
UNIVERSITY OF THE PELOPONNESE & NCSR “DEMOCRITOS”

MSC PROGRAMME IN DATA SCIENCE

Comparison of full-text search performance

in relational and non-relational database systems

by

Georgios Fotopoulos

A thesis submitted in partial fulfillment

of the requirements for the MSc

in Data Science

Supervisor: Christos Tryfonopoulos, Associate Professor

Examination Committee: Spiros Skiadopoulos, Professor

 Anastasia Krithara, Post-Doctoral Researcher

Athens, November 2022

Comparison of full-text search performance in relational and non-relational database

systems

Georgios Fotopoulos

MSc. Thesis, MSc. Programme in Data Science

University of the Peloponnese & NCSR “Democritos”, November 2022

Copyright © 2022 Georgios Fotopoulos. All Rights Reserved.

UNIVERSITY OF THE PELOPONNESE & NCSR “DEMOCRITOS”

MSC PROGRAMME IN DATA SCIENCE

Comparison of full-text search performance

in relational and non-relational database systems

by

Georgios Fotopoulos

A thesis submitted in partial fulfillment

of the requirements for the MSc

in Data Science

Supervisor: Christos Tryfonopoulos, Associate Professor

Examination Committee: Spiros Skiadopoulos, Professor

 Anastasia Krithara, Post-Doctoral Researcher

Approved by the examination committee on November, 2022.

(Signature) (Signature) (Signature)

. .

Christos Tryfonopoulos Spiros Skiadopoulos Anastasia Krithara

Associate Professor Professor Post-Doctoral Researcher

Athens, November 2022

UNIVERSITY OF THE PELOPONNESE & NCSR “DEMOCRITOS”

MSC PROGRAMME IN DATA SCIENCE

Declaration of Authorship

(1) I declare that this thesis has been composed solely by myself and that it has

not been submitted, in whole or in part, in any previous application for a

degree. Except where states otherwise by reference or acknowledgment, the

work presented is entirely my own.

(2) I confirm that this thesis presented for the degree of Bachelor of Science in

Informatics and Telecommunications, has

(i) been composed entirely by myself

(ii) been solely the result of my own work

(iii) not been submitted for any other degree or professional qualification

(3) I declare that this thesis was composed by myself, that the work contained

herein is my own except where explicitly stated otherwise in the text, and

that this work has not been submitted for any other degree or processional

qualification except as specified.

(Signature)

.

Georgios Fotopoulos

Athens, November 2022

Acknowledgments

I would like to express my gratitude to my professor and primary supervisor Mr.

Christos Tryfonopoulos, for his guidance and feedback throughout this project.

I would also like to thank my friends and family who supported me and offered deep

insight into the study.

- 7 -

To my family.

Abstract

I
n this work, we aim to compare and report the performance between relational

and non-relational database systems in text retrieval, and more specifically in

full-text search. This comparative study is focused on the characteristics of some

of the most popular database management systems, regarding the overall perfor-

mance when querying text documents. We also pose and highlight the features, the

technical specifications and the differences of the database systems, through several

comparative tests and theoretical exploration.

For the evaluation of the perfomance in full-text search, both relational and non-

relational database systems have been selected to be compared in this study. Our

research comprises of studying PostgreSQL on the one hand, as a representative

system from the relational database systems family, wich supports a wide variety

of full-text search capabilities and advanced features, while on the other hand, we

study non-relational databases like MongoDB, Apache Solr and Elasticsearch.

Our findings indicate that non-relational and text search database systems pro-

vide a trustworthy alternative in full-text search, regardless the amount of data they

operate with, where on the other hand, the relational models are sensitive to their

parameters as it can operate well under specific conditions.

- 9 -

- 10 -

Contents

List of Tables iii

List of Figures iv

List of Abbreviations ix

1 Introduction 1

1.1 Problem description 2

1.2 Thesis structure 3

2 Related Work 5

3 Theory and Definitions 9

3.1 Theoretical background 9

3.1.1 Relational database systems (SQL) 10

3.1.2 Non-relational database systems (NoSQL) 12

3.1.3 Text search systems 16

4 Experimental Evaluation 19

4.1 Creating databases and indexing data 19

4.2 Experimental setup 22

4.2.1 Datasets and data processing 22

4.2.2 Full-text search queries 26

4.2.3 Technical configurations 31

4.3 Comparing querying time 32

- i -

CONTENTS

4.3.1 Exact phrase matching 32

4.3.2 Wildcards search 40

4.3.3 Conjunctive queries 46

4.3.4 Extended conjunctive queries 52

4.3.5 Selectivity 60

4.3.6 Query operations 73

4.4 Comparing data insertion time 80

4.5 Comparing memory usage 85

5 Conclusions and Future Work 89

- ii -

List of Tables

1.1 Relational vs non-relational databases. 2

3.1 Postgres text search operators. 12

4.1 Datasets key characteristics. 23

4.2 Large, medium and small datasets characteristics. 25

4.3 Keywords with the most frequent occurence. 26

4.4 Collocations. 27

4.5 Selectivity. 28

- iii -

- iv -

List of Figures

4.1 Exact phrase matching Crossref total. 33

4.2 Exact phrase matching Yelp reviews. 34

4.3 Exact phrase matching Crossref title. 34

4.4 Postgres Exact phrase matching. 35

4.5 Mongo Exact phrase matching. 35

4.6 Elasticsearch Exact phrase matching. 36

4.7 Solr Exact phrase matching. 36

4.8 Postgres GIN index Crossref total. 37

4.9 Postgres GIN index Yelp reviews. 37

4.10 Postgres GIN index Crossref title. 38

4.11 Exact phrase matching Crossref total (small selectivity). 39

4.12 Exact phrase matching Yelp reviews (small selectivity). 39

4.13 Exact phrase matching Crossref title (small selectivity). 40

4.14 Wildcards search Crossref total. 41

4.15 Wildcards search Yelp reviews. 42

4.16 Wildcards search Crossref title. 42

4.17 Postgres Wildcards search. 43

4.18 Mongo Wildcards search. 43

4.19 Elasticsearch Wildcards search. 44

4.20 Solr Wildcards search. 44

- v -

LIST OF FIGURES

4.21 Wildcards search Crossref total (small selectivity). 45

4.22 Wildcards search Yelp reviews (small selectivity). 45

4.23 Wildcards search Crossref title (small selectivity). 46

4.24 Conjunctive queries Crossref total. 47

4.25 Conjunctive queries Yelp reviews. 48

4.26 Conjunctive queries Crossref title. 48

4.27 Postgres Conjunctive queries. 49

4.28 Mongo Conjunctive queries. 49

4.29 Elasticsearch Conjunctive queries. 50

4.30 Solr Conjunctive queries. 50

4.31 Conjunctive queries Crossref total (small selectivity). 51

4.32 Conjunctive queries Yelp reviews (small selectivity). 51

4.33 Conjunctive queries Crossref title (small selectivity). 52

4.34 Postgres Extended Conjunctive queries Crossref total. 54

4.35 Mongo Extended Conjunctive queries Crossref total. 54

4.36 Elasticsearch Extended Conjunctive queries Crossref total. 55

4.37 Solr Extended Conjunctive queries Crossref total. 55

4.38 Postgres Extended Conjunctive queries Yelp reviews. 56

4.39 Mongo Extended Conjunctive queries Yelp reviews. 56

4.40 Elasticsearch Extended Conjunctive queries Yelp reviews. 57

4.41 Solr Extended Conjunctive queries Yelp reviews. 57

4.42 Postgres Extended Conjunctive queries Crossref title. 58

4.43 Mongo Extended Conjunctive queries Crossref title. 58

4.44 Elasticsearch Extended Conjunctive queries Crossref title. 59

4.45 Solr Extended Conjunctive queries Crossref title. 59

4.46 Postgres Selectivity Exact phrase matching Crossref total. 61

4.47 Mongo Selectivity Exact phrase matching Crossref total. 61

- vi -

LIST OF FIGURES

4.48 Elasticsearch Selectivity Exact phrase matching Crossref total. 62

4.49 Solr Selectivity Exact phrase matching Crossref total. 62

4.50 Postgres Selectivity Exact phrase matching Yelp reviews. 63

4.51 Mongo Selectivity Exact phrase matching Yelp reviews. 63

4.52 Elasticsearch Selectivity Exact phrase matching Yelp reviews. 64

4.53 Solr Selectivity Exact phrase matching Yelp reviewss. 64

4.54 Postgres Selectivity Exact phrase matching Crossref title. 65

4.55 Mongo Selectivity Exact phrase matching Crossref title. 65

4.56 Elasticsearch Selectivity Exact phrase matching Crossref title. 66

4.57 Solr Selectivity Exact phrase matching Crossref title. 66

4.58 Postgres Selectivity Conjunctive queries Crossref total. 67

4.59 Mongo Selectivity Conjunctive queries Crossref total. 68

4.60 Elasticsearch Selectivity Conjunctive queries Crossref total. 68

4.61 Solr Selectivity Conjunctive queries Crossref total. 69

4.62 Postgres Selectivity Conjunctive queries Yelp reviews. 69

4.63 Mongo Selectivity Conjunctive queries Yelp reviews. 70

4.64 Elasticsearch Selectivity Conjunctive queries Yelp reviews. 70

4.65 Solr Selectivity Conjunctive queries Yelp reviewss. 71

4.66 Postgres Selectivity Conjunctive queries Crossref title. 71

4.67 Mongo Selectivity Conjunctive queries Crossref title. 72

4.68 Elasticsearch Selectivity Conjunctive queries Crossref title. 72

4.69 Solr Selectivity Conjunctive queries Crossref title. 73

4.70 Postgres Query operations Crossref total. 74

4.71 Mongo Query operations Crossref total. 75

4.72 Elasticsearch Query operations Crossref total. 75

4.73 Solr Query operations Crossref total. 76

4.74 Postgres Query operations Yelp reviews. 76

- vii -

LIST OF FIGURES

4.75 Mongo Query operations Yelp reviews. 77

4.76 Elasticsearch Query operations Yelp reviews. 77

4.77 Solr Query operations Yelp reviews. 78

4.78 Postgres Query operations Crossref title. 78

4.79 Mongo Query operations Crossref title. 79

4.80 Elasticsearch Query operations Crossref title. 79

4.81 Solr Query operations Crossref title. 80

4.82 Data insertion time Crossref total. 81

4.83 Data insertion time Yelp reviews. 81

4.84 Data insertion time Crossref title. 82

4.85 Postgres Data insertion time. 83

4.86 Mongo Data insertion time. 83

4.87 Elasticsearch Data insertion time. 84

4.88 Solr Data insertion time. 84

4.89 Memory usage (indexing) Crossref total. 85

4.90 Memory usage (indexing) Yelp reviews. 86

4.91 Memory usage (indexing) Crossref title. 86

4.92 Memory usage (querying) Crossref total. 87

4.93 Memory usage (querying) Yelp reviews. 87

4.94 Memory usage (querying) Crossref title. 88

- viii -

List of Abbreviations

DBA Database Administrator

RDBMS Relational Database Management System

SQL Structured Query Language

NoSQL Not Only Structured Query Language

CRUD Create, Read, Update, Delete

ACID Atomicity, Consistency, Isolation, Durability

JSON Javascript Object Notation

XML Extensible Markup Language

OLAP Online Analytical Processing

OLTP Online Transaction Processing

DWH Data Warehouse

HTTP Hypertext Transfer Protocol

API Application Programming Interface

DSL Domain Specific Language

REST Representational State Transfer

GIN Generalized Inverted Index

GiST Generalized Search Tree

- ix -

LIST OF ABBREVIATIONS

- x -

Chapter 1

Introduction

In text retrieval, full-text search refers to techniques for searching a single computer-

stored document or a collection in a database. In a full-text search, a search engine

examines all of the words in every stored document as it tries to match search crite-

ria [1]. Full-text queries, while been executed in several types of database systems,

perform linguistic searches against text data, by operating on words and phrases

based on particular rules. Full-text queries can include simple words and phrases or

multiple forms of a word or phrase and return any documents that contain at least

one match [2].

