viral) in the

network and also share daily content that gradually gains more and more likes over

time. So, the advertiser looks for content recommendation services that can help her

in the creation of the proper content to achieve her influence maximization purposes.

In this thesis, we devise such kind of content-aware services. On the contrary, when

the brand agent wants to make known her own created content and does not look

for it, there are other ways to maximize influence in a network. The most classic and

popular method to do that is to search for a set of influential users (have many friends)

in the network such as they share that content with their friends. Besides, the agent

can also send messages to specific users to invite them to see her content, may contact

with brand agents of other pages to help her by sharing that content in their pages, or

she can also utilize the promotion services provided by the respective social network;

given a content, such services use advanced data analytics to effectively advertise it.

We stress that in all previous cases, the advertiser needs to spend a budget to succeed

her goals; the difference is where the budget goes in each case. When the content is

sought then the budget goes to the content recommendation services, while when

the users are sought then the budget goes to them based on what kind of users they

are. As mentioned, they can be simple users but influential ones, brand advertisers

of other pages, or data analysts of the social network company. Note that messaging

is free but it has strict restrictions on how many users one can invite per day (e.g.,

20 users per 12 hours in the social network VK).

For simplicity, let focus on two main categories (inverse of each other) from the

aforementioned ones. Namely, given a set of users (subscribers) the advertiser searches

for influential content, whereas given a content the advertiser seeks for influential

users. The content can consist of tags, abstract themes, general topics, public entities,

or inspired by specific social network pages. For brevity, we mention to all these

content aspects as features. The type of content affects the influence maximization

strategy that is selected for its diffusion. In particular, a big campaign often includes

many features and as a result it has a high budget. So, a brand opts to maximize its

campaign in one or few rounds in order to pay once either for the participated features

(when content is sought) or for a big set of influential users (when content is given).

This one-round procedure constitutes the classic influence maximization setting. Yet,

in contrast to a campaign, the daily content usually depicts a small number of posts

6

Chapter 1. Introduction

published per day with each post comprising a low set of features. For this type

of content, brands follow a different strategy. They everyday share content in the

network (diffusion takes place in rounds, one post per round) and aim to utilize the

influence feedback of posts in the previous rounds to form more influential posts for

the next rounds. The budget is divided per post and goes either to a small set of

influential users or to few content features depending on whether the content is given

or not. This multi-round process defines the adaptive influence maximization setting.

A crucial difference among the two mentioned settings of influence maximization is

that the classic version of the problem is solved offline, while its adaptive version is

solved online as it leverages influence feedback in real time to take decisions. Hence,

brands request both offline and online solutions to maximize influence in a network.

Apart from maximizing influence in a social network, another important goal of

brands is how to maximize subscription in that network. The subscription maximiza-

tion setting pertains to how a brand can maximize the increase of its subscribers,

namely the gain of the maximum number of new subscribers to its social network

page. Under this setting, a brand can utilize personalized techniques to diffuse the

content to certain users that it is more feasible (or the brand wants) to become its

next subscribers. The logic here is that if a user repetitively likes the posts of a brand,

at some time the user will opt to follow the brand’s page. Also, some users tend to

have very specific preferences or are interested much more to some content features

than others, so the brands select the mechanism to repetitively influence those users.

As happens for influence maximization, this mechanism still relies on either finding

the proper content features or searching for the most suitable set of influential users,

since the intuition is that the consecutive influence of a user will yield the subscrip-

tion of user. The choice of which user to target for subscription relates with several

factors, such as the number and the profile characteristics of the user friends, how

close the interests of user are with those of brand, the age of user, and so on. Inher-

ently, the subscription setting depends on adaptive influence maximization solutions

as repetitive influence entails many propagation rounds. Yet, the relative decisions

for these rounds can be taken either offline (beforehand for all rounds) or online (in

real time). In this thesis, we devise an offline content recommendation service to help

brands to maximize their subscribers, even when they have no subscribers at all.

1.3 Contributions

In what follows, we summarize the main contributions of this thesis.

Spatial Data Management. Spatial data management systems operate as connec-

tors among brands and customers. As mentioned, such systems store spatial entities

7

1.3. Contributions

(have a geometry) that correspond to brands and at the same time these systems

enable customers to execute useful queries on them relative to brands. A special case

of brand is the connector system itself (i.e., the company that provides the system)

that has access to the location of both brands and customers. The location of a cus-

tomer can be obtained on demand when the customer runs a query on the system.

A beneficial connection among brands and customers is feasible only when those sys-

tems efficiently support fundamental spatial queries and dynamic spatial updates.

Moreover, RDF knowledge bases have also spatially enriched due to the popularity

of their simple storage schema; data just stored in triples. Yet, the current spatial

extensions of RDF stores (e.g., Virtuoso [Vir], GraphDB [Gra], Strabon [KKK12])

focus mainly on simply supporting spatial operations, and less on performance opti-

mization. We fill this gap by deploying SRX (Spatial RDF-3X), a system built on top

of the open-source RDF-3X store [NW08] to efficiently support spatial queries and

spatial updates; RDF-3X does not provide support for spatial RDF data. In more

detail, the main contributions of SRX over RDF-3X are the following:

• SRX supports three types of spatial queries: range selections, distance joins, and

k nearest neighbors. Also, it manages three kinds of spatial updates: deletions,

insertions, and modifications of triples.

• SRX uses an R-tree index to store the geometries of spatial entities so as to

help the efficient evaluation of queries with very selective spatial components.

• SRX uses a grid-based index to encode the geometries of spatial entities inside

their IDs. This encoding acts as a cheap filter to unqualified entities of spatial

queries since it avoids the I/O overhead of accessing the entities’ geometries.

Any sorting of triples is retained in queries and updates are effectively handled.

• SRX includes spatial merge join and spatial hash join algorithms based on the

encoding scheme. Other hash joins are also implemented to use R-tree.

• SRX includes two k nearest neighbor algorithms that make use of the encoding

scheme. The first algorithm is designed for unordered input whereas the second

one for ordered input.

• SRX enhances the query optimizer to consider the spatially encoded entities.

• SRX provides a dynamic re-encoding technique that leverages the grid index

to handle updates with a low overhead in performance.

• SRX is extensively compared for both queries and updates with the systems

RDF-3X, Virtuoso, GraphDB, and Strabon on the real datasets LGD [LGD] and

8

Chapter 1. Introduction

YAGO [YAG]. To evaluate updates, we generated a realistic update benchmark

based on the deltas we collected between different versions of LGD and YAGO.

Results show that SRX outperforms other systems for queries and updates.

SRX also incurs a little overhead to RDF-3X for updates.

Classic Influence Maximization. The Classic Influence Maximization (IM) prob-

lem [KKT03] asks for the k users that can maximize the influence of a given post

in a social network. In our work, we analyze and study the inverse variant of IM

where the users (brand’s subscribers) are given and the content of post, comprising k

features1 (or attributes), is sought; we name this problem as Content-Aware Influence

Maximization (CAIM). In brief, we mention the contributions of this work as follows:

• We study the CAIM problem that is the first inverse variant of IM problem in

which the users are given and the content is sought.

• We devise a content-aware propagation model, whereby the probability of in-

fluence across edges depends on content. Based on this model, we prove that

CAIM is NP-hard and it is also NP-hard to approximate its optimal solution.

• We implement a heuristic algorithm to solve CAIM, named Explore-Update,
which uses maximum influence paths along with a threshold to skip the exam-

ination of several users and features.

• We compare Explore-Update with two baselines and a standard Greedy approach
on Gnutella2 and VK3 datasets. Results show that it is remarkably more effec-

tive than baselines and more efficient than Greedy with competitive efficacy.

Adaptive Influence Maximization. The Adaptive Influence Maximization (AIM)

problem aims to maximize the cumulative influence achieved in a social network over

a number of rounds. Particularly, AIM pertains to a setting where brands publish

one post per round and in each round they search for a set of influential users (when

content is given) or for a set of influential content features (when content is not

given). In both cases, the influence feedback in the previous rounds (the number of

users who liked the propagated posts) is utilized for more influential decisions to be

taken in the next rounds. In this thesis, we examine and study the Adaptive Content-

Aware Influence Maximization (ACAIM) problem that depicts an adaptive version

of the CAIM problem tailored for online (real-time) applicability to social networks.

1We consider that each feature corresponds to a specific social network page.
2https://snap.stanford.edu/data/p2p-Gnutella04.html
3https://vk.com/

9

1.3. Contributions

Namely, ACAIM seeks in each round k content features to form an influential post

in order to maximize the cumulative influence of created posts over all rounds. In

addition, ACAIM includes the first integration of Online Learning to Rank (OLR)

techniques to maximize influence in a network. In summary, we make the following

contributions in the field of adaptive influence maximization:

• We study the ACAIM problem that is the first work that searches for influ-

ential content features under adaptive (multi-round) settings to maximize the

cumulative influence in a social network.

• We propose the CATRID propagation model that enables for first time the

utilization of an OLR framework for influence maximization purposes.

• We deploy a simulator (named SimCATRID) that runs the CATRID model to
represent a realistic feedback environment for ACAIM. To do that, the simulator

follows a machine learning scheme that is based on real VK posts.

• We develop three learners to solve the ACAIM problem. The best of them

eliminates content features over rounds by using a transitive structure and also

ranks the survived ones by using a participation structure.

• We present a plethora of experiments that examines the ACAIM performance

of learners for multiple brands on several VK datasets under the metrics of

reliability and scalability. We also provide a business applicability study that

demonstrates the ACAIM results of worldwide known brands. Results show

that the performance of our best learner is impressive in all cases, making it

suitable for utilization in the social network industry.

Subscription Maximization. The Subscription Maximization (SM) problem tar-

gets to maximize the cumulative number of gained subscribers in a social network

over a series of rounds. Specifically, SM adopts a similar to AIM setting with the

difference that the propagated posts intend to influence certain users. The repetitive

influence achieved on them can naturally yield their subscription. In our work, we

study a relative problem named Gaining Subscribers by Messaging (GSM) that en-

ables brands to earn new subscribers to their social network pages. The goal of GSM

is to maximize the subscription gain over all rounds. In more detail, GSM applies to

many rounds and in each round it guides the brand advertiser to invite some users

to visit the last published content in brand’s page such as they really find appealing

that content and subscribe to the page. Our overall contributions in the domain of

subscription maximization can be summarized as follows:

10

Chapter 1. Introduction

• We are the first that study the GSM problem. In each round, GSM recommends

to brands what content to publish (comprising k features) and which m users to

notify of that content so as to maximize their subscription gain over all rounds.

• We deploy three GSM solvers, named RANDOM, SCAN, and SUBSTITUTE. RANDOM

opts to notify users uniformly at random. SCAN finds the best pair of users and

features by examining all the possible pair combinations. SUBSTITUTE importantly

reduces the exhaustive search burden of SCAN by using fast retrieval techniques

based on sorting of users in regards to their achieved subscription gains.

• We evaluate the performance of deployed GSM solvers on VK data by consid-

ering different user and feature sets. Results show that SUBSTITUTE provides the

best solution, as it is significantly more efficient than SCAN with a minor loss of

efficacy and clearly more effective than RANDOM with competitive efficiency.

1.4 Organization

The rest of this thesis is structured as follows:

Chapter 2. This chapter discusses related work about RDF stores and their spatial

extensions. Following, we consider Influence Maximization (IM) and its variants. In

more detail, the Classic Influence Maximization (IM) problem seeks for the k users

who can maximize the influence of a given post in a social network. The Topic-

Aware Influence Maximization (TIM) problem extends IM to maximize topic-aware

(content-aware) influence in a network by considering the topics that accompany

the propagated post. The Influence Maximization with Viral Product Design (VPD)

problem limits the topic selection to a specific set of functional features that can

be attached to a certain product. Still, the purpose is the influence maximization

of that product in a network. The Adaptive Influence Maximization (AIM) problem

intends to maximize the cumulative influence in a social network over a number of

rounds. One post is assigned per round, and the influence feedback of posts in the

previous rounds is utilized for the finding of influential decisions in the next rounds.

Finally, the Personalized Influence Maximization (PIM) problem focus to maximize

the influence of propagated posts on a certain subset of social network users. It can be

executed in one or more rounds depending on the respective setting. Complementary

to the IM research, we also include the Online Learning to Rank (OLR) literature as

it is part of our content-aware AIM work we present in this thesis. The OLR problem

seeks for a set of clickable items per round to maximize the cumulative satisfaction

(measured in number of clicks) of users over a series of rounds.

11

1.4. Organization

Chapter 3. In this chapter, we present the SRX system that extends the RDF-

3X store for spatial data management. SRX supports WITHIN, DISTANCE, and

kNN spatial queries, as also spatial updates. For both queries and updates, we com-

pare SRX with the systems RDF-3X, Virtuoso, GraphDB, and Strabon on LGD and

YAGO datasets. Results show the clear superiority of SRX over other systems for

queries and updates. Also, the overhead for updates of SRX over RDF-3X is minor.

Chapter 4. This chapter presents the Content-Aware Influence Maximization (CAIM)

problem that constitutes the inverse variant of the classic IM problem. IM seeks for

influential users to promote a given content in a social network, while CAIM considers

known the initial adopters and searches for engaging features to form an influential

content. We prove that CAIM does not have influence guarantees, and so we deploy

heuristic methods to solve it. Experimental results are provided on Gnutella and VK

datasets. Results show that our advanced heuristic algorithm is more influential than

simple heuristics and it is also much faster than a standard greedy approach.

Chapter 5. This chapter presents the Adaptive Content-Aware Influence Maximiza-

tion (ACAIM) problem that aims to maximize the cumulative influence in a social

network over a number of rounds. ACAIM constitutes an online version of CAIM. To

solve ACAIM, we follow a machine learning approach based on the years 2010-2019

of the social network VK and we show how an OLR framework can be utilized for IM

purposes. For that, we deploy a propagation model, a simulator that runs the model

to generate realistic feedback, and three ACAIM learners. Our thorough experimental

study on various VK datasets for several brands shows that ACAIM is solvable in

big social networks. This fact highlights its suitability to the social network industry.

Chapter 6. In this chapter, we present the Gaining Subscribers by Messaging (GSM)

problem that pertains to a content recommendation policy for brands to effectively

increase their subscribers. We present three GSM solvers and evaluate their per-

formance by issuing a rich experimental process on different VK datasets. Results

demonstrate the important and practical value of GSM to real social networks.

Chapter 7. In this chapter, we summarize the contributions of this thesis. We also

provide interesting directions for future social and spatio-social research problems.

Chapter 8. This chapter provides the Appendix of this thesis. It contains information

for the queries, updates, and datasets we used for the experiments of SRX system.

12

Chapter 2

Related Work

In this chapter, we present the related work of this thesis. We start the discussion

from the spatial domain and afterwards proceed to the social field. Our work relative

to spatial data management (presented in Chapter 3) compares with similar works

about storing and indexing of RDF data and executing RDF queries on them, as also

with spatial extensions of those RDF systems. On the other hand, our works relative

to social data mining (presented in Chapters 4, 5, and 6) mainly depend on works

that study the Influence Maximization (IM) problem that searches for the k users

who can maximize the influence of a given post in a social network. We also discuss

related work of Online Learning to Rank (OLR) problem that seeks for the k most

clickable items to satisfy users, since we utilize OLR in Chapter 5 for IM purposes.

2.1 RDF Indexing, Querying, and Spatial Support

RDF Storage and Query Engines. There have been many efforts toward the

efficient storage and indexing of RDF data. The most intuitive method is to store

all 〈subject, property, object〉(SPO) statements in a single, very large triples table.
The RDF-3X system [NW08] is based on this simple architecture. RDF-3X (following

an idea from previous work) uses a dictionary to encode URIs and literals as IDs.

Indexing is then applied on the ID-encoded SPO triples. Figure 2.1 illustrates a

dictionary and the ID-encoded triples for the RDF base of Figure 3.1a. RDF-3X

creates a clustered B+-tree index for each of the six SPO permutations (i.e., SPO,

SOP, PSO, POS, OSP, OPS). A SPARQL query is transformed to a multi-way self-

join query on the triples table; the query engine binds the query variables to SPO

values and joins them (if the query contains literals or filter conditions, these are

included as selection conditions). A query is first translated by replacing URIs or

literals by the respective IDs and then evaluated using the six indices; finally, the

query results (in the form of ID-triples) are translated back to their original form. The

13

2.1. RDF Indexing, Querying, and Spatial Support

Figure 2.1: Use of Dictiorary.

six indices offer different ways for accessing and joining the triples; RDF-3X includes

a query optimizer to identify a good query evaluation plan. The system favors plans

that produce interesting orders, where merge joins are pipelined without intermediate

sorts. In addition, a run-time sideways information passing (SIP) mechanism [NW09]

reduces the cost of long join chains. RDF-3X maintains nine additional aggregate

indices, corresponding to the nine projections of the SPO table (i.e., SP, SO, PS, PO,

OS, OP, S, P, O), which provide statistics to the query optimizer and are also useful

for evaluating specialized queries. The query optimizer was extended in [NM11] to

use more accurate statistics for star-pattern queries. RDF-3X employs a compression

scheme to reduce the size of the indices by differential storage of consecutive triples in

them. Hexastore [WKB08] is a contemporary to RDF-3X proposal, which also indexes

SPO permutations on top of a triples table. An earlier implementation of a triples

table by Oracle [CDES05] uses materialized join views to improve performance.

An alternative storage scheme is to decompose the RDF data into property tables:

one binary table is defined per distinct property, storing the SO pairs that are linked

via this property. To avoid the case of having a huge number of property tables, this

extreme approach was refined to a clustered-property tables approach (used by early

RDF stores, like Jena [WSKR03] and Sesame [BKvH01]), where correlated tables are

clustered into the same table and triples with infrequent properties are placed into a

left-over table. Abadi et al.[AMMH07] use a column-store database engine to manage

one SO table for each property, sorted by subject and optionally indexed on object.

A common drawback of the column-store approach and RDF-3X is the potentially

large number of joins that have to be evaluated, together with the potentially large

intermediate results they generate. Atre et al. [ACZH10] alleviate this problem by

introducing a 3D compressed bitmap index, which reduces the intermediate results

before joining them. A similar idea was recently proposed in [YLW+13]; the partici-

pation of subjects and objects in property tables is represented as a sparse 3D matrix,

which is compressed. Yet, another storage architecture was proposed in [BDK+13].

The idea is to first cluster the triples by subject and then combine multiple triples

14

Chapter 2. Related Work

about the same subject into a single row. Thus, the system saves join cost for star-

pattern queries, but it may suffer from redundancy due to repetitions and null values.

Trinity [ZYW+13] is a distributed memory-based RDF data store, which focuses

on graph query operations such as random walk distance, reachability, etc. RDF

data are represented as a huge (distributed) graph and query evaluation is done

in an exploration-based manner; starting from the most selective predicates, query

variables are bound progressively, while the RDF graph is browsed. Trinity’s power

lies on the fact that memory storage eliminates the otherwise very high random

access cost for graph exploration. More information on distributed RDF systems can

be found in [Ö16]. gStore [ZMC+11] is an earlier, graph-based approach, which models

SPARQL queries as graph pattern matching queries on the RDF graph. gStore owes

its efficiency to a signature generation scheme for the RDF (non-literal) graph nodes.

The signature of a vertex is determined by its neighboring edges (i.e., properties)

and nodes (i.e., entities or literals). The same encoding scheme is used for query

patterns and can be used to effectively filter nodes that do not match with a query.

The signatures of all nodes are hierarchically indexed by a search tree, which can

help to find query pattern results. The index is also appropriate for wildcard queries

where variables are bound to literals with wildcards via filter conditions. A similar,

but simpler graph-partitioning approach for RDF data was proposed in [YWZ+09].

More recently, EmptyHeaded [ATOR, ATOR16] employed novel worst-case optimal

join algorithms to accelerate pattern matching queries on RDF graphs.

Spatial Extensions of RDF Stores. Although the efficient management of RDF

data has been a hot research topic for almost two decades, there have been only a

few recent efforts toward extending RDF stores to support spatial data. The Par-

liament [BK12], built on top of Jena [WSKR03], implements most of the features of

GeoSPARQL. Strabon [KKK12], developed contemporarily with Parliament, extends

Sesame [BKvH01] to manage spatial RDF data stored in PostGIS. Strabon adopts

a column-store approach, implementing two SO and OS indices for each property

table. Spatial literals (e.g., points, polygons) are given an identifier and are stored in

a separate table, which is indexed by an R-tree [Gut84]. Strabon extends the query

optimizer of Sesame to consider spatial predicates and indices. The optimizer applies

simple heuristics to push down (spatial) filters or literal binding expressions in or-

der to minimize intermediate results. Strabon is shown to outperform Parliament,

however, both systems suffer from the poor performance of the RDF stores they are

based on (i.e., Jena and Sesame) compared to faster engines (e.g., RDF-3X [NW08]).

For that reason, Strabon and Parliament lack sophisticated query evaluation and

optimization techniques.

Brodt et al. [BNM10] extend RDF-3X [NW08] to support spatial data. The ex-

15

2.2. Influence Maximization and Variants

tension is limited, since range selection is the only supported spatial operation. Fur-

thermore, query evaluation is restricted to either processing the non-spatial query

components first and then verifying the spatial ones or the other way around. Fi-

nally, the opportunity of producing an interesting order from a spatial index (in

order to facilitate subsequent joins) is not explored.

Geo-Store [WKC12] is another spatial extension of RDF-3X. Geo-Store divides the

space by a grid and orders the cells using a Hilbert space-filling curve. Each geometry

literal g (e.g. “POINT (...)”) is approximated by the Hilbert order g.ID of the cell that

includes it. Then, for all triples of the form s hasGeometry g, a triple s hasPos g.ID is
added to the data. During query evaluation, an extra join with the hasPos triples is
applied to perform the filter step of spatial queries. Geo-Store supports only spatial

range and k nearest neighbor queries, but not spatial joins. In addition, it does not

extend the query optimizer of RDF-3X to consider spatial query components. Finally,

besides increasing the size of the original database with the introduction of hasPos
triples, it is not clear how its encoding can handle complex spatial literals, such as

“POLYGON (...)”, which may span multiple cells of the grid.

S-Store [WZF+13] is a spatial extension of gStore [ZMC+11], which appends to

the signatures of spatial entities their minimum bounding rectangles (MBRs). The

hierarchical index of gStore is then adapted to consider both non-spatial and spatial

signatures. Although S-Store was shown to outperform gStore for spatial queries, it

handles spatial information only at a high level (i.e., the data are primarily indexed

based on their structure) and there is no study on how spatial statistics can be

used to improve query evaluation. Spatial RDF queries are also supported by many

commercial systems, such as Oracle, Virtuoso [Vir], and GraphDB [Gra], however,

details about their internal design are not public.

Finally, [NVDV18] recently introduced DiStRDF that adapts the encoding scheme

of [LMBT14] to support RDF queries with spatio-temporal filters on top of Spark.

In this thesis (Chapter 3), we present the first system, named SRX, which ef-

ficiently handles a variety of fundamental spatial RDF queries (range selections,

distance joins, and k nearest neighbors) as also updates (deletions, insertions, and

modifications) on spatial RDF data.

2.2 Influence Maximization and Variants

Classic Influence Maximization. The Influence Maximization (IM) problem seeks

for the k users that can maximize the influence of a given post in a social network. The

first solutions to the IM problem were proposed by Domingos and Richardson [DR01,

RD02], yet had no guarantees on influence spread. Then, Kempe et al. [KKT03] for-

mulated the problem based on the Independent Cascade (IC) and Linear Threshold

16

Chapter 2. Related Work

(LT) propagation models, proved its NP-hardness, and proposed a greedy algorithm

with a (1−1/e−ε) approximation guarantee. Subsequent works investigated efficiency

and scalability questions, either with heuristics [CWW10, CYZ10, CSH+14] or pre-

serving an approximation guarantee [LKG+07, GBL11, CPL12, BBCL14, TXS14].

IM has been extensively studied the last two decades due to its lucrative commer-

cial value. A well-known application of IM is viral marketing [DR01], where a com-

pany may wish to spread the adoption of a new product from some initially selected

adopters through the social links between users. Besides viral marketing, IM is also

a crucial component in many other important applications such as network monitor-

ing [LKG+07], rumor control [BAA11, HSCJ12], and social recommendation [YLL12].

Despite its immense application potential, IM embraces enormous research chal-

lenges. The first challenge is how to model the information diffusion process in a

social network, which would heavily affect the influence spread of any seed set in

IM. Second, the IM problem is theoretically complex in general. It has been proven

that obtaining an optimal solution of IM is NP-hard under most of the diffusion

models [CFL+15, KKT03, LCXZ12]. Furthermore, due to the stochastic nature of

information diffusion, even the evaluation of influence spread of any individual seed

set is computationally complex. These theoretical results have shown that it is very

challenging to retrieve a (near) optimal seed set and to scale to massive social graphs

at the same time. Third, recently, online social networks are being equipped with

novel features, e.g., topical analysis, location-based services, streaming content, etc.

This has opened up an opportunity of combining IM with various contexts, such as

topics, location, and time in order to improve the effectiveness of IM. Many techni-

cal challenges naturally arise in solving such context-aware influence maximization

problems. Last, the works [AGR17, LFWT18] provide good survey material for IM.

In this thesis (Chapter 4), instead of looking for k influential users to promote a

given post, we address the IM problem by searching for k influential features to form

the content of a non-given post so as to make it viral in a social network. The initial

adopters for the post promotion are the subscribers of brand’s social network page.

Topic-Aware Influence Maximization. The Topic-Aware Influence Maximization

(TIM) problem extends the generic IM problem by taking the topics of the item being

propagated into consideration. Given topics as a query, TIM aims at finding the opti-

mal set of users that maximizes the topic-aware influence in a social network. Barbieri

et al. [BBM12] were the first to look at social influence taking content (comprising

characteristics expressed as topics) into consideration. They proposed methods that

learn propagation model parameters such as topic-aware influence strength from a

query log of past propagation traces, and verified experimentally that a larger influ-

ence spread can be engendered when taking content characteristics into consideration

17

2.2. Influence Maximization and Variants

via their Topic-Aware Influence Maximization (TIM) models.

Aslay et al. [ABBBY14] studied online TIM queries; the incentive for this online

scenario is that many independent advertisers wish to instantly detect the k most

influential users for advertising purposes; each advertisement contains a different set

of keywords and hence induces a new probabilistic graph creating a separate TIM

instance; an offline-online solution, INFLEX, based on an index used to identify

similarities among a new and log TIM queries; pre-computed solutions for log queries

are aggregated online so as to provide an approximate solution for a TIM query.

The online TIM problem is also studied in [CLY14, CFL+15]. Chen et al. [CLY14]

studied topic-aware influence results on two real networks and utilized the derived

properties to form three preprocessing-based algorithms, of which MIS is the best; its

main difference from INFLEX is that, in MIS, pre-computed seed sets are based on

each separate topic rather than on a mixture of topics from different log queries. Chen

et al. [CFL+15] utilized the maximum influence arborescence (MIA) model [CWW10]

to achieve high influence spread with a theoretical guarantee. The core idea is to

utilize upper- and lower-bounding techniques, so that an exact marginal influence is

computed only for the most promising nodes. This work provides the state-of-the-art

solution for the online TIM problem [ABBBY14].

Recently, Li et al. [LZT15] proposed a variation on the online TIM problem,

namely the alternative problem of Keyword-Based Targeted Influence Maximization

(KB-TIM). By KB-TIM, each user is associated with a weighted vector of prefer-

ences for distinct keywords, which stand for topics. This vector can be generated

by applying topic modeling techniques [HD10] on aggregated user social activities,

such as posts, likes, etc. An advertisement then achieves an impact determined by

its own topic-oriented keywords. The KB-TIM problem aims to maximize an adver-

tisement’s impact, expressed in terms of its spread to target users relevant to its

keywords. The solution in [LZT15] draws from previous work in [TXS14], with the

main difference being that, while in [TXS14] θ users in a sampled Reverse Reachable

(RR) set [BBCL14] are counted without prejudice, in [LZT15] these sampled users

are accounted in terms of exerted advertisement impact; [LZT15] also employs two

indexing methods to precompute RR sets for different keywords, so as to obtain RR

sets associated with the query keywords on the fly. Nevertheless, results in [LZT15]

are not compared to those in [CFL+15].

Besides selecting content features instead of users to maximize influence in a

network, our works in social domain (Chapters 4, 5, and 6) have another important

difference with aforementioned topic-aware IM works. Those works do not examine

what kind of posts would be most influential given all topics in the network. Also, the

topic-aware approach is based on general topical terms, like music, soccer, cars, etc.,

ignoring the high variation among different specimens within such terms. In contrast,

18

Chapter 2. Related Work

we search for specific content features (social network pages) to form influential posts.

Finally, authors in [KLK20] consider each topic (they call it feature) as a specific

social network page and propose an alternative version of LT model based on features,

named Content-Aware Linear Threshold (CALT) model. Particularly, they first learn

the influence parameters of CALT associated with activation probabilities on network

edges, and then they use that knowledge to find the k most influential features in

order to form a viral post that starts its diffusion from a fixed set of initial adopters.

Although this work shares the same meaning of features with our social works in this

thesis, it utilizes different influence propagation models than the ones used in Chap-

ters 4 and 5, and also it cannot solve the Adaptive Influence Maximization problem

that we discuss later and we solve it in Chapter 5.

Influence Maximization with Viral Product Design. Aral and Walker [AW11]

investigated the problem of viral product design (VPD) under randomized trials

focusing on product features like personalized referrals and broadcast notifications.

The goal of VPD is to maximize the influence of a product in a network by exploiting

specific engaging features that can meaningfully attached to the product. Thereafter,

Barbieri and Bonchi [BB14] studied the problem of IM in conjunction with that of

VPD, aiming to detect a combination of seed nodes and product attributes that

maximize influence in a network. The proposed solutions are generic methods named

Local Update and Genetic Update; the former is a greedy algorithm allowing for

both addition and removal of attributes at each greedy iteration; the latter is a

brute-force method that randomly selects a subset of all attributes. By contrast, our

social works in Chapters 4 and 5 study the problem of content selection for a post

(not a product) as a stand-alone IM problem pertaining to distinctive characteristics.

Adaptive Influence Maximization. The Adaptive Influence Maximization (AIM)

problem attracted significant interest lately due to its high applicability to many IM

use-cases in real world. The target of AIM is to maximize the cumulative influence

achieved in a social network over a number of rounds. We discuss two main factors

that can depict the growing popularity of AIM the last period.

First, it is easily verified in [GBL11] that, given a network with known activa-

tion probabilities on its edges, one-round propagations of classic IM are often less

influential than multi-round ones of AIM. This is logical to happen, since in AIM,

the influential candidates are gradually selected over rounds based on a network

feedback [GK11, CK13, YT17, SHYC18, HTH+20]. Golovin and Krause [GK11] in-

troduced an adaptive optimization framework with approximation guarantees under

a dependent (incremental) over rounds seed selection setting; only one seed node can

be selected in each round and the propagation capabilities of earlier seeds are not

reconsidered for later seeds. To do that, they utilize a full-adoption feedback model

19

2.2. Influence Maximization and Variants

that notifies the learner of which nodes activated in each round. All the subsequent

works are motivated by the adaptive formulation in [GK11]. In particular, under the

full-adoption feedback model, Chen and Krause [CK13] study adaptive seed selection

by assuming that more than one seed nodes can be selected in each round. Yuan and

Tang [YT17] solve AIM under a partial-feedback model that allows selecting seeds

without time restrictions in the sense that there is no need to wait for total influence

results of previous seeds so as to select the next seeds. The state-of-the-art work for

AIM, under the dependent seed selection setting, is the recent work in [HTH+20] that

uses approximation algorithms which depend on selecting nodes in equal batches. Dif-

ferently from previous works, Sun et al. [SHYC18] proposed an alternative setting for

AIM under which influence propagates in multiple rounds independently from pos-

sibly different seed sets and the aim is to maximize the expected number of unique

activated nodes over all rounds.

The second reason for the popularity of AIM is the uncertain factor. In many re-

alistic scenarios, the parameters of activation probabilities in the edges of a network

or even the network topology (nodes and their edges), are partially or completely ag-

nostic to the learner. Several approaches have been proposed [LMM+15, CWYW16,

VLS16, VKW+17, WKVV17, WLW+19], which given a network, they learn the un-

derlying diffusion parameters while simultaneously running independent (i.e., non-

incremental) propagation campaigns. To balance between exploration steps (of yet

uncertain model aspects) and exploitation ones (focusing on the most promising

seeds), these approaches rely on multi-armed bandits techniques similar to [CWY13].

Among these works, only in [LMM+15] authors target the activation of unique nodes

across rounds as in [SHYC18], while all the others share the same non-unique node

influence objective. Yet, all these multi-armed bandit approaches still focus on the

learning aspect of edge probabilities to find influential seeds. Further, regarding the

case where the network topology is unknown, there is an interesting line of adaptive

works [SS13, HS15, LCCM19] looking for promising seeds to solve AIM under an

agnostic network perspective.

Complementary to mentioned works is the research conducted in [TWTD17,

WFLT17]. In particular, Tong et al. [TWTD17] consider the propagation probabilities

are random variables conforming to certain distributions and propose a simple greedy

adaptive seeding strategy to find an effective solution with a provable performance

guarantee. Moreover, Wang et al. [TWTD17, WFLT17] study the IM problem over

a social action stream. They define the influence between users in the sliding window

model and propose the Stream Influence Maximization (SIM) query to continuously

track a seed set maximizing the influence with regards to the current window.

Differently from previous works, we address the AIM problem in Chapter 5 by

searching influential features over node probabilities instead of seeking influential

20

Chapter 2. Related Work

nodes over edge probabilities; we consider that the network structure is known.

Personalized Influence Maximization. The Personalized Influence Maximiza-

tion (PIM) problem tunes IM for topic-relevant targets. PIM considers that nodes

(i.e., users) are topic-aware and wants to maximize the influence on a subset of so-

cial network users (called targets) relevant to the query topics. Some studies on

PIM [GZZ+13, LZT15, NDT16] focus on maximizing the influence over the users

who are relevant to the query topics, i.e., the topic-relevant targets. Formally, these

studies introduce a concept of benefit to differentiate the users. Then, they compute

the influence as the expected summation of benefits of the activated users, which is

also known as targeted influence. Based on this, they introduce techniques to find the

users that maximize the targeted influence under their benefit computation models.

Li et. al [LZT15] propose to compute a user’s benefit by considering how a user

matches query topics. More specifically, they associate each user with a profile that

consists of the users preferences on different topics. Given this benefit model, Li

et. al [LZT15] address targeted IM problem under the traditional IC model. They

introduce a weighted sampling technique to find an unbiased estimator for the tar-

geted influence. Moreover, as conducting online sampling cannot meet the real-time

processing requirement, they further devise disk-based index structures to push the

sampling procedure from online to offline. The idea is to build a sufficient number

of Reverse Reachable (RR) sets for each topic (e.g., music and book) offline. Then,

given an online query, they select RR sets from the query topics and merge the RR

sets to compute the result. Last, they also introduce an incremental index structure

to further reduce the I/O cost.

Nguyen et. al [NDT16] generalize the PIM problem by considering any predefined

benefit function over users. Similar to [LZT15], they also adopt an RR framework.

Under this framework, they propose an algorithm with a sampling strategy applicable

for general benefit functions, and an early termination rule that avoids generating

too many samples. Furthermore, this work also studies the cost-aware settings where

each user is activated using certain costs.

Complementary to the PIM problem, authors in [GZZ+13] aim to find the seed

set that maximizes its influence on one given target user, which can be interpreted

that only this user is topic-relevant while the others are not. The work in [GZZ+13]

studies this problem under the IC model, and proposes two algorithms. The first is

called efficient local greedy algorithm, which can be expressed as a simulation-based

algorithm, with some pruning rules tailored for the local structure of the target

user. Obviously, this algorithm cannot satisfy the online query requirement. The

second is an online local cascade algorithm, which is a hop-based approach that

only maintains shortest paths from each user to the target one. However, compared

21

2.3. Online Learning to Rank

with [LZT15, NDT16] the influence spread cannot be theoretically guaranteed.

The difference of our work in Chapter 6 relative to mentioned research on the

PIM problem is that we exploit influence to gain subscribers for a brand. Previous

works do not study neither measure how targeted influence on users can lead to

the subscription of users. We also achieve influence via selecting appealing content

features and not by searching for influential seed nodes.

2.3 Online Learning to Rank

The Online Learning to Rank (OLR) problem mentions to a learner that adap-

tively selects, in each round, a ranked list of k out of L items so as to maximize

the user satisfaction over all rounds; each round relates with a single user and users

are often different among rounds. Most OLR works [KSWA15, CMPL15, KWAS15,

ZNS+16, LWZC16, KKSW16, LVC16] measure that user satisfaction in clicks, by

utilizing a click model (common to all users in all rounds) that is a stochastic model

of how a user examines and clicks on a ranked list of items. There is a variety of click

models [CMdR15]. Among them, the most popular ones for the OLR problem are

the Position-Based Model (PBM) [RDR07] and the Cascade Model (CM) [CZTR08].

In PBM, the probability that users click on an item of a ranked list depends on the

position of item in the list and the inherent attractiveness of item, while CM assumes

that users scan the ranked list from top to bottom, clicking on the first item they

find attractive. Yet, it has been experimentally observed that no single existing click

model captures the behavior of an entire population of users [GCM+15]. To address

this problem, Zoghi et al. [ZTG+17] introduced an algorithm that solves OLR in

different click models (including PBM and CM) under reasonable click probability

assumptions. After that, Lattimore et al. [LKLS18] enhanced the independent click

model setting of previous work by relaxing further its click assumptions and proposed

a more practical algorithm, named TOPRANK, to solve OLR in multiple click models

under stronger regret guarantees. Recently, Li et al. [LLS19] proposed a learning

framework to handle topic-based OLR.

In Chapter 5 we study theAdaptive Content-Aware Influence Maximization (ACA-

IM) problem that integrates OLR techniques for IM purposes. In particular, among

previous OLR works we selected TOPRANK for integration to solve ACAIM due to its

general click model and high usefulness as proved in [LKLS18]. Yet, we stress that

ACAIM differs from pure OLR for two main reasons. First, ACAIM applies to a

social network of connected users rather than a sequence of independent single users.

Second, OLR works focus on learning click probability parameters, while we consider

such parameters learned by training, and focus on effectively and efficiently address

the online computation challenges of ACAIM.

22

Chapter 3

SRX: Efficient Management of

Spatial RDF Data

In this chapter, we present a general encoding scheme for the efficient management

of spatial RDF data. The scheme approximates the geometries of the RDF entities

inside their integer IDs and can be used, along with several operators and optimiza-

tions we introduce, to accelerate queries with spatial predicates and to re-encode

entities dynamically in case of updates. We implement our ideas in SRX, a system

built on top of the popular RDF-3X system [NW08]. SRX extends RDF-3X with

support for three types of spatial queries: range selections (e.g. find entities within a

given polygon), spatial joins (e.g. find pairs of entities whose locations are close to

each other), and spatial k nearest neighbors (e.g. find the three closest entities from a

given location). We evaluate SRX on spatial queries and updates with real RDF data,

and we also compare its performance with the latest versions of three popular RDF

stores. The results show SRX’s superior performance over the competitors; compared

to RDF-3X, SRX improves its performance for queries with spatial predicates while

incurring little overhead during updates.

3.1 Introduction

The Resource Description Framework (RDF) has become a standard for express-

ing information that does not conform to a crisp schema. Semantic-Web applications

manage large knowledge bases and data ontologies in the form of RDF. RDF is a sim-

ple model, where all data are in the form of 〈subject, property, object〉 (SPO) triples,
also known as statements. The subject of a statement models a resource (e.g., a Web

resource) and the property (a.k.a. predicate) denotes the subject’s relationship to the

object, which can be another resource or a simple value (called literal). A resource

is specified by a uniform resource identifier (URI) or by a blank node (denoting an

23

3.1. Introduction

unknown resource). An RDF knowledge base can be modeled as a graph, where nodes

are resources or literals and edges are properties.

SPARQL is the standard query language for RDF data, used to express query

graph patterns that have to be matched in the RDF data graph. The GeoSPARQL

standard [BK12], defined by the Open Geospatial Consortium (OGC), extends RDF

and SPARQL to represent geographic information and support spatial queries. Geospa-

tial filter functions are used to express spatial predicates between entities in SPARQL

queries. stSPARQL [KK10] has similar features.

Despite the large volume of work on indexing and querying large RDF knowledge

bases [AMMH07, ACZH10, BDK+13, BKvH01, CDES05, NW08, WKB08, WSKR03,

YWZ+09, YLW+13, ZYW+13, ZMC+11], only a few works focus on the effective han-

dling of spatial semantics in RDF data. In particular, the current spatial extensions of

RDF stores (e.g., Virtuoso [Vir], GraphDB [Gra], Parliament [Par], Strabon [KKK12],

and others [BNM10, WKC12, WZF+13]) focus mainly on supporting GeoSPARQL

features, and less on performance optimization. The features and weaknesses of these

systems are reviewed in Chapter 2. On the other hand, there is a large number of

spatial entities (i.e., resources) in RDF knowledge bases (e.g., YAGO [YAG]). Thus,

the power of the state-of-the-art RDF stores is limited by the inadequate handling of

spatial semantics, given that it is not uncommon for user queries to include spatial

predicates. At the same time, spatial data management systems [EM16] can only be

used to index and search the spatial semantics of the entities, but do not support

graph pattern search.

We fill this gap by presenting SRX (Spatial RDF-3X), a system built on top of

the open-source RDF-3X store [NW08] to efficiently support spatial queries and up-

dates. SRX inherits the basic design principles of RDF-3X, which encodes all values

that appear in SPO triples by identifiers with a help of a dictionary, and models

the RDF knowledge base as a single long table of ID triples. A SPARQL query can

then be modeled as a multi-way join on the triples table. The system creates a clus-

tered B+-tree for each of the six SPO permutations; the query optimizer identifies

an appropriate join order, considering all the available permutations and advanced

statistics [NM11]. RDF-3X is known to have robust performance in comparison stud-

ies on various RDF datasets and query benchmarks [BDK+13, NW08, YLW+13].

Although we have chosen RDF-3X as a basis for SRX, our techniques are also appli-

cable to other RDF stores, e.g. [YLW+13]. In a nutshell, SRX includes the following

extensions over RDF-3X.

Index Support for Spatial Queries. Similar to previous spatial extensions of RDF

stores (e.g., [BNM10]), SRX includes a spatial index (i.e., an R-tree [Gut84]) for the

geometries associated to the spatial entities. This facilitates the efficient evaluation

24

Chapter 3. SRX: Efficient Management of Spatial RDF Data

of queries with very selective spatial components.

Spatial Encoding of Entities. The identifiers given to RDF resources in the dic-

tionary of RDF-3X (and other RDF stores) do not carry any semantics. Taking ad-

vantage of this fact, we encode spatial approximations inside the IDs of entities (i.e.,

resources) associated to spatial locations and geometries. This mechanism has several

benefits. First, for queries that include spatial components, the IDs of resources can

be used as cheap filters and data can be pruned without having to access the exact

geometries of the involved entities. Second, our encoding scheme does not affect the

standard ordering (i.e., sorting) of triples used by the RDF-3X evaluation engine,

therefore it does not conflict with the RDF-3X query optimizer; in other words, the

original system’s performance on non-spatial queries is not compromised. Finally,

our encoding scheme adopts a flexible hierarchical space decomposition so that it can

easily handle spatially skewed datasets and updates without the need to re-assign

IDs for all entities.

Spatial Join Algorithms.We design spatial join algorithms tailored to our encod-

ing scheme. Our Spatial Merge Join (SMJ) algorithm extends the traditional merge

join algorithm to process the filter step of a spatial join at the approximation level

of our encoding, while (i) preserving interesting orders of the qualifying triples that

can be used by succeeding operators, and (ii) not breaking the pipeline within the

operator tree. In typical SPARQL queries which usually involve a large number of

joins, the last two aspects are crucial for the overall performance of the system. Our

Spatial Hash Join (SHJ-ID) operates with unordered inputs, using their encodings to

identify fast candidate join pairs.

Spatial kNN Algorithms. We design two k nearest neighbors (kNN) algorithms

that make use of our encoding scheme. Both are based on previous work on grid-

based kNN query evaluation. The first one operates on unordered input whereas the

second exploits interesting orders and can be combined with other order-preserving

operators to improve performance and further reduce the memory footprint.

Spatial Query Optimization. In addition to including standard selectivity esti-

mation models and techniques for spatial queries, we extend the query optimizer of

RDF-3X to consider spatial filtering operations that can be applied on the spatially

encoded entities. To do that, we augment the original join query graph of a SPARQL

expression to include binding of spatial variables via spatial join conditions.

Dynamic Spatial Re-encoding. Changes in real RDF datasets are the rule rather

than the exception. Such changes occur as new triples are added and old ones are

removed or updated, and the need for re-encoding spatial entities arises naturally.

To tackle this problem with a low overhead in performance, we carefully integrate a

dynamic re-encoding technique with the original update mechanism of RDF-3X.

25

3.2. Preliminaries

We evaluate SRX by comparing it with the latest versions of two commercial

spatial RDF management systems: Virtuoso [Vir] and GraphDB [Gra], and a popular

free RDF management system: Strabon [KKK12]. For query evaluation, we use two

real datasets: LinkedGeoData (LGD) [LGD] and YAGO [YAG]. To evaluate dynamic

re-encoding, we generated a realistic update benchmark— the first one using real data

— based on the deltas we collected between different versions of LGD and YAGO.

The results demonstrate the superior performance and robustness of SRX over the

competitors; SRX improves the performance of the original RDF-3X for queries with

spatial predicates, while incurring insignificant overhead when performing updates.

