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I usually solve problems by letting them devour me.

Franz Kafka



Περίληψη

Μ
ε την ολοένα αυξανόμενη πολυπλοκότητα των απειλών και των ευπαθειών

της κυβερνοασφάλειας, η ανάγκη για αποδοτικές και αποτελεσματικές λύσεις

διαχείρισης αυτών είναι αδήριτη. Το chatbot κυβερνοασφάλειας που προτείνεται στην

παρούσα εργασία επιδιώκει να εισαγάγει έναν πιο φιλικό προς τον χρήστη τρόπο ε-

ύρεσης και αναζήτησης πληροφοριών σχετικά με πολλαπλά είδη απειλών. Η παρούσα

διπλωματική εργασία διερευνά την ανάπτυξη και υλοποίηση ενός νέου και καινοτόμου

chatbot που αξιοποιεί τεχνικές επεξεργασίας φυσικής γλώσσας (NLP) για την ανα-

ζήτηση ευπαθειών κυβερνοασφάλειας.

Το chatbot που παρουσιάζεται στη παρούσα εργασία προσφέρει ποικίλες λειτουρ-

γίες, που περιλαμβάνουν από απλούς διαλόγους έως την εις βάθος διερεύνηση των

απειλών για την ασφάλεια στον κυβερνοχώρο. Οι χρήστες μπορούν να πραγματοποι-

ήσουν ερωτήσεις σχετικά με τα επίπεδα απειλών, συμπεριλαμβανομένων των ευπαθειών

χαμηλής απειλής και των απειλών 0-day. Οι χρήστες μπορούν να εξερευνήσουν τα

δεδομένα MISP, να λάβουν πληροφορίες για συγκεκριμένα γεγονότα ευπαθειών και

συσχετίσεων αυτών αλλά και να εξερευνήσουν τις πηγές δεδομένων τους. Το chatbot

παρέχει ολοκληρωμένες πληροφορίες σχετικά με συγκεκριμένες απειλές, όπως trojans,

spywares, ιούς και adwares, συμπεριλαμβανομένης της λειτουργικότητας τους αλλά και

πολλών άλλων πληροφοριών. Το chatbot διευκολύνει την ολοκληρωμένη ανάλυση α-

πειλών, επιτρέποντας στους χρήστες να φιλτράρουν τις απειλές αυτές ημερολογιακά,

με βάση τα επίπεδα κινδύνου και άλλα.

Τα ευρήματα της παρούσας εργασίας καταδεικνύουν τις δυνατότητες των chatbots

ως πολύτιμα εργαλεία για τους επαγγελματίες της κυβερνοασφάλειας αλλά και τους α-

πλούς χρήστες, προσφέροντας έναν φιλικό προς το χρήστη περιβάλλον και έναν αποτε-
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λεσματικό τρόπο πρόσβασης και ανάλυσης των πληροφοριών σχετικά με τις ευπάθειες.

Η παρούσα εργασία αναλύει τους περιορισμούς της υλοποίησης και περιγράφει πιθανές

μελλοντικές κατευθύνσεις για την ενίσχυση των δυνατοτήτων της, όπως την επέκταση

των πηγών δεδομένων του και την ενσωμάτωση πιο προηγμένων τεχνολογίων επεξερ-

γασίας φυσικής γλώσσας. Επίσης, αυτή η μελέτη θα επιχειρήσει να συγκρίνει το παρόν

chatbot με άλλα δημοφιλή γενικού σκοπού, όπως το ChatGPT της OpenAI και το

Gemini της Google.



Abstract

W
ith the ever-increasing complexity of cybersecurity threats and vulnera-

bilities, the need for efficient and effective vulnerability management so-

lutions tends to be vital. This proposed cybersecurity chatbot seeks to introduce a

more user-friendly way of getting insights about multiple kind of threats. This thesis

explores the development and implementation of a novel chatbot leveraging Natural

Language Processing (NLP) techniques for cybersecurity vulnerability searches.

The implemented chatbot offers diverse functionalities, ranging from regular

generic dialogues to in-depth exploration of cybersecurity threats. Users can in-

quire about threat levels, including low-threat vulnerabilities and zero-day threats.

Users can explore MISP data, retrieving specific events and their correlations. The

chatbot provides comprehensive details about specific threats like trojans, spyware,

viruses, and adware, including functionality and many more insights. The chatbot

facilitates comprehensive threat analysis by enabling users to filter threats based on

date ranges, risk levels, and severity.

The findings demonstrate the potential of chatbots as a valuable tool for cyber-

security professionals and regular users, offering a user-friendly and efficient way to

access and analyze vulnerability information. This thesis discusses the limitations

of the current implementation and outlines potential future directions for enhanc-

ing the chatbot’s capabilities, expanding its data sources, and incorporating more

advanced NLP techniques. Also this study will attempt to compare this domain-

specific chatbot with other popular general-purposed ones like OpenAI’s ChatGPT

and Google’s Gemini.
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Chapter 1

Introduction

1.1 Chatbot definition

In the lexicon, a chatbot is defined as “A computer program designed to simulate

conversation with human users, especially over the Internet” [1]. Similarly, other

definitions describe chatbots as “A computer program designed to respond with

conversational or informational replies to verbal or written messages from users.” [2].

The fundamental concept facilitated in every chatbot is its ability to engage

with real human users, through text messages and to simulate a feeling of a real

human to human conversation while providing thoughtful responses. As technology

advanced the development of chatbots growed as well, aiming to simulate human-

like interactions. While chatbots share a distant connection with early experiments

like Eliza, which simulated a psychotherapist, their evolution has been marked by

advancements in natural language processing and machine learning. Today, chatbots

are used across different domains and provide personalized assistance and automated

tasks such as customer support, appointment scheduling, and information retrieval.

In the last years, in addition to specialized chatbots designed for specific tasks,

there are also general-purpose chatbots. These chatbots are designed to engage

in conversations on a wide range of topics offering a more flexible approach to

interaction. General-purposed chatbots are being trained in huge datasets, leverage

extensive knowledge bases and sophisticated algorithms to understand and respond
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1.2 : Evolution of Chatbots

to a diverse array of user inquiries.

1.2 Evolution of Chatbots

Since the inception of the earliest computers, attemps have been made to devise

a computer program capable of communicating, emulating and engaging in dialogue

to closely resemble interaction with a real human. Alan Turing proposed a test in

1950 suggesting that a machine could be considered intelligent if it could exhibit

behavior indistinguishable from that of a human during textual communication.

This scientific question of Turing was considered as the inventive idea of chatbots [3].

The first chatbot introduced, was implemented from the Massachusetts Institute

of Technology (MIT) in 1960, named ELIZA. ELIZA could simulate communication

by responding to human provided sentences by using a pattern matching algorithm.

Given that was the first attempt on chatbots, ELIZA had very limited conversational

ability but was a crucial step to more advanced chatbots that would follow [4].

After ELIZA in the following years, more chatbots were created coming across

as more advanced than their predecessor. PARRY, created in 1972, was a chatbot

that could handle complicated assumptions but it was slow could not learn from

conversations [5]. After those, in the late 1980s and the 1990s more chatbots were

developed like Jabberwacky which was learning from rules and context. Another

milestone in the development of chatbots came with Dr. Sbaitso in 1991 which was

a text-to-speech engine implementing artificial intelligence speech synthesis [6] and

A.L.I.C.E., mostly inspired from ELIZA, which relied on pattern matching based

on Artificial Intelligence Markup Language (AIML).

After 2000 and especially at the beginning of the second decade chatbots and

voicebots experienced a huge rise in their popularity. Crucial to that was that the

major technology companies showed a huge interest in the field and created their

own. Apple created on 2010 Siri as a Personal Assistant tool for its mobile oper-

ating system. Siri took voice commands and using artificial intelligence algorithms

searched through the internet to answer the specific queries. Google was the second

major company to create a voicebot personal assistant introducing Google Assis-
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Chapter 1 : Introduction

tant on 2012, a better implementation of Siri, implemented inside Google’s Android

mobile operating system. Subsequently Amazon and Microsoft also created per-

sonal assistants named Alexa and Cortana respectively utilizing natural language

processing (NLP) to recognize and answer voice inputs [7].