Relational databases excel at storing and manipulating structured data – any-

thing that is in a table format of rows and columns. They support flexible search of

multiple record types for specific values of specific fields, and can be great for quickly

and securely updating specific individual records. However, some of the fields in a

database’s records can be free-form text (like a product description). Most rela-

tional databases provide support for doing keyword searching on these unstructured

fields. But, the relevancy ranking of results coming out of a database do not have

the same quality or sophistication as the best full-text search systems. Further,

unless the Database Administrator (DBA) knows what questions the user will ask,

the performance of a Relational Database Management System (RDBMS) will be

quite slow and provide a poor user experience.

Text search systems and non-relational databases on the other hand, are better

- 1 -

1.1 : Problem description

for quickly searching high volumes of structured, unstructured, or semi-structured

data according to a specific word, bag of words or phrase. They provide rich text

search capabilities and sophisticated relevancy ranking for ordering results on how

well they match a potentially “fuzzy” search query (words that don’t quite match,

like typos or homonyms).

Some key differences between relational and non-relational database systems are

summarized in Table 1.1.

Type Relational Non-relational

Language Structured Query Language Unstructured Query Language

Data Data stored in Tables, Columns,
Rows

Data stored in Collections, Fields,
Documents

Schema Static Dynamic

Structure Table-based Document-based, key-value pairs,
graph databases, wide-column
stores

Scalability Vertically scalable Horizontally scalable

Flexibility Rigid schema bound to relation-
ship

Non-rigid schema and flexible

Transaction ACID properties CAP theorem

Table 1.1: Relational vs non-relational databases.

In this work, we aim to present a comparative study between relational and non-

relational database models, highlighting the overall characteristics of each database

technology in text retrieval, especially for non-relational systems as a new solution

over relational databases.

1.1 Problem description

Experimenting with the performance of and comparing SQL and NoSQL databa-

ses, have been made in various research papers. Both advantages and disadvantages,

as well as the overall features for each of the systems, have been posed and high-

lighted through several studies. In their survey, Nayak et al. [3], analyze the different

types and characteristics of NoSQL database systems, and list their advantages and

disadvantages over relational databases whereas in [4] and [5], the authors conduct

- 2 -

Chapter 1 : Introduction

a survey addressing the concepts of NoSQL databases, their main application areas

and the security issues concerning these databases, compared with the traditional

relational models.

But what is the performance of the database systems when it comes to execute

queries in large amount of unstructured textual data? How much time is needed for

such operations and what is the cost? Can relational databases perform as well as

non-relational and text search systems do, in terms of time saving?

In the light of the above, we concentrate in this work on textual performance in

an attempt to answer the above research questions by executing full-text queries on

datasets of varying sizes, on both relational and on non-relational databases, thus

presenting the results obtained during performance comparison tests.

1.2 Thesis structure

This document is structured as follows. On Chapter 2 we review related work by

looking at related papers and other surveys comparing relational and non-relational

database management systems. On Chapter 3 we outline some useful definitions

and theory about the relational and non-relational models including the systems

that we study. On Chapter 4 we present the experimental setup giving an overview

of the datasets and the full-text queries that we use in our experiments, we describe

the technical specifications of each one of the systems that we examine, we discuss

the databases and the indices structure, and we present the experimental results of

our study. Finally, on Chapter 5, we outline the conclusions and the future work

that arises from them.

- 3 -

1.2 : Thesis structure

- 4 -

Chapter 2

Related Work

The vast majority of databases can be categorized as either relational or non-

relational, with the main difference between these to be the way they store in-

formation. For several years, relational databases are accepted as the traditional

database systems for storage. However, with the increase of the internet usage and

the huge amounts of structured, semi-structured and unstructured data that are be-

ing produced in a daily basis, a need for an alternative, like non-relational systems,

is essential.

Relational models represent how data is stored in relational databases. A rela-

tional database stores data in the form of relations (tables of values). Every row

in a table represents a collection of related data values and the columns of a table

hold attributes of the data. A system used to maintain relational databases is a

relational database management system (RDBMS) [6]. Relational database systems

are equipped with the option of using the Structured Query Language (SQL) for

querying and maintaining the database and therefore relational databases are also

widely known as SQL databases [7].

A non-relational database, on the other hand, stores data in a non-tabular

form and it does not follow the relational model provided by traditional relational

database management systems. Instead, the non-relational database uses a storage

model optimized for specific requirements of the type of data being stored [8]. Non-

relational databases often perform faster because a query doesn’t have to view several

- 5 -

tables in order to deliver an answer, as relational systems often do and therefore, they

are ideal for applications that handle many different kinds of data [9]. Some popular

non-relational database types are: document data store, column-oriented database,

key-value store and graph database. Non-relational systems are often called ”non-

SQL” or ”Not only SQL” (NoSQL) to emphasize that they may support SQL-like

query languages or sit alongside SQL databases [10].

There are several early studies that have devoted their attention on the compar-

ison between relational and non-relational database models (or SQL and NoSQL),

evaluating their performance as well. Jatana et al. [11] report the comparison be-

tween these two leading types of database models by studying various relational and

non-relational systems and listing the attributes and features of both. In order to

showcase the main advantages and disadvantages of the models, the authors present

some of the most extensively used tools along with their features, they present the

categories that the non-relational databases are classified and finally they conclude

and highlight the major differences between the two types. Moreover, Sahatqija et

al. [12] compare in their study, some SQL and NoSQL features such as scalability

and performance, flexibility, query language, security, data management including

storage and availability of data and present their advantages and disadvantages over

each other.

Beyond the investigation in the theoretical background in the aforementioned stud-

ies, our contribution in this work is a practical take on the comparison of the data-

bases in the field of full-text search through several experiments we conducted.

In their work Ceresnak and Kvet [13], present the database storage architectures,

principles and differences and describe the manipulation operations (insert, update,

delete and select), choosing for their evaluation some well known relational databases

such as Oracle, MySQL and MS SQL to be consecutively compared with some non-

relational oriented systems such as Mongo, Redis and Cassandra. After conducting

several experiments on the databases’ query performance, they decided on the speed

and the effectiveness of NoSQL database systems, especially in the higher number of

records. In our study we take a step further, carrying out a number of experiments,

as we compare the textual performance of the database systems on several full-text

- 6 -

Chapter 2 : Related Work

search operations.

Since MongoDB is one of the most popular NoSQL database models, a number

of papers have been involved with comparative studies between MongoDB and the

traditional relational database systems. Results show that Mongo performs equally

as well or better than most of the relational databases [14]. Mongo provides lower

execution times in basic operations (insert, select, update, delete) compared to the

relational MySQL [15], as well as for various CRUD operations (create, read update,

delete) for small and large datasets [16]. Moreover, Mongo is generally optimized

for key-value store implementations and performs faster in most operations, while

SQL databases are not. Yishan et al. clearly state this aspect in their research [17].

In our work, we examine how Mongo performs with full-text search operations and

we compare it with a relational model, as well as with some of the standard NoSQL

and Text search systems.

Text search systems excel at efficiently searching large volumes of text, includ-

ing unstructured or semi-structured content. Full-text search engines also have

relevancy ranking capabilities to determine the best match for a query. In Lucid-

works.com [18], the author inspects the capabilities of such systems compared to

relational database models. The most efficient full-text search engines are Apache

Solr and Elasticsearch, both built on Apache Lucene Java library. The AnyTXT

Searcher [19] web article, introduces the differences and similarities of Apache Solr

and Elasticsearch, as well as their advantages and disadvantages. We also make an

attempt to put these systems in comparison while performing with some of the most

common full-text search operations such as exact phrase matching, wildcards search

and conjunctions, setting also side by side the outcomes of similar experiments from

some of the most known relational and non-relational models.

- 7 -

- 8 -

Chapter 3

Theory and Definitions

In this chapter we cover the theoretical background of this work, before we present

the experimental evaluation in the chapter that follows.

3.1 Theoretical background

In this section we discuss the theory and definitions concerning the database

systems, with reference to the two leading types of database storage components in

the industry, relational and non-relational, and we examine the features and overall

characteristics of each one of the database technologies with regard to ease of use,

installation, querying the data and full-text searching.

The systems that we have selected to report and investigate are:

• Relational database systems (SQL)

PostgreSQL 1

• Non-relational database systems (NoSQL)

MongoDB 2, Elasticsearch 3

• Text search systems

Apache Solr 4

1https://www.postgresql.org/
2https://www.mongodb.com/
3https://www.elastic.co/
4https://solr.apache.org/

- 9 -

3.1 : Theoretical background

The main criteria of our selection are the usability and the robustness of the systems,

the wide acceptance among the users, and their capabilities in full-text search.

After presenting the theoretical framework, we outline the technical configurations

and the setup of the database systems under investigation, in the upcoming sections.

3.1.1 Relational database systems (SQL)

PostgreSQL 5 (or simply Postgres) is a free and open-source object-relational

database management system that uses the SQL language. Postgres features trans-

actions with ACID properties (Atomicity, Consistency, Isolation and Durability) and

is designed to handle a range of workloads, from single machines to data warehouses

or web services. Postgres has been proven to be highly extensible and scalable both

in the sheer quantity of data it can manage and in the number of concurrent users

it can accommodate [20], [21].

Ease of Use and Installation. Postgres is an easy to use database with its

full stack of RDBMS database features and capabilities that can handle structured

and unstructured data. Postgres supports many data types, ranging from traditional

ones (integer, date, timestamp) to complex ones (JSON, XML, TEXT). Postgres has

replication and clustering capabilities and can ensure data operations are distributed

horizontally [22].

Before Postgres can be used, first need to be installed. Postgres installation is a

process that can be very easily achieved, regardless of operating system and the

following steps are essential to complete the installation:

1. Download PostgreSQL installer

2. Install PostgreSQL

3. Verify the installation

Querying Data. Postgres is a fully SQL-compliant database and supports all

SQL standard features. It is a database of high demand among developers who have

5https://www.postgresql.org/

- 10 -

Chapter 3 : Theory and Definitions

to write complex queries and it makes it a popular choice for online transaction pro-

cessing (OLTP), online analytical processing (OLAP), and data warehouse (DWH)

environments.

Like any other relational database, the data is stored in tables. To retrieve data,

the database is queried with the use of an SQL ’SELECT’ statement. The state-

ment is divided into a select list (the part that lists the columns or attributes to

be returned), a table list (the part that lists the tables from which to retrieve the

data), and an optional qualification (the part that specifies any restrictions). In

what follows, we present a typical example of an SQL query.

SELECT select list FROM table name;

Full-text searching. Postgres has ~, ~*, LIKE, and ILIKE operators for tex-

tual data types, but they lack many essential properties required by modern infor-

mation systems like Solr and Elasticsearch. Using these operators, full-text search

is supported in Postgres. A typical example of an operator is the following.

SELECT FROM table name WHERE column LIKE ’xxxx ’;

The full-text and phrase search features in Postgres are very powerful and fast.