3.2 Preliminaries

The SPARQL queries we consider follow the format:

Select [projection clause]
Where [graph pattern]
Filter [condition]

The Select clause includes a set of variables that should be instantiated from the RDF
knowledge base (variables in SPARQL are denoted by a ? prefix). A graph pattern

in the Where clause consists of triple patterns in the form of s p o where any of the

s, p and o can be either a constant or a variable. Finally, the Filter clause includes
one or more spatial predicates. For the ease of presentation, in our discussion and

examples, we consider only WITHIN range predicates (for spatial selections), DIS-

TANCE predicates (for spatial joins), and kNN predicates (for k nearest neighbors).

However, we emphasize that the results of our work are directly applicable to all

spatial predicates defined in the GeoSPARQL standard [BK12]. In addition, we use a

simplified syntax for expressing queries and not the one of the GeoSPARQL standard

because the latter is verbose.

As an example, consider the RDF knowledge base partially listed in Figure 3.1a.

Literals and spatial literals (i.e., geometries) are in quotes. An exemplary query with

a range predicate is:

Select ?s ?o

Where ?s cityOf Germany . ?s hosted ?o .

?s hasGeometry ?g .

Filter WITHIN(?g, “POLYGON(...)”);

This query finds the cities of Germany within a specified polygonal range together

with the persons they hosted. Note that there are three variables involved (?s, ?o,

26

Chapter 3. SRX: Efficient Management of Spatial RDF Data

Figure 3.1: Example of RDF data and three spatial queries.

and ?g) connected via a set of triple patterns which also include constants, i.e.,

Germany. For example, if POLYGON(...) covers the area of East Germany, (Dresden,

Wagner) and (Leipzig, Bach) are results of this query. The query is represented by

the pattern graph of Figure 3.1b. In general, queries can be represented as graphs

with chain (e.g., ?s1 hosted ?s2. ?s2 performedIn ?s3.) and star (e.g., ?s cityOf ?o. ?s
hostedWagner.) components. Another exemplary query, which includes a spatial join
predicate, represented by the pattern graph of Figure 3.1c, is:

Select ?s1 ?s2

Where ?s1 cityOf Germany . ?s1 sisterCityOf ?s2 .
?s1 hasGeometry ?g1 . ?s2 hasGeometry ?g2 .

Filter DISTANCE(?g1, ?g2) < “300km”;

This query asks for pairs of sister cities (i.e., ?s1 and ?s2) such that the first city (i.e.,

?s1) is in Germany and the distance between them does not exceed 300km. In the

exemplary RDF base of Figure 3.1a, (Dresden, Wroclaw) and (Leipzig, Hannover)

are results of this query while (Dresden, Ostrava) is not returned as the distance

between Dresden and Ostrava is around 500km. Finally, an examplary query with a

kNN predicate, represented by the pattern graph of Figure 3.1d, is the next:

27

3.3. A Basic Spatial Extension

Select ?s ?c

Where ?p hasName “Richard Wagner” . ?p performedIn ?s .

?s cityOf ?c . ?s hasGeometry ?g .

Filter kNN(?g, “POINT(...)”, 2);

This query asks for the two closest to the specified point cities where Richard Wagner

has performed, together with their respective countries. E.g., if POINT(...) refers to

the city of Chemnitz (12.8, 50.8), then the result of the query in the RDF base of

Figure 3.1a consists of the tuples (Leipzig, Germany) and (Prague, CzechRepublic).

Besides queries, we also consider delete, insert, and update operations on RDF

data. Updates in SPARQL (and GeoSPARQL) are expressed via DELETE and IN-

SERT statements following the format:

Delete|Insert [triples]

For example, to update the name of the entityWagner in the RDF base of Figure 3.1a,
one can simply apply the following two statements:

Delete Wagner hasName “Richard Wagner”;
Insert Wagner hasName “Wilhelm Richard Wagner”;

3.3 A Basic Spatial Extension

In the remainder of the chapter, we present the steps of extending a standard query

evaluation framework for triple stores (i.e., the framework of RDF-3X) to efficiently

handle the spatial components of RDF queries. In RDF-3X, a query evaluation plan is

a tree of operators applied on the base data (i.e., the set of RDF-triples). The leaves of

the tree are any of the 6 SPO clustered indices. The operators apply either selections

or joins. Each operator addresses a triple of the query pattern and instantiates the

corresponding variables; the instantiated triples (or query subgraphs) are passed to

the next operator, until they reach the root operator, which computes instances for

the entire query graph.

This section outlines the basic (but essential) spatial extension to RDF-3X, which

improves the spatial RDF-3X extension of Brodt et al. [BNM10] to support spatial

join and kNN query evaluation. We also discuss drawbacks of the basic extension

that motivated us to design the spatial encoding scheme described in Section 3.4 and

the query evaluation algorithms that use it in Section 3.5.

Spatial Indexing. Spatial entities i.e., resources associated to spatial literals like

POINT and POLYGON, are indexed by an R-tree [Gut84]. For each entity associated

to a polygon, there is an entry at a leaf of the R-tree of the form (mbr, ID), wherembr

28

Chapter 3. SRX: Efficient Management of Spatial RDF Data

Figure 3.2: Possible query plans in the basic extension.

is the minimum bounding rectangle (MBR) of the polygon. For each entry associated

to a point pt, there is a (pt, ID) entry.

Spatial Selections. Given a query with a spatial selection Filter condition, the opti-
mizer may opt to use the R-tree to evaluate this condition first and retrieve the IDs

of all entities that satisfy it.1 However, the output fed to the operators that follow

(i.e., those that process non-spatial query components) is in a random order. Thus,

query evaluation algorithms that rely on the input being in an interesting order (such

as merge-join) are inapplicable. On the other hand, if the spatial selection is eval-

uated after another (i.e., non-spatial) operator, the R-tree cannot be used because

the input is no longer indexed. So, in this case, the system must look up the geome-

tries of the entities that qualify the preceding operator at the dictionary, incurring

1For entities that have point geometries, the spatial selection can be evaluated using only the R-

tree. If the entities have non-point geometries, the R-tree search may result in false positives, thus, the

final results of the spatial filter are confirmed by retrieving the exact geometries from the dictionary.

29

3.3. A Basic Spatial Extension

significant cost. Figure 3.2a and Figure 3.2b illustrate two alternative plans for the

spatial selection query of Figure 3.1b. The plan of Figure 3.2a uses the R-tree to

perform the spatial selection and joins the result with the instances of triple ?s cityOf
Germany. Finally, the join results are joined with the results of ?s hosted ?o. The plan

of Figure 3.2b first evaluates the non-spatial part of the query and then looks up and

verifies the geometries of all ?s instances in it (i.e., the R-tree is not used here).

Spatial Joins. The R-tree can also be used to evaluate spatial join Filter conditions,
by applying join algorithms based on R-trees. We implemented three algorithms for

this purpose. First, the R-tree join algorithm [BKS93] can be used in the case where

both spatially joined variables involved in the Filter condition are instantiated directly
from the base data and do not come as outputs of other query operators. Second,

we use the SISJ algorithm [MP03] for the case where the R-tree can be used only

for one variable. Finally, we implemented a spatial hash join (SHJ) algorithm [LR96]

for the case where both inputs of the spatial join filter condition are output by other

operators.2 As in the case of spatial selections, spatial join algorithms do not produce

interesting orders and for spatial join inputs that are instantiated by preceding query

operators, the system has to perform dictionary look-ups in order to retrieve the

geometries of the entities before the join. Figure 3.2c and Figure 3.2d illustrate two

alternative plans for the spatial join query of Figure 3.1c. The plan of Figure 3.2c

applies an R-tree self-join [BKS93] to retrieve nearby (?s1, ?s2) pairs and then binds

?s1 with the result of ?s1 cityOf Germany. The output is then joined with the result
of ?s1 sisterCityOf ?s2. The plan of Figure 3.2d first evaluates the non-spatial part of
the query and then looks up the geometries of all (?s1, ?s2) pairs, and joins them

using SHJ. In the following, we briefly describe SISJ and SHJ for completeness.

SISJ joins a spatial input A which is not indexed, with an R-tree B. Assuming that

we want to use H hash buckets, SISJ first divides the entries at the uppermost level of

B that contains at least H entries into H groups based on their spatial proximity. The

i-th group has as spatial extent the MBR of all entries in group i. Bucket Bi contains

all objects in the subtrees of B pointed by the entries in the i-th group. The objects

from A are hashed to buckets such that bucket Ai contains all objects that intersect

the spatial extent of the i-th group. Finally, each Ai is spatially joined in memory

with Bi (e.g., using plane sweep). Our SHJ implementation pulls the smallest of the

two join inputs (based on the query optimizer’s estimation) and constructs from it

a spatial hash table in memory. Each hash bucket corresponds to a cell in a 2D grid

with side equal to the distance join threshold ε. Each entity from the hashed join

input is assigned to all buckets (cells) that it spatially overlaps. Then, SHJ pulls the

2If the spatial join inputs are very small, we simply fetch the geometries of the input entity sets

and do a nested-loops spatial join.

30

Chapter 3. SRX: Efficient Management of Spatial RDF Data

records from the other input one by one and, for each spatial entity e, (i) it retrieves

e’s geometry from the dictionary, (ii) identifies the cell c whereto e belongs, and (iii)

accesses the buckets that correspond to c and its neighboring cells to find candidate

entities that can match with e based on their spatial approximations. For each such

candidate entity e′, the operator computes the exact distance between e and e′, and

outputs the join pair (e, e′) if the distance is at most ε.

Spatial kNN. The R-tree can also be used to evaluate a spatial kNN predicate

in the Filter clause. In this case, the nearest entities are fetched from the R-tree

and fed to the operators that follow. Since some of these entities might be filtered

out by subsequent operators, we should use an incremental NN algorithm for R-

trees [Mam11] (an operation often referred to as distance browsing. As in the case

of spatial selections, the drawback of using this algorithm is that the IDs of the

fetched entities are in random order, preventing the use of efficient operators that

rely on interesting orders. On the other hand, when the R-tree is not used, the kNN

evaluation needs to perform dictionary lookups to fetch the geometries of all entities

that qualify the RDF part of the query and keep track using a heap, the k nearest

entities. Figure 3.2e and Figure 3.2f depict two possible plans that correspond to the

two options above for the query pattern of Figure 3.1d.

3.4 Encoding the Spatial Dimension

We observe that in most RDF engines, the IDs given to resources or literals at

the dictionary mapping do not carry any semantics. Instead of assigning random IDs

to resources, we propose to encode into the ID of a resource an approximation of the

resource’s location and geometry that can be used to (i) apply spatial Filter conditions
on-the-fly in a query evaluation plan, and (ii) define spatial operators that apply on

the approximations.

Figure 3.3b illustrates the Hilbert space filling curve, a classic encoding scheme

of spatial locations into one-dimensional values. We partition the space using a grid,

and order the cells based on the curve. We then divide the ID given to a spatial

resource r into two components: (i) the Hilbert order of the cell where r spatially

resides occupies the m most significant bits (where 2m/2 × 2m/2 is the resolution of

the grid), and (ii) a local identifier which distinguishes r from other resources that

reside in the same cell as r. Since the RDF data may also contain resources or literals,

which are not spatial, we use a different range of ID values for non-spatial resources

with the help of the least significant bit as a flag. In the toy example of Figure 3.3a,

the least significant bit (b0) indicates whether the entity modeled by the ID is spatial

(b0 = 1) or non-spatial (b0 = 0), the next 4 bits are used for the local identifier,

31

3.4. Encoding the Spatial Dimension

Figure 3.3: Spatial encoding of entity IDs.

and the 6 most significant bits encode the Hilbert order of the cell. For example, in

Figure 3.3b, entity e1961 is spatial (b0 is set) and it is located in the cell with Hilbert

order 111101 (cell with ID 61), having local code 0100. For a non-spatial resource,

bit b0 would be 0 and the remaining ones would not have any spatial interpretation.

Figure 3.3c illustrates which IDs encode the cities of Figure 3.1a.

In the case of a skewed dataset, a cell may overflow, i.e., there could be too many

entities falling inside it rendering the available bits for the local codes of entities in it

insufficient. In this case, entities that do not fit in a full cell are assigned to the parent

of the cell in the hierarchical space decomposition. For instance, consider the data in

Figure 3.3b and assume that the cell with ID 61 is full and that the entity e1931 cannot

be assigned to it. e1931 will be assigned to the parent cell, i.e., the square that consists

of the cells 60, 61, 62, and 63. This cell’s encoding has 4 bits, that is, 2 bits less than

its children cells. These 2 bits are now used for the local encoding of entities in it.

Intuitively, as we go up in the hierarchy of the grid, each cell can accommodate more

entities. An entity that must be assigned to an overflown cell ends in the first non-full

ancestor of that cell as we go up in the hierarchy. The dlog2(m/2)e least significant
bits of the local code area are reserved to encode the level of the spatially-encoded

32

Chapter 3. SRX: Efficient Management of Spatial RDF Data

cell in the ID (the most detailed level being 0). Here, m = 6, hence, 2 bits of the local

code are used to denote the level of the cell that approximates each entity.

The encoding we described is also used for arbitrary geometries that may overlap

with more than one cells of the bottom level. For example, the polygon at the lower

left corner of the grid of Figure 3.3b spans across cells with IDs 1 and 2, thus, it will be

assigned to their parent cell, which has a spatial encoding 0000. Due to the variable

number of bits given to the spatial approximations, the encoding is also suitable

for dynamic data (i.e., inserted entities that fall into overflown cells are given less

accurate approximations).

The most important benefit of the spatial encoding is that the (approximate)

evaluation of spatial predicates can be seamlessly combined with the evaluation of

non-spatial patterns in SPARQL. For example, spatial Filter conditions included in
a query which are bound to entity variables (for example, ?s hasGeometry ?g, Filter
WITHIN (?g, “POLYGON(...)”) can be evaluated on-the-fly at any place in the eval-

uation plan where the entity variable (e.g., ?s) has been instantiated, by decoding the

IDs of the instances. Note that the spatial mapping is only approximate (based on

the conservative grid approximation of the spatial locations); by applying a spatial

predicate on the approximations (i.e., cells) of the entities, false hits may be included

in the results, which need to be verified. Still, for many entities, the spatial approx-

imation suffices to confirm that they are definitely included (or not) in the query

result. This way, random accesses for retrieving their exact geometries are avoided.

A side-benefit of using a Hilbert-encoded grid to approximate the object geome-

tries is that by counting the number of resources in each cell (counting is already

performed by the mapping scheme), we can have a spatial histogram to be used for

selectivity estimation in query optimization (this issue will be discussed in detail in

Section 3.6). SRX uses the encoding we described to accelerate queries with spatial

predicates as shown in the next section.

3.5 Query Evaluation

We now show how the encoding scheme of SRX further extends the basic frame-

work presented in Section 3.3 to apply efficient spatial filters directly on the entities

IDs and reduce the number of dictionary lookups as well as the number of expensive

spatial operations on the actual geometries.

All operators we describe in this section evaluate the spatial predicates in two

phases: first, by applying the spatial predicate on the IDs of the entities (filtering

phase) and, second, by fetching the actual geometries only for the results that could

not be verified in the first phase. In general, the sooner we apply the on-the-fly filtering

33

3.5. Query Evaluation

the better because it does not incur any I/O cost and its CPU cost is negligible3.

For spatial range and join predicates, the on-the-fly filtering can be done early: after

each non-spatial operator that instantiates entity variables, which also appear in a

WITHIN or DISTANCE predicate, the condition is applied to the spatially encoded

IDs of the entities. In such cases, after applying the filter, we also append a verification

bit (or vbit) to the tuples that pass the filter. This bit is used in the second phase

as follows: if, for a tuple, the verification bit is 1, the tuple is guaranteed to qualify

the corresponding spatial predicate (no verification is required). Yet, if the bit is 0,

it is unknown at this point whether the exact geometries of the entities in the tuple

qualify the spatial predicate and so they cannot be pruned based on their spatial

approximations encoded in their IDs. By the end of processing all non-spatial query

components, for tuples having their vbits 0, the system fetches the exact geometries

of the involved entities and perform verification of the spatial Filter conditions.

3.5.1 Spatial Range Filtering

Spatial range queries bind a pattern variable to geometries that are spatially

restricted by a range. As an example, consider again the query depicted in Figure 3.1b.

Our encoding sche-me allows the filtering phase of the spatial range query to be

performed on-the-fly while scanning the indices, as illustrated by the evaluation plan

of Figure 3.4. The plan searches the OPS and PSO indexes in order to fetch and

merge-join (?s =?s′) the two lists that qualify patterns ?s cityOf Germany, ?s′ hosted
?o, i.e., the plan follows the logic of the plan shown in Figure 3.2b. Taking advantage of

the spatial encoding, before the merge-join, the plan of Figure 3.4 applies the spatial

filter for (?s hasGeometry ?g, WITHIN(?g,“POLYGON (...)”)) on the instances of ?s

that arrive from scanning the OPS and PSO indexes; a vbit is appended to each

survived tuple, to be used by the next operators. In this example, assume that the

spatial entities and the spatial range (i.e., “POLYGON (...)”) are the points and

the shadowed range, respectively, shown in Figure 3.3b. Entities e809 and e841 are

filtered out from the left scan, because they are not within the cells that intersect the

query spatial range. Entity e969 survives spatial filtering, but we cannot ensure that

it qualifies the spatial range predicate either, because its cell-ID is not completely

covered by the spatial query range; therefore the vbit for the tuples that involve e969

is 0. On the other hand, the vbit for tuples containing e585 or e593 is 1 as their cell-ID

is completely covered by the spatial range. Therefore, after the merge-join, we only

have to fetch and verify the geometry of e969. Range filtering is applied at the bottom

of query plans, after each index scan that contains a respective spatial variable.

3Most spatial predicates, when translated to the grid-based approximations of the encoding, involve

distance computations and/or cheap geometry intersection tests.

34

Chapter 3. SRX: Efficient Management of Spatial RDF Data

Figure 3.4: Plan for the query of Fig. 3.1b.

3.5.2 Spatial Join Filtering

Similar to spatial range selections, the filtering phase for binary spatial join pred-

icates can also be applied on-the-fly, as soon as the IDs of candidate entity pairs are

available. As an example, consider the join query depicted in Figure 3.1c. A possible

query evaluation subplan is given in Figure 3.5, which follows the flow of the plan

shown in Figure 3.2d; however, the plan of Figure 3.5 applies the spatial join filter

(i.e., the distance filter) early. By the time the candidate pairs (?s′1, ?s2) are fetched by

the index scan on PSO, the filter is applied so that only the pairs of entities that can-

not be spatially pruned are passed to the next operator. Assume that the pairs that

qualify ?s′1 sisterCityOf ?s2 are as shown at the right-bottom side of Figure 3.5, above
the search PSO index operator. Assume that the distance threshold (i.e., 300km)

corresponds to the length of the diagonal of each cell in Figure 3.3. After applying

the distance spatial filter on all (?s′1, ?s2) pairs produced by the PSO index scan, the

pairs that survive are (e585, e593), (e969, e1001) and (e969, e329). However, only entities

e585 and e593 are guaranteed to be within ε distance as they belong to same cell; thus,

the vbit for pair (e585, e593) is 1. When the pairs are merge-joined (?s1 =?s′1) with

the results of the OPS index-scan on the left (for ?s1 cityOf Germany), the vbits of
qualifying tuples are carried forward.

In contrast to the range filter that always appears at the bottom level of the

operator tree, distance join filtering can be applied on any intermediate relation that

35

3.5. Query Evaluation

Figure 3.5: Plan for the query of Fig. 3.1c.

contains two joined spatial variables. This case is possible when two relations are first

joined on attributes other than the spatial entities. In Section 3.6.1, we show how

the query optimizer can identify all pairs of spatially joined variables in a query, for

which distance join filtering can be applied; here, we only gave an example with a

pair coming from an index scan.

3.5.3 Spatial Merge Join on Encoded Entities

In this section, we propose a spatial merge join (SMJ) operator that applies di-

rectly on the spatial encodings (i.e., the IDs) of the entities from the two join inputs.

SMJ assumes that both its inputs are sorted by the IDs of the spatial entities to be

joined. Like the spatial filters discussed above, this algorithm only produces pairs of

entities for which the exact geometries are likely to qualify the spatial join predicate

(typically, a DISTANCE filter). Again, a verification bit is used to indicate whether

the join condition is definitely qualified by a pair. Besides using the spatially encoded

IDs of the entities, SMJ takes advantage of and preserves the ID-based sorting of

its inputs. Thus, the algorithm does not break the pipeline within the operator tree,

as any other spatial join algorithm would. Note that SMJ is a binary join algorithm

that takes two inputs, while the filtering technique discussed in Section 3.5.2 takes

a single input of candidate join pairs and merely applies the join condition on the

entity-ID pairs on-the-fly.

36

Chapter 3. SRX: Efficient Management of Spatial RDF Data

Similarly to a classic merge join algorithm, SMJ uses a buffer BR to cache the

streaming tuples from its right input R. For each entity el read from the left input

L, SMJ uses the ID of el to compute the minimum and maximum cell-IDs that could

include entities er from R, which could possibly pair with el in the join result, based

on the given DISTANCE filter. SMJ then keeps reading tuples from input R and

buffering them into BR, as long as they are likely to join with el. As soon as BR is

guaranteed to contain all possible entities that may pair with el, SMJ computes all

join results for el and discards el (and potentially tuples from BR).

We now provide the details of SMJ. The algorithm is based on the (on-the-fly

and on-demand) computation of four cell IDs for each entity e based on e’s ID.

First, minNeighborID and maxNeighborID are the minimum and maximum cell-

IDs that could include entities that pair with e in the join result, respectively. To

compute these cells, we have to expand e’s cell based on the distance join threshold

and find the minimum and maximum cell-ID that intersects the resulting range. For

example, consider entity e841 contained in cell with ID 26 in Figure 3.3b and assume

that the join distance threshold equals the diagonal length of a cell. For this entity,

minNeighborID=18 and maxNeighborID=39. Second, minChildID and maxChildID

correspond to the minimum and maximum cell-IDs that have a common non-empty

ancestor (in the hierarchical Hilbert space decomposition) with the cell of e. For entity

e841 which has only empty ancestors, the minChildID and maxChildID are both 26,

that is, the cell ID of e841. For e1931, the minChildID and maxChildID are 60 and 63

respectively because e1931 is assigned to a cell at the first level of the grid.

At each step, the distance join is performed between the current entity el from the

left input and all entries in BR. After reading el, SMJ reads entries er and buffers them

into BR and stops as soon as er’s minChildID is greater than the maxNeighborID

of el; then we know that we can join el and all entities in BR and then discard el,

because any unseen tuples from R cannot be included within the required distance

from el.
4 For example, consider the buffered inputs of Figure 3.6 that have to be

joined. The maxNeighborID of the first entity e585 on the left is smaller than the

minChildID of entry e1931, therefore e585 cannot be paired with entries after e1931

(that are guaranteed to have minChildID greater than the maxNeighborID of e585).
5

Thus, for any el, we only need to consider all entities in R before the first entity

having minChildID greater than the maxNeighborID of el.

After el has been joined, it is discarded. At that point we also check if buffered

4Recall that the inputs are sorted by ID and that entities may be encoded at different granularities

due to data skew or geometry extents. Therefore, using the cell-ID of er alone is not sufficient and we

have to use the minChildID of er.
5The fact that the entities arrive from the inputs sorted by their IDs guarantees that they are also

sorted based on their minChildIDs.

37

3.5. Query Evaluation

Figure 3.6: Example of SMJ.

tuples in BR can also be removed. In order to decide this, we use maxNeighborID

of each entity on the right. In case this is smaller than the minChildID of the next

entity in L, then the right entry can be safely removed from the buffer without losing

any qualifying pairs. Below, we give a pseudocode for SMJ.

We now discuss some implementation details. First, the required min/maxNeigh-

borID and min/maxChildID for the entries are computed fast on-the-fly by simple

operations. In particular, min/maxChildIDs are computed by shifting (or masking)

bits to keep only those most significant bits that encode the cell ID at a particular

level of the grid (cf. Section3.4). For the neighbor IDs, we rely on the id-to-offset and

offset-to-id Hilbert transformations as follows. First, we use e’s ID and the (normal-

ized) distance threshold ε to identify the offsets of the bottom-level cells that must

be examined. Then, we transform the offsets back to the corresponding cell IDs, and

we use the latter to compute the minimum and maximum entity IDs by masking bits

in the local code (i.e., the least significant bits - cf. Section 3.4). Second, for joining

an entity el from L, we scan through the qualifying entities of BR and compute their

grid-based distances to el, but only for entities whose minChildID-maxChildID range

overlaps with the minNeighborID-maxNeighborID range of el; this is a cheap filter

38

Chapter 3. SRX: Efficient Management of Spatial RDF Data

used to avoid grid-based distance computations. Finally, we buffer all tuples that

have the same entity ID (in either input). For such a buffer, we perform the join only

once but generate all join pairs.

3.5.4 Spatial Hash Join on Encoded Entities

If either of the two inputs of a spatial join is not ordered with respect to the

joined entities, SMJ is not applicable. In this case we can still use the IDs of the

joined entities to perform the filter step of the spatial join. The idea is to apply a

spatial hash join (SHJ-ID) algorithm (similar to that proposed in [LR96]) using the

approximate geometries of the entities taken from their IDs.6 SHJ-ID simply uses the

existing assignment of the entities to the cells of the grid (as encoded in their IDs) and

considers each such cell as a distinct bucket. The only difference from a typical spatial

hash join algorithm is that in the bucket-to-bucket join phase, we have to consider all

levels of the encoding scheme. So, each bucket from the left input, corresponding to

a cell c, is joined with all buckets from the right input which correspond to all cells

that satisfy the DISTANCE filter with c. The output of SHJ-ID is verified as soon as

the geometries of the candidate pairs are retrieved from disk.

3.5.5 Spatial kNN on Encoded Entities

kNN predicates are evaluated differently from WITHIN and DISTANCE predi-

cates in that no early spatial filtering or verification bits are utilized. We introduce

two kNN operators that make use of the encoding: one for handling entities whose

IDs come from the previous operator in a random order (Section 3.5.5.1), and a sec-

ond one that exploits ordering (Section 3.5.5.2) and, thus, can be used efficiently in

combination with other order-preserving operators. Both operators are applied in a

pipelined fashion at the root of the operator tree (i.e., on the output of the previ-

ous operators) and are inspired by the work in [MHP05]. The difference compared

to previous kNN operators is the integration with the multi-level encoding scheme

of Section 3.4. This integration enables us to (i) compute approximate distances us-

ing arithmetic operations on the entity IDs, and (ii) leverage the interesting orders

preserved by previous operators in the query plan to reduce random I/Os and im-

prove performance. Random I/Os are common in index-based kNN algorithms from

Section 3.3, which we compare with our approach in Section 3.8.2.

6Recall that the actual geometries of the entities have not been retrieved yet; otherwise, SHJ [LR96]

would be used (see Section 3.3).

39

3.5. Query Evaluation

3.5.5.1 kNN on Unsorted Entity IDs

The logic of first kNN operator is given in Algorithm KNN-Unsorted-Input. The
operator takes as input a point p (the one specified in the Filter clause of the query)
along with an iterator I on the tuples coming from the previous operator in the query

plan. Let t be a tuple in I and e be the ID of the spatial entity in t that is used in the

evaluation of the kNN predicate. The operator uses two priority queues Q1 and Q2

to keep tuples ordered in ascending Euclidean distance of e from p’s actual geometry:

in the former queue, the distance has been calculated based on e’s cell whereas in the

latter based on e’s actual geometry.

40

Chapter 3. SRX: Efficient Management of Spatial RDF Data

The evaluation proceeds in two phases. First, the operator pulls all tuples from

the previous operator in the query plan and populates Q1 (lines 3-4). The function

Populate-Q1 uses the multi-level encoding scheme to compute the minimum distance

between e’s cell and p (minDist) and keeps entries in ascending minDist. Note that

minDist is an approximation of the exact distance between the entity e and the point

p; the latter is computed only in the second phase of the algorithm (lines 5-9) where

the operator starts draining Q1 to populate Q2. Specifically, each time an entry is

popped from Q1, the exact geometry of e is retrieved via a dictionary lookup and the

tuple t is pushed into Q2 using now the exact distance between e and p (exactDist in

function Populate-Q2). The draining of Q1 stops when the algorithm pops an entity

e whose minimum possible distance from p is at least equal to the current exact

distance of the k-th element in Q2 (lines 7-8 in KNN-Unsorted-Input).
In contrast to Q2 that holds at most k tuples from the input I, Q1 is populated

with all tuples from I in the first phase of KNN-Unsorted-Input. The intuition behind
this strategy is to sort the entities based on their cells and use this ordering to

minimize the expensive geometry lookups in the second phase. Since the IDs of the

spatial entities come out of order and each next entity may fall anywhere in the grid,

Q1 must store all input tuples from I. This increases the memory footprint (and the

latency) of KNN-Unsorted-Input significantly when the RDF part of the query is not
selective. When the spatial entities come in order, we can tackle this problem with

the kNN operator we describe next.

3.5.5.2 kNN on Sorted Entity IDs

The second kNN operator we introduce uses an adaptation of the CPM technique

from [MHP05] and its logic is given in Algorithm KNN-Sorted-Input. The core idea here
is to exploit the ordering of entities and avoid draining the iterator I, i.e., pulling the

whole output from the pervious operator in the query plan. To do so, the evaluation

proceeds in “zones” starting from the (bottom-level) cell of the point p in the Filter
condition. Each such zone consists of four rectangles (up, down, left, right), which

in turn consist of bottom-level grid cells and form a “circular” area around p’s cell, as

shown in Figure 3.7a. The operator follows the same steps as in CPM and extends

the original technique to (i) work with our multi-level encoding scheme, and (ii) pull

tuples from the input gradually, as it examines the zones.

First, the operator identifies the bottom-level cell cp that contains the given point

p (line 3). It then computes the maximum ID among all spatial entities that might

fall in cp (line 4). This is done in function Compute-Limit, which simply returns the
maximum spatially encoded ID that exists in the database and falls either in cp or in

41

3.5. Query Evaluation

42

Chapter 3. SRX: Efficient Management of Spatial RDF Data

a parent cell of cp
7. Compute-Limit is a very cheap function that requires only a few

lookups in the grid statistics kept in memory. The returned ID serves as an upper

limit to bound the number of tuples pulled from I when populating Q1 in function

Read-Next. At each step of the algorithm, only the tuples of the current examined
zone (initially p’s cell) must be pulled from the input. To do so, the operator first

peeks into I (line 1 in Read-Next) to check the entity ID e of the next tuple and decide

if this ID is at most equal to the limit; if so, this means that e’s actual geometry

might fall in the examined zone, thus, the tuple is pulled from I (line 4 in Read-
Next) and the algorithm continues with peeking the next tuple; otherwise none of the
following entities fall in the examined zone, thus, the algorithm exits the loop (line 6

in Read-Next), computes the distance of each rectangle in the first zone from p, as in

original CPM, and adds the respective entry to Q1 (lines 6-8 in KNN-Sorted-Input).
Then, the operator continues similarly to KNN-Unsorted-Input, i.e. it starts pulling

from Q1 (line 9) to populate Q2 with the exact distances. The termination condition

in lines 11-12 is the same as in KNN-Unsorted-Input. The only difference here is that,
whenever the algorithm encounters a new rectangle r in Q1, the latter is used to

update (i.e. increase) the limit and pull the required additional tuples (if any) from

the input I (lines 16-20). After that, the algorithm also expands the search space

to the next zone (lines 21-23) by adding to Q1 the rectangle of the next zone that

is in the same direction (up, down, left, right) as r with respect to p’s cell. This

is CPM’s actual control flow and the correctness of the computation relies on the

correctness of the original method (cf. Lemma 3.1 in [MHP05]). As a final comment,

KNN-Sorted-Input is designed to pull as few tuples from I as possible (it exhausts I

only in the worst case, i.e. when limit is greater than all spatial IDs in I) and, thus,

tends to perform much better than KNN-Unsorted-Input, as we show in Section 3.8.

Example 1. Consider the grid of Figure 3.7 where ai denotes a spatial entity encoded

at the bottom level and bi denotes a spatial entity encoded at the exact next level. For

simplicity, assume that there are no entities at higher levels. Assume also that each

bottom-level cell has a side of 1 metric unit. Consider a query point p falling in cell 28

and let k = 2. Algorithm KNN-Sorted-Input first pulls from the input I and inserts into

Q1 all tuples with spatial entities that may fall in p’s bottom-level cell, i.e. all tuples

from I before a tuple with a spatial entity ID greater than b2 = 907 (recall that tuples

in I are in ascending spatial entity ID order). Then, the algorithm proceeds with the

insertion of the first zone rectangles L1, R1, U1, D1 resulting in a priority queue Q1 =

{(a4, 0), (b1, 0), (b2, 0), (a3, 0.1), (U1, 0.1), (R1, 0.2), (L1, 0.8), (D1, 0.9), (a2, 2.8), (a1, 4.9)}.
Numbers in Q1 depict the Euclidean distance of the respective entry (grid cell or zone

7In case there are no spatial entities in the database falling in cp or one of its parent cells, then as
limit we use the first free (i.e. the minimum) spatial ID for an entity in cp.

43

3.6. Query Optimization

21 22 25 26 37 38 41 42

20 23 24 27 36 39 40 43

19 18 29 28 35 34 45 44

16 17 30 31 32 33 46 47

15 12 11 10 53 52 51 48

14 13 8 9 54 55 50 49

1 2 7 6 57 56 61 62

0 3 4 5 58 59 60 63

U1

R1
D1

U2

D2

R2

L2

D3

L3

R3

D4

R4

D5

 a4

 p●

 a1●

 a2●

 a3

 ● a6

 a7

 a5
 ●

 ● ● ● b2

 b3

 b1

L1 entity ID (binary) - (decimal)

a1 000101|0000|1 - 161

a2 010011|0000|1 - 609

a3 011011|0000|1 - 865

a4 011100|0000|1 - 897

a5 100011|0000|1 - 1121

a6 100011|0100|1 - 1129

a7 100100|0000|1 - 1153

b1 0111|000001|1 - 899

b2 0111|000101|1 - 907

b3 1001|000001|1 - 1155

(a) (b)

 ●

 ●

For k = 2, grey cells are
not examined by
KNN-Sorted-Input.
E.g., some pruned
entities are: a8 a9 a10 a11

 ●

 a8●

 a10●

 ● a9

 ● a11

Figure 3.7: An example grid (a) with 64 cells at the bottom level (11-bit encoding) ordered

according to the Hilbert curve and organized in CPM zones (Li, Ri, Ui, Di) around a query

point p in cell 28. The entity IDs are shown on the right (b) in binary and decimal format.

rectangle) from p’s geometry. At the next step, the algorithm starts pulling entries

from Q1 to populate Q2. When it reaches the first rectangle entry U1, it computes the

new limit = b3 = 1155. At that point, we have Q1 = {(R1, 0.2), (a5, 0.2), (a6, 0.2), (a7,√
0.05), (b3,

√
0.05), (L1, 0.8), (D1, 0.9), (U2, 1.1), (a2, 2.8), (a1, 4.9)} andQ2 = {(a3, 0.12),

(a4, 0.21)}. Distances in Q2 have now been computed using the Euclidean distance

between the entry’s actual geometry and the point p. The algorithm then pops entry

R1, which results in updating Q1 only with (R2, 1.2), and terminates when it pops

a7 whose minDist =
√
0.05 is less than the lastDist = 0.21 of the previous entry a4

popped from Q1. So, Q2 = {(a3, 0.12), (a4, 0.21)} and the entries a3, a4 are returned.

3.6 Query Optimization

In this section, we describe our extensions to the query optimizer of RDF-3X, so

as to take into consideration (i) the R-tree index and the query evaluation plans that

involve it (Section 3.3) (ii) the query evaluation techniques described in Section 3.5

for spatial range and join queries. The encoding-based kNN operators (Section 3.5)

44

Chapter 3. SRX: Efficient Management of Spatial RDF Data

Figure 3.8: Augmenting a query graph.

do not affect query optimization as they are applied after the RDF part.

3.6.1 Augmenting the Query Graph

Consider the query depicted in Figure 3.8a. This query includes a spatial distance

join between the geometries ?g1 and ?g2. The filtering phase of the spatial distance

join can also be applied on the variables ?s1 and ?s2, using their IDs, as explained in

Section 3.5.3. We call such variables spatial variables:

Definition 1. (Spatial Variable) A variable ?si at the subject position of a triple

pattern ?si hasGeometry ?gi that appears in the Where clause of a query Q is called

a spatial variable. We say that two spatial variables ?si, ?sj (i 6= j) are joined iff ?gi

and ?gj appear in the same DISTANCE predicate in the Filter clause of Q.

Spatial variables are identified in the beginning of the optimization process and

they are used to augment the initial join query graph GQ with additional join edges

that correspond to the filtering step of the spatial operation. For example, the initial

GQ for the RDF query of Figure 3.8a is the graph shown in Figure 3.8b, considering

solid lines only as edges; the nodes of GQ are the triples of the RDF query graph and

there is an edge between every pair of nodes that have at least one common variable.

An ordering of the edges of GQ corresponds to a join order evaluation plan.

The procedure of augmenting GQ is given in Algorithm Augment. First, we identify
all spatial variables in the query Q; in our example, ?s1 and ?s2. Note that a spatial

45

3.6. Query Optimization

variable ?si may also appear either as subject or object in triple patterns, other than

?si hasGeometry ?gi. The second step is to collect all pairs of nodes in GQ that include

at least one spatial variable. In the example of Figure 3.8b, all nodes include one of

?s1 and ?s2. Then, for each pair of nodes (ni, nj), where ni 6= nj, such that ni includes

?s1 and nj includes ?s2, we either add a new edge (if no edge exists between ni and

nj) or we add the spatial join predicate (e.g., DISTANCE(ni.si, nj.sj) < “200km”)

in the set of predicates modeled by the edge between these two nodes (these are

equality predicates for their common variables). For instance, n4 and n5 in the initial

GQ are connected by an edge with predicate n4.x = n5.x, but after the augmentation

the predicates on this edge are n4.x = n5.x and DISTANCE(n4.s2, n5.s1) < “200km”.

This implies that the optimizer will consider two possible subplans for joining n4

with n5. The first one will first perform the equality join on x and then evaluate the

distance predicate whereas the second subplan will first perform the filtering phase

of the spatial join on (s1, s2) and then apply the equality on x. In the augmented GQ

for our example (Figure 3.8b) the additional edges are denoted with dashed lines.

If a query Q also includes WITHIN predicates, in the end of the augmentation pro-

cedure and for each spatial variable ?s whose geometry ?g participates in a WITHIN

predicate, we add a condition of the form WITHIN(?s,GEOMETRY) to the set of

filters of Q, so that this filter can be applied in any (intermediate) relation that

46

Chapter 3. SRX: Efficient Management of Spatial RDF Data

Table 3.1: Spatial join scenarios in optimal plan build.

Case Algorithm(s) to Consider

L and R sorted on entity IDs SMJ (Section 3.5.3)

L and R results of (?si hasGeometry ?gi) SMJ or R-tree Join [BKS93]

L sorted on entity IDs SMJ (Section 3.5.3), SISJ [MP03],

R result of a pattern (?s2 hasGeometry ?g2) or Index Nested Loops

L unsorted SHJ-ID (Section 3.5.4), SISJ [MP03]

R result of a pattern (?s2 hasGeometry ?g2) or Index Nested Loops

L and R unsorted SHJ-ID, SHJ [LR96] or Nested Loops

contains the spatial variable ?s. Note that this condition differs from the existing

spatial condition WITHIN(?g,GEOMETRY) in that it includes the spatial variable

?s and not the geometry variable ?g. Similarly, for each pair (si,sj) of joined spatial

variables, we add the corresponding spatial join condition to Q’s existing filters, so

that this filter can be applied on every (intermediate) relation that includes both the

spatial variables si and sj. Overall, the final augmented GQ may include more edges

than the initial GQ, additional predicates in the edges, and general spatial filters for

variables or pairs of variables that can be applied on intermediate results of subplans.

3.6.2 Spatial Join Operators

Our plan generator can place a spatial join operation at every level of the operator

tree. Table 3.1 summarizes all possible cases of the L and R inputs of a spatial join

(if L and R are swapped there is no difference because the join is symmetric). The

right column includes the join algorithms, which the plan generator of the optimizer

considers in each case.

Depending on whether the inputs of the join are indexed, sorted, or unsorted,

there are different algorithms to be considered. If both join inputs come ordered by

the IDs of the spatial entities to be joined, then SMJ (Section 3.5.3) is the algorithm

of choice. In the special case where both inputs are the results of ?si hasGeometry ?gi

patterns applied on the entire set of triples, besides of applying SMJ on the SPO (or

SOP) index, we can apply an R-tree self-join [BKS93] on the R-tree index. When just

one of the inputs, e.g., R, is a result of a ?si hasGeometry ?gi pattern, besides SMJ, we
can also apply the SISJ algorithm [MP03]. In this case, we also consider Index Nested

Loops join using the R-tree, by applying one spatial range query for each tuple of

the other input, e.g., L. This should be cheap only when L is very small. Finally,

when either L or R are unsorted, SMJ is not applicable and we can use SHJ-ID on

the entity IDs (Section 3.5.4), or either SISJ or SHJ depending on whether one of

the inputs is a direct result of a ?si hasGeometry ?gi pattern or not. We also consider

Index Nested Loops or Nested Loops, if one of the inputs is too small.

47

3.6. Query Optimization

3.6.3 Spatial Query Optimization

We extend the query optimizer of RDF-3X to consider all possible spatial join

cases and algorithms outlined in Section 3.6.2. In addition, the optimizer considers

the case of performing a spatial selection Filter using the R-tree (see Section 3.3).
The optimizer also considers any spatial selection and join filter conditions that are

applied on-the-fly; i.e., in plans where the non-spatial query pattern components are

evaluated first, our optimizer uses spatial query selectivity statistics to estimate the

output size of these components after the spatial filter is applied on them. Consider

for example, the plan of Figure 3.4. The estimated output of the ?s hosted ?o pattern

is further refined to consider the spatial WITHIN filter that follows. In other words,

the cardinality of the right input to the merge-join algorithm that follows is estimated

using both RDF-3X statistics on the selectivity of ?s hosted ?o and spatial statistics

for the selectivity of WITHIN(?g,“POLYGON (...)”).

3.6.4 Selectivity Estimation

For estimating the selectivity of spatial query components, we use grid-based

statistics, similar to previous work on spatial query optimization (e.g., see [MP03]).

Specifically, we take advantage of statistics that are obtained by the spatial encod-

ing phase of the entity IDs. For each cell of the grid, defined by the Hilbert order,

we keep track of the number of spatial entities that fall inside. The spatial join or

selection is then applied at the level of the grid, based on uniformity assumptions

about the spatial distributions inside the cells. In addition, we assume independence

with respect to the other query components. For example, for estimating the input

cardinality of the right merge-join input at the plan of Figure 3.4, we multiply the

selectivity of the ?s hosted ?o pattern with that of the WITHIN(?g,“POLYGON (...)”)

filter. In practice, this gives good estimates if the spatial distribution of the entities

that instantiate ?s is independent to the spatial distribution of all entities.

3.6.5 Runtime Optimizations

RDF-3X uses a lightweight Sideways Information Passing (SIP) mechanism for

skipping redundant values when scanning the indexes [NW09]. Consider a merge join,

which binds the values of a variable ?s coming from two inputs. If the join result is

fed to another (upper) merge-join operator that binds ?s, then the upper operator

can use the next value v of its other input to notify the lower operator that ?s values

less than v need not be computed.

In the case of spatial joins where at least one side comes from a scan in the R-tree

(e.g., consider the plan shown in Figure 3.2a), SIP is not applicable since there is

48

Chapter 3. SRX: Efficient Management of Spatial RDF Data

no global order for the geometries in the 2D space. On the other hand, the SMJ

algorithm proposed in Section 3.5.3 can use SIP to notify the operators below its

left input which is the minimum ID value for the next entity el to pair with any

entity buffered in BR. For the spatial hash join, we can also use SIP, by creating a

bloom filter for one input, similar to the one RDF-3X constructs for the traditional

hash join, and use it to prune tuples from its other input, while scanning the B+-tree

index. A value is pruned if it is not included in the bloom filter.

3.7 Updates

The proposed encoding scheme requires significant changes in the update mecha-

nism of RDF-3X [NW08, NW10a]. Inserting a new spatial entity is straight-forward

and requires generating the appropriate ID based on the entity’s geometry and the

occupancy of the grid. On the other hand, removing or updating the geometry of

a spatial entity requires additional care as it might trigger the re-encoding of other

spatial entities besides the one being updated. Such re-encodings tend to improve

the latency of spatial queries, since entities are “moved” to lower levels of the grid,

but incur an overhead during updates because they result in additional triples to be

removed and re-inserted with new IDs.

Insert and delete commands in RDF-3X (cf. Section 3.2) are given in batches

and are processed in two phases. In the first phase, the triples to insert or delete

are resolved via lookups in the dictionary, i.e. they are translated into triples of

integer IDs used internally by the system. Updates are not applied directly to the

database; instead, the affected triples are first resolved in memory for all updates

in the batch using differential indexes, which are then synchronized with the base

indexes in the second phase. This is a common technique in bulk update processing

that aims to minimize I/Os and increase the system throughput. RDF-3X maintains

six differential indexes (SPO, SOP, OPS, OSP, PSO, POS), one for each full base

index, which are synchronized with both the full and the aggregated base indexes.

For example, the SPO differential index is synchronized with the base SPO index,

the binary aggregated index SP, and the unary aggregated index S.

SRX integrates the original update mechanism of RDF-3X with the encoding

scheme of Section 3.4. To do that, it changes only the first update phase, whereas the

index synchronization can be used as is. To simplify the presentation, we distinguish

two cases: a) only inserts of new triples, i.e., the subject entity s of the input triple

〈s, p, o〉 does not exist in the dictionary, b) inserts and deletes of triples whose subject
entity already exists in the data. The update process takes as input a batch B of

triples annotated with insert or delete, and updates two in-memory sets of triples tI

(to insert) and tD (to delete), which are used to build the differential indexes.