Another articifial intelligence chatbot that became famous is the short-lived Mi-

crosoft’s Tay chatbot which was deployed on Twitter in 2016. Upon its launch Tay

was trained by user tweets, which resulted in becoming a failure as it was providing

racist and mysogynistic answers. The same day was terminated from Microsoft [8].

A huge leap forward was made in 2020 and has persisted to the present at

the development of AI chatbots, from the introduction of Generative Pre-trained

Transformer Three (GPT-3) from OpenAI. The same company introduced OpenAI

Codex in 2021 and the famous ChatGPT in 2022. GPT-3’s neural networks contain

175 billion machine learning parameters [9], while ChatGPT, which fine-tunes GPT-

3, is using supervised and reinforcement methods [10]. Recently, OpenAI unveiled

GPT-4 which is more powerful than ChatGPT and more accurate in analyzing and

providing data. GPT-4 can also process input from images and provide answers on

queries based on the images context [11].

The latest powerful chatbot was introduced by Google with Gemini, the successor

of Bard. Gemini is Google AI’s most powerful and versatile large language model

(LLM), unveiled in December 2023. It surpasses its predecessor Bard in its ability to

handle various modalities of information, including text, code, image, and audio [12].

1.3 Cybersecurity domain

Cybersecurity, in today’s fast paced digital world, is a crucial defence mecha-

nism against a growing number of threats and vulnerabilities both in personal and

commercial worlds. As technology advancements accelerate and the vast amount of

data produced become more valuable, the attempts of data theft grows. Further-

more, the growing popularity of smart devices connected to the internet (Internet

of Things) create new ways of cyberattacks [13].

There are many different approaches and techniques for a cyberattacker to fol-
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1.4 : Motivation

low. Malware is a term encompassing malicious software and comes in many forms

each one attempting to disrupt a systems functionality and gain control on it. Spy-

ware gathers user data without consent often installed by Trojans which disguise

themselves as legitimate programs. Viruses on the other hand unlike Trojans self-

replicate by attaching to other files. Another important type of vulnerability is

Adware which disrupts your experience with intrusive advertisements [14].

1.4 Motivation

In the last years powerful general-purpose artificial intelligence trained chatbots

are introduced and gain vast popularity in just days [15]. As the public becomes more

prominent on using these useful tools the industry implements more task specific

chatbots to automate other procedures such as customer service.

The motivation behind the proposed cybersecurity chatbot arises from the huge

amount of different cybersecurity databases which are currently available. While

the existence of so many sources to check is of great significance, also presents a

challenge for users. Exploring such amount of vast data is time consuming and can

lead to useful data being overlooked. A chatbot designed to connect with these

databases could significantly improve the user experience.

1.5 Thesis structure

The subsequent chapter will dig into a review of existing literature focusing

on existing chatbots in the domain of cybersecurity. This review will attempt an

analysis based on the chatbot’s technological foundations and the expertise of the

users targeted by their design.

Diving into the technical aspects, Chapter 3 will provide a detailed presentation

of the databases integrated with the implemented chatbot and the data structures

within these databases. Additionally, Chapter 4 will offer an exhaustive overview of

the architectural design and the technologies used in the development of the chatbot.

Chapter 5 will provide a detailed overview of the possible dialogue capabilities

supported from the chatbot. This analysis will provide an exhaustive exploration of
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Chapter 1 : Introduction

all the information the chatbot can currently extract from the supported databases.

Finally, chapter 6 will conclude the discussion by highlighting modifications and

innovative ideas that could lead to further enhance the chatbot’s currently capabil-

ities.
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Chapter 2

Related Work

Conversational agents have been widely used in different domains and areas of

interest. A survey providing an overview and comparison on various Natural Lan-

guage Processing (NLP) techniques and outlining significant factors that impact the

design of a chatbot has been presented by [16]. The authors emphasize the impor-

tance of tailoring chatbots to specific tasks. NLP techniques can change depending

on the available data. Limiting the scope of the chatbots can avoid needing massive

knowledge bases like those required for general-purpose agents. This targeted ap-

proach allows different fields to benefit from chatbots trained and designed for their

unique needs.

2.1 Transformers

The introduction of transformer architecture has a significant impact on NLP

field [17]. Transformers have overcome some limitations on existing NLP methods

that are implemented using Convolutional Neural Networks [18], Recurrent Neural

Networks (RNNs) [19] or even Long Short-Term Memory networks (LSTM) [20].

Unlike traditional models that process text sequentially, transformers can analyze

inputs as entire sentences or paragraphs at once. This allows them to identify com-

plex relationships between words even if they are far apart in the text [21]. This

parallel processing characteristics make transformers well-suited for various natu-

ral language processing tasks including understanding emotional tones (sentiment
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2.2 : Large Language Models

analysis). These advancements have set transformer models as the major technol-

ogy for powerful NLP tools like BERT (Bidirectional Encoder Representations from

Transformers) [22] and GPT (Generative Pre-trained Transformer) [23]. Trans-

former architectures with their self-attention capabilities have undoubtedly pushed

the boundaries of NLP. However it’s important to mention that they represent just

one approach within the ever-growing field of Large Language Models (LLMs).

2.2 Large Language Models

Large Language Models (LLMs) represent a breakthrough in Natural Language

Processing (NLP). These models are trained on large text datasets, including im-

mense volumes of language data allowing them to develop a sophisticated under-

standing of language context [24]. This fact allow LLMs to perform tasks requiring

comprehension of context and generation of human-quality text that is both coherent

and semantically meaningful [25].

Both GPT-style and BERT-style language models use the powerful transformer

architecture to capture contextual dependencies and relationships within text. This

architecture allows them to have great accuracy in many different NLP applications.

However they are different in their training approaches. GPT models are trained

to predict the next word in a sequence capturing long-range dependencies. On the

other hand, BERT, utilizes a masked language modeling objective where it predicts

hidden words based on surrounding context. This approach enables BERT to grasp

the different meaning of words and phrases within a sentence.

Large language models (LLMs) have demonstrated remarkable success in various

natural language processing (NLP) tasks including binary classification and Named

Entity Recognition (NER). This, suggests their potential application within the

Cybersecurity domain and in particular for tasks like text classification and entity

recognition [26]. In Cybersecurity, text classification could mean categorizing text

data based on its relevance to security threats while NER could focus on identifying

specific entities within the text such as vulnerabilities and affected products.
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2.3 Existing Chatbots

2.3.1 Chatbots based on Transformers

2.3.1.1 SecBot

SecBot is a conversational agent focused on cybersecurity planning and man-

agement proposed on 2020 [27]. SecBot is a chatbot built in the Rasa platform

which is based on the two fundamental concepts of Intents and Entities. Intents

specify what users want to access through the chat and Entities are used to ex-

tract specific terms or values from the given query. SecBot uses the Dual Intent

and Entity Transformer (DIET) architecture [28] for intent classification and entity

extraction as implemented by the Rasa framework [29].

2.3.1.2 Chatbot Sec

ChatBot Sec (CBS) aims to be a virtual information security advisor for users

especially those with limited cybersecurity expertise [30]. It uses a JSON file as its

knowledge database containing pre-written security advices structured in a tree-like

format. Upon user’s query, CBS first checks its cache for a similar past inquiry

and response. If no match is found, CBS searches the knowledge base for keywords

related to the user’s question. Based on the search results CBS retrieves relevant

advice. After that formats it into a user-friendly response and sends it back. Finally,

CBS caches this interaction for future reference if a similar question arises.

2.3.2 Chatbots based on LLMs

Recent advancements in Large Language Models (LLMs) have revolutionized

Natural Language Processing (NLP) due to their impressive ability to comprehend

and generate human-like text. However, their performance can suffer in domains

requiring specialized knowledge or access to external information. However, the

attempt to detect chatbots utilising Large Language Models (LLMs) within the

Cybersecurity domain have not yielded significant results. The following examples
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2.3 : Existing Chatbots

demonstrate the application of LLMs in chatbots across various fields.