Full-text searches can be accelerated using indexes. Indexing allows documents to be

preprocessed and an index is saved for later rapid searching. Preprocessing includes:

1. Parsing documents into tokens.

2. Converting tokens into lexemes.

3. Storing preprocessed documents optimized for searching.

A document is the unit of searching in a full-text search system. For searches within

Postgres, a document is normally a textual field within a row of a database table or

a combination of such fields, stored in several tables.

Postgres provides two data types that are designed to support full-text search:

to tsvector() and to tsquery(). A data type tsvector is provided for storing pre-

processed documents, along with a type tsquery for representing processed queries.

The tsvector type represents a document in a form optimized for text search which

is used to parse and normalize a document string. The tsquery type similarly rep-

- 11 -

3.1 : Theoretical background

resents a text query and contains search terms, which must be already-normalized

lexemes, and may combine multiple terms using AND, OR, and NOT operators.

The to tsvector() function breaks up the input string and creates tokens out of it,

which is then used to perform full-text search using the to tsquery() function.

There are many functions and operators available for these data types, the most

important of which is the match operator @@. The match operator @@ returns

true if a tsvector matches a tsquery [23].

SELECT to tsvector(’fat cats ate rats’) @@ to tsquery(’cat & rat’);

Table 3.1 summarizes the basic operators that are provided for full-text searching

in Postgres [24].

Operator Return Type Description

@@ boolean tsvector matches tsquery ?

@@@ boolean deprecated synonym for @@

|| tsvector concatenate tsvectors

&& tsquery AND tsquerys together

|| tsquery OR tsquerys together

!! tsquery negate a tsquery

<–> tsquery tsquery followed by tsquery

@> boolean tsquery contains another ?

<@ boolean tsquery is contained in ?

Table 3.1: Postgres text search operators.

3.1.2 Non-relational database systems (NoSQL)

MongoDB 6 (or simply Mongo) is a source-available cross-platform document-

oriented database program. It is classified as a NoSQL database and stores data

in JSON-like documents with dynamic schema in the form of the structure (field:

value, pair) rather than tabular form. It provides high performance, high availability,

easy scalability, auto-sharding and out-of-the-box replication [25]. An example of a

document that can be stored in Mongo, is the following.

6https://www.mongodb.com/

- 12 -

Chapter 3 : Theory and Definitions

{

”id”: 3,

”name”: ”John Doe”,

”age”: 20,

”hobbies”: {

”indoor”: [

”Chess”

],

”outdoor”: [

”Basketball”

]

}

}

Ease of Use and Installation. Mongo is always preferred when the main con-

cern is the deal with large volume of data with a high performance. As a document

store database, makes it easy to store structured, semi-structured or unstructured

data. Also, horizontal scaling in case of Mongo is very easy, since it is a schema less

database. This type of work can be directly handled by the application automat-

ically and there is no need to any type of administrative work for performing any

type of horizontal scaling [26], [27].

Installing Mongo is an easy process, following the steps mentioned below:

1. Download the MongoDB installer package.

2. Install MongoDB.

3. Create the directory (...\data\db) where MongoDB will store it’s files.

Querying Data. Mongo queries provide the simplicity in process of fetching

data from the database, it is similar to SQL queries in SQL database language.

Mongo supports field, range query, and regular-expression searches. Queries can

return specific fields of documents and also include user-defined JavaScript functions.

Queries can also be configured to return a random sample of results of a given size.

- 13 -

3.1 : Theoretical background

Mongo provides the function names as ’db.collection name.find()’ to operate query

operations on a database. The find() method displays the database collection in

non-structure form ({Key:value}) including auto-created key ”id” by Mongo and

collection data inserted by the user or the admin [28]. Below we present some query

examples.

Syntax: db.collection name.find()

db.student.find(StudentName : ”Smith”)

db.student.find(score:math: 230, science: 234)

db.student.find().limit(10)

Full-text searching. Mongo supports query operations that perform a text

search of string content. To perform text search queries on a collection, Mongo uses

a text index and the $text operator.

db.collection.find({text : {search: ”phrase”} })

Text indices can include any field whose value is a string or an array of string el-

ements and support efficient execution of queries by avoiding full collection scans,

resulting in a very efficient query.

When creating a text index on a field, Mongo tokenizes and stems the indexed field’s

text content and sets up the indexes accordingly. A collection can have a text index

created on a single field but in case text search is being used on multiple fields of a

document, multiple fields can be indexed by enabling compound text indexing. The

$text operator tokenizes the search string using whitespace and most punctuation

as delimiters, and performs a logical OR of all such tokens in the search string [29].

db.stores.find({text : {search: ”java coffee shop”} })

Elasticsearch 7 is a search engine, which is based on the Lucene library 8. It

is developed in Java and provides a distributed multitenant-capable full-text search

engine with a hypertext transfer protocol (HTTP) web interface and schema-free

JSON documents. It provides scalable search, has near real-time search and supports

multitenancy. Elasticsearch is distributed, which means that indices can be divided

7https://www.elastic.co/
8https://lucene.apache.org/

- 14 -

Chapter 3 : Theory and Definitions

into shards and each shard can have zero or more replicas. Elasticsearch supports

real-time GET requests, which makes it suitable as a NoSQL datastore but it lacks

distributed transactions [30].

Ease of Use and Installation. Elasticsearch is one of the most popular enter-

prise search engines, is easy to install and configure but it’s quite a bit heavier than

Apache Solr, which we will introduce later in this section. Elasticsearch can be used

to search any kind of documents and Java is the primary prerequisite for installing.

Together with Elasticsearch, Logstash 9 and Kibana 10 are the main components of

the Elastic stack (also known as ELK). Kibana is a free user interface which allows

for visualization of Elasticsearch data and navigation in the Elastic stack.

Querying Data. The search application programming interface (API) is used

for searching and aggregating data stored in Elasticsearch data streams or indices.

The search API returns search hits that match a query defined in the request. The

API’s query request body parameter accepts queries written in Query DSL (Domain

Specific Language). Query DSL supports a variety of query types, such as match,

term, range and bool queries that can be mixed and matched to get the desirable

results. The full Query DSL that Elasticsearch provides, is based on JSON to define

queries [31].

A query is made up of two clauses:

• Leaf Query Clauses: these clauses are match, term or range, which look for a

specific value in a specific field. An example of a Leaf Query is:

POST /schools*/ search { ”query”: { ”match” : { ”rating”:”4.5” } } }

• Compound Query Clauses: these queries are a combination of leaf query

clauses and other compound queries to extract the desired information. An

example of a Compound Query is:

POST /schools/ search { ”query”: { ”bool” : { ”must” : { ”term” : {

”state” : ”UP” } }, ”filter”: { ”term” : { ”fees” : ”2200” } }, ”mini-

mum should match” : 1, ”boost” : 1.0 } } }

9https://www.elastic.co/logstash/
10https://www.elastic.co/kibana/

- 15 -

3.1 : Theoretical background

A query starts with a query keyword and then has conditions and filters in the

form of JSON object. The filter context - as the name suggests - simply filters out

documents that do not match the conditions in the syntax [32]. Documents that

match a search’s queries are returned in the hits or search results of the response.

Elasticsearch sorts the results by a relevance score that represents the quality of the

match. Below we present some query examples.

Syntax: GET /my-index/ search { ”query”: { ”match”: {”user.id”: ”kimchy”} } }

GET /employees/ search { ”query”: { ”match”: { ”phrase”: { ”query” : ”heuris-

tic” } } } }

POST /employees/ search { ”query”: { ”match phrase”: {”phrase”: { ”query”:

”roots heuristic coherent” } } } }

Full-text searching. As we have already mentioned, Elasticsearch stores doc-

uments in JSON format. By default, it indexes all fields in a document, and they

become instantly searchable. It provides a distributed, full-text search engine with

an HTTP web interface and schema-free JSON documents.

The high level full-text queries are usually used for running queries on full-text fields.

They understand how the field being queried is analyzed and apply each field’s an-

alyzer to the query string before executing [33].

The queries that belong in the full-text search group are:

match query, match phrase query, match phrase prefix query, multi match query,

query string query, common terms query.

3.1.3 Text search systems

Apache Solr 11 is an open-source, enterprise search platform written in Java, built

on the top of Apache Lucene library that provides all of Lucene’s search capabilities

through HTTP requests [34]. Its major features include powerful full-text search,

faceted search, real-time indexing, hit highlighting and advanced analysis/tokeniza-

tion capabilities, dynamic clustering and database integration.

Ease of Use and Installation. Solr is designed for scalability and fault tol-

11https://solr.apache.org/

- 16 -

Chapter 3 : Theory and Definitions

erance and is widely used for enterprise search and analytics use cases. It has

REST-like (Representational State Transfer), HTTP/XML and JSON APIs that

make it usable from most popular programming languages [35]. Solr’s external

configuration allows it to be tailored to many types of applications without Java

coding.

It is easy to get up and running with Solr. Installation of Solr on Unix-compatible

or Windows servers generally requires simply extracting (or, unzipping) the down-

load package which will suffice as an initial development environment. Similarly to

Elasticsearch, Java is prerequisite for installing.

Querying Data. The default Solr query syntax used to search an index, uses

a superset of the Lucene query syntax. Standard Solr query parser is the default

(registered as the ”Lucene” query parser) [36]. The key advantage of the standard

query parser is that it supports a robust and fairly intuitive syntax, allowing to

create a variety of structured queries. The main query for a solr search is specified

via the ’q’ parameter. The ’q’ parameter defines a query using standard query

syntax. This parameter is mandatory. In what follows, we present some typical

examples of the standard query parser.

Syntax: http://localhost:8983/solr/query?q=test

http://localhost:8983/solr/techproducts/select?q=id:SP2514N

http://localhost:8983/solr/techproducts/select?q=id:SP2514N&fl=id+name

A query to the standard query parser is broken up into terms and operators.

There are two types of terms: single terms and phrases. Multiple terms can be

combined together with boolean operators that are supported by the standard query

parser, to form more complex queries. For example, to search documents that

contain ”Apache” and ”Lucene”, we can use either of the following queries:

”Apache” AND ”Lucene”, ”Apache” && ”Lucene”

Full-text searching. Apache Solr runs as a standalone full-text search server,

and it uses Lucene at its core for full-text indexing and searching [37]. It supports

near real-time searches and takes advantage of all of Lucene’s search capabilities. It

also offers the ability of writing very complex text search queries that are unavailable

among the rest of the database systems. Data has to be indexed on the server, so

- 17 -

3.1 : Theoretical background

that it becomes searchable. To index and search data, a core must be created first.

The results, after searching, are sorted by relevance score. In Apache Solr, we can

index various document formats such as XML, CSV, PDF, etc. and once we have

the documents indexed in our repository, we can search for keywords, phrases, date

ranges and geospatial data.

- 18 -

Chapter 4

Experimental Evaluation

In this chapter we present the experimental evaluation of our study along with the

essential set up of the data and query sets, the data procesing, data indexing and the

technical configuration of the database systems that we have selected to compare.

We also provide the reader with some examples of the datasets and the keywords

we extracted to experimented with and the syntax of the full-text queries for each

system.

4.1 Creating databases and indexing data

Before we began testing, we start with the creation of the databases and data

indexing for each one of the database systems of our study.

Postgres. Before uploading data in Postgres, we first had to create the databa-

ses and the tables. We created as many databases as the number of the datasets that

we had to import, this means one database for the small, one for the medium and

one for the large dataset respectively. We also created as many tables as the number

of batches that we split the datasets (250k, 500k, 1m, 1,5m, 2m, 2,5m and 3m). For

example, the tables for the Crossref-total database are: crossref-total250, crossref-

total500, crossref-total1, crossref-total1half, crossref-total2, crossref-total2half and

crossref-total3.

