

UNIVERSITY OF
PELOPONNESE

Faculty of Economics and Technology,

Department of Informatics and Telecommunications

PhD Thesis

“Model-driven Software Architectural Design based on

Software Evolution Modeling and Simulation and Design

Pattern Analysis for Design Space Exploration Towards

Maintainability”

by

Chris Karanikolas

Supervisor: Konstantinos Masselos

A dissertation submitted in partial fulfillment of the requirements for the

degree of Doctor of Philosophy in Computer Science

November 2022

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis ii

Theses / Dissertations remain the intellectual property of students (“authors/creators”), but in the context

of open access policy they grant to the UOP a non-exclusive license to use the right of reproduction,

customization, public lending, presentation to an audience and digital dissemination thereof

internationally, in electronic form and by any means for teaching and research purposes, for no fee and

throughout the duration of intellectual property rights. Free access to the full text for studying and reading

does not in any way mean that the author/creator shall allocate his/her intellectual property rights, nor

shall he/she allow the reproduction, republication, copy, storage, sale, commercial use, transmission,

distribution, publication, execution, downloading, uploading, translating, modifying in any way, of any

part or summary of the dissertation, without the explicit prior written consent of the author/creator.

Creators retain all their moral and property rights.

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis iii

Acknowledgments

I would like to thank all people who have contributed to the accomplishment of my doctoral

studies.

Initially, I would like to thank my supervisor, professor at University of Peloponnese,

Konstantinos Masselos about his scientific guidance and support at my Ph.D. studies as

well as for his useful suggestions all these years.

I would like also to thank and express my appreciation to Dr. Grigoris Dimitroulakos who

provided me with his knowledge on architectural design of compilers and his assistance

not only during the period of my Ph.D. studies, but also during the elaboration of my

postgraduate thesis.

Many thanks to my classmate at University of Peloponnese, Dr. Chris Lezos for helping

and inspiring me during my first steps in diligent research.

Finally, I would like to thank my wife and my parents for their invaluable support during

the time of my postgraduate studies as well as my children for their patience during this

persistent effort.

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis iv

Abstract

In software architectural design, critical decisions among design alternatives with regards
to maintainability arise early in the software design cycle. Existing exploration approaches
are neither design-pattern-oriented nor formal. Such approaches are not reusable, have
narrow scoping, and usually lead to suboptimal results. Furthermore, the effectiveness of
existing techniques and models on predicting maintenance effort is usually verified on a
limited number of case studies under heterogeneous metrics and settings. Conventionally,
developers use their intuition, experience, or instant judgment to get such decisions, which
leads to accrued technical debt, high risk, and suboptimal results regarding code quality.
Owing to the confirmed lack of architectural awareness, developers underestimate the
negative impact of such early and critical design decisions. Selecting between different
design options is a crucial decision for object-oriented software developers affecting
important code quality characteristics such as maintainability.

In this thesis, a systematic modeling method for deriving formal comparison models
for the efficient evaluation of object-oriented design alternatives in terms of maintainability
early in the software design cycle is introduced. The method is suitable for modeling
significant, general, and frequently tackled design problems which have dominant impact
on the overall maintainability of the system, where different design alternatives are
competing to address the same requirements. The derived formal models provide early
estimates of required effort per design alternative in terms of proportionally equivalent
effort assessments mainly for comparison purposes. The proposed approach considers the
software expansion trend through the structural evolution of the engaged design patterns.
This is achieved by formalizing change rates of individual design attributes for basic
maintenance scenarios and their probabilities in the form of continuous differential
equations to predict the required maintenance effort. Alternatively, the required effort is
assessed by measuring the change impact of repeatedly applied scenarios in connection
with the evolving design attributes under the view of a gradual (event-based) quantitative
analysis. The proposed method has been evaluated on the significant and general design
problem of recursive hierarchies of part-whole aggregations. The generated formal
comparison models address the selection of Visitor over Composite design patterns against
the direct inheritance-based approach. The derived models capture maintainability as a
metric of software quality and provide reliable assessments for each implementation
alternative. Furthermore, the proposed method suggests the structural maintenance cost
metric based on which the progressive analysis of maintenance process is introduced. The
proposed measurement approach has been applied to several test cases for different
relevant quality metrics. The results prove that the proposed modeling method derives
formal models which deliver reliable effort assessments mainly for comparison purposes.
Thus, the proposed method can be used for comparing different implementation
alternatives against various measures and quality factors, before code development leading
to reduced effort and cost for software maintenance.

Furthermore, the introduced modeling method has been applied to three different
extensions of the general selection problem, thus assessing its applicability to even more
realistic settings. The Decorator, Mediator, Observer, Abstract Factory, and Prototype
design patterns have been modeled. The generated formal models have been tested on a
sample of several specific instances representing the entire design-space of each general
problem. The results prove that the derived formal models are reliable and can efficiently
support decision-making among design alternatives early in the design cycle, leading to
significant benefits in terms of maintenance time and effort. The results also suggest that
the method can model general problems and support decision-making even in the (high-
level) architectural design stage of systems.

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis v

In addition, a multi-variable simulation model for validating the decision-making
reliability of the modeling theory and derived formal comparison models for the significant
designing problem of recursive hierarchies of part-whole aggregations is introduced. The
proposed simulation model has been implemented in the forms of functional and modular
representations. In the absence of a strictly validation against real-world observations, the
simulation model has been thoroughly calibrated concerning its decision-making precision
based on empirical evidence from time series analysis, approximating the highly uncertain
nature of actual maintenance process. The decision reliability of the formal models has
been statistically validated on a sample of one thousand possible instances of design
attributes representing the entire design-space of the problem under analysis. Despite the
limited accuracy of measurements, the results show that the models demonstrate an
increasing selection reliability in a long-term perspective even under assumptions of high
variability. Thus, the proposed modeling theory delivers reliable formal comparison
models that significantly reduce decision-risk, maintenance effort, and relevant cost.
Methods that yield such formal, general, and reusable models can bring software engineers
closer to informed design decisions, and thus develop more maintainable software of
higher quality.

Keywords

Architectural design, Model-driven software engineering, Software design engineering,
Design optimization, Object-oriented architectures, Software evolution, Maintainability,
Design pattern analysis, Software design tradeoffs, Equational models, Modeling and
simulation, Statistical validation, Classes and objects, Visitor, Composition.

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis vi

Περίληψή

Στην αρχιτεκτονική σχεδίαση λογισμικού και κατά την διάρκεια του πρόωρου σταδίου
σχεδίασης, προκύπτουν κρίσιμες αποφάσεις μεταξύ εναλλακτικών σχεδίασης αναφορικά
με την συντηρησιμότητά τους. Οι υπάρχουσες διερευνητικές προσεγγίσεις δεν είναι
προσανατολισμένες στα σχεδιαστικά πρότυπα ούτε επαρκώς τυπικές. Τέτοιου είδους
προσεγγίσεις δεν είναι επαναχρησιμοποιήσιμες, έχουν περιορισμένο πεδίο εφαρμογής και
συνήθως καταλήγουν σε μη βέλτιστα αποτελέσματα. Περεταίρω, η αποτελεσματικότητα
των υπαρχόντων τεχνικών και μοντέλων αναφορικά με την πρόβλεψη της προσπάθειας
συντήρησης, συνήθως επιβεβαιώνεται από ένα περιορισμένο αριθμό περιπτωσιολογικών
μελετών υπό το πρίσμα ετερογενών μετρικών και συνθηκών. Συμβατικά, οι
προγραμματιστές χρησιμοποιούν την διαίσθησή, την εμπειρία ή την στιγμιαία κρίση τους
προκειμένου να λάβουν τέτοιου είδους αποφάσεις, γεγονός που οδηγεί σε συσσώρευση
τεχνικού χρέους (αστοχιών), υψηλό ρίσκο και μη βέλτιστα αποτελέσματα αναφορικά με
την ποιότητα του κώδικα. Λόγω της επιβεβαιωμένης έλλειψης αρχιτεκτονικής συνείδησης,
οι προγραμματιστές υποτιμούν τον αρνητικό αντίκτυπο τέτοιου είδους πρόωρων και
κρίσιμων σχεδιαστικών αποφάσεων. Η επιλογή ανάμεσα σε διαφορετικές σχεδιαστικές
εκδοχές είναι μια κρίσιμη απόφαση για τους προγραμματιστές του αντικειμενοστραφούς
λογισμικού που επηρεάζει σημαντικά ποιοτικά χαρακτηριστικά του κώδικα όπως η
συντηρησιμότητά του.

Σε αυτή την διατριβή εισάγεται μια συστηματική μέθοδος μοντελοποίησης για την
άντληση τυπικών μοντέλων σύγκρισης για την αποτελεσματική αξιολόγηση
αντικειμενοστραφών εναλλακτικών σχεδίασης, υπό όρους συντηρησιμότητας, κατά το
πρόωρο στάδιο σχεδίασης του λογισμικού. Η μέθοδος είναι κατάλληλη για την
μοντελοποίηση σημαντικών, γενικών και συχνά εμφανιζόμενων σχεδιαστικών
προβλημάτων τα οποία έχουν κυρίαρχο αντίκτυπο στη συνολική συντηρησιμότητα του
συστήματος, όπου διαφορετικές σχεδιαστικές προσεγγίσεις ανταγωνίζονται για την
αντιμετώπιση κοινών απαιτήσεων. Τα προκύπτοντα επίσημα μοντέλα παρέχουν πρόωρες
εκτιμήσεις της απαιτούμενης προσπάθειας ανά εναλλακτική σχεδίασης υπό όρους
αναλογικά ισοδύναμων εκτιμήσεων προσπάθειας, κυρίως για σκοπούς σύγκρισης. Η
προτεινόμενη προσέγγιση λαμβάνει υπόψη την τάση επέκτασης του λογισμικού μέσω της
δομικής εξέλιξης των εμπλεκόμενων σχεδιαστικών προτύπων. Αυτό επιτυγχάνεται
διαμέσου των ρυθμών αλλαγής μεμονωμένων χαρακτηριστικών σχεδιασμού για βασικά
σενάρια συντήρησης και για τις πιθανότητές τους υπό τη μορφή συνεχών διαφορικών
εξισώσεων προκειμένου να προβλέψουν την απαιτούμενη προσπάθεια συντήρησης.
Εναλλακτικά, η απαιτούμενη προσπάθεια εκτιμάται δια της μέτρησης του αντικτύπου
αλλαγής των επαναλαμβανόμενα εφαρμοζόμενων σεναρίων σε σχέση με τις
μεταβαλλόμενες ιδιότητες σχεδίασης υπό το πρίσμα μιας βαθμιαίας (με βάση τα γεγονότα)
ποσοτικής ανάλυσης. Η προτεινόμενη μέθοδος αξιολογήθηκε για το σημαντικό και γενικό
πρόβλημα σχεδίασης των αναδρομικών ιεραρχιών συναθροίσεων (μέρους-όλου). Τα
παραγόμενα τυπικά μοντέλα σύγκρισης αντιμετωπίζουν την επιλογή ανάμεσα στο
συνδυασμό των σχεδιαστικών προτύπων «Visitor» και «Composite» και στην άμεση
προσέγγιση που βασίζεται στην κληρονομικότητα του «Composite» σχεδιαστικού
προτύπου. Τα παραγόμενα μοντέλα καταγράφουν την συντηρησιμότητα ως μια μετρική
της ποιότητας λογισμικού και παρέχουν αξιόπιστες εκτιμήσεις για κάθε εναλλακτική
υλοποίηση. Περεταίρω, η προτεινόμενη μέθοδος εισαγάγει την μετρική του δομικού
κόστους συντήρησης με βάση την οποία παρουσιάζεται η προοδευτική ανάλυση της
διαδικασίας συντήρησης. Η προτεινόμενη μέθοδος μέτρησης εφαρμόστηκε σε πολλές
δοκιμαστικές περιπτώσεις για διαφορετικές μετρικές ποιότητας. Τα αποτελέσματα
αποδεικνύουν ότι η προτεινόμενη μέθοδος μοντελοποίησης εξάγει τυπικά μοντέλα τα
οποία παρέχουν αξιόπιστες εκτιμήσεις προσπάθειας κυρίως για σκοπούς σύγκρισης. Έτσι,
η προτεινόμενη μέθοδος μπορεί να χρησιμοποιηθεί για την σύγκριση διαφορετικών
εναλλακτικών υλοποιήσεων έναντι διαφόρων μετρικών και παραγόντων ποιότητας, πριν

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis vii

το στάδιο ανάπτυξης του κώδικα, οδηγώντας στη μείωση της προσπάθειας και του
κόστους συντήρησης του λογισμικού.

Περεταίρω, η εισαγόμενη μέθοδος μοντελοποίησης εφαρμόστηκε σε τρις
διαφορετικές επεκτάσεις του γενικού προβλήματος επιλογής, αξιολογώντας έτσι την
ευκολία εφαρμογής της σε ακόμη πιο ρεαλιστικές συνθήκες. Τα σχεδιαστικά πρότυπα
“Decorator”, “Mediator”, “Observer”, “Abstract Factory”, και “Prototype”
μοντελοποιήθηκαν για το σκοπό αυτό. Τα παραγόμενα τυπικά μοντέλα δοκιμάστηκαν σε
ένα δείγμα πολλαπλών στιγμιότυπων που αναπαριστούν το σύνολο του σχεδιαστικού
χώρου του εκάστοτε γενικού προβλήματος. Τα αποτελέσματα αποδεικνύουν ότι τα
εξαγόμενα τυπικά μοντέλα είναι αξιόπιστα και μπορούν να υποστηρίζουν αποδοτικά τη
λήψη σχεδιαστικών αποφάσεων μεταξύ εναλλακτικών σχεδίασης κατά το πρόωρο στάδιο
σχεδίασης, προσφέροντας σημαντικά οφέλη υπό όρους χρόνου και προσπάθειας
συντήρησης. Επίσης, τα αποτελέσματα υποδεικνύουν ότι η μέθοδος μπορεί να
μοντελοποιήσει γενικά προβλήματα καθώς και να υποστηρίξει τη λήψη αποφάσεων
ακόμη και στο στάδιο της (υψηλού επιπέδου) αρχιτεκτονικής σχεδίασης συστημάτων.

Επιπρόσθετα, παρουσιάζεται ένα πολύ παραμετρικό μοντέλο εξομοίωσης για τον
έλεγχο της αξιοπιστίας λήψης αποφάσεων της προτεινόμενης θεωρίας μοντελοποίησης
και των παραγόμενων τυπικών μοντέλων σύγκρισης, αναφερόμενο στο σημαντικό
σχεδιαστικό πρόβλημα των αναδρομικών ιεραρχιών των συναθροίσεων μέρους-όλου. Το
προτεινόμενο μοντέλο εξομοίωσης υλοποιήθηκε στις μορφές της συναρτησιακής και
αρθρωτής αναπαράστασης. Εν’ απουσία ενός αυστηρού ελέγχου έναντι πραγματικών
παρατηρήσεων, το μοντέλο εξομοίωσης βαθμονομήθηκε διεξοδικά αναφορικά με την
ακρίβεια του στη λήψη αποφάσεων με βάση εμπειρικά στοιχεία από την ανάλυση
χρονοσειρών, προσεγγίζοντας έτσι την εξαιρετικά αβέβαιη φύση της πραγματικής
διαδικασίας συντήρησης. Η αξιοπιστία των αποφάσεων των τυπικών μοντέλων
ελέγχθηκαν στατιστικά σε ένα δείγμα χιλίων πιθανών περιπτώσεων των σχεδιαστικών
ιδιοτήτων, αναπαριστώντας ολόκληρο το σχεδιαστικό χώρο του υπό ανάλυση
προβλήματος. Παρά την περιορισμένη ακρίβεια των μετρήσεων, τα αποτελέσματα
έδειξαν ότι τα τυπικά μοντέλα επιδεικνύουν μια αυξανόμενη αξιοπιστία λήψης
αποφάσεων σε μια μακροπρόθεσμη προοπτική ακόμη και υπό υποθέσεις αυξημένης
μεταβλητότητας. Έτσι, η προτεινόμενη θεωρία μοντελοποίησης προσφέρει αξιόπιστα
τυπικά μοντέλα σύγκρισης τα οποία μειώνουν σημαντικά τον κίνδυνο λήψης
λανθασμένων αποφάσεων, την προσπάθεα συντήρησης, και το σχετικό κόστος. Μέθοδοι
που αποδίδουν τέτοια τυπικά, γενικά και επαναχρησιμοποιήσιμα μοντέλα μπορούν να
φέρουν τους μηχανικούς λογισμικού πιο κοντά σε τεκμηριωμένες αποφάσεις σχεδιασμού
και έτσι να αναπτύξουν πιο συντηρήσιμο λογισμικό υψηλότερης ποιότητας.

Λέξεις – Κλειδιά

Αρχιτεκτονικός σχεδιασμός, Υποβοηθούμενη από μοντέλα μηχανική λογισμικού,
Μηχανική σχεδίασης λογισμικού, Βελτιστοποίηση σχεδιασμού, Αντικειμενοστραφής
αρχιτεκτονικές, Εξέλιξη λογισμικού, Συντηρησιμότητα, Ανάλυση σχεδιαστικών
προτύπων, Αντισταθμίσεις σχεδίασης λογισμικού, Μοντέλα εξισώσεων, Μοντελοποίηση
και εξομοίωση, Στατιστική επικύρωση, Κλάσεις και αντικείμενα, Επισκέπτης, Σύνθεση.

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis viii

Table of Contents

1 Introduction ... 1
1.1 Field of Application .. 1
1.2 Necessity of the Introduced Theory ... 2

1.2.1 Need for Early Maintainability Assessment of Design Alternatives 2
1.2.2 Need for Formal Models to Support Decision-Making of General Problems
 2
1.2.3 Motivation Example of General Design Problem .. 2
1.2.4 Need for Decision-Making Reliability and Validation of Formal Models 4

1.3 Main Research Goals and Contribution .. 5
1.4 Brief Review of Related Work (Existing Approaches) .. 6
1.5 Brief Presentation of Proposed Theory .. 7

1.5.1 Modeling Theory and Method .. 7
1.5.2 Structural Maintenance Cost (SMC) Metric ... 7
1.5.3 Deriving Formal Comparison Models ... 8
1.5.4 Advantages of Modeling Method & Formal Comparison Models 9
1.5.5 Simulating Software Evolution Towards Statistical Validation 11
1.5.6 Advantages of Simulation Model ... 12

1.6 Contribution and Innovations of the Study .. 13
1.6.1 Applicability of Formal Comparison Models ... 13
1.6.2 Adaptability of Modeling Theory ... 13
1.6.3 Computer-Aided Derivation of Formal Models ... 13
1.6.4 Simulation Model & Statistical Validation .. 13
1.6.5 Alternate Computer-Aided Model Implementations 14
1.6.6 Design Decisions Under Uncertainty & Horizon Analysis 14
1.6.7 Designers and Developers (Practitioners) Perspective 14
1.6.8 Researchers and Accademia Perspective .. 15
1.6.9 Project and Quality Managers Perspective ... 15
1.6.10 Novelty and Critical Evidence .. 15

1.7 Thesis Organization ... 16
2 Related Work ... 18

2.1 Analysis of Design Patterns .. 18
2.2 Visitor Design Pattern vs Inheritance-Based Implementation 18
2.3 Effort Estimation During Software Evolution and Maintenance Process 20
2.4 Assessing Maintainability During Early Design Stage .. 21

3 Quantitative Analysis of Design Problems .. 22
3.1 Chapter Overview ... 22
3.2 General Principles... 23

3.2.1 General Architectural Design Principles ... 23
3.2.2 Object-Oriented Design Principles .. 24

3.3 General Decision – Design Problem .. 25
3.3.1 Recursive Hierarchies of Part-Whole Representations 25
3.3.2 Engaged Design Patterns .. 26

3.4 Software Quality Measures ... 30
3.4.1 Quality Measures.. 30
3.4.2 Expressing Software Maintainability .. 31
3.4.3 Deriving Maintainability Effort .. 33
3.4.4 Considerations upon Other Quality Characteristics and Properties 35
3.4.5 Characteristics and Criteria of Major Maintenance Scenarios 36

3.5 Analysis of Method ... 38
3.5.1 Deriving Problem’s Characteristics and Attributes 38
3.5.2 Asymptotic Evaluation of Structural Maintenance Cost 39

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis ix

3.5.3 Merging Structural Maintenance Cost .. 41
3.5.4 Combining Maintenance Cost .. 42
3.5.5 Summarizing Structural Maintenance Cost ... 43
3.5.6 Maintenance Process ... 43
3.5.7 Combined Analysis .. 44

3.6 Quantitative Analysis ... 45
3.6.1 Basic Analysis ... 45
3.6.2 Combined Analysis .. 46

3.7 Progressive Analysis .. 48
3.7.1 Deriving Progressive Maintenance Cost ... 48
3.7.2 Progressive Maintenance Cost Computation ... 49
3.7.3 Reverse Analysis (Verification) .. 51
3.7.4 Graph of Progressive Maintenance Cost ... 52
3.7.5 Integrated Maintenance Cost ... 53

3.8 Application of the Proposed Model .. 54
3.8.1 Summarizing Maintenance Cost of the Model ... 54
3.8.2 Classification and Application Flowchart of Proposed Model 54
3.8.3 Application Examples .. 56
3.8.4 Alternate Maintenance Measures .. 58
3.8.5 Comparison to Relevant Metrics .. 59
3.8.6 Discussion ... 60

3.9 Methodology Determination ... 60
3.9.1 Methodology Description .. 60
3.9.2 Example of Weighted Effort Measurement .. 62
3.9.3 Further Discussion ... 63

3.10 Conclusions ... 64
3.10.1 General Requirements and Limitations .. 64
3.10.2 Extensions and Further Research .. 65
3.10.3 Overall Assessment .. 66

4 Modeling Software Evolution ... 67
4.1 Chapter Overview ... 67
4.2 Background of General Decision Problem .. 68
4.3 Modeling Approach .. 71

4.3.1 Designs for Change Principle ... 71
4.3.2 Corresponding Architectural Design Principles .. 71
4.3.3 Characteristics of SMC Effort Metric ... 73
4.3.4 Fundamental SMC Effort Metric Derivation .. 73
4.3.5 Software Expansion Concept .. 75
4.3.6 Analysis of System’s Size Change Rate ... 76
4.3.7 Structural Evolution through Change Rates .. 77
4.3.8 Differential Analysis and Model Derivation ... 78

4.4 Generalizing and Formalizing Modeling Method .. 81
4.4.1 Modeling Framework .. 81
4.4.2 Framework Implementation on General Problems using MATLAB® 83
4.4.3 Graph Generation and Decision-Making for Specific Practical Systems
using MATLAB® ... 84
4.4.4 Formal Model Application in Examples of Practical Specific Problems 84
4.4.5 Justification of Formal Model’s Derivation Cost ... 85

4.5 Validation Evidence ... 87
4.6 Conclusions ... 87

4.6.1 General Requirements and Limitations .. 87
4.6.2 Extensions and Further Research .. 88
4.6.3 Overall Assessment .. 88

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis x

5 Extended General Design Problems .. 90
5.1 Chapter Overview ... 90
5.2 Attaching Decorator Design Pattern .. 90

5.2.1 Problem Description .. 90
5.2.2 Derivation of Effort Measurements and Formal Models 91
5.2.3 Formal Model Application in Examples of Practical Specific Problems 92
5.2.4 Average Rate of Gained or Avoided Wasted Effort 93

5.3 Attaching Mediator and Observer Design Patterns ... 94
5.3.1 Problem Description .. 94
5.3.2 Derivation of Effort Measurement and Formal Models 95
5.3.3 Formal Model Application in Examples of Practical Specific Problems 97
5.3.4 Average Rate of Gained or Avoided Wasted Effort 97

5.4 Attaching Abstract Factory and Prototype Design Patterns 98
5.4.1 Problem Description .. 98
5.4.2 Derivation of Effort Measurement and Formal Models 100
5.4.3 Formal Model Application in Examples of Practical Specific Problems ... 101
5.4.4 Average Rate of Gained or Avoided Wasted Effort 102

5.5 Average Rate of Gained or Avoided Wasted Effort of CVP vs CIBI 102
5.6 Summarizing the Contribution of Modeling Method .. 103
5.7 Conclusions ... 104

5.7.1 General Requirements and Limitations .. 104
5.7.2 Extensions and Further Research .. 104
5.7.3 Overall Assessment .. 104

6 Simulation of Software Evolution ... 106
6.1 Chapter Overview ... 106
6.2 Background ... 108

6.2.1 Example of Practical General Problem.. 108
6.2.2 Characteristics of SMC Effort Metric ... 110
6.2.3 Software Expansion Concept and Formal Models Derivation 114
6.2.4 Formal Models Application in Specific Instances of the General Problem
 115

6.3 Method Evaluation and Validity Concerns ... 116
6.3.1 Effort Measurement Validity Concerns... 116
6.3.2 Modeling Method Validity Concerns ... 116

6.4 Method Validation Through Simulation ... 117
6.4.1 Scoping and Planning .. 117
6.4.2 Hypothesis Formulation ... 117
6.4.3 Variables and Treatments Selection .. 117
6.4.4 Selection of Sample (Subjects and Objects) .. 118
6.4.5 Conceptual Analysis of Validation Process ... 119
6.4.6 Experiment Design .. 123
6.4.7 Instrumentation ... 125
6.4.8 Conducting and Data Validation .. 135
6.4.9 Calibration of Model’s Stochastic Behavior .. 137

6.5 Results & Inferences ... 150
6.5.1 Analysis and Interpretation .. 150
6.5.2 Inference Extraction... 152
6.5.3 Pattern Exploration of Decision Errors ... 161
6.5.4 Uncertainty Considerations .. 164
6.5.5 Statistical Evaluation per Sample Instance .. 167
6.5.6 Summarizing Results and Inferences .. 170

6.6 Conclusions ... 170
6.6.1 General Requirements and Limitations .. 170

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis xi

6.6.2 Extensions and Further Research .. 171
6.6.3 Overall Assessment .. 172

7 Alternate Use of Formal Comparison Models .. 173
7.1 Chapter Overview ... 173
7.2 Decisions Under Uncertainty ... 174

7.2.1 Transforming Formal Models to Support Decision-Making Under
Uncertainty .. 174
7.2.2 Example of Decision-Making Under Uncertainty 175
7.2.3 Additional Decision-Criteria to Decision-Making Process 177

7.3 Horizon Analysis .. 178
7.3.1 Separating Maintenance Process to Sub-Periods .. 178
7.3.2 Example of Decision-Making Supported by Horizon Analysis 179

7.4 Alternate Computer-Aided Implementation of Formal Models 180
7.4.1 Discrete Implementation of Models .. 181
7.4.2 Continuous Implementation of Formal Models .. 182
7.4.3 Discrete Implementation of Simulation Model .. 184
7.4.4 Comparison of Implementations’ Outcomes.. 186

7.5 Seeing Software Design as Investment ... 190
7.5.1 Cost of Missed Opportunities ... 190
7.5.2 Accounting Perspective ... 190

7.6 Conclusions ... 191
8 Conclusions and Future Work .. 192

8.1 Contribution of Dissertation ... 192
8.2 Future Work .. 193

Appendix A: Mat Lab Modeling Framework .. 195
Appendix B: Sample Data of General Problem ... 199
Appendix C: Variability of Sample Instances .. 204
Appendix D: Graphs of Statistical Evaluation ... 231
Publications .. 275
Bibliography ... 276

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis xii

List of Figures

Figure 1-1: The decision-making between design alternatives in a typical soft-ware
lifecycle, and the negative consequences in case of wrong selection. 1

Figure 1-2: Typical timeline for design pattern selection process during software design
stage referring to the CVP vs CIBI design problem .. 3

Figure 1-3: Decision-making between design alternatives supported by the introduced
modeling method and derived formal models ... 5

Figure 1-4: Overall presentation of the introduced modeling method, derived
formal/simulation models, and validation process... 8

Figure 1-5: Conceptual class-diagram and relevant effort metrics of CIBI and CVP design
alternatives. ... 10

Figure 1-6: Results of the application of the Formal comparison Model on the practical
example of Interpreter as a specific instance of the CVP vs. CIBI general design
problem. .. 11

Figure 1-7: Dependence graph of chapters. .. 17
Figure 3-1: Typical flow diagram of architectural design activities. 24
Figure 3-2: Example of class and object diagrams for typical hierarchies of objects. 27
Figure 3-3: Example of class diagram for a typical structure based on Composite design

pattern (CP) and inheritance-based implementation (IBI). 28
Figure 3-4: Typical code example based on Composite design pattern (CP) and

inheritance-based implementation (IBI). ... 28
Figure 3-5: Example of class diagram for a typical structure based on Composite and

Visitor design patterns (CP, VP). ... 29
Figure 3-6: Typical code example based on Composite and Visitor design patterns (CP,

VP). .. 30
Figure 3-7: Conceptual diagram of interrelation of code properties regarding software

maintainability assessment. ... 32
Figure 3-8: Tradeoffs between various types of arriving events during maintenance. 37
Figure 3-9: Design attributes of typical CIBI and CVP implementations. 39
Figure 3-10: Typical code example after implementation of one new element and one new

operation scenarios for CIBI and CVP implementation alternatives. 40
Figure 3-11: Typical conceptual flowchart of software maintenance process. 44
Figure 3-12: Maintenance process flowchart for CVP and CIBI implementations. 44
Figure 3-13: Graph of maintenance cost of modifications on a Composition for a single

future addition referred to the inheritance-based implementation (IBI) and
Visitor design pattern (VP). .. 46

Figure 3-14: Graphs of maintenance cost of modifications on a Composition for a single
future addition, related to μ and pnE factors, referred to the Visitor design
pattern (VP) and Inheritance based implementation (IBI). 46

Figure 3-15: Graph of asymptotic cost differentiation Cdiff (3) for modifications on a
Composition for a single future addition, related to μ and pnE factors, referred
to the Visitor design pattern (VP) and inheritance-based implementation
(IBI). .. 47

Figure 3-16: Graph of balance cases (equal maintenance cost) for Visitor design pattern
(VP) vs Inheritance based implementation (IBI). ... 47

Figure 3-17: Computation of progressive maintenance cost for λ future
additions/modifications on a Composite using Visitor design pattern (CVP).
 .. 49

Figure 3-18: Graph of progressive maintenance cost differentiation pccm(dist)(pnE) for
modifications on a Composition for λ future additions, related to the μ and pnE
factors, referred to the Visitor design pattern (VP) and Inheritance based
implementation (IBI). ... 53

https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711888
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711888
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711889
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711889
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711890
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711890
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711891
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711891
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711892
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711892
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711893
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711893
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711893
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711894
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711895
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711896
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711897
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711897
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711898
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711898
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711899
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711899
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711900
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711900
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711901
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711901
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711902
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711903
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711904
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711904
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711905
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711906
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711907
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711907
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711907
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711908
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711908
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711908
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711909
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711909
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711909
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711909
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711910
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711910
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711911
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711911
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711911
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711912
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711912
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711912
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711912

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis xiii

Figure 3-19: Computational pattern of Structural Maintenance Cost. 54
Figure 3-20: Classification diagram of the proposed model. .. 55
Figure 3-21: Application flowchart on the use of Composite, Visitor, Iterator design

patterns and inheritance-based implementation. ... 56
Figure 3-22: Graph of balance cases (equal maintenance cost) for CVP vs CIBI. 57
Figure 3-23: Example: computation of progressive asymptotic cost for inheritance-based

implementation (IBI) and Visitor design pattern (VP). 58
Figure 3-24: Diagram of methods comparison through progressive analysis of multiple

measures. .. 59
Figure 3-25: Results of metrics comparison. .. 59
Figure 3-26: Graph of balance cases (equal maintenance cost) for CVP vs CIBI based on w

factor. ... 63
Figure 4-1: Conceptual UML class-diagram of CIBI (Inheritance-Based Implementation

inside a Composition) and CVP (Visitor design pattern over Composition’s
pattern) design combinations. ... 70

Figure 4-2: Conceptual representation of the architectural design principles connected to
the proposed theory and Modeling Method .. 72

Figure 4-3: Consequence flow (logical model) during impact analysis for changes on the
Visitor over Composite design combination (CVP). ... 74

Figure 4-4: Consequence flow (logical model) during impact analysis for changes on the
Inheritance-Based Implementation into Composite design combination
(CIBI). .. 75

Figure 4-5: Abstract representation of software dynamic expansion during the
maintenance process. .. 77

Figure 4-6: Results of the application of the Formal comparison Model on the practical
examples of Interpreter, and Graphic User Inter-face (GUI), specific problems
as instances of CVP vs. CIBI general problem. .. 85

Figure 5-1: Conceptual UML class-diagram of CIBI-DP vs CVP-DP design combinations.
 .. 91

Figure 5-2: Results of the application of the Formal comparison Model on the practical
examples of Graphic User Interface (GUI) specific problems as instances of
CVP-DP vs. CIBI-DP general problem. .. 93

Figure 5-3: Box plots of frequency distributions of sample’s instances, concerning all the
parameters of CIBI-DP vs. CVP-DP general problem 93

Figure 5-4: Conceptual UML class-diagram of CIBI-MP vs CVP-MP design combinations.
 .. 94

Figure 5-5: Conceptual UML class-diagram of CIBI-OP vs CVP-OP design combinations.
 .. 95

Figure 5-6: Results of the application of the Formal comparison Model on the practical
examples of Graphic User Interface (GUI) specific problems as instances of
CVP-MP vs. CIBI-MP vs. CVP-OP vs. CIBI-OP general problem.................. 97

Figure 5-7: Box plots of frequency distributions of sample’s instances, concerning all the
parameters of CIBI-DP vs. CVP-DP general problem 98

Figure 5-8: Conceptual UML class-diagram of CIBI-AF vs CVP-AF design combinations.
 .. 99

Figure 5-9: Conceptual UML class-diagram of CIBI-PT vs CVP-PT design combinations,
including basic design attributes (N,M,F) and analysis of the affected code
units per major maintenance scenario. ... 100

Figure 5-10: Results of the application of Formal comparison Model on the practical
examples of Graphic User Interface (GUI) specific problems as instances of
CVP-AF vs. CIBI-AF vs. CVP-PT vs. CIBI-PT general problem. 101

https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711913
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711914
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711915
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711915
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711916
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711917
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711917
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711918
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711918
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711919
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711920
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711920
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711921
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711921
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711921
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711922
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711922
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711923
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711923
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711924
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711924
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711924
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711925
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711925
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711926
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711926
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711926
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711927
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711927
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711928
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711928
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711928
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711929
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711929
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711930
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711930
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711931
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711931
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711932
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711932
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711932
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711933
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711933
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711934
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711934
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711935
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711935
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711935
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711936
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711936
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711936

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis xiv

Figure 5-11: Box plots of frequency distributions of sample’s instances, concerning all the
parameters of CVP-AF vs. CIBI-AF vs. CVP-PT vs. CIBI-PT general problem
 .. 102

Figure 5-12: Box plots of frequency distributions of sample’s instances, concerning all the
parameters of CIBI vs. CVP general problem .. 103

Figure 6-1: Representation of study’s goals, contribution, and limitations 107
Figure 6-2: Conceptual UML classes diagram of CIBI and CVP design combinations,

including basic design attributes (N,M) and analysis of the affected code units
per major maintenance scenario. .. 109

Figure 6-3: Consequence flow (logical model) during impact analysis for changes on CVP
design combination, including alternate scenarios. .. 112

Figure 6-4: Consequence flow (logical model) during impact analysis for changes on CIBI
design combination, including alternate scenarios. .. 112

Figure 6-5: Typical code example after the application of one new element and one new
operation scenarios for CIBI and CVP design alternatives 114

Figure 6-6: Diagram of formal & simulated comparison models applied on the practical
example of Interpreter (N:40, M:10, pnE:0.5, exp:1) as an instance of CVP vs.
CIBI general problem .. 116

Figure 6-7: Experimental setup visualization ... 119
Figure 6-8: Visualization of research strategy, focusing on reality and theoretical aspects.