2.3.2.1 LLM Chatbot for Cybersecurity

A novel chatbot leveraging Large Language Models (LLMs) to enhance anomaly

detection in cybersecurity was proposed by Balasubramanian et. al. [31]. This

chatbot combines advanced GPT-3 models together with rule-based logic to analyze

system logs. By examining the aforementioned logs the chatbot can identify and

extract unusual patterns or deviations that might lead to potential security threats

and vulnerabilities. This approach combines machine learning capabilities with the

expertise of cybersecurity professionals attempting to establish a new standard for

anomaly-aware conversational agents. The evaluation of this chatbot demonstrates

the system’s effectiveness to have very high accuracy in identifying anomalies within

logs. Furthermore GPT-3 models seem to consistently outperform other compared

LLMs (BERT, DistilBERT, ALBERT) showcasing their superior performance in this

domain.

2.3.2.2 LLM Chatbot for Blockchain

In the work presented by Mansurova et.al. [32] a novel system that addresses

these limitations is discussed which integrates LLMs with an external knowledge

management module. This module facilitates real-time access to external data

sources for the LLM regarding the blockchain domain. More specifically, the sys-

tem utilizes vector databases for efficient retrieval of relevant information while

also enabling dynamic internet search capabilities to broaden the LLM’s knowledge

database. This approach offers a significant advantage avoiding spending resource on

retraining LLMs. Instead it focuses on optimizing the utilization of existing models

by equipping them with real-time access to external knowledge sources. Prelimi-

nary findings suggest this system has the potential to enhance LLM performance in

knowledge-intensive tasks.
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Chapter 2 : Related Work

2.3.2.3 LLM Chatbot for Medicine

Another conversation agent using LLMs focusing on a specific domain is Cataract-

Bot [33]. CataractBot is an expert-in-the-loop chatbot system designed to provide

useful information to patients undergoing cataract surgery. Developed in collab-

oration with Sankara Eye Hospital in India, CataractBot leverages a Large Lan-

guage Model (LLM) alongside a curated knowledge base and expert’s verification

to provide accurate and trustworthy information to patients. The system is mul-

tilingual supporting five languages (English, Hindi, Kannada, Tamil, Telugu) and

multimodal accepting both text and speech inputs with corresponding text and

audio outputs. CataractBot prioritizes verified responses for medical questions by

employing a combination of a custom knowledge database which includes hospital

documents and FAQs and also utilizes expert’s review by doctors to ensure accuracy

of the information provided.

2.3.3 Grouping Discussion

One approach to categorize chatbots in general and more specifically in the

cybersecurity field is by the underlying technology powering their functionality. This

thesis proposes grouping chatbots based on their utilization of Transformers or Large

Language Models (LLMs). This grouping focuses into the core functionalities and

suitability of each type of chatbot for specific applications attempting to provide

valueable insights of each technology.

Transformer-based chatbots are more suited on problems of identifying user in-

tent and extracting key entities from their queries. This capability stems from the

transformer architecture’s ability to analyze complex relationships between words

within a sentence. This makes them a natural fit for tasks like intent classification

and Named Entity Recognition (NER) which are crucial for chatbots that search

through vast databases for specific answers. For instance a transformer-based chat-

bot could effectively analyze a user query and identify the exact intent or recognize

mentions of specific vulnerabilities so to provide optimal information.

LLMs use their vast training on massive text datasets to understand and generate
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human-like text. This advantage makes them ideal for tasks requiring comprehensive

knowledge and the ability to communicate in a natural language. In the context

of cybersecurity LLMs could be used to develop chatbots that provide users with

detailed information of security threats and vulnerabilities.

It is important to acknowledge that this grouping is not mutually exclusive.

Some chatbots may combine both transformer and LLM capabilities to achieve a

broader range of functionalities. Future advancements in chatbot technology may

further blur the lines between these categories creating chatbots that combine best

features of the two worlds.
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Chapter 3

Chatbot Database

3.1 Database Architecture

The proposed chatbot retrieves data from two different sources. The first one

is a MISP (Malware Information Sharing Platform) SQL database. The MISP

database provides access to a collection of malicious events, Indicators of Compro-

mise (IoC) [34] and more, that would be more speficied on this chapter. The other

source, are JSON files which contain a structured format of many documented vul-

nerabilities of different types. This combination allows the chatbot to make use of

the extensive threat intelligence available through MISP while incorporating focused

vulnerability information from the JSON files.

3.2 Sources of data

3.2.1 MISP Database Architecture

The MISP data model supports complex functionalities while at the same time

follows a simple architecture. MISP employs a structured data model centered

around the concept of an event object which is defined by a set of characteristics

and descriptions [34]. The aforementioned characteristics are called attributes in

this data structure and they focus into providing all useful information linked to an

event. These attributes may include information about date, threat level, comments

- 13 -



3.2 : Sources of data

etc.

MISP’s database schema supports managing complex threat data in a multi-user

environment across various sectors. This is achieved through the implemented MISP

attribute categories, types, objects and taxonomies.

Any Cyber Threat Intelligence (CTI) object is stored in the MISP database in

the form of attributes. Multiple grouped attributes form an object which consists

a bigger CTI artifact. Attributes and objects provide details for each event with

attributes defining specific characteristics. MISP further allows correlation between

events based on matching attributes, essentially creating connections that show

shared characteristics as shown on Figure 3.1.

Figure 3.1: MISP correlations

3.2.1.1 Events Table

The events table acts as the core structure within MISP. It functions as a con-

tainer containing attributes, objects, and metadata to create a comprehensive set of

indicators describing a specific case. Events can represent various scenarios such as
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incidents, security analysis reports or threat actor analyses.

Some of the major fields in the events table are:

• the unique identifier of the event

• its publication status

• a threat level

• date

• the organisation which generated the event

and more information describing each instance.

3.2.1.2 Objects Table

Within an event, objects serve as containers that group related attributes. This

allows describing more complex structures than what a single attribute can capture.

Each object is built from a pre-defined template which provides a structure for the

meta-data it carries. Objects are further categorized to a meta-category and defined

by a name for easy identification.

Some of the major fields in the objects table are:

• the unique identifier of the object

• its name

• a meta-category

• description

• an event id the object belongs to

and many more informative fields.
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3.2.1.3 Attributes Table

Attributes are the fundamental elements used to describe indicators and con-

textual data within an event. Each attribute consists of three key components a

category, a type and a value which work together to provide meaning and context.

The category and type give meaning and context to the value, while value itself

holds the actual information. This combination allows MISP to represent a wide

range of information.

Some of the fields worth mentioning are:

• the identifier attached to each attribute

• its type

• its predefined category

• event id referencing the event object this attribute belongs to

• object belongs to

and many more informative fields.

3.2.1.4 Correlations Table

Correlations table serve as a bonding system which provides connections between

event objects. The main purpose of this table is to describe any correlations that

may occurred between events through the MISP Correlation Engine.

Some worth mentioning fields of the correlation table are:

• the identifier

• the value which represents the payload of the correlated attribute

• l event id which represents the id of the event at hand

• event id which represents the event correlating to the one at hand
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etc.

A comprehensive discussion of the aforementioned MISP tables, their correspond-

ing fields and further information can be found within the MISP publication [34].

3.2.2 Vulnerabilities JSON Files

These vulnerability JSON files are containing many different instances of viruses,

trojans, spywares and adwares. These data were provided by the thesis’ supervisor

Dr. Christos Tryfonopoulos. The fields these collections contain are presented in

Tables 3.1 - 3.4 separated for each vulnerability category.

Fields Explanation

id Unique identifier of virus entry

name Name of the virus

type Type of vulnerability

date Discovery date of virus

url Website with more information

infection length Size of the virus

systems affected The operating system the virus can infect

risk impact Severity of the virus

also known as Potential alternative names of the virus

antivirus protection dates First detection and the last update to the detection

mechanism.

technical description Describes how the virus works and what it does to

a computer system.

recommendations General recommendations for preventing infection.

removal Instructions for removing the virus, typically using

Symantec’s antivirus products.