To import data from the csv files to the databases that we created, we used the

’copy’ statement. In Postgres, the ‘copy’ statement is used to make duplicates of

- 19 -

4.1 : Creating databases and indexing data

tables, records and other objects, but it is also useful for transferring data from one

format to another, for example, it can be used for inserting csv data into a table as

Postgres records [38].

Finally, we should configure Postgres properly for full-text search use. For this rea-

son, we created a new column, for each table, named ’document’ of data type

tsvector, adding the fields we want to use for text search in the queries. As an

example, with the following SQL command, we create a ’document’ column in the

’crossref-total250’ table of the Crossref-total database, adding the fields ’title’ and

’abstract’:

ALTER TABLE crossref-total250 ADD COLUMN document tsvector;

UPDATE crossref-total250 SET document = to tsvector(title, abstract)

For indexing, Postgres provides two index types that can be used to index tsvector

data types: GIN (Generalized Inverted Index) and GiST (Generalized Search Tree)

indexes [39]. GIN is recommended by Postgres as the default index type for full-

text searching and specifically for long documents. That’s because the inverted

index facilitates rapid matching and retrieval. For this reason in our work, we used

the GIN index to speed up text searches. The syntax to create a GIN index is:

CREATE INDEX document idx ON crossref-total250 USING GIN (document);

Mongo. As we have mentioned before, Mongo uses text indices to support

text search queries and to perform full-text search in a document. An index in

Mongo is created after creating the database and the collections. Mongo’s ’use

database name’ command is used to create a database. The command will create

a new database if it doesn’t exist, otherwise it will return the existing database [40].

Like most non-relational databases, Mongo stores data in collections instead of ta-

bles. To create a collection, the method ’db.createCollection()’ is used. Similarly

with Postgres, we created as many collections as the number of batches that we split

the datasets (250k, 500k, 1m, 1,5m, 2m, 2,5m and 3m).

After that, we had to create the appropriate text indices for full-text search and

for this reason we used the ’db.collection.createIndex()’ method. Mongo text

- 20 -

Chapter 4 : Experimental Evaluation

indexes come with a limitation of only one text index per collection. In order to

index the fields of the collections that contain string elements, we specified the string

literal ’text’ in the index documents. In the following example, we create a text

index for the fields ’title’ and ’abstract’ of the ’crossref-total250’ collection:

db.crossref-total250.createIndex(title:”text”, abstract:”text”)

Elasticsearch. In Elasticsearch, each index is created at the same time each

dataset is imported on the Elasticsearch server. Indices are used to store the doc-

uments in dedicated data structures corresponding to the data type of fields. For

example, text fields are stored inside an inverted index. Mapping is the process of

defining how each document, and the fields it contains, are stored and indexed [41].

By using the ’Get mapping’ API, we can view the mappings for the indices that

were created after data insertions. For example, the mapping definitions for the

index ’crossref-total250’ can be retreived with the HTTP request:

GET /crossref-total250/ mapping

For the purposes of our study, we created indices for 250k, 500k, 1m, 1,5m, 2m, 2,5m

and 3m documents, for all three datasets that we imported. For further editing of

indices and mappings, we used the Kibana user interface.

Apache Solr. After installing and starting Apache Solr, we first had to create

cores and then index the data. A Solr core is running an instance of a Lucene

index that contains all the Solr configuration files required to use it, and it can be

created using the ’bin/solr’ script [42]. We created as many cores as the number of

batches that we split the datasets (250k, 500k, 1m, 1,5m, 2m, 2,5m and 3m). With

the following command we create a new core for 250k documents named ’crossref-

total250’, of the Crossref-total dataset in Apache Solr:

C:\Apache solr\solr-8.6.3\bin>solr create –c crossref-total250

Created new core ‘crossref-total250’

After that, to index any data under all the cores that we created, we had to map

the respective text fields from the datasets (in this case ’title’ and ’abstract’), and

- 21 -

4.2 : Experimental setup

specify the type for each field as ’text general’. The field type tells Solr how to

interpret the field and how it can be queried, where in the case of our study, we

define the fields of type ’text’ appropriate for full-text search.

4.2 Experimental setup

In this chapter we discuss the data and query sets, the underlying algorithmic

configuration, and the metrics employed in our evaluation.

To form the full-text queries for executing in order to carry out the experimental pro-

cess, we needed data to be used as incoming documents. For our workload purposes

we chose to use initially two different datasets; the first one composed of long text

records and a second one composed of short text records. In the following section,

we briefly present these datasets along with their content and the transformations

we made.

4.2.1 Datasets and data processing

The first dataset that we used in the experiments is the Crossref dataset. It

consists of publications’ metadata and it has been published by the Crossref organi-

zation on January 2021 1,2. The dataset has a size of 38.5GB, 12.1 million rows and

is composed of the fields: ’doi’, ’title’, ’year published’, ’date published’, ’author’,

’journal’, ’domain’ and ’abstract’. We consider this dataset as the long text dataset

of our experiments.

The second dataset that we used in the experiments is the Yelp reviews dataset.

It consists of reviews and recommendations written and posted by consumers, sug-

gesting restaurants, hotels, bars, shopping, etc. The dataset, which has been down-

loaded from Kaggle 3, has a size of 3.8GB, 5.3 million rows and is composed of the

fields: ’review id’, ’user id’, ’business id’, ’stars’, ’date’, ’review’, ’useful’, ’funny’,

and ’cool’. We consider this dataset as the short text dataset of our experiments.

1https://www.crossref.org/
2Special thanks to Mr. Christos Tryfonopoulos for providing us with the dataset.
3https://www.kaggle.com/datasets

- 22 -

Chapter 4 : Experimental Evaluation

Table 4.1 summarizes some key characteristics for both datasets.

Dataset Crossref Yelp reviews

Format CSV CSV

Size 38.5GB 3.8GB

Rows 12.1M 5.3M

Fields ’doi’, ’title’,
’year published’,
’date published’,
’author’, ’journal’,
’domain’, ’abstract’

’review id’, ’user id’,
’business id’, ’stars’,
’date’, ’review’,
’useful’, ’funny’, ’cool’

Average vocabulary size
(words)

243 111

Table 4.1: Datasets key characteristics.

Below we present some record examples for each one of the datasets.

Crossref

1. 10.1001/2013.jamafacial.65 Zonal Analysis of Facial Asymmetry and Its

Clinical Significance in Facial Plastic Surgery 2013 2013-3-1—2013-3-1—N/A

Karan Dhir——William Lawson——William J. Binder JAMA Facial Plastic

Surgery——JAMA Facial Plastic Surgery Abstract Objectives: To describe

common patterns of facial asymmetry and to augment the facial analysis paradigm

for improved preoperative counseling and surgical planning. Methods: We

conducted a frontal photographic analysis of 50 patients who were seeking various

types of facial cosmetic surgical procedures. The horizontal zonal thirds of the face

were analyzed, and the bilateral data points were compared in regard to brow height,

width of midface at maximum distance, malar eminence height,nasal alar height,

and mandible width measured from the oral commissure to the gonial angle.

Results: Forty-five patients demonstrated measurable asymmetry of the midface.

The malar eminence was found to be more superiorly positioned and defined on the

narrower side of the face in all cases. In contrast, the contralateral wider side of

the face appeared flatter, with a more hypoplastic, inferiorly positioned malar

eminence.Also, the wider side of the face more often demonstrated a wider

mandibular dimension and a superiorly displaced ala. The upper third of the face,

- 23 -

4.2 : Experimental setup

in regard to brow height, was the most variable and showed little correlation to the

lower two-thirds of the face. Conclusion: This facial analysis exercise can assist

the surgeon in (1) preoperative counseling, (2) managing expectations,(3) choosing

appropriate-sized implants for improved symmetry, and (4) offering a more

detailed assessment during the counseling of patients before faceliftsurgery.

2. 10.1016/s0012-821x(97)00079-4 The influence of silicate melt composition on

distribution of siderophile elements among metal and silicate liquids 1997

1997-8—1997-8—N/A Dipayan Jana——David Walker Earth and Planetary

Science Letters——Earth and Planetary Science Letters N/A Abstract Liquid

metal-liquid silicate partitioning of Fe, Ni, Co, P, Ge, W and Mo among a

carbon-saturated metal and a variety of silicate melts

(magnesian-tholeiitic-siliceous-aluminous-aluminosiliceous basalts) depends

modestly to strongly upon silicate melt structure and composition. Low valency

siderophile elements, Fe, Ni and Co, show a modest influence of silicate melt

composition on partitioning. Germanium shows a moderate but consistent

preference for the depolymerized magnesian melt. High valency siderophile

elements, P, Mo, and W, show more than an order of magnitude decrease in

metal-silicate partition coefficients as the silicate melt becomes more depolymerized.

Detailed inspection of our and other published W data shows that polymerization

state, temperature and pressure are more important controls on W partitioning

than oxidation state. For this to be true for a high and variable valence element

implies a secondary role in general for oxidation state, even though some role must

be present. Equilibrium core segregation through a magma ocean of ‘ultrabasic’

composition can provide a resolution to the ‘excess’ abundances of Ge, P, W and

Mo in the mantle, but the mantle composition alone cannot explain the excess

abundances of nickel and cobalt in chondritic proportions.

Yelp reviews

1. vkVSCC7xljjrAI4UGfnKEQ, bv2nCi5Qv5vroFiqKGopiw,

AEx2SYEUJmTxVVB18LlCwA, 5, 2016-05-28, ”Super simple place but amazing

nonetheless. It’s been around since the 30’s and they still serve the same thing they

- 24 -

Chapter 4 : Experimental Evaluation

started with: a bologna and salami sandwich with mustard. Staff was very helpful

and friendly.”, 0,0,0

2. 5Clsq9QSbz4GWCS8DGDhQQ, s2tUilH-0FHdBQL8fAzv2w,

C-cvl8Mf2vpxHwUon3sVGg, 4, 2015-03-31, ”Decided to give a chance since it was

close by. Decided on the Pollo Fundido based on the reviews and it did not

disappoint. Very large portion and very tasty. I would not hesitate to order this

again. Based on one meal, I would give it a try.”, 0,0,2

For the purposes of our workload and to measure the performance of querying

and insertion time for each database system, we conducted the experiments under

different sizes of the initial datasets. For this reason, we formed three new kinds

of datasets out of the initial ones, with regard to the datasets’ size: small, medium

and large, including also those fields with textual content. At first, we consider

the dataset ’Crossref-total’, which consists of the fields ’title’ and ’abstract’ of the

initial Crossref dataset as the large one, the dataset ’Yelp reviews’, which consists

of the fields ’review id’ and ’review’ as the medium one, and finally, the dataset

’Crossref-title’, which includes only the field ’title’ of the initial Crossref dataset,

as the small one of the datasets.

Furthermore, in order to perform the experiments on varying sizes of the datasets,

we randomly split the three datasets, each one, into smaller parts (batches) of 250k,

500k, 1m, 1,5m, 2m, 2,5m and 3m items (rows), setting the 250k items and the 3m

items as the lowest and the upper limits respectively.

The resulted datasets and their key characteristics are summarized in Table 4.2.

Dataset Crossref-total
(large)

Yelp reviews
(medium)

Crossref-title
(small)

Format CSV CSV CSV

Size 4.1GB 1.8GB 286MB

Rows 3M 3M 3M

Fields ’title’,
’abstract’

’review id’,
’review’

’title’

Avg vocabulary size (words) 228 104 14

Table 4.2: Large, medium and small datasets characteristics.