 .. 120
Figure 6-9: Visualization of the experiment context, focusing on contradistinction among

theoretical and observational aspects ... 122
Figure 6-10: Software entropy concept in relation to code’s aging. 129
Figure 6-11: Abstract (indicative) representation of the Simulation Model implementation

as functional model.. 131
Figure 6-12: Class diagram of an indicative modular representation of the simulation

model ... 132
Figure 6-13: Object diagram of an indicative run-time representation of the modular

simulation model ... 133
Figure 6-14: Example of intermediate results/outcomes of DSL implementation of the

Simulation Model for CVP design combination .. 134
Figure 6-15: Example of GUI of the DSL Implementation of Simulation Model 135
Figure 6-16: Frequency distributions of Simulation Model’s CVP, CIBI total effort

assessments, and their differences, for all (1000) object-subject instances of
the selected sample, where λ=200, relevant to the 7th simulation state in Table
6-4. ... 136

Figure 6-17: Frequency distributions of Formal Model’s CVP, CIBI total effort
assessments, and their differences, for all (1000) object instances of the
selected sample, where λ=200, relevant to the 7th simulation state in Table 6-4.
 .. 136

Figure 6-18: Indicative frequency distributions and scatter diagrams of Simulation Model’s
outcomes (CVP, CIBI, CVP-CIBI) for 100 repeated simulations in a single
object-subject instance (N:40, M:10, pne:0.5, exp:1.0), where λ=200 relevant to
the 7th simulation state in Table 6-4. .. 137

Figure 6-19: Multi-resolution modeling approach towards calibration of Simulation Model
 .. 138

Figure 6-20: Frequency distributions and time series of Simulation Model’s overall
stochastic factor and intermediate outcomes (CVP, CIBI) of an indicative
single object-subject instance (N:40, M:10, pne:0.5, exp:1.0), where λ=[1, …,
200], relevant to the 7th simulation state in Table 6-4. 139

Figure 6-21: Consistency criterion of simulation model’s calibration. 140

https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711937
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711937
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711937
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711938
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711938
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711939
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711940
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711940
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711940
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711941
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711941
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711942
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711942
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711943
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711943
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711944
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711944
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711944
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711945
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711946
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711946
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711947
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711947
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711948
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711949
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711949
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711950
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711950
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711951
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711951
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711952
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711952
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711953
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711954
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711954
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711954
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711954
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711955
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711955
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711955
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711955
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711956
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711956
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711956
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711956
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711957
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711957
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711958
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711958
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711958
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711958
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711959

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis xv

Figure 6-22: Overall assessment of the statistical parameters of the ΣλYi
repeated and Yi

variables concerning all the sample instances. .. 143
Figure 6-23: Time series analysis (ARIMA) of total CVP effort assessments 146
Figure 6-24: Time series analysis (ARIMA) of (single differentiated) intermediate CVP

effort assessments .. 147
Figure 6-25: Time series analysis (ARIMA) of (double differentiated) intermediate CVP

effort assessments (simulation of sample instance N. 002) 148
Figure 6-26: ACF and PACF diagrams of (double differentiated) effort time series 149
Figure 6-27: Time series analysis ARIMA(0,2,1) of (double differentiated) intermediate

CVP effort assessments (simulation of sample instance N. 002) 150
Figure 6-28: Scatter diagrams of external correlation among formal and simulated values

of total effort (CVP, CIBI, CVP-CIBI), concerning all (1000) sample instances,
of the 7th fully stochastic simulation state in Table 6-4. 151

Figure 6-29: Overall control diagrams (left):coefficient of correlation, (right):hypothesis T-
test, (mid):average error rate & critical error rate, concerning 1000 sample
instances, of the 7th fully stochastic simulation state in Table 6-4. 152

Figure 6-30: Scatter diagrams of external correlation among formal and simulated values
of total effort (CVP, CIBI, CVP-CIBI), concerning all (1000) sample instances,
of the 1st simulation state in Table 6-4. .. 153

Figure 6-31: Overall control diagrams (left):coefficient of correlation, (right):hypothesis T-
test, (mid):average error rate & critical error rate, concerning 1000 sample
instances, of the 1st simulation state in Table 6-4. .. 154

Figure 6-32: Scatter diagrams of external correlation among formal and simulated values
of total effort (CVP, CIBI, CVP-CIBI), concerning all (1000) sample instances,
of the 2nd simulation state in Table 6-4. ... 154

Figure 6-33: Overall control diagrams (left):coefficient of correlation, (right):hypothesis T-
test, (mid):average error rate & critical error rate, concerning 1000 sample
instances, of the 2nd simulation state in Table 6-4. ... 155

Figure 6-34: Scatter diagrams of external correlation among formal and simulated values
of total effort (CVP, CIBI, CVP-CIBI), concerning all (1000) sample instances,
of the 3rd simulation state in Table 6-4. .. 155

Figure 6-35: Overall control diagrams (left):coefficient of correlation, (right):hypothesis T-
test, (mid):average error rate & critical error rate, concerning 1000 sample
instances, of the 3rd simulation state in Table 6-4. .. 156

Figure 6-36: Scatter diagrams of external correlation among formal and simulated values
of total effort (CVP, CIBI, CVP-CIBI), concerning all (1000) sample instances,
of the 4th simulation state in Table 6-4. .. 157

Figure 6-37: Overall control diagrams (left):coefficient of correlation, (right):hypothesis T-
test, (mid):average error rate & critical error rate, concerning 1000 sample
instances, of the 4th simulation state in Table 6-4. .. 157

Figure 6-38: Scatter diagrams of external correlation among formal and simulated values
of total effort (CVP, CIBI, CVP-CIBI), concerning all (1000) sample instances,
of the 5th simulation state in Table 6-4. .. 158

Figure 6-39: Overall control diagrams (left):coefficient of correlation, (right):hypothesis T-
test, (mid):average error rate & critical error rate, concerning 1000 sample
instances, of the 5th simulation state in Table 6-4. .. 159

Figure 6-40: Scatter diagrams of external correlation among formal and simulated values
of total effort (CVP, CIBI, CVP-CIBI), concerning all (1000) sample instances,
of the 6th simulation state in Table 6-4. .. 159

Figure 6-41: Overall control diagrams (left):coefficient of correlation, (right):hypothesis T-
test, (mid):average error rate & critical error rate, concerning 1000 sample
instances, of the 6th simulation state in Table 6-4. .. 160

Figure 6-42: Experimental error rate assessment. ... 162

https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711960
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711960
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711961
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711962
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711962
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711963
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711963
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711964
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711965
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711965
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711966
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711966
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711966
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711967
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711967
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711967
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711968
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711968
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711968
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711969
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711969
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711969
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711970
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711970
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711970
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711971
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711971
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711971
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711972
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711972
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711972
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711973
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711973
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711973
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711974
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711974
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711974
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711975
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711975
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711975
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711976
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711976
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711976
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711977
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711977
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711977
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711978
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711978
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711978
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711979
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711979
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711979
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711980

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis xvi

Figure 6-43: Design space representation through 1000 sample instances of CVP vs. CIBI
general problem, including long-term error and critical error rate assessment
(λ=200, 7th simulation state in Table 6-4). .. 164

Figure 6-44: Frequency distributions (Box Plots) of Simulation Model’s outcomes (CVP,
CIBI, CVP-CIBI) for 100 repeated simulations in a single object-subject
instance (N:40, M:10, pne:0.5, exp:1.0), of the 7th fully stochastic simulation
state in Table 6-4. .. 165

Figure 6-45: Levels of uncertainty distributions of Simulation Model’s outcomes (CVP,
CIBI) for 100 repeated simulations in a single object-subject instance (N:40,
M:10, pne:0.5, exp:1.0), of the 7th fully stochastic simulation state in Table 6-4.
 .. 166

Figure 6-46: Statistical evaluation of GUI implementation based on simulation outcomes
 .. 167

Figure 7-1: Graph of total effort per design alternative (CVP vs. CIBI) for different horizons
(sub-periods) of the software lifecycle, including preliminary development
stage, referred to the example of Interpreter requirements with initial design
attributes during maintenance N=40 and M=10 .. 180

Figure 7-2: Computer-Aided implementation of the discrete Formal Model for the general
decision problem CIBI vs CVP, using VENSIM® tool. 181

Figure 7-3: Computer-Aided implementation of the continuous Formal Model for the
general decision problem CIBI vs CVP, using VENSIM® tool. 183

Figure 7-4: Computer-Aided implementation of the event-driven Simulation Model for the
general decision problem CIBI vs CVP, using VENSIM® tool. 184

Figure 7-5: Difference of total effort among CVP and CIBI design alternatives for DFM,
FM, and SM models, for the GUI implementation (N=15, M=14, pnE=0.7)
 .. 187

Figure 7-6: Total effort of CVP (left) and CIBI (right) design alternatives for DFM, FM, and
SM models, for the GUI implementation (N=15, M=14, pnE=0.7) 187

Figure 7-7: Analysis of Stochastic Factor components of SM model, for the GUI
implementation (N=15, M=14, pnE=0.7) ... 188

Figure 7-8: Effort change rate of CVP (left) and CIBI (right) design alternatives for DFM,
FM, and SM models, for the GUI implementation (N=15, M=14, pnE=0.7)
 .. 188

Figure 7-9: Design attributes of Elements N (left) and Operations M (right) for DFM, FM,
and SM models, for the GUI implementation (N=15, M=14, pnE=0.7) 189

Figure 7-10: New element scenario probability (pnE) and shifted scenario probability of SM
model, for the GUI implementation (N=15, M=14, pnE=0.7) 190

Figure 0-1: Sample instance N. 001 (N=161, M=60, pnE=0.67, pnP=0.33) 231
Figure 0-2: Sample instance N. 004 (N=56, M=123, pnE=0.09, pnP=0.91) 232
Figure 0-3: Sample instance N. 006 (N=101, M=12, pnE=0.90, pnP=0.10) 233
Figure 0-4: Sample instance N. 007 (N=31, M=7, pnE=0.15, pnP=0.85) 234
Figure 0-5: Sample instance N. 008 (N=134, M=112, pnE=0.15, pnP=0.85) 235
Figure 0-6: Sample instance N. 009 (N=104, M=38, pnE=0.08, pnP=0.92) 236
Figure 0-7: Sample instance N. 010 (N=81, M=6, pnE=0.70, pnP=0.30) 237
Figure 0-8: Sample instance N. 011 (N=90, M=58, pnE=0.72, pnP=0.28) 238
Figure 0-9: Sample instance N. 012 (N=29, M=102, pnE=0.34, pnP=0.66) 239
Figure 0-10: Sample instance N. 014 (N=188, M=133, pnE=0.14, pnP=0.86) 240
Figure 0-11: Sample instance N. 016 (N=155, M=91, pnE=0.22, pnP=0.78) 241
Figure 0-12: Sample instance N. 017 (N=21, M=5, pnE=0.26, pnP=0.74) 242
Figure 0-13: Sample instance N. 018 (N=139, M=132, pnE=0.93, pnP=0.07) 243
Figure 0-14: Sample instance N. 019 (N=89, M=126, pnE=0.30, pnP=0.70) 244
Figure 0-15: Sample instance N. 020 (N=156, M=138, pnE=0.68, pnP=0.32) 245
Figure 0-16: Sample instance N. 021 (N=70, M=99, pnE=0.57, pnP=0.43) 246

https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711981
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711981
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711981
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711982
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711982
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711982
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711982
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711983
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711983
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711983
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711983
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711984
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711984
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711985
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711985
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711985
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711985
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711986
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711986
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711987
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711987
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711988
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711988
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711989
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711989
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711989
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711990
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711990
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711991
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711991
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711992
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711992
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711992
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711993
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711993
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711994
https://d.docs.live.net/75c3ceec147ec47c/Διατριβή/PhD/Thesis/PhD%20Thesis%20ver%204.0.docx#_Toc119711994

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis xvii

Figure 0-17: Sample instance N. 022 (N=160, M=13, pnE=0.90, pnP=0.10) 247
Figure 0-18: Sample instance N. 024 (N=46, M=89, pnE=0.63, pnP=0.37) 248
Figure 0-19: Sample instance N. 025 (N=156, M=55, pnE=0.30, pnP=0.70) 249
Figure 0-20: Sample instance N. 026 (N=137, M=78, pnE=0.74, pnP=0.26) 250
Figure 0-21: Sample instance N. 027 (N=106, M=82, pnE=0.18, pnP=0.82) 251
Figure 0-22: Sample instance N. 029 (N=141, M=24, pnE=0.94, pnP=0.06) 252
Figure 0-23: Sample instance N. 031 (N=26, M=33, pnE=0.85, pnP=0.15) 253
Figure 0-24: Sample instance N. 032 (N=154, M=99, pnE=0.46, pnP=0.54) 254
Figure 0-25: Sample instance N. 033 (N=22, M=68, pnE=0.85, pnP=0.15) 255
Figure 0-26: Sample instance N. 034 (N=130, M=58, pnE=0.50, pnP=0.50) 256
Figure 0-27: Sample instance N. 035 (N=155, M=9, pnE=0.35, pnP=0.65) 257
Figure 0-28: Sample instance N. 036 (N=182, M=111, pnE=0.48, pnP=0.52) 258
Figure 0-29: Sample instance N. 037 (N=196, M=41, pnE=0.87, pnP=0.13) 259
Figure 0-30: Sample instance N. 038 (N=166, M=103, pnE=0.46, pnP=0.54) 260
Figure 0-31: Sample instance N. 039 (N=66, M=139, pnE=0.40, pnP=0.60) 261
Figure 0-32: Sample instance N. 040 (N=139, M=134, pnE=0.61, pnP=0.39) 262
Figure 0-33: Sample instance N. 041 (N=48, M=89, pnE=0.20, pnP=0.80) 263
Figure 0-34: Sample instance N. 042 (N=129, M=114, pnE=0.37, pnP=0.63) 264
Figure 0-35: Sample instance N. 043 (N=182, M=119, pnE=0.62, pnP=0.38) 265
Figure 0-36: Sample instance N. 045 (N=166, M=51, pnE=0.10, pnP=0.90) 266
Figure 0-37: Sample instance N. 046 (N=121, M=133, pnE=0.89, pnP=0.11) 267
Figure 0-38: Sample instance N. 047 (N=154, M=108, pnE=0.90, pnP=0.10) 268
Figure 0-39: Sample instance N. 048 (N=35, M=133, pnE=0.61, pnP=0.39) 269
Figure 0-40: Sample instance N. 049 (N=66, M=90, pnE=0.64, pnP=0.36) 270
Figure 0-41: Sample instance N. 050 (N=43, M=76, pnE=0.28, pnP=0.72) 271
Figure 0-42: Sample instance N. 051 (N=39, M=138, pnE=0.35, pnP=0.65) 272
Figure 0-43: Sample instance N. 052 (N=157, M=118, pnE=0.50, pnP=0.50) 273
Figure 0-44: Sample instance N. 053 (N=160, M=139, pnE=0.92, pnP=0.08) 274

figures 0.* refer to appendix content

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis xviii

List of Tables

Table 1-1: Examples of Software specifications for part-whole representations 4
Table 3-1: Maintenance Cost Terminology and Notation... 35
Table 3-2: Maintenance Cost Terminology and Notation... 39
Table 3-3: Asymptotic Evaluation of Structural Maintenance Cost on Inheritance-Based

Implementation and Visitor Design Pattern .. 43
Table 3-4: Characteristics and attributes of individual problem descriptions 57
Table 3-5: Correlation of Model’s Measures with Related Models 58
Table 3-6: Methodology for deriving comparison models .. 60
Table 4-1: Example of Interpreter Software Specifications for the General Problem of Part-

Whole Representations.. 68
Table 4-2: Correspondence of Concepts, Components, and Terms to the General Decision

Problem of Part-Whole Representations. ... 69
Table 4-3: Equations of Fundamental Effort Metrics of CIBI vs. CVP General Decision

Problem .. 75
Table 4-4: Differential Analysis and Comparison Model Derivation for CVP vs. CIBI

General Problem ... 80
Table 4-5: Terminology and Notation of Modeling Framework .. 81
Table 4-6: Modeling Framework of Differential Analysis and Comparison Model

Generation ... 83
Table 4-7: Formula for Finding the Relation Between Initial Model’s Derivation Cost and

Long-Term Benefits (Return) ... 85
Table 5-1: Overall results for 1000 instances of design attributes and scenario’s

probabilities per General Problem ... 103
Table 6-1: Design Characteristics and Model’s Notation of the General Problem of Part-

Whole Representations.. 109
Table 6-2: Equations of Fundamental Effort Metrics of CIBI vs. CVP General Decision

Problem .. 111
Table 6-3: Experiment Variables per Treatment for Formal and Simulation Models on CIBI

vs. CVP General Problem .. 118
Table 6-4: Combinations (States) of Simulation Model’s Independent Variables and

Switches ... 124
Table 6-5: Statistical parameters of real-world against simulated effort-based observations

 ... 142
Table 6-6: Statistical Parameters of ARIMA Analysis of Simulated Effort Assessments 149
Table 6-7: Overall Control Evidence for all Experiment Scenarios and Simulation Model

States .. 152
Table 7-1: Horizon Analysis Data referred to the Interpreter Specific Instance of CVP vs.

CIBI General Problem .. 179

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis xix

List of Listings

Listing 4-1: Loading CIBI vs CVP general problem to MatLab Modeling Framework 83
Listing 4-2: Loading Interpreter characteristics to MatLab Modeling Framework 84
Listing 5-1: Loading CIBI-DP vs. CVP-DP general problem to MatLab Modeling

Framework ... 92
Listing 5-2: Loading CIBI-MP vs CVP-MP vs CIBI-OP vs CVP-OP general problem to

MatLab Modeling Framework ... 96
Listing 6-1: Pseudocode of simulation model calibration based on multi-resolution

modeling ... 144
Listing 7-1: Code documentation of CVP vs CIBI general problem in VENSIM

implementation .. 182
Listing 7-2: Code documentation of CVP vs CIBI Formal Models in VENSIM

implementation .. 183
Listing 7-3: Code documentation of Simulation Model for CVP vs CIBI general problem in

VENSIM implementation ... 185

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis xx

List of Abbreviations & Acronyms

ACF Auto Correlation Function

ADF Augmented Dickey–Fuller (test)

AIC Akaike’s Information Criterion

AOP Aspect – Oriented Programming

AR Auto Regressive

ARIMA Auto Regressive Integrated Moving Average

ARMA Auto Regressive Moving Average

CAD Computer Aided Design

CIBI Inheritance-Based Implementation over Composite design pattern

CK Chidamber & Kemerer (object-oriented metrics)

CL Confidence Level (of statistical test - parameter)

CP Composite Design pattern

CVP Visitor over Composite (design) Pattern

DSL Domain Specific Language

GUI Graphic User Interface

IBI Inheritance-Based Implementation

IR Intermediate Representation

KPSS Kwiatkowski–Phillips–Schmidt–Shin (test)

LOC Lines of Code

LR Literature Review

MA Moving Average

MOOD Metrics for Object Oriented Design

PACF Partial Auto Correlation Function

QAR Quality Attribute Requirement

SLR Systematic Literature Review

UML Unified Modeling Language

VP Visitor (design) Pattern

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 1

1 Introduction

1.1 Field of Application

Software architecture, as a process, is a set of design decisions (Bass, Clements, & Kazman,
2012). It is about (re)arranging structural elements and entities based on proper
architectural tactics for creating design alternatives that satisfy the pursued quality
attribute requirement such as maintainability or modifiability (Bass et al., 2012).
Maintainability is one of the most important quality properties, mostly connected to the
ease of future maintenance of software code (ISO/IEC 25010, 2011; ISO/IEC 25023,
2016; ISO/IEC/IEEE 24765, 2010), corresponding up to 75% of the overall cost of
software projects (Bass et al., 2012; Glass, 2002; Sommerville, 2010). The decisions
among design alternatives are often complex, crucial, and affect major quality properties of
the software such as maintainability (Bosch & Bengtsson, 2001; R. Pressman, 2010;
Sommerville, 2010; Srivastava, 2004).

A critical decision arises when at least two design alternatives with high impact and
conflicting pro and cons regarding their maintainability perspective are competing to
address the same requirements in different design ways. Furthermore, critical design
decisions arise in different levels of analysis from the high-level architectural design of the
entire system to the low-level of object-oriented design. Such decisions are usually made
during the software architecture design stage before code development as illustrated in
Figure 1-1. A possible incorrect selection of a less maintainable design alternative has
serious negative impact concerning either: a) the considerable wasted effort and cost
during maintenance, indicated by (a) arrow in Figure 1-1, or b) the costly setback in the
design stage of software lifecycle which requires redesign and refactoring of the existing
code, indicated by (b) arrow in Figure 1-1. Such design decisions are present regardless of
the followed software development model and their impact usually echoes in different or
repeated cycles of activities (e.g., waterfall, v-model, incremental, iterative, spiral, Agile
iterations like Scrum, etc.). Early and critical design decisions have disproportionate weight
simply because they influence and constrain so much of what follows, especially for
significant, general, and frequently tackled design problems (Bass et al., 2012).

In software architecture and object-oriented software development, designers and
developers face complex design problems (Sommerville, 2010). To handle these issues,
designers use combinations of established design patterns, such as those introduced by

Figure 1-1: The decision-making between design alternatives in a typical soft-ware

lifecycle, and the negative consequences in case of wrong selection.

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 2

Gamma et al. (Gamma, Helm, Johnson, & Vlissides, 1994). These design patterns are
based on object-oriented models, and usually aim at solving common (frequently tackled)
and significant design problems. Furthermore, many design (pattern) combinations for
typical significant problems, such as recursive part-whole aggregations, affect significantly
the majority of software quality properties (Bosch & Bengtsson, 2001; Srivastava, 2004).
Efficient exploration, evaluation, and selection among design alternatives (i.e., patterns
combinations) is crucial and has a direct impact on software quality (R. Pressman, 2010).

1.2 Necessity of the Introduced Theory

1.2.1 Need for Early Maintainability Assessment of Design Alternatives

Designers and developers often have to select between several object-oriented design
alternatives which compete to solve significant, general, and frequently tackled design
problems. These design decisions are often complex, crucial, and affect major quality
attributes of the software such as modifiability and maintainability (Bass et al., 2012; R.
Pressman, 2010). In general, software maintainability can be expressed through the
required maintenance effort, and it is closely related to the code’s complexity and size (Riaz,
Mendes, & Tempero, 2009a). Therefore, early selection among design alternatives with
regards to their maintainability profoundly affects future maintenance effort and cost as
stressed in previous subsection. In practice, many designers and developers underestimate
such critical decisions by using the most acknowledged design combination based on their
intuition, experience, or instant judgment, thus usually leading to poor design decisions,
accrued technical debt (Kruchten, Nord, & Ozkaya, 2012), high risk and cost (Williams &
Carver, 2010), and increased maintenance effort (Xiao, Cai, Kazman, Mo, & Feng, 2016).
The acknowledgment of designers about the negative consequences of a possible incorrect
selection is the first step to confront the observed lack of architectural awareness (Paixao,
Krinke, Han, Ragkhitwetsagul, & Harman, 2017). Consequently, early selection among
competing design alternatives for significant design problems is a necessary step that must
be made before code development, thus during the early design stage.

1.2.2 Need for Formal Models to Support Decision-Making of General Problems

Despite the observed lack of architectural awareness (Paixao et al., 2017), many software
quality managers have a clear understanding of possible negative consequences of critical
(early) design decisions, but they do not have a comprehensible theory or models to predict
the impact and risk taken for each alternative selection. Whether a specific implementation
(design alternative) is efficient with regards to maintainability is difficult to be assessed
without a basis for comparison among design alternatives. The quality assessment of a
design implementation is only meaningful when compared to other relevant design
alternatives. The early evaluation and comparison with regards to maintainability of design
alternatives are generally supported by predictions of the required maintenance effort. The
design alternative with the minimum required maintenance effort is preferable. Effort
predictions are usually provided by formal models applied during the design stage before
code development. In this early design stage, effort prediction models that capture the
structural evolution of the engaged design patterns, based on as less as possible distinct
design attributes and parameters, are thus desired. Furthermore, software maintenance is
a stochastic process heavily affected by many random and ambiguous factors. Hence, there
is need for systematic approaches that derive (formal) deterministic models for
maintenance effort estimation mainly for comparison purposes among design alternatives
towards maintainability.

1.2.3 Motivation Example of General Design Problem

One example of significant, general, frequently tackled, and complex design problem is the
part-whole representations and aggregations based on composite structures of objects
(Sommerville, 2010). To handle such issues, designers and developers use combinations

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 3

of established design patterns, which are based on object-oriented models, like the
Composite and Visitor patterns (introduced in (Gamma et al., 1994)) or inheritance-based
approaches. The proper choice among different implementation options is crucial and has
a direct impact on the quality of software under development (R. Pressman, 2010) as
stressed in previous subsections. More specifically, this general design problem is referred
to the critical decision (selection) between Visitor design pattern (VP) and inheritance-
based implementation (IBI) over a Composition design pattern (CP). IBI and VP are the
two dominant implementation options (design alternatives) for a set of operations be
applied on different types of elements of a CP object structure or composition (Gamma et
al., 1994; Hills, Klint, Van Der Storm, & Vinju, 2011). More specifically, IBI is based on the
standard inheritance property of CP class tree (hierarchy) where each type of operations is
distributed as distinct methods inside each CP class/element. In VP all the methos for each
type of operations are defined and placed in a single (visitor) class without changing the
classes of the CP elements on which it operates. These patterns have opposing
characteristics regarding their maintainability perspective. A wrong decision on selecting
the proper pattern during software design stage can lead to substantial higher effort during
maintenance. The choice between VP over CP (CVP) and IBI over CP (CIBI) is rather clear
for a problem with a steady Composition structure or a steady set of operations (Gamma
et al., 1994). However, when a problem with an extensible set of operations and an
extensible Composition structure is addressed, the decision making becomes very complex.
This decision is crucial and affects major quality factors of the software such as
maintainability (R. Pressman, 2010). Such design decisions are usually made during
software architecture design stage before code development as shown in Figure 1-2.

The usefulness and the necessity of the proposed work is highlighted through three
simple examples of software specifications for the general design problem of part-whole
representations (CVP vs CIBI) described above. Table 1-1 presents the descriptions of
three practical systems (Compiler, Interpreter, GUI) as indicative examples or instances of
the general and significant design problem of part-whole representations. Each instance
has its own design characteristics (i.e., number of initial elements and operations) and
individual specifications (i.e., likelihood of extensions). As concluded for the cases of
Interpreter and GUI, when a problem with extensible sets of operations and Composition
structure is addressed, the decision-making process becomes very complex.

Figure 1-2: Typical timeline for design pattern selection process during software

design stage referring to the CVP vs CIBI design problem

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 4

Table 1-1: Examples of Software specifications for part-whole representations

Problem
description

Number of initial distinct
Elements of Composition
structure

Number of initial
Operations over
composition’s elements Individual specifications

Compiler
implementation
for the standard
C89(1) high-level
language

structure of 155 initial
distinct types of the parse-
tree nodes derived from
C89 BNF grammar
(proximally 85 tokens and
70 non-terminal symbols)

set of 20 initial distinct
operations such as
scope checking, type
checking, dependency
analysis, instruction
selection-scheduling,
code generation, etc.

- because C89 is a standard language, the
structure set is rather unlikely to change
during maintenance
- operations could be extended during
maintenance

- an incorrect choice of inheritance-based implementation would have cause 155 new methods in
155 different classes for a single operation addition during maintenance
- instead, the Visitor design pattern demands all 155 new methods to be placed in a single class,
which needs far less maintenance effort
- this is an easy choice due to structure stability based on the Visitor known advantages

Interpreter
implementation
for a new custom
(extendable) DSL
language

structure of 40 initial
distinct types of the parse-
tree nodes derived from a
custom BNF grammar
such as terminal –
nonterminal symbols,
identifiers, etc.

set of 10 initial distinct
operations type
checking, code
generation, executing,
etc.

- because DSL is a custom and extendable
language, both structure and operations
could be extended during maintenance by
equal probabilities

- an incorrect choice of inheritance-based implementation would have cause 40 new methods in 40
different classes for a single operation addition and a new class with 10 new methods for a single
element addition, during maintenance
- instead, the Visitor design pattern demands all 40 new methods to be placed on a single class but
10 new methods to be placed in 10 different classes, which overall needs less maintenance effort
- this is a difficult choice due to structure and operations expandability and there is no clear
advantage

GUI
implementation
for a simple
graph designing
tool

structure of 15 initial
distinct types such as
shapes, blocks, containers,
layers, etc.

set of 14 initial distinct
operations such as
drawing, filling,
resizing, moving, etc.

- both structure and operations could be
extended during maintenance
- structure is much likely to be extended
instead of operations by 70%-30%
probabilities

- an incorrect choice of Visitor design pattern would have cause 15 new methods to be placed on a
single class for a single operation addition but 14 new methods to be placed in 14 different classes
for a single element addition, during maintenance
- instead, the inheritance-based implementation demands 15 new methods in 15 different classes
and a new class with 14 new methods, which overall needs more maintenance effort at the
beginning but much less effort after some future addition due the individual maintenance
probabilities
- this is a very difficult choice due to structure and operations expandability, and there is no clear
advantage for arbitrary maintenance probabilities

Note: initial source code for Compiler and Interpreter will be generated by a parser tool such as Bison or ANTLR (Parr,
2013). Interpreter and GUI implementations are real cases descriptions. GUI implementation is direct without using standard
frameworks such as .NET and WPF

(1) ANSI C Standard ANSI X3.159-1989 "Programming Language C"

To better understand the impact of future additions or modifications on their codes,
software developers need a formal and mathematical approach for early exploring and
evaluating relevant issues and comparing different design pattern combinations. Hence,
the proposed method evaluates the effectiveness and maintainability degree of a design
alternative by taking into consideration possible scenarios like future additions or
modifications. A model that can deliver quantitative results based on specific design
attributes of each general problem (e.g., initial structure size, number of initial operations
and possibility of future extensions), is necessary. Using such models, software designers
and developers can choose between VP and IBI combinations over Composite structures
in an early stage, during software development phase. The introduced modeling method
and the derived models address this necessity by providing deterministic results through
equations based on specific design attributes and parameters of each general problem able
to support early decision-making among design alternatives towards maintainability.

1.2.4 Need for Decision-Making Reliability and Validation of Formal Models

In general, parametric formal models are mainly focused on maximizing the potential for
being general over different instances of a given general problem. However, formal
methods usually suffer from lack of realism of context and precision of measurements, as
discussed in (Stol & Fitzgerald, 2018). Ideally, actual measurements and observations from
case studies that maximize the potential for realism of context would be preferable for
validation purposes. Nevertheless, in real life, finding identical actual systems with uniform

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 5

design attributes, developed in different design variations is almost impossible.
Additionally, the number of recorded observations is very limited per case study, using
heterogeneous metrics, and unevenly conducted through literature. Thus, they are not
statistically meaningful, heavily limiting the generalization of inferences, as pointed in
(Langdon, Dolado, Sarro, & Harman, 2016; Shepperd & MacDonell, 2012). Moreover,
developer-related aspects, such as experience level and learning rate are also ignored by
these methods since they are heavily biased, as human-related, factors hard to be assessed
and measured. Furthermore, there is a lack of evidence regarding the effectiveness of the
prediction techniques and models of software maintainability (Riaz et al., 2009a; Shepperd
& MacDonell, 2012). In addition, there is a confirmed need for further validation of
maintainability prediction models (Riaz et al., 2009a), primarily through statistical
techniques. Because of all these reasons, there is no easy way to determine the reliability of
the models referred to possible incorrect design decisions in terms of maintainability. This
is a standard concern with regards to validity since the attempt to validate the formal
models based on a limited number and dissimilar case studies may increase realism of
context while sacrificing generalizability which should be the models’ primary goal.

Since the validation of formal models is critical to be made against real-world
observations, there is a need for generating massive and homogenous observations
properly classified in respect to all parameters (i.e., design attributes) of the general
problem under study. Toward this direction, the simulation of software evolution that
imitates the actual maintenance process and its highly uncertain and stochastic nature is a
suitable option.

1.3 Main Research Goals and Contribution

Challenges arising from the motivation example in Table 1-1 imply that models that can
deliver quantitative results based on attributes of each specific design problem (e.g., initial
structure size, number of initial operations, and the possibility of future extensions) are
needed. Using such models, software developers can choose between design alternatives
in an early stage, during the software lifecycle, avoiding the possible negative consequences
of incorrect selections and hence designing better software of higher quality.

Focusing on software design stage, the main contribution and goals of this thesis are
reported, as roughly visualized in Figure 1-3. More specifically, the goals of the study are
briefly described as follows:

Figure 1-3: Decision-making between design alternatives supported by the introduced

modeling method and derived formal models

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 6

1) Introduction of a modeling theory and method, as a solution-seeking study (Stol,
Goedicke, & Jacobson, 2016), through a formal and rigorous mathematical framework
supported by a concrete theory about software evolution and expansion during
maintenance. Through this framework, reusable formal prediction models are derived
which are used in the early stage of software architectural design domain. The purpose of
these formal models is to compare maintainability degree and select the most maintainable
option among competing design alternatives with respect to specific design attributes of a
general problem.

2) Illustration of the introduced modeling method through the motivation example of
the recursive part-whole aggregations in Table 1-1. The modeling method derives: a) the
fundamental effort metrics for each design alternative and scenario type for a single
scenario application as depicted in (2.a) stage in Figure 1-3, b) the formal prediction
models, returning total effort predictions for each design alternative and for any number of
applied scenarios, as depicted in (2.b) stage in Figure 1-3, and c) application of the derived
formal models on the practical examples in Table 1-1, as indicated in (2.c) arrow in Figure
1-3.

3) Demonstration of the applicability of the introduced modeling method by applying
it to three varieties (extensions) of the general problem presented in Table 1-1,
incorporating the relevant design patterns of Decorator, Abstract Factory, Prototype,
Observer, and Mediator, all introduced in (Gamma et al., 1994).

4) Simulation of Software evolution by introducing a simulation model that imitates
the actual maintenance process and its highly uncertain and stochastic nature.

5) Evaluation of the decision-reliability of the introduced, theory, modeling method,
and derived formal models by statistically validating their outcomes against simulated
observations.

6) Exploration of possible alternate uses of the introduced theory through horizon
analysis and decision-making under conditions of partial or full uncertainty.

1.4 Brief Review of Related Work (Existing Approaches)

Different approaches for maintainability assessment have been discussed in the literature
taking into consideration software evolution, effort/cost estimation, and code complexity.
Most approaches manage source code analysis through typical code metrics not
appropriate to support early evaluation of design (pattern) alternatives. Moreover, existing
approaches do not use formal models for evaluating design pattern combinations before
code development. Such approaches lead to suboptimal results regarding code quality with
regards to maintainability. Even the most relevant approaches (Bengtsson & Bosch, 1999;
Bosch & Bengtsson, 2001) are strongly linked to minor specifications and functionality,
with no links to design patterns. Thus, such approaches cannot support early evaluation of
design patterns combination alternatives in an efficient way. Furthermore, the
effectiveness of software maintainability prediction techniques and models has not been
adequately proved (Riaz et al., 2009a; Shepperd & MacDonell, 2012). Methods, which are
not related to well-known design pattern combinations for typical problems, are not easily
reusable or adaptable. Without the insight provided by the structural behavior and the
evolution pattern of the used design patterns in the event of major maintenance scenarios,
existing approaches miss an important aspect of maintainability perspective, thus
providing suboptimal estimations. This gap is even more obvious during the critical object-
oriented software design stage before code development. Hence, there is great need for a
well-defined systematic modeling method that generates formal comparison models well-
fitted to specific design attributes allowing early maintainability assessment of design
alternatives.

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 7

1.5 Brief Presentation of Proposed Theory

1.5.1 Modeling Theory and Method

The ultimate purpose of the introduced modeling theory is to derive formal models that
provide effort estimations per design alternative for general design problems mainly for
comparison purposes. During this early decision stage there is no source code for
evaluation, thus the proposed theory examines (or predicts) the evolution of the engaged
design patterns during maintenance. As a first step, the modeling method proposes a
number of design alternatives (as combinations of established design patterns, i.e., CVP,
CIBI) that address the general design problem under study. To analyze the evolution of
each design alternative of the general problem, the method derives a number of major
maintenance scenarios (as classes of resembling activities with common characteristics)
that have high impact and likelihood to occur during maintenance. The method
concentrates on those scenarios that add further functionality (i.e., new element, new
operation) and expand the size of the software during maintenance since the expansion of
software size is an innate trend of software evolution (Meir M. Lehman, Ramil, Wernick,
Perry, & Turski, 1997) as confirmed by empirical evidence (Bakota et al., 2012; Barry,
Kemerer, & Slaughter, 2007; C. R. Cook & Roesch, 1994; H. Gall, Jazayeri, Klosch, &
Trausmuth, 1997; Jazayeri, 2002; M. M. Lehman, Perry, & Ramil, 1998; Yuen, 1988).
Furthermore, the method derives a number of relevant design attributes (i.e., number of
elements and operations) that affected by the major maintenance scenarios. In principle,
the design attributes are quantitatively expressed and reflect the logical entities of the
design problem (i.e., elements and operations) as represented by the code entities (i.e.,
methods, classes, modules) of the used design patterns. Each maintenance scenario affects
each design alternative and relevant design attributes in different and conflicting ways
depending on the pro and cons of the engaged design patterns. As the maintenance
scenarios are applied in each design alternative, the required maintenance effort is
quantitatively assessed based on an innovative measurement approach.

1.5.2 Structural Maintenance Cost (SMC) Metric

Measuring the future maintenance effort of a design alternative (combination of design
patterns) is a challenge since during early design stage there is no source code for
evaluation. To overcome this burrier, the proposed measurement approach analyzes and
counts the structural changes for each design alternative per applied maintenance scenario.
More specifically, the measure counts the number of required interventions (structural
changes) that take place as a specific scenario applied in a design alternative. Taking
advantage from the architectural behavior of the used design patterns in the event of a
major maintenance scenario, the introduced measure expresses the required maintenance
effort in terms of number of effected code entities (interventions, i.e., methods).
Furthermore, the measure simultaneously counts different types of affected code entities
(i.e., classes) to capture not only the number of interventions but the scattering degree or
the locality of those interventions as well. The principal idea is that the number and the
locality of required interventions are strongly related to code properties like coupling and
cohesion degree, and thus these sizes are proportional to the required effort as also
supported by empirical evidence (Araújo, Monteiro, & Travassos, 2012; L. C. Briand, Melo,
& Wust, 2002; Jabangwe, Börstler, Šmite, & Wohlin, 2015). Since these code entities (i.e.,
methods, classes, modules) represent the problem’s logical entities or design attributes (i.e.,
number of elements and operations), the required effort depends on the values of the
problem’s design attributes. Even if the number of interventions is not necessarily linked
to actual (real-world) effort, the main intent of the proposed metric it to provide
proportional equivalent effort estimations mainly for comparison purposes among design
alternatives. That because, the actual effort of distinct (minor) interventions would be
common for all design alternatives under evaluation, thus neutral concerning the decision-
making process. Due to its properties, the introduced effort metric has been named

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 8

Structural Maintenance Cost (SMC). Summarizing, SMC metric returns effort assessments
per design alternative and maintenance scenario expressed in terms of number of affected
methods (interventions) and classes (locality) as represented by the problem’s design
attributes.

1.5.3 Deriving Formal Comparison Models

Given that SMC metric returns effort assessments for a single applied maintenance
scenario, the proposed modeling method mathematically derives formal models per design
alternative that estimate the overall required effort for any number of applied scenarios as
depicted in Figure 1-4. Furthermore, since there several types of maintenance scenarios
(i.e., new element, new operation), the engagement and assessment of scenario’s
probabilities is required. Thus, scenario’s probabilities and design attributes distinguish a
specific design problem (e.g., Interpreter, Compiler, GUI, etc.) as an instance of the general
design problem (CVP vs CIBI) under study. However, the overall quality assessment of a
design alternative requires the measurement of the relevant effort for different types of
scenarios, each affecting the used design patterns in different and conflicting ways. Thus,
a combined analysis of the effects of all scenarios based on their probabilities for each
design alternative is required. By using the SMC metric, the proposed modeling method
gradually calculates the required effort of several applied scenarios where each type of
scenarios is engaged based on its individual probability.

The critical point is that the repeatedly applied maintenance scenarios gradually affect
and shift the design attributes (i.e., increases the number of elements / operations) based
on which the SMC metric of the next applied scenario is estimated. Mathematically, the
modeling method gradually integrates the change rates of the problem’s design attributes
and required effort for several applied maintenance scenarios based on their individual
probabilities. This achieved by two ways: a) through a progressive quantitative and distinct
(event-driven) analysis in chapters 3, and b) under the sight of continuous differential
equations that examines the software expansion trend through the change rates of the
problem’s design attributes in chapter 4. As a result of this probabilistic approach, the
outcome of the derived formal models depends on the design attributes, the scenario’s

Figure 1-4: Overall presentation of the introduced modeling method, derived

formal/simulation models, and validation process

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 9

probabilities, and the number of applied scenarios. Thus, the derived formal models
estimate the overall required effort per design alternative offering a suitable comparison
base.

1.5.4 Advantages of Modeling Method & Formal Comparison Models

The most important advantages of the introduced modeling method in chapters 3 and 4
are briefly listed below:

• Relies on the structural analysis of well-known and established design patterns, thus
the derived formal models address difficult, general, and frequently tackled design
problems in the field of software architecture.

• Resolves conflicting issues and tradeoffs among design alternatives concerning their
pro and cons (advantages and disadvantages) in the event of different types of
maintenance scenarios.

• Is capable to provide formal comparison models for different design alternatives,
metrics, quality attribute requirements, and alternate design problems.

• Is capable to address general design problems for different levels of analysis from high
level architectural design of systems to low level of object-oriented design.

The most important advantages of the introduced SMC metric in chapter 3 are briefly listed
below:

• Is an adaptable metric that captures the expansion trend for each design combination
under comparison by examining the structural evolution or the number of performed
changes (number of interventions) on the affected code entities of the used design
patterns.

• Returns effort assessments which are independent of accurate effort measurements,
real-world observations, and realized costs by providing proportional equivalent effort
assessments ideal for comparison purposes among design alternatives.

• Provides insight of the future required effort even in the absence of source code (during
the early design stage) by taking advantage from the architectural behavior and
structural evolution of the engaged design patterns.

• Relies on the explicit analysis of expansion scenarios which cover all the essence of the
actual maintenance process among design alternatives mainly for comparison
purposes.

• Effort/size assessments in terms of number of (classes and method) interventions are
reliable measurement (proxy) units for comparison purposes in a mid-to-long term
perspective.

The most important advantages of the derived formal comparison models are briefly listed
below:

• They are independent of specific code implementations and run-time behavior and,
thus it is ideal to support early decision-making among design alternatives during early
design stage.

• They are sensitive to several design attributes and scenario probabilities, supporting
decision-making for the entire design space (specific instances) of the general problem
under study. Thus, they could be easily and repeatedly applied to any instance of the
general problem under study.

• They are easily implemented in software for further analysis purposes (e.g., data
manipulation, graphs generation, etc.) as parametric equations or dynamic functions.

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 10

• Their deterministic nature combined with their computational efficiency through
software allows the exploration of the entire design space for a given design problem.

• Overcome the highly stochastic and uncertain nature of actual maintenance process by
providing deterministic results (effort assessments) through parametric equations
based on specific design attributes and parameters of each general design problem.

• The cumulative gain from the repeated use of the formal models (in terms of avoided
maintenance effort) significantly overcomes their initial (one-time) derivation cost.

1.5.4.1 Methods That Do Not Exploit Structural Evolution of Software

In general, methods that do not exploit the architectural behavior or the structural
evolution of software during maintenance are unable to support early decision-making
among design alternatives in an efficient way. During early design stage there is no code
for evaluation since the actual code should be allocated in the preselected design structures
(e.g., combinations of design patterns). Thus, in this early stage, the only available
structures to evaluate are the selection among design alternatives that address the software
requirements. These design decisions are in the core of architectural design theory (Bass et
al., 2012) even if their conceptualization is relatively abstract. The proposed modeling
method facilitates the comparison process and decision-making by analyzing the structural
evolution of the used design patterns for major maintenance events. This is an active and
more informative evaluation of maintenance perspective since evaluates the effect of
various types of possible maintenance scenarios compared to the static evaluation of source
code properties.