Table 3.1: Virus Collection
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Fields Explanation

id Unique identifier of trojan entry

name Name of the trojan

type Type of vulnerability

date Discovery date of trojan

url Website for further information

discovered Discovery date written in full

infection length Size of the trojan

systems affected The operating system the trojan can infect

installation How the trojan is installed on a system

permissions Permissions requested by the trojan during instal-

lation

functionality What the Trojan does on a compromised device

recommendations Recommendations for preventing infection or mit-

igating risks

removal Instructions for removing the trojan

Table 3.2: Trojan Collection
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Fields Explanation

id Unique identifier of Spyware entry

name Name of the Spyware

type Type of vulnerability

date Discovery date of Spyware

url Website for further information

infection length Size of the Spyware

systems affected The operating system the Spyware can infect

behavior What the Spyware does on a compromised device

antivirus protection dates Dates the antivirus software recognizes this Spy-

ware

installation How the Spyware is installed

permissions Permissions requested by the Spyware during in-

stallation

functionality What the Spyware does on a compromised device

removal Instructions for removing the Spyware

Table 3.3: Spyware Collection
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Fields Explanation

id Unique identifier of Adware entry

name Name of the Adware

type Type of vulnerability

date Discovery date of Adware

url Website for further information

infection length Size of the Spyware

version Version (if applicable)

publisher Organisation publishing it

risk impact Severity of the Adware

behavior What the Adware does on a compromised device

systems affected Affected operating systems

antivirus protection dates Dates the antivirus software recognizes this Ad-

ware

technical description What the Adware does on a compromised device

removal Instructions for removing the Spyware

Table 3.4: Adware Collection

3.3 Data exploration and statistics

After acquiring the data from both the MISP database and the vulnerability

JSON files, Python scripts were employed to conduct an exploratory analysis. This

analysis focused on the distribution of data fields of the dataset attempting to iden-

tify informative fields that could also be leveraged for the development of a more

expansive chatbot.

Integrating in the chatbot fields that exhibit variability across diverse vulnerabil-

ity scenarios enhances the informativeness of the conversations. On the other hand

fields with constant values or lacking content (null) provide no significant value. The

exclusion of such fields has led to more insightful chatbot dialogues.
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For example below are presented two samples of the plots created for various

fields of the data showing the distribution of their values.

Figure 3.2: Spyware Dates Distribution
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Figure 3.3: Adware Risk Impact Distribution

- 22 -



Chapter 4

Chatbot Architecture

This chapter presents the architectural choices made for the proposed chatbot.

Since this chatbot is based on the Rasa framework, a detailed description of its

architecture will be provided in the following sections. These sections will also com-

prehensively explore the way the proposed chatbot utilizes the capabilities offered

by Rasa.

4.1 Rasa Framework

Rasa [29] is a powerful open-source framework for creating chatbots and con-

versational AI assistants. Rasa uses machine learning and Python allowing you to

understand, hold conversations and connect to messaging channels and third party

systems through a set of APIs.

Rasa Conversational AI assistant normally consists of two components, Rasa

NLU and Rasa Core. Rasa NLU can be treated like a receiver which processes the

incoming messages from the user handling intent classification, entity extraction,

and response retrieval. Rasa Core handles the dialog management process taking

decisions based on user input.

4.2 Rasa Architecture

This section describes the architecture of the Rasa framework, providing an ex-

tensive presentation of its fundamental components. The description of these various
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components will attempt to provide insights of the mechanisms that enable chatbots

based on Rasa to comprehend user queries and generate appropriate responses.

4.2.1 Overview of Rasa Architecture

Rasa relies on dialogue policies to determine its responses. The aim of these

policies is to analyze the conversation state which is stored in the tracker object

and to choose the most suitable action to take next. A pipeline of how this exactly

works follows:

• Rasa NLU component processes a user input so to identify the intent and

extract its entities.

• Rasa keeps track of the dialogue state by storing the user’s previous inputs,

the system’s responses, all the extracted entities and many other metadata.

• Rasa’s dialogue policy is responsible to decide the next action based on the

current dialogue state. This decision can either be rule-based where predefined

rules match specific conditions or based on machine learning where a model

predicts the most suitable action

• After all previous steps have been made Rasa generates the response and sends

it to the user as a reply.

4.2.2 Rasa Components

This section attempts to present the key components of Rasa, including intent

recognition (IR), entity extraction, tokenizers and featurizers. Utilizing these com-

ponents, the chatbot is able to discover the intention of user queries, extract the

useful information of the provided message and then convert it to numerical vectors

for further processing.
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4.2.2.1 Intent Recognition

Intent recognition (IR) is the component responsible for predicting the user’s

intent depending on the input. IR analyzes the user’s message and categorizes it

into labels, called intents. Rasa NLU will classify the user messages into one or also

multiple user intents. The two components between which you can choose are:

• Pretrained Embeddings (Intent classifier sklearn)

• Supervised Embeddings (Intent classifier tensorflow embedding)

The Sklearn [35] classifier uses the spaCy [36] library to load pretrained language

models to convert each word into a numerical vector (word embedding). Word

embeddings are vector representations of words, meaning each word is converted to

a dense numeric vector. Word embeddings capture semantic and syntactic aspects

of words. This means that similar words should be represented by similar vectors.

Rasa NLU takes the average of all word embeddings within a message and per-

forms a grid search to find the best parameters for the support vector classifier which

classifies the averaged embeddings into the different intents. The grid search trains

multiple support vector classifiers with different parameter configurations and then

selects the best configuration.

The Tensorflow [37] embedding intent classifier was developed by Rasa and is

inspired by Facebook’s starspace paper [38]. Instead of using pretrained embeddings

and training a classifier on top of that, Rasa offers an alternative approach which

trains word embeddings from scratch. It is typically used with the intent featurizer

count vectors component which counts how often distinct words of your training

data appear in a message and provides that as input for the intent classifier.

Intent classification is an essential element of natural language understanding

(NLU) in chatbot development. The predicted intent triggers specific actions rout-

ing the conversation flow. Intent classification is stated through a configurable

pipeline. This pipeline is typically defined within a configuration file config.yml.

The optimal selection of the intent classifier is dependent on the chatbot design and

the characteristics of the training data. Rasa provides default configurations for a
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variety of intent classification algorithms but configuring these algorithms for each

specific case can help a lot its performance.

4.2.2.2 Entity Extraction

Entity extractors are responsible to identify and extract specific information

(entities) from user messages. These entities represent data points that the chatbot

uses during conversation handling so to produce targeted responses.

The training data provided are of high significance in this process. By analyzing

this data, entity extractors learn to understand patterns between words and their

entity labels. Implementing that, entity extractors can then accurately recognize and

extract entities from novel user messages. The extracted entities are responsible

for populating slots or variables which function as memory locations for storing

information during of the conversation.

4.2.2.3 Tokenizers

Tokenizers are a fundamental component of Natural Language Process (NLP)

responsible for breaking text input into distinct units referred to as tokens. These

tokens represent the most basic units that are deemed non-decomposable for subse-

quent processing stages. Tokenization enables the system to process and understand

text at a higher level. Tokenizers split text input into segments, typically at the word

level, while separating individual words, punctuation marks, and other meaningful

units in the text. For languages that are not dependent on whitespaces such as

Chinese there are different tokenizers.

In Rasa, the most used tokenizers a:

• WhitespaceTokenizer: This tokenizer splits the text based on whitespace char-

acters

• SpacyTokenizer: Implementation of the SpaCy tokenizer

• MitieTokenizer: Implementation of MIT’s Information Extraction tokenizer

• JiebaTokenizer: Tokenizer using Jieba for Chinese language
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4.2.2.4 Featurizers

Featurizers are components converting raw textual user inputs into numerical

feature vectors that are being processed by machine learning models. These vectors

capture important information from the input which help in predicting the user’s

intent or extracting entities.

Text featurizers are divided into two different categories: sparse featurizers and

dense featurizers. Sparse featurizers are featurizers that return feature vectors with

a lot of missing values, e.g. zeros. As those feature vectors would normally take up

a lot of memory, we store them as sparse features. Sparse features only store the

values that are non zero and their positions in the vector. Thus, we save a lot of

memory and are able to train on larger datasets.

All featurizers can return two different kind of features: sequence features and

sentence features. Sequence features are a matrix which contains a feature vector for

every token in the sequence allowing to train sequence models. The sentence features

are represented by a matrix which contains the feature vector for the complete

utterance. The sentence features can be used in any bag-of-words model.

Rasa supports many featurizers either using existing ones like MITIE, ConveRT

and SpaCy or custom using Regular Expressions (RegexFeaturizer) and pretrained

language models (LanguageModelFeaturizer) [39].