49

3.7. Updates

Inserts of new entities. The insertion to the triples set tI is performed similarly

to the original RDF-3X update process, but IDs are generated using the modified

function Generate-ID. Generate-ID takes as input the entity’s URI and a boolean value,
which indicates whether the new ID should be spatial (true) or not (false), i.e.,

whether the input triple introduces a geometry for the subject entity. Generate-ID is
also responsible for updating the dictionary and for tracking the set of new IDs for

the current batch B. The set new (initially empty for a batch) contains all IDs that

do not exist in the database and is used in the second part of the update algorithm

to avoid expensive lookups in the base indexes, as we explain later on. Since, the

insertion of new triples only differs from the original RDF-3X process in the creation

of the ID, we omit the pseudocode for the sake of brevity.

Updates on existing entities. The pseudocode for the updates on existing entities

is given in Algorithm Updates on existing entities. This part handles triples with exist-
ing spatial and non-spatial subject entities, and is further split into three sub-parts:

one for inserting triples that introduce a geometry for the non-spatial subject (lines

5-16), one for inserting triples that do not introduce a geometry (lines 17-23), and a

last one for deleting triples (lines 24-34).

In the first sub-part, when a geometry is introduced for a non-spatial entity, the

algorithm generates a new spatial ID snew (line 8) and proceeds with updating the

in-memory sets tI and tD accordingly. To do so, it first checks if the old subject ID

(sid) exists in the set of new IDs for the current batch; if yes, it simply updates the

set new along with tI (lines 15-16), otherwise it retrieves all affected triples from the

database and updates both tI and tD (lines 11-14 and 16). The update algorithm

also ensures in this case that each entity is associated with at most one geometry

but these additional checks are omitted here for the sake of brevity. The last two

sub-parts of Updates on existing entities follow the original RDF-3X update logic and
differ only in the use of new in lines 20 and 28 to avoid expensive lookups in the base

indexes; these lookups are only performed as last steps in lines 22 and 30.

Spatial re-encoding is the task of re-assigning spatial IDs that get released (after

geometry deletions) to spatial entities encoded at higher levels of the grid due to

overflow. It is an iterative bottom-up process, from lower to higher levels of the grid,

which takes place in line 34 of Updates on existing entities. The re-encoding function
receives the spatial ID of an entity whose geometry is being deleted, replaces this ID

with a non-spatial one (the next free even ID), and checks if there is a spatial entity

from a higher level that can be re-encoded using the recently released spatial ID. If

so, the re-encoding of the spatial entity releases another spatial ID, and the process

cascades until no more re-encodings are possible.

50

Chapter 3. SRX: Efficient Management of Spatial RDF Data

51

3.8. Experimental Evaluation

The overall process relies on two thresholds h1, h2 ∈ [0, 1], which define a range

[h1, h2] on the ratio of assigned to total spatial IDs that a cell can accommodate

(fill factor). In particular, a re-encoding process starts when the fill factor of a cell

c drops below h1, and continues as long as (i) there are entities from higher levels

to re-encode in c, and (ii) c’s fill factor remains below h2. By the time at least one

of these two conditions does not hold, the algorithm continues with examining the

parent cells of c (at the next level), and so forth, until it reaches the top level. In the

end, all spatial entities have been re-encoded at the lowest possible level such that

each cell’s fill factor is smaller than h2. The two thresholds h1 and h2 are used to

trade off the frequency of re-encodings with the overhead in processing updates, and

we discuss the choice of their values in Section 3.8.

3.8 Experimental Evaluation

We compare SRX with the original RDF-3X system [NW08], the latest ver-

sion of Strabon [KKK12]; version 3.3.2, and the latest versions of two commercial
triple stores with spatial data support, Virtuoso 7.2.5-rc1.3217-pthreads [Vir] and
GraphDB Free 8.6 [Gra] (the successor of OWLIM-SE that we used in [LMBT14]).
We implemented SRX in C++ (g++ 8.2.0) and conducted all experiments on a ma-

chine with an i7-4930K CPU at 3.40 GHz, a 3.6Tb 7.2K rpm SATA-3 hard disk, and

64GB RAM running Linux Debian (4.18.0-1 amd64). For the Strabon database, we

used PostgreSQL 11.2 and PostGIS 2.5 versions, while for the R-tree implementa-
tion, we used the open-source SaIL library [HHT05], which we also extended with

support for incremental kNN computation (cf. Section 3.3).

3.8.1 Queries Setup

Datasets. We evaluate our system using two real datasets: LinkedGeoData8 (LGD)

and YAGO2s9 (YAGO). LGD contains user-contributed content from OpenStreetMap

project. YAGO is an RDF knowledge base, derived from Wikipedia, WordNet and

Geonames. Table 3.2 shows statistics about the sizes of the datasets (including the

dictionary and indexes) and the number of entities and geometries in them. The sizes

of the input triple files are 2.4GB (LGD) and 18.1GB (YAGO). The R-trees (using

4KB nodes) occupy 160MB and 221MB, respectively. The size of the grid in both

datasets is 1.5GB (89M cells in total for all levels). Note that, despite the aggressive

indexing, in both cases, we end up with a database size having around double the

8https://tinyurl.com/yc4lxqdv
9https://tinyurl.com/y7ukhge3

52

https://tinyurl.com/yc4lxqdv
https://tinyurl.com/y7ukhge3

Chapter 3. SRX: Efficient Management of Spatial RDF Data

Table 3.2: Characteristics of the real datasets.

Dataset Triples Entities Points Polygons Linestrings Multipoints

LGD (5.1 GB) 15.4M 10.6M 590K 264K 2.6M 0

YAGO (29.8 GB) 205.3M 108.5M 4M 0 0 780K

Table 3.3: Percentage (%) of geometries per grid level.

Level 0 (bottom) 1 2 3 4 5 6 ≥ 7

LGD 28.5 21.6 16.9 12.7 8.7 5.4 3.0 3.2

YAGO 50.3 19.2 8.1 4.5 3.0 2.4 1.9 10.6

size of the input files. Regarding the spatial distribution of the entities they include,

both datasets are highly skewed, as shown in the Appendix-Chapter 8.

Encoding. We used a grid of 8,192 × 8,192 cells at the bottom level, hence, the

maximum number of bits used in an entity’s ID to encode its cell-ID is 26. This

means that we can have up to 14 levels of spatial approximation. This is the maximum

granularity we can achieve when the IDs of the entities are 32-bit integers. Using 64-

bit IDs for better spatial approximation is possible, but significantly increases the size

of the triple indexes, thus, one should do this only when the total number of entities

is greater than 232. Besides, the grid must be relatively small so that it resides in

memory (for selectivity estimation purposes). In our case, the grid size is less than

2GB for both datasets. As shown in Table 3.3, all levels of the grid are used in

the encoding, due to data skew and several geometry extents (polygons, linestrings,

multipoints); in YAGO many multipoints are not cleaned and have very large MBRs.

Queries. All queries used in our experiments have two parts: (i) an RDF part that

can be evaluated by a traditional SPARQL engine and (ii) a spatial part, i.e., a

FILTER condition that includes a WITHIN predicate (for spatial range queries),

a DISTANCE predicate (for spatial distance joins) or a kNN predicate (for spatial

nearest neighbors). The range queries have similar structure to those depicted in

Figure 3.1b; we divide them into four classes based on the selectivities of the two

parts. Queries belonging to class SL have their RDF part more selective compared to

their spatial part and the opposite holds for queries in class LS (S stands for small

result, L for large). For queries in classes SS and LL, both parts roughly have the

same selectivity. The characteristics of the spatial join queries (denoted by J) and

the spatial kNN queries will be discussed in Section 3.8.2. All queries can be found

in the Appendix-Chapter 8.

Comparison Measures. We evaluated each query 5 times (both with cold and

warm cache) and report their average runtimes that include the query optimization

cost (i.e., the time spent by the optimizer to apply the techniques of Section 3.6) and

the time spent in the ID-to-string dictionary lookups for the output variables.

53

3.8. Experimental Evaluation

System Parameters. RDF-3X does not have its own data cache for the query re-

sults; instead, it relies entirely on the OS caching mechanism. The same architectural

principle is also adopted in our implementation.10 When a query is executed for a

second time, its optimization and evaluation is performed from scratch, since there

are no logs or cached results as in a typical database system. To illustrate the effect

of OS caching in the overall response time of the system, we report query evaluation

times on warm and cold caches separately.

3.8.2 Queries Comparison

Results on Range Queries. Table 3.4 shows response times for range queries on

the LGD dataset. The first three columns of the table show the number of results

of the RDF query component only, the spatial component only and the complete

query (combined). We first focus on comparing our approach (Encoding) with the

basic extension presented in Section 3.3 (Basic) and the original RDF-3X system

(Baseline). Basic uses the R-tree to retrieve the entities falling in the given range

only for queries where the spatial component is selective enough (LS, SS); in all

other cases, it applies the same plan as Baseline, i.e. it evaluates the RDF part first

and then applies the WITHIN filter to the tuples that qualify it. On the other hand,

Encoding always chooses to evaluate the RDF part of the queries first and uses the

spatial range filtering technique (see Section 3.5.1) to reduce the number of entities

that have to be spatially verified. Encoding is superior in all queries. In specific,

we avoid fetching a large percentage of exact geometries (96% on average for all

range queries in both datasets), which Baseline obtains by random accesses to the

dictionary. The cost differences between Encoding and Baseline is small only for SL

queries, where the spatial filtering has little effect. In all other cases, Encoding is

significantly faster than Baseline and Basic, especially in LS and SS queries and in

queries involving entities with non-point geometries, denoted by a star (*), where the

difference is up to one order of magnitude. In the case of warm caches, all runtimes

are very low, so the cost of Encoding may exceed the cost of Baseline sometimes

(e.g., see SL queries) due to the overhead of applying the spatial filter on all accessed

entities in the evaluation of the RDF part of the query.

The difference in the optimization times (in parentheses) between warm and cold

caches in all alternatives is because the reported numbers include the time spent for

parsing the query, resolving the IDs of the URIs/strings in it, and finally building the

optimal plan. Hence, when a query is issued for the first time, it requires some dictio-

10We only included a small separate cache of 40Kb for the R-tree. Since the OS caches

R-tree pages, we used a small cache size in order to reduce the effect of double caching by

the SaIL library.

54

Chapter 3. SRX: Efficient Management of Spatial RDF Data

Table 3.4: Spatial range queries on LGD; runtime in ms - optimizer time in ().

Query
Number of results Strabon GraphDB Virtuoso

SRX

Baseline (RDF-3X) Basic extension (Sec. 3.3) Encoding

RDF Spatial Combined Cold Warm Cold Warm Cold Warm Cold Warm Cold Warm Cold Warm

LGD.SL1 524 2,537,757 411 64,581 12,791 6,960 136 74,645 83 3,880 (99) 35 (1) 3,333 (148) 54 (20) 2,334 (107) 78 (1)

LGD.SL2 215,355 2,943,209 186,302 168,099 20,129 20,957 14,045 78,568 76 4,495 (97) 272 (1) 3,644 (178) 330 (58) 3,009 (100) 323 (1)

LGD.SL3* 13,090 2,537,757 9,814 160,591 18,081 8,496 822 72,624 36 11,554 (97) 82 (1) 9,891 (147) 104 (20) 3,983 (100) 177 (1)

LGD.LS1 25,617 9,002 86 63,614 12,866 9,568 2,338 58,757 81 1,913 (95) 84 (1) 856 (124) 62 (15) 222 (109) 14 (1)

LGD.LS2 191,976 908 3 63,065 12,785 24,702 17,159 46,066 167 2,257 (97) 176 (2) 429 (117) 21 (15) 183 (91) 12 (2)

LGD.LS3* 5,791 908 9 63,251 12,694 16,065 410 45,317 183 14,305 (107) 52 (1) 484 (127) 20 (14) 174 (89) 2 (1)

LGD.SS1 8,621 9,002 69 63,403 13,271 8,118 829 58,658 51 1,696 (98) 65 (1) 932 (131) 63 (16) 211 (92) 14 (1)

LGD.SS2* 13,090 9,002 120 66,370 12,708 8,488 949 57,745 35 8,181 (97) 75 (1) 1,167 (137) 61 (15) 450 (100) 5 (1)

LGD.SS3* 5,791 9,002 7 66,275 12,750 16,479 410 57,251 22 14,308 (107) 53 (1) 934 (142) 53 (16) 350 (100) 3 (1)

LGD.LL1 191,976 350,405 13,416 89,097 13,900 24,868 17,178 53,714 120 2,694 (95) 183 (1) 2,562 (142) 200 (17) 815 (117) 55 (2)

Table 3.5: Spatial range queries on YAGO; runtime in ms - optimizer time in ().

Query
Number of results GraphDB Virtuoso

SRX

Baseline (RDF-3X) Basic extension (Sec. 3.3) Encoding

RDF Spatial Combined Cold Warm Cold Warm Cold Warm Cold Warm Cold Warm

YAGO.SL1* 11,547 364,992 891 23,689 2,823 66,017 9,053 10,610 (61) 61 (1) 10,342 (62) 61 (1) 6,119 (46) 48 (1)

YAGO.SL2* 6,030 31,260 69 32,091 1,816 59,802 1,318 8,984 (173) 70 (1) 8,654 (175) 70 (1) 3,783 (168) 43 (1)

YAGO.LS1* 2,226 138 0 4,817 232 19,276 19 2,769 (60) 61 (1) 2,661 (79) 64 (15) 772 (56) 37 (1)

YAGO.LS2* 285,613 41,945 4,471 182,118 9,657 77,759 1,274 17,590 (183) 696 (1) 16,471 (178) 697 (1) 8,692 (181) 161 (1)

YAGO.SS1* 6,030 8,440 3 30,249 1,853 51,155 459 8,375 (175) 70 (1) 12,019 (173) 275 (17) 3,201 (170) 41 (1)

YAGO.SS2* 7,074 7,042 2 11,131 547 36,008 325 4,641 (61) 62 (1) 11,286 (85) 245 (15) 2,319 (56) 46 (1)

YAGO.LL1* 285,613 184,743 10,454 188,015 13,465 66,381 5,040 19,882 (184) 701 (1) 18,688 (182) 699 (1) 10,978 (179) 173 (1)

YAGO.LL2* 152,693 107,625 88 82,420 10,880 55,230 3,123 6,262 (61) 2,971 (1) 5,999 (62) 2,993 (1) 5,302 (56) 1,921 (1)

nary lookups for resolving the IDs of the entities. With warm caches, the respective

dictionary pages are already cached by the OS, thus, query optimization is always

cheaper. Note that, in most cases, the time spent for query optimization by Encoding

is similar to that of Baseline, meaning that the overhead of augmenting the query

graph and using spatial statistics is negligible compared to the query optimization

overhead of the original RDF-3X system. With warm caches, the overhead in query

optimization by Encoding and Basic compared to Baseline (due to the use of spatial

statistics) is more profound.

Similar results are observed for range queries on the YAGO dataset (see Table 3.5).

All queries in this case involve entities that may have multipoint geometries (therefore

they are marked by a star). Encoding always chooses to evaluate the RDF part of the

queries first, as in LGD. Basic chooses the same plan as Baseline in all cases, except

for LS1 and SS queries, where it opts to evaluate the spatial selection using the R-

tree; on the other hand, the spatial part of LS2 is not considered very selective by the

optimizer, preventing the use of R-tree for that query. Note that for YAGO the cost

of Basic is high enough (even higher than Baseline for SS queries). After analysis, we

found that this is due to the bad performance of the R-tree on this dataset; the range

queries access roughly half of the R-tree nodes. The reason is that many multipoints

in YAGO are dirty and have huge MBRs that cover most of the data space. Thus,

the non-leaf R-tree entries have extremely large MBRs, causing a random query to

access a large percentage of tree nodes.

Overall, with cold caches, the median speedup of Encoding over Baseline (resp.

Basic) across all queries is 8.3× (resp. 2.6×) for LGD, and 2× (resp. 2×) for YAGO.
When warm caches are used, the median speedups are 5.3× (resp. 4×) for LGD, and
1.6× (resp. 2.8×) for YAGO.

55

3.8. Experimental Evaluation

Table 3.6: Spatial distance join queries on LGD; runtime in ms - optimizer time in ().

Query
Spatial join Number of results Strabon GraphDB

SRX

Baseline (RDF-3X) Basic extension (Sec. 3.3) Encoding

threshold ε RDF Final Cold Warm Cold Warm Cold Warm Cold Warm Cold Warm

LGD.J1 0.003 12,145,200 6,831 > 5 min > 5 min > 5 min > 5 min 111,208 (123) 109,295 (1) 3,936 (280) 188 (128) 2,854 (246) 566 (130)

LGD.J2 0.01 274,576 538 > 5 min 27,194 > 5 min 101,756 21,796 (133) 18,476 (2) 4,497 (326) 256 (188) 2,229 (314) 273 (196)

LGD.J3 0.02 13,423,300 8,742 > 5 min > 5 min > 5 min > 5 min > 5 min > 5 min 5,412 (417) 433 (267) 3,952 (401) 712 (275)

LGD.J4* 0.05 171,348,000 795,322 > 5 min > 5 min > 5 min > 5 min > 5 min > 5 min 106,856 (613) 97,426 (474) 30,841 (589) 21,593 (475)

LGD.J5* 0.01 15,564,000 2,782 > 5 min > 5 min > 5 min > 5 min 59,468 (142) 49,528 (2) 13,530 (334) 355 (186) 10,976 (310) 1,161 (189)

LGD.J6.1* 0.0005 20,181,600 7 > 5 min > 5 min > 5 min > 5 min 133,685 (141) 119,677 (2) 15,291 (243) 199 (88) 12,943 (208) 204 (91)

LGD.J6.2* 0.001 20,181,600 22 > 5 min > 5 min > 5 min > 5 min 133,693 (139) 120,059 (2) 15,372 (240) 195 (89) 12,970 (208) 198 (91)

LGD.J6.3* 0.01 20,181,600 743 > 5 min > 5 min > 5 min > 5 min 134,433 (137) 119,668 (2) 17,036 (341) 308 (187) 8,533 (297) 1,497 (189)

Table 3.7: Spatial distance join queries on YAGO; runtime in ms - optimizer time in ().

Query
Spatial join Number of results GraphDB

SRX

Baseline (RDF-3X) Basic extension (Sec. 3.3) Encoding

threshold ε RDF Final Cold Warm Cold Warm Cold Warm Cold Warm

YAGO.J1* 0.1 6,245,000 2,635 - - 118,992 (44) 103,626 (1) 14,738 (204) 445 (129) 11,795 (199) 684 (130)

YAGO.J2* 0.1 523,815,000 6,799,189 > 5 min > 5 min > 5 min > 5 min 137,147 (205) 112,954 (129) 136,114 (275) 115,226 (204)

YAGO.J3* 0.1 16,528 832 142,545 9,732 8,994 (57) 162 (1) 10,547 (220) 264 (129) 9,425 (203) 279 (131)

YAGO.J4* 0.1 3,165 451 69,923 1,477 7,990 (52) 124 (1) 8,796 (209) 219 (128) 8,139 (204) 228 (130)

YAGO.J5* 0.1 565 113 - - 2,836 (48) 95 (1) 3,547 (199) 164 (129) 3,406 (194) 168 (130)

YAGO.J6* 0.1 19,814,600 664,613 > 5 min > 5 min > 5 min 292,119 (2) 45,004 (375) 21,696 (130) 43,679 (356) 22,945 (205)

YAGO.J7* 0.1 544,771,000 4,204,184 > 5 min > 5 min > 5 min > 5 min 40,454 (195) 21,169 (129) 16,721 (267) 1,831 (201)

YAGO.J8.1* 0.001 3,519,380 85,188 - - 86,075 (48) 77,085 (1) 8,889 (185) 150 (115) 8,381 (189) 150 (115)

YAGO.J8.2* 0.01 3,519,380 86,222 - - 87,701 (48) 77,093 (1) 9,117 (190) 201 (115) 8,535 (186) 202 (115)

YAGO.J8.3* 0.1 3,519,380 131,828 - - 86,068 (48) 77,152 (1) 9,471 (205) 383 (128) 8,066 (206) 461 (130)

Results on Spatial Joins. Table 3.6 and Table 3.7 show the costs of spatial distance

join queries on LGD and YAGO, respectively. The threshold 0.1 shown in the tables

corresponds to a distance around 10km. In LGD, all queries have thresholds greater

than the diagonal of a cell in our encoding except queries LGD.J6.1 and LGD.J6.2. In

YAGO, threshold 0.1 is greater than the cell diagonal, but 0.01 is not. After perform-

ing experiments with various types of queries, we found that the SMJ and SHJ-ID

algorithms should only be used when the spatial distance threshold is greater than

the diagonal of the grid cell at the bottom level. Otherwise, they do not produce any

verified results and, hence, they have similar or slightly worse performance compared

to directly applying SHJ (as Basic would). We have added this simple rule of thumb

in the optimizer of our system, hence, in all spatial join queries that have a distance

threshold less than the cell diagonal, Encoding applies the same plans as Basic using

the SHJ operator. In LGD, these queries are J6.1 and J6.2, while in YAGO, the re-

spective queries are J8.1 and J8.2. For this reason, we focus mostly on queries where

the distance threshold is greater than the cell diagonal.

All spatial join queries on the LGD dataset (Table 3.6) have a similar pattern:

they include two disjoint RDF star-shaped parts with a spatial distance predicate

between the geometries of their center nodes. This is the only type of queries we

could define here since the LGD dataset includes a rather poor RDF part; besides

the POI type, there are very few properties such as “label” and “name” which link

the POIs with text attributes. For this type of queries, Baseline can only execute

a bushy plan where the two stars are evaluated separately and then joined in a

nested-loop fashion, applying the spatial distance filter. On the other hand, Basic

may choose to apply an R-tree join first for retrieving the candidate pairs within

distance ε or to first evaluate the RDF part of the query and follow-up with a spatial

56

Chapter 3. SRX: Efficient Management of Spatial RDF Data

hash join (SHJ) in the end (e.g., see the plans of Figure 3.2c and Figure 3.2d). In

all queries we tested, Basic chose the SHJ algorithm and this is quite reasonable; in

large datasets, the optimizer would prefer not to perform an expensive spatial self-

join over the whole set of points. Encoding can choose between one of the previously

mentioned methods and also try the algorithms of Section 3.5.3 and Section 3.5.4 on

the augmented query graph. Since we have star-shaped queries and the IDs of the

center nodes are coming sorted, SMJ was favored in all queries we present. Although

Encoding is much faster than Baseline, we observe that for the case of warm caches,

the former does not bring much benefit over Basic for most join queries on LGD.

The main reason is that Encoding does not save any geometry lookups due to the

particular data distribution; every entity from either of the two spatial join inputs

participates in at least one non verified spatial join pair and therefore it cannot be

pruned without fetching its geometry. In addition, Basic benefits from the fact that

it buffers the complete join inputs before hashing them into the buckets of SHJ, thus,

the geometry of each entity is processed only once. On the other hand, SMJ (used by

Encoding) produces and verifies the join pair candidates on-the-fly, resulting in the

processing of a given geometry multiple times. However, if the size of inputs is very

large, Basic can become significantly slower than Encoding (see LGD.J4) because

SHJ requires the allocation of a large hash table to accommodate a huge number of

buffered geometries. Recall that SHJ, used by Basic, is a blocking operator which

requires both inputs to be read as a whole before processing the join and, thus, can

become a bottleneck if the inputs are too large.

The results for queries with spatial join components in YAGO are shown in Ta-

ble 3.7. Depending on the type of the query and the selectivities of the two parts,

our encoding-based approach uses either SMJ or SHJ-ID. Specifically, SMJ is used in

queries J1 and J8.3, whereas SHJ-ID is used in J2, J6, and J7. In queries J8.1 and J8.2,

Encoding follows the same plans as Basic. In the remaining queries (J3, J4 and J5),

Basic and our encoding-based approach produced the same plans as Baseline; these

queries include a single connected RDF graph pattern with a rather selective RDF

part. As a result, the performance of Basic is similar to that of Encoding for queries

J3, J4, J5, J8.1, and J8.2. For the remaining queries, Encoding is slightly faster than

Basic with cold caches (the two techniques are comparable for warm caches), because

Encoding selects a different plan based on the augmented query graph. A notable

exception is YAGO.J7, where Encoding performs much better than Basic, because

the spatial join inputs have a different spatial distribution and Encoding can prune

many tuples using SHJ-ID.

Note that, for large inputs, SHJ might be slower than SMJ. This is reflected in

the performance difference between queries LGD.J6.1, LGD.J6.2 (resp. YAGO.J8.1,

YAGO.J8.2), where SRX applies the same plan as Basic using SHJ, and queries

57

3.8. Experimental Evaluation

LGD.J6.3 (resp. YAGO.J8.3), where SMJ is used.

Overall, with cold caches, the median speedup of Encoding over Baseline across

all queries we used is 10.3× and 8.4× for LGD and YAGO. When warm caches are

used, the respective median speedup is 136.5× for LGD and 82.1× for YAGO. Re-

garding spatial distance joins, Encoding and Basic have similar median performance

for YAGO. For LGD with cold caches, Encoding has a median 1.3 speedup over Basic,

whereas with warm caches Encoding shows a median 0.7 slowdown over Basic.

Results on Spatial kNN Queries. kNN queries in Tables 3.8-3.17 have been made

from (and have the same names with) the range queries used in Tables 3.4-3.5. Each

kNN query has the same RDF part with the respective range query along with a

Filter kNN(?g, “POINT (...)”) clause, where “POINT (...)” is the middle point of

“RECTANGLE (...)” in the Filter WITHIN(?g, “RECTANGLE (...)”) clause of the
range query. Tables 3.8-3.17 provide results for k = 5, 10, 20, 50, and 100.

In both datasets, Basic follows the same plan as Baseline with only exceptions

LGD.SL1 and YAGO.LS1, where Basic uses the R-tree. In these two queries, Basic

employs the incremental kNN operator (cf. Section 3.3) followed by hash joins, which

are favored by the optimizer because the RDF part of the query is selective enough

and, as a result, the cost of the building phase of the respective hash tables is low.

Such a plan achieves much better performance over Baseline in some cases (e.g. for

LGD.SL1 and k = 5 with cold caches), however, our experiments demonstrate that

Baseline is usually a better option than Basic, especially for k > 20. We attribute this

behavior to the following reasons: (i) Baseline evaluates the RDF part of the query

by leveraging efficient sequential scans over the compressed B+-trees in combination

with very fast merge joins, and (ii) LGD.SL1 and YAGO.LS1 have very selective RDF

parts (the most selective for each dataset), therefore, the cost of the final dictionary

lookups to fetch the geometries of the entities, as performed by Baseline, is low.

When cold caches are used, Unsorted and Sorted are significantly faster (due

to filtering and fewer geometry lookups) than Baseline for all kNN queries except

YAGO.LL2; in this case, Baseline is superior to both Unsorted and Sorted but for

different reasons. First, Unsorted and Baseline use exactly the same plan to evaluate

the RDF part of the query, and their only difference lies in the final verification phase

where they must retrieve the actual geometries from the dictionary. We found that

the result set of the RDF part of YAGO.LL2 contains many tuples carrying the same

geometry, which amplifies the effects of caching and significantly reduces the cost of

dictionary lookups. So, Baseline outperforms Unsorted due to the CPU overhead of

the latter to maintain its priority queues. Yet, when Sorted is an option, the optimizer

chooses a different plan for the RDF part, which leverages merge joins and outputs

tuples in ascending order of their spatial IDs but shows poor performance.

58

Chapter 3. SRX: Efficient Management of Spatial RDF Data

Table 3.8: Spatial kNN queries on LGD for k = 5; runtime in ms - optimizer time in ().

Query
Number of Strabon GraphDB Virtuoso

SRX

Baseline (RDF-3X) Basic extension (Sec. 3.3) Encoding (Unsorted) Encoding (Sorted)

results (RDF) Cold Warm Cold Warm Cold Warm Cold Warm Cold Warm Cold Warm Cold Warm

LGD.SL1 524 64,581 12,968 7,336 78 108,284 10 1,173 (86) 33 (1) 548 (121) 47 (12) 466 (69) 57 (1) 380 (89) 18 (1)

LGD.SL2 215,355 95,637 44,738 23,353 16,527 91,761 1,001 1,345 (77) 208 (1) 1,342 (76) 208 (1) 449 (69) 100 (1) 177 (79) 8 (1)

LGD.SL3* 13,090 69,479 15,453 9,070 1,289 N/A N/A 7,122 (85) 77 (1) 7,103 (83) 77 (1) 701 (69) 65 (1) 564 (83) 31 (1)

LGD.LS1 25,617 68,845 16,722 10,099 2,682 98,572 85 1,296 (77) 87 (1) 1,283 (76) 87 (1) 525 (70) 74 (1) 426 (84) 60 (1)

LGD.LS2 191,976 93,550 41,670 26,857 20,171 95,581 325 1,542 (77) 195 (2) 1,541 (77) 191 (1) 530 (70) 102 (1) 185 (73) 25 (1)

LGD.LS3* 5,791 75,161 14,249 16,138 512 N/A N/A 12,483 (83) 53 (1) 12,471 (79) 53 (1) 464 (69) 48 (1) 188 (73) 12 (1)

LGD.SS1 8,621 66,576 14,342 8,461 941 99,445 33 1,233 (88) 66 (1) 1,266 (87) 66 (1) 502 (70) 63 (2) 487 (90) 50 (1)

LGD.SS2* 13,090 69,496 15,540 9,015 1,248 N/A N/A 7,174 (87) 77 (1) 7,122 (87) 77 (1) 599 (69) 65 (1) 511 (73) 52 (1)

LGD.SS3* 5,791 75,341 14,061 16,288 519 N/A N/A 12,375 (87) 53 (1) 12,509 (87) 53 (1) 525 (68) 48 (1) 447 (82) 40 (1)

LGD.LL1 191,976 94,509 42,433 26,931 20,142 97,280 321 1,570 (77) 192 (1) 1,608 (76) 192 (1) 546 (68) 101 (1) 235 (72) 18 (1)

Table 3.9: Spatial kNN queries on LGD for k = 10; runtime in ms - optimizer time in ().

Query
Number of Strabon GraphDB Virtuoso

SRX

Baseline (RDF-3X) Basic extension (Sec. 3.3) Encoding (Unsorted) Encoding (Sorted)

results (RDF) Cold Warm Cold Warm Cold Warm Cold Warm Cold Warm Cold Warm Cold Warm

LGD.SL1 524 64,720 12,941 7,340 80 108,416 12 1,174 (88) 33 (1) 876 (121) 72 (12) 504 (70) 57 (2) 504 (90) 27 (1)

LGD.SL2 215,355 95,608 45,125 23,354 16,536 92,213 1,001 1,327 (77) 208 (1) 1,329 (76) 212 (1) 452 (70) 100 (1) 176 (77) 8 (1)

LGD.SL3* 13,090 69,437 15,487 9,149 1,292 N/A N/A 7,140 (87) 77 (1) 7,115 (74) 77 (1) 749 (69) 65 (1) 612 (92) 31 (1)

LGD.LS1 25,617 68,666 16,665 10,118 2,711 98,710 85 1,306 (77) 87 (1) 1,273 (76) 87 (1) 509 (70) 74 (1) 470 (84) 60 (1)

LGD.LS2 191,976 93,902 42,130 27,158 20,179 95,801 325 1,577 (77) 192 (1) 1,588 (77) 192 (1) 525 (70) 102 (1) 184 (73) 25 (1)

LGD.LS3* 5,791 75,219 14,073 16,200 519 N/A N/A 12,483 (87) 53 (1) 12,461 (87) 53 (1) 485 (69) 49 (1) 223 (70) 23 (1)

LGD.SS1 8,621 66,535 14,388 8,473 942 99,528 33 1,217 (87) 66 (1) 1,240 (87) 66 (1) 492 (69) 62 (1) 472 (94) 50 (1)

LGD.SS2* 13,090 69,405 15,523 9,082 1,288 N/A N/A 7,178 (87) 77 (1) 7,055 (87) 77 (1) 618 (73) 65 (1) 543 (92) 52 (1)

LGD.SS3* 5,791 75,315 13,970 16,302 544 N/A N/A 12,421 (87) 54 (1) 12,475 (87) 53 (1) 667 (69) 49 (1) 575 (95) 56 (1)

LGD.LL1 191,976 94,205 42,670 27,043 20,148 97,809 322 1,620 (78) 192 (1) 1,634 (77) 192 (1) 544 (73) 101 (1) 252 (73) 19 (1)

Table 3.10: Spatial kNN queries on LGD for k = 20; runtime in ms - optimizer time in ().

Query
Number of Strabon GraphDB Virtuoso

SRX

Baseline (RDF-3X) Basic extension (Sec. 3.3) Encoding (Unsorted) Encoding (Sorted)

results (RDF) Cold Warm Cold Warm Cold Warm Cold Warm Cold Warm Cold Warm Cold Warm

LGD.SL1 524 64,510 12,954 7,376 87 108,909 12 1,133 (88) 33 (1) 1,269 (121) 116 (12) 545 (70) 56 (1) 532 (92) 28 (1)

LGD.SL2 215,355 95,644 45,126 23,356 16,540 93,970 1,004 1,363 (79) 209 (1) 1,330 (77) 209 (1) 453 (69) 100 (1) 178 (75) 8 (1)

LGD.SL3* 13,090 69,274 15,584 9,150 1,306 N/A N/A 7,164 (87) 77 (1) 7,168 (82) 77 (1) 750 (69) 65 (1) 608 (92) 30 (1)

LGD.LS1 25,617 68,805 16,686 10,214 2,725 99,406 85 1,302 (77) 88 (1) 1,281 (77) 87 (1) 519 (70) 74 (1) 472 (92) 60 (1)

LGD.LS2 191,976 93,585 41,657 27,164 20,180 95,925 327 1,598 (77) 192 (1) 1,615 (77) 192 (1) 528 (70) 102 (1) 182 (72) 26 (1)

LGD.LS3* 5,791 75,127 14,025 16,284 546 N/A N/A 12,437 (87) 54 (1) 12,434 (86) 54 (1) 542 (69) 48 (1) 312 (78) 34 (1)

LGD.SS1 8,621 66,618 14,380 8,533 950 100,382 34 1,223 (88) 66 (1) 1,204 (86) 65 (1) 515 (70) 62 (1) 515 (94) 50 (1)

LGD.SS2* 13,090 69,536 15,699 9,094 1,300 N/A N/A 7,170 (87) 77 (1) 7,149 (86) 77 (1) 608 (69) 65 (1) 551 (88) 52 (1)

LGD.SS3* 5,791 75,403 14,025 16,306 545 N/A N/A 12,457 (87) 54 (1) 12,467 (87) 54 (1) 667 (69) 48 (1) 560 (83) 55 (1)

LGD.LL1 191,976 94,252 42,573 27,223 20,150 98,285 322 1,590 (77) 192 (1) 1,646 (77) 192 (1) 588 (69) 101 (1) 266 (72) 19 (1)

Table 3.11: Spatial kNN queries on LGD for k = 50; runtime in ms - optimizer time in ().

Query
Number of Strabon GraphDB Virtuoso

SRX

Baseline (RDF-3X) Basic extension (Sec. 3.3) Encoding (Unsorted) Encoding (Sorted)

results (RDF) Cold Warm Cold Warm Cold Warm Cold Warm Cold Warm Cold Warm Cold Warm

LGD.SL1 524 64,803 13,097 7,399 110 110,023 13 1,139 (85) 33 (1) 3,686 (129) 265 (12) 668 (70) 56 (1) 653 (92) 32 (1)

LGD.SL2 215,355 95,515 44,992 23,359 16,584 94,177 1,005 1,335 (77) 208 (1) 1,324 (76) 210 (1) 459 (69) 100 (1) 177 (76) 9 (1)

LGD.SL3* 13,090 69,473 15,580 9,298 1,399 N/A N/A 7,096 (87) 77 (1) 7,091 (87) 77 (1) 883 (69) 65 (1) 851 (94) 33 (1)

LGD.LS1 25,617 68,860 16,667 10,255 2,729 99,767 86 1,315 (77) 87 (1) 1,304 (77) 88 (2) 564 (71) 75 (1) 501 (84) 61 (1)

LGD.LS2 191,976 93,740 41,659 27,320 20,257 96,761 328 1,611 (77) 193 (2) 1,639 (78) 191 (1) 528 (69) 102 (1) 223 (82) 27 (1)

LGD.LS3* 5,791 75,280 13,946 16,333 592 N/A N/A 12,423 (87) 54 (1) 12,463 (87) 54 (1) 617 (69) 49 (1) 388 (82) 41 (1)

LGD.SS1 8,621 66,514 14,341 8,556 973 100,768 34 1,222 (87) 66 (1) 1,159 (87) 65 (1) 534 (70) 62 (1) 523 (91) 50 (1)

LGD.SS2* 13,090 69,224 15,513 9,269 1,367 N/A N/A 7,163 (87) 77 (1) 7,170 (86) 77 (1) 688 (69) 65 (1) 629 (85) 52 (1)

LGD.SS3* 5,791 75,301 14,037 16,517 574 N/A N/A 12,479 (87) 54 (1) 12,351 (87) 54 (1) 791 (69) 48 (1) 752 (82) 60 (1)

LGD.LL1 191,976 93,971 42,339 27,360 20,280 98,525 323 1,633 (77) 192 (1) 1,573 (77) 192 (1) 638 (70) 101 (1) 303 (80) 22 (2)

Table 3.12: Spatial kNN queries on LGD for k = 100; runtime in ms - optimizer time in ().

Query
Number of Strabon GraphDB Virtuoso

SRX

Baseline (RDF-3X) Basic extension (Sec. 3.3) Encoding (Unsorted) Encoding (Sorted)

results (RDF) Cold Warm Cold Warm Cold Warm Cold Warm Cold Warm Cold Warm Cold Warm

LGD.SL1 524 64,623 13,252 7,644 116 110,171 13 1,118 (87) 33 (1) 7,683 (127) 506 (12) 739 (70) 57 (1) 751 (92) 38 (1)

LGD.SL2 215,355 95,492 44,878 23,361 16,676 94,825 1,014 1,324 (77) 208 (1) 1,346 (77) 208 (1) 451 (69) 100 (1) 180 (76) 9 (1)

LGD.SL3* 13,090 69,496 15,557 9,455 1,470 N/A N/A 7,156 (87) 77 (1) 6,981 (86) 77 (1) 1,059 (69) 65 (1) 1,109 (93) 50 (1)

LGD.LS1 25,617 68,781 16,618 10,342 2,759 101,913 87 1,298 (77) 87 (1) 1,300 (77) 87 (1) 630 (69) 75 (1) 578 (68) 73 (1)

LGD.LS2 191,976 93,874 41,536 27,716 20,369 96,912 330 1,562 (77) 192 (1) 1,583 (76) 191 (1) 540 (69) 102 (1) 233 (86) 27 (1)

LGD.LS3* 5,791 75,184 13,970 16,678 632 N/A N/A 12,469 (87) 54 (1) 12,493 (87) 53 (1) 795 (69) 48 (1) 602 (83) 52 (1)

LGD.SS1 8,621 66,668 14,667 8,774 1,048 101,206 35 1,251 (87) 66 (1) 1,224 (87) 66 (1) 655 (70) 63 (2) 613 (91) 65 (1)

LGD.SS2* 13,090 69,620 15,798 9,332 1,484 N/A N/A 7,183 (87) 77 (1) 7,170 (86) 77 (1) 764 (77) 65 (1) 734 (93) 53 (1)

LGD.SS3* 5,791 75,234 14,030 16,713 625 N/A N/A 12,459 (87) 53 (1) 12,425 (87) 54 (1) 1,127 (69) 49 (1) 1,080 (82) 69 (1)

LGD.LL1 191,976 94,626 42,383 27,424 20,281 99,163 324 1,598 (79) 192 (1) 1,609 (77) 192 (1) 623 (69) 101 (1) 309 (84) 22 (1)

When warm caches are used, Unsorted performs better than Baseline for all kNN

queries on LGD except LGD.SL1. This is reasonable since the Unsorted method

59

3.8. Experimental Evaluation

Table 3.13: Spatial kNN queries on YAGO for k = 5; runtime in ms - optimizer time in ().

Query
Number of GraphDB

SRX

Baseline (RDF-3X) Basic extension (Sec. 3.3) Encoding (Unsorted) Encoding (Sorted)

results (RDF) Cold Warm Cold Warm Cold Warm Cold Warm Cold Warm

YAGO.SL1* 11,547 86,349 3,054 6,108 (51) 59 (1) 6,170 (51) 58 (1) 2,411 (72) 57 (1) 2,111 (86) 43 (1)

YAGO.SL2* 6,030 102,461 1,977 7,553 (120) 69 (1) 7,537 (124) 69 (1) 3,068 (169) 66 (1) 2,864 (228) 43 (1)

YAGO.LS1* 2,226 - - 2,432 (53) 58 (1) 3,943 (110) 98 (16) 1,349 (80) 60 (1) 1,158 (82) 43 (1)

YAGO.LS2* 285,613 >5 min 137,117 13,340 (129) 715 (1) 13,253 (129) 717 (1) 6,009 (193) 720 (1) 5,567 (211) 676 (1)

YAGO.SS1* 6,030 101,674 1,977 7,530 (111) 69 (1) 7,526 (115) 69 (1) 3,096 (192) 66 (1) 2,803 (210) 40 (1)

YAGO.SS2* 7,074 52,999 683 4,100 (51) 60 (1) 4,106 (50) 60 (1) 2,305 (82) 59 (1) 1,850 (70) 21 (1)

YAGO.LL1* 285,613 >5 min 138,160 13,248 (139) 715 (1) 13,220 (127) 718 (1) 6,071 (185) 719 (1) 5,654 (226) 689 (1)

YAGO.LL2* 152,693 169,217 15,148 4,709 (50) 2,992 (1) 4,721 (51) 2,987 (1) 5,750 (75) 3,016 (1) 13,118 (83) 2,273 (1)

Table 3.14: Spatial kNN queries on YAGO for k = 10; runtime in ms - optimizer time in ().

Query
Number of GraphDB

SRX

Baseline (RDF-3X) Basic extension (Sec. 3.3) Encoding (Unsorted) Encoding (Sorted)

results (RDF) Cold Warm Cold Warm Cold Warm Cold Warm Cold Warm

YAGO.SL1* 11,547 86,351 3,055 6,045 (50) 58 (1) 6,097 (50) 58 (1) 2,395 (66) 57 (1) 2,115 (86) 43 (1)

YAGO.SL2* 6,030 102,464 1,979 7,560 (115) 69 (1) 7,548 (121) 69 (1) 3,117 (190) 66 (1) 2,850 (228) 43 (1)

YAGO.LS1* 2,226 - - 2,431 (51) 58 (1) 3,922 (91) 97 (16) 1,304 (77) 61 (1) 1,152 (82) 43 (1)

YAGO.LS2* 285,613 >5 min 137,120 13,284 (127) 716 (1) 13,208 (137) 716 (1) 5,983 (185) 721 (1) 5,547 (209) 674 (1)

YAGO.SS1* 6,030 101,675 1,979 7,544 (109) 69 (1) 7,574 (121) 69 (1) 3,112 (195) 67 (1) 2,804 (208) 40 (1)

YAGO.SS2* 7,074 53,002 684 4,117 (53) 59 (1) 4,111 (51) 60 (1) 2,327 (77) 59 (1) 1,844 (66) 22 (1)

YAGO.LL1* 285,613 >5 min 138,161 13,343 (127) 716 (1) 13,347 (131) 714 (1) 6,030 (179) 723 (1) 5,713 (227) 690 (1)

YAGO.LL2* 152,693 169,219 15,149 4,726 (51) 2,987 (1) 4,711 (50) 2,990 (1) 5,811 (82) 3,019 (1) 13,114 (86) 2,275 (1)

Table 3.15: Spatial kNN queries on YAGO for k = 20; runtime in ms - optimizer time in ().

Query
Number of GraphDB

SRX

Baseline (RDF-3X) Basic extension (Sec. 3.3) Encoding (Unsorted) Encoding (Sorted)

results (RDF) Cold Warm Cold Warm Cold Warm Cold Warm Cold Warm

YAGO.SL1* 11,547 86,354 3,057 6,073 (50) 59 (1) 6,117 (50) 59 (1) 2,415 (72) 57 (1) 2,096 (68) 43 (1)

YAGO.SL2* 6,030 102,468 1,982 7,549 (114) 69 (1) 7,577 (122) 68 (1) 3,103 (195) 66 (1) 2,854 (228) 43 (1)

YAGO.LS1* 2,226 - - 2,449 (51) 57 (1) 3,946 (105) 97 (16) 1,335 (80) 61 (1) 1,141 (78) 43 (1)

YAGO.LS2* 285,613 >5 min 137,122 13,345 (127) 718 (1) 13,308 (125) 716 (1) 6,017 (185) 722 (1) 5,589 (211) 676 (1)

YAGO.SS1* 6,030 101,678 1,980 7,543 (114) 69 (1) 7,542 (113) 69 (1) 3,092 (191) 67 (1) 2,829 (214) 40 (1)

YAGO.SS2* 7,074 53,006 686 4,098 (50) 60 (1) 4,098 (50) 59 (1) 2,293 (82) 59 (1) 1,838 (70) 23 (1)

YAGO.LL1* 285,613 >5 min 138,165 13,261 (123) 718 (1) 13,313 (129) 717 (1) 6,055 (191) 721 (1) 5,657 (226) 688 (1)

YAGO.LL2* 152,693 170,222 15,251 4,720 (55) 2,990 (1) 4,720 (51) 2,983 (1) 5,820 (77) 3,017 (1) 13,084 (86) 2,280 (1)

Table 3.16: Spatial kNN queries on YAGO for k = 50; runtime in ms - optimizer time in ().