1.5.4.2 An Example of Formal Model Application

Referring to the general design problem (CVP vs CIBI) in Table 1-1, the two events of new
element and new operation are the major types of maintenance scenarios (stimulus) while
the initial number of elements and operations are the problems’ design attributes. The
overall representation of the general design problem in the form of UML class diagrams

Figure 1-5: Conceptual class-diagram and relevant effort metrics of CIBI and CVP

design alternatives.

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 11

per design alternative (artifact) is visualized in Figure 1-5. In this representation, the
change impact of each scenario per design alternative is quantitatively expressed by the
number of required method and class interventions in connection with the problem’s
design attributes. This change impact is captured by the introduced SMC metric. As an
example, the SMC metric for adding a new element in CVP design alternative is equal to
(M+2) method interventions into (M+2) different classes where factor M represents the
number of operations as analyzed in chapters 3 and 4. Thus, SMC[New element on CVP]
= 2(M+2). Similar SMC metrics are derived for each maintenance scenario and design
alternative of the general design problem under study.

By applying the introduced modeling theory, the formal models for each design
alternative in the form of parametric equations are derived. For example, the

Total_Effort[CVP] =
3

2
𝜆2𝑝𝑛𝐸𝑝𝑛𝑃 + 𝜆𝑝𝑛𝑃𝑁 + 2𝜆𝑝𝑛𝐸𝑀+ 4𝜆𝑝𝑛𝐸 + 𝜆𝑝𝑛𝑃 where N and M

represent the initial design attributes (initial number of elements and operations), pnE and
pnP represent the probabilities of the scenario types (new Element and new Operations
respectively), and λ represents the number of applied scenarios. Thus, given the formal
models in chapter 4, the total required effort per design alternative and any number of
applied scenarios (λ) can by directly computed and visualized.

As an example, referring to the specific problem’s instance of Interpreter in Table 1-1,
the initial number of elements and operations are equal to 40 and 10 respectively.
Furthermore, the probabilities of the two maintenance scenarios are equal to 0.5 and 0.5
respectively. The application of the derived formal models in the specific instance of the
Interpreter (N=40, M=10, pnE=PnP=0.5) is presented in Figure 1-6. In this case, CVP
design combination is preferable since requires the lesser effort during maintenance.
Notice that for different values of design attributes or/and scenarios probabilities the
decision outcome could be different.

1.5.5 Simulating Software Evolution Towards Statistical Validation

Despite the argumentation about the validity of the introduced modeling method there still
several concerns regarding the reliability of the derived formal models to conclude on
correct design decision. The proposed modeling method introduces several assumptions
concerning the stochastic nature of actual maintenance process in order to derive
straightforward and deterministic equations of formal models. More specifically, the
proposed modeling theory assumes a cyclical pattern of applied scenario types,

Figure 1-6: Results of the application of the Formal comparison Model on the

practical example of Interpreter as a specific instance of the CVP vs. CIBI general
design problem.

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 12

engagement of only expansion scenarios, constant scenarios probabilities, neutral size of
code interventions, no aging issues (code decay), and neutral developers’ experience level.
To evaluate the decision-making reliability of multivariable formal models, their
deterministic outcomes for several values of their parameters (reflecting specific instances
of the general problem) should be statistically compered to actual effort observation
recorded during the maintenance of real-world systems. Given the absence of such
homogenous effort observations properly classified in respect to all problem parameters,
there is no easy way for a statistical validation base on real-world observations.

To overcome this barrier, the simulation of software evolution that imitates the actual
maintenance process is attempted as depicted in Figure 1-4. More specifically, a simulation
model that replicates the variability and the highly uncertain and stochastic nature of actual
(real-world) maintenance is introduced. The model replicates several underlying activities
(overlooked by modeling method as assumptions) by engaging several random and
stochastic factors while it follows the same structural evolution, design alternatives,
parameters, and measurement approach as in formal models. Thus, it is properly adapted
to the general design problem under study while offers a suitable validation base.
Furthermore, due to its stochastic nature, the returned effort assessments demonstrate a
variability for repeated simulations under the same parameters. Thus, the model returns
massive effort assessments classified in respect to all problem’s parameters ideal for
statistical validation purposes.

However, the evaluation of the consistency of the simulation model against real-world
observations is subject to the same constraints and limitation as in the case of formal
models (i.e., heterogenous, and unclassified observations). Taking advantage from the fact
that design decisions are based on the difference of proportionally equivalent effort
estimations, decision-making reliability relays on the variability (precision) of effort
estimations instead on their accuracy in terms of absolute values. The model’s consistency
has been tested through intensive calibration efforts (through multi-resolution modeling
approach) by matching its variability with frequency distributions of real-world effort-
based observations from the field of time series analysis as depicted in Figure 1-4. Thus,
the consistency of the simulation model in terms of variability is well connected to real-
word empirical evidence.

1.5.6 Advantages of Simulation Model

The most important advantages of the introduced simulation model are briefly listed
below:

• Is adapted to the general design problem under study by replicating the same evolution
pattern, design alternatives, design patterns, and measurement process, providing a
suitable validation base.

• Is sensitive to the same problem’s parameters as in the formal models providing
massive amounts of homogenous and classified (effort-based) observations ideal for
statistical validation purposes.

• Is well calibrated concerning its variability (precision) against frequency distributions
of real-world observations from the field of time series analysis.

• Provides several parametric switches that control the simulation and allows the
gradual engagement of stochastic behavior.

• Provides several favorable conditions by ensuring common comparison terms since its
artificial nature offers sufficient control over several stochastic factors toward a better
understanding of possible causal relationships.

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 13

1.6 Contribution and Innovations of the Study

1.6.1 Applicability of Formal Comparison Models

The applicability of the introduced modeling theory and SMC metric has been
demonstrated on the significant and general design problem of part-whole aggregations in
chapters 3 and 4. The derived formal models per design alternative (CVP, CIBI) offer a
sufficient comparison base regarding their maintainability perspective. A series of graphs
which represent a full-scale visual illustration of almost all solution space of CVP vs CIBI
comparison is provided. In addition, the derived formal models have been applied on three
indicative instances (Compiler, Interpreter, GUI, reported in Table 1-1) of the general
problem to support the selection of the most maintainable design alternative. Furthermore,
the computational pattern of the model has been compared with two similar metrics
derived from the evidence of related works (Hills et al., 2011; Tom Mens & Eden, 2005).
The results of the comparison showed that the assessments of the proposed formal models
converge to a significant degree to the evidence of related works.

1.6.2 Adaptability of Modeling Theory

This thesis introduces a methodology on how the proposed modeling model can be used
for comparing the impacts on maintainability for similar or different design pattern
combinations or for alternate general design problems. For this purpose, an analytical step-
by-step description of the suggested methodology, including requirements and limitations,
is presented in chapters 3. Moreover, in chapter 5, the proposed modeling method is
applied to three different extensions of the CVP vs CIBI general problem, assessing its
applicability to even more realistic settings. In particular, the established design patterns
of Decorator, Mediator, Observer, Abstract Factory, and Prototype have been engaged and
modeled. The generated formal models have been tested on several specific instances of
each general problem.

1.6.3 Computer-Aided Derivation of Formal Models

A computer-aided modeling framework developed in MatLab scripts is provided in chapter
4. This framework represents all the factors of each design problem (i.e., design alternatives
and attributes, scenarios probabilities, SMC metrics, etc.) in the form of data sets and
matrixes. It automatically generates the formal models (as dynamic functions - equations)
per design alternative by performing the underline differential analysis and integration.
This modeling framework is offered as a suitable template for any further adaptations such
as different measures and alternate design problems. The general design problem CVP vs
CIBI as well as its extensions in chapter 5 have been deployed on the modeling framework
and provided in Appendix A for further research purposes.

1.6.4 Simulation Model & Statistical Validation

The proposed modeling method and derived formal models for the CVP vs. CIBI general
design problem, analyzed in chapter 3 and 4, are statistically evaluated concerning their
decision-making reliability. The statistical comparison is based on massive and
homogenous measurement observations which have been generated by a well calibrated
and highly stochastic simulation model that imitates the variability of actual maintenance
process, introduced in chapter 6. The derived formal comparison models have been
validated under several statistical techniques to evaluate the decision-making reliability of
the proposed modeling method. A sample of one thousand possible system’s instances with
specific design attributes and scenarios’ probabilities has been randomly selected. A
simulation model that replicates the underlying activities of actual (real-world)
maintenance process, providing sufficient, unbiased, classified, and homogenous
validation data is introduced. The simulation model has been designed and developed in

the forms of MATLAB© functional model and object-oriented entity model, engaging all

problem’s parameters, and providing additional switches for controlling the simulation

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 14

settings and environment. Several intermediate variations of the model based on the multi-
resolution modeling technique has been tested to reach the desired stochastic behavior and
realistic outcomes. Concerning the consistency criterion, the simulation model has been
calibrated based on empirical evidence (frequency distributions) of relevant studies from
the field of time series analysis (Raja, Hale, & Hale, 2009; Shariat Yazdi, Angelis, Kehrer,
& Kelter, 2016). In principle, the simulation model imitates the stochastic nature of the
actual maintenance process by incorporating developers’ stochastic characteristics such as
experience and learning rate as well as other random factors like uncertainty of scenarios’
probabilities, alternate maintenance scenarios, non-repeated application patterns, the
actual code size of interventions, code aging issues, etc.

Several intermediate results computed by the simulation model have been compared
against formal models’ deterministic predictions under the hypothesis testing of non-
significant difference. T-test and correlation inferences are based on single (one-time)
simulation while error rate assessment is based on multiple (repeated Monte Carlo)
simulations per sample instance. The results demonstrate a high coefficient of correlation
(near to 0.96) providing sufficient statistical evidence of formal model’s decision-making
reliability. Furthermore, the conducted hypothesis tests provide statistical evidence of
formal models’ long-term accuracy in terms of absolute effort predictions which, however,
is a weak inference due to the lack of a strictly validation of the simulation model against
actual (real world) estimations. Most importantly, the results showed that the formal
models provide reliable decisions among design alternatives with an overall long-term
error-rate about 8% with only 2% of it being critical in terms of significant wasted effort.

1.6.5 Alternate Computer-Aided Model Implementations

Alternate computer-aided implementations of the introduced models with the assistant of
VENSIM tool are presented in chapter 7. This software tool can simulate physical and other
phenomena and systems through the analysis of their key variables and integration of their
change rates. This tool can represent both continuous and event-driven models while
provides a variety of capabilities for representing and compering the results of simulations.
More specifically, the introduced discrete (event-driven) formal models in chapter 3, the
continuous formal models in chapter 4, and the event-driven simulation model in chapter
6, concerning the CVP vs CIBI general problem, are implemented in VENSIM tool. The
tool is demonstrated on the example of GUI implementation as an instance of the CVP vs
CIBI general problem.

1.6.6 Design Decisions Under Uncertainty & Horizon Analysis

Several alternate and future perspectives of the introduced modeling method are presented
in chapter 7. More specifically, the introduced modeling method and derived formal
models are further analyzed to support decision-making under partial of full uncertainty.
Thus, when software designers are unable to forecast the scenarios’ probabilities in a
precise manner. The technique is demonstrated on the formal models of the CVP vs CIBI
general problem through further integration on intervals of probabilities factors.
Furthermore, the horizon analysis technique is analyzed. This technique separates the
entire maintenance period to subperiods, where for each subperiod different scenarios’
probabilities are applied. In particular, the derived formal models of CVP vs CIBI problem
are repeatedly applied on a specific instance of the general problem for different scenarios’
probabilities. The technique is demonstrated on the example of Interpreter implementation
as an instance of the CVP vs CIBI general problem.

1.6.7 Designers and Developers (Practitioners) Perspective

In a practical level, designers and developers can repeatedly use the derived formal modes
in different instances of each general design problem to efficiently support decision-making
among design alternatives, and thus develop more maintainable software of higher quality.
Under this perspective, the formal models have been already derived for significant,

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 15

general, and frequently tackled design problems while they are offered as ready to use
solutions. However, designers and developers can also analyze and derive formal models
for alternate design problems in a practical level through the introduced modeling method
for direct or future use.

1.6.8 Researchers and Accademia Perspective

In a theoretical level, researchers can analyze and derive formal models for alternate design
problems through the introduced modeling method mainly for future use in a practical
level by designers and developers. Furthermore, researchers can explore and adapt the
modeling method under different factors, metrics, quality requirements, etc. In addition,
the derived formal models can be statistically validated concerning their decision-making
reliability by properly adapted simulation models. However, the statistical validation of
formal models is not necessary since this thesis provide strong indications about the
reliability of the introduce modeling theory in general.

1.6.9 Project and Quality Managers Perspective

In principle, project and quality managers are responsible for the efficient and effective
development of quality software. Maintainability is one of the most important quality
attributes requirements as discussed in this chapter. Under this perspective, project and
quality managers are interested to adopt relevant methods that ensure software
maintainability as part of their quality policies. The derived formal modes provide reliable
early design-decision for general design problems leading to more maintainable software
of higher quality.

1.6.10 Novelty and Critical Evidence

The introduced innovations of this thesis are briefly listed below:

• The introduced SMC metric, relayed on architectural behavior of the used design
patterns, is an innovative measurement approach. It expresses required effort mainly
for comparison purposes among design alternatives, thus not necessarily connected to
accurate real-world observations. Hence, it’s a suitable and versatile measure able to
support early evaluation and selection among design alternative before code
development.

• The progressive analysis through differential and probability- weighted equations is an
innovation of the proposed modeling method, compared to other existing approaches.
Maintainability is assessed under the sight of possible maintenance scenarios and their
probabilities as a dynamic and progressive evolution process that gradually affects
basic design attributes of the system.

• The structural evolution and expansion of the used design patterns per design
alternative constitutes an insightful and innovative approach of software evolution
during maintenance. This approach is in accordance with the confirmed increasing
trend of software size during maintenance.

• The effort predictions of the introduced formal and simulation modes do not represent
the entire general problem in a universal way. Instead, they are sensitive to several
design characteristic (parameters) of the addressed design problem. In other words,
they fragment the problem in distinct instances by classifying their outcomes with
regard to the parameters of each problem’s instance. This differentiation per sample
instance is not limited only to the effort assessments but also extends to their variability
degree.

Several aspects regarding the beneficial contribution of this thesis are briefly listed below:

• The average beneficial contribution (gain) from the repeated use of the derived formal
models (in terms of avoided maintenance effort) concerning the entire design space

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 16

(possible instances) of each general problem lies between 25% and 90% of the optimal
required effort which is a considerable performance.

• Early design decisions supported by formal models are particularly reliable regarding
the risk taken by designers or else the possibility of an incorrect selection of a less
maintainable design alternative, demonstrating a long-term average error rate 8% with
only 2% of it being critical in terms of significant wasted effort even under assumptions
of high variability.

• The introduced modeling theory provides formal models based on continuous
integration through differential analysis, adequately describing an event-driven
(distinct) phenomenon such software evolution during maintenance.

• The conducted error rate assessment based on simulated outcomes reveals the pattern
or the traces of non-critical and critical error occurrences.

• The statistical validation of the formal models’ decision-making ability is a strong
indication that the introduced modeling method trustworthy describes the software
evolution during maintenance process, delivering reliable formal models of limited
decision-risk.

1.7 Thesis Organization

The remainder of this thesis is organized as follows:

• Chapter 2 overviews the existing works and relevant approaches concerning the
analysis of design patterns, the general design problem of part-whole aggregations,
effort estimations during software evolution, and maintainability assessment
during early design stage.

• In chapter 3 the SMC metric and the quantitative (distinct) analysis of the general
design problem of part-whole aggregations are introduced. The derived formal
models are applied in several instance of the general problem. A step-step modeling
methodology for deriving formal models for alternate design problems is
presented.

• In chapter 4 the modeling method based on software (structural) evolution and
continuous integrations is proposed. The method is demonstrated upon the general
design problem of part-whole aggregations. A computer-aided modeling
framework is presented that facilities model derivation process.

• In chapter 5 three extended general design problems are modeled by attaching the
design patterns of Decorate, Observer, Mediator, Abstract Factory, and Prototype.
The derived formal modes are applied on indicative instances of each general
problem. The exploration of almost the entire design space of each general problem
is attempted to assess their overall contribution in terms of avoided wasted effort.

• Chapter 6 a simulation model that replicates the underlying activities and
stochastic nature of actual software evolution during maintenance is proposed. The
returned classified observations are statistically compared with formal model
outcomes for a representative sample of one thousand problem’s instances to
evaluate the reliability of the introduced modeling theory.

• Chapter 7 discusses alternate techniques and uses of derived formal models such
as decision-making under uncertainty and horizon analysis. Several alternate
computer-aided implementations of formal and simulation models are presented.

• Chapter 8 discusses the overall conclusion of this thesis. In addition, the
contribution of the study in the domain of architectural design and future work are
discussed.

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 17

• The chapter 9 includes the appendix presenting technical details, supplementary
diagrams, and evaluation results.

Figure 1-7 shows a dependence graph of the chapters. Priority should be given in
chapter 3 in which the principal concepts of this thesis are introduced.

Chapter 1

Introduction

Chapter 2

Related Work

Chapter 3

Quantitative Analysis

Chapter 4

Modeling Method

Chapter 5

Extended Problems

Chapter 7

Alternate Use

Chapter 8

Conclusions

Chapter 6

Simulation

Figure 1-7: Dependence graph of chapters.

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 18

2 Related Work

2.1 Analysis of Design Patterns

There have been several research efforts on design pattern analysis. Gamma et al. (Gamma
et al., 1994) introduced 23 general design patterns that have become popular in object-
oriented programming community. Many of these have been used in finite element
systems (Fenves, McKena, Scott, & Takahashi, 2004; Liu, Tong, Wu, & Lee, 2003; Mackie,
2002), or in compiler development (Neff, 2004). Also some of these design patterns have
been used to identify best practice in object-oriented finite element program design (Heng
& Mackie, 2009). Some of these like Visitor design pattern have been analyzed and
developed through template libraries (Dascalu, Hao, & Debnath, 2005; B. C. d. S. Oliveira,
Wang, & Gibbons, 2008). An approach for detecting these design patterns through a meta-
model for design patterns representation has been proposed in (Bernardi & Di Lucca,
2010). A design pattern density metric that measures how much of an object-oriented
design can be understood and represented as instances of design patterns has been
proposed in (Riehle, 2009) through four real-world case studies. Most common object

oriented design measures, methods and tools, like (Giuliano Antoniol, Fiutem, &

Cristoforetti, 1998; Chidamber & Kemerer, 1994; N. E. Fenton & Pfleeger, 1998; Gibbons,

2006; Keller, Schauer, Robitaille, & Pagé, 1999; Srinivasan & Devi, 2014), quantify properties
of lower level design units such as classes, attributes, methods etc. in order to evaluate the

code structure. Briand et al (L. C. Briand, Daly, Porter, & Wüst, 1998; L. C. Briand, Daly, &

Wüst, 1998, 1999; L. C. Briand, Wüst, Ikonomovski, & Lounis, 1999), studied coupling and
cohesion measures that quantify object oriented design quality. Also various object
oriented design metrics and quality indicators have been proposed in (Bandi, Vaishnavi, &
Turk, 2003; Victor R. Basili, Briand, & Melo, 1996; Li & Henry, 1993) in order to predict
maintainability and maintenance performance. Almost all of them are based on individual
characteristics of the source code. These methods are not focused on selecting proper
design pattern combinations during the early stages of software development (software
design). Therefore, they are only helpful for analysis and quality control of the produced
source code and do not target explicitly the reduction of future software maintenance effort
and cost.

A case study that analyses 39 version of an evolving object oriented software code is
presented in (Bieman, Jain, & Yang, 2001). In that study, several perspectives such as
relationships between design patterns, other design attributes, and the number of changes
are analyzed. Its purpose is to extract evidence of improvements in adaptability by using
design patterns and other design structures. That method captures design patterns
through a set of software metrics and then links them to several future changes in the
program. In this way, it reveals and relates some basic quality metrics (that capture design
patterns) with several future changes based on case study evidence. The method discussed
in (Bieman et al., 2001) also tries to determine the relationship between design structures
and external quality factors such as reusability, maintainability, testability, and
adaptability. Although the objective of the method discussed in (Bieman et al., 2001) is
similar to the method proposed in this thesis, this methos does not provide a general
prediction of future changes on specific design pattern combinations during the software
architecture design phase (before code development).

2.2 Visitor Design Pattern vs Inheritance-Based Implementation

Several object-oriented metrics and methods, like (Giuliano Antoniol et al., 1998; Bandi et
al., 2003; Victor R. Basili et al., 1996; Bernardi & Di Lucca, 2010; Bieman et al., 2001; L.
C. Briand, Daly, Porter, et al., 1998; L. C. Briand, Daly, & Wüst, 1998; L. C. Briand, Daly,
et al., 1999; L. C. Briand, Wüst, et al., 1999; Chidamber & Kemerer, 1994; Dascalu et al.,

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 19

2005; N. E. Fenton & Pfleeger, 1998; Fenves et al., 2004; Gibbons, 2006; Heng & Mackie,
2009; Keller et al., 1999; Li & Henry, 1993; Liu et al., 2003; Mackie, 2002; Neff, 2004; B.
C. d. S. Oliveira et al., 2008; Riehle, 2009; Srinivasan & Devi, 2014), have been proposed
to help designers choose among Visitor and inheritance-based implementation or other
design pattern combinations. Almost all of them are based on individual characteristics of
the source code through source code analysis. In the proposed context, it seems that none
of these methods can support the early evaluation (during software design and before code
development) of these design patterns through a formal mathematical way, especially
when a problem that has an extensible set of operations and an extensible Composite
structure is addressed. Thus, through the result of the proposed context, software designers
and developers can not choose between Visitor design pattern and inheritance-based
implementation combination over a part-whole representation in an early stage, during
software design phase.

The use of these patterns has been also widely discussed for the well-known
Expression Problem which was coined by (P. Wadler, personal communication, 1998) and
extended by (Zenger & Odersky, 2005) in order to illustrate modular extensibility issues in
software evolution, especially when involving recursive data structures like Compositions.
Expression Problem refers to a fundamental dilemma of programming: to which degree
can an application be structured in such a way that both the data model and the set of
virtual operation over it can be extended (extensibility in both dimensions), without the
need to modify existing code, without the need of code repetition and without runtime type
errors. An extra requirement added by (Zenger & Odersky, 2005) which predicts the
possibility for combinations of independently developed extensions that can be used
jointly. Several solutions have been proposed (Krishnamurthi, Felleisen, & Friedman,
1998; B. C. Oliveira, 2009; B. C. d. S. Oliveira & Cook, 2012; Torgersen, 2004) which are
referred to the Expression Problem, all of them mainly focused on presenting a variety of
object oriented programing methods and technics over Composite, Visitor design patterns
and inheritance based implementation. These solutions present variations of these design
patterns by using features such as generics, templates, type-parametrization, and
subtyping that are available in many (mainly advanced) object-oriented languages,
attempting to satisfy Expression Problem requirements while improving the extensibility
of programs. Most of these solutions introduce high code complexity which finally deforms
the initial design pattern structures. Although the proposed context satisfies the Expression
Problem requirements in such a way that both the data model and the set of virtual
operations over it can be extended using Composite, Visitor design patterns and
inheritance-based implementation, it does not propose any method for selecting proper
design pattern combinations for a given problem. Usually, software designers must choose
specific design pattern combinations; otherwise, high code complexity could be introduced.
In addition, developers often prefer to follow the initial simple structure of design pattern
avoiding major reforms. Moreover, modifications or additions during software
maintenance usually take place on the initial code (modules), without satisfying all
Expression Problem requirements. Most of the pre mentioned concerns remain even for
the latest proposed solution in (Wang & Oliveira, 2016) which presents a simple solution
of Expression Problem.

The proposed method of this thesis is not intended as a solution for the Expression
problem since it is not attached to the Expression Problem requirements. Furthermore, the
proposed method tries to eliminate all the pre mentioned concerns and cover the need for
a formal method for choosing between specific design pattern alternatives. Furthermore,
the proposed method can be applied for early selecting proper design pattern combinations
(like Visitor or inheritance-based implementation) even if any of the Expression Problem
solutions is adopted in a later stage.

Perhaps the most related case study which compares the Visitor pattern with the
Interpreter pattern (an inheritance-based implementation) is presented in (Hills et al.,

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 20

2011). In that study, two nearly equivalent versions of an interpreter for a programing
language (one using Visitor and other using Interpreter pattern) are compared on their
maintenance characteristic and execution efficiency. The method tries to measure the
impact of future extensions for new expressions (nodes) or new operations through
maintenance scenarios, for both versions, introducing a new metric called computational
complexity. This new metric tries to measure not only the effort to transform the system,
but also the effort to analyze it before applying any transformations. In other word
computational complexity can be considered as the complexity of maintenance or as the
required maintenance effort for specific maintenance scenarios. Summarizing, this model
estimates maintenance effort by counting various individual actions (performed by the
developer) for different maintenance scenarios. Although the results of this method are
depended on source code analysis for a specific case study, the computational complexity
metric has been used as an alternate metric for the proposed method in this thesis. Again,
this case study cannot support the early evaluation (during software design and before code
development) of these design patterns through a formal mathematical way, especially
when a problem that has an extensible set of operations and an extensible Composite
structure is addressed.

2.3 Effort Estimation During Software Evolution and Maintenance
Process

Software evolution and maintenance process have been extensively discussed in the
literature (Arbuckle, 2011; Chapin, Hale, Khan, Ramil, & Tan, 2001; Demeyer, Mens, &
Wermelinger, 2001; Kemerer & Slaughter, 1999; Meir M. Lehman & Ramil, 2002; Tom
Mens & Demeyer, 2001). Several general frameworks, methods and models (Dubey &
Rana, 2011; Granja-Alvarez & Barranco-García, 1997; Heitlager, Kuipers, & Visser,
2007a; Kumar, Krishna, & Rath, 2017; Land, 2002) have been proposed toward effort
estimation required during software maintenance or evolution process. In the proposed
context, none of these methods can support the early comparison (during software design
before code development) among visitor design pattern and inheritance-based approaches
through a formal mathematical way, especially when a problem that has an extensible set
of operations and an extensible composite structure is addressed.

Furthermore, several approaches and models (Harald Gall, Hajek, & Jazayeri, 1998;
Ramil & Lehman, 2000, 2001) have been proposed toward software evolution prediction
mostly through the use of low-level code metrics, ISO metrics, object-oriented specified
metrics, and so forth. None of these measures and techniques seem to capture code’s
structural behavior during software evolution and maintenance, frequently leading to
general probabilistic (Bakota, Hegedűs, Körtvélyesi, Ferenc, & Gyimóthy, 2011; Bakota et
al., 2012) or static (Ahn, Suh, Kim, & Kim, 2003; Aloysius & Arockiam, 2012; Bandi et al.,
2003; Bansiya & Davis, 2002; Bartosz & Pawel, 2010; Dagpinar & Jahnke, 2003;
Fioravanti & Nesi, 2001; Hayes, Patel, & Zhao, 2004; Hayes & Zhao, 2005; Rizvi & Khan,
2010) models for predicting or measuring maintainability degree, delivering suboptimal
estimations. Moreover, many of these studies analyze software maintenance after it has
been occurred, more as a retrospective than as predictive approaches.

In general, the most commonly used metrics and factors toward actual effort
estimation are source code measurements, and people related metrics, as shown by Wu et
al. (Wu, Shi, Chen, Wang, & Boehm, 2016) Systematic Literature Review results.
Additionally, there is not much evidence on the effectiveness, accuracy, and validation of
software maintainability prediction techniques and models (Riaz et al., 2009a; Shepperd &
MacDonell, 2012). Although there are several works in the literature regarding design
pattern recognition and analysis (Giuliano Antoniol et al., 1998; Bernardi & Di Lucca,
2010; Dascalu et al., 2005; Keller et al., 1999; Riehle, 2009), there is no particular theory
or method for deriving formal comparison modes based on the structural
behavior/evolution of the engaged design patterns. Even the prediction models and

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 21

techniques based on time series analysis (G. Antoniol, Casazza, Di Penta, & Merlo, 2001;
Raja et al., 2009; Shariat Yazdi et al., 2016) for predicting the evolution of various software
aspects such as size, clones, bugs, defects, and changes, are not closely related to system’s
design patterns and attributes. In the proposed context, none of these methods can support
the early comparison among design (pattern) combinations alternatives in a formal
mathematical way. This gap is even more obvious in the case of early evaluation during the
crucial design stage before code development.

2.4 Assessing Maintainability During Early Design Stage

A method for the prediction of software maintainability during software design phase is
presented by Bengtsson and Bosch (Bengtsson & Bosch, 1999). The method takes the
requirement specifications and the design of the architecture as input and generates a
prediction of the average effort for a maintenance task. Scenarios are used by the method
to concretize the maintainability requirements and to analyze the architecture for the
prediction of the maintainability. Although the method introduces individual scenario
probabilities and distinct affected volumes for each component and scenario combination
in a simple linear equation, it does not take under account several issues such as the change
rate of the component instances. Furthermore, the system components and maintenance
scenarios are strongly linked to minor specifications and system’s functionality, away from
design pattern logic. This approach requires at least a detailed architectural design for all
functionalities, which is not a strictly early evaluation. Moreover, without analysis of design
pattern behavior, the number of potential maintenance scenarios is especially large,
making the scenario selection and their weights a subjective and time-consuming process.
In any case, the method seems that cannot support early comparison between design
pattern combinations alternatives in an efficient and unbiased way. In addition, methods,
which are not related to well-known design pattern combinations for common problems,
are not easily reusable or adaptable.

A revised technique for analyzing the optimal maintainability of software architecture
based on a specified scenario profile is presented by Bosch and Bengtsson (Bosch &
Bengtsson, 2001). The new equation of optimal maintenance effort engages additional
corrective factors as productivity measures under several conditions to improve the
model’s prediction ability. However, this technique also suffers from the same concerns as
the previous method (Bengtsson & Bosch, 1999).

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 22

3 Quantitative Analysis of Design Problems

3.1 Chapter Overview

In this chapter, a comparison model concerning the application of the object-oriented
Visitor Pattern (VP) and Inheritance-Based Implementation (IBI) approaches on
structures based on the Composite design Pattern (CP) is discussed. The proposed model
is independent on specific code implementations and run-time behavior. So, it can be
implemented in a very early stage, during software design, before code development to help
designers make the right decisions and reduce the required effort and cost of software
maintenance. The proposed model introduces a probabilistic approach for basic
maintenance scenarios, based on specific design pattern behavior and individual problem
characteristics or design attributes such as initial number of composition’s elements and
operations. It analyses software maintenance as a progressive evolution process and
estimates maintenance effort by introducing the Structural Maintenance Cost (SMC)
metric. The proposed SMC metric concentrates on the assessment of maintainability
characteristic through the estimation of required maintenance effort. The metric focuses
on the number of interventions as well as on the concentration degree (locality) of those
interventions for each maintenance scenario as a specialization of software entropy concept
(Bakota et al., 2012). Through the SMC metric, maintainability is related to the ease of
future maintenance of software code in terms of numbers of interventions or changes as
well as the locality of those interventions expressed by the numbers of classes (or code units
in general) that are affected. SMC metric provides proportional equivalent effort
assessments per design alternative mainly for comparison purposes, thus without the need
of accurate assessments in terms of real-world maintenance cost. The progressive analysis
is an innovation of the proposed method, compared to other existing approaches. Τhe
proposed approach provides a formal model of the behavior of CIBI (CP+IBI) and CVP
(CP+VP) design combinations even when the structure and the operations’ set are both
extendable. Moreover, the model’s computations and graphs can be easily implemented in
software.

The model has been implemented and tested on many real cases or instances of the
significant part-whole representation problem, three of which are presented as motivation
and implementation examples in Table 1-1. Furthermore, the computational pattern of the
model has been compared with two similar metrics derived from the evidence of related
works (Hills et al., 2011; Tom Mens & Eden, 2005). The results of the comparison showed
that the assessments of the proposed model converge to a significant degree to the evidence
of related works. Also, it has been proven that the proposed model can be reliably used at
a very early stage, before code development, for the comparison and selection among CIBI
and CVP design alternatives, focusing on software maintainability while delivering reliable
results.

The model provides a series of graphs which represent a full-scale visual illustration of
entire solution or design space of CIBI and CVP comparison. Also, it has been induced that
CVP implementation is preferable when companies dedicate more experienced resources
(e.g., senior developers) during software maintenance. Overall, IBI is easier (than VP) to
be understood and applied since it is preferable or easier to maintain by less experienced
developers.

Furthermore, this chapter introduces a methodology on how the proposed model can
be used for comparing the impacts on maintainability for similar or different design pattern
combinations and general design problems. For this purpose, an analytical step-by-step
description of the suggested methodology, including requirements and limitations, is
presented.

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 23

The context of this chapter is based on the motivation examples in chapter 1, and
related work in chapter 2. The rest of this chapter is organized as follows. Subsection 3.2
provides a brief presentation of the general principles that support the proposed model.
Subsection 3.3 presents the general decision problem and the used design patterns under
evaluation. Subsection 3.4 defines structural maintenance cost metric. Subsection 3.5
quantifies individual maintenance cost. Subsection 3.6 presents the quantitative analysis
for a single future addition. Subsection 3.7 introduces progressive analysis based on
scenario probabilities and presents a graphical analysis for any number of future additions.
Subsection 3.8 presents application examples of the model and a comparison of three
existing related measures. Subsection 3.9 suggests a step-by-step methodology and an
extension example. Finally, in subsection 3.10, the model’s validity challenges, limitations,
future research issues, and conclusions are presented.

3.2 General Principles

3.2.1 General Architectural Design Principles

In general, the activities of the architectural design entails a series of design decisions (Bass
et al., 2012). During these activities, several architectural patterns and tactics representing
the available body of knowledge, practices, methods, and techniques are applied by
software engineers and designers to address all the functional and quality attribute
requirements of a system. To conclude on the most proper and beneficial architectural
patterns and tactics, software engineers are constantly faced with design decisions. Many
of these design decisions are critical since they are usually irreversible and their impact on
systems performance is significant (e.g., concerning maintainability perspective). Such
critical design decisions need to be made after systematic evaluation of the impact of each
available option otherwise the entire design process is subject to high risk and likelihood to
conclude on suboptimal solutions.

A typical flow diagram of the architectural design activities is presented in Figure 3-1.
The design process begins with the analysis of system’s specifications and requirements
which entails several sub activities such as defining patterns of general problems,
specifying logical entities that represent functional requirements, specifying modules and
responsibilities to satisfy functional requirements, and considering quality attribute
requirements that must be met. Next, a design model, usually in the form of UML class
diagrams, is derived base on established design patterns form the available body of
knowledge. These architectural design patterns are properly selected to fit general
problem’s requirements and quality attribute requirements. This activity is repeatedly
performed until all functional requirements has been satisfied. However, in most of the
cases, there are many architectural patterns that address the same requirements in
different ways leading to several design alternatives (or artifacts) under consideration.

Furthermore, a design model could be further refined to satisfy the pursued quality
requirements. Towards this directions, architectural tactics from the available body of
knowledge are applied to a design model to improve its design structure. For example,
tactics like splitting or rearranging responsibilities are used to increase cohesion and reduce
coupling among the model’s logical entities in a try to improve the quality attribute of
maintainability. However, the critical point is whether these changes actually improve the
pursued quality of a design model. Thus, during the next activity, a set of stimuluses of
possible events that may occur in the future are selected. At the same time, the response,
or the effect of these stimulus on the design model is assessed. To be more precise, that
response is quantitatively expressed through a response measure which captures the effect
of the stimuluses on the design model under the view of the pursued quality attribute. This
measurement approach is assisted by evaluation models and techniques that allows
designers to decide whether the applied tactics are actually improve the pursued quality of
a design model. This kind of design decisions are critical and there is an increasing need
for evaluation models able to efficiently and trustworthy support such decisions.

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 24

Finally, designers have to evaluate several design alternatives and select among them
the most beneficial from the point of view of the pursued quality requirement. Again, such
design decisions are assisted by evaluation models and techniques that allows designers to
decide whether the pursued quality requirement of a design alternative is better than
others. Once more, this kind of design decisions are critical and there is an increasing need
for evaluation models able to efficiently and trustworthy support such decisions especially
for general, significant, and frequently tackled design problems.

The introduced in this chapter modeling method and derived formal models are
offered as a suitable response measure and comparison (or evaluation) base among design
alternatives with regards to their maintainability perspective.

3.2.2 Object-Oriented Design Principles

To address difficult design problems using computer systems, each problem should be
firstly analyzed and designed before the development of the source code. These tasks are

Figure 3-1: Typical flow diagram of architectural design activities.

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 25

performed by Software Engineers and designers through scientific theories, methods,
tactics, and tools. One of the main tasks of object-oriented modelling is the Object-Oriented
Design task during which software engineers focus on the conceptual solution (concerning
software and hardware perspectives) for each problem rather than the solution itself. An
important responsibility of object-oriented designing process is the definition of the
relationships between the basic structural elements of the software as well as the selection
of the proper Design Patterns which satisfy software quality requirements and
specifications (Gamma et al., 1994). One of the most important concerns of object-oriented
methods is to develop software and systems that are easily adaptable and maintainable.
More details about software engineering as well as object-oriented and architectural design
are presented in (Larman, 2004; R. S. Pressman, 2001; Sommerville, 2010). This analysis
places the decision of selecting proper design patterns early into the general life cycle of
software development while it highlights the importance and the impact of these decisions
in the design process. Software designers can directly use the design patterns during
system’s design as part of a wider software life cycle model such as traditional sequential
development, waterfall or agile.

Design patterns are suitable for addressing well specified, general, and significant
design problems which usually are repeatedly addressed during the stage of software
design. The design patterns that are being described in this thesis are modelled object-
oriented descriptions of interrelated objects and classes, which are properly parameterized
to address general design problems. They represent the relationships between objects
participating to the solution and describe their collaborations and associations. By
facilitating reuse of proven solutions, design patterns help improving software quality and
reduce development and maintenance time, effort, and cost. Furthermore, object-oriented
design patterns are especially dedicated on improving adaptability, since patterns generally
increase the complexity of an initial design to ease future enhancements. For the design
patterns to provide benefit in terms of maintainability, they must reduce the cost of future
adaptations. In this thesis design patterns are graphically represented through class
models of UML diagrams (Larman, 2004).

3.3 General Decision – Design Problem

3.3.1 Recursive Hierarchies of Part-Whole Representations

During the phase of software design, several general and significant implementations
which have solutions based on recursive hierarchies of part-whole representations/
aggregations through composite structures of objects are confronted. In many of these
cases, a set of different operations are performed on the objects (elements) of these
structures, where different classes of objects are handled in a unique way by each distinct
operation. Implementations with such characteristics are common in software design and
constitute a general and significant design problem, searching for widely acceptable
solutions. Classical paradigms of part-whole representation/ aggregation problems are
computer aided design software and compilers (Aho, Lam, Sethi, & Ullman, 2006;
Baldwin, 2003; Cooper & Torczon, 2011; Neff, 1999). Compilers usually form
compositions of objects to internally represent intermediate representations (IRs). In all
these implementations, it is common that each distinct operation (like drawing or filling
for design software or like type checking for compilers) is applied in a unique way for every
distinct class of objects (like line, rectangle, block, window objects for design software or
like identifiers, nonterminal/terminal tokens for compilers). So, during the phase of
architectural design, software engineers are responsible to design software of high-quality
standards focusing on its maintainability perspective. Toward this direction, designers use
combinations of well-known design patterns to represent part-whole representations in an
efficient and straightforward way in order to implement different operations onto distinct
type of nodes.