4.3 Introduction To The Implemented Chatbot

The chatbot implemented in this study is designed to provide users with quick

and accurate information about cybersecurity threats and vulnerabilities (CVEs,

viruses, trojans, etc.). The proposed chatbot is designed to have also general purpose

conversations like greetings and basic discussion to be more immersive. Currently

the chatbot is designed to support the English language. In what follows, we provide

a detailed description of the architecture and all different aspects of the proposed

chatbot.
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4.3.1 The NLU Structure of the chatbot

The proposed chatbot starts its flow by receiving the input from the user, as

seen in Figure 4.1. The first step after getting the user’s input is to break it into

distinct tokens. For that purpose the built-in Rasa’s WhitespaceTokenizer [40]

was firstly utilized so to break the provided sentence(s) into words, as the most

common and suitable for the English language. WhitespaceTokenizer is based only

on splitting text based on whitespace characters. In the journey of finding the most

suitable for this case, we tried multiple tokenizers but the best results were provided

by spaCyTokenizer. The SpaCy Tokenizer was used over WhitespaceTokenizer, as

spaCy is a powerful NLP library performing additionally stemming/lemmatization

over WhitespaceTokenizer. The results in intent prediction distribution were signif-

icantly better than WhitespaceTokenizer reducing the wrongly predicted intents by

20%. Despite the benefits of the usage of spaCyTokenizer, the increase in training

time was also significant. Since the implemented chatbot does not deal with massive

datasets yet, spaCy tokenizer was selected as a suitable fit. If performance becomes

an issue, switching to faster WhitespaceTokenizer should be operated.

This choice had to be done, as Rasa does not allow for multiple tokenizers due to

the sequential process of text. This is not the case in entity extractors, as multiple

extractors can improve accuracy and flexibility of entity recognition. In the pro-

posed chatbot, CRFEntityExtractor, SpacyEntityExtractor and RegexEnti-

tyExtractor are used. Regex Entity Extractor is simple and handles well entities

described by regular expressions, making it suitable for this chatbots’ needs. In the

context of the proposed chatbot, these patterns can be the names of the cyberthreats

or dates of events. Also, SpaCy Entity Extractor is a great match because spaCy

tokenizer is also present in the model. These two components collaborate very well

with each other, and also this extractor can leverage spaCy’s pre-trained models for

entity extraction. These two are combined with the CRF entity extractor, which

can learn complex patterns for entity recognition and handling overlapping entities.

This combination proved to provide great results in entity recognition (Figure 4.8).

Other useful component implemented in the proposed chatbot’s configuration
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file, is the EntitySynonymMapper. This component checks if the recognized

entities have any synonyms in the declared in Rasa NLU.yml file. By recognizing

synonyms of entities, the model can better interpret the intent even the user does

not use any of the exact words documented in the NLU file.

After that, the extracted words are becoming numerical vectors by the proce-

dure previously described in section 4.2.2.4 as featurization. For that task the

CountVectorsFeaturizer was utilized as the most naive solution, since it works

on the principle of word frequency, it analyzes the training data and learns how

often each word appears and creates a feature for each word. CountVectorsFeatur-

izer creates features for intent classification using bag-of-words reprsentation of user

message. As Rasa allows more than one featurizers in the configuration, SpaCyFea-

turizer was also used (Figure 4.5) which matches very well the pre-trained SpaCy’s

language models, and is a good practice to be implemented combined. SpaCy is

feature rich and can effectively extract a rich set of features from the tokenized text,

including part-of-speech tags and word embeddings. After careful consideration and

some tests, in the final featurizer setup ConveRTFeaturizer was also added as it

added a small increase in intent recognition. The advantage of the ConveRTFeatur-

izer is that it doesn’t treat each word of the user message independently, but creates

a contextual vector representation for the complete sentence.

The most crucial part in the Natural Language Understanding (NLU) is defi-

nitely the intent classification. If the chatbot manages to correctly identify the

intentions of the given input then it can accordingly provide a suitable response.

For the purpose of the proposed chatbot, DIET classifier was selected as the most

optimal tool for the current data. DIET classifier [41] is a common choice for similar

tasks and is also used on [27] as described on Chapter 2.1.1.1.

The Dual Intent and Entity Transformer (DIET) [41] is a transformer-

based architecture specifically designed for Rasa and was introduced on Rasa 1.8

version in 2020. As its name suggests, DIET can handle both intent classification and

entity recognition. A key strength of DIET is its flexibility. It offers the capability

to integrate various pre-trained word embedding models, such as BERT, GloVe,

and ConveRT. These pre-trained embeddings are representing words as numerical
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vectors, facilitating the process of intent classification and entity recognition.

Figure 4.1: Chatbot Flowchart

4.3.2 Chatbot’s Rasa Stack

4.3.2.1 Nlu.yml

Within the NLU.yml file, all user intents are documented along with a sample

of possible questions that users may use while expressing their desire. These mod-

eled sentences constitute the training data of our chatbot, meaning that users that

express the same intent with different ways will be served of the intended response.

Below follows Table 4.2 containing all different intentions and the purpose they
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deliver.

Intent Purpose

how are you Responds to greetings like hello, hi, etc.

fun fact Shares a fun fact with the user.

thanks Acknowledges the user’s thanks.

bot challenge Identifies when a user is checking if they

are interacting with a bot.

bad Handles negative feedback from the

user.

good evening Responds to greetings specific to

evening time.

good afternoon Responds to greetings specific to after-

noon time.

good morning Responds to greetings specific to morn-

ing time.

wrong Identifies when a user disagrees with

the response.

bye Responds to goodbyes from the user.

whats up Engages in small talk with the user.

misp describe event Queries MISP for event details based

on a provided ID.

misp describe object event Queries MISP for object details based

on a provided event ID.

misp describe previous event references Retrieves references for a previously

discussed event.

misp describe previous event date Retrieves the date of a previously dis-

cussed event.
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misp describe threat levels Retrieves threat levels available in

MISP.

misp print events threat level Counts events based on the specified

threat level.

misp list tables Lists all the tables in the MISP

database.

misp print latest earliest table row Retrieves the latest or earliest entry

from a specified MISP table.

misp count table rows Counts the number of entries in a spec-

ified MISP table.

misp select table Selects entries from a MISP table based

on various filters (e.g., get me all corre-

lations from the events table).

get trojan functionality by name Provides information about a trojan’s

functionality based on its name.

trojan discovery date Asks for the discovery date of a trojan.

trojan installation Asks for the installation procedure of a

trojan.

trojan permissions Asks for the permissions of a trojan.

trojan recommendations Asks for recommendations regarding a

trojan.

trojan url Asks for the URL linked to a trojan.

get spyware functionality by name Provides information about a spyware’s

functionality based on its name.

spyware risk impact Asks for the risk impact of a spyware.

spyware installation Asks for the installation procedure of a

spyware.

spyware url Asks for the URL linked to a spyware.
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spyware discovery date Asks for the discovery date of a spy-

ware.

get virus description by name Provides information about a virus’s

description based on its name.

virus url Asks for the URL linked to a virus.

virus discovery date Asks for the discovery date of a virus.

virus protection date Asks for the protection date of a virus

(when it was solved).

virus recommendations Provides recommendations for dealing

with a virus.

get adware description by name Provides information about an ad-

ware’s behavior based on its name.

adware url Asks for the URL linked to an adware.

adware risk impact Asks for the risk impact of an adware.

adware protection date Asks for the protection date of an ad-

ware.

adware discovery date Asks for the discovery date of an ad-

ware.

get vulnerability type by name Identifies the type of vulnerability

based on its name.

count spywares by risk impact Calculates the number of spywares with

a specified risk impact.

vulnerability url Asks for the URL linked to a vulnera-

bility.

count threats after date Calculates the number of threats after

a specified date.

count threats before date Calculates the number of threats before

a specified date.
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count threats by risk impact Calculates the number of threats with

a specified risk impact.

count threats by risk impact and after date Calculates the number of threats with

a specified risk impact after a specified

date.

count threats by risk impact and before date Calculates the number of threats with a

specified risk impact before a specified

date.

get latest threat based on risk impact Retrieves the latest threat with a spec-

ified risk impact.

Table 4.2: Summary of Bot Intents and Purposes

In Figure 4.2, follows a brief snapshot showing how actually this file is structured.