Query
Number of GraphDB

SRX

Baseline (RDF-3X) Basic extension (Sec. 3.3) Encoding (Unsorted) Encoding (Sorted)

results (RDF) Cold Warm Cold Warm Cold Warm Cold Warm Cold Warm

YAGO.SL1* 11,547 88,397 3,189 6,088 (51) 59 (1) 6,089 (50) 59 (1) 2,417 (74) 57 (1) 2,111 (72) 43 (1)

YAGO.SL2* 6,030 104,512 2,104 7,552 (115) 69 (1) 7,540 (113) 69 (1) 3,114 (194) 66 (1) 2,879 (230) 44 (1)

YAGO.LS1* 2,226 - - 2,475 (51) 58 (1) 3,884 (89) 97 (16) 1,371 (82) 61 (1) 1,155 (82) 43 (1)

YAGO.LS2* 285,613 >5 min 137,227 13,337 (125) 716 (1) 13,245 (129) 715 (1) 5,993 (187) 725 (1) 5,589 (208) 677 (1)

YAGO.SS1* 6,030 104,722 1,996 7,543 (116) 69 (1) 7,536 (115) 69 (1) 3,084 (181) 67 (1) 2,831 (210) 40 (1)

YAGO.SS2* 7,074 54,011 753 4,096 (50) 60 (1) 4,096 (50) 60 (1) 2,311 (77) 59 (1) 1,876 (66) 23 (1)

YAGO.LL1* 285,613 >5 min 139,201 13,307 (123) 716 (1) 13,351 (131) 716 (1) 6,029 (177) 725 (1) 5,667 (204) 689 (1)

YAGO.LL2* 152,693 171,984 15,305 4,701 (51) 2,989 (1) 4,728 (51) 2,990 (1) 5,804 (79) 3,012 (1) 13,122 (86) 2,275 (1)

Table 3.17: Spatial kNN queries on YAGO for k = 100; runtime in ms-optimizer time in ().

Query
Number of GraphDB

SRX

Baseline (RDF-3X) Basic extension (Sec. 3.3) Encoding (Unsorted) Encoding (Sorted)

results (RDF) Cold Warm Cold Warm Cold Warm Cold Warm Cold Warm

YAGO.SL1* 11,547 91,800 3,308 6,085 (50) 59 (1) 6,109 (58) 59 (1) 2,429 (74) 57 (1) 2,146 (70) 43 (1)

YAGO.SL2* 6,030 107,319 2,261 7,552 (115) 69 (1) 7,520 (113) 69 (1) 3,149 (195) 66 (1) 2,871 (228) 44 (1)

YAGO.LS1* 2,226 - - 2,447 (51) 57 (1) 10,788 (98) 320 (16) 1,367 (78) 60 (1) 1,590 (70) 147 (1)

YAGO.LS2* 285,613 >5 min 137,529 13,344 (129) 715 (1) 13,258 (127) 717 (1) 6,009 (189) 725 (1) 5,557 (201) 680 (1)

YAGO.SS1* 6,030 107,657 2,211 7,545 (120) 69 (1) 7,541 (114) 69 (1) 3,135 (193) 66 (1) 2,850 (208) 40 (1)

YAGO.SS2* 7,074 55,145 878 4,118 (50) 59 (1) 4,096 (50) 60 (1) 2,363 (80) 59 (1) 1,879 (68) 24 (1)

YAGO.LL1* 285,613 >5 min 142,926 13,252 (129) 713 (1) 13,374 (137) 718 (1) 6,077 (185) 727 (1) 5,729 (227) 691 (1)

YAGO.LL2* 152,693 175,855 15,543 4,718 (53) 2,989 (1) 4,729 (50) 2,987 (1) 5,783 (80) 3,017 (1) 13,135 (86) 2,274 (1)

tends to perform fewer dictionary lookups than Baseline and, in queries with very

selective RDF part, such as LGD.SL1, the benefits of Unsorted over Baseline are

60

Chapter 3. SRX: Efficient Management of Spatial RDF Data

negligible. In YAGO with warm caches, Unsorted performs similarly or slightly worse

(e.g. for YAGO.LS2, YAGO.LL1, and YAGO.LL2) than Baseline for the same reason

we mentioned before: many entities in the result of the RDF part of these queries

have the same geometry, and the cost of the additional geometry lookups in Baseline

is mitigated by caching. The only LGD queries where Baseline is slightly better than

Sorted are LGD.SL1 for k = 100 and LGD.SS3 for all k values except k = 5. Note that,

although LGD.LS3 has the same RDF part with LGD.SS3, Sorted is constantly better

than Baseline for LGD.LS3 because its kNN predicate is different. Regarding YAGO,

Sorted is better than Baseline in all queries apart from YAGO.LS1 for k = 100.

Finally, Sorted is superior to Unsorted in most cases. For LGD and warm caches,

the only queries where Unsorted is better than Sorted are LGD.LS3, LGD.SS1 for k

= 100, and LGD.SS3 for all k values except k = 5. Still, under cold caches, Sorted is

better even in these cases. For YAGO, Sorted is better than Unsorted in all queries

but YAGO.LS1 for k = 100, where Unsorted is superior under both warm and cold

caches. Generally, Sorted is preferable over Unsorted and Baseline, as it tends to

avoid a significant number of geometry retrievals. Yet, Unsorted is a good alternative

since it can overcome the deficiencies of Sorted in the few cases where Baseline is

better: LGD.SS3 for all k values except k = 5, and YAGO.LS1 for k = 100.

Overall, for LGD and with cold caches, Encoding Unsorted (resp. Sorted) has

a median 2.9× (resp. 7.9×) speedup over Baseline whereas, for YAGO, the median
speedup over Baseline is 2.2× for Unsorted and 2.3× for Sorted. For LGD queries

with warm caches, the median speedups of Unsorted and Sorted over Baseline are

1.1× and 1.5× respectively. Last, for YAGO with warm caches, Unsorted and Baseline
perform similarly whereas Sorted has a median 1.3× speedup over Baseline.

Comparison with Existing Systems. We compared SRX against three popular

RDF stores with geospatial data support, namely Strabon, GraphDB, and Virtuoso.

For Strabon, we only present results with LGD, as it could not load YAGO even

after three days (and even when using the bulk loader we obtained from the authors

of [KKK12]; this issue is also reported in [PGA14]).

We allowed each system to allocate the whole available memory of the machine

and performed the experiments with cold and warm caches just like for our sys-

tem. Since these systems have their own data caches, experiments with cold caches

were conducted by clearing the OS cache and restarting the system. The symbol ‘-’

in Tables 3.7, and 3.13-3.17 denotes empty or incorrect results. N/A (not applica-

ble) is used in Tables 3.8-3.12, and 3.18 for Virtuoso because its internal function

bif:st_distance, which is used in spatial join and kNN queries (cf. Appendix-

Chapter 8), works only for point geometries. In fact, this is why there are no Virtuoso

results in Tables 3.6-3.7 and Tables 3.13-3.17. Although queries J1, J2, and J3 in

61

3.8. Experimental Evaluation

Table 3.18: Median speedups of SRX over Strabon, GraphDB, Virtuoso for LGD and YAGO

across all queries of each type.

Query Type
Strabon (LGD) GraphDB (LGD) GraphDB (YAGO) Virtuoso (LGD) Virtuoso (YAGO)

Cold Warm Cold Warm Cold Warm Cold Warm Cold Warm

range 168.4 933.4 34.4 151.8 8.9 43.7 145.9 4.7 13.1 9.5

distance 31.2 339.8 31.2 397 8.5 13 N/A N/A N/A N/A

unsorted kNN 130.9 264.6 22 20 33.3 30 192.9 2.1 N/A N/A

sorted kNN 140.2 437.5 24.9 34.2 36.2 49.5 290 6.9 N/A N/A

Table 3.6 involve only points, they are also not supported by Virtuoso, presumably

because it tries to apply the DISTANCE predicate first between all types of geometries.
Note that both GraphDB and Virtuoso compute the great-circle distance, whereas

Strabon, Encoding, Baseline, and Basic compute the Euclidean distance. This does

not prevent us from a fair comparison among GraphDB and Virtuoso since both

distance functions have similar CPU cost.

Table 3.18 summarizes the median speedups of SRX over Strabon, GraphDB,

and Virtuoso across all queries we used on both datasets. SRX is 8.5× faster (in

the worst case) than the competitors in all cases except for the case of Virtuoso on

LGD with warm caches, where SRX median speedups are lower. We cannot comment

further on the performance of GraphDB and Virtuoso as they are not open-source

systems. On the contrary, the performance of Strabon for range (Table 3.4), and kNN

(Tables 3.8-3.12) queries is dominated by the time needed to fetch data from disk: 60s

(resp. 12s) with cold (resp. warm) caches on average in both range and kNN queries.

We also observe that for these types of queries, the query time tends to increase with

the size of the result for the RDF part of the query. Finally, distance join query times

(Table 3.6) in Strabon are dominated by the CPU rather than the I/O time due to

the large number of candidate pairs that need to be examined.

3.8.3 Updates Setup

In the experiments for updates we used the same encoding and R-tree configu-

rations as for queries (cf. Section 3.8.1). Thresholds h1 and h2 used to trigger re-

encodings (cf. Section 3.7) were set to 0.5 and 0.7 respectively. We also experimented

with other thresholds (e.g. 0.35 and 0.5) but we did not notice any significant perfor-

mance difference.

Datasets. The update benchmark relies on Deltas that we are extracted by calculat-

ing the difference of two versions of LGD and YAGO: LGD 2013_04_29 to 2015_11_02
11, and YAGO 2.5.3 to 3.0.2 12. Details are presented in the Appendix-Chapter 8.

In both datasets, each delta consists of a delete, an update, and an insert workload,

11https://tinyurl.com/ydbscsxf
12https://tinyurl.com/y7ukhge3

62

https://tinyurl.com/ydbscsxf
https://tinyurl.com/y7ukhge3

Chapter 3. SRX: Efficient Management of Spatial RDF Data

all measured in number of triples. The column ‘HasGeo’ shows the number of 〈s, p, o〉
triples with p = “hasGeometry” whereas the numbers for the rest of the triples are

given in column ‘Other’. For the YAGO dataset, we encountered a small number of

‘HasGeo’ deltas between versions 2.5.3 and 3.0.2; thus, only for this type of triples,
we extracted the deltas using the last version of YAGO (3.1) instead of 3.0.2. YAGO
3.1 contains many more ‘Other’ triples we did not consider here since they are not
related to any spatial entities and, hence, they do not affect the performance of re-

encoding. Finally, LGD and YAGO deltas have been extracted using only types of

triples that appear in both the initial and final versions.

Update Workloads. To generate realistic update workloads we split deltas in

batches of varying size (in number of triples). For the smaller LGD dataset, we present

experiments for batch sizes of 1M, 2M, 4M, and 8M triples whereas, for YAGO, we

use batch sizes of 1M, 16M, 32M, and 64M triples. Each batch is marked as delete,

update or insert and contains randomly selected triples from the respective delta. For

instance, to form the delete batches of a specific batch size b, we first collect all delete

triples (‘hasGeometry’ and ‘Other’) included in the delete delta, we shuffle them,

and group them in batches of size b each. In all experiments of the next section, the

batches are applied in a particular order, simulating the transition from the initial

to the final version of the dataset: first all deletions, then all updates, and finally all

insertions. The update benchmark can be found in the Appendix-Chapter 8.

3.8.4 Updates Comparison

We compare SRX with Strabon, GraphDB, and Virtuoso. Results are given in

Figure 3.9 and Figure 3.10 for LGD and YAGO respectively. Update experiments with

Strabon (Figure 3.11) were feasible only on small subsets of LGD and are discussed

later on. All reported times for SRX and RDF-3X reflect the total time needed to

construct the in-memory differential indexes and synchronize them with the base

indexes (i.e. the B+-trees on disk).

Deletes. As shown in Figure 3.9 and Figure 3.10, the latency of processing a delete

batch with RDF-3X and SRX shows a slight improvement across consecutive batches

of the same size (left-most part of each plot) and tends to increase on average with the

batch size. The slight improvement of delete latency over time is more apparent with

YAGO and is reasonable since the overall database tends to get smaller. SRX laten-

cies are in general higher than those of RDF-3X, and this is because SRX performs

additional dictionary lookups and base index scans when trying to re-encode entities

at lower levels of the grid. Overall, the median slowdown of SRX over RDF-3X ac-

cross all delete batches is small: 0.5× for LGD, and 0.8× for YAGO. The slowdown is
smaller for YAGO because the geometries in the delete batches of YAGO are almost

63

3.8. Experimental Evaluation

0 20 40 60 80 100 120 140
batch ID

104

105

106

107

108

b
a
tc

h
 r

u
n
n
in

g
 t

im
e
 (

m
s)

deletes updates inserts

RDF-3X

SRX

VIRTUOSO

GraphDB

0 10 20 30 40 50 60 70
batch ID

104

105

106

107

108

b
a
tc

h
 r

u
n
n
in

g
 t

im
e
 (

m
s) deletes updates inserts

RDF-3X

SRX

VIRTUOSO

GraphDB

(a) b = 1M triples (b) b = 2M triples

0 5 10 15 20 25 30 35
batch ID

105

106

107

b
a
tc

h
 r

u
n
n
in

g
 t

im
e
 (

m
s) deletes updates inserts

RDF-3X

SRX

VIRTUOSO

0 2 4 6 8 10 12 14 16 18
batch ID

105

106

107

b
a
tc

h
 r

u
n
n
in

g
 t

im
e
 (

m
s)

deletes updates inserts

RDF-3X

SRX

VIRTUOSO

(c) b = 4M triples (d) b = 8M triples

Figure 3.9: Latency (ms) of processing batches of size b on LGD.

half on average compared to LGD, hence, re-encoding is triggered less frequently.

Note that the high processing latencies in the first delete batches of each experiment

are due to some warm-up issues.

Inserts. The right-most part of each plot in Figure 3.9 and Figure 3.10 (labeled

with “inserts”) shows the performance of SRX and RDF-3X for inserts. In contrast to

deletes, the latency of processing an insert batch tends to increase over time for both

SRX and RDF-3X, although it appears more stable for larger batches, especially for

LGD (Figure 3.9d). We attribute this both to the differential index construction and

to the index synchronization phases (cf. Section 3.7).

During the differential index construction, SRX and RDF-3X perform a number

of database scans to check whether an input triple is new or old13. Hence, when the

database increases in size as more insert batches are processed, the cost of these scans

13This check was not included in the version of RDF-3X we had but we added it for

consistency.

64

Chapter 3. SRX: Efficient Management of Spatial RDF Data

0 20 40 60 80 100 120 140
batch ID

104

105

106

107

108

b
a
tc

h
 r

u
n
n
in

g
 t

im
e
 (

m
s)

deletes

u
p
d
a
te

s

RDF-3X

SRX

VIRTUOSO

GraphDB

0 5 10 15 20 25 30 35
batch ID

105

106

107

108

b
a
tc

h
 r

u
n
n
in

g
 t

im
e
 (

m
s) deletes

u
p
d
a
te

s

inserts

RDF-3X

SRX

VIRTUOSO

(a) b = 1M triples (b) b = 16M triples

0 2 4 6 8 10 12 14 16 18
batch ID

105

106

107

108

b
a
tc

h
 r

u
n
n
in

g
 t

im
e
 (

m
s)

deletes

u
p
d
a
te

s

inserts

RDF-3X

SRX

VIRTUOSO

1 2 3 4 5 6 7 8 9 10
batch ID

105

106

107

108

109

b
a
tc

h
 r

u
n
n
in

g
 t

im
e
 (

m
s) deletes

u
p
d
a
te

s

inserts

RDF-3X

SRX

VIRTUOSO

(c) b = 32M triples (d) b = 64M triples

Figure 3.10: Latency (ms) of processing batches of size b on YAGO.

tends to increase. Second, and most important, whenever an index synchronization

is performed and a leaf page of a base B+-tree overflows, the system generates a new

page for the additional triples but avoids tree compaction. This is a common technique

that tries to minimize the update latency at the cost of redundant leaf pages, which

are expected to be filled by subsequent updates or compacted periodically when the

system is idle. The technique achieves better leaf page utilization when used for bulk

inserts of large size but does not perform well for small frequent inserts like those in

Figure 3.9a-b and Figure 3.10b-c. Applying many small insert batches one after the

other results in a large number of almost empty leaf pages (hence, a large increase

in I/Os), and the performance of the system degrades significantly. This is in fact

the reason we do not present times for insert batches in Figure 3.10a; after some

point in this experiment, the processing of each single insert batch started taking

almost double the time of the previous batch and we had to stop it. The problem

we described is exacerbated due to the extensive use of indexes in RDF-3X (all of

65

3.8. Experimental Evaluation

0 2 4 6 8 10 12 14 16 18
batch ID

101

102

103

104

105

106

107

b
a
tc

h
 r

u
n
n
in

g
 t

im
e
 (

m
s)

deletes updates inserts

RDF-3X

SRX

VIRTUOSO

GraphDB

STRABON

0 2 4 6 8 10 12 14 16 18
batch ID

101

102

103

104

105

106

107

b
a
tc

h
 r

u
n
n
in

g
 t

im
e
 (

m
s)

deletes updates inserts

RDF-3X

SRX

VIRTUOSO

GraphDB

STRABON

(a) initial base = 10K triples (b) initial base = 100K triples

Figure 3.11: Latency (ms) of processing batches of size 1K triples on two different subsets
(a) and (b) of LGD; the former dataset is a subset of the latter.

which have to be updated with the new triples) and becomes even more profound in

SRX due to the additional re-assigment of IDs when new geometries are introduced

for existing entities (lines 6-16 in Updates on existing entities). The latter also explains
why the difference in performance of inserts between SRX and RDF-3X is amplified

over time in Figure 3.9a-c. Overall, the median slowdown of SRX over RDF-3X across

all insert batches is 0.6× for both LGD and YAGO.

It should be noted, that SRX inherits its design from the last version of RDF-

3X which targets read-intensive workloads and performs well under bulk inserts, but

does not focus on Online transaction processing. There is some preliminary work on

OLTP in [NW10b], but it has not been integrated to the current RDF-3X. We leave

the efficient management of single triples and very small insert as future work.

Updates. The middle part of each plot in Figure 3.9 and Figure 3.10 (labeled with

“updates”) shows the performance of SRX and RDF-3X in processing update batches.

Here, the latency fluctuates slightly but tends to remain stable in the long term. Since

an update in SRX and RDF-3X is implemented as a delete followed by an insert, we

attribute the reasons behind this behavior to the combined performance of delete

and insert batches, as explained before. Overall, the median slowdown of SRX over

RDF-3X is 0.7× for LGD and 0.3× for YAGO.

Comparison with Existing Systems. We also performed experiments with Stra-

bon, GraphDB, and Virtuoso, which we allowed to use the whole available memory of

our machine, as for queries. Results are shown in Figure 3.9 for LGD, in Figure 3.10

for YAGO, and in Figure 3.11 for the LGD subsets. In YAGO, both GraphDB and

Virtuoso were quite slow, and so we stopped the respective experiment at the point

where each system had been running for as long as SRX took to apply all delete,

66

Chapter 3. SRX: Efficient Management of Spatial RDF Data

update, and insert batches. Moreover, GraphDB did not perform updates for batch

sizes 4M and 8M in LGD, and 16M, 32M, and 64M in YAGO, due to memory over-

flow. In the next, we first discuss the update results on LGD and YAGO, and we then

explain the results on the LGD subsets that we generated specifically for Strabon.

For LGD and YAGO, SRX performs significantly better compared to GraphDB

and Virtuoso in both datasets, especially for deletes and updates, even though it also

applies spatial re-encoding of entities. For inserts, SRX is almost an order of mag-

nitude faster (in the worst case) with large batches, and gets worse than GraphDB

and Virtuoso only when using batch sizes of 1M and 2M in LGD. We have already

explained the reasons behind SRX’s performance degradation for inserts in the previ-

ous. Overall, the median speedup of SRX over GraphDB (resp. Virtuoso) for deletes,

inserts, and updates is: 35.3×, 8.9×, and 22.6× (resp. 5.9×, 2.4×, and 4.1×) for LGD.
For YAGO, the respective median speedup of SRX over Virtuoso is: 41.2×, 82.9×,
and 9.2× (GraphDB was slow for YAGO and managed to apply only the first delete

batch in Figure 3.10a).

The two datasets of Figure 3.11 are selected subsets from LGD, which we describe

in the Appendix-Chapter 8. Overall, the median speedup of SRX over GraphDB (resp.

Virtuoso) for deletes, inserts, and updates on both these datasets is: 12.4×, 16.2×,
and 22.6× (resp. 132.1×, 91.9×, and 79.8×), while SRX performs very close to RDF-
3X. Compared to results we get with LGD and YAGO, it is worth noticing that

GraphDB performs better than Virtuoso with smaller datasets. Still, as for the case

of queries, we cannot further comment on the performance of GraphDB and Virtuoso

over all update experiments because they are not open-source systems.

Strabon is orders of magnitude slower than SRX and at least two orders of mag-

nitude slower than Virtuoso because it does not support bulk updates; instead, each

record in the update batch is treated as an individual database transaction. This ap-

proach has a high overhead in performance and cannot scale with frequent updates.

As a side note, Strabon builds on the Sesame RDF store [BKvH01] and extends

Sesame’s query engine and optimizer, but not its transaction processing module.

3.9 Conclusion

In this chapter, we presented SRX, a system for spatial RDF data management

built on top of the popular RDF-3X system. SRX employs a flexible scheme that

encodes approximations of the geometries of the RDF entities into the entities’ IDs.

The encoding is based on a hierarchical decomposition of the 2D space and can be

effectively exploited in the evaluation of SPARQL queries with various types of spatial

filters (ranges, distance joins, kNNs). We did experiments with real datasets showing

67

3.9. Conclusion

that our approach minimizes the evaluation cost of the spatial component in all RDF

queries, while incurring a small overhead during updates.

68

Chapter 4

Content Recommendation for

Viral Social Influence

How do we create content that will become viral in a whole network after we

share it with friends or followers? Significant research activity has been dedicated to

the problem of strategically selecting a seed set of initial adopters so as to maximize

a meme’s spread in a network. This line of work assumes that the success of such a

campaign depends solely on the choice of a tunable seed set of adopters, while the

way users perceive the propagated meme is fixed. Yet, in many real-world settings,

the opposite holds: a meme’s propagation depends on users’ perceptions of its tunable

characteristics, while the set of initiators is fixed.

In this chapter, we address the natural problem that arises in such circumstances:

Suggest content, expressed as a limited set of attributes, for a creative promotion

campaign that starts out from a given seed set of initiators, so as to maximize its

expected spread over a social network. To our knowledge, no previous work addresses

this problem. We find that the problem is NP-hard and inapproximable. As a tight

approximation guarantee is not admissible, we design an efficient heuristic, Explore-
Update, as well as a conventional Greedy solution. Our experiments show that Explore-
Update selects near-optimal attribute sets with real data, achieves 30% higher spread
than baselines, and runs an order of magnitude faster than the Greedy solution.

4.1 Introduction

Online networking offers opportunities for new types of marketing. A prime exam-

ple of such a new marketing technique is viral marketing, whereby organizations run

promotion campaigns through word-of-mouth effects within online social networks.

The Influence Maximization (IM) problem [KKT03], studied intensively during the

last decade, aims to find well-chosen seed nodes from which to launch such campaigns

so as to achieve good results.

69

4.1. Introduction

Recent works [dVGL12, CM13] have focused on the parameters that define the

popularity of a post, campaign, idea, or meme within a network. Such works were the

first to study the question of how commercial brand posts engage online social network

users, drawing from the theory of Uses & Gratifications [Kat59]; they examine post

parameters such as content type (e.g., entertaining, informational), media type (e.g.,

vivid, interactive), posting time (e.g., workday, peak hours) and valence of comments

(e.g., positive, negative). Interestingly, such studies have reached some ambivalent

conclusions; for instance, [dVGL12] ascertains that entertaining content decreases

the number of “likes”, while [CM13] claims the exact opposite.

Concurrent research has studied the problem of viral product design [AW11,

BB14], which calls for engineering products by incorporating viral attributes so as

to generate peer-to-peer influence that encourages adoption within a network. Aral

and Walker [AW11] study the question of viral attribute selection under randomized

trials only; Barbieri and Bonchi [BB14] allude to the same problem as a complement

to the standard IM problem of selecting a set of seed nodes that maximizes influence,

but do not investigate it as a stand-alone problem in its own right. Conceptually,

both these works pertain to attributes attached to products; they do not investigate

the more general problem of choosing content, out of a set of eligible options, for any

kind of meme spreading in a network, so as to make it viral.

In this chapter, we introduce and study the problem of selecting content that char-

acterizes any type of meme, so as to maximize its expected spread through a network,

starting out from a fixed set of initial adopters. For instance, an advertisement post

may feature aspects such as topics, people, locations and abstract themes. We are

particularly interested in those content aspects that are associated with specific online

social network pages; we denote such aspects as content attributes. Fittingly, on-

line social network users themselves are associated with such non-personal network

pages: they express their preferences for specific brands, topics of interest, public

persons, hobbies, or locations by subscribing to or “liking” such pages. Thereby, an

attribute’s popularity can be gauged via its number of subscribers or page “likes”.

For our purposes, we denote the pages that a user subscribes to or “likes” as user

attributes. We contend that, the more content and user attributes overlap, the more

likely that user is to propagate that post. We envisage an organization that aims to

achieve high viral effect of a campaign initiated from its fixed set of subscribers. For

example, assume FlyFast airways wants to launch a promotion campaign in social

media. FlyFast already has a social network presence, and its page has a subscribers’

set S fixed at a given moment, while it faces constraints related to its budget and peo-

ple’s attention span. In their design, FlyFast consultants are interested to identify

a set of k content attributes, out of a universe of eligible, mutually compatible op-

tions, that will maximize the expected network spread of a post starting out from its

70

Chapter 4. Content Recommendation for Viral Social Influence

subscribers’ set S. Assume that, for k = 4, the optimal attribute set is {“Best travel

Accessories”, “Airline food guide”, “Hipster Europe”, “Backpacker tips”}. Guided by

this knowledge, FlyFast can infuse its post with complementary content that ap-

peals to users interested in those topics, e.g., promotions to backpackers, references

to its hipster audience, and highlights on its food quality. Thereby, it can maximize

its promotion’s reach.

We are the first to study the Influence Maximization problem in which the seed

is given and post content is sought. Our related contributions are as follows:

Problem Setting. We motivate the Influence Maximization problem in settings

where the set of initial adopters is fixed, or even a single point of origin, and the

content of a propagated meme can be tuned. We formulate the concept of digital

influence as a special case of social influence.

Propagation Model. We devise a content-aware propagation model, whereby

the probability of influence across edges depends on content. We show that, with

this model: (i) the problem of choosing content attributes that maximize influence is

NP-hard; (ii) the spread function is not submodular, hence no submodularity-based

approximation algorithm applies; and (iii) it is NP-hard to approximate the optimal

solution within a factor of n1−ε for ε > 0.

Algorithm. We design a fast algorithm, Explore-Update, which achieves higher
influence spread than baselines; its effectiveness is based on the iterative estimation of

the marginal spread achieved by each attribute, while its efficiency is gained by lim-

iting such computations only to nodes within a probability-based distance threshold

θ and attributes potentially affecting such nodes.

Experiments. We compare Explore-Update to two baselines and show that it al-
ways achieves better propagation results, while it is significantly faster than a naïve

Greedy approach; we calculate the optimal solution on a reduced dataset with a small
universe of attributes, showing Explore-Update can achieve optimality; last, we demon-
strate the scalability of Explore-Update on seed set size.

4.2 Motivation

4.2.1 Idea Habitats

An idea habitat [BH05] is the set of environmental cues that make people think

about an idea and pass it along. Regardless of how well an idea is encoded, it will

persist and spread only if the environment cues people to retrieve it regularly. In

other words, even if an idea can be easily recalled, if it is only rarely cued by the

environment, it may remain rare and be forgotten. It follows that, for an idea to

71

4.2. Motivation

spread, it should be not only well encoded and easily recalled, but also regularly

retrieved. Promotion campaigns aim to assist the spread of any meme in the same

way as idea habitats assist the spread of ideas. For instance, assume that FlyFast

food is good and therefore memorable. Still, without a viral promotion, FlyFast will

miss the spotlight, letting other airlines gain public attention.

4.2.2 Digital Influence

Social influence is defined based on peer behavior [Ara11], so as to distinguish it

from confounding factors [GM04, dBL01, AMS09, Man93].

Definition 2. Social Influence expresses the extent to which the behavior of one’s

peers changes the utility one expects to receive from engaging in a certain behavior,

and hence the likelihood that one will engage in that behavior.

This definition can be used to make an argument that, if we understand how

behaviors spread from person to person, our society will be able to promote agreeable

behaviors, such as physical exercise and financial responsibility, and limit disagreeable

ones, such as violence and dirty needle sharing. By this definition, peer behaviors may

relate to awareness, persuasiveness, imitation and social learning [Ara11]. We propose

that digital influence can be seen as a case of awareness-related social influence,

defined as follows:

Definition 3. Digital Influence expresses the extent to which the content of a

commercial digital posting changes the support one wants to provide to that posting,

and thus the likelihood that one will propagate it.

In online social networks, posts are propagated from user to user by means of

actions such as like, share, or repost [ALB+15]. Without loss of generality, we group

all these actions under the like action. What matters is whether users endorse and

promote a post further by making it visible to their friends and followers. In our

setting, we emphasize the importance of earning likes from users at large.

Nowadays, as online social network users are exposed to a plethora of posts, we

can safely assume that they become selective on what they like. Therefore, a brand

that fails to issue likable posts via its social network pages is unlikely to spread

awareness of its activities and products. In the same vein, a brand that can estimate

how viral a post will be and create appropriate digital content, stands good chances

to succeed. We argue that such estimation can be based on the digital influence of

content associated with a meme.

72

Chapter 4. Content Recommendation for Viral Social Influence

4.2.3 Distinctiveness

We emphasize three distinct elements of this work.

Problem Formulation. While our model takes into consideration the influence

with regard to a post exercised by users themselves, we seek to maximize the influence

exercised by the appeal and quality of a post’s content within a network. To the best

of our knowledge, we are the first to define this problem, which is distinct from, and

cannot be treated by methods aiming at, user selection.

Nature of Attributes. In related works, attributes are configured as general

topics; e.g., in [BB14] authors assign tags, conceived of as general topics, to the role of

product attributes. By contrast, in our problem formulation and in our experimental

study, an attribute corresponds to a topic of interest identifiable via a non-personal

social network page. Thus, even a page on an abstract theme (e.g., Psychology of

Relations) is a possible attribute in our setting: it has a specific commercial value

(4,719,837 followers) that differentiates it from other pages on similar topics.

Use of Tags. The type of content attributes we investigate can hardly be ar-

ticulated via tagging. Tags express highly idiosyncratic user impressions, focusing

on arbitrary aspects of content; they are volatile as descriptors of content, whereas

we need a stable ground truth to represent content. For example, a video post may

relate to several specific topics of interest, yet it would be hard to identify these via

user tagging. In consequence, past tagging does not offer valuable information in our

problem setting.

4.3 Problem Statement

From the preceding discussion, we conclude that any brand would gain by max-

imizing the expected effectiveness of its product promotion campaigns within an

online social network. We assume that there exists a certain set of subscribers to

the brand’s social network page, and a promotion campaign aims to influence the

maximum number of non-subscribers; as we discussed, such users are associated with

topics expressing their interests.

4.3.1 Content-Aware Cascade Model

We model an online social network as a directed graph G = (V,E), where V =

{v1, v2, ..., vn} is a set of nodes, each of which corresponds to an individual user, and
E ⊂ V × V is a set of directed edges representing social relations among users. Each

node v has a set of associated attributes Fv = {f 1
v , f

2
v , . . .}, from a universe Φ, that

define user preferences; we identify these attributes as the non-personal network pages

73

4.3. Problem Statement

a user expresses interest in. A meme propagated through the network is associated

with a set of attributes F = {fp1 , fp2 , . . . , fpK} ⊆ Φ; these content attributes, along

with the user attributes Fv associated with the targeted node v, affect the probability

of its propagation across a network edge euv.

Accordingly, we define the Content-Aware Cascade model (CAC) as a variant of

the Independent Cascade model (IC), in which edge propagation probabilities depend

on content and user attributes. A CAC diffusion process unfolds in steps, starting

from an initial seed set of activated nodes. A node u activated at time step t has

a single chance to activate its out-neighbors. The process is incremental, as nodes

can alternate only from inactive to active states; the diffusion ends when there is no

newly activated node at a given step. At any step, a newly activated node u activates

its out-neighbor v with probability p(u, v) equal to:

puv = buv + quv · huv(Fv, F), buv, quv ∈ [0, 1]

huv(Fv, F) = min
{

1−buv
quv

, |Fv ∩ F |
} (4.1)

where buv is a base probability on an edge and quv a marginal probability that indi-

cates how much the probability on an edge increases for each selected attribute in F

matching a preference of node v, as indicated by the transition function huv(Fv, F),

with a sanity bound of 1−buv
quv

. We stress that the marginal probability quv distinguishes

among different user links, albeit not among different attributes for a given link; a

more complex model could distinguish among different attributes, or even define a

probability distribution function over the set of all attributes [BBM12], to be learned

by historical logs. We choose to relegate the problem of defining and learning such

probability distribution functions to future work, and now study the problem under

the modeling assumption that each attribute has the same independent effect on the

probability function. Yet, our simplified model forms a special case of any more com-

plex model in which each attribute would have a different effect on the probability

function; i.e., in this special case, such effects are rendered equal. So, our subsequent

hardness and inapproximability results hold for any such more complex model as well.

Furthermore, parameters quv and buv can be obtained from past data, as in [BBM12];

in our setting, we assume that such parameters have been obtained in advance.

Given a seed set S of subscribers, for every set of attributes F , we can obtain the

total number of activated nodes after running several trials of the diffusion process

from S [KKT03]. The expected number of activated nodes for a given seed set S

and a selected set of attributes F is called influence spread, denoted as σ(F |S),
or, as S is fixed in our problem, just σ(F). Thus, σ(F) is the expected spread of the

diffusion, which we can calculate using live-edge instances of the graph (i.e., instances

74

Chapter 4. Content Recommendation for Viral Social Influence

of activated-only edges [KKT03]) as:

σ(F) =
∑
X

Prob[X] · σX(F) (4.2)

where σX(F) is the influence spread in live-edge instance X.

4.3.2 Content-Aware Influence Maximization

We define the CAIM problem as follows:

Problem 1. Given a directed graph G = (V,E), where each node v is associated

with user attributes Fv = {f 1
v , f

2
v , . . .} from a universe of eligible attributes Φ, a seed

set of adopter nodes S, quantities quv, buv for each edge euv ∈ E, and a transition

function huv(Fv, F) = min
{

1−buv
quv

, |Fv ∩ F |
}
for edge probabilities, select a set of k

attributes F ⊂ Φ that maximizes the spread σ(F |S) of a diffusion process with

content attributes F starting from S.

CAIM is a novel problem that aims to find out how one can maximize the bene-

fits of a network promotion campaign with given points of departure. The motivation

derives from the fact that, in the real world, brands want to exploit their own so-

cial network pages for marketing purposes. Instead of targeting the most influential

initiators for a promotion, as in classical IM, one can judiciously invest in the cre-

ation of a post with lucrative content, under fixed initiators, guided by the content

attributes provided by the CAIM solution. As promotions can be formed with a wide

variety of content attributes, each possible attribute set F corresponds to a different

probabilistic graph, on which we can compute the influence spread of the seed set S;

the attribute set F that achieves maximum spread constitutes the CAIM solution.

We emphasize that, due to the drastic difference between classical IM and CAIM in

the way influence spread is achieved, the solutions to these two problems cannot be

qualitatively compared against each other.

4.4 Hardness and Inapproximability

We now show the hardness of the CAIM problem and study the properties of

influence spread function σ(F). To calculate σ(F), we first calculate edge probabilities

with respect to the selected content attributes F and then estimate the expected

spread on the graph starting from the given set of subscribed nodes S.

Theorem 1. The CAIM problem with the CAC model is NP-hard.

75

4.4. Hardness and Inapproximability

Figure 4.1: A graph instance demonstrating that the CAIM problem is NP-hard.

Proof. Consider an instance of the NP-complete Set Cover problem, defined by a

collection of subsets S1, S2, . . . , Sm, a universe of elements U = {u1, u2, . . . , un} and
an integer k. We are asked whether there are k sets that will cover all elements in U .

We show that Set Cover can be reduced to a trivial instance of CAIM as follows: We

construct a bipartite graph with one activated node on the left side that connects to

n nodes on the right side, as shown in Figure 4.1. We map each member ui of universe

U to a node on the right side and add an attribute fj to set Fui
if ui belongs to subset

Sj. We set buv = 0 and quv = 1 for all edges (u, v) ∈ E, i.e., a node v is influenced

if at least one of its user attributes is selected. In this trivialized version of CAIM,

the spread can be computed deterministically; there is no need for expected spread

computations. Then, an algorithm that could optimally solve this trivial instance of

CAIM, among others, would decide any instance of Set Cover: if we can target all

nodes in the CAIM instance using k attributes, we can in effect cover all elements in

U using k subsets in Set Cover. Otherwise, if the optimal spread in CAIM does not

reach all nodes, it follows that there is no set of k subsets that covers all elements

in Set Cover. Thus, by reduction from Set Cover, CAIM is at least as hard as any

problem in NP.

By Theorem 1, there is no polynomial-time algorithm to find an optimal set of

attributes F , unless P=NP. We now proceed to study the properties of the influence

spread function σ(F).

A function σ(F) is submodular if it follows a diminishing returns rule: the marginal

gain from adding an element to a set F is at most as high as the marginal gain

from adding the same element to a subset of F . That is, σ(F1 ∪ {f}) − σ(F1) ≥
σ(F2 ∪ {f})− σ(F2), where F1 ⊂ F2 ⊂ Φ, for any f ∈ Φ.

We call a transition function huv(Fv, F) monotonic on F if, for subsets of at-

tributes F1 ⊂ F2 ⊂ Φ, it holds that huv(Fv, F1) ≤ huv(Fv, F2), for any node v. If the

transition function is not monotonic, then the influence spread function is neither

76

Chapter 4. Content Recommendation for Viral Social Influence

monotonic, nor submodular, because selecting more attributes may reduce probabili-

ties p(u, v) and thereby reduce the total influence spread. We assume that attributes

have nonnegative effects on users, rendering the transition function huv(·) mono-
tonic: edge probabilities can only increase if we add attributes to F , i.e. huv(Fv, F) ≤
huv(Fv, F + {f}) for any f ∈ Φ and v ∈ G; hence σ(F) is monotonic. We now exam-

ine whether σ(F) is also submodular. This turns out to not be the case, even for a

monotonic and submodular transition function, as the next counterexample shows.

Figure 4.2: Increasing and decreasing marginal returns.

Example 2. Consider the graph on the left-hand side in Figure 4.2, with a universe

of attributes Φ = {A,B,C}, sets of preferred attributes for each node be Fv1 = {A}
and Fv2 = Fv3 = {A,B,C}, buv = 0.5, quv =

1
2|Fv | on all edges, and one active node s.

Then, consider two subsets of attributes F1 = ∅, F2 = {B,C}, where F1 ⊂ F2, and a

attribute f = A ∈ Φ \ F2. The achieved spreads for each attributes subset, and the

respective marginal gains obtained after adding attribute f to subsets F1 and F2, are

calculated as follows. For subset attribute F1 selected, we have:

psv1 =
1
2
, pv1v2 = pv1v3 =

1
2

σ(F1) =
1
2
+ 21

4
= 1

whereas when f = A is added to F1, we get:

psv1 = 1, pv1v2 = pv1v3 =
2
3

σ(F1 + {A}) = 1 + 2 · 2
3
= 7

3

Hence ∆1 = σ(F1 + {A})− σ(F1) =
7
3
− 1 = 4

3
. Similarly, for F2 selected, we have:

psv1 =
1
2
, pv1v2 = pv1v3 =

5
6

σ(F2) =
1
2
+ 2 · 5

12
= 4

3

while when f = A is added to F2, we get:

psv1 = 1, pv1v2 = pv1v3 = 1

σ(F2 + {A}) = 3

Hence ∆2 = σ(F2 + {A})− σ(F2) = 3− 4
3
= 5

3
. Since ∆2 > ∆1, the submodularity of

σ(F) does not hold.

77

4.4. Hardness and Inapproximability

Given this negative result, the influence function σ(F) might have an increasing

returns property (supermodularity), whereby it would hold that σ(F1∪{f})−σ(F1) ≤
σ(F2 ∪ {f}) − σ(F2), for F1 ⊂ F2 ⊂ Φ and any attribute f ∈ Φ. The following

counterexample shows that this property does not hold either.

Example 3. Consider the right graph in Figure 4.2, with a universe of attributes

Φ = {A,B}, sets of preferred attributes per node Fv1 = {A,B} and Fv2 = {A},
buv = 0.5 and quv =

1
2|Fv | on all edges, and one active node s. Consider two subsets of

attributes F1 = ∅ and F2 = {B}. Then, for subset attribute F1 selected, we have:

psv1 =
1
2
, psv2 = pv1v2 =

1
2

σ(F1) =
1
2
+
(
1−

(
1− 1

4

)
1
2

)
= 9

8

whereas when f = A is added to F1 we get:

psv1 =
3
4
, psv2 = pv1v2 = 1

σ(F1 + {A}) = 3
4
+ 1 = 7

4

Hence ∆1 = σ(F1 + {A})− σ(F1) =
7
4
− 9

8
= 5

8
. Similarly, for F2 selected, we have:

psv1 =
3
4
, psv2 = pv1v2 =

1
2

σ(F2) =
3
4
+
(
1−

(
1− 3

8

)
1
2

)
= 23

16

while when f = A is added to F2 we get:

psv1 = 1, psv2 = pv1v2 = 1

σ(F2 + {A}) = 2

Hence ∆2 = σ(F2+{A})−σ(F2) = 2− 23
16

= 9
16
. Since ∆1 > ∆2, the influence function

σ(F) is not supermodular either.

Eventually, we have established the following:

Theorem 2. The spread function σ(F) with a probability transition function huv(Fv, F) =

min
{

1−buv
quv

, |Fv ∩ F |
}
is neither submodular nor supermodular.

By Theorem 2, it follows that we cannot use a greedy algorithm with an approxi-

mation guarantee based on submodularity, as in [KKT03]. Moreover, in the following

we show that it is NP-hard to approximate the optimal solution to CAIM.

Theorem 3. It is NP-hard to approximate the optimal solution to the CAIM problem

with the Content-Aware Cascade model within a factor n1−ε for any ε > 0.

78

Chapter 4. Content Recommendation for Viral Social Influence

Proof. Consider an instance of the Set Cover problem, in which we need to decide

whether we can cover all elements of a universe U = {u1, u2, . . . , un} by selecting at
most k subsets out of a collection of S1, S2, . . . , Sm ⊂ U .

We then construct a graph G for the CAIM problem with a single subscriber

node s and nodes u1, u2, . . . , un corresponding to elements in U , connected so that

ui−1 points towards ui for all i = 2 . . . n, and s is connected to u1, and, for every

subset Sj an element ui belongs to, we add a attribute fj to the preferred attributes

of ui. Next, for some integer c we add η = nc − n− 1 more nodes x1, x2, . . . , xη such

that un has outgoing edges to them and each xi has the same preferred attributes as

un. Graph G, shown in Figure 4.3, has N = nc nodes. We set buv = 0 and quv = 1 for

all edges, so that an edge becomes active if at least one of the attributes associated

with its target node is selected. Then, if it is possible to select k subsets that cover

all elements of universe U , we can also have N = nc activated nodes. Conversely, if

there is no selection of k subsets that covers all U , then there is at least one node ui

that does not get activated, precluding influence spread to nodes x1, x2, . . . , xη. We

can then only target at most n out of nc nodes, a fraction of n1−c = N
1
c
−1. Thus,

if we had a polynomial-time algorithm that approximated the optimal solution to

CAIM within a factor of N1−ε for any ε > 0, then it would suffice to set c =
⌈
1
ε

⌉
and use that algorithm so as to decisively distinguish between a case that accepts

a solution activating all N nodes and one that does not, and thereby also decide

Set Cover. Thus, by reduction from Set Cover, we have shown that it is NP-hard to

approximate the optimal solution to CAIM within a reasonable factor.

Figure 4.3: A graph instance demonstrating that it is NP-hard to approximate the optimal

solution to the CAIM problem.

79

4.5. The Explore-Update Algorithm

4.5 The Explore-Update Algorithm

As it is NP-hard to approximate the CAIM solution within a factor of n1−ε with

the Content-Aware Cascade model, we proceed to design heuristic solutions therefor.

We structure our exposition as follows: we first present a simple, yet time-consuming

greedy heuristic; then, through a sequence of simplifying assumptions, we will gener-

ate a much more efficient algorithm called Explore-Update.
Our first proposal is a baseline greedy algorithm that selects the attribute of

highest marginal gain to add at each iteration, shown in Algorithm Greedy. This is an
adaptation of the Local Update algorithm in [BB14] to our problem. Intuitively, it is

reasonable to greedily select the locally best attribute in each iteration, especially for

small values of k. This kind of algorithm has been shown to achieve better quality

than others in classical Influence Maximization [CWW10, CLC13, LKG+07].

Though simple and effective, Greedy is inefficient due to its calculation of influence
spread by MC simulations. In a manner reminiscent of [CWW10], we can improve

efficiency by considering maximum influence paths between nodes and the seed set.