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 26

3.3.2 Engaged Design Patterns

A typical problem faced by software engineers, is the choice of a proper pattern as well as
the choice of a flexible and systematic way for applying operations on distinct elements
(class objects) of a composition. Over the years, various object-oriented design patterns
have been proposed in order to solve the above problems. Composite, Visitor, and
inheritance-based implementation are three of the most widely used design patterns,
which have been proposed by software engineers through their experience in the field of
software design. Composite and Visitor design patters that have been used in this work
have been introduced by Gamma et al. and are fully presented and analyzed in (Gamma
et al., 1994).

• The Composite design pattern (CP) is an inheritance composition of classes used
to represent the part-whole hierarchy of different types of objects.

• The inheritance-based implementation (IBI) is a simple and straightforward
object-oriented approach that takes advantage of the inheritance attribute of
object-oriented languages and as explained later can be (almost) matched with the
Interpreter design pattern. Based on this similarity, the inheritance-based

implementation is often referred as Interpreter design pattern or even as a naïve
design pattern.

• The Visitor design pattern (VP) is slightly more complex, using distinct classes for
visitor operations, while again it takes advantage of the inheritance attribute.

All patterns take advantage of the virtual method and polymorphism attributes of
Object Oriented languages during the calling of their methods with different object
reference (pointer) types, as presented in (Schildt, 2002). In most of the cases, the
Inheritance-based implementation (IBI) and Visitor design patterns (VP) are combined
with the Composite design pattern (CP).

Furthermore, there are several other well-known design patterns, like Interpreter,
Iterator, and Flyweight, also presented in (Gamma et al., 1994), that could be combined
with the pre mentioned design patterns to offer additional functionalities. However, CP,
IBI and VP are the most important and basic design patterns that determine the quality
characteristics of the software.

3.3.2.1 Composite Design Pattern

In a typical hierarchy of classes, the inheritance relationship usually represents a
generalization between classes rather a part-whole representation. The main intent of
Composite design pattern (CP) is to compose objects into tree structures to represent part-
whole hierarchies. CP lets clients treat individual objects and compositions of objects
uniformly (Gamma et al., 1994). Referring to Figure 3-2, a typical structure of CP for a
CAD system is presented. Point and Line objects are usually contained in objects of graphic
Blocks which also can contain other Blocks’ objects, etc. There is no need for a Point or Line
object to have all the attributes and methods of a Block object. In this case, Blocks are
compositions of other Blocks, Lines and Points. In order Block objects to contain Lines,
Points, and other Block objects, in a part-whole hierarchy based on CP, all sub-classes
(Block, Line and Point) should be declared as concrete (non-abstract). These classes should
be generalized (through inheritance property) to a new abstract class (e.g.,
Structure_Element). In this way a Point object with no content doesn’t have the attributes
of the Block class (like the vector of the contained sub objects, which in this case is a non-
necessary memory cost). Now, clients and internal methods can treat to individual objects
(such Lines and Points) and compositions of objects (such Blocks) uniformly through
references to the abstract class (Structure_Element) taking advantage of polymorphism
property supported by object-oriented languages.

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 27

As a general conclusion, in the Composite design pattern (Gamma et al., 1994), all
classes except leaf classes of a hierarchy should be usually declared as abstract classes. This
means that objects can be instantiated only through leaf classes. In this pattern the number
of distinct node types, which can be represented, is equal to the number of leaf classes.

3.3.2.2 Inheritance-Based Implementation

In a Composite structure of a part-whole representation, where distinct operations
(methods) are performed on different type (classes) of objects, the inheritance-based
implementation can be used. This simple straightforward object-oriented approach is
based on inheritance attribute of object-oriented languages and can be considered even as
a naive design pattern. Furthermore, it is equated to the data-centered approach of the
Expression Problem solutions. In addition, as presented in (Hills et al., 2011), can be
(almost) matched with the Interpreter design pattern (Gamma et al., 1994). In this case,
the interpreter operation (method) is implemented into the Composition pattern of the
language through the inheritance-based implementation. In the general case in Figure 3-3,
all distinct operations are declared as virtual methods inside the abstract root class of
hierarchy. The implementation of every distinct operation (method) is placed in each
distinct object (leaf) class of hierarchy. In this way, an operation (method) can be
repeatedly called (e.g., recursively) through a general pointer type of the abstract root class
(based on polymorphism). There is no need to know the specific pointer type of the (leaf)
class from which an object has been instantiated.

Figure 3-2: Example of class and object diagrams for typical hierarchies of objects.

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 28

A disadvantage of the IBI is the fact that methods of a specific operation are distributed in
different (leaf) classes. In this pattern, the addition of a new operation requires a new
method implementation in every distinct (leaf) class. Contrariwise, the addition of a new
type of node (leaf class) requires all new (operations) methods be placed in a single (new)
class. This pattern makes adding new types of nodes (elements) easier (Gamma et al.,
1994). This statement is still valid in case of modifying existing nodes (element) thanks to
concentration (locality) of interventions. A typical code example based on CP and CIBI
pattern is presented in Figure 3-5.

3.3.2.3 Visitor Design Pattern

Instead of using the inheritance-based implementation approach, the Visitor design
pattern (VP) can be used. This is a more complicated design pattern which is also based on
inheritance attribute of object-oriented languages. Furthermore, it is equated to the
operation-centered approach of the Expression Problem solutions. In the general case in
Figure 3-5, for every distinct type of node (leaf class) a new method is declared as virtual

Figure 3-3: Example of class diagram for a typical structure based on Composite

design pattern (CP) and inheritance-based implementation (IBI).

Figure 3-4: Typical code example based on Composite design pattern (CP) and

inheritance-based implementation (IBI).

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 29

method inside a root abstract class called Visitor. Also, for every distinct operation, a new
sub-class is created which includes all the implementations of the methods of distinct node
types for this specific operation. Furthermore, a single method, Accept_Visitor(), is
declared as virtual method inside the root abstract class of Composite hierarchy. The
implementation of Accept_Visitor() method is placed in each distinct object (leaf) class of
hierarchy. The Accept_Visitor() method usually contains very simple code; it gets a Visitor
object reference (specific process) as argument and then calls the proper method (node
type) for its node type by passing to it its object reference (pointer) as argument. In this
pattern, a Visitor object (process) can be repeatedly implemented on Composite objects
(e.g., recursively) through calls of its Accept_Visitor() methods. There is no need to know
the pointer type of specific Visitor sub-class or the pointer type of the (leaf) class from
which objects have been instantiated. A full analysis and examples of the Visitor design
pattern are presented in (Gamma et al., 1994; Palsberg & Jay, 1998; Santos Oliveira, 2007;
Visser, 2001).

An advantage of the VP is that all methods of a specific operation are gathered in a
single Visitor subclass. In this pattern, the addition of a new operation requires a new
method implementation for every type of node be placed in a single Visitor subclass which
is rather simple. Contrariwise, the addition of a new type of node (leaf class) requires all

Figure 3-5: Example of class diagram for a typical structure based on Composite and

Visitor design patterns (CP, VP).

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 30

new methods (for every node type) be placed in different Visitor subclasses (operation
type). In contrast with IBI, it is obvious that this pattern makes adding new operations
easier (Gamma et al., 1994). This is also truth in case of modifying an existing operation
thanks to concentration (locality) of interventions. A typical code example based on CP and
VP patterns is presented in Figure 3-6.

In practice, VP approach rearranges the methods of all distinct operations from CP
sub-classes into the new visitor sub-classes. This kind of rearrangement is a typical
architectural tactic (Bass et al., 2012) towards the improvement of maintainability which
tries to increase cohesion of VP sub-classes considering that the operations will be more
prone to changes during maintenance process. However, at the same time, the cohesion of
CP sub-classes is decreased while their coupling degree with VP sub-classes is increased
making this design variation less maintainable assuming that the elements will be more
prone to changes during maintenance process. Usually, the application of an architectural
tactic is subject to several trade-offs of conflicting pro and cons with regards to
maintainability, mostly depending on the anticipated type of future events.

There are many other positive and negative characteristics of VP which are fully
presented in (Gamma et al., 1994). This study mainly focuses on those characteristics
which have a direct impact on the quality characteristics of maintainability and
changeability.

3.4 Software Quality Measures

3.4.1 Quality Measures

To evaluate design pattern combinations at an early stage, the proposed approach
evaluates quality characteristics before code development based on the initial structure and
attributes of the used design pattern combination. At this early stage, there is no source
code for analysis except a design concept or a combination of design patterns, usually in
the form of UML diagrams. However, even at this early stage, many quality characteristics
of object-oriented design pattern combinations can be approximated.

Figure 3-6: Typical code example based on Composite and Visitor design patterns

(CP, VP).

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 31

The proposed model focuses on a major software quality aspect which in the case of
CP, VP and IBI is the lowest required effort for extensions or modifications during software
maintenance. In this way, the proposed model captures and eventually measures
maintainability of specific design pattern combinations. Measuring maintainability
requires that proper attributes and quantifiable metrics should be defined. Using these
metrics, structural properties, which make a design pattern combination more
maintainable and adaptable than one other, can be identified.

Maintainability as a software quality characteristic (defined in (ISO/IEC 25010, 2011;
ISO/IEC/IEEE 24765, 2010)), is related to the ease of future modifications of software
code and therefore is considered as a very important quality attribute requirement. The
proposed approach mainly focuses on predicting software maintainability and its
subdivisions, changeability, and modifiability.

3.4.2 Expressing Software Maintainability

Α vast number of metrics, models, methods and case studies that focus on software
maintainability definition, evaluation, and prediction are available in the literature. Many
of them have been referenced in Section 2. In this subsection, the interrelation between
different concepts/aspects of software maintainability assessment through existing
literature, are discussed.

In (Bidve & Sarasu, 2016), the coupling degree among classes is related to
maintainability assessment through existing object-oriented metrics. In (Aloysius &
Arockiam, 2013), the code complexity is related to maintenance effort prediction through
three existing object-oriented cognitive complexity metrics. In (Victor R. Basili et al., 1996),
design complexity is related to fault pronounce and reliability assessment through existing
CK (Chidamber & Kemerer, 1994) metrics. In (R. Subramanyam & Krishnan, 2003), code
complexity is related to fault pronounce using existing CK and MOOD metrics. In
(Aversano, Cerulo, & Di Penta, 2009), the number of defects in design pattern classes is
related to scattering degree of their induced crosscutting concerns and maintainability
aspect. In (Canfora, Cerulo, Di Penta, & Pacilio, 2010), the source code complexity is
related to code disorganization or software entropy concept which is measured by using
source code entropy. Software entropy was first introduced by (Jacobson, 1992), and
according to (Hassan, 2009), it is directly related with the intuition that developers will
have harder work keeping track of changes that are performed across many source files or
any other code unit such as classes, methods, functions, code chunks respectively. In
(Bakota et al., 2012), the code disorder (entropy) is related to maintainability through a
probabilistic model based on software entropy concept. Also, in (Bakota et al., 2011), a
probabilistic approach for computing high-level quality characteristic such as
maintainability is presented. In (Heitlager et al., 2007a), a practical model for measuring
maintainability is presented through which source code metrics can be related to quality
characteristics (as defined in (ISO/IEC 25010, 2011)) such as maintainability. According
to this model, a source code measure (such as cyclomatic complexity) indicates one or more
source code properties (such as code complexity) which in turn influence system quality
characteristics (such as maintainability). In (Riaz, Mendes, & Tempero, 2009b) review, it
is concluded that maintainability and its sub-characteristics (as defined in (ISO/IEC
25010, 2011; ISO/IEC 25023, 2016)) are closely related to complexity and software size.
Therefore, models using complexity and size metrics as predictors may be likely to be
equally applicable to any maintainability sub-characteristic. By combining evidence of
earlier works, an enhanced conceptual diagram for measuring maintainability is derived
and presented in Figure 3-7. In this diagram, the interrelations between different concepts
and aspects of software maintainability assessment are indicated in a more clear and
classified way.

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 32

Figure 3-7 outlines the maintainability assessment process, starting from low-level
code measures, passing to code properties, and ending to effort/cost estimation which
expresses maintainability, as suggested by (Heitlager et al., 2007a). In nearly all the works
in the literature, probabilistic (Bakota et al., 2011, 2012) and static (Aloysius & Arockiam,
2012; Bandi et al., 2003; Bansiya & Davis, 2002; Dagpinar & Jahnke, 2003; Fioravanti &
Nesi, 2001; Rizvi & Khan, 2010) methods and models usually use low-level code measures
(Bansiya & Davis, 2002; Chidamber & Kemerer, 1994; Li, 1998; Lorenz & Kidd, 1994) to
capture code properties and throgth which to predict or estimate the required effort and
relevant cost during maintenance process. Furthermore, low-level code metrics are usually
used for capturing or estimating more concrete properties such as code complexity and
crosscutting concerns (scattering degree). More abstract code properties like disorder,
entropy and interventions locality are usually estimated indirectly through other more solid
properties and/or through probabilistic models.

In the case of design pattern comparisons at an early stage before code development,
there is no code for applying code measures except of an initial design structure. Thus, there
is a need for a special metric that captures the behavior of specific design pattern
combinations’ structure during maintenance (evolution) process. This is an intelligent task
and apparently requires human intervention. Traditional low-level code metrics
(Chidamber & Kemerer, 1994; Li, 1998), cohesion metrics (Kayarvizhy, Kanmani, &
Uthariaraj, 2013), ISO metrics (ISO/IEC 25023, 2016), etc. do not seem to capture
structural behavior and evolution. This is a problem frequently leading to general
probabilistic models which deliver suboptimal estimations and assessments. For example,
in the (Bakota et al., 2012) model, maintainability (software entropy/disorder) assessment
is based only on the size of the source code at a specific time, measured in lines of code

Figure 3-7: Conceptual diagram of interrelation of code properties regarding software

maintainability assessment.

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 33

(LOC). Using the LOC metric in a probabilistic model is rather a rough magnitude although
authors (Bakota et al., 2012) state that their proposed model predicts development cost
with high accuracy.

Furthermore, design pattern comparison and analysis do not require an absolute
maintenance cost prediction regarding available resource e.g. labor cost, operational
expenditures, capital costs, etc., like (Bakota et al., 2012) model does. Instead, design
pattern comparison can be achieved through a proportionally equivalent prediction of
maintenance effort for each implementation alternative under comparison, even if these
predictions are subjective concerning absolute cost magnitudes. Moreover, with no
absolute cost prediction, other factors like change rate over time are unnecessary and can
also be omitted. Additionally, the necessary maintenance cost for the actual code can be
considered as neutral. This is because the business logic or actual code is the same for all
implementations under comparison and, thus the required effort for its maintenance can
be ignored.

The proposed model, free from the need for absolute cost predictions, is concentrated
on capturing the locality degree of the required interventions for the anticipated changes
that will take place during software maintenance process. Although locality is an abstract
property, hard to be captured by common measures, it is selected due to peculiar case
related to comparison of design patterns. The key concept is behind the knowledge about
design pattern behavior and evolution during maintenance process. Knowing the
individual pattern architectures and their behavior, the number and perhaps the extend of
future interventions is possible to be determined in a far more precise way than in similar
probabilistic models such as in (Bakota et al., 2012). Furthermore, the locality of those
interventions is also possible to be determined in a precise way regarding their allocation
in separate code units such as classes, modules, and files. Thus, the concept of
interventions’ locality, is directly related with the intuition that developers will have harder
work keeping track of changes that are performed across many source files or any other
code unit (Hassan, 2009). Furthermore, interventions’ locality property is inversely related
to software entropy and code disorder properties as indicated in Figure 3-7. As (Bakota et
al., 2012) claims, higher code disorder requires more effort for modifications to be
performed, and so maintainability can be interpreted as a measure of the disorder
(entropy) of the source code. Moreover, the locality should be referred to class instead to
file (code) units since classes’ code normally exists in separate files or it is widespread in
large files.

Summarizing, the proposed model captures software maintainability by estimating the
required effort during maintenance process based on specific design patterns’ behavior,
focusing on two major (structural) measurment aspects: a) the estimated size of future
interventions through the number of methods (code units) under maintenance, and b) the
locality of those interventions through the number of classes (code units) that are affected.

3.4.3 Deriving Maintainability Effort

To be meaningful, a metric must provide a numerical value to a software attribute that is
of genuine interest. The proposed approach uses measurement theory (Baker et al., 1990;
N. Fenton & Melton, 1990; Melton, Gustafson, Bieman, & Baker, 1990) and related work
(Offutt, Abdurazik, & Schach, 2008) for this purpose.

The distinct design pattern combinations (or implementations or design alternatives)
under comparison are defined in the first step. Referring to the significant problem of
recursive hierarchies of part-whole representations in subsection 3.3, the proposed model
focuses on two design pattern combinations:

• CVP : the combination of CP with VP

• CIBI : the combination of CP with IBI

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 34

To measure maintainability, the basic or major maintenance scenarios have been described
and analyzed with respect to the modification cost. The characteristics and the criteria of
major maintenance scenarios in the context of the proposed method are discussed in
subsection 3.4.5. The proposed approach analyzes the two most important maintenance
scenarios for each design combination:

• ne : adding or modifying a new node type (or element) on the CP

• np : adding or modifying a new operation (or process) on the VP or on the CP
through ΙΒΙ

The proposed model focuses on the additions and modifications for the operations and
elements. These are the most relevant and anticipated maintenance scenarios since CVP
and CIBI exclusively target on the efficient implementation of a set of operations over the
composition’s elements. Normally, during maintenance, developers are called to manage
additions and modifications of operations or elements. Moreover, these are exactly the
scenarios for which CVP and CIBI have different and conflicting quality characteristics
regarding their maintainability perspective as analyzed in subsection 3.3.2. Although the
proposed model is described in terms of additions and modifications for operations and
elements, other types of interventions such as deletions are considered as similar to the
above scenarios. For example, removing an operation from a design pattern combination
has the same impact (in terms of number and locality of interventions) like adding an
operation. Normally, during e.g. an operation’s deletion, developers should modify the
software at the same locations that were modified during its addition. In general, during
deletions, developers should reversely perform almost the same interventions as for adding
or modifying operations and elements which are extensively described in subsection 3.3.2.

New metrics that quantify specific properties, related to maintainability, have been
derived based on erlier related metrics such as Maintainability Index (Coleman, Ash,
Lowther, & Oman, 1994; Oman & Hagemeister, 1994), SIG Maintainability Model
(Heitlager et al., 2007a), Evolution Complexity (Eden & Mens, 2006; Tom Mens & Eden,
2005) and Computational Complexity or Complexity of Maintenance as defined in (Hills
et al., 2011).

To measure maintainability or the maintenance effort for each of the maintenance
scenarios, the proposed approach derives two basic and simple aspects of measures as
analyzed in subsection 3.4.2:

• am : the number of modifications or interventions on distinct methods which is a
straightforward measure representing the direct estimation of maintenance cost or
effort (method aspect), and

• ac : the number of modifications or interventions on distinct classes which is a
measure that captures a non-obvious aspect of maintenance cost or effort relate to
the locality degree of previous interventions (class aspect)

To capture maintainability, the number of distinct classes that will be modified (or added)
should be included in the measured maintenance cost or effort. In this way, the
maintenance cost does not only capture the number of future modifications or additions
on distinct methods but also capture a major quality property related to the locality of these
adaptations regarding their place in separate classes as analyzed in subsection 3.4.2. Thus,
class interventions or locality degree is a non-obvious measurement aspect since it can be
reviled only through analysis of the internal structure and behavior of the design pattern
combination under comparison. This measure may also capture other quality
characteristics of the software such as extensibility and modularity since high locality of
maintenance implies minor interventions at the source code including module level.

In general, maintainability ensures that future software modifications will be
implemented in the same or in as few as possible classes or even in the same module of

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 35

code. This makes the maintenance (including debugging) process easier for the developers
because future modifications during maintenance should be performed only in specific
classes and/or modules. Moreover, the compilation of the source code usually becomes
more efficient since only some of their modules will be re-compiled.

Hence, less maintenance cost means better quality characteristics for maintainability,
changeability, and adaptability. Object-oriented design patterns are especially used to
improve adaptability since patterns generally increase the complexity of an initial design
in order to ease future enhancements. It is important that the proposed metrics are useful
and can be applied early even if any of the existing Expression Problem solutions is adopted
at a later stage. In these cases, although extensions based on Expression Problem solutions
leave the initial code module unchanged, the maintenance cost for these extensions persist,
since design pattern architecture remains either the extensions are performed in the same
or seperate code modules.

It is noteworthy that the proposed metrics target on a consistent comparison of
maintenance cost between different design pattern combinations and not on accurate cost
assessment which is subjective as analyzed in subsection 3.4.2.

The metric Structural Maintenance Cost is defined as follows.

Definition of Structural Maintenance Cost (SMC): represents the effort required to
adjust a specific design pattern combination (implementation or artifact) in the event of a
particular maintenance scenario (stimulus) from a specific structural aspect, expressed in
terms of number of applied interventions and number of affected code units.

From the architectural design perspective, the SMC metric corresponds to the
Response Measure that quantitatively expresses the Response (or the required changes) of
an Artifact (design implementation) in the event of a particular Stimulus (maintenance
scenario) during maintenance, as discussed in subsection 3.2.

The definitions, terminology, and notation of the section are summarized in Table 3-1.

Table 3-1: Maintenance Cost Terminology and Notation

Terminology Range / Values
Design pattern combination (implementation or artifact) D = { CVP, CIBI }
Maintenance Scenario or Stimulus S = { ne, np }
Structural Aspect A = { am, ac }
Structural Maintenance Cost (SMC) metric cm

S,A = (S,D, A)

For example, the notation cm
S,A = (ne, CVP, ac) corresponds to the maintenance cost or

effort that is required to adjust CP and VP combination in the event of a new element from
class aspect. Alternatively, refers to the number of modifications on distinct classes which
are necessary in order an element be added on CP and VP combination. The proposed
model uses the metric of structural maintenance cost to evaluate and compute the total
modification cost for each extension scenario and for each design combination as analyzed
next.

3.4.4 Considerations upon Other Quality Characteristics and Properties

In this subsection, we answer the question whether the proposed measurement approach
is affected by or affects other quality characteristic of the software such as reusability,
complexity, performance, or issues like resourcing and debugging. Furthermore, the
characteristics of different types of maintenance activities are discussed.

Reusability and Complexity: At an early stage of software development there is no
source code for evaluating and analyzing its complexity. Thus, regarding the embedded
complexity of the used design patterns, it is an acceptable cost in exchange for other
benefits or advantages such as reusability and extensibility. Thus, design patterns’
complexity and reusability can be considered as neutral characteristics at this early stage
of evaluation. However, the number of interventions and their locality degree, captured by
the proposed metric, conceive an aspect of reusability since high reusability degree means,

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 36

in a sense, that the required interventions during maintenance should be allocated in a
limited number of code units or entities.

Performance and Resourcing: Focusing on the inner performance and efficiency of
design patterns, two major aspects arises: a) run-time performance and b) memory
consumption. Although VP and IBI are based on recursive calls of its operations, VP has
lower performance and increased memory consumption due to the double dispatching on
visitor calls. More specifically, memory consumption of VP is higher than IBI, because VP
double-dispatching causes double calls when a visitor method is engaged. This extra
memory cost is unavoidable and is proportional to the depth of recursive calls which in this
case is the depth of the (composition) object tree. Since usually, the depth of object trees
has a logarithmic order of magnitude on the number of nodes, the double-dispatching
memory cost is considered as negligible. Respectively, run-time performance of VP is lower
than IBI, again due to VP double-dispatching. During run-time, each method call
consumes a standard process time. Although this extra process time is intuitively small, in
this early stage, it is almost impossible to be compared with the process time of the actual
(business logic) code. However, in (Hills et al., 2011), the run-time results of four case
studies showed that in most cases the performance differences between VP and Interpreter
design pattern (IBI) is not substantial. Thus, based on (Hills et al., 2011) results, the run-
time performance cost for VP is also considered as negligible.

Debugging issues: A good design pattern combination should reduce debugging effort
during software maintenance. However, the low debugging effort is ensured through
maintainability and low complexity discussed above.

3.4.5 Characteristics and Criteria of Major Maintenance Scenarios

The main goal of the proposed model is to derive metrics as simple as possible and oriented
to specific and fundamental quality characteristics of the used design patterns. The
selection of proper types of maintenance scenarios (i.e., new element and new operation)
is a critical process since defines the outcome of the measurement approach. In general,
the method is focused on those maintenance activities or events that are aligned with the
architectural advantages or disadvantages of the used design patterns and the pursued
quality requirement of maintainability which is the primary selection criterion among
design alternatives under evaluation and comparison. However, maintenance activities or
events varies significantly in respect to many conflicting properties and characteristics. A
map that represents the tradeoffs between various types of maintenance events is
presented in Figure 3-8.

During maintenance, the software specifications change to adapt software
functionality to the new users’ requirements. Such descriptions and requirements are
usually referred and translated to specific maintenance events which are oriented to user’s
perspective and minor or specific functional requirements, thus their potential number of
types are huge and difficult to be modeled, as illustrated in Figure 3-8. To facilitate the
modelling approach, specific events should be grouped or classified in more general
families or classes of resembling events that have similar properties and likelihood to occur
during maintenance. Thus, general types of events are fewer in number (possible
overlapped with specific events) and have higher probability to occur. Eventually, the
analysis should be focused on even more broad types of anticipated events oriented to the
architectural structure and attributes of the used design patterns, their design attributes,
and the pursued quality attribute requirement. Thus, basic, or major types of anticipated
events are even fewer in number (possible overlapped with general events) and have even
higher repeatability and probability to occur.

Software engineers should have in mind that the goal of the method is to conclude on
those types of maintenance events for which their occurrence probability could be
estimated based on the characteristics of each specific instance of the general problem
under study. Furthermore, the engaged design patterns demonstrate several pro and cons

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 37

for different types of anticipated events during maintenance as discussed in subsection 3.3.
These types of events are usually the most proper candidates to be considered as major
maintenance scenarios. Design patterns implementations that are more suited to support
the functional purposes of an application tend to be more prone to change during
maintenance process (Aversano, Canfora, Cerulo, Del Grosso, & Di Penta, 2007). This
modelling approach is in accordance with the ‘design for change’ principle (David Lorge
Parnas, 1994), and the general architectural design principles in software engineering
(Bass et al., 2012).

Examples of descriptions for each class of events in Figure 3-8 may be:

• SPESIFIC/MINOR - Related to minor specifications and user’s requirements, e.g.:
enhancement for dynamic resizing of selected block, including controls and other
details.

• GENERAL - Related to broader specifications and user’s requirements, e.g.: new
logical entity for block of design elements, new redesign process of all elements of
block, new control elements in top and popup menus.

• BASIC/MAJOR - Related to the principal logical entities of the used Design
Patterns, e.g.: new part-whole element in Composite Design Pattern, new
recursive redesign operation in Visitor Design Pattern.

Nevertheless, each class of anticipated events have different and conflicting
characteristic, while their tradeoffs are visualized as distinct dimensions in Figure 3-8.
Moving from specific to major events, their repeatability and predictability increases, thus
lowering the uncertainty degree and the risk to predict their occurrence probability. At the
same time, the potential of generalization is increased too since broader type of events are
more likely to be applied in a wider spectrum of possible instances of the general problem
under study. However, the potential of realism of context and precision of measurements
are decreased since broader type of events are away from real and specific functionalities
while the quantification of their effect becomes more abstract and difficult to be measured
in a precise manner, as suggested in (Stol & Fitzgerald, 2018).

In principle, an anticipated event (or class of resembling sub-activities) is characterized
as major maintenance scenario or stimulus when fulfils the following criteria:

Figure 3-8: Tradeoffs between various types of arriving events during maintenance.

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 38

• has significant impact concerning the pursued quality attribute (i.e.,
maintainability). This criterion is satisfied either when:

o its impact in terms of required effort significantly differs per design
alternative, otherwise its effect will be common for all design alternatives
and, thus neutral concerning the comparison and decision-making process.
For example, a minor activity with the same effect across all design
alternatives dose not increase the reliability of the model concerning the
comparison outcome while it adds unnecessary complexity, OR

o it affects or changes the principal design attributes of the engaged design
patterns based on which its effect or the effect of other major events in
terms of required effort is computed,

• is neither too abstract nor too specific allowing its application on the early design
stage before code development (i.e., encompasses various resembling sub-activities
or changes such as adding, updating, and debugging concerning the maintenance
of a discrete family of design elements with common characteristics),

• has recurring nature or considerable possibility to repeatedly occur during
maintenance. For example, the probability of an extremely rare event is very
difficult to be assessed while its impact (even if occur) would be negligible against
the effect of the other more frequent events, and thus, it adds unnecessary
complexity without significant benefits concerning the comparison outcome.

3.5 Analysis of Method

3.5.1 Deriving Problem’s Characteristics and Attributes

Each design pattern combination has some attributes or characteristics which declare its
initial state. This initial state can be an existing implementation under maintenance or the
output of a code generation tool under adjustment. A maintenance scenario changes or
shifts an initial implementation to a new state by updating its characteristics. To quantify
the effort for each maintenance scenario, the proposed approach quantitatively derives
these characteristics of the problem. Thus, for CVP and CIBI design alternatives, two major
design characteristics or design attributes are derived:

• N : the number of outer (leaf) classes of a Composite structure CP or the number
of distinct elements (objects) that can be instantiated from a Composite structure,
as indicated in Figure 3-9.

• M : the number of operations that are performed on the objects (or element) of a
Composite structure, as indicated in Figure 3-9.

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 39

For example, the ne (add new element) maintenance scenario, increases the number

of initial elements (N) by one. Similarly, the np (add new operation) maintenance scenario,
increases the number of initial operations (M) by one. The mathematical notation and
symbols of the analysis are presented in Table 3-2 and explained next.

Table 3-2: Maintenance Cost Terminology and Notation

Notation Description

Ν The number of outer (leaf) classes of a Composite structure OR
The number of distinct elements (objects) that can be instantiated (created) from a
Composite structure

Μ The number of operations that are performed on the objects (or elements) of a
Composite structure

μ μ =
M

N
↔ M = μ ∙ Ν

pnE The probability for a new structure Element
pnE = 1 − pnP

pnP The probability for a new Process/Operation
pnP = 1− pnE

z = ⌈
pnE

1−pnE
⌉ = ⌈

pnE

pnP
⌉ (⌈x⌉ means roundup x)

ź = ⌈
1−pnE

pnE
⌉ = ⌈

pnP

pnE
⌉

λ The number of future additions / modifications (new type node/element or new
process/operation)

3.5.2 Asymptotic Evaluation of Structural Maintenance Cost

In this subsection, the previously defined SMC metric is used for evaluating and computing
the maintenance effort or cost for each extension scenario and each design combination,
based on the specific characteristic or attributes of the problem.

The asymptotic notation O(g(x)) denotes the worst case or upper bound evaluation as
analyzed in (Cormen, Leiserson, Rivest, & Stein, 2009). In the context of the proposed
work, the asymptotic notation is used to describe an approximation of the maintenance
effort after a specific action takes place. Moreover, this notation provides a more general
bound for a large number of initial elements and simpler mathematical formulas for further
analysis and computations. However, assuming that the conducted analysis is assisted by
software tools (e.g., MATLAB), the asymptotic notation can be bypassed.

Figure 3-9: Design attributes of typical CIBI and CVP implementations.

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 40

A visual representation of the interventions’ impact on a typical code example
regarding each extension scenario, measure aspect, and combination under comparison is
presented in Figure 3-10. More specific, the implementations of one new element (ne) and
one new operation or process (np) scenarios are simultaneously presented for both design
pattern combinations (CVP, CIBI).

Based on SMC definition and the specific characteristics of the problem, four distinct
cases are derived, one for each maintenance scenario and design combination.

New element on CP and VP: When a new element should be added by the developer,
a wide range of modifications are needed. More specifically, for every new element, a new
subclass definition in the CP with a new (accept) method are needed. Also, M new methods
(operation code for the new element), one in every existing visitor (operation) subclass,
should be created. Totally, 1+M method modifications into 1+M distinct classes are
necessary to be made as indicated in Figure 3-10.

The asymptotic maintenance cost for adding a new element onto CP and VP
combination considering the effect on distinct classes is given by the Equation (3-1).

cm
S,A(ne, CVP, ac) = O(1 + M) = M (3-1)

The asymptotic maintenance cost for adding a new element onto CP and VP
combination considering the effect on distinct methods is given by the Equation (3-2).

cm
S,A(ne, CVP, am) = O(1 + M) = M (3-2)

Figure 3-10: Typical code example after implementation of one new element and one

new operation scenarios for CIBI and CVP implementation alternatives.

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 41

New operation on CP and VP: When a new operation should be added by the
developer, a smaller range of modifications are needed. More specifically, for every new
operation, a new method (for every existing element) in a new visitor class (for the new
operation) should be created. Totally, N method modifications into one new class are
necessary to be made as indicated in Figure 3-10.

The asymptotic maintenance cost for adding a new operation onto CP and VP
combination considering the effect on distinct classes is given by the Equation (3-3).

cm
S,A(np, CVP, ac) = O(1) = 1 (3-3)

The asymptotic maintenance cost for adding a new operation onto CP and VP
combination considering the effect on distinct methods is given by the Equation (3-4).

cm
S,A(np, CVP, am) = O(N) = N (3-4)

New element on CP and IBI: When a new element should be added by the developer,
a new subclass definition as well as new methods (one for every operation) should be
created. Totally, M method modifications into one new class are necessary to be made as
indicated in Figure 3-10.

The asymptotic maintenance cost for adding a new element onto CP and IBI
combination considering the effect on distinct classes is given by the Equation (3-5).

cm
S,A(ne, CIBI, ac) = O(1) = 1 (3-5)

The asymptotic maintenance cost for adding a new element onto CP and IBI combination
considering the effect on distinct methods is given by the Equation (3-6).

cm
S,A(ne, CIBI, am) = O(M) = M (3-6)

New operation on CP and IBI: When a new operation should be added by the
developer, one new method (for the new operation) in every existing element (type) class,
should be created. Totally, N method modifications into N distinct classes are necessary to
be made as indicated in Figure 3-10.

The asymptotic maintenance cost for adding a new operation onto CP and IBI
combination considering the effect on distinct classes is given by the Equation (3-7).

cm
S,A(np, CIBI, ac) = O(1 + N) = N (3-7)

The asymptotic maintenance cost for adding a new operation onto CP and IBI
combination considering the effect on distinct methods is given by the Equation (3-8).

cm
S,A(np, CIBI, am) = O(1 + N) = N (3-8)

3.5.3 Merging Structural Maintenance Cost

In this subsection, the previously defined asymptotic maintenance costs are merged to
represent the structural maintenance cost in a more compact and manageable way. Based
on the structural maintenance cost of four previous cases, the maintenance cost is merged
and defined as follows.

New element on CP and VP: The maintenance cost for adding a new element onto CP
and VP combination considering all aspects is given by the Equation (3-9).

cm
S (ne, CVP) = ∑ cm

S,A(ne, CVP, A)

∀A∈{ac,am}

= 2M (3-9)

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 42

New operation on CP and VP: The maintenance cost for adding a new operation onto
CP and VP combination considering all aspects is given by the Equation (3-10).

cm
S (np, CVP) = ∑ cm

S,A(np, CVP, A)

∀A∈{ac,am}

= N + 1 (3-10)

New element on CP and IBI: The maintenance cost for adding a new element onto CP
and IBI combination considering all aspects is given by the Equation (3-11).

cm
S (ne, CIBI) = ∑ cm

S,A(ne, CIBI, A)

∀A∈{ac,am}

= 1 +M (3-11)

New operation on CP and IBI: The maintenance cost for adding a new operation onto
CP and IBI combination considering all aspects is given by the Equation (3-12).

cm
S (np, CIBI) = ∑ cm

S,A(np, CIBI, A)

∀A∈{ac,am}

= 2N (3-12)

In Equations (3-9)-(3-12), individual costs for each aspect have been added by equal
weights. Considering concentration degree as extra (penalty of) required effort, the
proposed metric implies that this extra effort amount has equal weight to the number of
method interventions. Furthermore, this additional effort could be captured with different
weights by introducing a new factor over its magnitude. This is a very interesting
perspective which discussed in subsection 3.9.2 as an extension example of the method.

3.5.4 Combining Maintenance Cost

The proposed model is further generalized through the combination of different
maintenance scenarios ne and np. This requires the introduction of probability analysis by
engaging different maintenance scenarios. This is a step over the usual analysis level in
comparison to the related existing approaches such as (Hills et al., 2011; Tom Mens &
Eden, 2005). This provides the proposed model with greater flexibility and a wider field for
further analysis and conclusions.

Based on specific characteristics of the design pattern combinations, two symmetrical
probability factors are derived.

• pne : the probability for a new element against the probability for a new operation

• pnp : the probability for a new operation (process) against the probability for a new
element

For example, pne = 0.8 means that the probability for a new element is 80% against
20% probability (pnp = 1- pne = 0.2) for a new operation. Developers can specify these
probabilities for a specific problem since system’s specifications and developers’ experience
often offer a reliable prediction about their values. It is important that based on probability

theory (Jaynes, 2003), the probability factors of independent events1 should be

complementary (as mutually exclusive). Also, the sum2 of the probability mass function3
for all events is equal to 1. Thus, for the case of two probability factors, they should be
symmetrical. Furthermore, different maintenance scenarios (such as ne and np) could not
be additive. Normally, new element and new operation are independent event types. A
simultaneous addition of different event types is not manageable by the developers. In
practice each event type usually begins after the completion of one other event type.

1 Two events A, B are independent if and only if one’s realization does not affect the probability of the other or

P(A/B)=P(A).
2 The sum of the probability mass function is defined as ∑ 𝑓𝑋(𝑥𝑖)

𝑚
𝑖=1 = 1 where fX(xi) ≥ 0

3 The probability mass function for a series of X={x1, x2,…,xm} distinct events is defined as fX(xi) = P(X=xi)

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 43

Based on structural maintenance cost and probability factors, the combined
maintenance costs for each design pattern combination are derived as follows:

Maintenance cost of CP and VP: The maintenance cost for CP and VP combination
based on probabilities is given by the Equation (3-13).

cm(pne, CVP) = pne ∙ cm
S (ne, CVP) + (1 − pne) ∙ cm

S (np, CVP)

= N(2μpne − pne + 1) + 1 − pne
(3-13)

Maintenance cost of CP and IBI: The maintenance cost for CP and IBI combination
based on probabilities is given by Equation (3-14).

cm(pne, CIBI) = pne ∙ cm
S (ne, CIBI) + (1 − pne) ∙ cm

S (np, CIBI)

= N(μpne − 2pne + 2) + pne
(3-14)

Factor μ = M/N, used for simpler mathematical representation and further analysis.

3.5.5 Summarizing Structural Maintenance Cost

The previously defined equations for structural maintenance cost evaluation are
summarized in Table 3-3.