- 25 -

4.2 : Experimental setup

Further operations of data massaging were applied to the datasets such as com-

bining, merging and handling missing data. For all the data processing operations

we used the Python’s pandas and nltk libraries.

4.2.2 Full-text search queries

To set up the process of comparison for measuring the querying time by execut-

ing the full-text queries, first we had to extract the appropriate keywords from the

datasets and to form different groups of queries with those keywords. To do this, we

first chose to extract the words with the most frequent occurence from each one of

the initial datasets, after removing any stopwords, symbols, punctuation marks etc.,

in order to set up the basis for our experiments in terms of selectivity (see Chapter

4 - Subsection 4.3.5. Selectivity). In addition, to avoid the possibility of having

divergent results from the queries we executed, we chose the words with the most

frequent occurence among all batches of data (i.e., from the range of 250k records to

3m records) and then we selected a subset of these words (the common words from

all batches) to put in performance. Following this procedure, we then extracted the

keywords with the least appearance in the datasets.

A sample of the top-15 keywords, arranged in descending order of occurrence, is

shown in Table 4.3. (the numbers in the parentheses indicate the number of appear-

ances at 3m records).

Crossref

study (329.610), results (301.070), using (293.848), pa-
tients (255.385), data (230.021), different (216.734), model
(190.041), analysis (178.774), new (174.924), based (173.308),
high (172.030), significant (142.823), method (141.957), com-
pared (141.034), paper (140.946).

Yelp reviews

place (956.687), food (915.323), great (834.980), like
(826.913), good (792.220), one (706.965), service (660.446),
really (648.134), time (647.751), go (616.856), back (548.831),
always (470.391), best (455.288), love (447.525), nice
(445.925).

Table 4.3: Keywords with the most frequent occurence.

Notice that, the keywords extracted from the Yelp reviews dataset are three times

- 26 -

Chapter 4 : Experimental Evaluation

more than those extracted from the Crossref dataset which makes sense, considering

the fact that those keywords are most commonly used. We assume that this may

have an impact in the comparison process and we will examine any potential of this

finding in the experiments that follow.

Next, we composed pairs of keywords (collocations) that match together and are

present in sentences. The majority of these pairs derived from the keywords that

have been extracted previously. An example of these pairs, is presented in Table

4.4.

Crossref
study results, different species, negative effects, new treat-
ment, early studies, clinical data, increased number, paper
presents, high number, system based.

Yelp reviews
great place, good service, nice people, friendly staff, next time,
great food, new restaurant, every time, wonderful dinner, go
back.

Table 4.4: Collocations.

As we have mentioned before, the selection of keywords and collocations has

taken place with regard to selectivity. The selectivity of a specific value is the number

of rows with that value, divided by the total number of rows. To test the database

systems we selected the appropriate keywords and collocations in order to form three

levels of selectivity: high, medium and small and put in performance queries of

high, medium and small selectivity. For example, if we operate with the queries

of small selectivity on the database size of 3m total records, this would return an

estimated 60.000 records which results in a selectivity value of 0.02 (2%). Similarly,

queries of medium selectivity (6.000 records) will result in a selectivity value of 0,002

(0,2%) and high selective queries (600 records) will result in a selectivity value of

0,0002 (0,02%). To do this, we formed high selective queries with groups of keywords

and collocations that appear a few times inside texts (the keywords with the least

appearance in the datasets we have previously extracted), queries of small selectivity

with groups of keywords and collocations with the most frequent appearances and

queries of medium selectivity in between. These groups consist of 10 keywords and

10 collocations for each level of selectivity.

- 27 -

4.2 : Experimental setup

Afterwards, in order to conduct the experiments for measuring the performance

of each database system, we used these queries under the following query operations:

• Exact phrase matching

• Wildcards search

• Conjunctive queries

Based on the example we have given previously, Table 4.5 presents the different

levels of selectivity we applied for each one of the query operations.

Selectivity High Medium Small

Exact phrase matching 0,02% 0,2% 2%

Wildcards search 0,25% 2,5% 25%

Conjunctive queries 0,08% 0,8% 8%

Table 4.5: Selectivity.

Notice that, for the wildcards search operation the proportion of the records that

have been queried in the database is much larger than the other two operations.

The reason for this, is that in wildcards search we put in performance groups of

keywords and not groups of collocations. We will examine later in the experiments

section any potential of this aspect.

Exact phrase matching. Querying a database using exact phrase matching

will return results that match a phrase, containing all components of the keywords,

word by word, in the same order. To form a query for exact phrase matching we

should enclose the entire phrase in quotation marks. For instance, the syntax to

query the phrase ’study results’ in the ’abstract’ field of the Crossref-total dataset,

for each one of the database systems, would be:

• Postgres: SELECT abstract FROM crossref-total250 WHERE document @@

phraseto tsquery(’study results’)

- 28 -

Chapter 4 : Experimental Evaluation

• Mongo: find({”$text”: {”$search”:”\”study results\””}})

• Elasticsearch: ”query”: {”match phrase”: {”query”: ”study results”,

”type”: ”phrase”, ”fields”: ”abstract”}

• Apache Solr: abstract: ”study results”

Postgres uses the tsvector and tsquery data types. We have previously cre-

ated a new ’document’ column setting it to the tsvector data type (see Chapter

4 - Section 4.1. Creating databases and indexing data). Especially for the exact

phrase matching query group, we introduce the phraseto tsquery() function, which

supports phrases text search instead of using the to tsquery() function. To perform

the same query in Mongo, we use the $text operator inside the find() method. The

’abstract’ column has been previously indexed as a new text column, in order to

perform any full-text operations in Mongo (see Chapter 4 - Section 4.1. Creating

databases and indexing data). Finally, Apache Solr executes the search query with

the use of the ’Lucene’ parser as well as the Elasticsearch does, also using the Query

DSL syntax.

Wildcards search. Wildcards search is an advanced technique that can be used

to maximize the search results. Wildcards are used in search terms to represent one

or more other characters. An asterisk (*) is used as the wildcard symbol, to specify

any number of characters. Supposing we wish to query the postfix wildcard ’spec*’

in the ’abstract’ field of the Crossref-total dataset, the syntax for each database

system would be:

• Postgres: SELECT abstract FROM crossref-total250 WHERE document @@

to tsquery(’spec*’)

• Mongo: find({”abstract”: {”$regex”: ”spec*”, ”$options”:”i”}})

• Elasticsearch: ”query”: {”query string”: {”query”: ”spec*”, ”fields”:

”abstract”}

• Apache Solr: abstract: spec*

- 29 -

4.2 : Experimental setup

We observe that Postgres in this case, executes the query using the to tsquery()

function. In Mongo we use the $regex operator instead of the $text operator. The

$regex operator provides regular expression capabilities for pattern matching strings

in queries. We have also used the ’i’ option with the query, which performs case-

insensitive regular expression matches inside documents. To submit the same query

in Elasticsearch we use the query string, instead of the match phrase, which better

perfoms in wildcards search. Apache Solr executes the query once more with the

use of the ’Lucene’ parser, with as the same syntax as in the exact phrase matching.

Conjunctive queries. A conjunctive query is a restricted form of first-order

queries using the logical conjunction operator AND (∧). The logical conjunction

operator is used to check that two or more conditions are true. To execute the

conjunctive query ’negative AND effects’ in the ’abstract’ field of the Crossref-total

dataset, the syntax for each database system would be:

• Postgres: SELECT abstract FROM crossref-total250 WHERE document @@

to tsquery(’negative & effects’)

• Mongo: find({”$text”: {”$search”: ”\”negative\” \”effects\””}})

• Elasticsearch: ”query”: {”query string”: {”query”: ”negative AND effects”,

”fields”: ”abstract”}

• Apache Solr: abstract: ’negative’ AND abstract: ’effects’

What we observe in this case is that, except for Mongo, the logical conjunction

operator AND (∧), is used by the rest of the systems for executing the conjunctive

query. In Mongo, the AND operator is used indirectly between the search terms, by

combining quotes and space.

Note: As we have already mentioned, several Python clients have been used for

the connection to the databases and execution of the queries for each system in the

experiments (see Chapter 3 - Section 3.2. Technical configurations). For this reason,

- 30 -

Chapter 4 : Experimental Evaluation

the syntax in the scripts of the experimental evaluation (which has been written in

Python) is slightly different.

4.2.3 Technical configurations

In order to perform our experimental evaluation, we first had to install and configure

the database systems that we introduced in the previous chapter. In this section

we discuss the technical configurations and the requirements for each one of the

database systems that we installed, used and compared in our experiments.

The database systems versions that we used in our machine locally for the perfor-

mance evaluation are:

• PostgreSQL: 13.3

• MongoDB: 4.4.2

• Elasticsearch: 7.10.0 (installed together with Kibana 7.10.0 as part of the

ELK stack)

• Apache Solr: 8.6.3

All programming operations and query executions were implemented in the Python

language and a PC (Core i3, 2GHz processor, 6GB RAM, Windows 10) was used to

run the experiments.

A number of Python libraries and modules also used to achieve the connections with

the database systems and execute the queries for each system. More specifically, to

connect to Postgres and execute the SQL queries, we installed and used the ’psy-

copg2’ database adapter for Python. To be able to connect to MongoDB we used

a MongoClient by installing a native Python driver for Mongo, ’pymongo’. To

settle a connection with Elasticsearch server in order to index and search for data,

we used a Python client for Elasticsearch and more specifically the ’elasticsearch’

package. Finally, to achieve HTTP connections with Apache Solr and perform tasks

with REST APIs, we used the ’urllib.requests’ module.

- 31 -

4.3 : Comparing querying time

4.3 Comparing querying time

In this section, we present a series of experiments that compare the four database

systems presented in the previous chapters, i.e. Postgres, Mongo, Elasticsearch and

Solr. The comparison of the database sytems involves three fundamental operations

in terms of querying time: exact phrase matching, wildcards search and conjunctive

queries. Our experiments measure the performance on these operations on all three

datasets, that we have also analysed (i.e., small, medium and large), for the chosen

databases.

We have also conducted experiments comparing extended conjunctive queries, in

which more than two words are included in conjunctions (conjunctions with three

and four words specifically) and experiments comparing queries’ selectivity. In that

case, we test how much selective a query can be, as the database systems perform

with queries of high, medium and small selectivity (see Chapter 4 - Subsection

4.3.5. Selectivity). Finally, we have conducted experiments in which we compare

the performance between the aforementioned operations (exact phrase matching,

wildcards search and conjunctive queries), where in this thesis, we entitle ”query

groups”.

The baseline setup in the experimental evaluation comprises a database size of

3m items and we study the performance of each system as the database size increases

(see Chapter 4 - Subsection 4.2.1. Datasets and data processing). The time shown

in the graphs is wall-clock time and the results of each experiment are averaged over

five runs to eliminate fluctuations in time measurements. Finally, in the sections

that follow, we present experiments involving data insertion time and memory usage

for data indexing and querying for each one of the database systems. All results are

summarized in the conclusion section.

4.3.1 Exact phrase matching

In this section we present the findings that derived from the experiments, comparing

the systems’ quering time on exact phrase matching. For this set of queries we use

phrases that consist of pairs of words (or collocations, see Chapter 4 - Subsection

- 32 -

Chapter 4 : Experimental Evaluation

4.2.2. Full-text search queries). After we executed these operations, we obtained

the results that are shown in the figures 4 that follow.