We call a path Pmax = 〈u = u0, u1, u2, . . . , v = um〉 between vertices u ∈ S and

v ∈ G maximum influence path (MIP) if this path is the most probable among all

paths between u and v: Pmax = argmaxP
∏m−1

i=0 prob(ui, ui+1). Under the simplifying

assumption that influence is propagated only through MIPs, we can estimate influence

spread in polynomial time as follows: For a threshold θ and a node v, we build a tree

structure called in-arborescence Ain(v), which includes all MIPs of probability higher

than θ from any node to v: Ain(v) = {MIP(u, v) | prob(MIP(u, v)) > θ, u ∈ G}. Then,
given a node u, the seed set S, and an arborescence Ain(v), Algorithm calculateAP
recursively estimates the probability that u is activated in Ain(v), i.e., its activation

probability ap(u,Ain(v)).

Based on these calculations, for all nodes u ∈ G, we can calculate the influence

spread σ(F) as follows:

σ(F) =
∑
u∈G

ap(u,Ain(u)) (4.3)

80

Chapter 4. Content Recommendation for Viral Social Influence

We can then employ Equation 4.3 so as to estimate influence spread in Algo-

rithm Greedy, in lieu of MC simulations, deriving Algorithm Arb; at each iteration,
we compute the in-arborescence of node u for a given threshold θ by converting each

probability pe on an edge e to − log pe and employing an efficient implementation of
Dijkstra’s algorithm. If computing an arborescence takes time t, then Lines 4-6 take

nt and the total time is O(k|Φ|nt).

We further reduce the runtime of Algorithm Arb by eschewing redundant iter-
ations of the loops over nodes u and attributes f . First, we limit the calculation

of in-arborescences and activation probabilities only to nodes whose in-arborescence

under threshold θ reaches at least one node in S; only such nodes can yield non-

zero estimated activation probability. To find out these nodes, we compute the out-

arborescence of all nodes in S, Aout(S), consisting of all MIPs of probability higher

than θ from a node v ∈ S to other nodes in G. Nodes in Aout(S) yield non-zero activa-

tion probability estimates. Yet, the set of paths in Aout(S)may contain directed loops,

hence we cannot apply a recursive algorithm like Algorithm calculateAP directly on
Aout(S); we still need to obtain the in-arborescence Ain(u) of each u ∈ Aout(S); we

do so while building Aout(S), by adding MIP(v, u) to Ain(u) for each u ∈ Aout(v).

Algorithm Explore illustrates this explore process.

81

4.5. The Explore-Update Algorithm

Then we can calculate influence spread σ(F) using the union of such in-arborescences,

Ain, by Algorithm Update.

Second, we limit the calculation of marginal gain in Algorithm Arb only to those
attributes that can affect the influence spread. We call an edge in G participating, if

at least one of its endpoints are in Aout(S). Figure 4.4 presents a graph for a seed set

S (and selected attributes set F) in the green area; the yellow area includes nodes in

Aout(S); the set of participating edges Π is shown in solid and dotted lines; dotted

edges have only one endpoint in Aout(S); non-participating edges are shown in dashed

lines, in the gray area.

Figure 4.4: Participating and non-participating edges.

82

Chapter 4. Content Recommendation for Viral Social Influence

Non-participating edges cannot increase influence spread, regardless whether their

probability is increased; only participating edges have such potential. We limit the

attributes Algorithm Arb considers based on this observation. Let E(f) be the set of

edges that include attribute f among their preferred attributes, hence their probabil-

ity is affected when adding f to F . Then, at any iteration, if none of the edges in E(f)

is a participating edge, i.e., E(f) ∩Π = ∅, then attribute f need not be examined as
a candidate to be added to F ; it bears no effect to influence function σ(F + {f}).
Putting together our enhancements to Algorithm Arb, we design the polynomial-

time Algorithm Explore-Update. In a nutshell, at each iteration, Explore-Update selects
the hitherto unselected attribute f affecting participating edges that brings about

the largest increase of influence spread, using the Explore procedure for calculating
in-arborescences and the Update procedure for calculating influence spread, while
updating the set of participating edges Π at each iteration and using it to determine

which attributes need to be examined at the next iteration.

Let the time complexity to calculate an out-arborescence for node in S be toutθ,

then the Explore procedure takes |S|toutθ and the Update procedure takes O(ninθnoutθ)

time, where ninθ is the number of nodes in in-arborescences, and noutθ is the number

of nodes in out-arborescence of S. Therefore, if we perform κ calculations of Ain per

iteration, the total runtime is O(kκ(|S|toutθ +ninθnoutθ)). In effect, the Explore-Update
algorithm is expected to perform well when the size of arborescences is small, and the

number of updates κ per iteration is smaller than |Φ|. As propagation probabilities on
edges are usually small in real networks, the size of arborescences is indeed expected

to be small. The number of updates depends on the structure of the network. In a

large-diameter network where multiple hops are required to reach most nodes from S

via a MIP, there is a good chance to reduce the number of computations significantly.

83

4.6. Experimental Study

4.6 Experimental Study

This section presents an experimental study on the Greedy and Explore-Update
algorithms we have introduced. All experiments were run on a 32GB Intel Core i5-

2450M CPU machine @ 2.50GHz, while algorithms were implemented in C++.

As there is no previous work on the CAIM problem, we compare to basic base-

lines. Still, as we discussed, the previous work that comes closest to our problem is

that by Barbieri and Bonchi [BB14]; yet that work solves primarily the problem of

selecting a set of seed nodes, and secondarily a set of product attributes, so as to

maximize product influence in a network. The best-performing algorithm for updat-

ing an attribute set in [BB14], Local Update, performs one addition or removal of

an attribute to/from the current attribute set at each iteration; in effect, our Greedy
algorithm can be considered as an adaptation of Local Update to our problem, where

only additions of attributes are needed. Therefore, to the extent that a comparison

to [BB14] is possible, we conduct it via the comparison to the Greedy algorithm itself.

Another method for updating an attribute set proposed in [BB14], Generic Update,

is a hard-to-tune genetic algorithm, which may lead to an unpredictable number of

output attributes. Besides, as the experimental study in [BB14] shows, Genetic Up-

date offers no qualitative advantage while it is much slower than Local Update, which

is already by far the most time-consuming algorithm in our study. Therefore, we do

not consider a genetic algorithm in our experimental study.

Diffusion models. In the Content-Aware Cascade model the probability on edge

(u, v) is a linear function of product and base probabilities quv and buv. To assign these

probabilities we use two techniques prevalent in previous work [CWW10].

• Weighted Cascade model: probability 1
dv
is assigned to edge (u, v), where dv

is the in-degree of node v. We use this model for the sake of compatibility with

previous works, even while it may fit less to our problem setting.

• Multivalency model: the probability for edge (u, v) is drawn uniformly at

random from a set of probabilities. We choose that set to be [0.02, 0.04, 0.08].

Further, we calculate buv for every edge (u, v), and set quv =
buv
|Fv | .

Algorithms.We compare the Explore-Update algorithm under different threshold
θ values to three other algorithms:

• Greedy: This is Algorithm Greedy in this chapter, which is effectively an adap-
tation of Local Update, the best algorithm in [BB14]. A similar algorithm has

been used extensively in the context of the Influence Maximization problem, and

always demonstrated top performance in terms of spread, while being slower

than other heuristics [CLC13]; it requires specifying the number of Monte-Carlo

simulations to calculate influence spread, as we do in the following.

84

Chapter 4. Content Recommendation for Viral Social Influence

Table 4.1: Data characteristics.

Dataset Gnutella VK

Nodes 10,876 7,420

Edges 39,994 57,638

Average Clustering Coefficient 0.0062 0.28

Number of Triangles 934 168,284

Diameter 9 16

Attributes/Seed sets 151 3,882

Default Seed Size 34 15

• Top-Nodes: This algorithm measures each attribute’s frequency among node

preferences and selects the k most frequent ones.

• Top-Edges: This algorithm assigns to each edge e = (u, v) the attribute prefer-

ences of node v, Fv, and selects the k most frequent attributes across all edges.

• Brute-Force: This algorithm finds all possible sets of attributes of size k,

computes each one’s influence spread using Monte-Carlo simulations, and opts

for the best. Because the solution space is exponential, we use this method on

reduced datasets.

Datasets.We run experiments in two real-world networks. The first network is a

peer-to-peer file sharing directed network Gnutella1, where nodes represent hosts and

edges represent connections between the Gnutella hosts. Our second network is ex-

tracted by crawling the social network VK2; nodes are users and edges are friendships

among them. Statistics are presented in Table 4.1.

Attribute assignment and seed selection.We utilize one general and one ad-

hoc method for attribute preference assignment. In Gnutella, to assign an attribute

preferences set Fv to node v, we find the block partitioning that minimizes the de-

scription length of the network by stochastic blockmodel ensemble; this technique

is used to discover the block structure of empirical networks and results to block

memberships for each node [KN11, Pei15]. We allow nodes to have overlapping mem-

berships to different blocks. Each block βi is associated with a distinct attribute fi.

The attribute preference set of a node vj, Fvj is the set of attributes of the blocks

vj belongs to. The returned partitioning consists of 151 blocks; the default seed set

S is one of the blocks, of size 34. For VK, the data comes along with annotations

of groups and pages, which allow us to derive both node attributes and seed sets. A

group or page is a community of users that share content with each other and com-

municate about a topic of interest (e.g., football clubs or TV series). We use these

group memberships to derive both node attributes and seed sets, consistently to our

motivation. There are 3882 such groups; the default seed size is 15. Unless otherwise

indicated, in our experiments we use the default seeds.

1https://snap.stanford.edu/data/p2p-Gnutella04.html
2https://vk.com/

85

4.6. Experimental Study

1 6 11 16 21 26 31 36 41 46 51
Number of selected features, |K|

54

56

58

60

62

64

66

68

70

72

In
flu

en
ce

 S
pr

ea
d

Top-Nodes
Top-Edges
Greedy
Explore-Update

1 6 11 16 21 26 31 36 41 46 51
Number of selected features, |K|

80

100

120

140

160

180

200

In
flu

en
ce

 S
pr

ea
d

Top-Nodes
Top-Edges
Greedy
Explore-Update

(a) Multivalency on Gnutella (b) Weighted Cascade on Gnutella

Multivalency Weighted Cascade103

104

105

Ru
nn

in
g

tim
e

(s
ec

)

Greedy
Explore-Update

1 6 11 16 21 26 31 36 41 46 51
Number of selected features, |K|

1200

1400

1600

1800

2000

2200

In
flu

en
ce

 S
pr

ea
d

Top-Nodes
Top-Edges
Greedy
Explore-Update

(c) Runtime on Gnutella, k = 50 (d) Multivalency on VK

1 6 11 16 21 26 31 36 41 46 51
Number of selected features, |K|

2800

3000

3200

3400

3600

3800

4000

4200

In
flu

en
ce

 S
pr

ea
d

Top-Nodes
Top-Edges
Greedy
Explore-Update

1855 3710 7420
Network size (# nodes)

10-3
10-2
10-1
100
101
102
103
104
105
106

Ru
nn

in
g

tim
e

(s
ec

)

Top-Nodes
Top-Edges
Greedy
Explore-Update

(e) Weighted Cascade on VK (f) Runtime on VK with Multivalency, k = 20

Figure 4.5: Influence spread and runtime results.

4.6.1 Influence spread

Figures 4.5a and 4.5b present our results on competing algorithms’ influence

spread3 on the Gnutella network, varying number of selected attributes k from 1 to

51. We used 10000 MC simulations for Greedy, and θ = 1/320 for Explore-Update. We
observe that Explore-Update arrives just 1% and 5% below the performance of Greedy
with the Multivalency and Weighted Cascade model, respectively. On the other hand,

the Top-Edges and Top-Nodes algorithms reach only 88% and 85% of the spread of

Explore-Update. Figures 4.5d and 4.5e present influence spread in VK network. Now
Greedy used with just 500 Monte-Carlo simulations comfortably achieves 15%, 37%,

3We use 10000 Monte-Carlo simulations to compute the final spread of all solutions.

86

Chapter 4. Content Recommendation for Viral Social Influence

and 48% higher spread than Explore-Update with θ = 1/40, Top-Nodes, and Top-Edges,
respectively, in MV model. The picture is similar with the WC model, where Greedy
achieves spread 9%, 38%, 40% higher than Explore-Update, Top-Nodes, and Top-Edges.
Overall, our results confirm that Explore-Update achieves high influence spread for net-
works where the local neighborhood of the seed set has structure amenable to long

distance arborescences.

4.6.2 Runtime

We now compare algorithms in terms of runtime. Figure 4.5c presents the results

with Gnutella for k = 50; Explore-Update (θ = 1/320) runs an order of magnitude

faster than Greedy (10000 simulations); Top-Edges and Top-Nodes output a selected
set in less than a second, hence we do not include them. Next, we investigate how

the algorithms scale with increasing network size. We extract subnetworks of VK

consisting of 1855, 3710, and 7420 nodes of the original network (i.e., 1/4, 1/2, and

full network) and proportional edge density to the full network. In all cases, we

compute the runtime on a seed set S of size 15, with the Multivalency model for

k = 20, for Greedy (10000 simulations), Explore-Update (θ = 1/40), and the Top-Edges
and Top-Nodes heuristics. Figure 4.5f shows that runtime scales linearly in network
size in all cases. Moreover, we ascertain that while Explore-Update fares no better than
Greedy in terms of influence spread, it is much faster.

4.6.3 Effect of Seed Size

We now test the performance of Explore-Update for different sizes of the seed set S.
We select different seed sets from size 21 (minimal size for the current block partition)

to 101 with step 10 on Gnutella. Figures 4.6a and 4.6b present the influence spread

for Explore-Update and Top-Edges for k = 50, as well as the runtime of Explore-Update,
whereas Greedy is orders of magnitude slower for this setup, and Top-Nodes performs
worse than Top-Edges. We note that Explore-Update always achieves better influence
spread than Top-Edges. Interestingly, influence spread and runtime do not always
grow with |S|. This is explicable by the fact that different seed sets induce different
local structures.

4.6.4 Effect of θ

Next, we study the effect of the θ threshold, which controls the size of arbores-

cences and thereby the influence spread achievable from seed set S. Figure 4.6c

presents the influence spread and runtime with the Gnutella network for θ in { 1
10
, 1
20
,…, 1

320
},

with the WC model for k = 50. The runtime of Explore-Update grows linearly in the

87

4.6. Experimental Study

20 30 40 50 60 70 80 90 100 11020

40

60

80

100

120

140

In
flu

en
ce

 s
pr

ea
d

Inf. Spread for K = 50.

103

104

Ru
nn

in
g

tim
e

(s
ec

)

Explore-Update
Top-Edges
Runtime of Explore-Update

20 30 40 50 60 70 80 90 100 11050

100

150

200

250

300

In
flu

en
ce

 s
pr

ea
d

Inf. Spread for K = 50.

103

104

Ru
nn

in
g

tim
e

(s
ec

)

Explore-Update
Top-Edges
Runtime of Explore-Update

(a) vs. seed set size, MV (b) vs. seed set size, WC

0 50 100 150 200 250 300 350
Threshold (1/θ)

240
245
250
255
260
265
270

In
flu

en
ce

 s
pr

ea
d

Influence spread and Runtime
vs. arborescence threshold

0

5000

10000

15000

20000

Ru
nn

in
g

tim
e

(s
ec

)Spread
Running time

0 2 4 6 8 10 12 14 16
Number of selected features, |K|

465

470

475

480

485

490

495

500

In
flu

en
ce

 s
pr

ea
d

Top-Nodes
Top-Edges
Brute-Force
Explore-Update

(c) vs. θ (d) reduced network

Figure 4.6: Influence spread and runtime vs. seed set size and θ on Gnutella in (a), (b),
and (c). Influence spread on reduced network in (d).

inverse threshold θ, while influence spread grows logarithmically in it. A good tradeoff

between quality and runtime is found at the knee point in the influence spread curve

for θ = 1
40
.

4.6.5 Comparison to the Optimal Solution

By Theorem 3, we proved it is NP-hard to approximate the optimal solution to

CAIM. Now, we compare the results of heuristics to the optimal solution obtained by

brute force; we reduce the total number of attributes to 16 and use a reduced Gnutella

network by selecting 2K nodes, yielding similar degree distribution properties to the

original. Figure 4.6d shows the influence spread results, with the Multivalency model,

for a random seed set of size 10. Remarkably, Explore-Update finds the optimal set of
attributes with varying k.

Next, we select k = 10, yielding
(
16
10

)
= 8008 possible attribute sets, and calculate,

with a new random seed set of size 428, the rank of each algorithm’s solution among

all possible attribute sets: for each attribute set, we compute its influence spread using

10000 MC simulations; we sort sets by their spread values, and identify the rank of

the solution returned by each heuristic. Table 4.2 presents those ranks. Explore-Update
selects the optimal solution, while Greedy with 500 parsimonious MC simulations

88

Chapter 4. Content Recommendation for Viral Social Influence

Table 4.2: Algorithm ranking with regards to optimal solution.

Algorithm Rank Spread

Explore-Update 1 34.592

Greedy 5 34.114

Top-Edges 113 33.592

Top-Nodes 113 33.592

. . .
— 8008 27.82

yields the fifth best attribute set. The selected attribute sets differ from each other

in 2 out of 10 attributes. We obtained similar results for other values of k, with

Explore-Update always returning the optimal attribute set.

4.6.6 Real-World Examples

Last, we looked into the actual results - seed sets and selected attribute sets of our

experiments, with special attention to the VK data set with the multivalency model,

and inspected our results. One interesting observation was that those attributes that

are liked by seed set users were rarely among the ones selected in the final solution;

this fact indicates that our problem makes good practical sense, while a straightfor-

ward naive solution of sticking to what is liked by seed nodes does not yield good

results. Nevertheless, selected attributes exhibited a remote, yet unpredictable, re-

semblance to the attributes liked by seed set nodes. For example, with a group titled

“La vie et l’amour” as seed, the selected attributes in our VK network sample included

“Home Comfort | Design | Interior Design | Style”. With “Psychology of Relations”

as seed, the selected attribute set included “Philosophy of Life”. Such analogies be-

tween seed set and selected attributes, while retrospectively intuitive, would not be

derived otherwise; they depend on the way nodes of diverse interests interact within

the overall network structure. Such results vindicate our problem motivation.

We also checked how result sets change when we vary k. For example, we select

100 out of 431,374 subscribers of “Esoterica YOGA MEDITATION” as seed set.

With k = 3, the selected attributes are {“MODA”, “La vie et l’amour”, “Blog for

Men”}. As “Esoterica YOGA MEDITATION” targets primarily women, results such

as “MODA” and “La vie et l’amour” are unsurprising. Nevertheless, interestingly, both

Explore-Update and Greedy also return “Blog for Men” as a selected attribute, whereas
the simple Top-Nodes and Top-Edges heuristics do not. This result shows that our
algorithm can select non-trivial attributes.

89

4.7. Conclusion

4.7 Conclusion

In this chapter, we proposed the problem of content-aware influence maximiza-

tion (CAIM). The goal is to select k attributes that characterize a propagated meme’s

content, such that its spread across a network from fixed points of departure is maxi-

mized, whereby different attribute sets yield different propagation probabilities across

network edges. To our knowledge, there is no previous work on this problem. We for-

mulated a content-aware cascade model and showed that the problem is NP-hard

and inapproximable, while the influence function is neither submodular, nor super-

modular. We developed an efficient algorithm for CAIM using bounded local arbores-

cences to calculate influence spread. Our experimental study demonstrates that this

Explore-Update algorithm selects topic sets that achieve high spread and is orders of

magnitude faster than a conventional Greedy solution resembling algorithms devel-
oped for related problems. We also provide evidence that Explore-Update can achieve
the optimal solution when the number of selected topics is small.

90

Chapter 5

Adaptive Content-Aware Influence

Maximization through Online

Learning to Rank with Business

Analytics

How can we adapt the composition of a post by a brand agent over a series of

rounds to make it more appealing in a social network? Techniques that progressively

learn how to make a fixed post more influential over several rounds have been stud-

ied in the context of the Influence Maximization (IM) problem, which seeks a set

of seed users that maximize a post’s influence. However, to our knowledge, there is

no work on progressively learning how a post’s features affect its influence. In this

chapter, we propose and study the problem of Adaptive Content-Aware Influence

Maximization (ACAIM), which calls to find k features to form a post in each round

so as to maximize the cumulative influence of those posts in a social network over

all rounds. We solve ACAIM by applying, for the first time, an Online Learning to

Rank (OLR) framework to IM purposes. We introduce the Content-Aware TopRank

Influence Dissemination (CATRID) model, which expresses how posts disseminate

in a social network using click probabilities and post visibility criteria, and develop

a simulator that runs CATRID via a training-testing scheme based on VKontakte

(VK) posts, so as to realistically represent the learning environment. We deploy three

distinct learners that solve ACAIM in an online manner. We experimentally ascer-

tain the practical suitability of our solutions via exhaustive experiments on diverse

VK datasets, while the learner that achieves best performance is one that leverages

user feedback along with a transitive data structure that determines the relative

importance of post features to users.

91

5.1. Introduction

5.1 Introduction

Consider stakeholders (henceforward, brands) that maintain social network pages1

for advertising purposes and social network users who choose to follow pages they

are interested in. After a user follows a page, she gets notified of relative posts and

the page is added to her set of user features [ITTK17]. A brand may aim to build

a post around a set of appealing content features, so that it spreads well in the net-

work when shared with subscribers. This problem is called Content-Aware Influence

Maximization (CAIM) [ITTK17]. Contrary to the problem of Influence Maximization

(IM) [KKT03, LFWT18], CAIM seeks a set of features of a post propagated from

a known set of initial adopters, rather than a set of initial adopters to promote a

known post (or idea, belief, legend, behavior, etc.). Other works also utilize content

to achieve influence in a social network [AW11, BBM12, BB14, CFL+15, LZT15], yet

differ in terms of their targets, content type, and initial adopters.

A variation on IM is adaptive IM, whereby a brand diffuses a given post in

many rounds and selects initial adapters in each round utilizing previous feedback,

aiming to maximize the cumulative influence over all rounds. Some works study this

problem under known network parameters [GK11, CK13, YT17, SHYC18, HTH+20],

while others solve it aiming to simultaneously learn latent parameters [LMM+15,

CWYW16, VLS16, VKW+17, WKVV17, WLW+19]. To our knowledge, no prior

work addresses multi-round CAIM.

In this chapter, we studyAdaptive Content-Aware Influence Maximization (ACAIM),

which seeks content of a sequence of posts over several rounds, each first reaching

a brand’s subscriber set, aiming to maximize cumulative influence. We apply the

TopRank Model (TRM), used to solve the Online Learning to Rank (OLR) prob-

lem [LKLS18], to model click probabilities per user and define a novel propagation

model, Content-Aware TopRank Influence Dissemination (CATRID). We presume

that users respond to specific post features; once a sufficient number of a user’s

friends likes a post, that post becomes visible to the user; user clicks on features of a

propagated post denote the reasons for a user to like the post. We deploy a simulator

that runs CATRID based on VK2 data to obtain realistic feedback per round.

ACAIM addresses a real-world need; brands share everyday posts in their pages

and wish to have appealing content. For instance, we solved ACAIM for a brand on

“Olympic Games”; after feedback rounds of various content we found that the three

most influential features for that brand in ranked order are the VK pages “Anonymous

revelation stories”, “Show business news”, and “Funny & ridiculous jokes”. These pages

1We consider that each feature corresponds to a specific social network page.
2https://vk.com/

92

Chapter 5. Adaptive Content-Aware Influence Maximization through

Online Learning to Rank with Business Analytics

serve as a repository for an advertiser to check posts shared therein and get ideas

on how to form posts combining “Olympic Games” with the discovered features. The

abundance of repository posts helps the advertiser create a different post each time;

our simulator considers post uniqueness.

We summarize our main contributions as follows:

• Problem. We introduce the ACAIM problem, which seeks influential features

in an adaptive setting, and solve it via Online Learning to Rank with the

CATRID propagation model.

• Simulator. We deploy a simulator that runs CATRID to generate realistic

feedback guided by real VK posts.

• Learners. We develop three learners for ACAIM: RANDOM, a baseline with

non-trivial application semantics; TopRank IM Classic (TRIM_C), integrating
TOPRANK [LKLS18]; and TopRank IM Eliminator (TRIM_E), which uses the same
TRM click model as TRIM_C, but leverages clicks differently: TRIM_E eliminates
features over rounds during exploration and further ranks them during exploita-

tion, with impressive results.

• Experiments. We conduct a thorough experimental study to assess our solu-

tions on multiple brands and VK datasets.

5.2 Problem Statement

We define ACAIM on a network G = (V,E), where V is a set of nodes (users)

and E ⊆ V ×V is a set of directed edges (user relations).

5.2.1 TRM Click Model in Social Networks

Let L be the set of features, k the number of ranking positions with |L| ≥ k,

where each user v ∈ V is associated with a feature set Fv capturing user prefer-

ences [ITTK17]. The set of
|L|!

(|L|−k)!
k-permutations of L, A, is a set of rankings, each

corresponding to a post At, and defines the action space of a learner aiming to max-

imize the expected number of likes [ITTK17] over n rounds. By the learning process

of [LKLS18], in each round t, the learner chooses a post At ∈ A and observes binary

random variables Cv
t1, . . . , C

v
tk for each user v ∈ V , where Cv

tf = 1 if v clicked on

feature f appearing in position if of At. Given feature f in position if in post At, the

probability that user v clicks on f by the TRM click model [LKLS18] is:

v(At, if) = P(Cv
tf = 1 | At) (5.1)

93

5.2. Problem Statement

We apply TRM as a position-based click model, where each At and each set Fv is a

weighted feature vector of size |L|; the weight of feature f in At, At(f), expresses the

portion degree of f in At, while the weight of f in Fv, Fv(f), expresses the preference

degree of f in Fv; the sum of weights over features is equal to 1 in both At and Fv,

while At has exactly k non-zero weights. We define:

P(Cv
tf = 1 | At) = At(f) · Fv(f) (5.2)

By Equation 5.2, a user v clicks on feature f in At with probability equal to the

inner vector product At(f) · Fv(f), which corresponds to the sum operand of a PBM

click model [RDR07], where At(f) holds position-dependent examination probabilities

and Fv(f) item-dependent attraction probabilities. We contend that if user v clicks

on a feature f of At (i.e., if C
v
tf = 1), she is influenced by At(f)·Fv(f) value, otherwise

(i.e., if Cv
tf = 0), f does not influence v. We argue that v ends up to like post At if

she is sufficiently influenced by it. Semantically, each click of v on a feature f of At

is interpreted as a positive impression of f on v that contributes to v liking At, and

hence making it visible to her relations in G. For a post At to be visible to v, several

friends of v should like it. Otherwise, v does not see At, hence she is not influenced

by it. Thus, if a feature f of At is clicked by many users, it opens up many influence

paths for At. We rewrite Equation 5.2 as:

P(Cv
tf = 1 | At is visible to v) = At(f) · Fv(f) (5.3)

We integrate TRM (henceforward, depicted by Equation 5.3) in the CATRID

propagation model, which we describe next.

5.2.2 CATRID Propagation Model

Parameters. The CATRID propagation model has four parameters: (i) post feature

vector, At, (ii) user feature vector, Fv, (iii) user like threshold, ltv, and (iv) post

visibility fraction, visv. At and Fv define a user’s TRM click model (Equation 5.3);

ltv defines how much a user v should be influenced to like At; and visv defines how

many in-degree friends of v should like At to make it visible to v.

Execution. By CATRID, a post At propagates in discrete time steps. In the first

step, all subscribers of the posting brand see At, apply TRM to possibly click on its

features, and are influenced by the clicked features. A user v likes At when the total

influence (the sum of separate influence incurred by each clicked feature) on v by At

is not lower than ltv. Activated subscribers comprise the first-step activated users. In

each subsequent step, new non-subscribers are activated by At, where the visv of a

user v is utilized to check whether At is visible to v and apply TRM in accordance

94

Chapter 5. Adaptive Content-Aware Influence Maximization through

Online Learning to Rank with Business Analytics

Table 5.1: The fixed parameters of CATRID, At and ltv. Each X (Y) depicts
the weight (participation units) of feature f in At.

k 3 4 5 Description

At(f1) 0.5 (15) 0.4 (12) 0.33 (10) f1 denotes the 1st-ranked feature in At

At(f2) 0.33 (10) 0.3 (9) 0.26 (8) f2 denotes the 2nd-ranked feature in At

At(f3) 0.16 (5) 0.2 (6) 0.2 (6) f3 denotes the 3rd-ranked feature in At

At(f4) N/A 0.1 (3) 0.13 (4) f4 denotes the 4th-ranked feature in At

At(f5) N/A N/A 0.06 (2) f5 denotes the 5th-ranked feature in At

ltv [0, 0.5] [0, 0.4] [0, 0.33] ltv is randomly selected from each range

with ltv to determine whether v likes At. The propagation of At stops when no new

user likes At. The next section provides more details.

Training. To tune the parameters of CATRID we introduce a training3 phase that

considers only posting brands as features, hence handles single-feature posts (sp).

This training phase tunes the Fv and visv parameters of CATRID. We calculate

Fv(f) as
clicks_on_f

sum_of_clicks
, where the numerator depicts the number of times that v clicks

on f and the denominator the total clicks by v, and visv as the average percentage of

in-degree friends of v who liked sp before v liked it. The training process initializes

values in each Fv uniformly to
1
|L| and also sets each visv to 10%. For each examined

post sp, if user v liked sp, we consider that v clicked on brand, hence update counters

for Fv and visv accordingly. We set parameters At and ltv for each k as in Table 5.1.

The weights in At relate to the simulator we present in next section; we select ltv

values independently at random from ranges based on the maximum value in At that

denotes the maximum possible total influence of At on any v.

Knowledge. The training phase yields a trainedCATRID known solely to our simu-

lator, while each learner only knows that user clicks abide by the TRM click model.

In the testing phase, a learner starts its execution knowing the same At and Fv as the

simulator. We evaluate learners under real-world settings, where partial knowledge

(i.e., the TRM click model) is available, but complete knowledge (i.e., the CATRID

propagation model) is not. To enhance the realism of the testing phase, we apply the

simulator’s TRM using VK posts.

5.2.3 ACAIM Problem

Given a social network G = (V,E), a feature universe L, a weighted feature

set Fv of size |L| capturing the preferences of each user v, a budget k, a brand

corresponding to a feature in L and having a subscriber set S, a simulator representing

the feedback environment based on a known trainedCATRID, a set of testing posts,

and a number of rounds n, build a learner that, selecting a post At of k features to

3In our experiments, the training phase covers the years 2010–2017 of VK (80% of data).

95

5.3. CATRID Simulator

be propagated from S in each round t and evaluating its known TRM by random

sampling, maximizes the cumulative influence spread (i.e., number of total likes) In

in G over n rounds:

In = max
∑n

t=1 spread(At | S) (5.4)

As Fv is updated differently by simulator and learner in the testing phase, we de-

pict their respective variants as F s
v for the simulator’s variant and F l

v for the learner’s

variant. The set S is the starting point of the influence process, but is not taken for

granted: At activates some users in S, and brand is always the top-ranked feature in

At; we search for the remaining k − 1 features.

We stress that ACAIM is the first IM-problem that benefits from OLR research.

The motivation to use OLR was to build an IM-framework that provides realistic

feedback in simulation. Previous IM works use random sampling feedback relative

to the activation probabilities on the edges of G, and such kind of feedback is much

less trustworthy for practical applicability to real world. Instead, the activation of

users in CATRID relates with their click probabilities and not with probabilities on

their edges. This fact enables the applicability of ACAIM to social networks, since we

contend that it is much easier for a social network company to define which features

of a post attract the users (gain their clicks) than finding which of their friends

influenced them for that post, as the number of features in a post is much less than

the number of user friends.

5.3 CATRID Simulator

Function SimCATRID presents our simulator.

96

Chapter 5. Adaptive Content-Aware Influence Maximization through

Online Learning to Rank with Business Analytics

Given a post At, a brand’s subscriber set S, the posts of testing phase testingPosts,

and the CATRID model tuned up to round t, the simulator outputs the set of users

It activated by At along with the CATRID model updated by processing of At.

SimCATRID runs the CATRID propagation model to produce realistic output

when called by the learners, to be discussed in next section. To do so, simulator

considers complete knowledge of any post sp published during testing4 phase involving

any feature in L; testingPosts[f] contains all sp posts by posting brand f in increasing

chronological order. For each feature in At, simulator first loads (Line 1) a number

of posts equal to the proportional participation units of f in At (Table 5.1). E.g., if

SimCATRID is called for first time with k = 4 and f is the 3rd feature in At, then

clickPosts[f] includes the first 6 posts published by f in the testing phase. We load

posts progressively over calls to SimCATRID; in the rare case that no more posts exist
for some feature, we randomly pick one over all testing years. To clarify the logic of

sp posts loading in Line 1, we stress that simulator approximates each real post At

that cannot accurately be found due to the ambiguities of post tagging [ITTK17], by

considering real sp posts for which it has knowledge of.

After loading posts, simulator proceeds to the activation of users in discrete time

steps (Line 2). First, activation mentions to subscribers (S), then activation pertains

to a different set of non-subscribers (V \S) up until no new user likes At. Subscribers

always see At but non-subscribers should use visv to check if At is visible to them,

while the activation process is the same for each user v who sees At (Lines 3–8).

On each such user v (Line 3), simulator applies the TRM click model based on the

sp posts associated to the features in At and computes the total influence Iτv of At

on v; if that is not less than ltv, then v is activated by At. Note that CATRID_t

is updated by F s
v changes due to v clicked on f (Line 7), as also by visv changes of

non-subscribers who see At (Line 9).

SimCATRID in effect follows a TRM click pattern by the condition in Line 6, since

the more prominently a feature f appears in a post (higher At(f)) and the more it

attracts the interest of user v (higher Fv(f)), the more likely it is that v likes at least

one of the sp posts associated with f and so to precisely infer that v clicks on f .

To achieve that, simulator requires a good tuning of At and Fv, ensured in training.

Besides At and Fv, the like of a user to a post also depends on latent factors (e.g.,

how popular the post’s features are at that time, how often a user likes posts) that

our simulator implicitly considers, and that enhances further its realistic responses.

4In our experiments, the testing phase covers the years 2018–2019 of VK (20% of data).

97

5.4. ACAIM Learners

5.4 ACAIM Learners

In this section, we present our ACAIM learners, which utilize a known input

(G, L, F l
v) and an unknown input (trainedCATRID, testingPosts), leveraged by

the simulator. Associated with the known input are the brand feature brand, the

subscriber set S, the number of features per post k, and the number of rounds n;

TRIM_C has an additional clicks threshold parameter θ. The output of all learners is
the cumulative influence spread In and the modified CATRID (CATRID_n) over n

rounds of learning. For all learners, the top-ranked feature for each At is brand, hence

we consider brand as chosen by default.

5.4.1 The Learner RANDOM

The learner RANDOM constitutes a baseline to solve ACAIM. In each round t, it

forms the post At by uniformly at random selecting k − 1 features out of L and

defining their rank to At. Then, it uses SimCATRID to find activated users (It) to

update In and also updates CATRID. After processing all n rounds, it returns the

cumulative influence spread In and the associated CATRID_n. Despite the trivial

operation of RANDOM, its randomly picked k− 1 features for each At could express an

arbitrary human selection in the real world.

5.4.2 The Learner TRIM_C

Algorithm TRIM_C presents the classic learner TRIM_C, which represents an adap-
tation of TOPRANK learner in [LKLS18] to IM purposes.

TRIM_C has an exploration and exploitation stage. In exploration, a relation R is

filled in each round t to maintain an order among disjoint feature blocks of L, noted

as Bt1, . . . , Btd, where their union forms L and mentioned as a partition of L. Each

block is located at a separate level in the order of R; features residing in blocks of

higher levels compete to participate in higher-ranked positions of At than features

of blocks in lower levels. The entries of R are feature pairs. Adding a feature pair

(f2, f1) to R denotes that TRIM_C has collected enough evidence to infer that f2 is less
influential (collected sufficiently less clicks) than f1 and technically this means that

f1, f2 were previously in the same level, yet henceforward f2 is to be located at a lower

level than f1. Features of same level are equal candidates for selection to participate

in the associated-to-level ranks of At, but as learning rounds proceed, TRIM_C applies
R to find a winner feature for each rank in At that hereafter permanently occupies

the respective rank of At. The exploration ends when At comprises a winner feature

for each rank apart from the last rank, for which no winner can be found since two

98

Chapter 5. Adaptive Content-Aware Influence Maximization through

Online Learning to Rank with Business Analytics

Bt1 A B D

C

E

Bt2

Bt3

R = {(C,A), (E,B), (E,C)} R = R U {(D,B), (D,C)}

(a) round t

Bt’1

Bt’2

Bt’3

A B

D

C

E

(b) round t’ = t + 1

Figure 5.1: Flow of TRIM_C for |L| = 5 and k = 4.

features cannot participate in a single rank for comparison. Then, the exploitation

stage starts, in which all formed posts may differ only on the feature in last rank

since there are no updates on R, hence no new partitions of L.

Therefore, the logic of TRIM_C is to continuously (over rounds) downgrade features
from higher levels to lower levels and selecting k features to form posts by following

a priority order per level, while randomizing its selections for features of same level

where there is not yet found a dominance relationship among them. For instance,

Figure 5.1 presents an execution flow of TRIM_C over two consecutive rounds (t and
t′ = t+ 1) for 5 features (A till E) and k = 4. In round t, the first three ranks in At

will contain features from Bt1 = {A,B,D} but with random order, while in the fourth
rank will be C. Assume that the feedback of At showed that D is less influential than

B and C, so R is properly updated to be used in next round t′. In this round, TRIM_C
randomly selects A and B to place them in first two ranks of At′ , C is now placed in

third rank, while the learner randomizing between D and E for the fourth rank.

Given Bt1, . . . , Btd, the action space A of TRIM_C in round t is:

A(Bt1, . . . , Btd) = {bt1‖ . . . ‖btd,∀ btc of Btc | c ≤ d} (5.5)

where btc denotes a permutation of block Btc and ∀ btc denotes all permutations

of that block; the symbol ‖ denotes concatenation. Thus, A(Bt1, . . . , Btd) represents

the set of all the block permutation concatenations of the partition Bt1, . . . , Btd.

As a learner selects k − 1 out of L features for its posts, for the last block Btd in

Equation 5.5, ∀ btd denotes the set of k
′-permutations of Btd with cardinality

|Btd|!
(|Btd|−k′)!

where k′ = (k − 1)− | ∪c<d Btc|.
Regarding the complete execution of TRIM_C, in each round t, it starts by creating

a partition of L using the relation R (Line 3); if R did not change in the previous round

then partition remains the same. After partitioning L, TRIM_C proceeds depending
on the value of k; for k < 5, the action space A is computed in reasonable time and

99

5.4. ACAIM Learners

the learner forms At by selecting a post from A uniformly at random (Lines 4–5).

For larger k, the computation of A is too expensive, so the learner forms At by

uniformly at random defining a permutation for each block and concatenating the

features appearing in those permutations (Lines 6–7). After creating At, TRIM_C uses
SimCATRID to find activated users (It) to update In and also updates CATRID

(Line 8). For each activated user v, TRIM_C applies the TRM click model based on

random sampling to guess to which features of At the user v clicked on, updates F
l
v

for clicked features, and collects all the clicks of users associated with each feature

of At (Lines 9–10). So, each feature has collected a number of aggregated clicks up

to round t and based on such values, TRIM_C updates the clicks difference (∆f1f2) for

every features f1, f2 residing in the same block (Line 11) to possibly update R with

the respective entry (f2, f1) in case its ∆f1f2 is no less than the threshold θ (Line 12).

The time complexity of TRIM_C for exploration is O(k|L|(|PL| + |A|)) for k < 5

and O(k|L||PL|) for larger k, where |PL| and |A| denote the average time of creating a
partition-of-L and A when R changes. The worst case is R to change |L| times to find
a winner feature for each one of k levels. The space complexity is O(|L|!

(|L|−k)!
+ k|L|);

the first term matches to maximum entries in A, the second term to maximum entries
in R that represent the worst case.

Although TRIM_C learns what k features form influential posts, to achieve that

in practice, it needs several rounds to complete learning (finish exploration) as can

be shown in our experiments. This happens for three main reasons. First, features

residing in levels that are not examined for the forming of posts (e.g., E in Fig. 5.1a) do

100

Chapter 5. Adaptive Content-Aware Influence Maximization through

Online Learning to Rank with Business Analytics

not yield any new knowledge in R until there will may be a time to be examined again;

we call this waiting period as non-examination time. Second, such non-examined

features do not help at all to downgrade any examined features, and so there is a

remarkable examination time for R to be updated with examined features. Third,

examination time is aggravated further by the threshold θ that requests aggregated

click values for comparison pertaining to several rounds. Note that all mentioned

problems worsen as L increases. Therefore, high non-examination and examination

times significantly delay the enrichment of R and so the speedup of learning.

5.4.3 The Learner TRIM_E

To handle the drawbacks of TRIM_C, we need a learner that in each round can
yield knowledge (dominance relationships among features) from each feature of L,

and not halting the examination of large portions in L. Also, we want to reason on

the derived knowledge to make it more dense for achieving an even faster learning,

and this can happen only when a learner is able to exploit all the possible feature

connections over L. Finally, when a learner compares the clicks of two features to

infer an evidence of dominance, we want more flexible thresholds associated with

the ranking of At, and not an aggregated fixed threshold irrespective of ranking. To

achieve all such things, we deploy the eliminator learner TRIM_E that also uses the
TRM click model as TRIM_C, but its logic is different.
In a nutshell, TRIM_E follows a policy of double-checking elimination. When it finds

evidence that a feature is less influential than another, TRIM_E records the former as
suspect; upon receiving a second piece of evidence corroborating the suspicion (either

by full repetition or by providing an alternative inference path), it eliminates the

suspect. Yet, it may also render a once-suspect feature non-suspect upon contrary

evidence. Figure 5.2 presents an execution flow of TRIM_E based on evidence. The logic
of TRIM_E is to find multiple connections among features so as to faster eliminate them
and complete the learning with the k features that survived.

TRIM_E leverages a transitive structure T and a participation structure P. The
transitive structure T stores suspicion paths where a path’s source feature is suspect

to be less influential than (henceforward, slit) its destination feature. Each path en-

codes a suspicion among its source and destination features. E.g., consider features f1,

f2, f3; if f1 is slit f2 and f2 is slit f3 then T has the paths {〈f1, f2〉, 〈f2, f3〉, 〈f1, f2, f3〉}.
A feature may be connected with any other feature in T via only one path; in case a

new path (either repetitive as step 9 in Fig. 5.2 or alternative as step 7 in Fig. 5.2)

arises among connected features, then the source feature is eliminated. We discuss

technical details about T later. The participation structure P stores the average in-

dependent contribution of each feature that participates in posts. The independent

101

5.4. ACAIM Learners

 1. (K, B)

K B

{<K, B>}

K B D

{<K, B>, <K, B, D>, <B, D>}

K B D E

{<K, B>, <K, B, D>, <K, B, D, E>,
 <B, D>, <B, D, E>, <D, E>}

K B D E

A
{<K, B>, <K, B, D>, <K, B, D, E>,
 <K, B, D, A>, <B, D>, <B, D, E>,
 <B, D, A>, <D, E>, <D, A>}

 2. (B, D)

 3. (D, E)

 4. (D, A)

K

L

B D E

A

{<L, K>, <L, K, B>, <L, K, B, D>,
 <L, K, B, D, E>, <L, K, B, D, A>,
 <K, B>, <K, B, D>, <K, B, D, E>,
 <K, B, D, A>, <B, D>, <B, D, E>,
 <B, D, A>, <D, E>, <D, A>}

 5. (L, K)

K

L

B D E

A

{<O, L>, <O, L, K>, <O, L, K, B>,
 <O, L, K, B, D>, <O, L, K, B, D, E>,
 <O, L, K, B, D, A>, <L, K>, <L, K, B>,
 <L, K, B, D>, <L, K, B, D, E>, <L, K,
 B, D, A>, <K, B>, <K, B, D>, <K, B,
 D, E>, <K, B, D, A>, <B, D>, <B, D,
 E>, <B, D, A>, <D, E>, <D, A>}

 6. (O, L)

O

K

L

B D E

A

 7. (K, D)

O

B D E

A

{<B, D>, <B, D, E>, <B, D, A>,
 <D, E>, <D, A>}

 8. (Z, B)

B D E

AZ

{<Z, B>, <Z, B, D>, <Z, B, D, E>,
 <Z, B, D, A>, <B, D>, <B, D, E>,
 <B, D, A>, <D, E>, <D, A>}

 9. (D, A)

B D E

AZ
{<Z, B>, <Z, B, (D), E>, <Z, B,
 (D), A>, <B, (D), E>, <B, (D), A>}

 10. (E, W)

B D E

AZ

W

{<Z, B>, <Z, B, (D), E>, <Z, B, (D),
 E, W>, <Z, B, (D), A>, <B, (D), E>,
 <B, (D), E, W>, <B, (D), A>, <E, W>}

 11. (W, B)

B D E

AZ

W

{<Z, B>, <Z, B, (D), E>, <Z, B, (D), A>,
 <B, (D), E>, <B, (D), A>, <E, W>}

Figure 5.2: Flow of TRIM_E. Each step digests new evidence (feature path, red); in step 7,
(K, D) eliminates features in grey; in step 9, the eliminated D remains as intermediate; in

step 11, the cycle caused by (W, B) cancels paths containing subpath <B, (D), E, W>.

contribution (score) of a feature f is the difference of the clicks achieved by f and

the total clicks achieved by other features in a propagated post At.