For each intent numerous examples of user queries are documented. The creator

of this file cannot foretell all possible user questions regarding each intent, but

providing the chatbot many different approaches of questions for an intent helps

a lot the intent prediction process. This helps the model to generalize better and

accurately classify new user inputs, even if phrased differently from the training

data. On that task EntitySynonymMapper component, as described in 4.3.1, helps

a lot when the model meets a word that is not documented in the NLU.yml file

but characterizes one intent. A larger dataset also helps the model understand the

differences between intents which reduces the chances of it falsely classifying an

intent.

In the same Figure 4.2, it is observed that while on virus recommendations intent

the examples are simple questions, on the get adware description by name intent,

the entity adware id is included. This means that this intent expects the adware id

entity to be present into the user input. To declare that in the NLU.yml file,

first it is required to declare the regular expression that the entity must match.

After that, in the intent examples it is declared by providing an adware id example

- 34 -



Chapter 4 : Chatbot Architecture

inside brackets (e.g. [Adware.Jogotempo]) followed by the name of the entity inside

parentheses (e.g. (adware id)).

Figure 4.2: The NLU.yml file

4.3.2.2 Stories.yml

This file provides all potential conversational interactions between a user and a

chatbot. Each user intent is accompanied by a corresponding action enabling the

chatbot to generate its dialogues. The role of the stories in the conversation flow

is crucial as it matches intents with the desired response actions. In the proposed

chatbot, stories follow a simple format, as also seen in Figure 4.3, where intents and

actions are coupled together within a story.
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Figure 4.3: The STORIES.yml file

4.3.2.3 Domain.yml

The domain.yml file defines the universe in which the conversational assistant

operates. It specifies the intents, entities, slots, responses, forms, and actions the

bot should know about. It also defines a configuration for conversation sessions. A

part of it is described in Figure 4.4. The domain.yml file acts mostly as a declaration

reference for all different aspects of the chatbot.

While entities and intents have been discussed in section 4.3.2.1, slots is a new

term found on the domain.yml file. Slots act as a key-value store which can be used

for storing user provided information. In Figure 4.4 a slot is defined with name

”event info”, type TextSlot (for storing textual data) and predefined slot mapping

from text (filling the slot based on text patterns). Also, the influence conversation

parameter is set to true as it is essential for entities to influence the conversation

flow. Otherwise, the model will keep the value of the entity but will not assist the

conversation flow with its value.
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Figure 4.4: The DOMAIN.yml file

4.3.2.4 Config.yml

In this file certain policies and pipelines for the efficiency of the Rasa NLU

and the Rasa Core are defined. Here, the desired Rasa components (e.g, Intent

Classifier, Entity Extractor, Epochs etc.) are declared for that chatbot. During

the training process, attributes from this file were changed accordingly to achieve

improved accuracy and F1-score.

The config.yml file of the proposed chatbot took its final form presented in Figure

4.5 after a long trial and error process. This procedure included a lot of reading

in the Rasa documentation [39] so to identify the most suitable pool of featurizers,

tokenizers, entity extractors and classifiers for the needs of this specific chatbot.

After selecting the suitable components for our case, many combinations of them,

with different configuration took place trying to find the optimal configuration setup.

The fundamental components regarding the tokenizer, featurizers, entity extrac-

- 37 -



4.3 : Introduction To The Implemented Chatbot

tor, synonym mapper and the classifier found in the CONFIG.yml fo Figure 4.5

were thouroughly described combined with the thought process behind their selec-

tion in section 4.3.1. Present in the pipeline section of CONFIG.yml file is also the

FallbackClassifier. This component handles incoming messages with low NLU

confidence. The threshold seen on Figure 4.5 under FallbackClassifier indicates that

all messages getting under that confidence percentage will fall under the fallback

category. More precisely, this requires a new rule to be added on the model, in-

dicating that all user messages with fallback intent will response with a specified

action.

All these components are included in the pipeline section of the configuration

file. The configuration file of Rasa has two parts, the pipeline and the policies. The

pipeline specifies the components used by the model to make NLU predictions. The

policies on the other hand, define the policies used by the model to predict the next

action. The components used in the policies for the proposed chatbot are the most

fundamental ones, fine tuned to balance accuracy and training time whenever was

necessary.

The first component is the MemoizationPolicy which remembers the stories

from the training data. It checks if the current conversation matches the stories in

stories.yml file. If so, it will predict the next action from the matching stories of your

training data with a confidence of 1.0. If no matching conversation is found, the

policy predicts None with confidence 0.0. RulePolicy is another component, which

couples the previous naive policy. RulePolicy is a policy that handles conversation

parts that follow a fixed behavior. It makes predictions based on any rules that

exist in the rules.yml file. As described previously in the same section, one example

of rule is in the fallback scenario in which a specific answer is given. For more

information in rules.yml file please see on section 4.3.2.5.

One more policy component used is the UnexpecTEDIntentPolicy which is de-

signed to help identify and address unexpected user inputs. It analyzes conversation

history and assesses the likelihood of the most recent user intent based on the train-

ing data. If the intent is flagged highly improbable, it triggers a special action

indicating an unexpected input. This policy aids in identifying areas where training
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data is insufficient and highlights potentially problematic interactions for review.

The max history parameter (here set to 5) controls the number of user utternances

the model will look back when evaluating the likelihood of the most recent user

intent.

The last policy used is the TEDPolicy which is a multi-task architecture for

next action prediction and entity recognition. The architecture consists of several

transformer encoders which are shared for both tasks. A sequence of entity labels

is predicted through a Conditional Random Field (CRF) tagging layer on top of

the user sequence transformer encoder output corresponding to the input sequence

of tokens. For the next action prediction, the dialogue transformer encoder output

and the system action labels are embedded into a single semantic vector space.

TEDPolicy uses the dot-product loss to maximize the similarity with the target

label and minimize similarities with negative samples.

Both UnexpecTEDIntentPolicy and TEDPolicy are very dependent on the train-

ing data. For that reason the epochs parameter is set for both policies to 100 instead

of the default value of 1. This means that these policies will pass the training data

100 times back and forth. With a single epoch, the model might not have learned

everything it can from the data. By specifying a higher number of epochs (e.g.,

100), the model is allowed to iterate through the training data multiple times. Each

time, it refines its understanding based on the accumulated knowledge from previous

passes. To determine the number of epochs for these policies a lot of testing was

held having in mind both intent accuracy and training time. 100 epochs added a

10% overhead in the training processing time (around 2 minutes) but also assisted

in the intent prediction by giving almost 100% confidence to more examples.
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Figure 4.5: The CONFIG.yml file

4.3.2.5 Rules.yml

In Rasa, rules are a type of training data used to train the dialogue management

model. They describe short, predictable interactions that should always follow the

same path. In this case, rules file only contain the fallback intent. Fallback intent is

triggered when the NLU confidence for a specific user message is under the threshold

defined in the config.yml file (section 4.3.2.4). If this fallback is triggered, the chatbot

follows the corresponding rule shown in Figure 4.6, to ask kindly the user to rephrase.

Figure 4.6: The RULES.yml file
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4.3.2.6 Actions.py

The file actions.py is in Python programming language and serves as the code

base for custom actions. These actions are referenced in the aforementioned config-

uration files and are matched with the corresponding user intent. The code within

actions.py executes as intended by the developer fulfilling the desired functionality

for each action. For complex actions, excluding greetings, the current implementa-

tion relies on custom Python classes. This approach makes it easier to handle new

types of actions as the chatbot grows in size while also improves code organization

and maintainability. That code is firstly responsible for getting the entities from

Rasa’s entity repository. Then it forms the queries for the database and serves the

response.

In Figure 4.7 the MispQueryTableRows action is presented as an example. The

three important components of the action file, present in all actions, are the dis-

patcher, the tracker and the domain. The dispatcher object is responsible to

send messages back to the user using its utter message method. Dispatcher can

send text, images and even interactive buttons. The tracker object keeps track of

the conversation history enabling the action to access current and previous entities,

intents, messages and more from the user messages. The domain object contains

information about all actions, entities, intents and slots the chatbot is able to use.