In Figures 4.1, 4.2 and 4.3, we can see the results comparing the database systems

in regard to the database size for each one of the datasets, (i.e., small, medium

and large). As the database size gets larger the execution time for each system

increases, which is a logical outcome at first. Moreover we can see that the gap in

time measurements between the text search systems (i.e., Elasticsearch and Solr) and

the rest of the them (i.e., Postgres and Mongo) increases, while operating with the

medium and the large datasets something which not happens with the small dataset,

where time measurements are relatively close. This fact indicates that the systems

can be quite sufficient while operating with small amounts of data. Elasticsearch and

Solr though, seem to achieve the best performance among all the database systems

in general. We also observe that Mongo and Postgres need significantly more time

compared to Elasticsearch and Solr to execute the queries.

Figure 4.1: Exact phrase matching Crossref total.

4All diagrams are displayed in logarithmic scale.

- 33 -

4.3 : Comparing querying time

Figure 4.2: Exact phrase matching Yelp reviews.

Figure 4.3: Exact phrase matching Crossref title.

In Figures 4.4, 4.5, 4.6. and 4.7, we can see an alternative for the previous

diagrams and we present the time measurements for each database system separately.

We notice that there is a linear increase in time measurements as the database size

gets larger. All systems achieve better results with the small dataset, as we have

identified previously, Elasticsearch and Solr though, perform same as well with the

- 34 -

Chapter 4 : Experimental Evaluation

medium and large datasets. We also observe that the runtimes measured for the

medium dataset for each system, are relatively close to those of the large one. This

fact confirms the assumption we made previously about the words occurence in the

Yelp reviews dataset compared to those of the Crossref dataset and the impact that

this fact would have in the experiments.

Figure 4.4: Postgres Exact phrase matching.

Figure 4.5: Mongo Exact phrase matching.

- 35 -

4.3 : Comparing querying time

Figure 4.6: Elasticsearch Exact phrase matching.

Figure 4.7: Solr Exact phrase matching.

However, Postgres operates much faster with the use of the GIN index to query

the data, in contrast to operating without the use of it. As an example, we high-

light this difference in performance in Figures 4.8, 4.9 and 4.10, for each dataset

size, where we can see the lower time measurements that Postgres with GIN in-

dex can achieve. It is also noteworthy the fact that Postgres cannot respond in

the experiments while performing without the use of the GIN index with the large

- 36 -

Chapter 4 : Experimental Evaluation

dataset, after the limit of 1.5m documents. Due to these reasons, for the rest of the

operations that we have experimented with Postgres in this work, we examine its

performance only by using the GIN index.

Figure 4.8: Postgres GIN index Crossref total.

Figure 4.9: Postgres GIN index Yelp reviews.

- 37 -

4.3 : Comparing querying time

Figure 4.10: Postgres GIN index Crossref title.

For the exact phrase matching set of queries, as well as for wildcards search

and conjunctive queries, we test the databases while operating with highly selective

queries (the experiments regarding Selectivity will be presented in a following sec-

tion, as we have already mentioned). It is interesting though, to test the systems’

performance, while operating with queries of small selectivity this time. Testing the

systems with queries of small selectivity means that we query the 2% of the database,

in contrast to high selective queries where we query the 0,02% of the database, as

we have previously described in subsection 4.2.2. Full-text search queries.

The results from this set are shown in Figures 4.11, 4.12 and 4.13.

- 38 -

Chapter 4 : Experimental Evaluation

Figure 4.11: Exact phrase matching Crossref total (small selectivity).

Figure 4.12: Exact phrase matching Yelp reviews (small selectivity).

- 39 -

4.3 : Comparing querying time

Figure 4.13: Exact phrase matching Crossref title (small selectivity).

In this set of experiments Postgres needs more time to operate. The difference

in time measurements is significantly larger compared to those of high selective

queries, especially in the medium and small datasets. There are minor differences

though in time measurements regarding the rest of the systems which keep steadily

the time variance among the datasets, compared to the tests we executed with the

high selective queries. We also notice that Postgres and Mongo make an entry

from the same starting point at 250k documents, ending up at 3m documents with

a significant time difference while performing in the medium dataset. The exact

opposite happens in the large dataset where the systems are relatively close at 3m

documents. Postgres and Mongo are pretty much close in time measurements while

performing in the exact phrase matching operation, something that not happens in

the rest of the operations we will examine later.

4.3.2 Wildcards search

Our second experiment measures the time needed to query the databases with wild-

cards search. For this set of queries we use the groups of keywords we have previously

formed (see Chapter 4 - Subsection 4.2.2. Full-text search queries), followed by a

wildcard symbol (an asterisk), witch specifies any number of characters.

- 40 -

Chapter 4 : Experimental Evaluation

The graphical representations of the results are shown in Figures 4.14, 4.15 and

4.16. At first place, we compare the database systems in regard to the database

size for each one of the datasets, (i.e., small, medium and large). As we observe,

all systems perform much better compared to exact phrase matching, despite the

large proportion of the records that it query in wildcards search (see Chapter 4 -

Subsection 4.2.2. Full-text search queries). Elasticsearch and Solr still need less

than 10 seconds to execute the queries for all datasets. It is also stunning how fast

Postgres performs in this set of queries and proves to be same as fast as the rest

of the systems. With the use of the GIN index Postgres seems to perform much

better when querying a single word inside a text, in contrast to exact matches in the

experiments we have examined before. Also notice that, as Postgres achieves bet-

ter time measurements at 250k documents than Elasticsearch and Solr in the large

dataset, it converges with the systems on the limit of 3m documents. This could

be a proof that non-relational and text search databases prevail over the relational

ones as data grow in size. Mongo finally, also performs much better in this set, as

it achieves half of the time in the medium and large datasets, compared to the time

measured in exact phrase matching.

Figure 4.14: Wildcards search Crossref total.

- 41 -

4.3 : Comparing querying time

Figure 4.15: Wildcards search Yelp reviews.

Figure 4.16: Wildcards search Crossref title.

- 42 -

Chapter 4 : Experimental Evaluation

In Figures 4.17, 4.18, 4.19. and 4.20, we can see an alternative view for the

previous experiments, comparing the time needed to query the datasets (i.e., small,

medium and large), in regard to the database size for each system respectively.

Again, for the reasons explained previously, we can see Postgres’s performance in

detail and verify the low time measurements, which in the case of the small dataset

needs 0,1 second to query 500k records.

Figure 4.17: Postgres Wildcards search.

Figure 4.18: Mongo Wildcards search.

- 43 -

4.3 : Comparing querying time

Figure 4.19: Elasticsearch Wildcards search.

Figure 4.20: Solr Wildcards search.

Once more we can see that the runtimes measured for the medium dataset for each

system, are close (or overlap in the case of Postgres) to those of the large one, due

to the words occurence in the medium dataset.

Similarly with the exact phrase matching operation, we have tested the systems’

performance in the wildcards search while operating with queries of small selectivity.

The results that we obtain are presented in Figures 4.21, 4.22 and 4.23.

- 44 -

Chapter 4 : Experimental Evaluation

Figure 4.21: Wildcards search Crossref total (small selectivity).

Figure 4.22: Wildcards search Yelp reviews (small selectivity).

- 45 -

4.3 : Comparing querying time

Figure 4.23: Wildcards search Crossref title (small selectivity).

Similar to the experiments of exact phrase matching, Postgres also needs more

time to operate with queries of small selectivity in the wildcards search. In this

scenario Mongo, Elasticsearch and Solr outperformed Postgres and seem to have an

advantage as the data grow in size. Notice that, Postgres cannot respond after the

limit of 2,5m records while performing in the Crossref-total dataset (i.e., the large

one).

4.3.3 Conjunctive queries

In the next experiment, we evaluate the time taken to query the databases using

conjunctions and conjunctive queries. For this set of queries a logical conjunction

operator (AND) is used to form conjunctions between pairs of words (or colloca-

tions, see Chapter 4 - Subsection 4.2.2. Full-text search queries) using the groups

we have previously formed.

Figures 4.24, 4.25 and 4.26, show the results for the database systems in regard

to the database size for each one of the datasets, (i.e., small, medium and large).

Both Elasticsearch and Solr execute the conjunctive queries in less than 10 seconds.

Once again, Mongo performs much slower and reaches the limit of 1000 seconds in

the medium and large datasets. Postgres is this time also the fastest one among

- 46 -

Chapter 4 : Experimental Evaluation

all the systems. This is explained by the fact that it makes use of the GIN index

and seems to take an advantage of it over the rest of the databases. Like we discov-

ered previously in the wildcards search operation, Postgres also perfoms well with

conjunctions compared to exact matching, where query performance is affected by

bounded phrases. We can conclude that some relational databases can operate much

better in certain query operations and for specific amount of data.

Figure 4.24: Conjunctive queries Crossref total.

- 47 -

4.3 : Comparing querying time

Figure 4.25: Conjunctive queries Yelp reviews.

Figure 4.26: Conjunctive queries Crossref title.

Similar to the previous operations, in Figures 4.27, 4.28, 4.29. and 4.30, we

can see an alternative view for the results, comparing the time needed to query the

datasets (i.e., small, medium and large), in regard to the database size for Postgres,

Mongo, Elasticsearch and Solr respectively. Notice that, all systems achieve better

time measurements while querying small amount of data (i.e., the small dataset).

The time measurements increase accordingly with the number of records in the cases

- 48 -

Chapter 4 : Experimental Evaluation

of Mongo and Elasticsearch. On the other hand, the time measurements overlap in

the cases of Solr and Postgres in the medium and large datasets. However, all sys-

tems eventually need more time to query 3m documents in the large dataset.

Figure 4.27: Postgres Conjunctive queries.

Figure 4.28: Mongo Conjunctive queries.

- 49 -

4.3 : Comparing querying time

Figure 4.29: Elasticsearch Conjunctive queries.

Figure 4.30: Solr Conjunctive queries.

As we observed in the previous query operations, the same conclusion stands also for

the conjunctive queries, that is, the runtimes measured for the medium dataset are

close to those of the large one, due to the words occurence in the medium dataset.

Like in the previous sections, we have also tested the systems’ performance by

choosing queries of small selectivity to operate. The results that we obtain for all

three datasets are shown in Figures 4.31, 4.32 and 4.33.

- 50 -

Chapter 4 : Experimental Evaluation

Figure 4.31: Conjunctive queries Crossref total (small selectivity).

Figure 4.32: Conjunctive queries Yelp reviews (small selectivity).

- 51 -

4.3 : Comparing querying time

Figure 4.33: Conjunctive queries Crossref title (small selectivity).

Once again we observe that Postgres performs much slower, compared to queries

of high selectivity, as the database size increases. Notice also that, after the limit of

500k and up to 1m records, there is an increase of more than two orders of magnitude

in time measurements while performing in the medium and large datasets. This same

increase happens after the limit of 1.5m and up to 2m records in the small dataset.

We believe this is due to the combination of the inefficiency of Postgres with small

selective queries and its use of memory, which increases considerably after a limit of

records.

4.3.4 Extended conjunctive queries

In this set of experiments we compare the database systems while performing with

extended conjunctive queries. This group of queries is composed of conjunctions in

which more than two words (i.e., conjunctions with three and four words) are taking

part. The words were chosen by using the groups of keywords and collocations we

have previously formed (see Chapter 4 - Subsection 4.2.2. Full-text search queries).

Find below some example queries with words from both datasets.

- 52 -

Chapter 4 : Experimental Evaluation

Crossref

queries with three words

recent AND clinical AND results

using AND patients AND data

new AND different AND species

queries with four words

new AND research AND paper AND show

using AND data AND patient AND cases

recent AND potential AND risk AND effects

Yelp reviews

queries with three words

service AND nice AND place

good AND food AND stuff

great AND place AND stuff

queries with four words

good AND time AND wrong AND place

great AND place AND much AND money

every AND time AND something AND special

In the following figures (Figures 4.34 to 4.45), we can see the diagrams that

derived for each one of the results. At this point, it must be noted that conjunc-

tions with three words are indicated as ”-Dataset- plus 1” inside the diagram leg-

ends, whereas conjunctions with four words are indicated as ”-Dataset- plus 2” (e.g.