Algorithm TRIM_E presents the eliminator learner TRIM_E. In each round t, TRIM_E
may eliminate features of L utilizing T . It stores all features eliminated over rounds
in elimF and keeps track of features not yet eliminated in liveF , computed as the

set difference between L and elimF (Line 4). Feature elimination stops when the

size of liveF is k − 1; whence the exploitation stage of TRIM_E commences, whereas
preceding rounds constitute its exploration stage. During exploration, TRIM_E forms
a post At as RANDOM, using liveF instead of L (Lines 5–6). During exploitation, it

applies a score-aware majority rule of P to form At (Lines 7–8). After creating At, it

uses SimCATRID to find activated users (It) to update In and also updates CATRID

(Line 9). Then, it applies TRM on each user v ∈ It to guess her clicks on each

feature f ∈ At to possibly update F l
v(f) and collects all clicks of users on such f

(Lines 10–11).

In exploration, for each ranked feature pair (f ′
1, f

′
2) (Line 12), TRIM_E computes its

normal range (NR) and clicks ratio using the posts and clicks, respectively, associated

with those features (Lines 13–14). If ratio is no less than the upper limit of NR, then

it calls function ElimWithT to potentially eliminate features due to f ′
2 being slit f ′

1

(Lines 15–16). Yet, if ratio is no more than the lower limit of NR, then ElimWithT
induces eliminations due to f ′

1 being slit f
′
2 (Lines 17–18). Lastly, in exploration and

exploitation, At updates P based on derived clicks and eliminations in t (Line 19).

ElimWithT takes as input two features f1, f2 where f1 is slit f2 without inter-

mediate features, updates T and elimF , and uses the auxiliary functions FwdCheck
and BwdCheck, where the former checks whether f1 is already slit f2, while the latter

102

Chapter 5. Adaptive Content-Aware Influence Maximization through

Online Learning to Rank with Business Analytics

checks the opposite. Both functions return a flag denoting whether the respective

condition is satisfied, multiElim is a flag indicating whether the elimination of a fea-

ture may incur further feature eliminations, and newPath (repetitive or alternative)

is a path that carries new suspicion knowledge for T ; newPath is never stored in T .
FwdCheck operates as follows. Let φ1 be the source feature and φ2 the destination

feature of newPath (Line 1). If a suspicion path from φ1 to φ2 already exists (Line 2),

the consideration of newPath denotes that φ1 is twice slit φ2, hence φ1 should be

eliminated by policy. The eliminated φ1 is added to elimF and all paths where φ1

is source or destination are deleted from T (Line 8). Since multiElim may be ac-

tivated (Line 3), to manage a possible feature elimination domino (ed) induced by

the elimination of φ1, FwdCheck needs the info of φ1 in T , hence eliminates φ1 at

the end of ed. An ed happens when the existing path from φ1 to φ2 is alternative

to newPath (Lines 4–5), hence two alternative paths to φ2 are also trodden by each

other feature prvφ that already has a path to φ1 and φ2, hence each such prvφ is

eliminated (Lines 6–7).

103

5.4. ACAIM Learners

In BwdCheck, φ1 and φ2 are still the source and destination features of newPath

(Line 1), but now if there exists a path from φ2 to φ1, then newPath induces a cycle

(Line 2). By policy, TRIM_E resolves a suspicion cycle by canceling the two paths that
form the cycle and deleting from T any path containing them (Lines 3–4).

Let us resume our focus on ElimWithT. This function sequentially executes three
steps for given features f1, f2.

In the first step, it checks the early termination cases (Lines 1–2). If FwdCheck
finds that f1 is already slit f2, then it updates elimF and deletes from T all relative

elimination info (Line 1). Yet, if BwdCheck finds that f2 is already slit f1, hence

it deletes from T all relative cycle info (Line 2). If no early termination happens,

ElimWithT updates T with the suspicion that f1 is slit f2 (Line 3).

In the second step, ElimWithT checks the outpaths of f2 to update T (Line 4). For
each destination feature nxtf2 of f2, a path is formed from f1 to nxtf2 to search for

new suspicion knowledge among f1 and nxtf2 to insert to T (Lines 5–6). In case f1

is eliminated through FwdCheck, ElimWithT stops checking the outpaths of f2, as f1

104

Chapter 5. Adaptive Content-Aware Influence Maximization through

Online Learning to Rank with Business Analytics

is permanently deleted from T (Line 7). Else, if FwdCheck is not satisfied, BwdCheck
examines whether path yields a cycle; if so, path is invalidated, hence we proceed

with the next outpath of f2 (Line 8), otherwise we insert path to T (Line 9).

In the third step, ElimWithT checks the inpaths of f1 to update T (Line 10).

For each source feature prvf1 of f1, a path prefix is formed from prvf1 to f2 to

gauge new suspicions (Lines 11–12); an elimination of prvf1 via FwdCheck does not
affect the examination of other inpaths of f1, since f1 itself is not eliminated (Line 13).

The multiElim flag is not activated when the source feature of newPath in FwdCheck
is prvf1, since the possible elimination of a feature depending on the elimination of

prvf1 is already considered by examining each prvf1 in Line 11. If FwdCheck is not
satisfied, BwdCheck checks if prefix creates a cycle, to invalidate it and proceed with
the next inpath of f1 (Line 14); if no such cycle exists, we insert prefix to T (Line 15).
Lastly, a path is formed from prvf1 to nxtf2 to update T with the suspicion knowledge
derived from the second and third steps of ElimWithT (Line 16).
Technical Details of T . We implement T using indexes src and dst. For a given

path, src maps the path source to path destination, whereas dst maps the path

destination to the whole path ignoring its destination. E.g., if T includes the paths

{〈f1, f2〉, 〈f2, f3〉, 〈f1, f2, f3〉}, then src[f1] = {f2, f3} and src[f2] = {f3}, while dst[f2] =
{〈f1〉} and dst[f3] = {〈f2〉, 〈f1, f2〉}. As only one path exists in T among any con-

nected features, T is a space saving structure that provides efficient data access to

105

5.5. Experimental Evaluation

its associated functions hasPath, getPath, outPaths, inPaths, erase, insert, and
subPath. We design T so that it retains dense suspicion knowledge despite elimina-

tions or cycles, to facilitate the fast completion of exploration stage of TRIM_E, as such
retention causes beneficial eds. Thus, when a feature is eliminated, its outpaths and

inpaths are deleted from T , yet that feature may exist as a path intermediate feature
in T . Besides, when two paths form a cycle and are canceled, all their superpaths are
deleted from T , yet all their subpaths remain stored in T . Lastly, T is scalable and

memory efficient, as it is gradually constructed via size increases and decreases, but

in the long term its size diminishes.

The time complexity of TRIM_E relative to exploration is O(k|L||T |) for k > 3 and

O(kn|T |) for smaller k, where |T | denotes the average time of updating T . In each
round, k features may update T ; for k > 3, number of rounds is |L| instead of n due
to fast eliminations. The space complexity is O(|L|2+k|L|); the first term matches to
maximum entries in T , the second term to maximum entries in P. Yet, |L|2 is very
unlikely in practice due to frequent eliminations.

5.5 Experimental Evaluation

We wrote code in C++ and ran experiments on an Intel Xeon CPU E7-4830

@ 2.13 GHz machine with 252GB RAM running Linux Debian (4.9.0-13-amd64). For

graph operations we used the open-source graph library Lemon [DJK11].

5.5.1 Setup

Datasets. To evaluate our learners for the ACAIM problem, we created two big VK

data that we often call data A and data B. Since VK has in total 27 categories, by
selecting the 10 (A) and 20 (B) most popular pages from each category, we formed

a feature set |L| = 270 and |L| = 540 in each case; the popularity of a page was

measured by the number of its subscribers. In particular, both A and B operate as
a cluster that includes three, scalable to network size, datasets that we call A1, A2,

and A3 in A and B1, B2, and B3 in B. Our experimental evaluation is done on these
six datasets. The requested preprocessing to form the mentioned datasets consists

of two stages; Tables 5.2 and 5.3 present the first and second stage respectively. In

first stage, we subsequently (i) collected all the VK users until August 2019, (ii)

removed the blocked users (deactivated, private, or empty profile), (iii) applied a

feature-pruning to filter out any user who did not like at least one post published

from a feature in L, as that user does not contribute at all neither in training (years

2010-2017) nor in testing (years 2018-2019) phases of ACAIM for our selected L, and

106

Chapter 5. Adaptive Content-Aware Influence Maximization through

Online Learning to Rank with Business Analytics

Table 5.2: First Preprocessing to prune VK users for |L| = 270 and |L| = 540.

VK Users
After Removing Feature-Pruning Testing-Pruning

Blocked Users |L| = 270 |L| = 540 |L| = 270 |L| = 540
500M 348.4M 91.1M 99.9M 43.8M 48.3M

Table 5.3: Second Preprocessing to create three, scalable to network size, VK datasets

respectively for data A (|L| = 270) and data B (|L| = 540).

Dataset A:A1 A:A2 A:A3 B:B1 B:B2 B:B3
hop1_out_avg 94.48 94.48 94.48 98.76 98.76 98.76

increase factor (%) 200K 150K 100K 200K 150K 100K

increased_hop1_out_avg 189K 141.8K 94.5K 197.6K 148.2K 98.8K

influential_users 10 20 39 16 31 53

influenced_users 1.9M 2.7M 3.7M 2.8M 3.9M 4.8M

hop1_in_influential_users 6.6K 7.7K 15.7K 7.1K 9.5K 17.9K

hop2_in_influential_users 1.5M 1.8M 3M 1.7M 2.3M 3.6M

Nodes 3.3M 4.4M 6.2M 4.4M 5.9M 7.8M

Edges 320.8M 417.2M 669.7M 434.6M 596.5M 879M

(iv) applied a testing-pruning to further exclude any user who did not like at least

one post of L in testing phase, as the evaluation of learners depends on a feedback

during testing. In second stage, we created the described six datasets with a top-to-

bottom process as presented in Table 5.3. The logic here is first to find the average

out-degree (hop1_out_avg) of previous 43.8M and 48.3M users, and to increase it

by a different factor for each dataset so as to create a network size scalability. Then,

each user that has an out-degree equal or higher than increased_hop1_out_avg

is considered an influential_user, while each user that can be directly influenced

by an influential_user is considered an influenced_user. Further, to enhance the

probability that a propagation reaches an influential_user, we also considered users

who contribute to that via one-hops or two-hops. The union of influential_users,

influenced_users, hop1_in_influential_users, and hop2_in_influential_users yields

the nodes of respective dataset along with their accompanied edges. We stress that

our preprocessing approach gives as maximum a realistic enough three-hop influence

connectivity for an influenced_user that represents the target for IM problems, while

any pruned user incurred unnecessary memory overhead for the proof-of-concept

purposes of our work. Last, we note that in training phase we used 9.5M (resp. 18.4M)

sp posts for A (resp. B) and the total available sp posts to simulator in testing phase
are 2.8M for A and 5.6M for B.

Metrics.We use the metrics of reliability and scalability to measure the performance

of our learners. In ACAIM, the most reliable learner is the learner that consistently

achieves the highest influence in most cases for separate brands in different datasets,

while the most scalable learner is the learner that remains most valuable for a brand

107

5.5. Experimental Evaluation

as the network size grows. We highlight that in this work we are not interested to

measure the scalability of an unreliable learner.

Runs. All reliability results are averaged over 10 runs, while all scalability results

are stemmed from 1 run. The former experiments relate with ordinary brands where

their execution time is affordable and so we used 10 runs to reduce randomness, while

the latter experiments mention to highly popular brands and their execution time is

as expected very high to allow multiple runs. For that, we used nine different brands

for scalability experiments to derive a general conclusion for scalability from 9 runs

instead of just 1 run. Note also that each run relates with a different ltv for CATRID.

Notation. We use the symbols E1 for exploration and E2 for exploitation. Also, in
all our figures, llr means last learning round of E1, fte means remaining features to
eliminate, influence spread is the cumulative influence spread over rounds, and min

measures the total execution time over rounds in minutes excluding the input loading

time of each round. The number of considered rounds is logically set to 2000, and we

depict each brand by using its ID in VK (see Table 5.7 in Section 5.5.4).

5.5.2 Reliability

To measure the reliability of ACAIM learners, we select six brands belonging to

different categories for maximum diversification; three brands for datasets A1, A2,

and A3 and three brands for datasets B1, B2, and B3. In all cases, we selected the

brand whose number of subscribers is closest to the average number of subscribers

over all brands for respective dataset; we argue that this is a fair selection policy

that expresses the majority of brands in VK in terms of their subscription numbers.

Figures 5.3 and 5.4 present the reliability results for data A and data B respectively.
In Figure 5.3, the first three plots relative to A1 depict the influence spread of

a brand belonging to “Products, stores” category for k = 3, 4, and 5; the next three

plots relative to A2 of a brand belonging to “Auto, motor” category and the last three

plots relative to A3 of a brand belonging to “Food, recipes” category. In all cases,

TRIM_E achieves the best performance due to its faster E1 that also enables a really
influential E2; TRIM_E has the second fastest E1 only for k = 3 in Figures 5.3a and 5.3d,

but even in these two cases, its derived E2 is more effective than others. TRIM_C with
θ = 5 is the second best solution, while a choice of θ = 10 yields a slightly better

performance in Figures 5.3b, 5.3f, and 5.3i; these figures denote that a slower E1 of
a higher θ can induce a more influential E2 compared to a lower θ. This is a sound
result as a stricter θ is theoretically more reliable. Yet, overall, we observe in practice

that the more TRIM_C increases its θ the more close it performs with RANDOM, which is

the worst learner of all. The reason is that the clicks collected over a logical number

108

Chapter 5. Adaptive Content-Aware Influence Maximization through

Online Learning to Rank with Business Analytics

Figure 5.3: Reliability results of RANDOM, TRIM_C, and TRIM_E in datasets A1, A2, and A3
for k = 3, 4, and 5.

of rounds do not easily permit an aggregated computed clicks delta among features

to early surpass a high θ, and that incurs a slow E1 for such θ cases. Note that in

real world and as our CATRID simulator also successfully captures, the subscribers

of an ordinary brand do not like so often its posts and that usually prevents a high

propagation collecting a large number of clicks. So, a lower θ is more beneficial for

TRIM_C, which is a deficiency in its operation due to the loose ranking of features.
Yet, there is no other alternative, especially if one notice that TRIM_C has high θ cases

that incur a too much slow E1 (for θ = 10 in Figure 5.3a and θ = 20 in Figure 5.3b)

or an unfinished E1 (for θ = 10 in Figure 5.3g, θ = 20 in Figures 5.3a, 5.3c, 5.3d, 5.3g,

5.3h, and 5.3i, and θ = 50 in all plots of Figure 5.3). In the worst-case scenario, where

θ = 50, TRIM_C performs similarly to RANDOM since during E1 it scarcely manages to
surpass θ, and so it selects posts under very common settings with RANDOM.

In Figure 5.4, the first three plots relative to B1 depict the influence spread of

a brand belonging to “Cities, countries” category for k = 3, 4, and 5; the next three

109

5.5. Experimental Evaluation

Figure 5.4: Reliability results of RANDOM, TRIM_C, and TRIM_E in datasets B1, B2, and B3
for k = 3, 4, and 5.

plots relative to B2 of a brand belonging to “Animals” category and the last three

plots relative to B3 of a brand belonging to “Home, renovation” category. In all cases,

TRIM_E outperforms TRIM_C and RANDOM, it is also the only learner that always has a

finite E1, while its superiority is really impressive in several cases (Figures 5.4a, 5.4b,
5.4c, 5.4h, and 5.4i). Again, RANDOM achieves the worst performance, whereas TRIM_C
is remarkably less competitive in data B compared to data A due to the much bigger
effect of θ on its performance, even when θ is low. That is explained by the larger L

in data B which entails a significantly broader distribution of clicks on its features.
This deficiency of TRIM_C shows that its efficacy is not scalable to the feature size.
Moreover, in both Figures 5.3 and 5.4 the E1 of TRIM_E and TRIM_C finishes sooner

as k increases with some exceptions (for θ = 10 in Figure 5.3f and θ = 20 in Fig-

ures 5.3c and 5.3f). This happens because a larger k enables a more frequent partic-

ipation of a feature in propagated posts, and so more chances for it to be compared

with other features based on its collected clicks. Yet, a faster E1 of a larger k may lead

110

Chapter 5. Adaptive Content-Aware Influence Maximization through

Online Learning to Rank with Business Analytics

Table 5.4: Percentages (%) depicting how much influence better TRIM_C (with most influ-
ential θ) and TRIM_E are over RANDOM for data A and data B.

Algorithm
RANDOM (A1, B1) RANDOM (A2, B2) RANDOM (A3, B3) Average

k = 3 k = 4 k = 5 k = 3 k = 4 k = 5 k = 3 k = 4 k = 5 k = 3 k = 4 k = 5
TRIM_C (A) 23.3 71.2 123.9 15.6 48.1 78.9 43.7 130.5 171.1 27.5 83.2 124.6

TRIM_C (B) 8.6 320.9 849.7 3.3 15.3 32 2.1 6.2 108.6 4.6 114.1 330.1

TRIM_E (A) 46.5 97.9 154.3 23.6 58.1 95.4 67.9 177.3 224.4 46 111.1 158

TRIM_E (B) 329 1372.9 1646.9 5.6 26.5 45.8 32.9 148.9 229.4 122.5 516.1 640.7

Table 5.5: Percentages (%) depicting how much influence better TRIM_E is over TRIM_C
(with most influential θ) for data A and data B.

Algorithm
TRIM_C (A1, B1) TRIM_C (A2, B2) TRIM_C (A3, B3) Average

k = 3 k = 4 k = 5 k = 3 k = 4 k = 5 k = 3 k = 4 k = 5 k = 3 k = 4 k = 5
TRIM_E (A) 18.8 15.5 13.5 6.9 6.7 9.2 16.8 20.3 19.6 14.1 14.1 14.1

TRIM_E (B) 294.7 249.9 83.9 2.1 9.6 10.4 30.1 134.3 57.8 108.9 131.2 50.7

Table 5.6: Percentages (%) depicting how much learning faster TRIM_E is over TRIM_C (with
most influential θ) for data A and data B.

Algorithm
TRIM_C (A1, B1) TRIM_C (A2, B2) TRIM_C (A3, B3) Average

k = 3 k = 4 k = 5 k = 3 k = 4 k = 5 k = 3 k = 4 k = 5 k = 3 k = 4 k = 5
TRIM_E (A) −2.2 219.1 104.7 −25.8 22.2 328 1.1 58.4 551.3 −8.9 99.9 328

TRIM_E (B) > 17.1 259.2 448.5 > 6.2 89.2 146.9 > 20.7 > 295.2 > 601.7 > 14.6 > 214.5 > 399

to a lower influence for both TRIM_E and TRIM_C as it is shown in Figures 5.3d, 5.3e,
and 5.3f for A2 and in Figures 5.4d, 5.4e, and 5.4f for B2. How k affects the influ-

ence of a brand depends on how loyal are its subscribers. Namely, if the subscribers

of a brand like often its posts, then they create the chances for a good influence in

the network, and so the learner should choose a small k to give more focus on the

brand. Yet, there is a loyalty tradeoff as we observe in the next section, since a highly

adopted brand may perform better with a larger k instead of a smaller one. Regarding

RANDOM, we notice that its performance constantly deteriorates as k increases except

for B1 (Figures 5.4a, 5.4b, and 5.4c) where it hardly improves. The reason is that the

power of RANDOM lies mostly on brand, so by giving a less focus on it with a larger k,

we boost the uncertain influence of arbitrary features that accompany the brand.

Overall, for both data A and data B, Table 5.4 presents the influence comparison of
TRIM_C and TRIM_E with RANDOM, Table 5.5 compares the influence among TRIM_E and
TRIM_C, while Table 5.6 compares the learning speed of previous learners; for TRIM_C
we selected its most influential θ version in each case. In all Tables, each single column

after Algorithm and before Average includes the results for each dataset that stems

from the intersection with the respective row. For instance, Table 5.4 denotes that

TRIM_C is 123.9% influence better than RANDOM for k = 5 in A1 and TRIM_E is 148.9%
influence better than RANDOM for k = 4 in B3.

We observe in Average column of Table 5.4 that both TRIM_C and TRIM_E out-

111

5.5. Experimental Evaluation

perform more RANDOM as k increases, that difference in performance becomes more

intense in data B, and also that RANDOM is obviously more competitive to TRIM_C than
TRIM_E. As previously explained for ordinary brands, RANDOM performs better with

a small k while the other two learners are often more influential with a larger k. In

addition, the more features that exist in data B aggravate further the performance
of RANDOM as its arbitrary selections are increased. Yet, the interesting point here is

that although TRIM_C has severe scalability issues in data B (e.g., TRIM_C is just 4.6%
influence better than RANDOM for k = 3 in data B), it manages to amplify its average
influence over RANDOM in regards to data A for k = 4 and k = 5.

The Average column of Table 5.5 shows that TRIM_E is 14.1% influence better than
TRIM_C for each k in data A, while TRIM_E is 108.9%, 131.2%, and 50.7% influence

better than TRIM_C for k = 3, 4, and 5 in data B. Since TRIM_C is not scalable to
the feature size, it needs a large enough k to be competitive to TRIM_E and slightly
achieves that for k = 5. Additionally to the influence comparison, in Average column

of Table 5.6 we remark that TRIM_E is -8.9%, 99.9%, and 328% learning faster than

TRIM_C for k = 3, 4, and 5 in data A, whereas TRIM_E is at least 14.6%, 214.5%,
and 399% learning faster than TRIM_C for k = 3, 4, and 5 in data B. The E1 of
TRIM_C is faster than the one of TRIM_E only for k = 3 in A1 and A2, while in

all other cases it is slower and actually emphatically slower in most times. Both

Figures 5.3 and 5.4 demonstrate that the learning speed of a learner crucially defines

its influence spread, and that connection becomes even more dependent when that

speed is accompanied by an effective learning. This connection is highly satisfied by

TRIM_E and that explains its remarkable superiority over TRIM_C, especially in data B.
The most representative case is for k = 4 in data B where TRIM_E is at least 214.5%
learning faster and 131.2% influence better than TRIM_C.

Regarding the running time of learners, RANDOM is the most fast solution in data

A and data B for k = 3 and k = 4, while it usually comes second after TRIM_C with
θ = 50 for k = 5; in the latter case TRIM_C is a little faster due to a gradually smaller
randomized feature set induced after exceeding θ. These results are expected due to

the low overhead and influence spread of mentioned learners. The noteworthy point

for TRIM_E is that besides its much higher influence than RANDOM, its execution time

remains very close to RANDOM in all cases, which highlights the efficient, flexible, and

compact implementation of T . Last, note the remarkably costly execution of TRIM_C
for k = 4, especially in data B, which relates with the expensive computation of A;
for k = 3 the cost of A is much more affordable, whereas for k = 5 the computation

of A is avoided.

112

Chapter 5. Adaptive Content-Aware Influence Maximization through

Online Learning to Rank with Business Analytics

Figure 5.5: Scalability results of TRIM_E for the nine most popular VK brands (depicted in
increasing |S|) in datasets A1, A2, and A3 for k = 3, 4, and 5.

5.5.3 Scalability

In previous section, we have experimentally proved the superiority of TRIM_E over
RANDOM and TRIM_C by evaluating the reliability of all learners for separate brands in
different datasets. In this section, we check if TRIM_E also enables the scalability of a
brand to network size; the other two learners are ignored due to their much inferior

reliability. To measure the scalable performance of TRIM_E under the most demanding
settings, we selected the nine most popular brands of VK, where the popularity is

interpreted by the number of subscribers. In Figure 5.5, we present the scalability

results of selected brands for k = 3, 4, and 5 in datasets A1, A2, and A3, while

Figure 5.6 shows the respective results in datasets B1, B2, and B3.

In both Figures 5.5 and 5.6, we observe that for all brands, TRIM_E is highly
scalable to network size since under any fixed k and as the dataset grows, TRIM_E
not only manages to complete its learning but also it achieves a constantly higher

113

5.5. Experimental Evaluation

Figure 5.6: Scalability results of TRIM_E for the nine most popular VK brands (depicted in
increasing |S|) in datasets B1, B2, and B3 for k = 3, 4, and 5.

influence accompanied by logically higher execution times. Regarding influence, the

only exception takes place in Figure 5.6i where TRIM_E is more influential for k = 5 in

B1 compared to k = 5 in B2, while regarding incomplete learning, the sole exceptions

happen for k = 3 in Figure 5.6 when fte replaces llr. The fte cases show an obvious

difficulty of TRIM_E to provide a finite E1, but even in these special cases, its efficacy
remains highly scalable to network size.

As in previous section, we verify that TRIM_E still learns faster as k grows, as also
that the choice of the proper k relates with the subscription loyalty of a brand. In the

most cases of both Figures 5.5 and 5.6, we remark that a smaller k is more beneficial

for a highly popular brand, yet there is a loyalty tradeoff that clearly demonstrates

the opposite for some brands (Figures 5.5a, 5.5b, 5.5i, 5.6a, 5.6b, and 5.6i).

114

Chapter 5. Adaptive Content-Aware Influence Maximization through

Online Learning to Rank with Business Analytics

5.5.4 Business Applicability

In Table 5.7 we present all the features (L) we used in this work according to the

27 VK categories they belong to.

The Tables 5.8 and 5.9 enhance the business applicability of this work by pre-

senting the ACAIM results of TRIM_E for thirty worldwide-familiar VK brands for

k = 4 and k = 5 respectively. For illustration, we selected the highest k values and

the biggest dataset we used in this work (B3) to more representatively capture the

most common application scenarios in social networks.

We observe that in all cases TRIM_E manages to early finish its learning (depicted
by llr) and significantly improve the influence spread per round among exploration

and exploitation. That improvement accordingly increases the execution time per

round while simultaneously satisfies the real-time needs of ACAIM.

Regarding the found features, we generally remark that a feature relative to “rev-

elation” or “humor” is very popular in VK as it is part of most solutions. Further,

we observe that in several cases there is an interesting semantic connection among

brands and found features that can be characterized as (i) expected (e.g., “E-squire

magazine” with “A celebrity magazine” for k = 4 and “A taxi order service” with “Taxi

TaxovichkoF” for k = 4), (ii) non-trivial (e.g., “Great Britain” with “Football Europe”

for k = 5 and “Shakira” with “Between us girls” for k = 4), (iii) profound (e.g., “Tools

& garden equipment” with “Kontinental Hockey League (KHL)” for k = 5 and “Doctor

Komarovsky” with “Believe Orthodoxy” for k = 4 and 5), (iv) opposite (e.g., “Real

Madrid CF” with “FC Barcelona” for k = 4 and 5, and “Moto” with “Auto” for k = 5),

and (v) unexpected (e.g., “Pharmaceutical products” with “Dating jokes” for k = 5

and “Helsinki airport” with “Modern mom” for k = 5).

115

5.5. Experimental Evaluation

Table 5.7: The IDs of brands (features in L) belonging to 27 categories of VK we consid-
ered in experiments. The first part of each category presents its 10 most popular brands

in VK (depicted in decreasing |S|) and by aggregating all such first parts we form the

|L| = 270 of data A. Similarly, both parts of each category correspond to the 20 most
popular brands in VK and totally yield the |L| = 540 of data B. The VK social network page
of each brand is publicly available to registered users just by using the ID of brand as fol-

lows: https://vk.com/publicID . In case of visit, we recommend using the Google Chrome
browser so as to translate the content of pages since they mostly use the Russian language.

Animals Auto, motor Beauty, health Celebrity Cities, countries Communication Services Consumer Services Culture, art Education

32015300 23783750 39728801 135209264 20845272 34243323 170175796 147845620 12648877

110065937 151016287 45064245 45588871 127925490 44345402 173437170 38634441 25346844

65320054 29196806 28627911 35930308 127925061 52602834 171825683 142754704 33338722

34964358 38472666 34757875 104052041 27042171 24862387 35356518 99464023 149500863

33621085 148411246 28646177 41623203 37119411 18970929 49688236 19589874 34305040

35806476 39236729 46509740 139740824 31516466 149499917 49054793 143826157 36959676

32375815 31128331 23245066 41734504 69518720 28722213 41155241 66687279 44759043

29188817 40679923 35486195 26211015 66232651 41676683 166344567 180103132 149653328

23530818 133712630 36085261 134533652 34274053 33341280 46664792 31554488 33842750

59227775 51362846 23164653 225666 69547083 47786809 103075639 102090470 42307767

153142026 159415165 126100310 123675921 36338110 133310139 25198495 148230634 74595166

33798093 38894284 32922940 23546772 33156709 274672 39659800 40137153 61912980

36168102 90060110 107019848 174163184 88229325 20194367 98749490 47551578 28938560

30262661 125649823 16945011 44257435 40901026 49381792 81115275 61744518 72985232

82141367 43387535 125770269 23482802 36086936 38875560 41637433 122195630 40167434

43228812 23983339 49591829 3113588 144260965 114022615 25811852 74641828 29599237

35850395 163406855 34981365 95470601 32258596 1590042 66222045 37537193 45688121

105229582 24444828 126100569 46688098 37169648 126999658 168454811 26270763 103027469

159858626 153344099 29686754 30314549 32182751 66177799 82417135 26610299 46603834

50336153 37735548 26614831 94334686 33025155 161848270 96734258 96794207 142977738

Entertainment Finance and Insurance Food, recipes Hobbies Home, renovation Internet Job search Media Medicine Music Products, stores

57846937 22522055 43879004 55662720 36184135 22822305 12248221 29246653 133726577 27895931 36941068

26419239 124002407 39009769 29559271 32439535 28477986 31154183 48512305 55122354 45703770 24098496

45441631 34638472 48946342 31976785 38379853 2158488 29046529 29573241 29716377 34384434 34229261

43215063 84244100 32194285 34118551 42541008 162729615 44490261 22079806 27885374 35983383 30559917

22798006 43978738 18464856 24713873 32228890 35145657 78800961 18496184 149732802 22866546 28556858

58170807 166850908 46117626 79483347 41002749 23688663 48020228 9693056 43540875 28905875 35114569

12382740 38182092 40020627 43688579 90730773 79525017 34116496 101982925 49119584 29078047 80345103

31836774 20225241 48618580 34215577 137793489 139732885 56292539 15755094 51431740 29258893 39513007

23064236 73260851 47118092 23390361 123474518 72982321 23315499 108468 47591566 23180464 34483558

56106344 102218499 34451036 41883468 1792796 550910 85115964 29534144 42852777 105999460 10362317

40567146 140864751 83935640 76314525 36326284 31273955 36188056 24199209 160966228 48713061 40020304

26750264 144847188 42092461 43772432 64392368 41154660 40527789 73247559 45377300 34001496 96457590

460389 34980638 42025607 26776509 70275937 153766591 127560216 25380626 149401625 64977560 28673372

43776215 79995162 32509740 25397178 106277494 22884714 117282915 152992737 64964821 43335937 23616160

36164349 181526312 138816943 68229174 134655935 26456494 4808406 20035339 45251830 74653596 165599758

30179569 68349832 32231484 147720339 124764538 442 53809539 36792820 37875518 52599708 48210134

26669118 154346076 49694199 56048543 66630509 72378974 72355306 55264762 121816651 42440233 125303834

48319873 35144827 94216909 47679753 124303122 72866026 127738547 89493 49517102 26515827 34168005

38683579 104669972 28565318 23170931 42689002 40182105 63740509 24565142 48383801 27338836 24698811

33769500 75905130 34889014 23337480 136958443 43001537 82020695 16775977 36456996 33898099 49840023

Professional Services Relationship, family Restaurants Social and public organizations Sport Tourism and Leisure Transportation Services

111499611 91050183 30637940 71729358 71474813 346191 74611457

19542789 40498005 130641709 36166073 137451337 14897324 79459310

31577711 28890647 165062392 32194500 128350290 133668394 108040038

1163441 68114884 172149046 133180305 48940689 34543413 70228347

5425797 32432151 123287849 26307864 30428125 150802579 142153191

49690338 68895020 104616476 34137285 23693281 25117353 96196967

61796383 28293246 166652899 27794994 22746750 22558194 70270286

50512447 27470044 172231135 68016956 51812607 38363244 104141529

130698013 32651025 61879718 42701798 15326149 33445697 59131740

25276999 36318299 170513366 40587282 8722610 42763042 40738724

33301261 23758942 25300817 33382046 16202769 69580110 151316183

182438388 35555977 164409488 46987089 86224065 41053835 91708214

354372 20249656 53484080 31976441 12637219 21352492 26690472

27570276 34378420 59415411 54391852 23403635 63731512 170878251

57950162 55074079 99296079 38630769 64098698 30975621 53639653

57409266 24036559 49440926 36606428 30111136 133799113 153050613

87610407 24722253 87945351 39881081 23471538 26127512 66775477

31424891 68519692 78995926 31727306 28639294 54365037 82297106

30786950 44786979 164782094 25539323 138649060 146744120 45078595

38000521 24985591 127265072 50406378 40586683 35806721 93511310

116

Chapter 5. Adaptive Content-Aware Influence Maximization through

Online Learning to Rank with Business Analytics

Table 5.8: The ACAIM results of TRIM_E in regards to 30 selected brands for k = 4 in
dataset B3 of data B. The first table presents the found most influential features for each
brand when exploration of TRIM_E ends; the second table shows the influence spread and
execution time per round for each brand before and after exploration as also their cumulative

values. All results are derived from 1 run of TRIM_E over 2000 rounds for each brand.
brand (id | category | name) 2nd-ranked feature (id | category | name) 3rd-ranked feature (id | category | name)

354372 | Professional Serv. | “A recruiting platform” 34215577 | Hobbies | “Anonymous human revelation” 29534144 | Media | “Humoristic information blog”
4th-ranked feature (id | category | name) 12382740 | Entertainment | “Epicenter of humor”

16202769 | Sport | “Kontinental Hockey League (KHL)” 26419239 | Entertainment | “Laugh to tears” 12382740 | Entertainment | “Epicenter of humor”
4th-ranked feature (id | category | name) 135209264 | Celebrity | “The best Bot on VK”

21352492 | Tourism and Leisure | “Great Britain” 34215577 | Hobbies | “Anonymous human revelation” 56106344 | Entertainment | “Anonymous revelation stories”
4th-ranked feature (id | category | name) 22746750 | Sport | “FC Barcelona”
22522055 | Finance and Insurance | “Sberbank” 26419239 | Entertainment | “Laugh to tears” 135209264 | Celebrity | “The best Bot on VK”
4th-ranked feature (id | category | name) 12382740 | Entertainment | “Epicenter of humor”
22558194 | Tourism and Leisure | “USA” 56106344 | Entertainment | “Anonymous revelation stories” 34215577 | Hobbies | “Anonymous human revelation”

4th-ranked feature (id | category | name) 135209264 | Celebrity | “The best Bot on VK”
23403635 | Sport | “Real Madrid CF” 22746750 | Sport | “FC Barcelona” 12382740 | Entertainment | “Epicenter of humor”

4th-ranked feature (id | category | name) 26419239 | Entertainment | “Laugh to tears”
24098496 | Products, stores | “E-squire magazine” 34215577 | Hobbies | “Anonymous human revelation” 66687279 | Culture, art | “A celebrity magazine”
4th-ranked feature (id | category | name) 40498005 | Relationship, family | “Relationship psychology”
24565142 | Media | “National Geographic” 34215577 | Hobbies | “Anonymous human revelation” 12382740 | Entertainment | “Epicenter of humor”
4th-ranked feature (id | category | name) 66687279 | Culture, art | “A celebrity magazine”

27570276 | Professional Serv. | “Tools & garden equipment” 79525017 | Internet | “Sweepstakes” 31976785 | Hobbies | “Science & Technology”
4th-ranked feature (id | category | name) 123474518 | Home, renovation | “Builder”

30559917 | Products, stores | “Business Strategy” 34215577 | Hobbies | “Anonymous human revelation” 29246653 | Media | “Sarcastic and funny news”
4th-ranked feature (id | category | name) 56106344 | Entertainment | “Anonymous revelation stories”

36184135 | Home, renovation | “Interior design ideas” 34215577 | Hobbies | “Anonymous human revelation” 56106344 | Entertainment | “Anonymous revelation stories”
4th-ranked feature (id | category | name) 460389 | Entertainment | “Fresh memes uncensored”
36941068 | Products, stores | “AliExpress” 34215577 | Hobbies | “Anonymous human revelation” 460389 | Entertainment | “Fresh memes uncensored”
4th-ranked feature (id | category | name) 12382740 | Entertainment | “Epicenter of humor”
37119411 | Cities, countries | “Moscow” 34215577 | Hobbies | “Anonymous human revelation” 460389 | Entertainment | “Fresh memes uncensored”

4th-ranked feature (id | category | name) 56106344 | Entertainment | “Anonymous revelation stories”
37537193 | Culture, art | “Couple relationships” 29599237 | Education | “Believe Orthodoxy” 56106344 | Entertainment | “Anonymous revelation stories”
4th-ranked feature (id | category | name) 29246653 | Media | “Sarcastic and funny news”

40679923 | Auto, motor | “Moto” 26419239 | Entertainment | “Laugh to tears” 135209264 | Celebrity | “The best Bot on VK”
4th-ranked feature (id | category | name) 12382740 | Entertainment | “Epicenter of humor”

43001537 | Internet | “Apple” 12382740 | Entertainment | “Epicenter of humor” 26419239 | Entertainment | “Laugh to tears”
4th-ranked feature (id | category | name) 22746750 | Sport | “FC Barcelona”

44257435 | Celebrity | “Shakira” 22746750 | Sport | “FC Barcelona” 34215577 | Hobbies | “Anonymous human revelation”
4th-ranked feature (id | category | name) 36166073 | Social and public organizations | “Between us girls”

48383801 | Medicine | “Pharmaceutical products” 79525017 | Internet | “Sweepstakes” 34215577 | Hobbies | “Anonymous human revelation”
4th-ranked feature (id | category | name) 30179569 | Entertainment | “Slaughter humor”

48940689 | Sport | “Olympic Games” 56106344 | Entertainment | “Anonymous revelation stories” 73247559 | Media | “Show business news”
4th-ranked feature (id | category | name) 45441631 | Entertainment | “Funny & ridiculous jokes”
49119584 | Medicine | “Doctor Komarovsky” 34215577 | Hobbies | “Anonymous human revelation” 56106344 | Entertainment | “Anonymous revelation stories”
4th-ranked feature (id | category | name) 29599237 | Education | “Believe Orthodoxy”
53484080 | Restaurants | “Dodo Pizza” 26419239 | Entertainment | “Laugh to tears” 56106344 | Entertainment | “Anonymous revelation stories”

4th-ranked feature (id | category | name) 34215577 | Hobbies | “Anonymous human revelation”
53639653 | Transportation Serv. | “A suburban passenger company” 135209264 | Celebrity | “The best Bot on VK” 89493 | Media | “A dance radio station”

4th-ranked feature (id | category | name) 34215577 | Hobbies | “Anonymous human revelation”
66775477 | Transportation Serv. | “Helsinki airport” 34215577 | Hobbies | “Anonymous human revelation” 29534144 | Media | “Humoristic information blog”

4th-ranked feature (id | category | name) 32015300 | Animals | “A paradise for cat lovers”
74611457 | Transportation Serv. | “A taxi order service” 12382740 | Entertainment | “Epicenter of humor” 79525017 | Internet | “Sweepstakes”

4th-ranked feature (id | category | name) 70270286 | Transportation Serv. | “Taxi TaxovichkoF”
103075639 | Consumer Serv. | “A clothing & footwear care product” 29534144 | Media | “Humoristic information blog” 79525017 | Internet | “Sweepstakes”

4th-ranked feature (id | category | name) 66687279 | Culture, art | “A celebrity magazine”
104052041 | Celebrity | “Natalia Oreiro” 26419239 | Entertainment | “Laugh to tears” 34215577 | Hobbies | “Anonymous human revelation”

4th-ranked feature (id | category | name) 12382740 | Entertainment | “Epicenter of humor”
126100569 | Beauty, health | “Hairstyles & Haircuts” 56106344 | Entertainment | “Anonymous revelation stories” 34215577 | Hobbies | “Anonymous human revelation”

4th-ranked feature (id | category | name) 26419239 | Entertainment | “Laugh to tears”
139732885 | Internet | “Joom” 73247559 | Media | “Show business news” 56106344 | Entertainment | “Anonymous revelation stories”

4th-ranked feature (id | category | name) 26419239 | Entertainment | “Laugh to tears”
151316183 | Transportation Serv. | “Lufthansa” 34215577 | Hobbies | “Anonymous human revelation” 29534144 | Media | “Humoristic information blog”
4th-ranked feature (id | category | name) 24098496 | Products, stores | “E-squire magazine”
165599758 | Products, stores | “Xiaomi” 26419239 | Entertainment | “Laugh to tears” 460389 | Entertainment | “Fresh memes uncensored”

4th-ranked feature (id | category | name) 56106344 | Entertainment | “Anonymous revelation stories”

brand (id | |S|) llr avg. spread per round until llr avg. spread per round after llr spread avg. time per round until llr avg. time per round after llr time

354372 | 59821 508 4.96 51.19 78909 0.83 sec 1 sec 32.28 min

16202769 | 138344 501 105.36 385.14 630119 1.95 sec 2.62 sec 82.68 min

21352492 | 20036 474 11.02 42.26 69724 0.27 sec 0.34 sec 11.11 min

22522055 | 222795 547 60.61 369.24 569672 3.43 sec 3.94 sec 127.9 min

22558194 | 53809 513 45.29 157.87 257993 0.79 sec 1.1 sec 34.4 min

23403635 | 107830 504 253.57 390.34 711751 1.7 sec 1.99 sec 64.57 min

24098496 | 317643 535 443.39 780.91 1381252 4.88 sec 5.68 sec 184.2 min

24565142 | 139134 505 56.28 170.92 283960 1.9 sec 2.32 sec 74.72 min

27570276 | 44052 474 9.72 86.79 137056 0.63 sec 0.87 sec 27.49 min

30559917 | 201038 544 34.99 99.6 164063 2.68 sec 3.08 sec 100.01 min

36184135 | 449805 536 75.14 314.6 500855 6.1 sec 7.21 sec 232.57 min

36941068 | 304871 535 21.17 160.86 246994 4.15 sec 4.87 sec 157.6 min

37119411 | 175994 517 18.22 193.26 296033 2.19 sec 2.46 sec 80.7 min

37537193 | 50057 471 14.89 38.17 65381 0.65 sec 0.82 sec 26.5 min

40679923 | 89837 519 99.91 161.59 291184 1.24 sec 1.34 sec 44.51 min

43001537 | 128777 523 22.73 79.77 129725 1.69 sec 1.93 sec 62.99 min

44257435 | 33375 502 112.88 326.16 545261 0.56 sec 0.76 sec 24.14 min

48383801 | 22067 450 6.34 129.87 204158 0.29 sec 0.57 sec 17.2 min

48940689 | 213802 542 133.42 418.75 682860 3.38 sec 3.99 sec 128.67 min

49119584 | 49144 444 16.45 62.18 104060 0.72 sec 0.83 sec 27.33 min

53484080 | 69289 492 29.26 154.05 246718 1.07 sec 1.22 sec 39.89 min

53639653 | 3077 409 1.99 10.61 17707 0.04 sec 0.05 sec 1.93 min

66775477 | 4121 409 3.92 16.52 27892 0.06 sec 0.08 sec 2.71 min

74611457 | 28455 457 14.18 77.89 126671 0.4 sec 0.62 sec 19.23 min

103075639 | 9314 425 5.77 39.28 64324 0.12 sec 0.2 sec 6.51 min

104052041 | 43913 522 222.62 620.62 1033487 0.98 sec 1.35 sec 42.47 min

126100569 | 245088 536 95.61 207.92 355646 3.28 sec 3.76 sec 122.11 min

139732885 | 204755 518 42.4 218.15 345276 2.96 sec 3.29 sec 107.88 min

151316183 | 6271 450 13.58 51.4 85795 0.09 sec 0.15 sec 4.81 min

165599758 | 312288 504 94.89 530.24 841075 4.85 sec 5.37 sec 176.24 min

117

5.5. Experimental Evaluation

Table 5.9: The ACAIM results of TRIM_E in regards to 30 selected brands for k = 5 in
dataset B3 of data B. The first table presents the found most influential features for each
brand when exploration of TRIM_E ends; the second table shows the influence spread and
execution time per round for each brand before and after exploration as also their cumulative

values. All results are derived from 1 run of TRIM_E over 2000 rounds for each brand.
brand (id | category | name) 2nd-ranked feature (id | category | name) 3rd-ranked feature (id | category | name)

354372 | Professional Serv. | “A recruiting platform” 34215577 | Hobbies | “Anonymous human revelation” 460389 | Entertainment | “Fresh memes uncensored”
4th-ranked, 5th-ranked feature (id | category | name) 28477986 | Internet | “Unbelievable humoristic news” 12382740 | Entertainment | “Epicenter of humor”
16202769 | Sport | “Kontinental Hockey League (KHL)” 26419239 | Entertainment | “Laugh to tears” 22746750 | Sport | “FC Barcelona”
4th-ranked, 5th-ranked feature (id | category | name) 12382740 | Entertainment | “Epicenter of humor” 45441631 | Entertainment | “Funny & ridiculous jokes”

21352492 | Tourism and Leisure | “Great Britain” 73247559 | Media | “Show business news” 22746750 | Sport | “FC Barcelona”
4th-ranked, 5th-ranked feature (id | category | name) 23693281 | Sport | “Football Europe” 31976785 | Hobbies | “Science & Technology”

22522055 | Finance and Insurance | “Sberbank” 26419239 | Entertainment | “Laugh to tears” 45441631 | Entertainment | “Funny & ridiculous jokes”
4th-ranked, 5th-ranked feature (id | category | name) 56106344 | Entertainment | “Anonymous revelation stories” 135209264 | Celebrity | “The best Bot on VK”

22558194 | Tourism and Leisure | “USA” 56106344 | Entertainment | “Anonymous revelation stories” 22746750 | Sport | “FC Barcelona”
4th-ranked, 5th-ranked feature (id | category | name) 66687279 | Culture, art | “A celebrity magazine” 135209264 | Celebrity | “The best Bot on VK”