Table 3-3: Asymptotic Evaluation of Structural Maintenance Cost on Inheritance-Based
Implementation and Visitor Design Pattern

 Condition Estimation of Structural Maintenance Cost for
Design Pattern combination Composite (CP) with

Eq. 3- Maintenance scenario Modification effect / aspect Visitor (CVP)
Inheritance based
implementation (CIBI)

1, 5 New Element (ne) Modifications on distinct
Classes (ac)

𝐜𝐦
𝐒,𝐀(n𝑒, CVP, a𝑐) = M 𝐜𝐦

𝐒,𝐀(n𝑒, CIBI, a𝑐) = 1

3, 7 New Operation (np) 𝐜𝐦
𝐒,𝐀(n𝑝, CVP, a𝑐) = 1 𝐜𝐦

𝐒,𝐀(n𝑝 , CIBI, a𝑐) = N

2, 6 New Element (ne) Modifications on distinct
Methods (am)

𝐜𝐦
𝐒,𝐀(n𝑒, CVP, a𝑚) = M 𝐜𝐦

𝐒,𝐀(n𝑒 , CIBI, a𝑚) = M

4, 8 New Operation (np) 𝐜𝐦
𝐒,𝐀(n𝑝, CVP, a𝑚) = N 𝐜𝐦

𝐒,𝐀(n𝑝 , CIBI, a𝑚) = N

9,11 New Element (ne) Modifications on distinct
Classes and distinct
Methods (ac^am)

𝐜𝐦
𝐒 (n𝑒, CVP) = 2M 𝐜𝐦

𝐒 (n𝑒, CIBI) = M+ 1

10, 12 New Operation (np) 𝐜𝐦
𝐒 (n𝑝, CVP) = N + 1 𝐜𝐦

𝐒 (n𝑝, CIBI) = 2N

13

14

New Element
(possibility pnE) or new
Operation (possibility
pnp = 1 − pnE) /(ne^np)

Modifications on distinct
Classes and distinct
Methods (ac^am)

𝐜𝒎(p𝑛𝐸 , CVP) = N(2μpnE − pnE + 1) + 1 − pnE

𝐜𝒎(p𝑛𝐸 , CIBI) = N(μpnE − 2pnE + 2) + pnE

Note: Eq. column refers to the number of equations

The asymptotic calculations of Equations (3-1)-(3-8) should be applied, having in
mind a common confrontation for all individual scenarios. In equations (3-9)-(3-12), the
initial basic asymptotic evaluations are merged in two possible maintenance scenarios.
These equations confirm the opposite characteristics of IBI and VP discussed in subsection
3.3.2. This early confirmation of Gamma et al. claims can be considered as proof of validity
and reliability of the proposed method and measures.

3.5.6 Maintenance Process

Design patterns implementations that are more suited to support the functional purposes
of an application tend to change more frequently during maintenance process (Aversano,
Canfora, Cerulo, Del Grosso, & Di Penta, 2007). Maintenance is a progressive software
evolution process that is conceptually described in Figure 3-11. Each maintenance scenario
Si (such as the introduction of new element or operation) occurs based on its individual
probability pi and updates a design implementation Dj (such as CVP or CIBI) requiring a

specific amount of effort or maintenance cost (cm
S). Each iteration of the maintenance

process updates the characteristics of the attributes of a specific design implementation.

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 44

The analysis of the proposed model focuses on the maintenance process over CVP and
CIBI design combinations (implementations). Α flowchart that visually describes and
summarizes the maintenance process for both design combinations and scenarios is
presented in Figure 3-12. Each maintenance scenario (ne, np) occurs based on its
probability (pne, pnp) and updates a design implementation such as CVP or CIBI requiring

a specific amount of effort or maintenance cost, cm
S (S, D). At the same time, each iteration

updates the attributes N and M of each design implementation.

During this repeated process, the continuously updated values of the design
characteristics and attributes affect the intermediate computations of the maintenance cost.
An important aspect at this point is the analysis of the behavior of the proposed metric
during the maintenance process in a long-term perspective. The proposed approach
addresses this aspect as presented in the next subsections.

3.5.7 Combined Analysis

In the rest of this subsection, the general case of arbitrary probabilities for maintenance
scenarios is analyzed.

In case the probability for a new Composite element has an arbitrary value, equations
(3-9)-(3-12) can be combined to return the maintenance costs of equations (3-13) and

Figure 3-11: Typical conceptual flowchart of software maintenance process.

Figure 3-12: Maintenance process flowchart for CVP and CIBI implementations.

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 45

(3-14) as summarized in Table 3-3. By replacing M=μΝ, the factors (2μpnE − pnE +

1) and (μpnE − 2pnE + 2) become crucial. More specifically when μ=(1-pnE)/ pnE, then

(2μpnE − pnE + 1)=(μpnE − 2pnE + 2), meaning that IBI and VP have equal maintenance
cost. This analysis leads to the general conclusion that the choice between IBI and VP is

clear only when factor μ≠(1-pnE)/ pnE.

Furthermore, when pnE=(0..1) and assuming a normal arriving pattern between
different types of maintenance scenarios, equations (3-13) and (3-14) are valid even in the
case of more than one possible future additions. This statement is valid because in all cases,

the normal arriving pattern increases N and M simultaneously, with a rate related to pnE

and pnP probabilities. So, if initially μ<(1-pnE)/ pnE, means that always μ<(1-pnE)/ pnE ,
no matter how many future additions will take place. If the number of future additions

becomes large enough, factor μ tends to (1-pnE)/pnE (balance case), where two patterns
become equal in terms of required effort.

Equation (3-15) shows the limit of factor μ=Μ/Ν when the number of future additions

(factor n) tends to infinity for pnE, pnP=(0...1) and pnP=1-pnE. Usually, a maximum
number between n=10 to 20 (future additions) is applied by developers. Equation (3-15)
represents a mathematical model for the purpose of theoretical completeness, however, in
practice it is less applicable.

lim
n→+∞

(
𝑀Initial + n(1 − pnE)

𝑁Initial + n(pnE)
) =

(1 − pnE)

pnE
=
pnP
pnE

 (3-15)

This observation leads to the conclusion that given a Composite structure of N initial
distinct elements and M=μΝ initial operations, choosing between VP and IBI, is
independent of the number of additions (new elements or operations) and only depends
on the individual probabilities for each future addition. In the worst case, after many
additions, both patterns become equal having similar maintenance costs. Equations (3-13)

and (3-14) are general and can substitute the equations (3-9)-(3-12) for pnE=1 or pnE=0.

3.6 Quantitative Analysis

The impact of one future modification is analyzed and discussed in this subsection. First, a
basic analysis is presented, followed by combined analysis. A series of graphs are provided
representing a visual mapping of the model analysis.

3.6.1 Basic Analysis

For the sake of completeness, in this subsection, a basic analysis for one future addition is
presented. The graph in Figure 3-13 presents the maintenance cost of modifications on a
Composition for a single future addition according to equations (3-9)-(3-12) as
summarized in Table 3-3. The initial number of nodes has been randomly selected to be
N=25 since the behavior of linear equations is independent of the number of initial
elements (N). Axe z of the graph presents a logical range of factor μ=(0,...,3] or a range of
M=(0,..,3N]. Higher values of factor μ means more initial distinct operations (M) relative
to initial distinct elements (N).

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 46

The graph in Figure 3-13 confirms the opposite characteristics of IBI and VP discussed
in subsection 3.3.2. More specifically, when a steady Composite structure and an extensible
set of operations (np) are addressed, the VP is preferred since it has better (less)
maintenance cost independently of μ value. Similarly, when a steady set of operations and
an extensible Composite structure (ne) are addressed, the IBI is preferred since it has better
(less) maintenance cost independently of μ value. Also, the statements “Visitor makes
adding new operations easy” and “Adding new ConcreteElement classes is hard” in
(Gamma et al., 1994) about CVP are confirmed. This early confirmation of Gamma et al.
claims can be considered as proof of validity and reliability of the proposed measure and
method.

3.6.2 Combined Analysis

The left graph in Figure 3-14 presents the maintenance cost of a Composition for a single
future addition according to the general equation (3-13) for VP. Axis x of the graph presents
a logical range of factor μ=(0,...,3] or else a range of M=(0,..,3N]. Axis z presents the full
range of the factor pnE=[0,...,1]. Because of pnE=1-pnP, when pnE=0 the elements of the
structure are steady, and when pnE=1 the set of the operations is steady.

Left graph in Figure 3-14 shows how the maintenance cost of VP changes while pnE

factor shifts from 0 to 1. It clearly shows the stability of the pattern when pnE=0 (steady

Figure 3-13: Graph of maintenance cost of modifications on a Composition for a
single future addition referred to the inheritance-based implementation (IBI) and

Visitor design pattern (VP).

Figure 3-14: Graphs of maintenance cost of modifications on a Composition for a

single future addition, related to μ and pnE factors, referred to the Visitor design
pattern (VP) and Inheritance based implementation (IBI).

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 47

structure) no matter how many operations (M, μ) exist. The right graph in Figure 3-14
presents the maintenance cost of a Composition for a single future addition according to
the general equation (3-14) for IBI.

In general, the graphs in Figure 3-14 do not uniformly illustrate the distance or the
gain of efficiency between pattern combinations. To prove the increased efficiency of VP
against IBI, a graph of the distance of maintenance cost is presented in Figure 3-15. Axis y
of the graph presents the distance of maintenance cost between VP and IBI given by simple
equation (3-16).

𝐜𝒎(𝒅𝒊𝒔𝒕)(p𝑛𝐸) = 𝐜𝒎(p𝑛𝐸 , CVP) − 𝐜𝒎(p𝑛𝐸 , CIBI) = NμpnE + ΝpnE − Ν − 2pnE + 1 (3-16)

When the graph’s surface in Figure 3-15 is under zero level, the VP design alternative
is preferred for the specific values of μ and pnE factors. Similarly, when the graph’s surface
is above zero level, the IBI design alternative is preferred. The distance cost (absolute) value
represents the gain between the patterns.

The graph in Figure 3-15 illustrates a full representation of the solution or the design
space about CVP and CIBI pattern comparisons. The section limit of the graph surface
(representing the zero-cost level) in Figure 3-15 is a curved (dot) line that indicates all
balance cases where VP and IBI have equal cost (or zero distance). In general, the balance
line is close to the limit of equation (3-15) which is graphically presented in Figure 3-16.

Figure 3-15: Graph of asymptotic cost differentiation Cdiff (3) for modifications on a
Composition for a single future addition, related to μ and pnE factors, referred to the

Visitor design pattern (VP) and inheritance-based implementation (IBI).

Figure 3-16: Graph of balance cases (equal maintenance cost) for Visitor design

pattern (VP) vs Inheritance based implementation (IBI).

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 48

The graphs in Figure 3-15 and Figure 3-16 contain all the information on the behavior
of VP and IBI on a Composition for a single future addition. They show which pattern
should be selected based on the values of μ=Μ/Ν and pnE factors. In general, VP is preferred
when factors μ and pnE have small values. IBI is preferred when factors μ and pnE have large
values. For a safe choice, factor μ should not be too close to the trace of balance cases
(indicated by safe area limits in Figure 3-16). Furthermore, Figure 3-15 and Figure 3-16
clearly show that probability analysis over maintenance scenarios has a decisive role on
maintenance cost estimation, proving the usefulness of the proposed theory and model.

3.7 Progressive Analysis

In this subsection, the progressive behavior of the proposed metrics during maintenance
process is presented through a formal mathematical analysis.

3.7.1 Deriving Progressive Maintenance Cost

In this subsection, the previously defined metric of SMC in Table 3-3 is used for evaluating
and computing the total progressive maintenance cost for each design combination and for
several applied maintenance scenarios.

As mentioned in subsection 3.5.6, maintenance is a progressive software evolution
process, described in Figure 3-12. During this progressive process, the continuously
updated values of the design characteristics and attributes affect the intermediate
computations of the maintenance cost. Thus, to analyze the intermediate behavior of the
proposed metrics, the progressive structural maintenance cost should be defined.

Definition of Progressive Structural Maintenance Cost (PSMC): represents the effort
required to adjust a specific design pattern combination through the progressive
implementation of several maintenance scenarios, based on their individual probabilities,
during software maintenance process.

Based on the above definition and the merged maintenance costs as expressed in
equations (3-9)-(3-12), the progressive maintenance cost is defined considering the
maintenance as a progressive evolution process in Figure 3-12.

Maintenance on D pattern combination: The PSMC (pcm) for progressively

implementing λ future maintenance scenarios on D∈{CVP, CIBI} pattern combination
considering a known p (for pne) probability is given by Equation (3-17).

𝐩𝐜𝐦(λ, p, D) = ∑

(

∑ cm

S (ne, D)

⌈
p
1−p

⌉

i=1

+ ∑ cm
S (np, D)

⌈
1−p
p
⌉

i=1

)

λ

⌈
p
1−p

⌉+⌈
1−p
p
⌉

j=1

 (3-17)

The analysis of maintenance cost as a progressive evolution process, is another
innovation of the proposed theory and model, compared to existing related work such as
(Hills et al., 2011; Tom Mens & Eden, 2005).

The Equation (3-17) assumes a normal or cyclical arriving pattern of events based on
their individual probabilities. This assumption is necessary to facilitate the mathematical
representation and formulation of a dynamic phenomenon such as the arrival and
application of various types of events during maintenance. In addition, a cyclical arriving
pattern express the most probable sequence of events based on their probabilities and, thus
it is offered as a safe and reliable approximation of an actual and random sequence of

events. Furthermore, the z ́ and 𝑧 factors in Table 3-2 convert the real probability factors
(i.e., pnE, pnP) to integer values, thus, allowing the event-driven and discrete analysis of the
applied scenarios from a mathematical perspective. For example, if λ=200, pnE=0.25 and

pnP=0.75 then z = 1 and ź = 3. Thus, each cycle of arriving events contains the application
of 1 new Element event and next the continuous application of 3 new Operation events.

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 49

The total number of cycles or repetitions is given by the formula 𝜆/(𝑧 + z ́) = 200/4 = 50.
Summarizing, the total number of applied events (maintenance scenarios) is represented
by 50 cycles or repetitions of (1+3)=4 arriving events each, thus λ=50∙4=200. However,
according to the progressive evolution process in Figure 3-12, each scenario application
affects the values of design attributes (i.e., N and M). This is an aspect that Equation (3-17)
misses and further analyzed in following subsections.

3.7.2 Progressive Maintenance Cost Computation

Using Visitor equations (3-9) and (3-10) and assuming a normal arriving pattern of events
based on pnE and pnP propabilities, the progressive maintenance cost for all possible future
additions (λ) in a Composition with N initial nodes and M initial operations can be
computed based on the general equation (3-17). Figure 3-17 presents the computation
steps for λ future additions where p=pnE, N=initial distinct elements, and M=initial distinct

operations. Each row in Figure 3-17 represents a cycle of (𝑧 + ź) arriving events based on
their probabilities. Furthermore, the first column represents the new Element events and
the second column the new Operation events for each cycle of arriving events. The
intersection of columns and rows represents the continuous application of a specific event
type for a specific cycle of arriving events. This representation gives emphasis and analyzes
the intermediate increments of the design attributes (i.e., N and M) as they affected by the
arriving (applied) maintenance scenarios (events).

Equation (3-18) is extracted from the steps in Figure 3-17. By replacing z and ź (as
showed in Table 3-3) in equation (3-18), the equation (3-19) is derived, which computes
the progressive maintenance cost for λ future additions on VP design combination.

∑

[

∑ 2(M + (φ − 1) ⌈
1 − p

p
⌉)

⌈
p
1−p

⌉

i=1

+ ∑ ((Ν + φ ⌈
p

1 − p
⌉) + 1)

⌈
1−p
p
⌉

i=1
]

λ

⌈
p
1−p

⌉+⌈
1−p
p
⌉

φ=1

(3-18)

𝐩𝐜𝐦(λ, 𝑝𝑛𝐸 , CVP) = (2zM + źΝ + ź − 2zź +
3zź

2
∙
λ + z + ź

z + ź
) ∙

λ

z + ź
 (3-19)

Similarly, the equation (3-20) computes the progressive maintenance cost for λ future
additions on IBI combination.

𝐩𝐜𝐦(λ, 𝑝𝑛𝐸 , CIBI) = (2źN + zM + z − 2zź +
3zź

2
∙
λ + z + ź

z + ź
) ∙

λ

z + ź
 (3-20)

Equations (3-19) and (3-20) represent the relative magnitudes of the total required
maintenance effort or cost during software evolution after λ scenario’s applications, and for
each implementation alternative (CVP, CIBI). Since the factors λ, M, and N are
simultaneously increased, both equations have a positive exponentially increased trend.

Figure 3-17: Computation of progressive maintenance cost for λ future

additions/modifications on a Composite using Visitor design pattern (CVP).

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 50

Thus, the equations (3-19) and (3-20) is in accordance with Lehman’s second law (Meir
M. Lehman et al., 1997) since PSMC (pcm) metric is related to code complexity property as
analyzed in subsection 3.4.2. Furthermore, both equations converge to Bakota’s relevant
cost curve (Bakota et al., 2012) when the change rate is constant over time.

By replacing factors z and ź in equation (3-19), the following mathematical
transformations (assuming pnE>1/2) leads to an alternate formulation of the progressive
maintenance cost of CVP expressed in terms of all problem’s parameters (i.e., initial N and
M, pnE, pnP, and λ).

𝐩𝐜𝐦(λ, 𝑝𝑛𝐸 , CVP) = (2zM + źΝ + ź − 2zź +
3zź

2
∙
λ + z + ź

z + ź
) ∙

λ

z + ź
=
ź=1 (p𝑛𝐸>1/2)
→

= (2𝑧𝑀 + 𝛮 + 1 − 2𝑧 +
3𝑧

2
∙
𝜆 + 𝑧 + 1

𝑧 + 1
) ∙

𝜆

𝑧 + 1
=
z+1=⌈

p𝑛𝐸
1−p𝑛𝐸

⌉+1≈⌈
1

1−p𝑛𝐸
⌉

→

= (2
p𝑛𝐸

1 − p𝑛𝐸
M+Ν + 1 − 2

p𝑛𝐸
1 − p𝑛𝐸

+
3

p𝑛𝐸
1 − p𝑛𝐸
2

∙ (λ +
1

1 − p𝑛𝐸
) ∙ (1 − p𝑛𝐸)) ∙ λ(1 − p𝑛𝐸)

= (2p𝑛𝐸M+ Ν − Np𝑛𝐸 + 1 − 3p𝑛𝐸 +
3p𝑛𝐸
2
∙ 𝜆(1 − p𝑛𝐸) +

3p𝑛𝐸
2
) ∙ λ =

= (2p𝑛𝐸M+ Np𝑛𝑃 + 1 − 3p𝑛𝐸 +
3p𝑛𝐸
2
∙ 𝜆p𝑛𝑃 +

3p𝑛𝐸
2
) ∙ λ =

= (2p𝑛𝐸M+ Np𝑛𝑃 + 1 −
3p𝑛𝐸
2
+
3λp𝑛𝐸p𝑛𝑃

2
) ∙ λ =

=
3

2
λ2p𝑛𝐸p𝑛𝑃 + 2λp𝑛𝐸M+ λp𝑛𝑃N + λ − λ

3

2
p𝑛𝐸

Respectively, by replacing factors z and ź in equation (3-19), the following
mathematical transformations (assuming pnE<1/2) leads to a similar formulation of the
progressive maintenance cost of CVP expressed in terms of all problem’s parameters (i.e.,
initial N and M, pnE, pnP, and λ).

𝐩𝐜𝐦(λ, 𝑝𝑛𝐸 , CVP) = (2zM + źΝ + ź − 2zź +
3zź

2
∙
λ + z + ź

z + ź
) ∙

λ

z + ź
=
𝑧=1 (p𝑛𝐸<1/2)
→

= (2𝑀 + ź𝛮 + ź − 2ź +
3ź

2
∙
𝜆 + ź + 1

ź + 1
) ∙

𝜆

ź + 1
=
ź+1=⌈

p𝑛𝑃
1−p𝑛𝑃

⌉+1≈⌈
1

1−p𝑛𝑃
⌉

→

= (2M +
p𝑛𝑃

1 − p𝑛𝑃
Ν +

p𝑛𝑃
1 − p𝑛𝑃

− 2
p𝑛𝑃

1 − p𝑛𝑃
+
3

p𝑛𝑃
1 − p𝑛𝑃
2

∙ (λ +
1

1 − p𝑛𝑃
) ∙ (1 − p𝑛𝑃)) ∙ λ(1 − p𝑛𝑃)

= (2M − 2Mp𝑛𝑃 + p𝑛𝑃Ν + p𝑛𝑃 +
3p𝑛𝑃
2
∙ 𝜆(1 − p𝑛𝑃) +

3p𝑛𝑃
2
) ∙ λ =

= (2M − 2Mp𝑛𝑃 + p𝑛𝑃N + p𝑛𝑃 +
3p𝑛𝑃
2
∙ 𝜆p𝑛𝐸 +

3p𝑛𝑃
2
) ∙ λ =

= (2Mp𝑛𝐸 + p𝑛𝑃N + p𝑛𝑃 +
3p𝑛𝐸
2
+
3λp𝑛𝐸p𝑛𝑃

2
) ∙ λ =

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 51

=
3

2
λ2p𝑛𝐸p𝑛𝑃 + 2λp𝑛𝐸M+ λp𝑛𝑃N + λp𝑛𝑃 + λ

3p𝑛𝐸
2

=

=
3

2
λ2p𝑛𝐸p𝑛𝑃 + 2λp𝑛𝐸M+ λp𝑛𝑃N + λ(1 − p𝑛𝐸) −

3

2
λp𝑛𝐸 =

=
3

2
λ2p𝑛𝐸p𝑛𝑃 + 2λp𝑛𝐸M+ λp𝑛𝑃N + λ − 𝜆p𝑛𝐸 −

3

2
λp𝑛𝐸 =

=
3

2
λ2p𝑛𝐸p𝑛𝑃 + 2λp𝑛𝐸M+ λp𝑛𝑃N + λ −

5

2
λp𝑛𝐸

Because 3/2∙pnE
(for pnE>1/2) ≈ 5/2∙pnE

(for pnE<1/2), the latest expressions of the progressive
maintenance cost of CVP are almost equivalent for any value of pnE=[0, .., 1]. Similar
mathematical transformations can be applied in equation (3-20) for the CIBI design
alternative. This approach transforms equations with integer parameters (representing an
event-driven evolution pattern) to equations with real (float) parameters, thus, implying
that the underlying event-oriented evolution pattern may be also supported by continuous
integration through integrals as explained in subsection 3.7.5.

3.7.3 Reverse Analysis (Verification)

In this subsection, a reverse analysis beginning from the progressive maintenance cost and
ending to the fundamental equations of structural maintenance cost is presented. This is

an attempt that verifies the previously conducted analysis. By replacing factors z and ź and
setting λ=1 in the general equations (3-19) and (3-20), the equations (3-13) and (3-14)

are derived. Note that for pnE>0.5, ź = 1 and for pnE<0.5, z = 1. As an example, the
mathematical operations from equation (3-19) to equation (3-13) for VP are presented

below (only for pnE = p > 1/2). Similar mathematical operations exist for pnE = p ≤ 1/2
which end up to the same result.

𝐩𝐜𝐦(λ, 𝑝𝑛𝐸 , CVP) = (2zM + źΝ + ź − 2zź +
3zź

2
∙
λ + z + ź

z + ź
) ∙

λ

z + ź
=
ź=1 (p>1/2)
→

= (2𝑧𝑀 + 𝛮 + 1 − 2𝑧 +
3𝑧

2
∙
𝜆 + 𝑧 + 1

𝑧 + 1
) ∙

𝜆

𝑧 + 1
=
z+1=⌈

p

1−p
⌉+1≈⌈

1

1−p
⌉

→

= (2
p

1 − p
M + Ν + 1 − 2

p

1 − p
+
3

p
1 − p

2
∙ (λ +

1

1 − p
) ∙ (1 − p)) ∙ λ(1 − p)

= (2pM + Ν − Np + 1 − 3p +
3p

2
∙ (λ − λp + 1)) ∙ λ =

λ=1
→

= 2pM + Ν − Np + 1 − 3p +
3p

2
∙ (2 − p)

= 2pM + Ν − Np + 1 +
3p2

2
≈ ⟦

p = [1 2⁄ ,… ,1]

3p2

2
= [3 8⁄ ,… , 3 2⁄]

⟧

≈ 2pM + Ν − Np + 1 + p

= N(2μpnE − pnE + 1) + 1 − pnE = 𝐜𝐦(𝑝𝑛𝐸 , 𝐶𝑉𝑃)

Also, looking for the sign of distance in equation (3-21) the equation (3-16) is
extracted. This means that the trend (sign) of the distance of PSMC of equation (3-21) is
almost identical to equation (3-16).

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 52

𝐩𝐜𝐦(𝐝𝐢𝐬𝐭)(λ, pnE) = 𝐩𝐜𝐦(λ, 𝑝𝑛𝐸 , CVP) − 𝐩𝐜𝐦(λ, 𝑝𝑛𝐸 , CIBI) = (zμΝ + ź − źN − z) ∙
λ

z + ź
 (3-21)

Furthermore, considering that for pnE>0.5, ź = 1, and 𝑧 + 1 ≈ 1/(1 − 𝑝𝑛𝐸) then

𝑧

𝑧 + ź
=

𝑧

𝑧 + 1
≈

𝑧

1
1 − 𝑝𝑛𝐸

≈

𝑝𝑛𝐸
1 − 𝑝𝑛𝐸
1

1 − 𝑝𝑛𝐸

= 𝑝𝑛𝐸

ź

𝑧 + ź
=

1

𝑧 + 1
≈

1

1
1 − 𝑝𝑛𝐸

= (1 − 𝑝𝑛𝐸) = 𝑝𝑛𝑃

Respectively, for pnE<0.5, 𝑧 = 1, and ź + 1 ≈ 1/(1 − 𝑝𝑛𝑃) then

𝑧

𝑧 + ź
=

1

1 + ź
≈

1

1
1 − 𝑝𝑛𝑃

= (1 − 𝑝𝑛𝑃) = 𝑝𝑛𝐸

ź

𝑧 + ź
=

ź

1 + ź
≈

ź

1
1 − 𝑝𝑛𝑃

≈

𝑝𝑛𝑃
1 − 𝑝𝑛𝑃
1

1 − 𝑝𝑛𝑃

= 𝑝𝑛𝑃

Thus,
𝑧

𝑧+ź
≈ 𝑝𝑛𝐸 and

ź

𝑧+ź
≈ 𝑝𝑛𝑃 for any decimal value of pnE and pnP factors. Now, the

similarity of equation (3-21) with the equation (3-16) can be demonstrated as follows:

 𝐩𝐜𝐦(𝐝𝐢𝐬𝐭)(λ, pnE) = (zμΝ + ź − źN − z) ∙
λ

z + ź
= 𝜆(Νμ𝑝𝑛𝐸 + 𝑝𝑛𝑃 −N𝑝𝑛𝑃 − 𝑝𝑛𝐸) =

 = 𝜆(Νμ𝑝𝑛𝐸 −N(1 − 𝑝𝑛𝐸) + 𝑝𝑛𝑃 − 𝑝𝑛𝐸) = 𝜆(Νμ𝑝𝑛𝐸 + N𝑝𝑛𝐸 − N + 𝑝𝑛𝑃 − 𝑝𝑛𝐸) ≈

≈ 𝜆(Νμ𝑝𝑛𝐸 + N𝑝𝑛𝐸 − N − 2𝑝𝑛𝐸 + 1)

3.7.4 Graph of Progressive Maintenance Cost

A graph of the distance of PSMC based on equation (3-21) is presented in Figure 3-18. The
λ factor has been set to a large value (λ=30) in order to show the stability of graph’s shape
for almost any number of future additions.

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 53

The graph surfaces in Figure 3-15 and Figure 3-18 are almost identical, indicating that
the impact of a single addition (λ=1) and the progressive analysis of maintenance costs are
matched. It is proven that the choice of the proper design pattern combination can be made
directly by using the single addition equations (3-13) and (3-14) or the distance equation
(3-16) or its graph in Figure 3-15.

3.7.5 Integrated Maintenance Cost

Equations (3-19), (3-20), and (3-21) are the result of a quantitative analysis returning the
progressive or total required effort based on the analysis of repeated and distinct scenario’s
applications. In this subsection, a more typical mathematical perspective about the
progressive maintenance cost based on calculus and integration concept is presented.

Equations (3-13), (3-14), and (3-16) compute the maintenance cost for CVP and CIBI
pattern combinations based on N, M design attributes and pne probability factor for a single
addition (λ=1). Since N and M attributes are continuously updated during the progressive
or repeated implementation of different maintenance scenarios in respect to their
probabilities (pnE, pnP=1-pnE), it is possible to rewrite the equations (3-13), (3-14), and
(3-16) for N and M values that are based on λth future addition. Thus, equation (3-16) is
transformed to the equation (3-22).

𝐜𝐦(𝐝𝐢𝐬𝐭)(pnE) = NμpnE + ΝpnE − Ν − 2pnE + 1 = MpnE + ΝpnE − Ν − 2pnE + 1

= (λ(1 − pnE) + M
initial)pnE + (λpnE + N

initial)pnE − λpnE − N
initial − 2pnE + 1

(3-22)

Where current N = λpnE+Ninitial and current M = λ(1-pnE) + Minitial

Equation (3-22) computes the distance of maintenance cost only for the λth

maintenance scenario. The distance of PSMC can be derived through the continuous
integration of equation (3-22) on λ factor. Thus, the distance of PSMC of equation (3-21)
can also be expressed by the integral in the general equation (3-23).

𝐩𝐜𝒎(𝒅𝒊𝒔𝒕)(𝜆, p𝑛𝐸) = ∫𝐜𝒎(𝒅𝒊𝒔𝒕)(p𝑛𝐸) d𝜆

= 𝜆(𝑀𝑖𝑛𝑖𝑡𝑖𝑙𝑎pnE +𝑁
𝑖𝑛𝑖𝑡𝑖𝑙𝑎pnE − 𝑁

𝑖𝑛𝑖𝑡𝑖𝑙𝑎 − 2pnE + 1) + 𝐶

(3-23)

Where current N = λpnE+Ninitial and current M = λ(1-pnE) + Minitial

Figure 3-18: Graph of progressive maintenance cost differentiation pccm(dist)(pnE) for

modifications on a Composition for λ future additions, related to the μ and pnE factors,
referred to the Visitor design pattern (VP) and Inheritance based implementation

(IBI).

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 54

Equation (3-23) has a simpler mathematical representation than equation (3-21) and

returns similar results for C=0. For a different set of measures, the equations (3-19)-(3-21),
and (3-23) could be more complex. The approach of continuous integration is a more direct
and easier way for deriving formal models and computing progressive costs when

mathematical tools such Matlab4 or MS Mathematics5 are used. On the other hand, it hides
a significant aspect of the distinct analysis or the event-driven (cyclical) pattern of applied
scenarios during maintenance process.

3.8 Application of the Proposed Model

In this subsection, a diagram which summarizes the (structural) maintenance cost
equations, an application flowchart, three application examples of the proposed model, and
the comparison of the proposed measurement approach with two other relevant existing
approaches are presented.

3.8.1 Summarizing Maintenance Cost of the Model

A diagram summarizing the (structural) maintenance cost equations of the proposed
model is presented in Figure 3-19. The graph displays all the relations between the
proposed maintenance metrics and equations for both single addition and progressive
analysis. Figure 3-19 can also be used as a computational pattern of the model for the
analysis of other general and significant design problems.

3.8.2 Classification and Application Flowchart of Proposed Model

The proposed model is classified based on the diagram in Figure 3-7. The interrelations
between the proposed model and different concepts and aspects of software
maintainability assessment are presented in Figure 3-20.

4 Licensed mathematical suite on http://www.mathworks.com/
5 Freeware equation solver on https://www.microsoft.com/en-us/download/details.aspx?id=15702

Figure 3-19: Computational pattern of Structural Maintenance Cost.

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 55

Figure 3-21 presents a simple application flowchart of the proposed model which
shows the proper use of CP, IBI, VP and Iterator design patterns through simple steps of
sub-decisions. The Iterator design pattern is usually combined with the other patterns and
is fully analyzed in (Gamma et al., 1994; Gibbons & Oliveira, 2009).

Figure 3-20: Classification diagram of the proposed model.

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 56

As shown in subsections 3.4 and 3.5, a safe choice between IBI and VP can be made
with no concern about the number of future additions, especially when a good estimation
of pnE probability can be made. Aspect-oriented programming (AOP) technology is a
possible next step, and presented in (Elrad, Filman, & Bader, 2001; Filman, Elrad, Clarke,
& Aksit, 2004). However, AOP technology, as a generative approach, usually depends on
Domain Specific Languages (DSLs) which produce source code for known high-level
languages. Thus, the requirement for mastering an extra language and the extra
compilation stage puts AOP under consideration.

3.8.3 Application Examples

In this subsection, three case studies of the application of the proposed model based on
progressive analysis are presented.

Problem Descriptions: Based on the specifications of the case studies of the
motivational examples in Table 1-1, the design attributes of each description are derived
and presented in Table 3-4. Each of these examples corresponds to an instance of the
general design problem (i.e., CVP vs CIVI) under study. Because all these examples are
complex problems representing critical systems, maintainable software which can be easily
modified should be produced. It is assumed that it was decided to use the CP for the
structure representations, but a decision on IBI or VP for the implementation of the
operations has not been made. Moreover, both operation and element sets could be
extended during software maintenance.

Figure 3-21: Application flowchart on the use of Composite, Visitor, Iterator design

patterns and inheritance-based implementation.

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 57

Table 3-4: Characteristics and attributes of individual problem descriptions

Problem description N: number of initial

distinct Elements of

Composition structure

M: number of initial

Operations over

composition’s elements

pne : probability for a new

element during software

maintenance process

Compiler implementation

for the standard C89 high

level language

155 20 0.10 (10%)

Interpreter implementation

for a new custom

(extendable) DSL language

40 10 0.50 (50%)

GUI implementation for a

simple graph designing tool

15 14 0.70 (70%)

Note: values of each attribute have been derived from individual specifications in Table 1-1.

Model Application: The approach described in this chapter has been selected for the
development of targeted implementations. All necessary data for model application are
available in Table 3-4. Simply by looking at the graph in Figure 3-16, proper pattern
combinations can be safely selected as showed in Figure 3-22.

Hence, for the problems described in Table 3-4, it is concluded that the VP can be safely
selected for Interpreter and Compiler implementations and IBI can be safely selected for
GUI implementation due to their lower overall maintenance cost. Among the three case
studies, Compiler is the clearest as expected due its structure stability. For Interpreter and
GUI, the model clarifies the advantage of maintenance cost for each pattern combination
although their structures and operation sets are extendable.

Figure 3-22: Graph of balance cases (equal maintenance cost) for CVP vs CIBI.

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 58

Furthermore, equations (3-19) and (3-20) can compute the exact PSMC for any
number of future modifications, as presented in Figure 3-23 for the Interpreter
implementation example. Alternatively, based on the flowchart in Figure 3-21, the use of

VP can be concluded since 0.25 = μ ≪ (1-pnE)/pnE = 1.

Although the proposed model implementation seems to be simple, the detailed
mathematical analysis provides a complete and ready to use evaluation model regarding
CVP and CIBI comparison. This model including its formal equations and the detailed
graphs such as those presented in Figure 3-16, Figure 3-18, and Figure 3-21, provide a
visualization for almost all the solutions or the design space of the significant decision
problem of recursive hierarchies of part-whole aggregations.

3.8.4 Alternate Maintenance Measures

In this subsection, the maintenance measures of the proposed model are compared with
similar metrics that have been proposed in the literature in Table 3-5.

Table 3-5: Correlation of Model’s Measures with Related Models

 Correlated Measures

Eq. 3-
Maintenance scenario,
Implementation

Structural Maintenance Cost
(this method)

Computational
Complexity Evolution Complexity

9 cm
S (n𝑒, CVP) 2M N+2M+1 (1) M (3)

10 cm
S (n𝑝, CVP) N+1 2+N (2) 1 (3)

11 cm
S (n𝑒, CIBI) M+1 2M+11 (1) 1 (4)

12 cm
S (n𝑝, CIBI) 2N 3+3N (2) N (4)

Source: Computational Complexity (Hills et al., 2011), Evolution Complexity (Tom Mens & Eden, 2005).

Note: Related work measures have been correlated with proposed model measures through matching of similar attributes
and scenarios.

1 derived from analysis of scenario S1 – add two new expression operators, adapted for one new operator/element (Hills
et al., 2011)

2 derived from analysis of scenario S4 – add outline (new operation) (Hills et al., 2011)

3 derived from analysis of case study 1:Visitor (Tom Mens & Eden, 2005)

4 derived based on analysis of case study 1:Visitor correlated to Inheritance based implementation, focusing only on distinct
class modifications (Tom Mens & Eden, 2005)

Equations (3-9)-(3-12) represent the merged SMC of four basic maintenance
scenarios derived from the proposed metrics. Based on these equations and through the
computational pattern in Figure 3-19, the progressive maintenance cost can be computed
for any set of related metrics. Thus, single addition and progressive analysis of the
proposed approach can be implemented for different or similar metrics. This reveals the
usability and the broad application perspectives of the proposed model considering
different metrics and quality characteristics.

Figure 3-23: Example: computation of progressive asymptotic cost for inheritance-

based implementation (IBI) and Visitor design pattern (VP).

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 59

3.8.5 Comparison to Relevant Metrics

In this subsection, the comparison between the proposed metric and two relevant existing
metrics is presented. The purpose of this comparison is to demonstrate the usability of the
proposed model and progressive analysis as a more general framework. Furthermore, the
behavior of different related metrics about maintenance effort under the progressive
analysis of the proposed model is explored. More specifically, the maintenance measures
of Table 3-5 are analyzed through progressive analysis of the proposed model. Next, the
metrics derived from the progressive analysis, are implemented to the Interpreter example
data in Table 3-5 as presented in Figure 3-24.

For the SMC metrics of the proposed model, the equations (3-9)-(3-12) and (3-19)-
(3-21) have been used. For Computational Complexity (Hills et al., 2011) and Evolution
Complexity (Tom Mens & Eden, 2005), the correlated metrics in Table 3-5 have been used
by which the PSMC pc2

m and pc3
m have been derived through the general equation (3-17).

The results of the progressive analysis in the form of graphs such as in Figure 3-18 and
Figure 3-23 are presented in Figure 3-25. These graphs show all the progressive
computations and their distance produced for each distinct measure set under comparison.

Figure 3-24: Diagram of methods comparison through progressive analysis of

multiple measures.

Figure 3-25: Results of metrics comparison.

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 60

Computations for new metrics and implementation data can be easily performed by
using mathematical environments such as Matlab or MS Excel. All computations for this

comparison have been performed through a custom function which is available online6 for
demonstration and further tests.

3.8.6 Discussion

By analyzing the previous comparison results in Figure 3-25, several interesting
conclusions can be extracted. It is obvious that CVP pattern combination is preferred for
all measures since it has smaller progressive cost with an increasing differentiation
compared to CIBI combination. In a first glance, all metrics are correlated to a significant
degree despite the variations of computed values. Although two-dimensional graphs offer
enough information for selecting a proper pattern combination for the specific problem’s
instance, they do not provide any information about the general behavior of the metrics
referred to initial problem attributes. This information is provided by three-dimensional
graphs which present the distance of progressive maintenance cost. Referring to these
graphs, some major conclusions can be drawn about metrics behavior: a) all metrics are
consistent regarding their outcome for the marginal values pne={0,1} meaning that CVP is
always recommended when pne=0 and CIBI is always recommended when pne=1,
confirming the opposite characteristics of IBI and VP that have been discussed in
subsections 3.3.2 and 3.5.5; b) the first and third metrics are correlated, referring to
distance, despite the variations of individual values; c) the second metric’s behavior is
independent of initial values of attributes N and M and depends only on pne probability
factor.

One other conclusion is that the first SMC (this model) and third (Tom Mens & Eden,
2005) Evolution Complexity metrics seem to be more “sensitive” than the second
Computational Complexity (Hills et al., 2011) metric since they have different behavior
with respect to all attributes of the problem. Also, the similarity of results between this
model SMC metric and Evolution Complexity (Tom Mens & Eden, 2005) metric which is
based on a visitor implementation case study, confirms the validity of the proposed model.
However, the proposed SMC metric has a significant advantage compared to Evolution
Complexity (Tom Mens & Eden, 2005) metric since it captures the locality degree of the
applied interventions. The previews comparison results can be safely considered as
confirmation about the validity and reliability of the proposed measures and model.

Summarizing, the progressive analysis on different metrics can provide a full-scale
model about measuring behavior during the maintenance process. Furthermore, it
indicates that different measure aspects have a significant impact on progressive
computations with respect to initial attributes of a problem and should be carefully defined.

3.9 Methodology Determination

3.9.1 Methodology Description

In this subsection, a methodology based on the introduced theory is proposed and
discussed through a step-by-step description in Table 3-6. Through this methodology,
alternate comparison models for similar or different design pattern comparisons or for
other significant and general design problems can be generated.