”Crossref-total plus 2”). We compare the extended conjunctive queries with the sim-

ple conjunctive queries that we have presented in the previous set of experiments.

The results are shown for each database system separately.

At first, we notice that adding one more word in conjunctions does not look to affect

the systems’ performance in some cases like those of Postgres and Solr, while adding

two more words increase the time measurements. This behaviour is observed in the

medium and the large datasets whereas in the small dataset the same systems show

- 53 -

4.3 : Comparing querying time

a slightly proportional behaviour. Besides that, Mongo’s performance does not look

to be affected with extended conjunctions, moreover, it responds irrespectively to

the augmentation of the words in queries.

Figure 4.34: Postgres Extended Conjunctive queries Crossref total.

Figure 4.35: Mongo Extended Conjunctive queries Crossref total.

- 54 -

Chapter 4 : Experimental Evaluation

Figure 4.36: Elasticsearch Extended Conjunctive queries Crossref total.

Figure 4.37: Solr Extended Conjunctive queries Crossref total.

- 55 -

4.3 : Comparing querying time

Figure 4.38: Postgres Extended Conjunctive queries Yelp reviews.

Figure 4.39: Mongo Extended Conjunctive queries Yelp reviews.

- 56 -

Chapter 4 : Experimental Evaluation

Figure 4.40: Elasticsearch Extended Conjunctive queries Yelp reviews.

Figure 4.41: Solr Extended Conjunctive queries Yelp reviews.

- 57 -

4.3 : Comparing querying time

Figure 4.42: Postgres Extended Conjunctive queries Crossref title.

Figure 4.43: Mongo Extended Conjunctive queries Crossref title.

- 58 -

Chapter 4 : Experimental Evaluation

Figure 4.44: Elasticsearch Extended Conjunctive queries Crossref title.

Figure 4.45: Solr Extended Conjunctive queries Crossref title.

- 59 -

4.3 : Comparing querying time

Another observation that we can make from this set of experiments, is the results

we obtain for Elasticsearch, where despite the fact that time increasements are

proportional in all datasets, extented conjunctions with three keywords return better

results than the simple conjunctions. A similar behaviour can be seen in cases of

Mongo and Solr in the small dataset.

Due to this unexpected behaviour of this set, either because of the exploitation of the

keywords inside texts which seems to play a role, or because of the selection of the

datasets, we could deduce that extended conjunctions give a different prospective

in our performance evaluation unlike the results we arrived so far from the previous

query operations.

4.3.5 Selectivity

The database selectivity is a measure of how selective a query is; a lower selectivity

value results in a ”selective” query (or a query of high selectivity), which selects

fewer rows to scan and filter relatively to the number of rows in the table. On

the other hand, a large selectivity value results in a ”non selective” query (or a

query with small selectivity) which selects much more rows to scan and filter. In

subsection 4.2.2. (Chapter 4 - Subsection 4.2.2. Full-text search queries) we have set

the proportions for each selectivity level (i.e., small, medium and high) that we used

in our tests. Furthermore, in the experiments we have carried out in the previous

sections to measure querying time for all the query operations, we higlighted the

difference between selective and non-selective queries by applying high and small

selectivity in a varying database size and eventually we determined how database

selectivity affects the performance of a system.

In this section, we present the evaluation related to selectivity in more detail.

Figures 4.46 to 4.57, show the results that derived after comparing queries in terms

of small, medium and high selectivity in regard to the database size for each one of

the datasets, (i.e., small, medium and large). Each diagram depicts the results for

Postgres, Mongo, Elasticsearch and Solr and the databases were tested performing

with exact phrase matching queries.

- 60 -

Chapter 4 : Experimental Evaluation

Figure 4.46: Postgres Selectivity Exact phrase matching Crossref total.

Figure 4.47: Mongo Selectivity Exact phrase matching Crossref total.

- 61 -

4.3 : Comparing querying time

Figure 4.48: Elasticsearch Selectivity Exact phrase matching Crossref total.

Figure 4.49: Solr Selectivity Exact phrase matching Crossref total.

- 62 -

Chapter 4 : Experimental Evaluation

Figure 4.50: Postgres Selectivity Exact phrase matching Yelp reviews.

Figure 4.51: Mongo Selectivity Exact phrase matching Yelp reviews.

- 63 -

4.3 : Comparing querying time

Figure 4.52: Elasticsearch Selectivity Exact phrase matching Yelp reviews.

Figure 4.53: Solr Selectivity Exact phrase matching Yelp reviewss.

- 64 -

Chapter 4 : Experimental Evaluation

Figure 4.54: Postgres Selectivity Exact phrase matching Crossref title.

Figure 4.55: Mongo Selectivity Exact phrase matching Crossref title.

- 65 -

4.3 : Comparing querying time

Figure 4.56: Elasticsearch Selectivity Exact phrase matching Crossref title.

Figure 4.57: Solr Selectivity Exact phrase matching Crossref title.

- 66 -

Chapter 4 : Experimental Evaluation

Figures 4.46 to 4.49 illustrate that all systems behave in the same way while per-

forming with the large dataset. The runtimes increase proportionally with the size

of the database and there are minor differences between selectivity levels. In Figures

4.50 to 4.53, where we test with the medium dataset, Postgres and Mongo exhibit an

increase between selectivity levels which becomes more sizeable in the small dataset

(Figures 4.54 to 4.57). On the other hand, Elasticsearch and Solr seem not to be

affected importantly to such an extend.

From this set of experiments, we conclude that selectivity does not definitely

affect the performance for some systems, during the exact phrase match operation.

The measure of selectivity though can be more clear while executing queries in dif-

ferent query operations. As we have already stated, database systems like Postgres

behave differently while executing wildcards or conjunctions instead of exact phrase

match queries. To showcase this, we evaluate of how selectivity affects the perfor-

mance of a system, but this time with the use of conjunctive queries. In the following

figures (Figures 4.58 to 4.69), we can see these results.

Figure 4.58: Postgres Selectivity Conjunctive queries Crossref total.

- 67 -

4.3 : Comparing querying time

Figure 4.59: Mongo Selectivity Conjunctive queries Crossref total.

Figure 4.60: Elasticsearch Selectivity Conjunctive queries Crossref total.

- 68 -

Chapter 4 : Experimental Evaluation

Figure 4.61: Solr Selectivity Conjunctive queries Crossref total.

Figure 4.62: Postgres Selectivity Conjunctive queries Yelp reviews.

- 69 -

4.3 : Comparing querying time

Figure 4.63: Mongo Selectivity Conjunctive queries Yelp reviews.

Figure 4.64: Elasticsearch Selectivity Conjunctive queries Yelp reviews.

- 70 -

Chapter 4 : Experimental Evaluation

Figure 4.65: Solr Selectivity Conjunctive queries Yelp reviewss.

Figure 4.66: Postgres Selectivity Conjunctive queries Crossref title.

- 71 -

4.3 : Comparing querying time

Figure 4.67: Mongo Selectivity Conjunctive queries Crossref title.

Figure 4.68: Elasticsearch Selectivity Conjunctive queries Crossref title.

- 72 -

Chapter 4 : Experimental Evaluation

Figure 4.69: Solr Selectivity Conjunctive queries Crossref title.

We observe that Postgres performs significantly slower with queries of small se-

lectivity, indicating a sudden increase in the limits of 1m and 2m records, for the

reasons explained in section 4.3.3 regarding the conjunctive queries experiments.

Performing in the large dataset, Mongo starts to operate from approximately 10

seconds with high selective queries while with small selective queries it needs some-

thing less than 100 seconds. A similar behaviour is observed in the medium dataset.

Notice also, that the is a slight difference between selectivity levels in all database

sizes for Elasticsearch and Solr, compared to those of exact phrase match operation.

4.3.6 Query operations

For this set of experiments, we investigate the time needed for each one of the

systems to query the databases, when using different query operations. We compare

each system’s perfrormance in querying documents for the full-text search operations

of exact phrase matching, wildcards search and conjunctive queries. All tests have

been carried out by applying queries of high selectivity.

In Figures 4.70 to 4.81, we can see the results for each database system. We

notice that exact phrase matching queries need significantly more time to be ex-

ecuted by the systems in most cases, while on the contrary, wildcards search and

- 73 -

4.3 : Comparing querying time

conjunctive queries demand less time. Postgres for example, needs more than 1000

seconds to query 3m records performing in the large dataset, while it needs less

than 10 seconds for the rest of the operations. A similar behaviour can be seen in

the medium dataset, however these runtimes are reduced significantly in the small

dataset. Elasticsearch and Solr also, need more time to operate with exact phrase

matching queries but with much better results compared to Postgres (about 10 sec-

onds in all three datasets) and with minor time differences compared to the other

query operations. On the other hand, Mongo perfoms with exact phrase matching

in the small dataset better than conjunctions and wildcards, except when it comes

to perfom in the medium and large datasets where it needs nearly 1000 seconds to

query 3m documents, which is about the same runtime with conjunctive queries.

Figure 4.70: Postgres Query operations Crossref total.

- 74 -

Chapter 4 : Experimental Evaluation

Figure 4.71: Mongo Query operations Crossref total.

Figure 4.72: Elasticsearch Query operations Crossref total.

- 75 -

4.3 : Comparing querying time

Figure 4.73: Solr Query operations Crossref total.

Figure 4.74: Postgres Query operations Yelp reviews.

- 76 -

Chapter 4 : Experimental Evaluation

Figure 4.75: Mongo Query operations Yelp reviews.

Figure 4.76: Elasticsearch Query operations Yelp reviews.

- 77 -

4.3 : Comparing querying time

Figure 4.77: Solr Query operations Yelp reviews.

Figure 4.78: Postgres Query operations Crossref title.

- 78 -

Chapter 4 : Experimental Evaluation

Figure 4.79: Mongo Query operations Crossref title.

Figure 4.80: Elasticsearch Query operations Crossref title.

- 79 -

4.4 : Comparing data insertion time

Figure 4.81: Solr Query operations Crossref title.

What we conclude is that, the majority of databases face difficulties while execut-

ing exact phrase matching queries in full-text search especially with large amount of

data, while on the other hand, wildcards search and conjunctive queries seem more

slightly operations as the systems achieve better results.

4.4 Comparing data insertion time

In this chapter, we present the results concerning the time needed to import the

documents into the database systems. Hence, the data insertion time, is the time

taken for each dataset to be uploaded into the databases.

In Figures 4.82, 4.83 and 4.84, we can see the results for all the database systems’

data insertion time in regard to the database size, for each one of the datasets (i.e.,

small, medium and large). We observe that as the database size increases, the more

time is needed to insert new documents into the systems, without any special fluc-

tuations. The same behaviour holds for all database systems.

Notice that, unlike the experiments we conducted on the querying time in the pre-

vious sections, Solr now seems to need less time than Elasticsearch to insert new

documents and operates relatively fast, whereas Postgres, is the fastest among all

databases. For Mongo, it takes more time to operate at data insertion compared to

- 80 -

Chapter 4 : Experimental Evaluation

the rest of the systems.

Figure 4.82: Data insertion time Crossref total.

Figure 4.83: Data insertion time Yelp reviews.

- 81 -

4.4 : Comparing data insertion time

Figure 4.84: Data insertion time Crossref title.