Figure 4.7: The ACTIONS.py file
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4.3.3 Human Text Translation To Database Query

The design and selection of possible dialogues and the corresponding intents

involved an exploratory data analysis process. This process focused on searching and

querying the SQL database and the vulnerability JSON files for interesting insights

and meaningful combinations between tables or fields. The SQL and Python queries

that offered interesting results were documented and grouped. Also the necessary

entities to facilitate the variability of the queries were specified based on the threats

or events users might be interested into.

The documentation of queries and entities proved very important during the dia-

logue creation process. This documentation helped a lot in the formulation of ques-

tions and corresponding responses that directly addressed the documented queries.

4.3.4 Messaging Application Integration

This section explores how Rasa can deploy a chatbot into popular messaging

applications. In the following section, the establishment of a publicly accessible

URL for the implemented chatbot is described, as well as integrating it with popular

messaging platforms.

4.3.4.1 Chatbot Tunneling Deployment

Rasa provides functionalities that enable the integration of the developed chatbot

into the web with a publicly accessible URL. This integration facilitates the exchange

of messages between the chatbot and users via messaging applications.

To establish a publicly accessible URL for the locally running chatbot the soft-

ware Ngrok was used. Ngrok is a famous cross-platform application that creates

secure tunnels (paths) to localhost machine. It enables developers to expose a local

development server to the Internet. The software makes your locally-hosted web

server appear to be hosted on a subdomain of ngrok.com, meaning that no public

IP or domain name on the local machine is needed.
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4.3.4.2 Connection to Slack

When the publicly accessible URL of the chatbot is established and available,

the next step involves creating an application within the Slack settings. On that

newly created application the url is declared to enable the connection.

The final step in this process includes copying private token and signing secret

code, generated from the newly created application, into the credentials.yml file

within the Rasa project. That way a successful connection is established and the

chatbot is able to run on Slack. It is important to note that Slack is not the

only messaging application supported. The framework supports many others like

Facebook’s Messenger and Mattermost.

4.3.5 Integration On Other Systems

The complete codebase for this chatbot is available for download on GitHub, as

well as the SQL database and the threats/vulnerabilities JSON files. In addition, a

README file is provided on GitHub. This file offers detailed instructions on setting

up this chatbot on different systems.

This chatbot is implemented on a Linux operating system on Python 3.10

programming language and Rasa version 2 or higher. However, Rasa is flexible

and can be configured and deployed also on Windows and Mac operating systems.

With proper configuration the chatbot is expected to run unproblematically across

these operating systems.

4.4 Chatbot Evaluation

The safest way to test a chatbot’s functionality is by creating exhaustive scenarios

to test its behavior and how close it is to its expected output.

4.4.1 Accuracy Metrics

This could be done by using the Rasa’s built-in test capabilities. The way this

works is by creating scenarios stating the input and the output and checking how
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close the real chatbot’s response is. To do that, the data are split into test and

train data with the command rasa test nlu –nlu train test split/test data.yml. For

better results cross-validation technique could be utilized with the addition of –

cross-validation in the previous command. Cross-validation automatically creates

multiple train/test splits and averages the results of evaluations on each train/test

split. For the testing purposes of this chatbot, cross-validation was used with 5 folds.

5 folds is a common choice as it offers a good balance between accuracy estimation

and efficiency without making the process excessively time-consuming given also

that the training data are not large.

This procedure has as an output several plots providing insights about the chat-

bots performance on accuracy. These plots contain confusion matrices for all sup-

ported intents and for the DIET classifier based on the entities. Also histograms

are produced showcasing the confidence level for both intents and entities.

The confusion matrix in Figure 4.8 provides information about the accuracy of

the model in understanding the type of entity received on each user query. In both

X and Y axis are documented all different supported entities. These entities are

responsible as described in section 4.2.2.2 to extract specific information from user

messages and are used by the chatbot during conversation handling so to produce

targeted responses. The understanding of the correct entity each time is vital to

the correct dialogue flow of the chatbot. The Figure 4.8 shows that most entities

are well separated from each other not creating many ambiguities. The ideal case

would be that all entity matches would be correct and so in this confusion matrix all

values to be on the diagonal. While most of the entities seem to be well separated

there is one, the ”adware id” that seems to create many ambiguities with half of

the times being mistakenly identified by the model as not entity at all. That is a

problem that may affect the dialogues supporting ”adware id” and should definitely

be resolved as a future work.

The proposed chatbot interprets the entities using regular expressions trying to

match the expected format of the entity. These regular expressions are structured

in a way to be generalised in order to match all possible entities may be provided

(e.g. spyware names) from a user. These regular expressions have a structure like
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[A-Za-z0-9.]+, which means that it a expects an entity having possibly letters,

numbers or even full stop punctuation for word separation.

Figure 4.8: DIET Classifier Confusion Matrix - Entities

In the Figure 4.9 following, is represented the confidence of the model while

predicting an entity in both correct and wrong situations. In the X axis are the

number of the samples while on the Y axis is the percentage of confidence. In the

correct part of the figure, the correct predictions of most entities have happened

with a confidence around 98%. On the other hand, on the part of the figure showing

the wrong predictions of entities, only a fraction of the samples are found compared

with the correct predictions. Also the confidence of these wrong predictions vary
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from 52% to 98%. These confidences provide an assurance, combined with Figure

4.8, that most entities will be correctly discovered and with a great confidence level.

Figure 4.9: Entity Prediction Confidence Histogram

The Figure 4.10, shows the intent prediction confidence distribution. Similarly,

as in Figure 4.9, the plot has two parts for correct and wrong predictions. As the

figure suggests, intent predictions were correctly identified for most of the samples

(more than 600) while the majority of them are with confidence of 97%. On the other

hand, on the part of the wrongly predicted intents, the distribution of the wrong

predictions is shown. These few samples show a wide distribution of confidences

from 25% to 97% with most of them around 97%. The absolute number of these

wrongly predicted cases is a small fraction of the correct ones but is very significant
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to understand why this happen and which intents leave space for ambiguity.

Eliminating the wrong predictions of intents was a long procedure throughout

the creation of this proposed chatbot. Responsible for that is the NLU.yml file

where the intents are declared and the corresponding examples are documented.

By populating each intent with a plethora of example queries, the predictions were

made more robust in ambiguities. But the most crucial step on the differentiation

of intents was the step of differentiating the entities found in each query. Thus,

the good intent predictions are based and strongly connected to the predictions of

entities as described in the Figure 4.9.

Figure 4.10: Intent Prediction Confidence Distribution Histogram

Throughout the implementation of this chatbot, these metrics were constantly
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checked in order to find the balance between well separated intents and entities.

Overall the Chatbot’s training results are promising and indicate a well-trained

and balanced chatbot. After 300 training epochs the model achieved:

• a relatively low total loss = 1.06 meaning that the learning mechanism from

the training data worked very well.

• The intent accuracy = 0.991 is very high meaning that the chatbot is

capable of correctly identifying user intents in almost every case.

• The entity F1 score = 0.986 also high indicating that precision and recall

are high also and well balanced. This metric shows that the chatbot can very

accurately extract entities from the provided user messages.

The training process has been done numerous times attempting different number

of epochs. With epochs less than 300 (e.g. 50, 100) the intent accuracy and F1 score

were a bit lower but in experiments with more than 300 (e.g. 350, 400) epochs no

significant change in the accuracies has been documented. So in order to balance

accuracy and training time, 300 epochs were used in the model’s training procedure.

These metrics indicate that the chatbot has been trained well and is likely to

perform accurately in real-world user questions.

4.4.2 Comparison with General Purpose Chatbots

On that section, a comparison will be held between the chatbot proposed in this

work and the famous and powerful Large Language Model-based chatbots Google’s

Gemini and OpenAI’s ChatGPT.

To do so, the same question was held in both Gemini and ChatGPT to provide

information about the trojan named Android.Geplook. The resulted outcomes are

shown in Figure 4.11.

- 48 -



Chapter 4 : Chatbot Architecture

Figure 4.11: Gemini and ChatGPT on the same question

As observed, an examination in both Google’s Gemini and OpenAI’s ChatGPT

reveals a limitation in their ability to address specific threats (e.g. trojan Android

Geplook) and they cannot provide useful responses. Both these chatbots handle this

situation by providing generic information about trojans and their characteristics

without any information relevant to the entity of question. In contrast, in Figure

4.12, on the domain-specific chatbot proposed in this work, a user can have multi-

ple information about this threat and even make more in-depth questions about it

than just a description. This contrast indicates the significance of domain-specific

chatbots despite the presence of powerful general-purpose Large Language Model

chatbots.
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Figure 4.12: The proposed chatbot answering a question about a specific trojan
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Chatbot Deployment and User

Interaction

5.1 Chatbot User Manual

This section describes the steps needed to launch and deploy the proposed chat-

bot. There are some prerequisites as described above and are mentioned again here:

• Downloaded codebase and database dumps on the local machine.