Table 3-6: Methodology for deriving comparison models

n Description Requirements / Limitations
Relation to proposed
comparison model

1 Define design
pattern
combinations under
comparison

The defined design pattern combinations should have
structural nature over the solution. Also, both design
pattern combinations should be targeted on solving the
same (general) problem through different design
architectures.

D = { CVP, CIBI }

6 Online implementation of the proposed model available in https://www.chriskaranikolas.gr/CIBIvsCVP/

https://www.chriskaranikolas.gr/CIBIvsCVP/

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 61

n Description Requirements / Limitations
Relation to proposed
comparison model

2 Define quality
characteristics
under evaluation

Conceptually, the defined quality characteristics should be
objectively measurable. Also, they should be focused on the
evaluation of design pattern architecture itself.

Maintainability
Changeability

3 Define specific
quantitative
problem attributes
as factors

The defined problem attributes should be measurable (e.g.
through UML class diagrams (Lavazza & Agostini, 2005) or
explicit software specifications). Also, they should be
general and focused on design patterns architecture itself.

N: initial number of leaf
classes of composition
M: initial number of
operations over composition
element

4 Define major
maintenance
scenarios and its
distinct probability
factors

The defined maintenance scenarios should be selected
based on specific design pattern characteristics. Probability
factors should be complementary (as mutually exclusive),
having total sum equal to 1. The total number of
maintenance scenarios is suggested to be limited.

S = { ne, np }
Adding structure element (ne,
pne)
Adding operation/process (np,
pnp)

5 Define aspects of
measures

The defined aspects of measures should be focused on
capturing quality characteristics defined in step (2). Also,
they should be focused on the evaluation of design pattern
architecture itself. Modifications on distinct methods and
classes are considered as fundamental maintainability
quality aspects for early design patterns assessment.

A = { am, ac }
number of modifications on
distinct methods (am) and
distinct classes (ac)

6 Define metrics,
other factors for
quantifying quality
characteristics
(defined in step 2)

An equation should be derived for each design pattern
combination (defined in step 1), maintenance scenario
(defined in step 4) and aspect of measure (defined in step 5)
in correspondence to general Equations (3-1) to (3-8).
Totally |D|x|S|x|A| equations should be derived by
involving attribute factors (defined in step 3) as
independent variables and other constant factors.

cm
S,A(S,D, A)

Equations: (3-1) to (3-8)
|D|x|S|x|A|= 23 = 8

Existing factors: M, N

7 Derive the
merged/combined
equations and
graphs

The equations of the previous step should be merged /
combined using probability factors (defined in step 4). Also,
new constant factors can be identified and used in
equations to provide a premium/penalty onto distinct
amounts regarding their individual weight on quality
assessment.

Factors: pne, pnp
New factors: μ = M/N
Equations: (3-9)-(3-12),
(3-13), (3-14), (3-16),
(3-19)-(3-21), (3-23)
Graphs : Figure 3-13 to
Figure 3-16, and Figure 3-18
Computational pattern:
Figure 3-19

8 Seek for
convergence limits
of the attribute
factors (defined in
step 3)

Convergence limit can be estimated based on probability
factors of maintenance scenarios (determined in step 4). A
convergence limit (if exists) expresses the basic balance
cases and could detect the convergence limit of specific
factors during maintenance process while the individual
attributes (defined in step 3) being updated.

Equation: (3-15)

9 Decision making Helps to infer the most maintainable design pattern
combination by using the derived equations and graphs
(defined in step 7). Mathematical tools such as MATLAB,
Excel can be used to facilitate computations and graphs
generation.

Application examples
(subsection 3.8.3)
Demonstration page :
www.chriskaranikolas.gr/CIB
IvsCVP

1
0

Save the new
results for future
use

Alternatively, define (update) the new (existing) software
quality policy plan regarding specific problem family. Also,
flowcharts can be derived and used by designers during
repeated implementation of step 9.

Flowchart: Figure 3-21

Referring to steps 6 and 7 in Table 3-6, other factors can be derived from combinations

of existing factors targeting computational simplifications and easier graphical
representations. Also, new constant factors or parameters can be derived based on specific
requirements of the software quality policy plan. Multivariate linear model (MEMOOD)
can be helpful for equation derivations as proposed by (Rizvi & Khan, 2010). Moreover, as
an intuitive conclusion, metrics that have balance (zero distance decision) cases similar to
the convergence limit (in step 8), provide safe and permanent decisions and usually are
considered as particularly reliable.

The efficiency and the degree to which the methodology proposed in Table 3-6 can be
used to extract alternative comparison models for similar or different design pattern
solutions can be further explored. For example, one other comparison case could be the
Decorator design pattern (Gamma et al., 1994) which attaches additional responsibilities
to CP objects dynamically against the common extension of CP through inheritance. In this
case, basic maintenance scenarios could be a new element, new operation, and new
responsibility. Furthermore, various comparison cases could be interesting considering the
simultaneous implication of VP for the operations. Under this perspective, the proposed
formal model for comparing CIBI and CVP implementation alternatives could be
considered as the first step in using and testing the suggested methodology.

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 62

3.9.2 Example of Weighted Effort Measurement

At this level of analysis, many other decision factors can be investigated. As an example,
which reveals the flexibility and extensibility of the described methodology, the following
model variation is presented.

In most of the cases, the data of part-whole representation problems are declared
inside CP classes. In practice, developers usually manage methods’ code which acts directly
on the data of its class like operations’ code in CIBI implementation. This is a common
programing technique which is manageable even by less experienced developers. However,
in CVP implementation, operations’ code which is in the extra VP classes acts indirectly on
the data of CP classes. Indirect access on the data of CP classes is achieved through the
double dispatching calls of accept method as referred in subsection 3.3.2.3. This is a more
complex programing technique which is difficult to be managed by less experienced
developers. Furthermore, many other concerns such as debugging issues are introduced
because of the use of double dispatching calls. In general, the indirect access on data of
different classes through double dispatching calls introduces an extra effort during
maintenance. Consequently, it can be assumed that the locality of method interventions, in
the same or separate classes/modules, has different (or higher) significance only for CVP
implementation.

In the proposed metric (subsection 3.5.3 and step 7 of methodology in Table 3-6), the
numbers of methods interventions and affected class (expressing the locality of
interventions) for CVP have equal weights (equations (3-9), (3-10)). Instead of this, a new
constant factor can be defined based on previews discussion. For example, the equation
(3-9) could be reformed as equation (3-24).

cm
S (ne, CVP) = cm

S,A(ne, CVP, am)+w ∙ cm
S,A(ne, CVP, ac) = M + w ∙ M (3-24)

The introduced factor w≥1 represents the weight of class aspect magnitude which
captures the penalty or the extra maintenance effort required for CVP. Thus, for w=1, the
equation (3-24) and (3-9) are equivalent meaning that developers can equally manage the
widespread innervations for both IBI and CVP implementations. When w>1, the new
metric reflects the locality of interventions in a more significant weight for CVP
implementation. So, CIBI implementations are preferred (have lower maintenance cost)
than CVP implementations due to w factor presence. By following the other steps of the
described methodology, a new set of equations (e.g., (3-10), (3-13), (3-14), (3-16), (3-21),
(3-23)) and graphs (e.g., Figure 3-16 to Figure 3-18) can be derived. As a final stage on
this example, Figure 3-22 is updated to Figure 3-26. In Figure 3-26, new curved lines have
been added which show balance cases (zero distance) for different values of w={1.0, 1.5,
2.0, 3.0, 4.0} factor. Hence, different values of w factor cause a relocation of the curve of
balance cases.

Referring to Figure 3-26, some interesting observations and interference can be
derived about w factor: a) for w=3, alternate GUI implementation decision (ligth purple
dot) has switched side and IBI is preferred than VP, thus different comprehension degree
of CVP (e.g. defined by w factor) leads the model to different results; b) as w factor
increases, the balance curve shifths to the left with a deceleration rate. This graph clearly
demonstrates that CIBI implementation expands for greater values of w factor or when
comprehension degree of CVP is smaller. In contrast, CVP implementation expands for
lower values of w factor or when comprehension degree of CVP is greater.

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 63

Another interpretation about w factor is related to the concept of software disorder
(entropy) and particularly the erosion factor introduced by (Bakota et al., 2012). More
specific erosion factor represents the amount of “damage” (decrease in maintainability)
caused by changing one line of the code. In a similar manner, w factor can be considered
as the amount of extra effort (increment in maintenance cost) that required in order the
method interventions for CVP to be performed concentrated in one class during a
particular maintenance scenario. Alternatively, the w factor could be named as CVP
dispersion factor. Following the same logic, w factor normally is smaller for senior
developers who have significant experience and thus they handle widespread interventions
of CVP in a better and easier way, dedicating less effort. Also, w factor normally is smaller
for developer teams which use more advanced resources (developing/versioning suites,
etc.) and thus they also handle widespread interventions of CVP in a better way, dedicating
less time and effort. Normally software companies should try to reduce w factor by
dedicating better resources during software maintenance, reducing overall maintenance
cost and effort. Thus, another noticeable conclusion is that CVP implementation expands
when companies dedicate more experienced resources (e.g., senior developers) during
software maintenance. Consequently, it can be induced that VP is harder (than IBI) to be
understood and applied since VP is less suitable or maintainable by less experienced
developers. This conclusion confirms the intuition and perhaps the concerns of some
developers that VP implementation is harder because of the use of double dispatching calls
or the extra visitors’ classes. Apparently, this perception discourages many developers for
using VP. Thus, designers and developers should insist on VP comprehension and use it
whenever it is recommended in order to avoid the required extra effort during
maintenance.

3.9.3 Further Discussion

Referring to the previous example of weighted effort measurement, there is a key point.
Equation (3-15) still stands since it is independent of w factor. Thus, during the
maintenance process, the design attributes N and M increase and factor μ tends to limit
pnP/pnE. Therefore, each decision point in the new graph in Figure 3-26 is shifting or
diverting horizontally toward the limit of equation (3-15), represented by the initial curve
of balance cases for w=1. Although in this case, the diversion has an increasingly
decelerating rate (due to limit’s behavior), a paradox seems to arise which also looks
unavoidable. More specifically, for w>1, a pattern combination may be initially preferred

Figure 3-26: Graph of balance cases (equal maintenance cost) for CVP vs CIBI based

on w factor.

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 64

for a certain number of future additions. However, after the application of several additions,
this combination will no longer be the proper choice. That kind of decisions need extra
caution, and perhaps an assessment of the range of future additions can be helpful toward
proper selection.

The later discussion indicates that the SMC metrics in equations (3-9)-(3-12) (w=1)
are stable and dominant since the curve of balance cases in Figure 3-16 and Figure 3-22 is
identical to the limit in equation (3-15) which represents the convergence of individual
characteristics (i.e., N, M, μ) during maintenance process. This equivalence is exactly the
reason why the proposed model provides straightforward and safe choices independently
on the number of future additions that will take place during maintenance process, as
showed in subsection 3.5.7. Thus, the proposed approach and its SMC metric can be
considered as particularly reliable. As a more general and intuitive conclusion, metrics that
have similar balance equations to the above convergence limit are stable, provide safe and
permanent decisions, and usually considered as particularly reliable.

3.10 Conclusions

3.10.1 General Requirements and Limitations

In this subsection, the basic limitations, and some potential threats to validity regarding
the proposed approach are briefly discussed.

To derive realistic equations of asymptotic maintenance effort or cost, it is necessary
to analyze and precisely understand the way that each design pattern evolves, behaves, and
reacts with other patterns in the event of future maintenance scenarios. Furthermore, it is
essential to conclude on those maintenance scenarios and design characteristics that are
the most influential regarding the pursued quality requirement (i.e., maintainability or
modifiability). Without this envision, the model’s estimations and consequent design
decisions could by subjective or unrealistic. If this is the case, then every possible type of
future action (e.g., additions or modifications) as well as the consequences or the impact of
these actions can be described in an objective way. Furthermore, the required effort for
every possible action type or other quality characteristics can be estimated as well. These
quality characteristics include method/code or data locality in source code or in memory,
cyclomatic complexity, interface complexity, run or compile time performance estimations,
data/memory consumption estimations, design or module complexity, depth of class
inheritance, friendly methods, overwritten methods, any other known quality metric (e.g.,
ISO 9126/25000, McCabe) which can be statically computed by the structure of design
pattern, etc. As an example of the variety of such measures is the computational complexity
metric (Hills et al., 2011) which tries to measure not only the effort to transform the
system, but also the effort to analyze it before applying any transformation.

The asymptotic or static cost of all the characteristics that have been mentioned can be
positive or negative or even multiplied by factors and depends on estimations about anyone
of them. Furthermore, intermediate, or partial costs can be combined and merged to more
general actions, deriving general equations. During this process, reliable predictions or
probabilities of different maintenance scenarios can be involved in these equations. In
general, the accuracy of this method depends on the accuracy of the distinct asymptotic or
static cost estimations and predictions.

It is important that the conclusions and the results of this method are general and
based on static predictions and structure analysis of specific design patterns. They are
independent to specific program implementations and run time behavior. They are based
on static estimations about future modifications and additions, while they capture specific
quality characteristics like maintainability and changeability. Therefore, they should be
used during the design phase of software before code development to ensure reduced time,
effort, and relevant cost of future code modifications, updates, and maintenance.

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 65

Another important point is that the proposed method evaluates, in a formal way, two
or more combinations of design patterns that have been proposed to address the same
significant problem in a different (design) way. Thus, absolute maintenance cost
assessments or effort estimations for individual implementations are out of the scope of the
proposed approach. Analysis is limited on knowledge of the used design pattern behavior
through which distinct maintenance scenarios are derived and analyzed. The main goal of
the proposed model is to deliver reliable and proportionally equivalent effort estimations
per design alternative for comparison purposes, with no concern regarding the accuracy of
the effort magnitudes itself.

Furthermore, the selected maintenance scenarios contribute mainly on the evolution
or extension of the system features, retaining initial design (pattern) architecture.
Maintenance scenarios that target on structure reformations change the design
architecture and the maintainability degree of the system and they are out of scope of the
suggested approach.

In the proposed model, the maintenance events are involved in probabilistic analysis
considering a repeated (cyclical) arriving pattern, since this is the most common case in
prediction models. Thus, a possible threat to validity of the proposed model could be the
special case when maintenance scenarios are performed by the developers in a way that
significantly deviates from a repeated arriving pattern.

3.10.2 Extensions and Further Research

The proposed formal model can be adapted for similar or other design problems. For
example, additional cost can be added if more additions or modifications are necessary for
a specific structure or when other quality characteristics or metrics should be captured. The
proposed approach or an adapted version can be combined and analyzed in conjunction
with other methods on case studies (e.g. in (R. S. Pressman, 2001)) to determine the
relationship between static asymptotic cost of design patterns and external quality factors
such as reusability, maintainability, testability and adaptability. The adaptation and
implementation of the proposed method in other problems and patterns depends on many
factors such as the type of the problem, scale of structure or/and operations, complexity of
operations, quality or other standards-requirements, other collaborated patterns, time, cost
plan, etc.

Furthermore, the proposed formal model could be used as a guide by many tools,
including aspect-oriented programming tools that generate code, templates or libraries
from a higher level language or through a visual environment (e.g. (Dascalu et al., 2005; B.
C. d. S. Oliveira et al., 2008; VanDrunen & Palsberg, 2004)) to compare and propose
appropriate design pattern combinations. An example is ANTLR (Parr, 2013), a powerful
and flexible tool for scanning and parsing formal languages that by default generates initial
code for CP, VP and Listener design pattern (a differentiation of VP) based on grammar
elements. In this case the use of CIBI or other design patterns could be suggested through
the use of the proposed model based on specific grammar attributes. In addition, the
proposed mathematical approach can be used as a general framework for estimating and
comparing similar or different design patterns especially on the field of Pattern Languages
of Programs.

Moreover, the proposed model could be used to evaluate and propose efficient pattern
combinations based on code’s structure through real-time coding intelligence tools during
code development process. Furthermore, the proposed method can be used for source code

generation in the generic field of product line engineering (Völter, 2003). More specifically,
the used design pattern and specific characteristics of a problem could be derived through
a properly formatted model (e.g. class diagram, XML) or DSL (Zdun & Strembeck, 2009)
or through a metamodel of the software specifications. In this case, the proposed method
can be implemented during the process of model analysis and code generation.

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 66

3.10.3 Overall Assessment

Selecting between Visitor design pattern and inheritance-based implementation on a part-
hole representation during software architecture design is crucial since software
maintenance should adapt to the initial architecture. Decisions made at software
architecture definition stage heavily affect maintainability and changeability of software
and related time, effort, and cost of software maintenance.

The proposed approach suggests a documented methodology to support object-
oriented design pattern analysis. Software quality metrics can be derived and computed
directly from design descriptions of well-known design pattern combinations by analyzing
their structural behavior and evolution pattern. The model returns effort estimations well
fitted and sensitive to specific design characteristics and attributes that distinguish a
specific system as an instance of the general and significant problem. Using the proposed
model, specific characteristics such as design attributes of given problems are considered
allowing selection of proper design pattern combinations at an early stage of the design
process before code development.

The analysis of the proposed model indicates that different design pattern
combinations have a significant effect on software quality and its maintenance
perspectives. Furthermore, the progressive and probabilistic analysis verify the same
significant effect for a large number of future modifications during software maintenance.
Moreover, the analysis proves that different metrics aspects and weights have a significant
impact on progressive computations with respect to initial attributes of a design problem
and should be carefully defined. Also, it has been indicated that probability analysis over
maintenance scenarios has a decisive role on maintenance cost and effort estimation.

The proposed model can be easily implemented in software to support behavior
analysis and relevant design decisions among Composite, Visitor design patterns and
inheritance-based implementation, providing a visualization for almost the complete
solutions or design space of the significant problem of recursive part-whole aggregations.
The application of the proposed approach reveals the usability and extensibility of the
suggested methodology considering different or alternate metrics, design alternatives, and
quality characteristics.

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 67

4 Modeling Software Evolution

4.1 Chapter Overview

In this chapter, a systematic modeling method for the derivation of formal comparison
models of different implementation alternatives is discussed. The models can be used for
the early evaluation of the design alternatives with regards to maintainability. The method
is based on a novel theory focusing on the progressive evolution of a system during the
maintenance process. The proposed approach analyzes the software’s expansion tendency
through the formulation of system’s size change rates using differential equations in a two-
level integration process. More specifically, the analysis focus on change rates of individual
structural attributes of each design combination under consideration. Furthermore, the
method predicts the required effort during the maintenance process by using the adaptable
Structural Maintenance Cost (SMC) metric (Karanikolas, Dimitroulakos, & Masselos,
2017), introduced in chapter 3. This metric is mostly inspired by software entropy concept
(Bakota et al., 2012). The metric captures the structural expansion behavior of each design
combination under evaluation. The structural expansion is quantitatively expressed in
terms of the number of method interventions and the number of classes/modules that are
affected, for basic maintenance scenarios and their probabilities. Moreover, an alternative
technique based on the ‘ripple effect’ concept (Turver & Munro, 1994) for deriving basic
SMC metrics is discussed. In this way, the required effort is predicted in a formal and
deterministic way, limiting the ambiguity imposed by the stochastic nature of the
maintenance process. The generated formal models are general and reusable, while they
can be easily implemented in software and repeatedly applied during the early stage of
software design before code development.

The proposed modeling method has been illustrated and evaluated on the important
and frequently tackled decision problem between the design combinations of Visitor design
pattern and Composition design pattern for data structures (both serving recursive part-
whole aggregations) as described in subsection 3.3. In this case, the two major types of
maintenance scenarios effect on i) composition’s elements and ii) different operations over
these elements. The numbers of initial elements and operations are considered as
quantitative structural attributes. The applicability of the derived formal modes is
demonstrated over the practical examples of Interpreter and Graphic User Interface (GUI)
implementations as defined in subsection 1.2.3.

Furthermore, a detail modeling framework of the introduced modeling method has
been implemented in the form of MATLAB code and data structures. This framework
accelerates and supports the derivation of formal models as well as the generation of
relevant graphs in a dynamic way through properly parametrized scripts. The effectiveness
of the framework is demonstrated on the general problem of recursive part-whole
aggregations.

The context of this chapter is based on the motivation examples in chapter 1, the
related work in chapter 2, and the significant design problem of part-whole representations
in chapter 3. The rest of this chapter is organized as follows. Subsection 4.2 discusses the
theoretical background of the significant design problem under study. Subsection 4.3
introduces the proposed approach and the modeling method. Subsection 4.4 presents a
general and formal implementation of the modeling method in MATLAB structures.
Subsection 4.5 provides the validation evidence that support the introduced modeling
method and derived formal models. Finally, in subsection 4.6, the model’s validity
challenges, limitations, future research issues, and conclusions are presented.

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 68

4.2 Background of General Decision Problem

An example of a general, significant, and frequently tackled design problem is referred to
the recursive implementation of various types of operations upon part-whole aggregations
of different types of elements as presented in Table 1-1 of chapter 1, and Table 4-1. This
kind of structures is encountered in a wide spectrum of critical systems such as compilers,
interpreters, GUI, hierarchical presentation frameworks, DSL, and CAD as their principal
design background. Usually, each design alternative is a combination of well-known design
patterns. Visitor and Composite are examples of established design patterns which
combined can provide implementations of part-whole aggregations. The evolution of
software during its maintenance is strongly related and mostly determined by the behavior
of the engaged design patterns in future changes or major maintenance scenarios.
Referring to the general problem of part-whole aggregations, events like adding or
updating or debugging a new or existing type of element constitute a major maintenance
scenario. Similar events referred to a new or existing type of operation is another major
scenario. In principle, an event is characterized as major maintenance scenario when fulfills
the following criteria: a) has significant impact concerning the pursued quality attribute
(i.e., maintainability), b) affects or changes the principal design attributes of the engaged
design patterns (e.g., number of elements or operations of a structure), c) is neither too
abstract nor too specific allowing its application on the early design stage before code
development (i.e., encompasses various resembling sub-activities or changes such as
adding, updating, and de-bugging concerning the maintenance of a discrete family of
design elements with common characteristics such as structure elements, and operations),
and d) has recurring nature or considerable possibility to repeatedly occur during
maintenance, as further discussed in subsection 3.4.4. In this general design problem, the
number of initial elements and operations are conceived as basic design attributes which
define a specific problem as an instance of the general problem. Such design attributes are
usually referred to problem’s logical entities which are represented by design patterns’
components such as methods, classes, and modules. Furthermore, during maintenance,
several of those initial design attributes are updated according to the behavior of the
engaged design patterns based on the individual probabilities of major maintenance
scenarios. Scenarios’ probabilities are assessments according to the scope of each specific
problem.

Table 4-1: Example of Interpreter Software Specifications for the General Problem of
Part-Whole Representations.

Analysis of the general problem Indicative, practical example of a specific problem as an instance of the
significant and general problem referred to the recursive implementation of
various type of operations upon different types of elements of part-whole
aggregations (compositions)

Initial design attributes
• number of initial elements

• number of initial operations
conceived as basic design attributes
which define a specific problem as
an instance of the general problem

Major maintenance scenarios
• Adding/updating/debugging a

new/existing Element
• Adding/updating/debugging a

new/existing Operation
Probabilities of major scenarios as
assessments according to the scope
of each specific problem

Interpreter implementation for a new custom (extendable) DSL language
 40 initial types of elements (parse-tree nodes derived from a custom BNF
grammar such as terminal–nonterminal symbols, identifiers, etc.), and
 10 initial operations (type checking, code generation, executing, etc.) acting on
elements of parse-tree,

since DSL is custom and extendable, both structure and operations could be
extended during maintenance by equal probabilities (50%-50%)

Description of the change impact for
major maintenance scenarios during
maintenance

A possible wrong decision during
design stage, before code
development, has a serious impact

A wrong selection of the Inheritance-based implementation into Composite’s
elements (design combination) requires:
 40 new methods in 40 different classes for a single operation addition and
 1 new class with 10 new methods for a single element addition
 which overall requires more maintenance effort
Instead of the most beneficial alternative of Visitor over Composite’s elements
(design combination) which requires:

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 69

Analysis of the general problem Indicative, practical example of a specific problem as an instance of the
significant and general problem referred to the recursive implementation of
various type of operations upon different types of elements of part-whole
aggregations (compositions)

on system quality evaluation,
concerning either:
(a) the increased (wasted)
effort/cost during maintenance, or

 40 new methods to be placed on a single class for a single operation addition
and
 (only) 10 new methods to be placed in 10 different classes for a single element
addition
This is a difficult choice due to structure and operation expandability and there is
no clear advantage for arbitrary scenarios’ probabilities

(b) the costly setback, after code
development, in the design stage of
software lifecycle which requires
redesign and refactoring of the
existing code that usually demand a
significant amount of extra (wasted)
effort

 10 methods for each of 40 (composite) classes, thus totally 400 methods
(including their references and calls) be revised and moved in 10 different
(visitor) classes in groups of 40 methods

Initial source code will be generated by a parser tool such as Bison or ANTLR (Parr, 2013). Interpreter implementation is
a real case description

The practical example of the Interpreter implementation in Table 1-1 and Table 4-1,
as a specific instance of the significant and general problem of recursive part-whole
aggregations, highlights the negative consequences of wrong design selections as well as
the necessity for a rigorous modeling method that can support early selection among
design alternatives regarding their maintainability perspective.

The Inheritance Based Implementation into Composition (CIBI) and Visitor upon
Composition (CVP) design combinations have opposite characteristics regarding their
maintainability perspective, and thus they have been discussed in the context of many
studies, like the well-known Expression Problem (B. C. d. S. Oliveira & Cook, 2012;
Torgersen, 2004; Wang & Oliveira, 2016; Zenger & Odersky, 2005). Therefore, the
selection between CIBI and CVP is rather a crucial and challenging decision since many
major systems like compilers, interpreters, high-level synthesis, Domain Specific
Languages, Intermediate Representations, GUIs, hierarchical frameworks, are designed
over recursive composite structures. For the sake of completeness and uniformity with the
context of chapters 1 and 3, a brief presentation of the theoretical background of the general
selection problem, as presented in Table 4-1 follows. A summary of the relevant concepts,
components, and terms of the analysis in correspondence to the significant problem of
part-whole aggregations is presented in Table 4-2.

Table 4-2: Correspondence of Concepts, Components, and Terms to the General Decision
Problem of Part-Whole Representations.

Basic concepts, components, and terms
of the analysis

Correspondence to the significant general problem, referred to the recursive
implementation of various types of operations upon different types of elements of
part-whole aggregations (compositions)
Description of specialized concept Notation

1
)

In
tr

o
d

u
ct

io
n

 o
f

M
o

d
el

in
g

 M
et

h
o

d

Distinct design patterns engaged in
design combinations

 Composite (design Pattern) represents recursive
part-whole aggregations or structures of elements
 Visitor (design Pattern) links operations to
different type of elements of a Composition
 Inheritance-Based Implementation incorporates
operations inside Composition’s elements

CP

VP

IBI

Combinations of design patterns (as
solution alternatives of the general
problem)

 Visitor over Composite’s elements
 Inheritance-based implementation into
Composite’s elements

CVP = (CP+VP)
CIBI = (CP+IBI)

Problem’s initial design attributes Number of initial Elements of Composition
 Number of initial Operations (or Processes) acting
on Elements

N
M

Basic classes of changes or
maintenance scenarios and their
individual probabilities

probability of Adding/updating/debugging a
new/existing
 Element type
 Operation (or Process) type

pnE = 1-pnP
pnP = 1-pnE

Number of future scenarios’
applications
Returned predictions of expected
maintenance effort (per design
alternative)

 Number of maintenance scenarios’ applications
during software evolution/maintenance
 Total required effort prediction returned by formal
model per design alternative

λ

cm(CVP, N, M, pnE, 1-pnE, λ)
cm(CIBI, N, M, pnE, 1-pnE, λ)

2
)

Il
lu

st
ra

ti
o

n

th
ro

u
g

h

m
o

ti
v

at
io

n

ex
am

p
le

s

a. Derivation of fundamental effort
metrics (for each design alternative
and scenario type for a single [λ=1]
scenario application)

 New Element (pnE=1.0, pnP=0.0) on CVP for λ=1
 New Operation (pnE=0.0, pnP=1.0) on CVP for λ=1
 New Element (pnE=1.0, pnP=0.0) on CIBI for λ=1
 New Operation (pnE=0.0, pnP=1.0) on CIBI for λ=1

cm(CVP, N, M, 1.0, 0.0, 1)
cm(CVP, N, M, 0.0, 1.0, 1)
cm(CIBI, N, M, 1.0, 0.0, 1)
cm(CIBI, N, M, 0.0, 1.0, 1)

 CVP design combination (solution)
 CIBI design combination (solution)

cm(CVP, N, M, pnE, 1-pnE, λ)
cm(CIBI, N, M, pnE, 1-pnE, λ)

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 70

Basic concepts, components, and terms
of the analysis

Correspondence to the significant general problem, referred to the recursive
implementation of various types of operations upon different types of elements of
part-whole aggregations (compositions)
Description of specialized concept Notation

b. Derivation of formal prediction
models (for each design alternative and
any number of applied scenarios λ)
c. Application of the derived formal
models on practical examples of
specific problems

 Interpreter (N=40, M=10, pnE=0.5)
 GUI (N=15, M=14, pnE=0.7)

cm(CVP/CIBI,40,10,0.5,0.5,λ)
cm(CVP/CIBI,15,14,0.7,0.3,λ)

CP: The main intent of the Composite design Pattern is to compose objects into tree
structures to represent part-whole hierarchies. CP lets clients treat individual objects and
compositions of objects uniformly (Gamma et al., 1994). CP is the basis of both design
combinations and presented on both sides in Figure 4-1. The number of distinct
nodes/objects or element types, which can be instantiated or represented by CP, is equal
to the number of leaf classes of the hierarchy, denoted as N in Figure 4-1.

CIBI (IBI in CP): In a Composite structure, the Inheritance Based Implementation
(IBI) can be used, as presented on the left side in Figure 4-1. This straightforward object-
oriented approach is based on the inheritance attribute and can be considered even as a
naïve, and similar to Interpreter design pattern (Gamma et al., 1994; Hills et al., 2011). In
the general case, all distinct operations, denoted as M in Figure 4-1, are declared as virtual
methods in the abstract root class of the hierarchy. The implementation of every distinct
operation (method) is placed in each distinct object (leaf) class of the hierarchy. This
pattern combination makes adding new types of nodes (elements) easier (Gamma et al.,
1994) thanks to the concentration (locality) of the related interventions in a single class.

CVP (VP over CP): Visitor design pattern (VP) can be used over CP as presented on
the right side in Figure 4-1, and further analyzed in (Alexandrescu, 2001; Gamma et al.,
1994; B. C. d. S. Oliveira et al., 2008; Palsberg & Jay, 1998; Visser, 2001). In the general
case, for every distinct type of CP node, a new virtual method is declared in an abstract root
class called Visitor. In addition, for every distinct operation, a new subclass is created which
includes all the implementations of the methods of distinct node types for this specific
operation. CVP approach rearranges the methods of all distinct operations from CP sub-

Figure 4-1: Conceptual UML class-diagram of CIBI (Inheritance-Based

Implementation inside a Composition) and CVP (Visitor design pattern over
Composition’s pattern) design combinations.

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 71

classes into the new visitor sub-classes. In contrast with IBI, VP makes adding new
operations easier (Gamma et al., 1994) thanks to the increased cohesion or the
concentration (locality) of the related interventions in a single visitor class.

The numbers of distinct element types and distinct operation types, denoted as N and
M in Figure 4-1, are conceived as key design attributes. Through these attributes, the
number of required method and class interventions can be quantitatively expressed in the
event of major maintenance scenarios as summarized in memo table in Figure 4-1 and
analyzed later. Thus, the selection of the most maintainable combination is rather a difficult
decision problem, especially in the case where elements and operations are both extendable
during the maintenance process as showed in Table 1-1 and Table 4-1.

4.3 Modeling Approach

4.3.1 Designs for Change Principle

The first step in controlling software changeability or maintainability degree is by applying
the rule “design for change” as discussed by Parnas (David Lorge Parnas, 1994). Design
for change can be achieved by trying to categorize the changes that are likely to occur over
the “lifetime” of the product. Since actual changes cannot be precisely predicted, the
assessments will be about classes of resembling changes. In principle, this design rule
implies that logical entities that are most likely to change are “confined” to a small or
grouped amount of code so that if those entities do change, only a small amount of code
would be affected. This is exactly one of the fundamental reasons to use well-known design
patterns in order to ease future enhancements (Bieman et al., 2001). Furthermore, since it
is impossible to make everything equally easy to change, it is important to estimate the
probabilities of each class of changes. However, even if these probabilities have been
estimated, in most of the cases, it is not obvious how specific design combinations are
evolved during software maintenance with respect to these probabilities. Hence, selection
among design alternatives is usually left to experts’ intuition, thus introducing high-risk for
suboptimal choices and low maintainability degree. Identifying what can change, what is
the likelihood of the change, and what is the impact or cost of the change is in the core of
architectural design process towards modifiability as suggested in (Bass et al., 2012).

4.3.2 Corresponding Architectural Design Principles

In general, the object-oriented (low-level) design is a sub-domain of the Software
Architectural (high-level) design of systems (Bass et al., 2012). The general architectural
design principles are roughly analyzed in subsection 3.2.1 and visualized in Figure 3-1.
However, a direct correspondence exists regarding the notation, terms, and concepts
between the (low-level) object-oriented design and (high-level) architectural design as
illustrated in Figure 4-2. For example, the design for change principle corresponds to the
Quality Attribute requirement of modifiability or maintainability, expressing the ability of
the system to support changes. The arriving (classes of resembling) events or maintenance
scenarios correspond to Stimulus, thus to the requested modifications which affect or
change the Artifacts. The design combinations under assessment, usually represented by
UML models of classes and methods, correspond to Artifacts generally represented by
design models of system’s modules and components. The implementation of an arriving
maintenance scenario or Stimulus corresponds to the Response, thus to the required
specific modifications on an Artifact.

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 72

The Response Measure refers to the quantitative measurement of the effect or the
Response of the Stimulus, focusing on the aspect of the pursued Quality Attribute
Requirement. Modifiability or maintainability as a Quality Attribute Requirement is
influenced by the application of Architectural Tactics such as splitting or rearranging
responsibilities to increase cohesion and reduce coupling among the model’s logical
entities. The result of this architectural design process leads to alternate design models or
Artifacts, aiming at improving their Response Measure to a set of Stimulus or maintenance
scenarios. Architectural design is also about selecting among design alternatives or
Artifacts the one with the most satisfactory overall Response Measure. Since Modifiability
refers to the amount of code that should be affected, the Response Measure refers to the
amount of code (e.g., number of entities) of an Artifact that would be affected as a result of
an arriving Stimulus or maintenance scenario.

However, the overall quality assessment of an Artifact requires the measurement of
the Response on a set of different Stimulus, each affecting the Artifact’s entities in different
and conflicting ways. Thus, a combined analysis of the effects (Responses) of all Stimulus
based on their probabilities for each design alternative or Artifact is required. The Response
of an Artifact to a Stimulus is quantitatively expressed by the Response Measure the
outcome of which may be subject to several design characteristics and properties of the
Artifact. As a result, the Response of an Artifact to a Stimulus may be also sensitive to
specific model’s design attributes such as the initial number of instances of an entity type.
These design attributes of a model or Artifact identify a specific problem as an instance of
the general problem. The proposed modeling method derives formal models for each
design alternative or Artifact of a general design problem. This allows the selection of the
Artifact with the best combined Response Measure to all possible major Stimulus for
specific design attributes, concerning the pursued Quality Attribute Requirement of
modifiability or maintainability.

From a different point of view concentrating on maintainability perspective, software
architecture is in accordance with the ‘design for change’ principle. It tries to answer a)
what can change or what are the anticipated changes or maintenance events, b) what is the
likelihood or probability of each change, and c) what is the impact or the extend or the
required effort of each change. The proposed modeling method and derived formal models
help software engineers to resolve the trade-offs among design alternatives and find the
sweet spot within the enormous architectural design space that satisfies the pursued QAR

Figure 4-2: Conceptual representation of the architectural design principles connected

to the proposed theory and Modeling Method

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 73

by finding the design alternative with the optimal combined response (measure) for all
major stimuluses.

4.3.3 Characteristics of SMC Effort Metric

In the context of this study, the Structural Maintenance Cost or SMC (Karanikolas et al.,
2017), introduced in chapter 3, is used as fundamental effort metric. For the sake of
completeness, the principal characteristics of the SMC metric are briefly discussed in this
subsection. In general, fewer method interventions or less affected classes, for a specific
maintenance scenario, imply lower code dispersion, entropy, complexity, crosscutting
degree, coupling, and higher cohesion. All these concepts are directly related to the intuition
that developers will have increased work keeping track of changes that are performed
across many source files or any other code unit or segment (Hassan, 2009). SMC metric
enforces the measurement process by simultaneously counting different types of affected
code segments, expressing by this way not only the number of interventions (e.g., affected
methods) but the locality or scattering degree of these interventions as well (e.g., expressed
by the number of affected classes). In particular, the measurement of scattering degree
magnifies the impact of the relevant interventions with respect to critical characteristics of
modifiability such as coupling and cohesion among code segments of logical entities. Thus,
SMC metric encloses all previous concepts in an indirect but sufficient way providing an
adequate graduation even in the absence of source code. Furthermore, SMC metric ignores
the actual size (lines of code) of each elementary method intervention since this code i) is
not available in the design stage, and ii) in a long-term perspective it has no significant
impact on the final effort assessment. More specifically, it is supported that the actual code
and size of each method intervention refers to the business logic of the solution (not its
design perspective) and thus, it would be common or similar for all design alternatives
under comparison, hence neutral concerning the decision-making. Finally, the SMC metric
concentrates only on expansion scenarios (additions) and does not take under
consideration alternate scenarios such as editing, debugging, and deleting, supporting that
the expansion (new features) scenarios have a dominant role in the progressive evolution
of the system and thus to effort assessment, as reported in chapter 3 and analyzed in
subsection 4.3.5.

Under the view of architectural design principles, the SMC metric corresponds to the
response measure (or the required effort in terms of number of interventions) representing
a quantitative assessment of the extend of the required changes of a particular stimulus
(major maintenance scenario) to a specific artifact (design alternative) as visualized in
Figure 4-2. In other words, SMC metric quantitatively expresses what is the extend, the
complexity, and the cost (effort) of an anticipating change scenario (stimulus) during
maintenance.

4.3.4 Fundamental SMC Effort Metric Derivation

In this subsection, a more systematic derivation approach of SMC metrics is presented in
Figure 4-3, which is a further and detailed specialization of the ‘ripple effect’ concept as
introduced in (Turver & Munro, 1994). The concepts of ‘ripple effect’ and ‘ripple
propagation’ are related to the impact analysis of a particular change or scenario during
maintenance. More specifically, the impact analysis evaluates in layers the consequences
of a particular change up on a specific design combination to predict the required effort.
The more a change causes other changes to be made, in general, the higher the required
effort. The outcome of this process is a consequence flow or logical model as depicted in
Figure 4-3 which is referred to the Interpreter implementation of the general decision
problem (described in Table 1-1, Table 4-3, and presented in Figure 4-1) about the impact
of possible maintenance scenarios on the CVP design combination.

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 74

More specifically, at the top of Figure 4-3 the major maintenance scenarios are
depicted as the Event Layer or Level. In this example, the possible scenarios are referred to
the addition either of one element or one operation with their probabilities as their edges’
weights (pnE, pnP).

Below the Event Layer is the intermediate Attribute Level that exposes the design
attributes and the way in which these are affected by each scenario type, denoted in their
edges’ labels. For instance, the scenario of a new element (nE) increases the number of
Composition’s elements (N) by one (++). The values of these design attributes contribute
to the evaluation of the SMC metric by the following layers.

Under the Attribute Level is the Class or Module Level that depicts the type of classes
that effected by each scenario type. The number of classes that are affected by each change
type is stated in their edges’ labels. For instance, the scenario of a new element (nE) affects
one element’s class, the abstract Visitor’s class, and M operation’s (Visitor) sub-classes,
thus totally M+2 effected classes.