23403635 | Sport | “Real Madrid CF” 22746750 | Sport | “FC Barcelona” 12382740 | Entertainment | “Epicenter of humor”
4th-ranked, 5th-ranked feature (id | category | name) 31836774 | Entertainment |“Cool tricks for fun” 12637219 | Sport | “European Football”

24098496 | Products, stores | “E-squire magazine” 34215577 | Hobbies | “Anonymous human revelation” 40498005 | Relationship, family | “Relationship psychology”
4th-ranked, 5th-ranked feature (id | category | name) 26307864 | Social and public organizations | “The art of reality” 28477986 | Internet | “Unbelievable humoristic news”

24565142 | Media | “National Geographic” 34215577 | Hobbies | “Anonymous human revelation” 56106344 | Entertainment | “Anonymous revelation stories”
4th-ranked, 5th-ranked feature (id | category | name) 29559271 | Hobbies | “Science” 66687279 | Culture, art | “A celebrity magazine”
27570276 | Professional Serv. | “Tools & garden equipment” 25397178 | Hobbies | “Male thoughts” 12382740 | Entertainment | “Epicenter of humor”
4th-ranked, 5th-ranked feature (id | category | name) 31976785 | Hobbies | “Science & Technology” 16202769 | Sport | “Kontinental Hockey League (KHL)”

30559917 | Products, stores | “Business Strategy” 34215577 | Hobbies | “Anonymous human revelation” 12382740 | Entertainment | “Epicenter of humor”
4th-ranked, 5th-ranked feature (id | category | name) 56106344 | Entertainment | “Anonymous revelation stories” 460389 | Entertainment | “Fresh memes uncensored”
36184135 | Home, renovation | “Interior design ideas” 34215577 | Hobbies | “Anonymous human revelation” 460389 | Entertainment | “Fresh memes uncensored”

4th-ranked, 5th-ranked feature (id | category | name) 56106344 | Entertainment | “Anonymous revelation stories” 36164349 | Entertainment | “Satirical humor”
36941068 | Products, stores | “AliExpress” 34215577 | Hobbies | “Anonymous human revelation” 26419239 | Entertainment | “Laugh to tears”

4th-ranked, 5th-ranked feature (id | category | name) 135209264 | Celebrity | “The best Bot on VK” 79525017 | Internet | “Sweepstakes”
37119411 | Cities, countries | “Moscow” 34215577 | Hobbies | “Anonymous human revelation” 91050183 | Relationship, family | “A dating Bot”

4th-ranked, 5th-ranked feature (id | category | name) 66687279 | Culture, art | “A celebrity magazine” 29534144 | Media | “Humoristic information blog”
37537193 | Culture, art | “Couple relationships” 29599237 | Education | “Believe Orthodoxy” 56106344 | Entertainment | “Anonymous revelation stories”

4th-ranked, 5th-ranked feature (id | category | name) 460389 | Entertainment | “Fresh memes uncensored” 33338722 | Education | “Vocabulary”
40679923 | Auto, motor | “Moto” 135209264 | Celebrity | “The best Bot on VK” 133712630 | Auto, motor | “Auto Blog”

4th-ranked, 5th-ranked feature (id | category | name) 26419239 | Entertainment | “Laugh to tears” 23783750 | Auto, motor | “Auto”
43001537 | Internet | “Apple” 73247559 | Media | “Show business news” 29573241 | Media | “NR.Music”

4th-ranked, 5th-ranked feature (id | category | name) 12382740 | Entertainment | “Epicenter of humor” 26419239 | Entertainment | “Laugh to tears”
44257435 | Celebrity | “Shakira” 56106344 | Entertainment | “Anonymous revelation stories” 34215577 | Hobbies | “Anonymous human revelation”

4th-ranked, 5th-ranked feature (id | category | name) 22746750 | Sport | “FC Barcelona” 73247559 | Media | “Show business news”
48383801 | Medicine | “Pharmaceutical products” 79525017 | Internet | “Sweepstakes” 34215577 | Hobbies | “Anonymous human revelation”

4th-ranked, 5th-ranked feature (id | category | name) 28477986 | Internet | “Unbelievable humoristic news” 44786979 | Relationship, family | “Dating jokes”
48940689 | Sport | “Olympic Games” 12382740 | Entertainment | “Epicenter of humor” 56106344 | Entertainment | “Anonymous revelation stories”

4th-ranked, 5th-ranked feature (id | category | name) 34215577 | Hobbies | “Anonymous human revelation” 31836774 | Entertainment |“Cool tricks for fun”
49119584 | Medicine | “Doctor Komarovsky” 34215577 | Hobbies | “Anonymous human revelation” 56106344 | Entertainment | “Anonymous revelation stories”

4th-ranked, 5th-ranked feature (id | category | name) 29599237 | Education | “Believe Orthodoxy” 29246653 | Media | “Sarcastic and funny news”
53484080 | Restaurants | “Dodo Pizza” 26419239 | Entertainment | “Laugh to tears” 45441631 | Entertainment | “Funny & ridiculous jokes”

4th-ranked, 5th-ranked feature (id | category | name) 135209264 | Celebrity | “The best Bot on VK” 31976785 | Hobbies | “Science & Technology”
53639653 | Transportation Serv. | “A suburban passenger company” 43540875 | Medicine | “Humoristic medicine” 135209264 | Celebrity | “The best Bot on VK”

4th-ranked, 5th-ranked feature (id | category | name) 460389 | Entertainment | “Fresh memes uncensored” 133799113 | Tourism and Leisure | “Civilization cemetery”
66775477 | Transportation Serv. | “Helsinki airport” 79525017 | Internet | “Sweepstakes” 36959676 | Education | “Interesting facts”

4th-ranked, 5th-ranked feature (id | category | name) 135209264 | Celebrity | “The best Bot on VK” 55074079 | Relationship, family | “Modern mom”
74611457 | Transportation Serv. | “A taxi order service” 79525017 | Internet | “Sweepstakes” 12382740 | Entertainment | “Epicenter of humor”
4th-ranked, 5th-ranked feature (id | category | name) 29246653 | Media | “Sarcastic and funny news” 23783750 | Auto, motor | “Auto”

103075639 | Consumer Serv. | “A clothing & footwear care product” 135209264 | Celebrity | “The best Bot on VK” 29534144 | Media | “Humoristic information blog”
4th-ranked, 5th-ranked feature (id | category | name) 29573241 | Media | “NR.Music” 34215577 | Hobbies | “Anonymous human revelation”

104052041 | Celebrity | “Natalia Oreiro” 29246653 | Media | “Sarcastic and funny news” 26419239 | Entertainment | “Laugh to tears”
4th-ranked, 5th-ranked feature (id | category | name) 56106344 | Entertainment | “Anonymous revelation stories” 460389 | Entertainment | “Fresh memes uncensored”
126100569 | Beauty, health | “Hairstyles & Haircuts” 56106344 | Entertainment | “Anonymous revelation stories” 34215577 | Hobbies | “Anonymous human revelation”

4th-ranked, 5th-ranked feature (id | category | name) 26419239 | Entertainment | “Laugh to tears” 31836774 | Entertainment |“Cool tricks for fun”
139732885 | Internet | “Joom” 26419239 | Entertainment | “Laugh to tears” 23482802 | Celebrity | “Egor Kreed”

4th-ranked, 5th-ranked feature (id | category | name) 45441631 | Entertainment | “Funny & ridiculous jokes” 12382740 | Entertainment | “Epicenter of humor”
151316183 | Transportation Serv. | “Lufthansa” 34215577 | Hobbies | “Anonymous human revelation” 40567146 | Entertainment | “Worldwide entertaining news”

4th-ranked, 5th-ranked feature (id | category | name) 29534144 | Media | “Humoristic information blog” 26419239 | Entertainment | “Laugh to tears”
165599758 | Products, stores | “Xiaomi” 135209264 | Celebrity | “The best Bot on VK” 12382740 | Entertainment | “Epicenter of humor”

4th-ranked, 5th-ranked feature (id | category | name) 26419239 | Entertainment | “Laugh to tears” 56106344 | Entertainment | “Anonymous revelation stories”

brand (id | |S|) llr avg. spread per round until llr avg. spread per round after llr spread avg. time per round until llr avg. time per round after llr time

354372 | 59821 285 5.87 60.57 105556 0.76 sec 1 sec 32.55 min

16202769 | 138344 289 89.29 320.32 573875 1.95 sec 2.54 sec 82.73 min

21352492 | 20036 267 11.64 35.01 63791 0.25 sec 0.33 sec 10.97 min

22522055 | 222795 283 51.92 363.06 638083 3.24 sec 3.84 sec 126.32 min

22558194 | 53809 297 42 127.44 229517 0.76 sec 1.01 sec 32.93 min

23403635 | 107830 290 227 331.61 632901 1.64 sec 1.82 sec 60.59 min

24098496 | 317643 301 447.29 620.99 1189713 4.91 sec 5.56 sec 183.99 min

24565142 | 139134 291 52.68 167.02 300769 1.83 sec 2.33 sec 76.04 min

27570276 | 44052 263 8.96 32.15 58218 0.58 sec 0.72 sec 23.74 min

30559917 | 201038 305 36.29 117.61 210425 2.68 sec 2.98 sec 98.86 min

36184135 | 449805 312 99.02 339.02 603175 6.04 sec 7.1 sec 233.3 min

36941068 | 304871 300 25.23 178.22 310548 3.96 sec 4.99 sec 162.78 min

37119411 | 175994 285 20.77 190.02 331822 2.14 sec 2.53 sec 83.44 min

37537193 | 50057 265 15.32 32.06 59688 0.64 sec 0.79 sec 26.01 min

40679923 | 89837 277 100.12 154.91 294655 1.22 sec 1.42 sec 47.02 min

43001537 | 128777 282 28.66 105.29 188976 1.7 sec 1.93 sec 64.06 min

44257435 | 33375 287 57.79 265.5 471388 0.48 sec 0.71 sec 23.16 min

48383801 | 22067 257 7.48 143.44 251944 0.27 sec 0.55 sec 17.6 min

48940689 | 213802 290 76.34 353.2 626113 3.04 sec 3.64 sec 119.58 min

49119584 | 49144 268 12.88 52.47 94346 0.67 sec 0.82 sec 26.94 min

53484080 | 69289 295 20.68 171.54 298579 1 sec 1.22 sec 39.98 min

53639653 | 3077 239 0.64 7.43 13247 0.04 sec 0.05 sec 1.86 min

66775477 | 4121 241 1.22 12.65 22550 0.05 sec 0.08 sec 2.97 min

74611457 | 28455 267 10.1 82.24 145232 0.36 sec 0.63 sec 20.06 min

103075639 | 9314 241 2.95 32.13 57240 0.11 sec 0.17 sec 5.85 min

104052041 | 43913 305 142.09 524.15 931774 0.79 sec 1.3 sec 41.55 min

126100569 | 245088 298 103.14 203.05 376331 3.25 sec 3.64 sec 120.7 min

139732885 | 204755 292 32.59 199.6 350442 2.85 sec 3.34 sec 110.06 min

151316183 | 6271 264 9.35 43.6 78166 0.1 sec 0.16 sec 5.25 min

165599758 | 312288 281 73.75 528.8 929742 4.63 sec 5.39 sec 177.87 min

118

Chapter 5. Adaptive Content-Aware Influence Maximization through

Online Learning to Rank with Business Analytics

5.6 Conclusion

In this chapter, we proposed the ACAIM problem and realistically solve it on

several VK datasets. In particular, we utilized for first time an OLR framework for

IM purposes, we introduced the CATRID propagation model to enable OLR for

ACAIM, we deployed a simulator to express a real feedback environment based on

VK posts, we developed three learners to solve ACAIM, and we presented a thorough

experimental evaluation that illustrates the importance of ACAIM to social network

industry. A detailed business applicability study is also included which, by considering

worldwide known brands, it further stresses the suitability of ACAIM in real world.

119

5.6. Conclusion

120

Chapter 6

A Content Recommendation

Policy for Gaining Subscribers

How can we recommend content for a brand agent to use over a series of rounds

so as to gain new subscribers to its social network page? The Influence Maximiza-

tion (IM) problem seeks a set of k users, and its content-aware variants seek a set

of k post features, that achieve, in both cases, an objective of expected influence

in a social network. However, apart from raw influence, it is also relevant to study

gain in subscribers, as long-term success rests on the subscribers of a brand page;

classic IM may select k users from the subscriber set, and content-aware IM starts

the post’s propagation from that subscriber set. In this chapter, we propose a novel

content recommendation policy to a brand agent for Gaining Subscribers by Mes-

saging (GSM) over many rounds. In each round, the brand agent messages a fixed

number of social network users and invites them to visit the brand page aiming to

gain their subscription, while its most recently published content consists of features

that intensely attract the preferences of the invited users. To solve GSM, we find, in

each round, which content features to publish and which users to notify aiming to

maximize the cumulative subscription gain over all rounds. We deploy three GSM

solvers, named RANDOM, SCAN, and SUBSTITUTE, and we experimentally evaluate their

performance based on VKontakte (VK) posts by considering different user sets and

feature sets. Our experimental results show that SUBSTITUTE provides the best solu-

tion, as it is significantly more efficient than SCAN with a minor loss of efficacy and

clearly more efficacious than RANDOM with competitive efficiency.

6.1 Introduction

The problem of Influence Maximization (IM) [LFWT18] is relevant and useful to

stakeholders (henceforward, brands) that pursue viral marketing campaigns in social

121

6.1. Introduction

networks. The classic IM [KKT03] seeks k users that maximize the influence of a

fixed post in a network; the inverse variant of IM [ITTK17] seeks k content features1

to form a viral post that starts its diffusion from a fixed set of initial adopters.

Nowadays, most brands maintain social network pages for advertising purposes,

since social network users follow pages they are interested in; these followers are the

subscribers of a brand. Yet, in the IM literature, subscribers are usually taken for

granted [ITTK17, KLK20] or ignored [KKT03, LFWT18]. In the former case, it is

lucrative for the content-aware IM techniques to apply in practice only when several

subscribers exist; yet, new brands having zero or limited subscribers cannot benefit

from such techniques. So, we provide a concrete way for such brands to gain sub-

scribers and take advantage of works in [ITTK17, KLK20]. In the latter case, the

classic IM problem applies independently of subscribers but their loyalty capabili-

ties are not explored. For instance, it is more feasible and economic for a brand to

motivate k influential loyal subscribers for promoting its posts than searching for k

agnostic adopters that may not be supporters of the brand and contribute loosely to

its promotion. So, even established brands with several subscribers, can benefit from

our gaining subscribers method so as to find even more influential loyal users for clas-

sic IM purposes [KKT03, LFWT18]. Further, in the real world, the network topology

is usually not known on its whole [SS13, HS15, LCCM19], whereas subscribers are al-

ways known, even if that knowledge requires explicit on-demand retrieval. Therefore,

the need arises to focus on subscribers and study how brands can gain subscribers.

In this chapter, we propose a novel multi-round content recommendation policy

that a brand agent/advertiser can use to Gain Subscribers by Messaging (GSM).

As the GSM problem takes place over many rounds, we deploy three algorithms

that solve GSM in a non-adaptive way (beforehand) for all rounds. Our solutions

recommend to the advertiser, in each round, which k content features to publish and

which m non-subscriber users to notify of those k features so as to maximize chances

to gain the subscription of those m users. The notification is done by messaging (e.g.,

a short message acting like an invitation to visit the brand page), and each user is

notified once; that user is never notified again for any reason. The best GSM solver

is the one that achieves the maximum subscription gain over all rounds. We define

subscription gain (henceforward, SG) as a weighted sum depicting the aggregate

preference of m users for k features. For any two (k,m) solutions that achieve similar

SG, we consider the cumulative (no duplicates allowed) reach of their respective m

users to select the (k,m) solution with the maximum reach; the reach (henceforward,

R) of a user is equal to her out-degree. R acts as a second filter (when needed) that

helps to the selection of most influential new subscribers.

1We consider that each feature corresponds to a specific social network page.

122

Chapter 6. A Content Recommendation Policy for Gaining Subscribers

(f1, f2) RANDOM SCAN SUBSTITUTE Early Termination of SUBSTITUTE for u5
u1: w1
u2: w2 (w1, w2, w3) * red and black (35 in total) * for (f1, f2) we have: w4 – w5 < w4 – w5 < w4 – w5
u3: w3 (w1, w2, w4) user combinations are checked order = u2 u1 u3 u4 u6 u5 u7 w2+w1+w5 w2+w3+w5 w1+w3+w5
u4: w4 . . . for each feature combination. userCombs = {(w1, w2, w3)} ^ ^ ^
u5: w5 . . . w3 – w5 < w3 – w5 < w3 – w5
u6: w6 (w4, w6, w7) * best match for (f1, f2): * u2 u1 u3 u6 u5 u7 w2+w1+w5 w2+w4+w5 w1+w4+w5
u7: w7 (w5, w6, w7) (w1, w2, w4) X u4 u4
 u4 substitutes u3 and u1, The above scheme shows that if only the
(f1, f3) * best match for (f1, f3): and is not marked invisible: first term is greater than d, then it is enough
u1: w1’ (w2’, w4’, w5’) order = u2 u1 u3 u4 u6 u5 u7 to confirm that u5 substitutes no user.
u2: w2’ (w1’, w2’, w3’) userCombs = {(w1, w2, w3), Based on such finding, the scheme below
u3: w3’ (w1’, w2’, w4’) * best match for (f2, f3): (w1, w2, w4), (w2, w3, w4)} also confirms that u7 substitutes no user.
u4: w4’ . . . (w3”, w5”, w6”) So, SUBSTITUTE reaches to early termination.
u5: w5’ . . . * u2 u1 u3 u4 u5 u7
u6: w6’ (w4’, w6’, w7’) * ((w1+w2+w4) – (w2’+w4’+w5’)) X u6 u6 u6 w4 – w5 < w4 – w5 < w4 – w5
u7: w7’ (w5’, w6’, w7’) / (w2’+w4’+w5’) > d u6 substitutes u4, u3, and u1, w2+w1+w5 w2+w3+w5 w1+w3+w5
 and but is marked invisible: ^ ^ ^
(f2, f3) ((w1+w2+w4) – (w3”+w5”+w6”)) order = u2 u1 u3 u4 (u6) u5 u7 w4 – w7 < w4 – w7 < w4 – w7
u1: w1” / (w3”+w5”+w6”) > d w2+w1+w7 w2+w3+w7 w1+w3+w7
u2: w2” (w1”, w2”, w3”) so: * u2 u1 u3 u4 (u6) u7
u3: w3” (w1”, w2”, w4”) features (f1, f2) selected in round t X When the first term is not greater than d,
u4: w4” . . . and users (u1, u2, u4) are notified. u5 substitutes no user, and then invisibility instances are checked by a
u5: w5” . . . this also holds for u7; the gene- condition that tries to predict the d-result
u6: w6” (w4”, w6”, w7”) * in next round t+1, the best match ration of new user combinations of next terms without many false misses.
u7: w7” (w5”, w6”, w7”) for (f2, f3) is not computed again. for (f1, f2) has ended. Invisibility check is part of early termination.

 (b) (c) (d) (e) (a)

Figure 6.1: An example that shows the basic execution components of GSM solvers for

k = 2 features and m = 3 users.

GSM naturally applies to social networks, such as VK2, which constitutes the

Russian version of Facebook in terms of usability and scale. In social networks, the

pages to which a user subscribes, form the features (preferences) of user and in this

work we consider real VK posts to fine-tune with different weights such features for

our experiments. Moreover, VK strictly allows 20 messages per 12 hours to any user

who has a VK account and wishes to send a message to any other non-friend VK

user. Thus, each message is valuable for the advertiser and constitutes a single chance

to attract the attention of notified user. By solving GSM, the advertiser prioritizes

the publishing (as each round has priority over the next round) of the right k-size

content for the right m users to maximize the gain of subscribers. If, alternatively, the

advertiser were to apply a random messaging policy, then she would gain subscribers

at a lower pace, and also face the danger of losing access to her page for some period

due to spam reports sent by notified users to the VK company; a user invited to visit

a page of no interest may report spamming.

To make motivation clear, we present the following example:

Example: Consider Figure 6.1. If advertiser has no algorithm to solve GSM, then she

randomly selects m users (e.g., v4, v6, v7) and k features (e.g., f1, f3); this is a trivial

approach and we do not use it in this work. Yet, if she uses RANDOM algorithm, then

for the selected m users (e.g., same as previous) she finds the k features that give the

maximum SG (e.g., f1, f2 with SG = w4 +w6 +w7), where w4 equals to the weighed

sum of v4 in regards to f1 and f2. Lastly, if she uses SCAN or SUBSTITUTE algorithm, then

2https://vk.com/

123

6.2. GSM Solvers

she finds a (k, m) solution with much higher SG due to considering all possible (k,

m) combinations to optimally solve GSM instead of depending on random selections.

A higher SG expresses a higher probability3 that some of m invited users will become

subscribers to brand’s page. Algorithms in Figure 6.1 will be gradually discussed.

We summarize our contributions as follows: (1) we propose the GSM problem

that applies to any social network; (2) we deploy three GSM solvers, named RANDOM,

SCAN, and SUBSTITUTE; and (3) we provide a rich experimental evaluation that verifies

the superiority of SUBSTITUTE over other solvers; to the best of our knowledge, the

problem of gaining subscribers using content has not been studied previously.

6.2 GSM Solvers

We define the GSM problem as follows: Given a social network G = (V,E) with

|V | users and |E| edges, a feature universe L, a weighted feature set Fv of size |L|
capturing the preferences of each user v, a budget k, a limited number of m notifica-

tion messages, a similarity threshold d, and a number of rounds n, find in each round

t what k content features to publish and which m users to notify so as to maximize

the cumulative subscription gain SG over n rounds:

SG = max
∑n

t=1 SGt(k,m)

3The sum of weights over features for each user equals to 1. So, the maximum SG value equals to

m and each SG value divided by m belongs to range [0, 1].

124

Chapter 6. A Content Recommendation Policy for Gaining Subscribers

6.2.1 The Solver RANDOM

Algorithm RANDOM presents a baseline that solves GSM. In each round t, RANDOM

uniformly at random selects m users from V not chosen in previous rounds and

focuses on selecting features (Lines 3–5). In more detail, RANDOM searches for the k-

size feature set that yields the maximum gain in round t (roundBest.SG) with regard

to the selected m users, and increases the cumulative SG and reach R (Lines 6–10).

Lastly, it keeps track of all notified users (Line 11) to avoid messaging them again.

In Figure 6.1b, RANDOM selects the users v4, v6, v7 and so it compares only the 3

black user combinations to find which k features are the best match (yield the highest

SG) for selected users. Note that RANDOM overlooks all the red user combinations and

that depicts its crucial deficiency.

6.2.2 The Solver SCAN

Algorithm SCAN presents the solver SCAN. In a nutshell, SCAN computes and stores

in each round t the best match (the m-size user combination that yields the maxi-

mum SG) for each k-size feature combination by examining all possible m-size user

combinations, so as to find the roundBest for t, and skips in next rounds any feature

combinations that do not need to be processed again.

We indicate the algorithm’s workflow by marking three execution steps with bold

numbers above Line 7, Line 20, and Line 23. In the first step (Lines 7–19), if all users

notified in the previous round are not contained in the best match for current feature

set cf , then the best match for cf does not change and it is used again to possibly

update roundBest based on similarity threshold d. If the first step is not executed

(condition in Line 7 is false), then we move to the second step (Lines 20–22). This

step is the most costly part of SCAN as it examines all sets of m users sequentially to

find the best match for cf . After this processing, the third step (Line 23) possibly

updates roundBest by using the found best match for cf .

In Figure 6.1c, SCAN compares 35 m-size user combinations for each one of (f1, f2),

(f1, f3), and (f2, f3) so as to find their best matches. Then, SCAN compares those three

best matches and finds that the best match of (f1, f2) yields the higher SG over others,

and so the features f1, f2 and users v1, v2, v4 are selected in current round. Note that

in next round, the best match of (f2, f3) remains unchanged since it does not overlap

with notified users of previous round.

6.2.3 The Solver SUBSTITUTE

Algorithm SUBSTITUTE presents the solver SUBSTITUTE. This solver addresses the

main bottleneck of SCAN, which is the examination of all user combinations in its

125

6.2. GSM Solvers

second step. In particular, SUBSTITUTE adds an intermediate step (Lines 10–31) that

creates only the necessary m-size user combinations to find the best match for current

feature set cf . To do that, it utilizes the structure selV (initialized in Lines 2–4)

that stores for each cf a set of pairs corresponding to users associated with their

achieved SG in cf , organized in descending order by their SG values.

126

Chapter 6. A Content Recommendation Policy for Gaining Subscribers

127

6.2. GSM Solvers

Specifically, the firstm entries of selV [cf] form the first user combination (Line 10).

Then, we compare each entry e2 (Line 12) having a position greater thanm in selV [cf]

with each previous entry e1 of selV [cf] (Line 14) to check whether e2 can substi-

tute e1. If a substitution happens (Line 23), there may exist a better solution for cf

having e2 in place of e1. Otherwise, if e2 cannot substitute the first compared e1,

then e2 cannot substitute any e1, and also this holds for any next e2, resulting in

early termination (Line 29). This termination is beneficial for two reasons: first, there

is no need to compare more (e2, e1) pairs to find a better solution for cf , and second,

it ends the generation of new user combinations for cf thereby incurring less overhead

in third step (Line 32). To further enhance that termination, we add a condition in

Line 27 that counts instances of invisibility. A case of invisibility occurs when the

current combination that includes e1 has no less reach than the same combination

with e2 in place of e1, and also the atomic reach of e1 is no less than the atomic reach

of e2; then, in most cases e1 is a better option than e2. If such evidence is observed

for all the e1 to which we compare e2, then we mark e2 as invisible henceforward

(Line 30). Intuitively, the invisibility of e2 means that it is very likely that no user

combination derived by replacing any e1 with e2, would constitute a better solution

for cf , so we opt to ignore them.

Figure 6.1d presents the execution logic of SUBSTITUTE for cf = (f1, f2). The order

represents selV and userCombs includes the m-size user combinations for cf that

can be seen as a gradually constructed knowledge base to find the best match for cf .

With blue color we depict the not yet examined entries of selV , while with green color

we capture its currently examined entries for substitution; the symbol X denotes no

substitution after checking, and when no green mark exists, it means no checking at

all of respective (e2, e1) pair. In more detail, the first entry of userCombs comprises

users v1, v2, v3. Then, e2 = v4 is compared with all black e1 that also they totally

did not mark it as invisible, but v4 does not substitute e1 = v2, so userCombs

extends with combinations derived after the substitution of v4 with v3 and v1 to its

current entries. After that, e2 = v6 can achieve three substitutions, but throughout

checking, it marked as invisible and so it does extend at all userCombs. Finally,

e2 = v5 compares only with e1 = v4 and since it cannot substitute it, it leads to early

termination as it is sure that v5 cannot substitute any e1 and this also holds for any

entry after v5 (here, v7). So, although SCAN examines 35 user combinations to find the

best match for (f1, f2), SUBSTITUTE finds that best match by only examining 3 user

combinations; the same logic applies for (f1, f3) and (f2, f3).

Figure 6.1e justifies why the aforementioned early termination is possible when

v5 cannot substitute v4. Since the first term is greater than d, namely w4−w5

w2+w1+w5
> d,

depicting the comparison result of user combinations (v2, v1, v4) and (v2, v1, v5), and

showing that v5 cannot substitute v4, we prove early termination based on red less

128

Chapter 6. A Content Recommendation Policy for Gaining Subscribers

symbols. In the first (top) scheme, we show that each next term, capturing a different

d-comparison among v5 and v4 (first row) and among v5 and v3 (second row), is even

greater than d if first term is greater than d; this also holds inductively for respective

terms relative to v1 and v2. In the second (bottom) scheme, we apply a similar logic

and show that each next term of second row that captures a different d-comparison

among v7 and v4 is also greater than d if first term is greater than d, and so v7 cannot

substitute v4 as also no other user based on the inductive logic of first scheme.

In practice, for an entry e2 to generate winner-candidate user combinations for cf

in Line 31, it must substitute at least one e1 and it must not be marked as invisible.

The performance of SUBSTITUTE relies on the fact that only a few e2 pass the two

mentioned checks, and that fast leads to an occurrence of early termination (Line 29).

Since it makes sense to compare reach only for really similar (k,m) candidates (d is

small), any false misses due to the condition in Line 27 would have a negative impact

on efficacy only in rare cases where early termination takes too long to take effect.

6.3 Experimental Evaluation

We wrote code in C++ and ran experiments on an AMD Ryzen 5 4600U CPU

@ 2.1 GHz machine with 16GB RAM running Linux Ubuntu 20.04.3 LTS 64-bit. For

graph operations we used the open-source graph library Lemon [DJK11].

6.3.1 Setup

Datasets. As VK comprises 27 categories, we select the 1 and 2 most popular pages

from each category, to form sets of 27 and 54 features. We uniformly at random select

10 different groups of 80 users for |L| = 27 and |L| = 54 (same groups for both L),

and 10 different groups of 100 users for |L| = 27 and |L| = 54 (same groups for both

L); there is no relation among groups of 80 and 100 users. So, all the experimental

results in our figures are averaged by 10.

Tuning. For each selected user, we realistically tune her Fv(f) value for each feature

f ∈ L by taking the average of her like responses in all posts of the years 2010-2017

of VK; as f we considered only the brand that published the relative post where user

liked it. The feature weight sum of each Fv(f) equals to 1, and for any f where no

like found, we initialized Fv(f) with a dummy value.

Parameters. The number of content features (k) is examined until k = 3, as higher k

values were costly for SCAN. The other parameters are fixed; the number of m invited

users is 3, the similarity threshold d is 0.001, and the number of n rounds is 20.

129

6.3. Experimental Evaluation

5 10 15 20
Round

0.5

1.0

1.5

2.0

Su
bs

cr
ip

tio
n

Ga
in Random (10.54, 4824)

Scan (16.54, 5736)
Subst. (16.48, 5693)

(a) k = 1, SG

5 10 15 20
Round

0.0

0.5

1.0

1.5

Ru
nn

in
g

Ti
m

e
(s

ec
)

Random (0.0011 sec)
Scan (2.75 sec)
Subst. (0.28 sec)

(b) k = 1, Time

5 10 15 20
Round

0.5

1.0

1.5

2.0

2.5

Su
bs

cr
ip

tio
n

Ga
in Random (16.32, 4824)

Scan (20.76, 5696)
Subst. (20.78, 5828)

(c) k = 2, SG

5 10 15 20
Round

0

5

10

15

Ru
nn

in
g

Ti
m

e
(s

ec
)

Random (0.003 sec)
Scan (32.25 sec)
Subst. (3.17 sec)

(d) k = 2, Time

5 10 15 20
Round

1

2

Su
bs

cr
ip

tio
n

Ga
in Random (19.89, 4824)

Scan (24, 5691)
Subst. (23.93, 5818)

(e) k = 3, SG

10 20
Round

0

50

100

Ru
nn

in
g

Ti
m

e
(s

ec
)

Random (0.018 sec)
Scan (376.72 sec)
Subst. (20.99 sec)

(f) k = 3, Time

Figure 6.2: SG per round and Time per round results of RANDOM, SCAN, and SUBSTITUTE for
|L| = 27, |V | = 80, and k = 1, 2, and 3.

5 10 15 20
Round

0.5

1.0

1.5

2.0

Su
bs

cr
ip

tio
n

Ga
in Random (10.75, 6564)

Scan (20.68, 5655)
Subst. (20.52, 6201)

(a) k = 1, SG

5 10 15 20
Round

0

1

2

3

Ru
nn

in
g

Ti
m

e
(s

ec
)

Random (0.0013 sec)
Scan (4.97 sec)
Subst. (0.34 sec)

(b) k = 1, Time

5 10 15 20
Round

0.5

1.0

1.5

2.0

2.5

Su
bs

cr
ip

tio
n

Ga
in Random (16.57, 6564)

Scan (25.62, 5660)
Subst. (25.54, 5712)

(c) k = 2, SG

5 10 15 20
Round

0

10

20

30

Ru
nn

in
g

Ti
m

e
(s

ec
)

Random (0.0029 sec)
Scan (67.81 sec)
Subst. (2.63 sec)

(d) k = 2, Time

5 10 15 20
Round

0.5

1.0

1.5

2.0

2.5

Su
bs

cr
ip

tio
n

Ga
in Random (20.14, 6564)
Scan (28.91, 5708)
Subst. (28.58, 5694)

(e) k = 3, SG

10 20
Round

0

100

200

300

Ru
nn

in
g

Ti
m

e
(s

ec
)

Random (0.019 sec)
Scan (850.1 sec)
Subst. (14.16 sec)

(f) k = 3, Time

Figure 6.3: SG per round and Time per round results of RANDOM, SCAN, and SUBSTITUTE for
|L| = 27, |V | = 100, and k = 1, 2, and 3.

6.3.2 Results

Figure 6.2 presents the subscription gain (SG) and running time (measured in

seconds) results per round of RANDOM, SCAN, and SUBSTITUTE for k = 1, 2, and 3, and for

130

Chapter 6. A Content Recommendation Policy for Gaining Subscribers

5 10 15 20
Round

0.5

1.0

1.5

Su
bs

cr
ip

tio
n

Ga
in Random (8.78, 4824)

Scan (13.53, 5910)
Subst. (13.43, 5877)

(a) k = 1, SG

5 10 15 20
Round

0

1

2

3

Ru
nn

in
g

Ti
m

e
(s

ec
)

Random (0.0013 sec)
Scan (4.99 sec)
Subst. (0.17 sec)

(b) k = 1, Time

5 10 15 20
Round

0.5

1.0

1.5

2.0

Su
bs

cr
ip

tio
n

Ga
in Random (13.39, 4824)

Scan (17.37, 5481)
Subst. (16.96, 5561)

(c) k = 2, SG

5 10 15 20
Round

0

20

40

60

Ru
nn

in
g

Ti
m

e
(s

ec
)

Random (0.0075 sec)
Scan (112.25 sec)
Subst. (4.32 sec)

(d) k = 2, Time

5 10 15 20
Round

0.5

1.0

1.5

2.0

2.5

Su
bs

cr
ip

tio
n

Ga
in Random (16.41, 4824)

Scan (20.24, 5659)
Subst. (20.1, 5681)

(e) k = 3, SG

10 20
Round

0

500

1000

Ru
nn

in
g

Ti
m

e
(s

ec
)

Random (0.17 sec)
Scan (2635.76 sec)
Subst. (86.65 sec)

(f) k = 3, Time

Figure 6.4: SG per round and Time per round results of RANDOM, SCAN, and SUBSTITUTE for
|L| = 54, |V | = 80, and k = 1, 2, and 3.

5 10 15 20
Round

0.5

1.0

1.5

Su
bs

cr
ip

tio
n

Ga
in Random (8.26, 6564)

Scan (16.57, 5971)
Subst. (16.26, 5827)

(a) k = 1, SG

5 10 15 20
Round

0

2

4

Ru
nn

in
g

Ti
m

e
(s

ec
)

Random (0.0015 sec)
Scan (8.27 sec)
Subst. (0.2 sec)

(b) k = 1, Time

5 10 15 20
Round

0.5

1.0

1.5

2.0

Su
bs

cr
ip

tio
n

Ga
in Random (12.93, 6564)

Scan (20.83, 5681)
Subst. (20.68, 5781)

(c) k = 2, SG

10 20
Round

0

50

100

Ru
nn

in
g

Ti
m

e
(s

ec
)

Random (0.0073 sec)
Scan (241.79 sec)
Subst. (3.68 sec)

(d) k = 2, Time

5 10 15 20
Round

0.5

1.0

1.5

2.0

2.5

Su
bs

cr
ip

tio
n

Ga
in Random (15.96, 6564)

Scan (24.1, 5418)
Subst. (23.89, 5363)

(e) k = 3, SG

10 20
Round

0

1000

2000

Ru
nn

in
g

Ti
m

e
(s

ec
)

Random (0.17 sec)
Scan (5888.4 sec)
Subst. (40.95 sec)

(f) k = 3, Time

Figure 6.5: SG per round and Time per round results of RANDOM, SCAN, and SUBSTITUTE for
|L| = 54, |V | = 100, and k = 1, 2, and 3.

|L| = 27, |V | = 80; Figure 6.3 for |L| = 27, |V | = 100, Figure 6.4 for |L| = 54, |V | = 80,

and Figure 6.5 for |L| = 54, |V | = 100. Besides the per round results, in each SG figure

131

6.3. Experimental Evaluation

there is in legend for each solver a pair (X,Y), where X is the cumulative SG and Y

is the cumulative reach R4 over all rounds. Similarly, in each time figure, the legend

mentions for each solver the cumulative running time over all rounds.

We observe that the general trend is the same in all figures; SUBSTITUTE is almost

equally effective to SCAN and competitively efficient to RANDOM. It is evident that

SUBSTITUTE achieves a slightly less cumulative SG in regards to SCAN due to the poor

SG result it achieves in first round; that behavior depends on aggressive false misses

derived from true evaluation of condition in Line 27, but as rounds evolve such false

misses reduce due to skipping of each cf having an unaffected best solution (Line 9).

Except for first round, the SG of both solvers is very close and diminishes as rounds

grow because promising subscription candidates are messaged from the beginning.

Yet, the SG of RANDOM is the lowest and can be seen as fixed across rounds, as it

does not apply messaging with priority as previous solvers. Regarding running time,

SUBSTITUTE is slower than RANDOM but constant, while SCAN performs better as rounds

evolve but has a clear scalability issue when any of V , L, or k increases.

Moreover, we remark that in all figures as k grows all solvers achieve higher efficacy

(SG) and lower efficiency (time). This is logical as a higher k yields a higher feature

weight sum of m users to k features, but also it incurs more feature combinations

for processing. Another interesting result is to see what happens when V increases

over a fixed L, and what happens when L increases over a fixed V . In the former

case, by comparing the Figures 6.2 and 6.3, as also the Figures 6.4 and 6.5, we

note that the SG of RANDOM is constant, while the SG of other two solvers clearly

improves; a larger selection pool of users is always more beneficial for prioritized

solvers. Yet, with more candidate user combinations present for processing, only

SUBSTITUTE improves its performance on running time (e.g., see Figures 6.2f, 6.3f, and

Figures 6.4f, 6.5f), whereas SCAN heavily deteriorates its performance; more users offer

more chances for early termination cases to occur in Line 29 of SUBSTITUTE since it

is more likely that some users clearly separate over others. In the latter case, by

comparing Figures 6.2 and 6.4, as well as Figures 6.3 and 6.5, we observe that both

the efficacy and efficiency of all solvers worsen. The SG deteriorates as a heavier

feature weight segmentation in Fv (due to larger L) decreases the feature weights of

each user and so incurs lower feature weight sums of m users to k features. Further, a

more intense segmentation strengthens the similarity of feature weights in Fv, and so

increases the (k,m) candidates not filtered by threshold d. Lastly, the inferior running

time is expected due to processing a larger pool of candidate feature combinations.

4We present R results for the sake of completeness; their analysis is not critical for GSM.

132

Chapter 6. A Content Recommendation Policy for Gaining Subscribers

6.4 Conclusion

In this chapter, we proposed that brands can use a content recommendation policy

to gain subscribers to their social network pages via messaging. We deployed three

algorithms, RANDOM, SCAN, and SUBSTITUTE to this task using a realistic tuning of VK

posts. Our thorough experimental study on different user and feature sets verified

that SUBSTITUTE outperforms other solvers. To our knowledge, this is the first work to

study how brands can gain subscribers using content.

133

6.4. Conclusion

134

Chapter 7

Conclusion

7.1 Summary

In this thesis, we studied important social and spatial data problems applied

on graphs. In spatial domain, we deployed the SRX system that supports spatial

RDF data management operations, while in social domain we examined three novel

problems relative to content-aware recommendation applied to social networks.

To efficiently solve spatial RDF problems, we built the SRX system by extend-

ing the popular RDF-3X store [NW08] with a novel spatial encoding grid-scheme to

support WITHIN, DISTANCE, and kNN queries, as also Updates of spatial RDF enti-
ties; the grid-scheme approximates the geometries of the spatial RDF entities inside

their integer IDs and is used along with several introduced operators and optimiza-

tions. We evaluated SRX on LinkedGeoData (LGD) [LGD] and YAGO [YAG] RDF

datasets and compared its performance with the latest versions of Virtuoso [Vir],

GraphDB [Gra], and Strabon [KKK12]. The results show SRX’s superior perfor-

mance over the competitors; in regards to RDF-3X, SRX improves its performance

for queries with spatial predicates while incurring little overhead during updates.

The first problem we analyzed and studied in social domain was the Content-

Aware Influence Maximization (CAIM) problem. CAIM asks for the k features (or

attributes) that can form a post so as to make it viral in a social network, starting

its diffusion from the subscribers of the brand’s social network page. We proved

that the CAIM problem is NP-hard and inapproximable, and so we deployed an

efficient heuristic, Explore-Update, which uses bounded local arborescences to calculate
influence spread. Our experimental results on Gnutella1 and VK2 datasets show that

Explore-Update selects near-optimal feature sets, achieves 30% higher spread than

baselines, and runs an order of magnitude faster than the classic Greedy solution.
1https://snap.stanford.edu/data/p2p-Gnutella04.html
2https://vk.com/

135

7.2. Future Work

We also analyzed CAIM under adaptive settings, and so we studied the Adaptive

Content-Aware Influence Maximization (ACAIM) problem for online applicability to

social networks. ACAIM seeks for k features to form a post in each round so as to

maximize the cumulative influence of those posts over all rounds. To solve ACAIM,

we utilized an Online Learning to Rank (OLR) framework for IM purposes, we intro-

duced the Content-Aware TopRank Influence Dissemination (CATRID) propagation

model to enable OLR for ACAIM, we deployed a simulator to express a real feedback

environment for learners based on VK posts, and we developed three ACAIM learners

evaluated on several VK datasets. Our experimental results show the practical value

and suitability of ACAIM to social network industry.

The last problem we studied around social networks was to propose a content

recommendation policy to a brand agent/advertiser for Gaining Subscribers by Mes-

saging (GSM) over many rounds. To solve GSM, we find in each round, what content

features to publish and which users to notify of those features aiming to maximize

the cumulative subscription gain over all rounds. We deployed three GSM solvers,

named RANDOM, SCAN, and SUBSTITUTE and tested their performance on VK datasets.

Our experimental evaluation show that SUBSTITUTE clearly outperforms other solvers.

7.2 Future Work

In regards to SRX work, we plan to extend our update mechanism to support

online updates in the spirit of [NW10b] and extend our query optimizer to consider the

spatial distribution of entities that support a characteristic set [NM11]. A promising

research direction that we also plan to pursue is to investigate how our encoding-

based techniques can be adapted to distributed spatial analytics systems, such as

those in [PKNK18], to improve their performance.

In social domain around content-aware recommendation, for CAIM we plan to

study other propagation models and investigate the parallelization of Explore-Update,
for ACAIM our main target is to extend it further for loyalty marketing purposes

(e.g., gaining new subscribers over rounds), and for GSM we intend to apply our

solutions on larger user and feature sets and develop better solvers for such cases.

Also, there is a number of new spatio-social problems that we can analyze and

study based on the contributions of this thesis. For instance, we can solve ACAIM

focusing on brands that have physical stores (e.g., Starbucks, Zara), having as target

to maximize the influence over users for which we estimate that move around those

stores. The same spatial dimension can also be considered for the GSM problem where

the nearby users to the stores of brand will be notified earlier than more distant ones.

Lastly, another interesting direction is how to diversify the content we recommend

to brands so as to solve ACAIM and GSM with more fairness and naturalness.

136

Chapter 8

Appendix

Here, we present the Appendix of this thesis. It provides detailed information on

the datasets and benchmarks used in the experimental evaluation of Chapter 3. The

material is provided for reproducibility purposes and consists of three parts. First, we

give the spatial distribution of geometries in the two real datasets we used for query

evaluation. Second, we provide the exact queries for each system, including Virtuoso,

GraphDB, and Strabon. Third, we elaborate on the deltas extracted between different

versions of the two datasets, which we used to generate update workloads.

To the best of our knowledge, the benchmark we present here is the first one for

spatial RDF stores on real data. It includes: (i) a large collection of queries with

different spatial predicates and selectivities, and (ii) a configurable update workload

based on real changes in the two datasets over time.

8.1 Spatial distribution of geometries

Figures 8.1 and 8.2 show the density plots for the spatial distribution of geometries

in the following two datasets, which have been used in Section 3.8.2:

1. LinkedGeodata (LGD), as retrieved from https://tinyurl.com/yc4lxqdv.

2. YAGO2s 2.5.3 (YAGO), as retrieved from https://tinyurl.com/y7ukhge3.

8.2 Queries

We describe the exact range, join, and kNN queries used in Section 3.8.2. Each

query is uniquely identified by a QueryID, as used in this chapter. All queries can be

found at: https://web.imsi.athenarc.gr/SRX.

137

https://tinyurl.com/yc4lxqdv
https://tinyurl.com/y7ukhge3
https://web.imsi.athenarc.gr/SRX

8.2. Queries

8 6 4 2 0 2
longitude

50

52

54

56

58

60

62
la

ti
tu

d
e

25000

50000

75000

100000

125000

150000

175000

200000

225000

Figure 8.1: Spatial distribution of geometries in LGD. LGD contains geometries for entities

in the United Kingdom with highest density in the area around London.

100 0 100 200 300
longitude

150

100

50

0

50

la
ti

tu
d
e

50000

100000

150000

200000

250000

300000

350000

400000

Figure 8.2: Spatial distribution of geometries in YAGO. YAGO’s geometries spread all over

the globe with highest density in North America and Europe.

138

Chapter 8. Appendix

8.2.1 Spatial range queries

The spatial range queries for LGD follow the template:

Select ?s
Where ?s name ?n . ?s label ?l .