• Installed Rasa version 2 or higher and Python 3 programming language.

• Configuration of a publicly accessible URL via Ngrok for integration with

Slack.

For the deployment process the steps needed follow:

• Two Linux terminal windows are required.

• In the first terminal, the actions.py file is executed using the command rasa

run actions. This deploys the action server component of the chatbot. This

terminal should be up and running throughout the duration of the deployment.

• In the second terminal, train the model based on the available data using the

command rasa train.

• Last step, deploy the chatbot application using the command rasa run.
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5.2 Chatbot Example Interactions

To make the user experience more immersive, the chatbot has the ability to

engage in basic conversations like interactions with a human representative on a

support chat window. This functionality, as shown in Figure 5.1, includes greet-

ing, expressions of gratitude, questions regarding the chatbot itself and even asking

general questions about MISP.

Figure 5.1: Simple dialogue
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The following screen capture (Figure 5.2) shows an interaction where the user

asks information about a specific MISP event by providing its name. To find the

requested information, the chatbot searches within the MISP SQL database. This

query, as listed below, returns the value of the description for the user-specified

event.

SELECT value1 FROM attributes WHERE event id = (SELECT

event id FROM attributes WHERE value1 = event name) AND ob-

ject relation = ’description’

After the name of the event was received from the user, the chatbot can man-

age to save it as an entity within the current session by implementing the Entity

Recognition algorithms described before. This enables the chatbot to have a mem-

ory of the user’s previous event of interest. So, when later on the conversation the

user asks about the date of this event, the chatbot can recognize the reference to

the previously specified event. That way the chatbot has all information needed

and starts the process to query the database and get the desired response. Also,

the same way the user can ask other questions such as references or sources that

have more information about this event. The chatbot returns a list of all the urls,

providing information about it.
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Figure 5.2: An example conversation regarding the about MISP event

The conversation example in Figure 5.3 showcases the user asking information

about the different threat levels in vulnerabilities and threats. After getting this

information, the user asks a question to get the amount of threats specified with low

severity. The chatbot returns a numerical value representing the total number of

threats found identified by the specified risk impact. The chatbot provides additional

information to that inquiry in an attempt to make the user experience better, it

categorizes the low severity threats and presents a list of all available vulnerability

categories. For each category a count of the corresponding number of threats with

low risk impact is represented next to its name. Naturally, this is the case if the

question was about medium or high risk threats.
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Figure 5.3: An example conversation, about threats’ risk impact/level

The following dialogue in Figure 5.4 presents the capability of the chabot to

provide information about specific threats or vulnerabilities by their name, querying

through JSON files this time. This functionality refers to threats categorized as

adwares, spywares, viruses, and trojans but can be extended if other JSON files,

including different threat types, are added. After retrieving the initial information

about a particular threat, the user can ask more questions related to that without
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the need to specify again its name. The chatbot is able to remember multiple

entities within different categories and establish conversations about various threats

simultaneously.

Figure 5.4: An example conversation, about vulnerabilities general information

The following conversation, presented in Figure 5.5, provides an illustration of

how a user can learn about a particular threat by making a series of different ques-

tions. The supported questions cover all meaningful metadata a threat has. The

example follows an adware as an example but similar conversations can be held for

all supported threats.
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Figure 5.5: An example conversation, where the user asks for adware general information
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The chatbot can also handle questions that include the name of a threat but

ignore the type of it. In this case, in Figure 5.6, the chatbot provides the function-

ality of finding the type of this threat. After that procedure, the user can continue

regularly with other questions regarding it. The chatbot has memorized both type

and name and can search accordingly in the database.

Figure 5.6: An example conversation, where the user asks for a vulnerability with un-

known type

It is important to note that the proposed chatbot offers a valuable statistical

information. It provides responses containing information about the number of

threats existing either before or after a particular date (see for example Figure

5.7). Also, as was described in this section, the response incorporates a categorized

breakdown. That way the chatbot represents the exact number of threats belonging

to various threat categories that were discovered before or after a user-specified date.
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Figure 5.7: Dialogue about the number of threats before/after a date

The previous searching capability can be even more extended by adding as an

extra limit the risk impact factor.
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Figure 5.8: Dialogue about counting threats by risk impact and before/after a date

The chatbot finally, supports commands like ”give me the latest threat with low

risk”. This question despite a simple one, can provide a lot of information. First,

by checking the latest threat, either with stating its severity or not, a user can find

out if the chatbot’s database is updated or when was the last time it did. Another

aspect and more crucial is that, that way a user can have an easy insight about the

fields a threat might include and also which of the chatbot supports.

The included screenshot also shows the chatbot deployed within the Slack ap-

plication on a smartphone so to illustrate the user interface and overall appearance

when accessed from a mobile device.
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Figure 5.9: The user asks the chatbot about getting the latest threat by risk impact
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Conclusions and Future Work

6.1 Conclusion

This dissertation has explored the development of a cybersecurity chatbot de-

signed to connect users and the enormous amount of information available within

different cybersecurity databases. As the cybersecurity threats explode in the re-

cent years, efficient tools are important for exploring this field. Chatbots provide

user-friendly interactions and automate information retrieval.

The existence of numerous cybersecurity databases provide significant informa-

tion. However, exploring these resources can be a very inefficient process and useful

information may be missed. This project attempts to propose a way to address

this challenge by proposing a chatbot doing exactly this. This chatbot interacts

with various kinds of databases, is open-source and is effortlessly expandable. This

chatbot serves information about cyber threats in a presentable and easily reachable

manner, leading to hopefully an improved experience.

This thesis has explored the specific details of the developed chatbot. Chapter 2

provided a literature review of existing on cybersecurity and other domain-specific

chatbots, analyzing their technological foundations. Chapter 3 offered a detailed ex-

ploration of the integrated databases and their data structures. Chapter 4 presented

the architecture and underlying technologies implemented through the chatbot’s de-

velopment. At last, Chapter 5 provided a presentation of the dialogue functionalities
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and the information extraction capabilities of the chatbot as a user would encounter

them.

In conclusion, this thesis has presented the design and implementation of a cy-

bersecurity chatbot that attempts to make it easier for the users to explore the vast

cybersecurity information stored in various databases. As the field of artificial in-

telligence grows at the current rapid pace the capabilities of chatbots like the one

presented here will grow even further. Chatbots like this are presented on peer-

reviewed papers more and more every year on many different domains. This project

attempts to be part of this exciting era.

6.2 Future Work

While this project has established a foundation for an innovative cybersecurity

chatbot, it is recognized that is a step towards a truly valuable tool in the cyberse-

curity domain. To become even more valuable some further development should be

done as due to time restrictions it couldn’t be done during that thesis. So as next

steps, to make this chatbot a well established tool some additional aspects would be

introduced. The first one is the integration of Large Language Models within the

chatbot and the second is a web scraper that updates the databases on real time.

Introducing a Large Language Model (LLM) into the chatbot’s architecture

would significantly elevate its capabilities on the natural language processing. This

technology would allow for more natural interactions. Users could pose complex

questions and receive responses that are not only accurate but also tailored to the

specific phrasing and context of their inquiries. Rasa offers various libraries for LLM

integration so developing this is a feasible and very promising work.

Currently, the chatbot relies on databases found and downloaded over the inter-

net through cybersecurity databases. Implementing a web scraping feature would

add into the chatbot the capability to retrieve data dynamically from these, and

possibly more, sources in real-time. This feature would guarantee that the chatbot

has access to up-to-date threat information. This feature would benefit a lot the

tool as users want something always up-to-date to search into. Providing the latest
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insights would also strengthen its overall effectiveness in awareness around cyber

threats.

In conclusion implementing these improvements will help the chatbot become a

promising tool in the cybersecurity field. This tool will provide users with up-to-date

knowledge and a natural user experience.
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