Next, the Method Level depicts the type of methods that effected as a consequence of
an intervention in each of the class types of previous Class Level. For instance, referring to
the scenario of a new element (nE), the single intervention in the element’s class causes an
intervention on the relative ‘accept visitor’ method, and each of M+1 interventions in the
operation’s (Visitor) class causes one method intervention, thus totally M+2 method’s
interventions.

Hence, the SMC metric for a “new element” scenario on CVP combination is the sum
of all sub-effects lined up into the scenario’s virtual branch across different layers, formally
stated as cm(CVP, N, M, 1.0, 0.0, 1) = 2(M+2) according to the notation in Table 4-2.
Similarly, the SMC metric for a “new operation” scenario is cm(CVP, N, M, 0.0, 1.0, 1) =
N+1 or N method interventions in one single (visitor) class. The memo table and the class
diagrams in Figure 4-1 give an extra insight on how SMC metrics are interpreted.

A similar consequence flow or logical model for CIBI design combination is presented
in Figure 4-4. In this case, the implementation of both elements and operations are placed
inside the single design pattern of Composition, thus this model includes fewer type of
classes and methods.

Figure 4-3: Consequence flow (logical model) during impact analysis for changes on

the Visitor over Composite design combination (CVP).

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 75

Both consequence flow or logical model for CVP and CIBI design combinations
provide the pattern for the complete set of the fundamental or SMC metric equations per
design combination, as summarized in Table 4-3. From a different perspective, the SMC
metrics can be conceived as a set of elementary principles which quantitatively signify how
the added code or the related effort is allocated or spread in the context of an evolution
pattern that reshapes the code during maintenance, as suggested in (Stopford & Counsell,
2008). Thus, the effect of each single change is quantitatively depicted by the extracted
SMC metrics. Conceptually, the whole transformation process is a stratified cause-effect
analysis trying to quantify change-effects.

Table 4-3: Equations of Fundamental Effort Metrics of CIBI vs. CVP General Decision
Problem

Description of maintenance scenario Equation of total effort for a single

scenario application

Affected design

attributes

New element on CVP cm(CVP,N,M,1,0,1)= 2(M+2) N++

New operation on CVP cm(CVP,N,M,0,1,1)= N+1 M++

New element on CIBI cm(CIBI,N,M,1,0,1)= M+1 N++

New operation on CIBI cm(CIBI,N,M,0,1,1)= 2(N+1) M++

4.3.5 Software Expansion Concept

In this subsection, the conceptualization of the proposed theory inspired and supported by
several empirical observations is documented. The description emphasizes into the trends
and relations among the essential concepts of system’s size, required effort, and
maintainability degree, concerning software maintenance process.

According to Lehman’s first and second laws (Meir M. Lehman et al., 1997), referred
as ‘Continuing Change’ and ‘Continuing Growth’, a software system has the trend to
expand over their lifetime, since it must be continually adapted to maintain user
satisfaction. Several studies provide empirical support of these laws (Bakota et al., 2012;
Barry et al., 2007; C. R. Cook & Roesch, 1994; H. Gall et al., 1997; Jazayeri, 2002; M. M.
Lehman et al., 1998; Yuen, 1988) mostly based on analysis of large repository of historical
data. It is noticeable that 66% of changes enhancing an existing feature do so by adding a

Figure 4-4: Consequence flow (logical model) during impact analysis for changes on
the Inheritance-Based Implementation into Composite design combination (CIBI).

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 76

new feature as reported in (Paixao et al., 2017). Thus, the system’s size expressed in terms
of code size has a positive change rate during the maintenance process.

The required maintenance effort is proportional (linearly) related to the size of the code
under adjustment as supported in (Araújo et al., 2012; Bengtsson & Bosch, 1999; Bosch &
Bengtsson, 2001; Dolado, 2001; Hayes et al., 2004; Hayes & Zhao, 2005; Jabangwe et al.,
2015; Jazayeri, 2002; Zhang, 2008). Furthermore, size properties are identified as the
most ideal predictors of effort as concluded by Briand et al. (L. C. Briand et al., 2002). Thus,
since the system’s size has a positive change rate, the required effort during the
maintenance process has a positive change rate as well.

Software maintainability can be expressed through the estimation of the required effort
during the maintenance process, as concluded in (Riaz et al., 2009a) and suggested in
(Heitlager, Kuipers, & Visser, 2007b). Thus, more maintenance effort corresponds to less
maintainable software, indicating an inverse relation between required effort and software
maintainability degree. Since the system’s size and required effort have positive change
rates, software maintainability degree has a negative change rate over time as confirmed
by the software entropy approach in (Bakota et al., 2012) or by measurements of industrial
systems in (Land, 2002). Conclusively, the analysis of the system’s size change rate
provides a concrete theory about the quantification of the required effort toward
maintainability assessment.

4.3.6 Analysis of System’s Size Change Rate

In this subsection, the concept of the system’s size change rate is decomposed to its
underlying factors. In general, the system’s size is expanded as new code segments are
added, or existing code segments are enhanced. These incoming code segments usually
correspond to individual actions or maintenance scenarios (e.g., additions, modifications,
debugging) as roughly visualized in large lined up code blocks in Figure 4-5. Each action
type affects the logical entities (e.g., elements or operations) of existing software
architecture or design pattern combinations. The current state of the affected logical
entities is expressed by key design attributes such as number of elements or operations
(e.g. [n] in Figure 4-5). According to the introduced approach, during the design stage, the
actual size of such action code segments can be approximated by the number of the
required interventions. Thus, each individual action and its corresponding code segment
can be considered as a set of smaller or elementary code segments, representing the
required distinct interventions (e.g., method interventions) as depicted in small stackable
code bricks per action in Figure 4-5. The number of those interventions for each action
type can be approximated based on the current state of key design attributes. Furthermore,
the allocation of the elementary code segments is guided by the design architecture of the
system and can be expressed by the number of (different and larger) effected code units
such as classes, as roughly visualized in Figure 4-5. This number reflects the locality or the
scattering degree of the required interventions for a given action type, capturing major
characteristics of modifiability such as cohesion and coupling degree among logical entities.
Thus, the more the affected classes for a given action type, the more the required effort for
the elementary interventions to be completed. In the context of this study, the number of
elementary method interventions and the number of affected classes per individual action
or maintenance scenario are expressed through the derived equations of fundamental effort
metrics in Table 4-3.

As an action’s code segment is entering into the system, the current state of design
attributes is affected, usually by increasing their values due to system’s innate expansion
trend. Consequently, the size of following actions that is based on current values of those
design attributes is increasing too. This increasing trend is roughly depicted by the
increased size of incoming action code segments in Figure 4-5. In general, the incoming
code segments are directly related to the required maintenance effort, which can be
considered as incoming energy flow (developers’ effort) to a dynamic system of which the

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 77

change rate could be described through differential equations. This idea is not surprising
because in many real-world systems, changes occur, and we want to predict future
behavior on the basis of how current values change. The dynamic behavior of such systems
can be modeled through differential equations. Hence, the analysis of the system’s size
change rate is reduced to the study of incoming actions’ size change rate, as roughly
visualized by the horizontal left-to-right flow (a) in Figure 4-5.

In addition, the individual quantitative design attributes (e.g., number of elements or
operations), which are generally increased determining the number of elementary
interventions and following actions’ size, can be considered as dynamic sub-systems of
which the change rates could be described through differential equations as well. Thus, the
analysis of each action’s size change rate is reduced to the study of individual design
attributes change rate as roughly depicted by the vertical bottom-to-up flow (b) in Figure
4-5.

Conclusively, the analysis of system’s size change rate is reduced to the analysis of
actions’ size change rate, which further reduced to the analysis of individual design
attributes change rate per implemented action or maintenance scenario.

4.3.7 Structural Evolution through Change Rates

In the next subsections, an innovative approach for deriving formal comparison models is
presented. The approach further formalizes the software expansion concept and the
analysis of system’s size change rate presented in previous subsections 4.3.5 and 4.3.6.
Through the analysis of those change rates, software maintenance or evolution is
holistically approached more as a going concern than as a static evaluation of the code’s
characteristics.

Since the values of effort assessments serve only for comparison purposes, there is no
need for absolute predictions of actual cost in terms of wages, man-hours, fixed-costs,
resources, etc. Thus, the evolution’s (maintenance) change rate over time is considered as
constant and neutral. Hence, instead of actual time, the change rates are expressed in terms
of number of applied actions or maintenance scenarios, notated by the Greek letter λ as
indicated in Table 4-2 and Figure 4-5.

Furthermore, since the metric equations in Table 4-3 assess the effort impact only for
a single scenario application (λ=1), the introduced approach formulates the system’s size
change rate through differential equations, assessing the total progressive effort impact for

Figure 4-5: Abstract representation of software dynamic expansion during the

maintenance process.

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 78

any number (λ ∈ N*) of scenario applications. The key concept is in design attributes, such
as the number of elements (N) and the number of operations (M), the values of which are
constantly affected during repeated scenario applications according to design patterns
logic. Now the primary interest is concentrated on the formulation of the change rates of
the system’s size and scenario’s size, as visualized by the horizontal (a) and vertical (b)
change flows in Figure 4-5. This two-level differential analysis overall expresses the change
rate of system’s size, expressed in terms of design attributes’ values per applied actions (λ).
By solving this differential system, equations are derived expressing the total or progressive
size, in the same terms.

4.3.8 Differential Analysis and Model Derivation

In this subsection, the core of the introduced modeling method is presented in a step-by-
step description by using the CIBI vs. CVP general decision problem as an indicative
example. In general, the equations of the metrics in Table 4-3 are used as basic elements
for the definition of simple first-order differential equations towards extraction of specific
equations for precise computations of the total progressive maintenance effort. The
analysis includes only expansion scenarios (additions) since they have a dominant role in
the progressive evolution of the system and thus to size/effort assessment, as supported in
chapter 3.

SMC metric in Table 4-3, as an indirect metric, involves the measurement of other
design attributes such as N and M. Thus, it implies that the investigation of the
maintenance as an evolutionary process requires separate levels of analysis. Hence, the
system’s expansion is described in two parts: a) one regarding the evolution of the design
attributes (such as N and M) expressing the change rate of actions’ size, and b) next
regarding the evolution of each scenario’s size expressing the change rate of the system’s
size.

A. Design attribute evolution: For each maintenance scenario, the related design
attributes are updated based on individual probabilities of each scenario type and design
pattern structural behavior. Similarly, the change rate of each design attribute is related to
the individual probability of each scenario and design pattern structural behavior.

Design attribute N: The change rate of the design attribute N (number of elements)
for the new element scenario is related to pnE probability and design pattern structural
behavior, which implies N increment by one for each scenario application, as indicated in
Figure 4-3 and Table 4-3. In addition, for the new operation scenario, the design attribute
N remains unchanged. Thus, the change rate of design attribute N is equal to the sum
factors of each expected scenario probability (pnE and pnP) multiplied by its increment rate

(+1 and 0 respectively), returning pnE⋅1+ pnP⋅0, or pnE. Thus, the expected change rate of
design attribute N is expressed by the differential equation (4-1):

𝑑𝑛

𝑑𝜆
= 𝑝𝑛𝛦1 + 𝑝𝑛𝑃0 → ∫

𝑑𝑛

𝑑𝜆
𝑑𝜆 = ∫𝑝𝑛𝐸 𝑑𝜆 → 𝑛(𝜆) = 𝜆𝑝𝑛𝛦 + 𝐶 (4-1)

Initially, λ=0, and n(0) is equal to the initial value of attribute N. Thus, the actual value
of the design attribute N during the λth scenario application is given by the equation (4-2).

𝑛(0) = 𝑁 → 𝐶 = 𝑁 → 𝑛(𝜆) = 𝜆𝑝𝑛𝛦 + 𝑁 (4-2)

Design attribute M: Respectively, the expected change rate of the design attribute M is
expressed by the differential equation (4-3):

𝑑𝑚

𝑑𝜆
= 𝑝𝑛𝛦0 + 𝑝𝑛𝑃1 → ∫

𝑑𝑚

𝑑𝜆
𝑑𝜆 = ∫𝑝𝑛𝑃𝑑𝜆 → 𝑚(𝜆) = 𝜆𝑝𝑛𝑃 + 𝐶 (4-3)

Initially, λ=0, and m(0) is equal to the initial value of attribute M. Thus the actual value
of the design attribute M during the λth scenario application is given by the equation (4-4).

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 79

𝑚(0) = 𝑀 → 𝐶 = 𝑀 → 𝑚(𝜆) = 𝜆𝑝𝑛𝑃 +𝑀 (4-4)

B. Scenario (action) size evolution: For each maintenance scenario, the required
maintenance effort is related to the scenario’s size and depends on design pattern structural
behavior based on the current values of design attributes. Similarly, the change rate of the
required maintenance effort is related to the change rate of the scenario’s size, which is
related to design pattern structural behavior based on the current values of design
attributes for each maintenance scenario and its probability.

From this point and on, the analysis is separately conducted for each design
combination under comparison. At this level of analysis, the design attributes values are
replaced by the equations (4-2) and (4-4) of the previous step.

CVP design combination: The change rate of the scenario’s size for new element
scenario is approximated by 2(m(λ)+2) or m(λ)+2 method interventions at m(λ)+2
different classes, based on metric equation cm(CVP,N,M,1,0 1)=2(M+2) in Table 4-3.
Thus, the expected change rate of the scenario’s size for the new element scenario is
expressed by the differential equation (4-5):

𝑑𝑐𝑛𝐸

𝑑𝜆
= 2(𝑚(𝜆) + 2) →

𝑑𝑐𝑛𝛦

𝑑𝜆
= 2((𝜆𝑝𝑛𝑃 +𝑀) + 2) (4-5)

The change rate of the scenario’s size for new operation scenario is approximated by
n(λ)+1 or n(λ) method interventions at one class, based on metric equation
cm(CVP,N,M,0,1,1)=N+1. Thus, the expected change rate of the scenario’s size for the new
operation scenario is expressed by the differential equation (4-6):

𝑑𝑐𝑛𝑃

𝑑𝜆
= 𝑛(𝜆) + 1 →

𝑑𝑐𝑛𝑃

𝑑𝜆
= 𝜆𝑝𝑛𝐸 +𝑁 + 1 (4-6)

Thus, the expected change rate of both scenarios’ size is equal to the sum of each
scenario’s size change rate multiplied by its probability factor, as expressed by the
differential equation (4-7):

𝑑𝑐

𝑑𝜆
= 𝑝𝑛𝐸

𝑑𝑐𝑛𝐸
𝑑𝜆

+ 𝑝𝑛𝑃
𝑑𝑐𝑛𝑃
𝑑𝜆

→
𝑑𝑐

𝑑𝜆
= 𝑝𝑛𝐸2((𝜆𝑝𝑛𝑃 +𝑀) + 2) + 𝑝𝑛𝑃(𝜆𝑝𝑛𝐸 + 𝑁 + 1) →

∫
𝑑𝑐

𝑑𝜆
𝑑𝜆 = ∫(3𝜆𝑝𝑛𝐸𝑝𝑛𝑃 + 2𝑝𝑛𝐸𝑀 + 4𝑝𝑛𝐸 + 𝑝𝑛𝑃𝑁 + 𝑝𝑛𝑃)𝑑𝜆 →

𝑐(𝜆)𝐶𝑉𝑃 =
3

2
𝜆2𝑝𝑛𝐸𝑝𝑛𝑃 + 𝜆𝑝𝑛𝑃𝑁 + 2𝜆𝑝𝑛𝐸𝑀 + 4𝜆𝑝𝑛𝐸 + 𝜆𝑝𝑛𝑃 + 𝐶

(4-7)

By definition c(0)=0, since before the maintenance process, the total required
maintenance effort/size is equal to zero. Thus, the total progressive scenarios’ size or
required effort, for λ repeated scenario applications based on their individual probabilities,
is given by the equation (4-8):

𝑐(0)𝐶𝑉𝑃 = 0 → 𝐶 = 0 → 𝑐(𝜆)𝐶𝑉𝑃 =
3

2
𝜆2𝑝𝑛𝐸𝑝𝑛𝑃 + 𝜆𝑝𝑛𝑃𝑁 + 2𝜆𝑝𝑛𝐸𝑀 + 4𝜆𝑝𝑛𝐸 + 𝜆𝑝𝑛𝑃 (4-8)

CIBI design combination: The change rate of the scenario’s size for new element
scenario is approximated by m(λ)+1 or m(λ) method interventions at one class, based on
metric equation cm(CIBI,N,M,1,0,1)=M+1 in Table 4-3. Thus, the expected change rate of
the scenario’s size for the new element scenario is expressed by the differential equation
(4-9):

𝑑𝑐𝑛𝐸

𝑑𝜆
= 𝑚(𝜆) + 1 →

𝑑𝑐𝑛𝛦

𝑑𝜆
= 𝜆𝑝𝑛𝑃 +𝑀 + 1 (4-9)

The change rate of the scenario’s size for new operation scenario is approximated by
2(n(λ)+1) or n(λ)+1 method interventions at n(λ)+1 different classes, based on metric

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 80

equation cm(CIBI,N,M,0,1,1)=2(N+1). Thus, the expected change rate of the scenario’s size
for the new operation scenario is expressed by the differential equation (4-10):

𝑑𝑐𝑛𝑃

𝑑𝜆
= 2𝑛(𝜆) →

𝑑𝑐𝑛𝑃

𝑑𝜆
= 2((𝜆𝑝𝑛𝐸 +𝑁) + 1) (4-10)

Thus, the expected change rate of both scenarios’ size is equal to the sum of each
scenario’s size change rate multiplied by its probability factor, as expressed by the
differential equation (4-11):

𝑑𝑐

𝑑𝜆
= 𝑝𝑛𝐸

𝑑𝑐𝑛𝐸
𝑑𝜆

+ 𝑝𝑛𝑃
𝑑𝑐𝑛𝑃
𝑑𝜆

→
𝑑𝑐

𝑑𝜆
= 𝑝𝑛𝐸(𝜆𝑝𝑛𝑃 +𝑀 + 1) + 𝑝𝑛𝑃2((𝜆𝑝𝑛𝐸 +𝑁) + 1) →

∫
𝑑𝑐

𝑑𝜆
𝑑𝜆 = ∫(3𝜆𝑝𝑛𝐸𝑝𝑛𝑃 + 𝑝𝑛𝐸𝑀 + 𝑝𝑛𝐸 + 2𝑝𝑛𝑃𝑁 + 2𝑝𝑛𝑃)𝑑𝜆 →

𝑐(𝜆)𝐶𝐼𝐵𝐼 =
3

2
𝜆2𝑝𝑛𝐸𝑝𝑛𝑃 + 2𝜆𝑝𝑛𝑃𝑁 + 𝜆𝑝𝑛𝐸𝑀 + 𝜆𝑝𝑛𝐸 + 2𝜆𝑝𝑛𝑃 + 𝐶

(4-11)

By definition c(0)=0, since before the maintenance process, the total required
maintenance effort/size is equal to zero. Thus, the total progressive scenarios’ size or
required effort, for λ repeated scenario application based on their individual probabilities,
is given by the equation (4-12):

𝑐(0)𝐶𝐼𝐵𝐼 = 0 → 𝐶 = 0 → 𝑐(𝜆)𝐶𝐼𝐵𝐼 =
3

2
𝜆2𝑝𝑛𝐸𝑝𝑛𝑃 + 2𝜆𝑝𝑛𝑃𝑁 + 𝜆𝑝𝑛𝐸𝑀 + 𝜆𝑝𝑛𝐸 + 2𝜆𝑝𝑛𝑃 (4-12)

Notice that equations (4-7) and (4-11) express a synthetic change rate term or more
precisely a probability-weighted term.

C. Selection decision: Maintainability assessment between different design pattern
combinations can be achieved through the comparison of the estimated total progressive
maintenance effort or scenarios’ size of each combination for a certain number of scenario
applications (λ). The selection of the most beneficial design combination regarding its
maintainability perspective is based on the minimum total progressive amount.

Thus, the selection of the most beneficial design combination is formally stated:

Selection = min{c(λ)d}, ∀d∈{CVP,CIBI}. In addition, the difference of the total required
effort estimation for CVP and CIBI is given by the equation (4-13):

𝑐(𝜆)𝐶𝑉𝑃−𝐶𝐼𝐵𝐼 = 𝑐(𝜆)𝐶𝑉𝑃 − 𝑐(𝜆)𝐶𝐼𝐵𝐼 → 𝑐(𝜆)𝐶𝑉𝑃−𝐶𝐼𝐵𝐼 = 𝜆(𝑝𝑛𝛦𝑀 − 𝑝𝑛𝑃𝑁 − 𝑝𝑛𝑃 + 3𝑝𝑛𝐸) (4-13)

Because the opposite characteristics of CIBI and CVP are inversely aligned, the
equation (4-13) is a first-degree polynomial, neutralizing the second-degree trend of
individual equations (4-8) and (4-12). Furthermore, the sign of equation (4-13) depends
mainly on N, M, and pnE, pnP values, meaning that the decision is not straightforward, and
thus the generated comparison model is significant and useful in respect to all used
independent variables.

Finally, the above differential analysis for the CIBI vs. CVP general problem is
summarized in Table 4-4, including engaged metrics, change rates, differential
expressions, and derived equations for each level of analysis.

Table 4-4: Differential Analysis and Comparison Model Derivation for CVP vs. CIBI
General Problem

Level of analysis Engaged SMC metric,
λ=1

Change rate differential
expression

Derived Equation Eq.
4-

1. Design attribute evolution
Design attribute N

(elements)
new element → N++ 𝑑𝑛

𝑑𝜆
= 𝑝𝑛𝛦1+ 𝑝𝑛𝑃0 𝑛(𝜆) = 𝜆𝑝𝑛𝛦 + 𝑁 1,2

Design attribute M
(operations)

new operation → M++ 𝑑𝑚

𝑑𝜆
= 𝑝𝑛𝛦0 + 𝑝𝑛𝑃1 𝑚(𝜆) = 𝜆𝑝𝑛𝑃 +𝑀 3,4

2. Scenario size evolution
 a) CVP design combination

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 81

Level of analysis Engaged SMC metric,
λ=1

Change rate differential
expression

Derived Equation Eq.
4-

New Element cm(CVP,N,M,1,0,1)=2M 𝑑𝑐𝑛𝐸

𝑑𝜆
= 2𝑚(𝜆) 5

New Operation cm(CVP,N,M,0,1,1)=N+1 𝑑𝑐𝑛𝑃

𝑑𝜆
= 𝑛(𝜆) + 1 6

Total progressive
effort CVP

 𝑑𝑐

𝑑𝜆
= 𝑝𝑛𝐸

𝑑𝑐𝑛𝐸

𝑑𝜆
+ 𝑝𝑛𝑃

𝑑𝑐𝑛𝑃

𝑑𝜆
 𝑐(𝐶𝑉𝑃,𝑁,𝑀, 𝑝𝑛𝐸 , 𝑝𝑛𝑃 , 𝜆) =

3

2
𝜆2𝑝𝑛𝐸𝑝𝑛𝑃 + 𝜆𝑝𝑛𝑃𝑁 +

2𝜆𝑝𝑛𝐸𝑀+ 4𝜆𝑝𝑛𝐸 + 𝜆𝑝𝑛𝑃

7,8

 b) CIBI design combination
New Element cm(CIBI,N,M,1,0,1)=M+1 𝑑𝑐𝑛𝐸

𝑑𝜆
= 𝑚(𝜆) + 1 9

New Operation cm(CIBI,N,M,0,1,1)=2N 𝑑𝑐𝑛𝑃

𝑑𝜆
= 2𝑛(𝜆) 10

Total progressive
effort CIBI

 𝑑𝑐

𝑑𝜆
= 𝑝𝑛𝐸

𝑑𝑐𝑛𝐸

𝑑𝜆
+ 𝑝𝑛𝑃

𝑑𝑐𝑛𝑃

𝑑𝜆
 𝑐(𝐶𝐼𝐵𝐼,𝑁,𝑀, 𝑝𝑛𝐸 , 𝑝𝑛𝑃 , 𝜆) =

3

2
𝜆2𝑝𝑛𝐸𝑝𝑛𝑃 + 2𝜆𝑝𝑛𝑃𝑁 +

𝜆𝑝𝑛𝐸𝑀+ 𝜆𝑝𝑛𝐸 + 2𝜆𝑝𝑛𝑃

11,
12

4.4 Generalizing and Formalizing Modeling Method

A general formal framework for the introduced modeling method has been developed in
which the general notation of all aspects of the differential analysis is strictly defined as sets
and arrays. In this case, the basic (SMC) metric equations are defined as first-degree
polynomial expressions for all of design attributes’ factors and their weights plus one
constant factor. In the case of an alternate metric with a different set of independent
variables, affected by different weights, or expressed through another type of equation, this
framework provides a sufficient general template for any further adaptation. Although such
a rigorous framework seems to be complicated, its implementation through software is
rather a regular task. An indicative (dynamic) implementation of such a framework in

MATLAB® is described in this subsection and provided online in (Karanikolas,

Dimitroulakos, & Masselos, n.d.-b) for further research purposes.

4.4.1 Modeling Framework

In this sub-section, a more general formal and rigorous framework regarding the
differential analysis of the introduced modeling method is provided. The general notation
of all the aspects of the differential analysis is strictly defined through sets and matrixes in
Table 4-5 in correspondence to CIBI vs. CVP general problem’s notation.

Table 4-5: Terminology and Notation of Modeling Framework

Terminology General Notation Correspondence to CIBI vs CVP
(general problem) Notation

Design (pattern) combination under
comparison di ∈ D|items| di ∈ D={CVP, CIBI}

Initial Design Attributes (of specific
problem) li ∈ L|items| li ∈ L={N, M}

Structural (method, class) aspect ai ∈ A|items| ai ∈ A={am, ac}
Maintenance (change) scenario type si ∈ S|items| si ∈ S={ne, np}
Individual scenario probability pi ∈ P|items| pi ∈ P={pnP, pnE}
Change rate of Design Attributes per
Scenario fi,j ∈ F|L|x|S|

fi,j ∈ F|L|x|S| =
{{1,0}, {0,1}}

Factor of each Design Attribute in
fundamental (single scenario/SMC) metric
equation (first degree polynomial expression
for each of |L| values, plus one constant
factors)

ki,j,m,n ∈ K|D|x|S|x|A|x(|L|+1)

ki,j,m,n∈K|D|x|S|x|A|x(|L|+1)=

{ { {{0,1,2},{0,1,2}},
{{1,0,0},{0,0,1}} },
{ {{0,1,0},{0,0,1}},
{{1,0,1},{1,0,1}} } }

Number of implemented maintenance
changes (scenarios) λ λ

Value of specific design attribute during λth
maintenance changes (scenarios) li(λ): li ∈ L|items| li(λ): li ∈ {N, M}

Single scenario (λ=1) effort for specific S, D,
L, and all A cm(di, l1, …, lg, sj, 1)=

∑(∑(𝑘𝑖,𝑗,𝑞,𝑔 ∙ 𝑙𝑔)

|𝐿|

𝑔=1

+ 𝑘𝑖,𝑗,𝑞,|𝐿|+1)

|𝐴|

𝑞=1

s1=ne → pnE=1 & pnP=0
s2=np → pnE=0 & pnP=1
cm(CVP,N,M,1,0,1),
cm(CVP,N,M,0,1,1),
cm(CIBI,N,M,1,0,1),
cm(CIBI,N,M,0,1,1)

Total (progressive) effort for specific λ, P, D,
L, and all S, A

cm(di, l1, …, lg, p1, …, pj, λ) cm(D, N, M ,pnE, pnP, λ)

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 82

More specifically, the set of design alternatives under comparison is represented by D
set. The initial values of each key design attribute are represented by L set. Furthermore,
the different structural aspects of the analysis are represented by the auxiliary A set. Each
structural aspect reflects a different type of affected code segment, such as method (am) and
class (ac) interventions. Respectively, the different types of major maintenance scenarios
are represented by the auxiliary (S) set. The values of the individual probabilities for each
scenario type are represented by P set. The change impact of each scenario type on each
design attribute is represented by F set. The F set is a matrix of which the dimensions are
related to the product of lengths of L and S sets, or else |L|x|S|. Thus, the number of F row
represents the related number of design attributes of L set, and the number of F column
represents the related number of maintenance scenario of S set. For instance, the first value
of F set or F[1,1]=1 reflects the increment by one of the 1st element or design attribute in L
set or L[1]={N} during the application of the 1st element or new element scenario of S set
or S[1]= {ne}. The values of weight-factors that affect each design attribute (L) for each
specific structural aspect (A), scenario type (S), and design combination (D) are
represented by K set. The K set is a matrix of which the dimensions are related to the
product of lengths of D, S, A, and L sets, or else |D|x|S|x|A|x|L|+1. For instance, the first
element of K set reflects the weight-factor that affects the CVP design combination, during
a new element (ne) scenario application, about the structural aspect of method
interventions (am), for the design attribute of composition’s elements (N). The values of
these weight-factors (K) combined with the initial values of the design attributes (L) define
the fundamental (SMC) metric equations (cm) that express the required effort of a specific
scenario type (S) and design combination (D) for a single scenario application (λ=1).

Notice that the fundamental (SMC) metric equations (cm) are defined as first-degree
polynomial expressions for each of the design attribute factors (L) plus one constant factor.
The constant factor is represented by the extra last value of K set. Thus, in the case where
other independent variables, not necessarily design attributes, should be added to the
model, they could be inserted in L set. In addition, if some of those attributes (L) are
affected by different weight in (SMC) metric equations, this could be inserted into the
weight-factors’ (K) set. An interesting example of different weights on attributes of SMC
metric is presented in subsection 3.9.2 as an extension example. However, even if SMC is
expressed through another type of equation, this framework provides a sufficient general
description and template for any further adaptation.

The two levels of the differential analysis and integration are formulated by presenting
their change rate differential expressions and the derived outcome of each level, as
presented in Table 4-6. In the first row, the evolution of design attributes’ values (L) is
analyzed by stating their change rates per scenario application. Thus, the change rate of
each design attribute is expressed by multiplying individual scenario probabilities (P) and
their related impact-weight (F) for all scenario’s types (S). Consequently, the derived
equations li(λ) express the expected value of each design attribute after any number (λ) of
scenario applications. In the second row in Table 4-6, the evolution of scenario size is
analyzed by stating their change rates per scenario application. Thus, the change rate of
scenarios’ size is expressed by multiplying individual design attributes (L) and their related
weight-factors (K) for all attributes (L), and all structural aspects (A), also probability-
weighted through (P), and for all scenario’s types (S). Consequently, the derived equations
cm(…,λ) express the total progressive or expected value of maintenance effort/size for each
design alternative (D) after any number (λ) of scenario applications. Finally, the
selection/decision is derived from the minimum total progressive effort, as typically
expressed by the equation (4-14).

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 83

Table 4-6: Modeling Framework of Differential Analysis and Comparison Model
Generation

Level of analysis Engaged SMC
metric

Change rate differential expression Derived Outcome

Design attribute evolution

∀ li ∈ L|items|

𝑑𝑙𝑖
𝑑𝜆
=∑𝑝𝑗 ∙ 𝑓𝑖,𝑗

|𝑆|

𝑗=1

 𝑙𝑖(𝜆)

Scenario size evolution

Total progressive
maintenance

size/effort
∀ di ∈ D|items|

cm(di, l1, …, lg, sj, 1)

𝑑𝑐𝑖
𝑑𝜆
=∑(𝑝𝑗 ∙ 𝑐𝑚(𝑑𝑖 , 𝐿, 𝑠𝑗 , 1))

|𝑆|

𝑗=1

=

=∑(𝑝𝑗∑(∑(𝑘𝑖,𝑗,𝑞,𝑔 ∙ 𝑙𝑔(𝜆))

|𝐿|

𝑔=1

+ 𝑘𝑖,𝑗,𝑞,|𝐿|+1)

|𝐴|

𝑞=1

)

|𝑆|

𝑗=1

𝑐𝑚 (
𝑑𝑖 , 𝑙1,… , 𝑙𝑔 ,

𝑝1, … , 𝑝𝑗 , 𝜆
)

Although the presented framework of analysis seems to be complicated, its
implementation through software (e.g., MATLAB®, MS Mathematics) is rather a regular
task. In general, solving a differential equation is not always an easy matter. Still, for the

simple first-order form y’=f(λ) used in the proposed modeling method framework, an

explicit solution can be easily derived through integration in both sides of each differential
equation, as supported by calculus theory in (Stewart, 2015).

min∀di∈D {∫ (∑(𝑝𝑗∑(∑(𝑘𝑖,𝑗,𝑞,𝑔∫ (∑𝑝𝑔 ∙ 𝑓𝑔,𝑣

|𝑆|

𝑣=1

)
𝜆

𝑡2=0

𝑑𝑡2)

|𝐿|

𝑔=1

+ 𝑘𝑖,𝑗,𝑞,|𝐿|+1)

|𝐴|

𝑞=1

)

|𝑆|

𝑗=1

)
𝜆

𝑡1=0

𝑑𝑡1} (4-14)

4.4.2 Framework Implementation on General Problems using MATLAB®

In this subsection, an indicative (dynamic) implementation of the framework using

MATLAB® is presented in Code A.1 of Appendix A. The code is adapted to CIBI vs. CVP

general problem to be meaningful and help the researcher towards further adaptations. In
Listing 4-1, the parameters of the CIBI vs. CVP general problem are loaded to the sets and
matrixes of the proposed modeling framework. Each level of the differential analysis
presented in Table 4-6 has been implemented into separate code segments. By running the
script, several intermediate differential expressions are formed and solved. Furthermore,
all the formal model’s equations are dynamically generated and stored in several
expressions and function types supported by MATLAB® environment. These dynamic
functions can be further used for massively computations for any combination of the
independent variables, producing useful data sheets and graphs. All the presented code has
been tested on MATLAB® R2016a version.

Listing 4-1: Loading CIBI vs CVP general problem to MatLab Modeling Framework

1. % Data describing (general) comparison problem (CIBI vs CVP) and fundamental (SMC) metric analysis

2. % In this section, different or alternate problems should be described

3. D = {'CVP','CIBI'}; % tags of Design combinations under comparison

4. L_tags = {'N','M'}; % tags of design attributes: N initial elements, M initial operations

5. A = {'Method aspect', 'Class aspect'}; % tags of Structural aspects

6. S = {'nE', 'nP'}; % tags of Types of maintenance scenarios: nE new composition element, nP new operation

7. F = [1 0; 0 1]; % N:+1 and M:+0 for nE, N:+0 and M:+1 for nP (change rates of affected design attributes for each scenario type |S|x|L|)

8. % SMC metric factors on design attributes L, for each design combination D, scenario S, and aspect A are stated in K array

9. K = zeros([size(D,2) size(S,2) size(A,2) size(L_tags,2)+1]); % creates empty matrix with dimensions: |D|x|S|x|A|x|L|+1

10. % method class (structural aspects)

11. % D S N M - N M -

12. K(1,1,:,:) = [0 1 2 ; 0 1 2]; % on CVP for a nE : totally 0N+1M+0 method + 0N+1M+0 class interventions = 2(M+2)

13. K(1,2,:,:) = [1 0 0 ; 0 0 1]; % on CVP for a nP : totally 1N+0M+0 method + 0N+0M+1 class interventions = N+1

14. % --

15. K(2,1,:,:) = [0 1 0 ; 0 0 1]; % on CIBI for a nE : totally 0N+1M+0 method + 0N+0M+1 class interventions = M+1

16. K(2,2,:,:) = [1 0 1 ; 1 0 1]; % on CIBI for a nP : totally 1N+0M+0 method + 1N+0M+0 class interventions = 2(N+1)

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 84

4.4.3 Graph Generation and Decision-Making for Specific Practical Systems
using MATLAB®

In this subsection, the generated expressions and dynamic functions produced by the
previous code are used for decision-making support among design alternatives in Code A.2
of Appendix A. More specifically, any possible combination of initial design attribute values
and their individual probabilities, describing a specific and practical system
implementation (e.g., Compiler, Interpreter/DSL, GUI), can be provided through the
parameter sets L and P. Next, the example of plotting code can draw meaningful graphs to
support decision-making. Notice that the plotting code has been parameterized based on
set matrices, and thus it is common and reusable for any set of parameters.

In Listing 4-2, the design attributes (N=40, M=10) and scenario’s probabilities
(pmE=pnP=0.5) of the Interpreter implementation which represents an instance of the CIBI
vs. CVP general problem, are loaded to the sets and matrixes of the proposed modeling
framework. Then, the symbolic functions named ‘FM_cost_D_f’, dynamically generated
by the modeling framework, are used for the estimation of required effort per design
alternative and for different values of scenario’s applications (λ). For example, the function
call ‘FM_cost_D_f{1}(40, 10, 0.5, 0.5,80)’ returns the total required effort for the 1st design
alternative (i.e., CVP), with specific design attributes (i.e., N=40, M=10) and scenario’s
probabilities (i.e., pmE=pnP=0.5), after the application of a certain (λ=80) number of
scenarios. Respectively, the decision-making code for the tow similar frameworks adapted
to the extended general designing problems are presented in Code B.1,2 and C.1,2 of
Appendix A.

Listing 4-2: Loading Interpreter characteristics to MatLab Modeling Framework

4.4.4 Formal Model Application in Examples of Practical Specific Problems

After the formal model has been derived, it can be easily used to repeatedly support
decision-making for any attribute set of a specific system. Alternatively, each formal model
is a parametric solution of the general problem under study. Furthermore, the (indicative)

dynamic implementation of the framework in MATLAB®, provided online in (Karanikolas

et al., n.d.-b), can be used for generating the formal models and creating meaningful
diagrams of the required effort for different λ values. In addition, the derived formal model,
as general and reusable, can be integrated into the company’s quality policy for future use
in similar projects as illustrated in Figure 1-3. As an application example, the derived
formal model is applied to the practical examples of an Interpreter implementation
(presented in Table 1-1 and Table 4-1), and a Graphic User Interface (GUI)
implementation (presented in Table 1-1). The initial values of the design attributes (N, M,
pnE, pnP) for each practical example are referred in the title of each graph in Figure 4-6.

17. % Data (design attributes) derived from specifications of a specific system (instance of general problem)

18. % In this section, the design attributes of a specific system are placed (multiple attributes can be declared as arrays)

19. L = [40 10]; % initial values of design attributes N and M

20. P = [0.5 0.5]; % individual probabilities of each scenario type |S|

21. %%====PLOTTING CODE ===

22. lt = 5:5:100; % declares the array of the interval of interest

23. merged_parameters_values = {}; % merges L(i) and P(i) values of parameters in a single array of cells

24. for i=[1:size(L_tags,2)]

25. merged_parameters_values{i} = L(i);

26. end

27. for i=[1:size(P,2)]

28. merged_parameters_values{size(L_tags,2)+i} = P(i);

29. end

30. % merged_parameters_values are aligned according to FM_cost_D_f symbolic function's declaration

31. % Uses the FM_cost_D_f symbolic function (returning an array of computations for all D) and computes total effort for λ=[5:5:100]

32. for i=[1:20]

33. G_lines(i,:) = FM_cost_D_f(merged_parameters_values{:}, i*5);

34. end

35. % adds different lines for each design combination D

36. plot (lt, G_lines, 'MarkerSize',4,'Marker','square');

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 85

The generated diagrams in Figure 4-6 indicate that CVP design combination is
preferred in the case of Interpreter implementation, since it requires less effort during
maintenance for any number of scenario applications or λ value. Respectively, CIBI design
combination is preferred in the case of GUI implementation, thus proper design
combination depends on the specific characteristics or design attributes of a particular
instance of the general problem. Consequently, the selection’s outcome is not about that
one design alternative is generally superior of some others, but instead, the most beneficial
design alternative variates and depends on the model’s parameters (design attributes and
scenarios probabilities). Thus, it is very difficult to make such complex decisions based on
real-world experience. Furthermore, the long-term gain, between CVP and CIBI required
effort, exceeds 20% of optimum (minimum) effort for all implementations, highlighting the
beneficial contribution of the formal model to the decision-making process.