?s type [TYPE] . ?s hasGeometry ?g .

Filter WITHIN(?g, “RECTANGLE([MBR])”)

where [TYPE] and [MBR] are instantiated for each query as follows:

QueryID [TYPE] [MBR]

LGD.SL1 police -5,50,0,55

LGD.SL2 bus_stop -10,50,0,60

LGD.SL3* park -5,50,0,55

LGD.LS1 pub -5,45,0,50

LGD.LS2 bus_stop -10,45,-5,50

LGD.LS3* road -10,45,-5,50

LGD.SS1 restaurant -5,45,0,50

LGD.SS2* park -5,45,0,50

LGD.SS3* road -5,45,0,50

LGD.LL1 bus_stop -5,55,0,60

The spatial range queries for YAGO are given in Table 8.1:

Table 8.1: Spatial range queries for YAGO.

YAGO.SL1*

Select ?gn ?fn ?pr Where ?p hasGivenName ?gn .
?p hasFamilyName ?fn . ?p hasWonPrize ?pr .
?p diedIn ?c . ?c hasGeometry ?g .

Filter WITHIN(?g, “RECTANGLE(-100, 20, -80, 40)”)

YAGO.SL2*

Select ?gn ?fn Where ?p hasGivenName ?gn . ?p
hasFamilyName ?fn . ?p a Wordnet_scientist_110560637 .
?p wasBornIn ?c . ?c hasGeometry ?g .

Filter WITHIN(?g, “RECTANGLE(-95, 40, -90, 45)”)
YAGO.LS1*

Select ?p ?w Where ?p hasAcademicAdvisor ?a .
?a worksAt ?w . ?w isLocatedIn ?l .
?l hasGeometry ?g .

Filter WITHIN(?g, “RECTANGLE(-160, -50, -150, -40)”)

YAGO.LS2*

Select ?e ?c Where ?e happenedIn ?l .
?l a ?c . ?c subClassOf Wordnet_city_108524735 .
?l hasGeometry ?g .

Filter WITHIN(?g, “RECTANGLE(-130, 40, -120, 50)”)
YAGO.SS1*

Select ?gn ?fn Where ?p hasGivenName ?gn . ?p
hasFamilyName ?fn . ?p a Wordnet_scientist_110560637 .
?p wasBornIn ?c . ?c hasGeometry ?g .

Filter WITHIN(?g, “RECTANGLE(-105, 45, -100, 50)”)

YAGO.SS2*

Select ?p ?w Where ?p graduatedFrom ?u .
?p worksAt ?w . ?u isLocatedIn ?l .
?l hasGeometry ?g .

Filter WITHIN(?g, “RECTANGLE(-110, 50, -100, 60)”)
YAGO.LL1*

Select ?e ?c Where ?e happenedIn ?l .
?l a ?c . ?c subClassOf Wordnet_city_108524735 .
?l hasGeometry ?g .

Filter WITHIN(?g, “RECTANGLE(-90, 30, -80, 40)”)

YAGO.LL2*

Select ?p Where ?p hasArea ?a .
?p isLocatedIn ?l . ?l hasGeometry ?g .

Filter WITHIN(?g, “RECTANGLE(-100, 30, -90, 40)”)

8.2.2 Spatial distance join queries

The spatial distance join queries for LGD are given in Table 8.2:

The spatial distance join queries for YAGO are given in Table 8.3:

139

8.2. Queries

Table 8.2: Spatial distance join queries for LGD.

LGD.J1 (point-point)

Select ?s1 ?s2 Where ?s1 type hotel .
?s1 hasGeometry ?g1 . ?s2 type hotel .
?s2 hasGeometry ?g2 .

Filter DISTANCE(?g1,?g2) < “0.003”

LGD.J2 (point-point)

Select ?s1 ?s2 ?l1 ?l2 Where ?s1 name ?l1 .
?s1 label ?b1 . ?s1 type police . ?s1 hasGeometry ?g1 .
?s2 name ?l2 . ?s2 label ?b2 . ?s2 type police .
?s2 hasGeometry ?g2 .

Filter DISTANCE(?g1,?g2) < “0.01”

LGD.J3 (point-point)

Select ?s1 ?s2 Where ?s1 name ?l1 . ?s1 label ?b1 .
?s1 type pub . ?s1 hasGeometry ?g1 .
?s2 name ?l2 . ?s2 label ?b2 . ?s2 type police .
?s2 hasGeometry ?g2 .

Filter DISTANCE(?g1,?g2) < “0.02”

LGD.J4* (polygon-polygon)

Select ?s1 ?s2 Where ?s1 type park .
?s1 hasGeometry ?g1 . ?s2 type park .
?s2 hasGeometry ?g2 .

Filter DISTANCE(?g1,?g2) < “0.05”

LGD.J5* (point-polygon)

Select ?s1 ?s2 Where ?s1 label ?b1 . ?s1 type police .
?s1 hasGeometry ?g1 . ?s2 label ?b2 . ?s2 type park .
?s2 hasGeometry ?g2 .

Filter DISTANCE(?g1,?g2) < “0.01”

LGD.J6* (point-line), [EPS] ∈ {0.01,0.001,0.0005}
Select ?s1 ?s2 Where ?s1 label ?b1 .
?s1 type hotel . ?s1 hasGeometry ?g1 .
?s2 label ?b2 . ?s2 type road . ?s2 hasGeometry ?g2 .

Filter DISTANCE(?g1,?g2) < “[EPS]”

Table 8.3: Spatial distance join queries for YAGO.

YAGO.J1*

Select ?c1 ?c2 Where ?a1 hasAirportCode ?c1 .
?a1 hasGeometry ?g1 . ?a2 hasAirportCode ?c2 .
?a2 hasGeometry ?g2 .

Filter DISTANCE(?g1,?g2) < “0.1”

YAGO.J2*

Select ?p1 ?p2 Where ?p1 hasGivenName ?gn1 .
?p1 hasFamilyName ?fn1 . ?p1 hasWonPrize ?pr1 .
?p1 wasBornIn ?c1 . ?c1 hasGeometry ?g1 .
?p2 hasGivenName ?gn2 . ?p2 hasFamilyName ?fn2 .
?p2 hasWonPrize ?pr2 . ?p2 wasBornIn ?c2 .
?c2 hasGeometry ?g2 .

Filter DISTANCE(?g1,?g2) < “0.1”

YAGO.J3*

Select ?p ?c1 ?c2 Where ?p hasGivenName ?gn .
?p hasFamilyName ?fn . ?p actedIn ?m .

?m isLocatedIn ?c1 . ?c1 hasGeometry ?g1 .
?p wasBornIn ?c2 . ?c2 hasGeometry ?g2 .

Filter DISTANCE(?g1,?g2) < “0.1”

YAGO.J4*

Select ?p1 ?p2 Where ?p1 hasFamilyName ?fn1 .
?p1 wasBornIn ?c1 . ?c1 hasGeometry ?g1 .
?p1 isMarriedTo ?p2 . ?p2 wasBornIn ?c2 .
?c2 hasGeometry ?g2 .

Filter DISTANCE(?g1,?g2) < “0.1”

YAGO.J5*

Select ?p Where ?p hasFamilyName ?fn .
?p livesIn ?c1 . ?c1 hasGeometry ?g1 .
?p worksAt ?c2 . ?c2 hasGeometry ?g2 .

Filter DISTANCE(?g1,?g2) < “0.1”

YAGO.J6*

Select ?p1 ?p2 Where ?p1 hasGivenName ?gn1 .
?p1 hasFamilyName ?fn1 . ?p1 a Wordnet_scientist_110560637 .
?p1 wasBornIn ?c1 . ?c1 hasGeometry ?g1 .
?p2 hasGivenName ?gn2 . ?p2 hasFamilyName ?fn2 .
?p2 a Wordnet_scientist_110560637 .
?p2 diedIn ?c2 . ?c2 hasGeometry ?g2 .

Filter DISTANCE(?g1,?g2) < “0.1”

YAGO.J7*

Select ?p1 ?p2 Where ?p1 graduatedFrom ?u1 .
?u1 hasGeometry ?g1 . ?p2 actedIn ?m2 .
?m2 isLocatedIn ?l2 . ?l2 hasGeometry ?g2 .

Filter DISTANCE(?g1,?g2) < “0.1”

YAGO.J8*, [EPS] ∈ {0.1,0.01,0.001}
Select ?p1 ?p2 Where ?p1 worksAt ?w1 .
?w1 hasGeometry ?g1 . ?p2 worksAt ?w2 .
?w2 hasGeometry ?g2 .

Filter DISTANCE(?g1,?g2) < “[EPS]”

8.2.3 Spatial kNN queries for Encoding, Baseline, and Basic

The spatial kNN queries for LGD have the following template:

Select ?s
Where ?s name ?n . ?s label ?l .

?s type [TYPE] . ?s hasGeometry ?g .

140

Chapter 8. Appendix

Filter kNN(?g, “POINT([COORDS])”, k)

where k ∈ {5, 10, 20, 50, 100}, and [TYPE], [COORDS] are instantiated for each
query as follows:

QueryID [TYPE] [COORDS]

LGD.SL1 police -2.5, 52.5

LGD.SL2 bus_stop -5, 55

LGD.SL3* park -2.5, 52.5

LGD.LS1 pub -2.5, 47.5

LGD.LS2 bus_stop -7.5, 47.5

LGD.LS3* road -7.5, 47.5

LGD.SS1 restaurant -2.5, 47.5

LGD.SS2* park -2.5, 47.5

LGD.SS3* road -2.5, 47.5

LGD.LL1 bus_stop -2.5, 57.5

The spatial kNN queries for YAGO, where k ∈ {5, 10, 20, 50, 100}, are given in
Table 8.4:

Table 8.4: Spatial kNN queries for YAGO.

YAGO.SL1*

Select ?gn ?fn ?pr Where ?p hasGivenName ?gn .
?p hasFamilyName ?fn . ?p hasWonPrize ?pr .
?p diedIn ?c . ?c hasGeometry ?g .

Filter kNN(?g, “POINT(-90, 30)”, k)

YAGO.SL2*

Select ?gn ?fn Where ?p hasGivenName ?gn . ?p
hasFamilyName ?fn . ?p a Wordnet_scientist_110560637 .
?p wasBornIn ?c . ?c hasGeometry ?g .

Filter kNN(?g, “POINT(-92.5, 42.5)”, k)
YAGO.LS1*

Select ?p ?w Where ?p hasAcademicAdvisor ?a .
?a worksAt ?w . ?w isLocatedIn ?l .
?l hasGeometry ?g .

Filter kNN(?g, “POINT(-155, -45)”, k)

YAGO.LS2*

Select ?e ?c Where ?e happenedIn ?l .
?l a ?c . ?c subClassOf Wordnet_city_108524735 .
?l hasGeometry ?g .

Filter kNN(?g, “POINT(-125, 45)”, k)
YAGO.SS1*

Select ?gn ?fn Where ?p hasGivenName ?gn . ?p
hasFamilyName ?fn . ?p a Wordnet_scientist_110560637 .
?p wasBornIn ?c . ?c hasGeometry ?g .

Filter kNN(?g, “POINT(-102.5, 47.5)”, k)

YAGO.SS2*

Select ?p ?w Where ?p graduatedFrom ?u .
?p worksAt ?w . ?u isLocatedIn ?l .
?l hasGeometry ?g .

Filter kNN(?g, “POINT(-105, 55)”, k)
YAGO.LL1*

Select ?e ?c Where ?e happenedIn ?l .
?l a ?c . ?c subClassOf Wordnet_city_108524735 .
?l hasGeometry ?g .

Filter kNN(?g, “POINT(-85, 35)”, k)

YAGO.LL2*

Select ?p Where ?p hasArea ?a .
?p isLocatedIn ?l . ?l hasGeometry ?g .

Filter kNN(?g, “POINT(-95, 35)”, k)

8.2.4 Spatial kNN queries for Virtuoso

Virtuoso 7.2.5-rc1.3217-pthreads does not support nearest neighbor queries
per se, yet, some of these queries can be expressed using a combination of distance

filters and ordering. The spatial kNN queries we used for Virtuoso involve only point

queries as other geometries are not supported by the distance function in this version

of the system. In Virtuoso’s query language these queries for LGD follow the template:

Select ?s DISTANCE(?g, “POINT([COORDS])”)
Where ?s name ?n . ?s label ?l .

?s type [TYPE] . ?s hasGeometry ?g .

141

8.3. Deltas between different dataset versions

Filter WITHIN(?g, “POINT([COORDS])”, [RANGE])
Order By ASC 2
Limit k

where k ∈ {5, 10, 20, 50, 100}, and [TYPE], [COORDS] are instantiated for each
query as in Section 8.2.3 of this chapter. [RANGE] is measured in kilometers and

is the minimum distance so that each query returns 100 results. [RANGE] is set for

each query as follows:

QueryID [RANGE]

LGD.SL1 110

LGD.SL2 20

LGD.LS1 170

LGD.LS2 190

LGD.SS1 180

LGD.LL1 80

8.2.5 Spatial kNN queries for GraphDB and Strabon

Similarly to Virtuoso, GraphDB Free 8.6 and Strabon 3.3.2 do not support
nearest neighbor queries per se, however, both systems can express them using a

combination of distance filters and ordering. The spatial kNN queries for LGD in

GraphDB’s and Strabon’s query language follow the same template:

Select ?s
Where ?s name ?n . ?s label ?l .

?s type [TYPE] . ?s hasGeometry ?g .

Order By ASC
DISTANCE(?g, “POINT([COORDS])”)

Limit k

where k ∈ {5, 10, 20, 50, 100}, and [TYPE], [COORDS] are instantiated for each
query as in Section 8.2.3 of this chapter.

The spatial kNN queries for YAGO in GraphDB’s query language are given in

Table 8.5 with k ∈ {5, 10, 20, 50, 100}:

8.3 Deltas between different dataset versions

Here, we provide the exact differences (in number of triples) between versions:

1. 2013_04_29 and 2015_11_02 of LGD, as retrieved from https://tinyurl.com/
ydbscsxf.

142

https://tinyurl.com/ydbscsxf
https://tinyurl.com/ydbscsxf

Chapter 8. Appendix

Table 8.5: Spatial kNN queries for YAGO in GraphDB.

YAGO.SL1*

Select ?gn ?fn ?pr Where ?p hasGivenName ?gn .
?p hasFamilyName ?fn . ?p hasWonPrize ?pr .
?p diedIn ?c . ?c hasGeometry ?g .

Order By ASC DISTANCE(?g, “POINT(-90, 30)”)
Limit k

YAGO.SL2*

Select ?gn ?fn Where ?p hasGivenName ?gn . ?p
hasFamilyName ?fn . ?p a Wordnet_scientist_110560637 .
?p wasBornIn ?c . ?c hasGeometry ?g .

Order By ASC DISTANCE(?g, “POINT(-92.5, 42.5)”)
Limit k

YAGO.LS1*

Select ?p ?w Where ?p hasAcademicAdvisor ?a .
?a worksAt ?w . ?w isLocatedIn ?l .
?l hasGeometry ?g .

Order By ASC DISTANCE(?g, “POINT(-155, -45)”)
Limit k

YAGO.LS2*

Select ?e ?c Where ?e happenedIn ?l .
?l a ?c . ?c subClassOf Wordnet_city_108524735 .
?l hasGeometry ?g .

Order By ASC DISTANCE(?g, “POINT(-125, 45)”)
Limit k

YAGO.SS1*

Select ?gn ?fn Where ?p hasGivenName ?gn . ?p
hasFamilyName ?fn . ?p a Wordnet_scientist_110560637 .
?p wasBornIn ?c . ?c hasGeometry ?g .

Order By ASC DISTANCE(?g, “POINT(-102.5, 47.5)”)
Limit k

YAGO.SS2*

Select ?p ?w Where ?p graduatedFrom ?u .
?p worksAt ?w . ?u isLocatedIn ?l .
?l hasGeometry ?g .

Order By ASC DISTANCE(?g, “POINT(-105, 55)”)
Limit k

YAGO.LL1*

Select ?e ?c Where ?e happenedIn ?l .
?l a ?c . ?c subClassOf Wordnet_city_108524735 .
?l hasGeometry ?g .

Order By ASC DISTANCE(?g, “POINT(-85, 35)”)
Limit k

YAGO.LL2*

Select ?p Where ?p hasArea ?a .
?p isLocatedIn ?l . ?l hasGeometry ?g .

Order By ASC DISTANCE(?g, “POINT(-95, 35)”)
Limit k

2. 2.5.3 and 3.0.2 of YAGO, as retrieved from https://tinyurl.com/y7ukhge3.

which we used to generate the update workloads of Section 3.8.4 of this chapter. The

workloads can be found at: https://web.imsi.athenarc.gr/SRX.

Table 8.6: Deltas between LGD versions 2013_04_29 (14.7GB) and 2015_11_02 (21.6GB)
used for the update benchmark.

Category
Deleted triples Updated triples Inserted triples

HasGeometry Other HasGeometry Other HasGeometry Other

AerialwayThing_Nodes 2,265 19,761 12,640 61,878 22,799 198,796

AerialwayThing_Ways 1,126 15,329 9,419 38,345 9,486 94,979

AerowayThing_Nodes 7,860 95,947 7,366 53,177 18,488 174,201

AerowayThing_Ways 7,972 84,099 41,772 131,235 87,970 816,948

Amenity_Nodes 411,396 4,694,204 383,260 3,126,323 1,958,451 20,917,360

Amenity_Ways 168,547 2,381,609 465,889 1,913,576 1,705,501 19,771,641

Craft_Nodes 571 8,322 831 6,477 19,720 220,220

Craft_Ways 333 8,973 1,070 5,709 9,483 134,084

EmergencyThing_Nodes 4,996 107,124 9,631 197,532 369,059 4,031,998

EmergencyThing_Ways 3,002 62,098 9,412 42,782 26,342 442,821

HistoricThing_Nodes 11,783 241,258 20,013 191,571 170,642 1,459,176

HistoricThing_Ways 5,703 98,317 16,870 94,209 89,578 1,211,885

MilitaryThing_Nodes 472 5,968 583 6,345 11,282 147,547

MilitaryThing_Ways 732 12,412 2,155 9,376 10,062 122,245

Place_Nodes 72,941 10,117,063 183,472 5,211,302 930,603 10,494,621

Place_Ways 21,435 337,257 67,907 433,830 169,437 1,932,685

Shop_Nodes 79,362 948,495 115,006 999,194 678,149 7,271,373

Shop_Ways 21,683 1,300,070 59,325 205,847 242,059 906,075

TourismThing_Nodes 47,322 523,433 62,653 466,938 375,669 4,065,277

TourismThing_Ways 14,438 238,691 35,340 178,622 121,136 1,741,557

Total 883,939 21,300,430 1,504,614 13,374,268 7,025,916 76,155,489

143

https://tinyurl.com/y7ukhge3
https://web.imsi.athenarc.gr/SRX

8.3. Deltas between different dataset versions

Table 8.7: Deltas between YAGO versions 2.5.3 (18.1GB) and 3.0.2 (33.4GB) used for
the update benchmark.

Category
Deleted triples Updated triples Inserted triples

HasGeometry Other HasGeometry Other HasGeometry Other

yagoDBpediaClasses 0 381,887 0 0 0 500,640

yagoDBpediaInstances 0 85,949 0 0 0 2,637,748

yagoFacts 0 1,198,399 0 325 0 2,379,436

yagoGeonamesClasses 0 585 0 0 0 586

yagoGeonamesClassIds 0 0 0 0 0 1

yagoGeonamesData 473,999 6,661,873 1,693,055 0 2,973,857 21,919,394

yagoGeonamesEntityIds 0 106,133 0 0 0 117,579

yagoGeonamesGlosses 0 0 0 0 0 1

yagoImportantTypes 0 2,723,628 0 0 0 0

yagoLabels 0 6,941,073 0 1,601,561 0 36,642,854

yagoLiteralFacts 0 2,533,216 0 650 0 1,584,304

yagoMetaFacts 0 820,616 0 0 0 2,295,716

yagoMultilingualClassLabels 0 0 0 0 0 1

yagoMultilingualInstanceLabels 0 8,164,316 0 0 0 0

yagoSchema 0 10 0 24 0 133

yagoSimpleTaxonomy 0 5,670 0 0 0 474,817

yagoSimpleTypes 0 4,334,474 0 0 0 15,824,332

yagoSources 0 61,838,095 0 0 0 190,482,753

yagoStatistics 0 7 0 88 0 5

yagoTaxonomy 0 381,893 0 0 0 500,645

yagoTransitiveType 0 11,145,280 0 0 0 45,085,647

yagoTypes 0 8,274,938 0 0 0 16,182,189

yagoWikipediaInfo 0 16,347,220 0 0 0 36,167,000

yagoWordnetDomains 0 172 0 0 0 1

yagoWordnetIds 0 0 0 0 0 1

Total 473,999 131,945,434 1,693,055 1,602,648 2,973,857 372,795,783

Columns “HasGeometry” in Tables 8.6 and 8.7 show the numbers of 〈s, p, o〉 triples
where p = “hasGeometry”. These triples contain entity geometries as objects. The

respective numbers for the rest of the triples are given in columns “Other”.

For the update experiments with Strabon, which we present in Figure 3.11 of

chapter, we created two different subsets of LGD (2013_04_29) that we used in
Table 8.6. The first one corresponds to the initial base of Figure 3.11a, while the

second is a superset of the first and corresponds to the initial base of Figure 3.11b.

To form the initial base (a) in Figure 3.11a, we initially took the first 250 point

(Nodes) and 250 linestring (Ways) ‘HasGeometry’ triples, including all their related

‘Other’ triples, from each of the deleted, updated, and inserted LGD deltas in Ta-

ble 8.6. These are the deltas_a to apply on base (a) in Figure 3.11a. Then, we kept
from the initial version of LGD (2013_04_29) only the triples related to any spatial
entities found in deltas_a, and we formed the base (a) that contains 10K triples.
The initial base (b) in Figure 3.11b contains 100K triples, and is created simi-

larly. In this case, we picked the first 2500 point (Nodes) and 2500 linestring (Ways)

‘HasGeometry’ triples, including all their related ‘Other’ triples, from each of the

LGD deltas.

144

Bibliography

[ABBBY14] C. Aslay, N. Barbieri, F. Bonchi, and R. A. Baeza-Yates. Online topic-

aware influence maximization queries. In EDBT, pages 295–306, 2014.

[ACZH10] Medha Atre, Vineet Chaoji, Mohammed J. Zaki, and James A. Hendler.

Matrix “Bit” loaded: A scalable lightweight join query processor for RDF

data. In WWW, 2010.

[AGR17] Akhil Arora, Sainyam Galhotra, and Sayan Ranu. Debunking the myths

of influence maximization: An in-depth benchmarking study. In SIG-

MOD, pages 651–666, 2017.

[ALB+15] C. Aslay, W. Lu, F. Bonchi, A. Goyal, and Laks V.S. Lakshmanan. Viral

marketing meets social advertising: Ad allocation with minimum regret.

Proc. VLDB Endow., 8(7):814–825, 2015.

[AMMH07] Daniel J. Abadi, Adam Marcus, Samuel Madden, and Katherine J. Hol-

lenbach. Scalable semantic web data management using vertical parti-

tioning. In VLDB, 2007.

[AMS09] S. Aral, L. Muchnik, and A. Sundararajan. Distinguishing influence-

based contagion from homophily-driven diffusion in dynamic net-

works. Proc. of the National Academy of Sciences of the U.S.A.,

106(51):21544–21549, 2009.

[Ara11] S. Aral. Commentaty-Identifying social influence: A comment on opinion

leadership and social contagion in new product diffusion. Marketing

Science, 30(2):217–223, 2011.

[ATOR] Christopher R. Aberger, Susan Tu, Kunle Olukotun, and Christopher

Ré. Old techniques for new join algorithms: A case study in RDF pro-

cessing. In ICDE Workshops, 2016.

145

Bibliography

[ATOR16] Christopher R. Aberger, Susan Tu, Kunle Olukotun, and Christopher

Ré. Emptyheaded: A relational engine for graph processing. In SIG-

MOD, 2016.

[AW11] S. Aral and D. Walker. Creating social contagion through viral product

design: A randomized trial of peer influence in networks. Management

Science, 57(9):1623–1639, 2011.

[BAA11] Ceren Budak, Divyakant Agrawal, and Amr El Abbadi. Limiting the

spread of misinformation in social networks. In WWW, pages 665–674,

2011.

[BB14] N. Barbieri and F. Bonchi. Influence maximization with viral product

design. In SDM, 2014.

[BBCL14] C. Borgs, M. Brautbar, J. T. Chayes, and B. Lucier. Maximizing social

influence in nearly optimal time. In SODA, pages 946–957, 2014.

[BBM12] N. Barbieri, F. Bonchi, and G. Manco. Topic-aware social influence

propagation models. In ICDM, pages 81–90, 2012.

[BDK+13] Mihaela A. Bornea, Julian Dolby, Anastasios Kementsietsidis, Kavitha

Srinivas, Patrick Dantressangle, Octavian Udrea, and Bishwaranjan

Bhattacharjee. Building an efficient RDF store over a relational

database. In SIGMOD, 2013.

[BH05] J. A. Berger and C. Heath. Idea Habitats: How the prevalence of en-

vironmental cues influences the success of ideas. Cognitive Science,

29(2):195–221, 2005.

[BK12] R. Battle and Dave Kolas. Enabling the geospatial semantic web with

parliament and geosparql. Semantic Web, 3(4):355–370, 2012.

[BKS93] Thomas Brinkhoff, Hans-Peter Kriegel, and Bernhard Seeger. Efficient

processing of spatial joins using R-trees. In SIGMOD, 1993.

[BKvH01] J. Broekstra, A. Kampman, and F. van Harmelen. Sesame: An archi-

tecture for storing and querying RDF data and schema information. In

Semantics for the WWW. MIT Press, 2001.

[BNM10] Andreas Brodt, Daniela Nicklas, and Bernhard Mitschang. Deep inte-

gration of spatial query processing into native RDF triple stores. In

GIS, 2010.

146

Bibliography

[CDES05] Eugene Inseok Chong, Souripriya Das, George Eadon, and Jagannathan

Srinivasan. An efficient SQL-based RDF querying scheme. In VLDB,

2005.

[CFL+15] S. Chen, J. Fan, G. Li, J. Feng, K.-L. Tan, and J. Tang. Online topic-

aware influence maximization. Proc. VLDB Endow., 8(6):666–677, 2015.

[CK13] Yuxin Chen and Andreas Krause. Near-optimal batch mode active learn-

ing and adaptive submodular optimization. In ICML, pages 160–168,

2013.

[CLC13] Wei Chen, Laks V. S. Lakshmanan, and Carlos Castillo. Information

and Influence Propagation in Social Networks. Morgan & Claypool

Publishers, 2013.

[CLY14] W. Chen, T. Lin, and C. Yang. Efficient topic-aware influence maxi-

mization using preprocessing. CoRR, abs/1403.0057, 2014.

[CM13] I. P. Cvijikj and F. Michahelles. Online engagement factors on facebook

brand pages. Social Network Analysis and Mining, 3(4):843–861, 2013.

[CMdR15] Aleksandr Chuklin, Ilya Markov, and Maarten de Rijke. Click Models

for Web Search. Morgan and Claypool Publishers, 2015.

[CMPL15] Richard Combes, Stefan Magureanu, Alexandre Proutiére, and Cyrille

Laroche. Learning to rank: Regret lower bounds and efficient algorithms.

In SIGMETRICS, pages 231–244, 2015.

[CPL12] Y. -C. Chen, W. -C. Peng, and S. -Y. Lee. Efficient algorithms for influ-

ence maximization in social networks. Knowl. Inf. Syst., 33(3):577–601,

2012.

[CSH+14] S. Cheng, H. Shen, J. Huang, W. Chen, and X. Cheng. IMRank: influ-

ence maximization via finding self-consistent ranking. In SIGIR, pages

475–484, 2014.

[CWW10] W. Chen, C. Wang, and Y. Wang. Scalable influence maximization for

prevalent viral marketing in large-scale social networks. In KDD, pages

1029–1038, 2010.

[CWY13] Wei Chen, Yajun Wang, and Yang Yuan. Combinatorial multi-armed

bandit: General framework, results and applications. In ICML, pages

151–159, 2013.

147

Bibliography

[CWYW16] Wei Chen, Yajun Wang, Yang Yuan, and Qinshi Wang. Combinatorial

multi-armed bandit and its extension to probabilistically triggered arms.

JMLR, 17(1):1746–1778, 2016.

[CYZ10] W. Chen, Y. Yuan, and L. Zhang. Scalable influence maximization in

social networks under the linear threshold model. In ICDM, pages 88–97,

2010.

[CZTR08] Nick Craswell, Onno Zoeter, Michael Taylor, and Bill Ramsey. An ex-

perimental comparison of click position-bias models. In WSDM, pages

87–94, 2008.

[dBL01] C. Van den Bulte and G. L. Lilien. Medical innovation revisited: Social

contagion versus marketing effort. Am. J. Sociol., 106(5):1409–1435,

2001.

[DJK11] Balázs Dezső, Alpár Jüttner, and Péter Kovács. Lemon – an open source

c++ graph template library. ENTCS, 264(5):23–45, 2011.

[DR01] P. Domingos and M. Richardson. Mining the network value of customers.

In KDD, pages 57–66, 2001.

[dVGL12] L. de Vries, S. Gensler, and Peter S.H. Leeflang. Popularity of brand

posts on brand fan pages: An investigation of the effects of social media

marketing. Journal of Interactive Marketing, 26(2):83–91, 2012.

[EM16] Ahmed Eldawy and Mohamed F. Mokbel. The era of big spatial data:

A survey. Foundations and Trends in Databases, 6(3-4):163–273, 2016.

[GBL11] A. Goyal, F. Bonchi, and L. V. S. Lakshmanan. A data-based approach

to social influence maximization. PVLDB, 5(1):73–84, 2011.

[GCM+15] Artem Grotov, Aleksandr Chuklin, Ilya Markov, Luka Stout, Finde Xu-

mara, and Maarten de Rijke. A comparative study of click models for

web search. In CLEF, pages 78–90, 2015.

[GK11] Daniel Golovin and Andreas Krause. Adaptive submodularity: Theory

and applications in active learning and stochastic optimization. JAIR,

42(1):427–486, 2011.

[GM04] D. Godes and D. Mayzlin. Using online conversations to study word-of-

mouth communication. Marketing Science, 23(4):545–560, 2004.

[Gra] GraphDB. http://graphdb.ontotext.com.

148

Bibliography

[Gut84] Antonin Guttman. R-trees: A dynamic index structure for spatial

searching. In SIGMOD, 1984.

[GZZ+13] Jing Guo, Peng Zhang, Chuan Zhou, Yanan Cao, and Li Guo. Per-

sonalized influence maximization on social networks. In CIKM, pages

199–208, 2013.

[HD10] L. Hong and B. D. Davison. Empirical study of topic modeling in twitter.

In SOMA, pages 80–88, 2010.

[HHT05] Marios Hadjieleftheriou, Erik G. Hoel, and Vassilis J. Tsotras. Sail: A

spatial index library for efficient application integration. GeoInformat-

ica, 9(4):367–389, 2005.

[HS15] Thibaut Horel and Yaron Singer. Scalable methods for adaptively seed-

ing a social network. In WWW, pages 441–451, 2015.

[HSCJ12] Xinran He, Guojie Song, Wei Chen, and Qingye Jiang. Influence block-

ing maximization in social networks under the competitive linear thresh-

old model. In SDM, pages 463–474, 2012.

[HTH+20] Keke Huang, Jing Tang, Kai Han, Xiaokui Xiao, Wei Chen, Aixin Sun,

Xueyan Tang, and Andrew Lim. Efficient approximation algorithms for

adaptive influence maximization. VLDBJ, 29(6):1385–1406, 2020.

[ITTK17] Sergei Ivanov, Konstantinos Theocharidis, Manolis Terrovitis, and Pana-

giotis Karras. Content recommendation for viral social influence. In

SIGIR, pages 565–574, 2017.

[Kat59] E. Katz. Mass communications research and the study of popular cul-

ture: An editorial note on a possible future of this journal. Studies in

Public Communication, 2:1–6, 1959.

[KK10] Manolis Koubarakis and Kostis Kyzirakos. Modeling and querying meta-

data in the semantic sensor web: The model stRDF and the query lan-

guage stSPARQL. In ESWC, 2010.

[KKK12] Kostis Kyzirakos, Manos Karpathiotakis, and Manolis Koubarakis. Stra-

bon: A semantic geospatial DBMS. In ISWC, 2012.

[KKSW16] Sumeet Katariya, Branislav Kveton, Csaba Szepesvári, and Zheng Wen.

DCM bandits: Learning to rank with multiple clicks. In ICML, pages

1215–1224, 2016.

149

Bibliography

[KKT03] D. Kempe, J. Kleinberg, and E. Tardos. Maximizing the spread of

influence through a social network. In KDD, 2003.

[KLK20] Ansh Khurana, Alvis Logins, and Panagiotis Karras. Selecting influ-

ential features by a learnable content-aware linear threshold model. In

CIKM, page 635–644, 2020.

[KN11] Brian Karrer and M. E. J. Newman. Stochastic blockmodels and com-

munity structure in networks. Phys. Rev. E, 83:016107, Jan 2011.

[KSWA15] Branislav Kveton, Csaba Szepesvári, Zheng Wen, and Azin Ashkan. Cas-

cading bandits: Learning to rank in the cascade model. In ICML, pages

767–776, 2015.

[KWAS15] Branislav Kveton, Zheng Wen, Azin Ashkan, and Csaba Szepesvári.

Combinatorial cascading bandits. In NeurIPS, pages 1450–1458, 2015.

[LCCM19] Paul Lagrée, Olivier Cappé, Bogdan Cautis, and Silviu Maniu. Algo-

rithms for online influencer marketing. TKDD, 13(1):1–30, 2019.

[LCXZ12] Bo Liu, Gao Cong, Dong Xu, and Yifeng Zeng. Time constrained influ-

ence maximization in social networks. In ICDM, pages 439–448, 2012.

[LFWT18] Yuchen Li, Ju Fan, Yanhao Wang, and Kian-Lee Tan. Influence maxi-

mization on social graphs: A survey. TKDE, 30(10):1852–1872, 2018.

[LGD] Linkedgeodata. http://linkedgeodata.org/About.

[LKG+07] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. M. VanBriesen,

and N. S. Glance. Cost-effective outbreak detection in networks. In

KDD, pages 420–429, 2007.

[LKLS18] Tor Lattimore, Branislav Kveton, Shuai Li, and Csaba Szepesvári.

TopRank: A practical algorithm for online stochastic ranking. In

NeurIPS, pages 3949–3958, 2018.

[LLS19] Shuai Li, Tor Lattimore, and Csaba Szepesvári. Online learning to rank

with features. In ICML, pages 3856–3865, 2019.

[LMBT14] John Liagouris, Nikos Mamoulis, Panagiotis Bouros, and Manolis Ter-

rovitis. An effective encoding scheme for spatial RDF data. Proc. VLDB

Endow., 7(12):1271–1282, 2014.

[LMM+15] Siyu Lei, Silviu Maniu, Luyi Mo, Reynold Cheng, and Pierre Senellart.

Online influence maximization. In KDD, pages 645–654, 2015.

150

Bibliography

[LR96] Ming-Ling Lo and Chinya V. Ravishankar. Spatial hash-joins. In SIG-

MOD, 1996.

[LVC16] Paul Lagrée, Claire Vernade, and Olivier Cappé. Multiple-play bandits

in the position-based model. In NeurIPS, pages 1605–1613, 2016.

[LWZC16] Shuai Li, Baoxiang Wang, Shengyu Zhang, and Wei Chen. Contextual

combinatorial cascading bandits. In ICML, pages 1245–1253, 2016.

[LZT15] Y. Li, D. Zhang, and K.-L. Tan. Real-time targeted influence maximiza-

tion for online advertisements. Proc. VLDB Endow., 8(10):1070–1081,

2015.

[Mam11] Nikos Mamoulis. Spatial Data Management. Morgan & Claypool Pub-

lishers, 2011.

[Man93] C. F. Manski. Identification of endogenous social effects: The reflection

problem. The Review of Economic Studies, 60(3):531–542, 1993.

[MHP05] Kyriakos Mouratidis, Marios Hadjieleftheriou, and Dimitris Papadias.

Conceptual partitioning: An efficient method for continuous nearest

neighbor monitoring. In SIGMOD, 2005.

[MP03] Nikos Mamoulis and Dimitris Papadias. Slot index spatial join. TKDE,

15(1):211–231, 2003.

[NDT16] Hung T. Nguyen, Thang N. Dinh, and My T. Thai±. Cost-aware tar-

geted viral marketing in billion-scale networks. In IEEE International

Conference on Computer Communications, pages 1–9, 2016.

[NM11] Thomas Neumann and Guido Moerkotte. Characteristic sets: Accurate

cardinality estimation for RDF queries with multiple joins. In ICDE,

2011.

[NVDV18] Panagiotis Nikitopoulos, Akrivi Vlachou, Christos Doulkeridis, and

George A. Vouros. DiStRDF: Distributed spatio-temporal RDF queries

on Spark. In EDBT/ICDT, 2018.

[NW08] Thomas Neumann and Gerhard Weikum. RDF-3X: A RISC-style engine

for RDF. Proc. VLDB Endow., 1(1):647–659, 2008.

[NW09] Thomas Neumann and Gerhard Weikum. Scalable join processing on

very large RDF graphs. In SIGMOD, 2009.

151

Bibliography

[NW10a] Thomas Neumann and Gerhard Weikum. The RDF-3X engine for scal-

able management of RDF data. VLDB J., 19(1):91–113, 2010.

[NW10b] Thomas Neumann and Gerhard Weikum. x-RDF-3X: Fast querying,

high update rates, and consistency for RDF databases. Proc. VLDB

Endow., 3(1-2):256–263, 2010.

[Ö16] M. Tamer Özsu. A survey of RDF data management systems. Front.

Comput. Sci., 10(3):418–432, 2016.

[Par] Parliament. http://parliament.semwebcentral.org.

[Pei15] Tiago P. Peixoto. Model selection and hypothesis testing for large-scale

network models with overlapping groups. Phys. Rev. X, 5, 2015.

[PGA14] Kostas Patroumpas, Giorgos Giannopoulos, and Spiros Athanasiou. To-

wards geospatial semantic data management: Strengths, weaknesses,

and challenges ahead. In GIS, 2014.

[PKNK18] Varun Pandey, Andreas Kipf, Thomas Neumann, and Alfons Kemper.

How good are modern spatial analytics systems? Proc. VLDB Endow.,

11(11):1661–1673, 2018.

[RD02] M. Richardson and P. Domingos. Mining knowledge-sharing sites for

viral marketing. In KDD, pages 61–70, 2002.

[RDR07] Matthew Richardson, Ewa Dominowska, and Robert Ragno. Predicting

clicks: Estimating the click-through rate for new ads. In WWW, pages

521–530, 2007.

[SHYC18] Lichao Sun, Weiran Huang, Philip S. Yu, and Wei Chen. Multi-round

influence maximization. In KDD, pages 2249–2258, 2018.

[SS13] Lior Seeman and Yaron Singer. Adaptive seeding in social networks. In

FOCS, pages 459–468, 2013.

[TWTD17] Guangmo Tong, Weili Wu, Shaojie Tang, and Ding-Zhu Du. Adaptive

influence maximization in dynamic social networks. IEEE/ACM Trans-

actions on Networking, 25(1):112–125, 2017.

[TXS14] Y. Tang, X. Xiao, and Y. Shi. Influence maximization: near-optimal

time complexity meets practical efficiency. In SIGMOD, pages 75–86,

2014.

152

Bibliography

[Vir] Virtuoso. http://virtuoso.openlinksw.com.

[VKW+17] Sharan Vaswani, Branislav Kveton, Zheng Wen, Mohammad

Ghavamzadeh, Laks V.S. Lakshmanan, and Mark Schmidt. Model-

independent online learning for influence maximization. In ICML,

pages 3530–3539, 2017.

[VLS16] Sharan Vaswani, Laks V.S. Lakshmanan, and Mark Schmidt. Influence

maximization with bandits, 2016.

[WFLT17] Yanhao Wang, Qi Fan, Yuchen Li, and Kian-Lee Tan. Real-time influ-

ence maximization on dynamic social streams. PVLDB, 10(7):805–816,

2017.

[WKB08] Cathrin Weiss, Panagiotis Karras, and Abraham Bernstein. Hexastore:

Sextuple indexing for semantic web data management. Proc. VLDB

Endow., 1(1):1008–1019, 2008.

[WKC12] Chih-Jye Wang, Wei-Shinn Ku, and Haiquan Chen. Geo-store: A

spatially-augmented sparql query evaluation system. In GIS, 2012.

[WKVV17] Zheng Wen, Branislav Kveton, Michal Valko, and Sharan Vaswani. On-

line influence maximization under independent cascade model with semi-

bandit feedback. In NeurIPS, pages 1–24, 2017.

[WLW+19] Qingyun Wu, Zhige Li, Huazheng Wang, Wei Chen, and Hongning

Wang. Factorization bandits for online influence maximization. In KDD,

pages 636–646, 2019.

[WSKR03] Kevin Wilkinson, Craig Sayers, Harumi A. Kuno, and Dave Reynolds.

Efficient RDF storage and retrieval in Jena2. In SWDB, 2003.

[WZF+13] Dong Wang, Lei Zou, Yansong Feng, Xuchuan Shen, Jilei Tian, and

Dongyan Zhao. S-store: An engine for large RDF graph integrating

spatial information. In DASFAA, 2013.

[YAG] YAGO. https://en.wikipedia.org/wiki/YAGO_(database).

[YLL12] Mao Ye, Xingjie Liu, and Wang-Chien Lee. Exploring social influence

for recommendation: A generative model approach. In SIGIR, pages

671–680, 2012.

[YLW+13] Pingpeng Yuan, Pu Liu, Buwen Wu, Hai Jin, Wenya Zhang, and Ling

Liu. TripleBit: A fast and compact system for large scale RDF data.

Proc. VLDB Endow., 6(7):517–528, 2013.

153

Bibliography

[YT17] Jing Yuan and Shaojie Tang. No time to observe: Adaptive influence

maximization with partial feedback. In IJCAI, page 3908–3914, 2017.

[YWZ+09] Ying Yan, Chen Wang, Aoying Zhou, Weining Qian, Li Ma, and Yue

Pan. Efficient indices using graph partitioning in RDF triple stores. In

ICDE, 2009.

[ZMC+11] Lei Zou, Jinghui Mo, Lei Chen, M. Tamer Özsu, and Dongyan Zhao.

gStore: Answering SPARQL queries via subgraph matching. Proc.

VLDB Endow., 4(8):482–493, 2011.

[ZNS+16] Shi Zong, Hao Ni, Kenny Sung, Nan Rosemary Ke, Zheng Wen, and

Branislav Kveton. Cascading bandits for large-scale recommendation

problems. In UAI, pages 835–844, 2016.

[ZTG+17] Masrour Zoghi, Tomas Tunys, Mohammad Ghavamzadeh, Branislav

Kveton, Csaba Szepesvári, and Zheng Wen. Online learning to rank

in stochastic click models. In ICML, pages 4199–4208, 2017.

[ZYW+13] Kai Zeng, Jiacheng Yang, Haixun Wang, Bin Shao, and Zhongyuan

Wang. A distributed graph engine for web scale RDF data. Proc.

VLDB Endow., 6(4):265–276, 2013.

154

	Abstract
	Περίληψη
	Introduction
	Spatial Data
	Social Data
	Contributions
	Organization

	Related Work
	RDF Indexing, Querying, and Spatial Support
	Influence Maximization and Variants
	Online Learning to Rank

	SRX: Efficient Management of Spatial RDF Data
	Introduction
	Preliminaries
	A Basic Spatial Extension
	Encoding the Spatial Dimension
	Query Evaluation
	Spatial Range Filtering
	Spatial Join Filtering
	Spatial Merge Join on Encoded Entities
	Spatial Hash Join on Encoded Entities
	Spatial kNN on Encoded Entities

	Query Optimization
	Augmenting the Query Graph
	Spatial Join Operators
	Spatial Query Optimization
	Selectivity Estimation
	Runtime Optimizations

	Updates
	Experimental Evaluation
	Queries Setup
	Queries Comparison
	Updates Setup
	Updates Comparison

	Conclusion

	Content Recommendation for Viral Social Influence
	Introduction
	Motivation
	Idea Habitats
	Digital Influence
	Distinctiveness

	Problem Statement
	Content-Aware Cascade Model
	Content-Aware Influence Maximization

	Hardness and Inapproximability
	The Explore-Update Algorithm
	Experimental Study
	Influence spread
	Runtime
	Effect of Seed Size
	Effect of
	Comparison to the Optimal Solution
	Real-World Examples

	Conclusion

	Adaptive Content-Aware Influence Maximization through Online Learning to Rank with Business Analytics
	Introduction
	Problem Statement
	TRM Click Model in Social Networks
	CATRID Propagation Model
	ACAIM Problem

	CATRID Simulator
	ACAIM Learners
	The Learner RANDOM
	The Learner TRIM_C
	The Learner TRIM_E

	Experimental Evaluation
	Setup
	Reliability
	Scalability
	Business Applicability

	Conclusion

	A Content Recommendation Policy for Gaining Subscribers
	Introduction
	GSM Solvers
	The Solver RANDOM
	The Solver SCAN
	The Solver SUBSTITUTE

	Experimental Evaluation
	Setup
	Results

	Conclusion

	Conclusion
	Summary
	Future Work

	Appendix
	Spatial distribution of geometries
	Queries
	Spatial range queries
	Spatial distance join queries
	Spatial kNN queries for Encoding, Baseline, and Basic
	Spatial kNN queries for Virtuoso
	Spatial kNN queries for GraphDB and Strabon

	Deltas between different dataset versions

	Bibliography