In Figures 4.85, 4.86, 4.87. and 4.88, we can see an alternative view of the previ-

ous results, comparing the time needed to import the datasets (i.e., small, medium

and large), in regard to the database size for Postgres, Mongo, Elasticsearch and

Solr respectively. We observe that Postgres and Solr reach the limit of 3m docu-

ments with a significant variance for each dataset size, as Mongo and Elasticsearch

seem to converge at this limit. Moreover, Mongo starts from the same point of

approximately 500 seconds to insert 250k documents for all three datasets, but this

time difference is increased as it moves to even higher values.

- 82 -

Chapter 4 : Experimental Evaluation

Figure 4.85: Postgres Data insertion time.

Figure 4.86: Mongo Data insertion time.

- 83 -

4.4 : Comparing data insertion time

Figure 4.87: Elasticsearch Data insertion time.

Figure 4.88: Solr Data insertion time.

- 84 -

Chapter 4 : Experimental Evaluation

4.5 Comparing memory usage

We have also executed experiments to specify memory requirements for each of

the presented database systems of our study. To specify memory usage, we have

measured the amount of memory that have been consumed for the processes of in-

dexing and querying.

Figures 4.89, 4.90 and 4.91 exhibit an overview of the results for memory consump-

tion of the indexing process. What we observe is that Solr and Elasticsearch have

high memory requirements for data indexing and both reach the limit of 2000MB

for the Crossref-total dataset (the large dataset). The memory consumption corre-

sponds to the time needed for data insertion for both of the systems. On the other

hand, Mongo consumes significantly less memory compared to the other systems.

The memory requirements of Mongo database system do not correspond to the time

needed for data insertion and indexing. On the other hand, Postgres needs on aver-

age 1000 to 1500MB of memory usage for the same operations and proves consistent

with the previously presented results.

Figure 4.89: Memory usage (indexing) Crossref total.

- 85 -

4.5 : Comparing memory usage

Figure 4.90: Memory usage (indexing) Yelp reviews.

Figure 4.91: Memory usage (indexing) Crossref title.

- 86 -

Chapter 4 : Experimental Evaluation

The final set of figures (Figures 4.92, 4.93 and 4.94) exhibit an overview of the re-

sults for memory consumption of the querying process. In this case, the difference in

memory usage is clearly obvious among the database systems. Solr and Elasticsearch

consume significantly less memory compared to Mongo and Postgres, accordingly

to the time needed for the querying operations that we previously analysed in our

experiments.

Figure 4.92: Memory usage (querying) Crossref total.

Figure 4.93: Memory usage (querying) Yelp reviews.

- 87 -

4.5 : Comparing memory usage

Figure 4.94: Memory usage (querying) Crossref title.

- 88 -

Chapter 5

Conclusions and Future Work

In this paper we studied and compared some of the most used relational and non-

relational database systems and we evaluated their performance in full-text search

experimenting with datasets of varying sizes.

After presenting the theoretical background, we tested the systems through a series

of experiments by executing the operations of exact phrase matching, wildcards

search, conjunctive queries and extended conjunctive queries on a range of 250k to

3m records for each one of the datasets. We have also tested the systems in terms

of selectivity applying high, medium and small selective queries on each one of the

query operations. Finally, we measured the time needed for data insertion and we

examined the memory consumption of the systems for the processes of indexing and

querying.

For the different query operations we have tested the systems, we observed the

following. Elasticsearch and Solr have responded in the experiments with balanced

time measurements in proportion to the dataset size and without any fluctuations

in the totality of cases. Postgres proved to perform much better with the use of

the GIN index, competing non-relational systems and outperforming Mongo in the

query oprations of wildcards search and conjunctions, but struggles when it has to

query a large proportion of data coupled with a high memory consumption. Memory

usage also seems to affect Mongo which performed significantly slow compared to

the rest of the non-relational systems.

- 89 -

We have also deduced how selectivity affects the performance in full-text search.

We first showcased the example of exact phrase matching operation where the sys-

tems responded without any serious influence during the querying process, whereas

with conjunctive queries the databases showed a dissimilar behaviour while oper-

ating with high or small selective queries in a different proportion of the selected

data. Next we noticed that, the majority of the systems perform better with wild-

cards search and conjunctive queries, while on the other hand, face difficulties while

executing exact phrase match queries on a large amount of data. Finally, we in-

spected the performance during the data insertion operation where we determined

that he relational system has an advantage over the non-relational and the text

search databases.

What we conclude from these experiments, is that non-relational and text search

databases provide a trustworthy alternative in full-text search while performing with

small or huge amount of data. We also observe that the relational model is sensitive

to its parameters, which in this case is data indexing, despite the size of the dataset

that was utilized. We can conclude that some relational databases can operate well

in certain query operations and in specific amount of data under conditions.

For future work on this study, one thing we would like to see would be testing

the systems in a larger amount of data, for example 10m or 100m documents. The

limit of 3m documents acted as a threshold in some cases where databases achieved

the same time measurements and we would like to see the runtimes beyond that

limit. Apart from this, we would also like to test the systems on datasets with

free-form text or imbalanced data such as web pages, social media content, emails,

dates, etc. Finally, selecting different database systems to put in comparison and

test their capabilities could also be left as future work. Some example databases are

CouchDB, Cassandra, Spinx and SQL Server.

- 90 -

References

[1] Full-text search.

https://en.wikipedia.org/wiki/Full-text-search

[2] Full-Text search queries.

https://docs.microsoft.com/en-us/sql/relational-databases/search/

full-text-search?view=sql-server-ver15

[3] Ameya Nayak, Anil Poriya, and Dikshay Poojary. Type of NOSQL Databases

and its Comparison with Relational Databases. International Journal of Applied

Information Systems 5(4):16-19, March 2013.

[4] Mohamed, Mohamed A., Obay G. Altrafi, and Mohammed O. Ismail. ”Rela-

tional vs. Nosql databases: A survey”. International Journal of Computer and

Information Technology 3.03 (2014): 598-601.

[5] K. Sahatqija, J. Ajdari, X. Zenuni, B. Raufi and F. Ismaili, ”Comparison be-

tween relational and NOSQL databases”, 2018 41st International Convention on

Information and Communication Technology, Electronics and Microelectronics

(MIPRO), 2018, pp. 0216-0221, doi: 10.23919/MIPRO.2018.8400041.

[6] Relational Data Model in DBMS.

https://www.guru99.com/relational-data-model-dbms.html

[7] Relational database.

https://en.wikipedia.org/wiki/Relational database

[8] What Is a Non-Relational Database?.

https://www.mongodb.com/databases/non-relational

- 91 -

References

[9] Non-relational data and NoSQL.

https://docs.microsoft.com/en-us/azure/architecture/data-guide/big-

data/non-relational-data

[10] NoSQL.

https://en.wikipedia.org/wiki/NoSQL

[11] Jatana, Nishtha, et al. ”A survey and comparison of relational and non-

relational database”. International Journal of Engineering Research & Technology

1.6 (2012): 1-5.

[12] K. Sahatqija, J. Ajdari, X. Zenuni, B. Raufi and F. Ismaili, ”Comparison be-

tween relational and NOSQL databases”, 2018 41st International Convention on

Information and Communication Technology, Electronics and Microelectronics

(MIPRO), 2018, pp. 0216-0221, doi: 10.23919/MIPRO.2018.8400041.

[13] Čerešňák R., Kvet M. Comparison of query performance in relational and non-

relational databases. Transportation Research Procedia, 40 (2019), pp. 170-177,

2352-1465.

[14] Z. Parker, S. Poe, and S. V. Vrbsky. Comparing nosql mongodb to an sql db.

Proceedings of the 51st ACM Southeast Conference, ACM, April 2013.

[15] Cornelia Győrödi, Robert Győrödi, George Pecherle, Andrada Olah. A com-

parative study: MongoDB vs. MySQL. IEEE - 13th International Conference on

Engineering of Modern Electric Systems (EMES), 2015, Oradea, Romania, 11-12

June 2015, ISBN 978-1-4799-7649-2, pag. 1-6.

[16] Aghi, R., Mehta, S., Chauhan, R., Chaudhary, S., Bohra, N. A comprehensive

comparison of SQL and MongoDB databases. Int. J. Sci. Res. Publ. 5(2), (2015).

[17] Yishan Li and Sathiamoorthy Manoharan. A performance comparison of

SQL and NoSQL databases. 2013 IEEE Pacific Rim Conference on Commu-

nications, Computers and Signal Processing (PACRIM), 2013, pp. 15-19, doi:

10.1109/PACRIM.2013.6625441.

[18] Lucidworks:Full Text Search Engines vs. DBMS.

https://lucidworks.com/post/full-text-search-engines-vs-dbms/

- 92 -

References

[19] AnyTXT Searcher:Lucene vs Solr vs ElasticSearch 2021.

https://anytxt.net/how-to-choose-a-full-text-search-engine/

[20] PostgreSQL About.

https://www.postgresql.org/about/

[21] PostgreSQL Wikipedia.

https://en.wikipedia.org/wiki/PostgreSQL

[22] PostgreSQL vs. MySQL: A 360-degree Comparison [Syntax, Performance, Scal-

ability and Features]

https://www.enterprisedb.com/

[23] PostgreSQL. Full Text Search Tutorial.

https://linuxhint.com/postgresql-full-text-search-tutorial/

[24] PostgreSQL. Text Search Functions and Operators

https://www.postgresql.org/docs/12/functions-textsearch.html

[25] Mongo Wikipedia.

https://en.wikipedia.org/wiki/MongoDB

[26] MongoDB.com: Why Use MongoDB and When to Use It?

https://www.mongodb.com/why-use-mongodb

[27] Dotnettricks: Learn MongoDB PostgreSQL vs. MySQL: A 360-degree Compar-

ison [Syntax, Performance, Scalability and Features]

https://www.dotnettricks.com/learn/mongodb/

[28] GeeksforGeeks: What is a MongoDB Query?

https://www.geeksforgeeks.org/what-is-a-mongodb-query/

[29] Mongo Text Search.

https://docs.mongodb.com/manual/text-search/

[30] Elasticsearch Wikipedia.

https://en.wikipedia.org/wiki/Elasticsearch

[31] Elasticsearch Query DSL.

https://www.elastic.co/guide/en/elasticsearch/reference/current/

query-dsl.html

- 93 -

References

[32] Getting Started with Elasticsearch Query DSL.

https://towardsdatascience.com/getting-started-with-elasticsearch-

query-dsl-c862c9d6cf7f

[33] Elasticsearch: Full text queries.

https://www.elastic.co/guide/en/elasticsearch/reference/6.8/full-

text-queries.html

[34] Apache Solr org.

https://solr.apache.org

[35] Solr vs. Elasticsearch: Who’s The Leading Open Source Search Engine?

https://logz.io/blog/solr-vs-elasticsearch/

[36] The Standard Query Parser.

https://solr.apache.org/guide/7 0/the-standard-query-parser.html

[37] Apache Solr Wikipedia.

https://en.wikipedia.org/wiki/Apache Solr

[38] PostgreSQL Copy Example.

https://kb.objectrocket.com/postgresql/postgresql-copy

[39] GiST and GIN Index Types.

https://www.postgresql.org/docs/9.1/textsearch-indexes.html

[40] How to create a database in MongoDB.

https://www.mongodb.com/basics/

[41] Elasticsearch mapping.

ttps://www.elastic.co/guide/en/elasticsearch/reference/current/map-

ping.html

[42] Solr Cores and solr.xml.

https://solr.apache.org/guide/6.6/solr-cores-and-solr-xml.html

- 94 -