Given that the derived formal models are easily reusable in a general family of common
problems, preventing significant loses in terms of maintenance effort; the future benefits
of the proposed technique outweigh its analysis cost. A more detailed and formal
justification about the maximum allowed derivation cost of Formal comparison Models is
presented following subsection.

4.4.5 Justification of Formal Model’s Derivation Cost

One critical issue that should be addressed is whether the long-run benefits from the
repeated implementation of a formal model to specific instances of a general designing
problem justifies or exceeds its initial derivation cost. From a company’s perspective, the
formal model’s derivation cost is an investment. The long-run benefits from the
implementation of that formal model are the investment’s return. Typically, the evaluation
of such investments can be assessed through standard financial methods and measures
such as Net Present Value (NPV) and Internal Rate of Return (IRR). However, a simpler
formula for finding the relation between initial model’s derivation cost and long-term
benefits (return) is suggested in (Bass et al., 2012) and presented in Table 4-7.

Table 4-7: Formula for Finding the Relation Between Initial Model’s Derivation Cost and
Long-Term Benefits (Return)

Description of Factor Notation / Equation
The number of possible design decisions among competing design
alternatives for different and specific systems for a general designing
problem

Ndes

Figure 4-6: Results of the application of the Formal comparison Model on the
practical examples of Interpreter, and Graphic User Inter-face (GUI), specific

problems as instances of CVP vs. CIBI general problem.

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 86

Description of Factor Notation / Equation
 The more general and significant the problem the higher the
possible number of design decisions for different instances (systems)
of the general designing problem
The average lifetime cost of those different and specific systems
 at least 60% of software life-time cost is about maintenance cost
until their retirement as suggested by real case evidence

Lcost

Mcost = 0.6 * Lcost

The (one-time) derivation cost of the formal models (through the
proposed modeling method) for the particular (general) designing
problem

Dcost

The cost of making a design decision for a particular system by using
the derived formal models (implementation cost)
 usually is very small since the derived equations of the formal
model return the estimated long-term effort per design alternative
only through a single computation , thus tends to zero

Icost → 0

The possibility of making the right (most maintainable)
selection/decision among design alternatives based on developers’
experience or intuition

Prdes

The average portion of wasted effort against the optimal maintenance
cost (Mcost) in case of a wrong decision-making
 approximated to at least 30% of systems’ maintenance cost as
suggested by the evidence of the study

Pweffort = 0.3

The average negative impact of making a design decision for a
particular system by not using the derived formal models, usually
through experience or intuition
 is related to the average amount of wasted effort in case of a wrong
decision-making (Experience based cost)
 depends on the possibility of making a wrong decision (1-Prdes)

Ecost =
Pweffort * Mcost * (1-Prdes) =
Pweffort * 0.6 * Lcost * (1-Prdes) =
0.3 * 0.6 * Lcost * (1-Prdes) =
0.18 * Lcost * (1-Prdes)

The relation that justifies a formal method to support decision-making
among alternatives for a particular general designing problem
 the average negative impact per decision-making multiplied by the
number of possible design decisions should be exceeds the initial
(one-time) derivation cost of the formal models plus the
implementation cost multiplied by the number of possible design
decisions

Ndes*Ecost > Dcost + Ndes * Icost →

Ndes*Ecost > Dcost + Ndes * 0 →
Ndes*Ecost > Dcost →

Dcost < Ndes * Ecost →
Dcost < Ndes * 0.18 * Lcost * (1-Prdes)

Example of the relation (pessimistic assumption)
 experienced developers with portability Prdes = 66% to take the
right decision based on their experience or intuition
 small software life-cycle cost of Lcost = 20000$
 small number of formal model’s implementations to specific
systems, Ndes=5

Dcost < Ndes * 0.18 * Lcost * (1-Prdes) →

Dcost < 5 * 0.18 * 20000$ * (1-0.66) →

Dcost < 6.000$

Example of the relation (realistic-regular assumption)
 experienced developers with portability Prdes = 66% to take the
right decision based on their experience or intuition
 software life-cycle cost of Lcost = 100000$
 number of formal model’s implementations to specific systems,
Ndes=20

Dcost < Ndes * 0.18 * Lcost * (1-Prdes) →

Dcost < 20 * 0.18 * 100000$ * (1-0.66)→

Dcost < 120.000$

According to the assumptions and definitions in Table 4-7, the relation that justifies
the initial derivation cost of formal models is given by the Equation (4-15). In particular,
the (one-time) derivation cost (Dcost) should be less than the product of the number of
possible design decisions (Ndes), the constant factor (0.18), the average lifetime cost of the
systems on which the decisions are made, and the probability of making a wrong decision
based on developers’ experience (1-Prdes). Thus, the higher the possibility of using the
model (Ndes) or the higher the average lifetime cost of the systems in which the model
applied (Lcost) or the lower the experience level of developers (Prdes), the higher the
allowed derivation cost of the formal model (Dcost). It is important that the difference
between the maximum allowed derivation cost obtained by the formula and the actual
derivation cost represents the net present value (NPV) or the extra profit as a result of the
use of the formal model.

𝐷𝑐𝑜𝑠𝑡 < 𝑁𝑑𝑒𝑠 ∗ 0.18 ∗ 𝐿𝑐𝑜𝑠𝑡 ∗ (1 − 𝑃𝑟𝑑𝑒𝑠) (4-15)

Referring to the first example in Table 4-7, even for the most pessimistic assumptions
of formula parameters, there is enough justification for analyzing and generating formal
models for general and significant design problems through the proposed modeling
method. For the more usual and realistic parameters in Table 4-7, there is no doubt about
the significant value and competitive advantage provided by the introduced modeling
method through the derived formal models.

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 87

4.5 Validation Evidence

The generated formal model for the comparison of CIBI vs. CVP general problem is
validated by many other theoretical and empirical studies in the literature. This proves the
validity of the proposed modeling method. More specifically, the argumentation of SMC
metrics in Table 4-3 provides sufficient theoretical background about SMC’s actual relation
to properties like code size, scattering degree, cohesion, coupling, etc., and thus to the
required effort or maintainability degree, as discussed in (Aloysius & Arockiam, 2013;
Aversano et al., 2009; Canfora et al., 2010; Hassan, 2009; Heitlager et al., 2007b;
Karanikolas et al., 2017; Riaz et al., 2009a). Furthermore, the SMC metric is in accordance
with other similar metrics such as the Evolution Complexity (Tom Mens & Eden, 2005)
and the Computational Complexity (Hills et al., 2011), as discussed in chapter 3. The
equations (4-8), (4-12), (4-13), and the application results in Figure 4-6 are also confirmed
by the quantitative analysis in chapter 3 in which computations for CIBI vs. CVP
comparison have been performed through a custom function. This function is available
online for demonstration purposes and further tests (Karanikolas, Dimitroulakos, &
Masselos, n.d.-a). Moreover, the permanently second-degree increased rate of equations
(4-8) and (4-12) is in accordance with Barry et al. (Barry et al., 2007) empirical validation
evidence, and Bakota et al. general prediction model (Bakota et al., 2012).

Furthermore, the SMC metrics focus on expansion scenarios and magnify the impact
of the relevant interventions concerning critical characteristics of modifiability such as
coupling and cohesion among code segments of logical entities. This reasoning is prior
evidence of the method’s validity towards its main objective i.e., to compare design
alternatives with regards to their modifiability perspective.

Finally, taking into consideration the assumptions and characteristics of SMC metric
with regards to the common and neutral to decision-making factors, mentioned in
subsection 4.3.3, the following conclusions can be drawn. As the maintenance process
evolves, and despite the various stochastic and random factors affecting it, the average
long-term effect of these factors would be eventually negligible, and thus the predictions of
the required effort are increasingly driven by the standard and recurring structural
behavior of the used design patterns. Hence, the proposed approach aims at eliminating
transitory and biased factors to enhance mid-to-long-term predictive ability and selection
accuracy.

4.6 Conclusions

4.6.1 General Requirements and Limitations

The proposed modeling method is mainly useful for comparing design alternatives that
solve the same general problem using different design approaches. Thus, absolute
maintenance cost assessments or effort estimations for individual design implementations
are out of the scope of the proposed approach. In any case, the proposed method is suitable
only for modeling design alternatives of important families (classes) of problems which
also have a dominant impact on the overall maintainability of the system.

Furthermore, the proposed formal method is (by definition) focused on maximizing
the potential for being general over different instances of a given general problem.
However, formal methods usually suffer from lack of realism of context and precision of
measurements, as stressed in (Stol & Fitzgerald, 2018). Ideally, actual observations from
field experiments or case studies that maximize the potential for realism of context would
be preferable for validation purposes. Nevertheless, in real life, finding identical actual
systems with common design attributes, developed in different design variations is almost
impossible. Additionally, the number of recorded observations is very limited per case
study, using heterogeneous metrics, and unevenly conducted through literature. Thus, they
are not statistically meaningful, heavily limiting the generalization of inferences, as pointed
in (Langdon et al., 2016; Shepperd & MacDonell, 2012). Moreover, developer-related

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 88

aspects, such as experience level and learning rate are also ignored by the method since
they are heavily biased (human-related) factors hard to be assessed and measured. Because
of all these reasons, there is no easy way to determine the accuracy of the method referred
to possible wrong decisions. This is a standard concern with regards to validity since the
attempt to validate the method based on a limited number and dissimilar case studies may
increase realism of context while sacrificing generalizability which should be the method’s
primary focus. A possible solution to this issue may be the simulation of system’s structural
evolution for different design alternatives to produce adequate number of homogenous
observations and measurements towards a statistical validation. These issues and
potentials are explored in Chapter 6 through an intensive experimentation process.

4.6.2 Extensions and Further Research

The proposed modeling method can be used to support different tools, including aspect-
oriented programming tools that generate source code (Völter, 2003), templates or
libraries from a higher-level language to evaluate appropriate design pattern combinations.
Furthermore, the generated formal models can be used as fitness functions (effort
estimators) for optimization problems or design space exploration (seeking for optimal
design solution among many alternatives) solved through heuristic algorithms such as
genetic algorithms (Clarke et al., 2003). Under this perspective, the proposed modeling
method and the generated formal models can be used in by refactoring tools and
techniques for UML diagrams and design patterns such as those discussed in (Jahnke &
Zündorf, 1997; T. Mens & Tourwe, 2001), as proposed in (T. Mens & Tourwe, 2004).

The provided modeling framework can be used for analyzing alternate general and
significant design problems in software engineering. For example, many significant
variations or extensions of the general problem of part-whole representations can be
considered by attaching other well-known design patterns such as Decorator, Observer,
Mediator, Abstract Factory, and Prototype. All these potentials are discussed in Chapter 5.

Furthermore, a promising perspective of the proposed modeling method is towards
supporting decision-making among design alternatives even under full or partial
uncertainty (e.g., for the whole range or for an interval of scenarios’ probabilities). In this
case, decision criteria such as minimization of wasted effort in the worst case or
maximization of gained effort in the optimal case can be supported by the derived equations
through further integration on probabilities’ factors (e.g., pnE, pnP). Similarly, decision-
making can be amplified through the horizon analysis technique. That is, forecasting the
realized effort over various maintaining periods or horizons where each period has different
scenarios’ probabilities. Under this perspective, even the development process can be
considered as a preliminary maintenance period. Horizon analysis opens a whole spectrum
of different aspects and criteria such as investing, economic, and financing, regarding the
evaluation and selection among design alternatives for various sub-periods of software
lifecycle. In these ways the proposed framework is extended to even more realistic settings
as demonstrated in Chapter 7.

4.6.3 Overall Assessment

Software architecture design includes several decisions with significant impact on the
pursued quality attributes. Decisions made during software architecture design also heavily
affect maintainability and modifiability of software and the relevant time and effort. Due to
software complexity, decisions made by experienced developers lead to suboptimal results.
The proposed modeling method generates probabilistic comparison models that estimate
maintainability of object-oriented design alternatives through effort predictions in a formal
and deterministic way. This approach limits the ambiguity imposed by the stochastic
nature of the maintenance process.

The theoretical foundation of the proposed modeling method and the results of
relevant works provide strong evidence that the derived formal models provide reliable

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 89

estimations of the expected effort. Thus, decisions concerning design alternatives exhibit
very limited selection-risk, avoiding significant amounts of wasted maintenance effort.
Methods that yield such formal, general, and reusable models can help engineers improve
the quality of their decision-making and develop more maintainable software.

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 90

5 Extended General Design Problems

5.1 Chapter Overview

In this chapter, the proposed modeling method, analyzed in chapter 3 and chapter 4, is
applied to three different extensions of the CVP vs CIBI general problem, assessing its
applicability to even more realistic settings. In particular, the established design patterns
of Decorator, Mediator, Observer, Abstract Factory, and Prototype have been engaged and
modeled. In addition, the generated formal models have been tested on several specific
instances of each general problem. Moreover, the exploration of almost the entire design
space of each general problem through samples of one thousand sets of their parameters
has been attempted. The results prove that the proposed modeling theory and derived
formal models can efficiently support decision-making among design alternatives, leading
to considerable reduction of the maintenance effort that lies between 25% and 90% of the
optimal required effort.

More specifically, the proposed modeling method is applied to three important general
problems in the field of object-oriented design. Each of these problems is an extension of
the basic CVP vs CIBI problem, altering its applicability to even more complex and realistic
settings. The new general problems incorporate the well-known object-oriented design
patterns of Decorator, Mediator, Observer, Abstract Factory, and Prototype, introduced by
Gamma et al. (Gamma et al., 1994). These patterns are frequently combined with the
Composite and Visitor design patterns to enhance their functionality (e.g., by providing on
demand additional functionality on elements, synchronizing communication, and
coordination among elements through common interface, instantiating additional families
of elements, etc.). Thus, such design patterns are significant and widely used in the filled
of software engineering. Since many of these design patterns are affected by major
maintenance scenarios in complex and conflicting ways, the proposed modeling method
derives appropriate formal models that resolve conflicting issues and tradeoffs to support
early decision-making among different design alternatives.

The context of this chapter is based on the on the motivation examples in chapter 1,
the significant design problem of part-whole representations in chapter 3, and the
modelling method and framework presented in chapter 4. The rest of this chapter is
organized as follows. Subsection 5.2 attaches and evaluates the Decorator design pattern.
Subsection 5.3 attaches and evaluates the Mediator and Observer design patterns.
Subsection 5.4 attaches and evaluates the Abstract Factory and Prototype design patterns.
Subsection 5.5 evaluates the initial design problem of part-whole representations.
Subsection 5.6 summarizes the contribution evidence of the modeling method. Finally, in
subsection 5.7, the validity challenges, limitations, future research issues, and conclusions
are presented.

5.2 Attaching Decorator Design Pattern

5.2.1 Problem Description

In this subsection, an extension of the CIBI vs. CVP problem is discussed by attaching the
Decorator design pattern. A conceptual UML diagram of the new problem and the
response measures or SMC metrics per maintenance scenario, are presented in Figure 5-1.
More specifically, the Composite (CP) design pattern is often combined with the Decorator
(DP) design pattern (Gamma et al., 1994). DP design pattern allows extending the
functionality of CP concrete elements, during run-time, against the costly alternative of
sub-classing existing CP elements. This situation is very common, especially for GUI
implementations where several extra (on demand) functionalities or responsibilities can be
attached in a graphical component during run-time. Each Decorator instance can be
dynamically linked to a concrete CP element directly or through recursive calls in a chain

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 91

of several nested Decorators. Thus, DP is placed as an abstract sub-class into CP, which is
further analyzed to several concrete decorators’ sub-classes, implementing the required
responsibilities. Hence, from the Decorator pattern perspective, a composite is a concrete
component. Respectively, from the Composite’s pattern perspective each decorator is part
of its hierarchy, similar to a concrete CP element with a common interface. Furthermore,
each Decorator usually contains the same operations, which can be also implemented
through the Visitor design pattern (as CVP-DP combination versus the straight
inheritance-based implementation (CIBI-DP)). Thus, in this case, two alternative design
combinations arise (CVP-DP, CIBI-DP).

The selection between these alternatives can be supported by the introduced modeling
method in chapters 3 and 4. The key design attributes are enhanced as N, M, and D for the
initial number of decorators. Furthermore, major maintenance scenarios and their
probabilities are enhanced as pnE, pnP, and pnD for adding a new decorator. Using the
response measures or SMC metrics in Figure 5-1, the new problem can be easily
formulated through the provided modeling method framework in subsection 4.4.

5.2.2 Derivation of Effort Measurements and Formal Models

A (dynamic) formal model generation for the new problem through the modeling method
framework using MATLAB® code is available online in (Karanikolas et al., n.d.-b) and
discussed in subsection 4.4. In addition, the modeling framework adapted to the extended
with the Decorator design pattern CIBI-DP vs. CVP-DP general designing problem is
presented in Code B.1 of Appendix A. In Listing 5-1, the parameters of the CIBI-DP vs.
CVP-DP general problem are loaded to the sets and matrixes of the proposed modeling
framework.

Figure 5-1: Conceptual UML class-diagram of CIBI-DP vs CVP-DP design

combinations.

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 92

Listing 5-1: Loading CIBI-DP vs. CVP-DP general problem to MatLab Modeling Framework

The macro generates one formal model equation for each alternative design
combination and produces its results as a single graph for specific design attributes and
scenarios’ probabilities. More specifically, the generated formal models are returned in the
form of the symbolic expression cost_DSAL(D) where D={CVP-DP, CIBI-DP}. Thus, the
total required effort for CVP-DP design alternative is given by the equation (5-1).

𝑐(𝜆)𝐶𝑉𝑃−𝐷𝑃 =

3

2
∙ 𝑝𝑛𝑃 ∙ (𝑝𝑛𝐷 + 𝑝𝑛𝐸) ∙ 𝜆

2 +

(𝑝𝑛𝑃 + 2 ∙ 𝑝𝑛𝐷 ∙ (𝑀 + 2) + 2 ∙ 𝑝𝑛𝐸 ∙ (𝑀 + 2) + 𝑝𝑛𝑃 ∙ (𝐷 + 𝑁))𝜆

(5-1)

Respectively, the total required effort for CIBI-DP design alternative is given by the
equation (5-2).

𝑐(𝜆)𝐶𝐼𝐵𝐼−𝐷𝑃 =

3

2
∙ 𝑝𝑛𝑃 ∙ (𝑝𝑛𝐷 + 𝑝𝑛𝐸) ∙ 𝜆

2 +

(𝑝𝑛𝐷 + 𝑝𝑛𝐸 + 4 ∙ 𝑝𝑛𝑃 + 2 ∙ 𝐷 ∙ 𝑝𝑛𝑃 +𝑀 ∙ 𝑝𝑛𝐷 +𝑀 ∙ 𝑝𝑛𝐸 + 2 ∙ 𝑁 ∙ 𝑝𝑛𝑃)𝜆

(5-2)

Using these equations, the selection of the most maintainable design combination for
any number of future scenario’s interventions (λ) can be supported.

5.2.3 Formal Model Application in Examples of Practical Specific Problems

As an application example, consider a GUI system with the following initial design
attributes and scenario probabilities {N=15, M=14, D=14} and {pnE=0.1, pnP=0.8,
pnD=0.1}. For this specific system, the CVP-DP design combination is preferable since it is
the most maintainable, requiring the lowest effort, as indicated by the outcome in Figure
5-2. Respectively, in the case of different probabilities e.g. {pnE=0.4, pnP=0.2, pnD=0.4}, the
CIBI-DP design combination is preferable. Once more, it is important that the long-run
difference, between the optimum (less effort) and the worst (higher effort) design options,
exceeds 20% of optimum effort, which is a considerable amount of effort.

37. % Data describing (general, extended) comparison problem CIBI_DP vs CVP_DP and fundamental (SMC) metric analysis

38. % In this section, different or alternate problems should be described

39. D = { 'CVP-DP','CIBI-DP' }; % tags of Design comb. under comparison

40. L_tags = {'N','M', 'D'}; % tags of design attributes: N initial elements, M initial operations, and V initial decorators

41. A = {'Method aspect', 'Class aspect'}; % tags of Structural aspects

42. S = {'nE', 'nP','nD'}; % Types of maintenance scenarios: nE new composition element, nP new operation, nDE new decorator element,

nDP new decorator operation

43. F = [1 0 0 ; 0 1 0; 0 0 1]; % N:+1 M:+0 D:+0 for nE, N:+0 and M:+1 D:+0 for nP, N:+0 M:+0 D:+1 for nD (change rates of affected design

attributes for each scenario type |S|x|L|)

44. % SMC metric factors on design attributes L, for each design combination D, scenario S, and aspect A are stated in K array

45. K = zeros([size(D,2) size(S,2) size(A,2) size(L_tags,2)+1]); %creates empty matrix dimensions: |D|x|S|x|A|x|L|+1

46. % method class (structural aspects)

47. % D S N M D - N M D -

48. K(1,1,:,:) = [0 1 0 2; 0 1 0 2]; %CVP-DP for nE: 0N+1M+0D+2 method + 0N+1M+0D+2 class = 2(M+2)

49. K(1,2,:,:) = [1 0 1 0; 0 0 0 1]; %CVP-DP for nP: 1N+0M+1D+0 method + 0N+0M+1D+1 class = N+D+1

50. K(1,3,:,:) = [0 1 0 2; 0 1 0 2]; %CVP-DP for nD: 0N+1M+0D+2 method + 0N+1M+0D+2 class = 2(M+2)

51. % --

52. K(2,1,:,:) = [0 1 0 0; 0 0 0 1]; %CIBI-DP for nE: 0N+1M+0D+0 method + 0N+0M+0D+1 class = M+1

53. K(2,2,:,:) = [1 0 1 2; 1 0 1 2]; %CIBI-DP for nP: 1N+0M+1D+2 method + 1N+0M+1D+2 class = 2(N+1)+2(D+1)

54. K(2,3,:,:) = [0 1 0 0; 0 0 0 1]; %CIBI-DP for nD: 0N+1M+0D+0 method + 0N+0M+0V+1 class = M+1

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 93

5.2.4 Average Rate of Gained or Avoided Wasted Effort

In this subsection, the exploration of almost the entire design space of CIBI-DP vs. CVP-
DP general problem is attempted. A sample of one thousand sets of parameters has been
randomly selected through a random generator of uniform distributions. The range for
each problem’s variable was defined as N=[20, …, 250], M=[5, …, 150], D=[2, …, 100],
pnE=[0.1, …, 0.9], pnP=[0.09, …, rest to 1], pnD=[0.01, …, rest to 1]. The derived formal
models have been used for the estimation of the required maintenance effort per design
alternative (i.e., CIBI-DP, CVP-DP) as well as their difference. Based on these values, the
rate of the gained or the avoided wasted effort has been computed for each of the sample’s
instances. This rate is equal to the maximum minus the minimum (max(CIBI-DP, CVP-
DP)-min(CIBI-DP, CVP-DP)) divided by the minimum (min(CIBI-DP, CVP-DP)) of the
required effort among all design alternatives. The average of these values for all sample’s
instances gives the average gained or the avoided wasted effort of almost the entire design
space of CIBI-DP vs. CVP-DP general problem. Figure 5-3 presents boxplots of all the
frequency distributions of problem’s parameters for all sample’s instances.

The results in Figure 5-3 provide two major inferences. Firstly, the distribution of the
difference of effort estimations among design alternatives shows that CIBI-DP design
alternative is preferrable for approximately 55% of sample’s instances against the CVP-DP
design alternative which is preferrable for the rest 45%. This highlights how much
ambiguous and difficult is the decision-making process of CIBI-DP vs. CVP-DP general
problem. Secondly, the mean or the average of the gained or avoided wasted effort is

Figure 5-2: Results of the application of the Formal comparison Model on the

practical examples of Graphic User Interface (GUI) specific problems as instances of
CVP-DP vs. CIBI-DP general problem.

Figure 5-3: Box plots of frequency distributions of sample’s instances, concerning all

the parameters of CIBI-DP vs. CVP-DP general problem

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 94

approximately equal to 30%, while the half of the sample’s instances lie from 15% to 45%.
This highlights the overall beneficial contribution of the proposed modeling theory and
derived formal models in terms of avoided wasted effort, concerning the CIBI-DP vs. CVP-
DP general problem.

5.3 Attaching Mediator and Observer Design Patterns

5.3.1 Problem Description

In this subsection, an alternate extension of the CIBI vs. CVP problem is discussed by
attaching the Mediator and Observer design patterns. The Composite (CP) design pattern
is often combined with the Mediator (MP) design pattern. MP design pattern defines an
object (e.g., concrete mediator) that encapsulates or hardcodes the way in which a set of
objects (e.g., CP elements) interact. Mediator promotes loose coupling by blocking objects
from referring to each other explicitly. Furthermore it allows changing their interaction
independently, as analyzed in (Gamma et al., 1994) and presented in Figure 5-4.

A similar alternative to Mediator pattern is the Observer (OP) design pattern. OP

design pattern defines a one-to-many dependency among objects (e.g. CP elements) so that
when one object changes state, all its dependents are notified and updated automatically,
as analyzed in (Gamma et al., 1994) and presented in Figure 5-5. In OP, the way a set of
objects interact is encapsulated or hardcoded in an external, separate code entity. The
selection between MP and OP is not only relevant on the low-level object-oriented design.
It is still relevant in high-level architectural design, dealing with communication,
interfacing, and coordination issues among system's sub-modules and components
including legacy code. At the same time, the interacting objects may be implemented by
the Composition design pattern (CP), the operations of which can be implemented through
CVP and CIBI design combinations, as discussed in the initial problem. Thus, in this case,
four alternative design combinations arise (CVP-MP, CIBI-MP, CVP-OP, CIBI-OP).

Figure 5-4: Conceptual UML class-diagram of CIBI-MP vs CVP-MP design

combinations.

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 95

The selection between these alternatives can be supported by the proposed modeling
method in chapters 3 and 4. The key design attributes are enhanced as N, M, and C or S
for the initial number of mediators or observers. Furthermore, the major maintenance
scenarios and their probabilities are enhanced as pnE, pnP, and pnM or pnO for adding a new
mediator or observer. Using the response measures or SMC metrics in Figure 5-4 and
Figure 5-5, the new problem can be easily formulated through the provided modeling
method framework in subsection 4.4.

5.3.2 Derivation of Effort Measurement and Formal Models

A (dynamic) formal model generation through the modeling method framework using
MATLAB® code is provided online (Karanikolas et al., n.d.-b) and discussed in subsection
4.4. In addition, the modeling framework adapted to the extended with the Mediator and
Observer design patents CIBI-MP vs. CVP-MP vs. CIBI-OP vs. CVP-OP general designing
problem is presented in Code C.1 of Appendix A. In Listing 5-2, the parameters of the
current general problem are loaded to the sets and matrixes of the proposed modeling
framework.

Figure 5-5: Conceptual UML class-diagram of CIBI-OP vs CVP-OP design

combinations.

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 96

Listing 5-2: Loading CIBI-MP vs CVP-MP vs CIBI-OP vs CVP-OP general problem to MatLab
Modeling Framework

The macro generates one formal model equation for each alternate design combination
and produces its results as a single graph for specific design attributes and scenarios’
probabilities. More specifically, the generated formal models are returned in the form of
the symbolic expression cost_DSAL(D) where D={CIBI-MP, CVP-MP, CIBI-OP, CVP-
OP}. Thus, the total required effort for CIBI-MP design alternative is given by the equation
(5-3).

𝑐(𝜆)𝐶𝐼𝐵𝐼−𝑀𝑃 =

2 ∙ 𝑝𝑛𝑀 + 3 ∙ 𝑝𝑛𝑃
2

∙ 𝑝𝑛𝐸 ∙ 𝜆
2 +

+(3 ∙ 𝑝𝑛𝐸 + 3 ∙ 𝑝𝑛𝑀 + 2 ∙ 𝑝𝑛𝑃 + 2 ∙ 𝐶 ∙ 𝑝𝑛𝐸 +𝑀 ∙ 𝑝𝑛𝐸 + 2 ∙ 𝑁 ∙ 𝑝𝑛𝑃)𝜆

(5-3)

Respectively, the total required effort for CVP-MP design alternative is given by the
equation (5-4).

𝑐(𝜆)𝐶𝑉𝑃−𝑀𝑃 =

2 ∙ 𝑝𝑛𝑀 + 3 ∙ 𝑝𝑛𝑃
2

∙ 𝑝𝑛𝐸 ∙ 𝜆
2 +

+(3 ∙ 𝑝𝑛𝑀 + 𝑝𝑛𝑃 +𝑁 ∙ 𝑝𝑛𝑃 + 2 ∙ 𝑝𝑛𝐸 ∙ (𝐶 + 𝑀 + 3))𝜆

(5-4)

The total required effort for CIBI-OP design alternative is given by the equation (5-5).

𝑐(𝜆)𝐶𝐼𝐵𝐼−𝑂𝑃 =

3

2
∙ 𝑝𝑛𝐸 ∙ 𝑝𝑛𝑃 ∙ 𝜆

2 + (4 ∙ 𝑝𝑛𝐸 + 5 ∙ 𝑝𝑛𝑀 + 2 ∙ 𝑝𝑛𝑃 +𝑀 ∙ 𝑝𝑛𝐸 + 2 ∙ 𝑁 ∙ 𝑝𝑛𝑃)𝜆

(5-5)

Finally, the total required effort for CVP-OP design alternative is given by the equation
(5-6).

𝑐(𝜆)𝐶𝑉𝑃−𝛰𝑃 = (5-6)

55. % Data describing (general, extended) comparison problem CIBI_MP vs CVP_MP vs CIBI_OP vs CVP_OP and fundamental (SMC) metric

analysis

56. % In this section, different or alternate problems should be described

57. D = { 'CIBI and MP','CVP and MP','CIBI and OP', 'CVP and OP' }; % tags of Design comb. under comparison

58. L_tags = {'N','M', 'C'}; % tags of design attributes: N initial elements, M initial operations, C initial mediators or observers

59. A = {'Method aspect', 'Class aspect'}; % tags of Structural aspects

60. S = {'nE', 'nP','nM'}; % Types of maintenance scenarios: nE new composition element, nP new operation, nM new mediator or observer

61. F = [1 0 0 ; 0 1 0; 0 0 1]; % N:+1 M:+0 C:+0 for nE, N:+0 M:+1 C:+0 for nP, N:+0 M:+0 C:+1 for nM (change rates of affected design

attributes for each scenario type |S|x|L|)

62. % SMC metric factors on design attributes L, for each design combination D, scenario S, and aspect A are stated in K array

63. K = zeros([size(D,2) size(S,2) size(A,2) size(L_tags,2)+1]); %creates empty matrix dimensions: |D|x|S|x|A|x|L|+1

64. % method class (structural aspects)

65. % D S N M C - N M C -

66. K(1,1,:,:) = [0 1 1 1; 0 0 1 2]; %CIBI-MP for nE: 0N+1M+1C+1 method + 0N+0M+1C+1 class = M+2C+3

67. K(1,2,:,:) = [1 0 0 1; 1 0 0 1]; %CIBI_MP for nP: 1N+0M+0C+1 method + 1N+0M+0C+1 class = 2(N+1)

68. K(1,3,:,:) = [0 0 0 2; 0 0 0 1]; %CIBI_MP for nM: 0N+0M+0C+2 method + 0N+0M+0C+1 class = 3

69. % --

70. K(2,1,:,:) = [0 1 1 3; 0 1 1 3]; %CIBI_MP for nE: 0N+1M+1C+3 method + 0N+1M+1C+3 class = 2M+2C+6

71. K(2,2,:,:) = [1 0 0 0; 0 0 0 1]; %CIBI_MP for nP: 1N+0M+0C+0 method + 0N+0M+0C+1 class = N+1

72. K(2,3,:,:) = [0 0 0 2; 0 0 0 1]; %CIBI_MP for nM: 0N+0M+0C+2 method + 0N+0M+0C+1 class = 3

73. % --

74. K(3,1,:,:) = [0 1 0 2; 0 0 0 2]; %CVP_OP for nE : 0N+1M+0C+2 method + 0N+0M+0C+2 class = M+4

75. K(3,2,:,:) = [1 0 0 1; 1 0 0 1]; %CVP_OP for nP : 1N+0M+0C+1 method + 1N+0M+0C+1 class = 2(N+1)

76. K(3,3,:,:) = [0 0 0 3; 0 0 0 2]; %CVP_OP for nM : 0N+0M+0C+3 method + 0N+0M+0C+2 class = 5

77. % --

78. K(4,1,:,:) = [0 1 0 4; 0 1 0 3]; %CVP_OP for nE : 0N+1M+0C+4 method + 0N+1M+0C+3 class = 2M+7

79. K(4,2,:,:) = [1 0 0 0; 0 0 0 1]; %CVP_OP for nP : 1N+0M+0C+0 method + 0N+0M+0C+1 class = N+1

80. K(4,3,:,:) = [0 0 0 3; 0 0 0 2]; %CVP_OP for nM : 0N+0M+0C+3 method + 0N+0M+0C+2 class = 5

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 97

3

2
∙ 𝑝𝑛𝐸 ∙ 𝑝𝑛𝑃 ∙ 𝜆

2 + (7 ∙ 𝑝𝑛𝐸 + 5 ∙ 𝑝𝑛𝑀 + 𝑝𝑛𝑃 + 2 ∙ 𝑀 ∙ 𝑝𝑛𝐸 + 𝑁 ∙ 𝑝𝑛𝑃)𝜆

Using these equations, the selection of the most maintainable design combination for
any number of future scenario’s interventions (λ) can be supported.

5.3.3 Formal Model Application in Examples of Practical Specific Problems

As an application example, consider a GUI system with the following initial design
attributes and scenario probabilities {N=15, M=14, C=10} and {pnE=0.5, pnP=0.2,
pnM=0.3}. For this specific case, the CIBI_OP design combination is preferable since it is
the most maintainable, requiring the lowest effort, as indicated by the results in Figure 5-6.
Respectively, in the case of different probabilities e.g. {pnE=0.1, pnP=0.2, pnM=0.7}, the CVP-
OP design combination is preferable. It is impressive that the long-run difference, between
the optimum (less effort) and worst (higher effort) design choices, exceeds almost by 100%
that of best section’s effort, which is a huge amount of effort.

5.3.4 Average Rate of Gained or Avoided Wasted Effort

In this subsection, the exploration of almost the entire design space of CVP-MP vs. CIBI-
MP vs. CVP-OP vs. CIBI-OP general problem is attempted. A sample of one thousand sets
of parameters has been randomly selected through a random generator of uniform
distributions. The range for each problem’s variable was defined as N=[20, …, 250], M=[5,
…, 150], C/S=[1, …, 100], pnE=[0.1, …, 0.9], pnP=[0.09, …, rest to 1], pnM/pnO =[0.01, …, rest
to 1]. The derived formal models have been used for the estimation of the required
maintenance effort per design alternative (i.e., CIBI-MP, CVP-MP, CIBI-OP, CVP-OP).
Based on these values, the rate of the gained or the avoided wasted effort has been
computed for each of the sample’s instances. This rate is equal to the maximum minus the
minimum values divided by the minimum value of the required effort among all design
alternatives. The average of these values for all sample’s instances gives the average gained
or the avoided wasted effort of almost the entire design space of CVP-MP vs. CIBI-MP vs.
CVP-OP vs. CIBI-OP general problem. Figure 5-7 presents boxplots of all the frequency
distributions of problem’s parameters for all sample’s instances.

Figure 5-6: Results of the application of the Formal comparison Model on the

practical examples of Graphic User Interface (GUI) specific problems as instances of
CVP-MP vs. CIBI-MP vs. CVP-OP vs. CIBI-OP general problem.

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 98

The results in Figure 5-7 provide some major inferences. Firstly, the distribution of the
effort estimations among design alternatives shows that CIBI-OP design alternative is
preferrable for approximately 51% of sample’s instances against the CVP-OP design
alternative which is preferrable for the rest 49%. Furthermore, the rest design alternatives
(CIBI-MP, CVP-MP) seems that they are never preferable approaching 0% of sample’s
instances. This is a direct indication that the Observer is generally superior to Mediator
design pattern in respect to their maintainability perspective. The equations (5-5) and
(5-6) provide an explanation since they are not dependent on C or S (initial number of
concrete subjects or observers) factor. In the Observer design pattern, all the required
adaptations related to existing of new subjects of observers are concentrated and
hardcoded in a single initialization method, as indicated in Figure 5-5. It seems that if there
is no other particular reason for using Mediator design pattern, it should be avoided as far
as concern its maintainability perspective in the context of the specific general problem.

However, the decision-making among the CIBI-OP and CVP-OP design alternatives
remains difficult. This highlights how much ambiguous and difficult is the decision-making
process of CVP-MP vs. CIBI-MP vs. CVP-OP vs. CIBI-OP general problem. Secondly, the
mean or the average of the gained or avoided wasted effort is approximately equal to 88%,
while the half of the sample’s instances lie from 60% to 110%. Even when the avoided
wasted effort is compared to the second-best solution, the average of the gained or avoided
wasted effort is approximately equal to 23%, while the half of the sample’s instances lie
from 10% to 30%. This highlights the overall beneficial contribution of the proposed
modeling theory and derived formal models in terms of avoided wasted effort, concerning
the MP vs. CIBI-MP vs. CVP-OP vs. CIBI-OP general problem.

5.4 Attaching Abstract Factory and Prototype Design Patterns

5.4.1 Problem Description

In this section, an alternative extension of the CIBI vs. CVP problem is discussed by
attaching the Abstract Factory and Prototype design patterns. In many real-life systems,
elements of part-whole aggregations, represented by Composite (CP) design pattern,
should be implemented in different variants or families to support multiple cases such as
look-and-feel standards with different appearances and behavior. The Abstract Factory
(AF) design pattern provides an interface for creating families of related or dependent
objects (e.g., CP elements) without specifying their concrete classes. AF allows loose
coupling by avoiding hardcoding the instantiation of family-specific objects. This makes
changing all object instantiations from a different family easy, as analyzed in (Gamma et
al., 1994) and presented in Figure 5-8.

Figure 5-7: Box plots of frequency distributions of sample’s instances, concerning all

the parameters of CIBI-DP vs. CVP-DP general problem

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 99

A similar alternative to Abstract Factory pattern is the Prototype (PT) design pattern.
PT design pattern specifies the families of objects (e.g. CP elements) to create using
prototype instances, and creates new objects by copying or cloning this prototypes, as
analyzed in (Gamma et al., 1994) and presented in Figure 5-9. In PT, the instantiation of
those family-specific prototype instances is encapsulated or hard-coded in a separate code
entity. Thus, in this case, four different alternative design combinations exist (CVP-AF,
CIBI-AF, CVP-PT, CIBI-PT).

The selection among which can be supported by the proposed modeling method in
chapters 3 and 4. The key design attributes are enhanced as N, M, and F for the initial
number of families of objects. Furthermore, the major maintenance scenarios and their
probabilities are enhanced as pnE, pnP, and pnF for adding a new family of objects. It should
be noted that usually the probability of a new family of objects is very small compared to
other more frequently appeared scenarios during maintenance. However, its impact on
system’s code is significant, requiring extensive interventions. Thus, it is an important
scenario that should be modeled. Using the response measures or SMC metrics in Figure
5-8 and Figure 5-9, the new problem can be formulated through the provided modeling
method framework in subsection 4.4.

Figure 5-8: Conceptual UML class-diagram of CIBI-AF vs CVP-AF design

combinations.

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 100

5.4.2 Derivation of Effort Measurement and Formal Models

The generated formal models are returned in the form of the symbolic expression
cost_DSAL(D) where D={CVP-AF, CIBI-AF, CVP-PT, CIBI-PT}. Thus, the total required
effort for CVP-AF design alternative is given by the equation (5-7).

𝑐(𝜆)𝐶𝑉𝑃−𝐴𝐹 =

4

3
∙ 𝑝𝑛𝐸 ∙ 𝑝𝑛𝐹 ∙ 𝑝𝑛𝑃 ∙ 𝜆

3 +

1

2

(

𝑝𝑛𝐸 (

11 ∙ 𝑝𝑛𝐹
5

+
11 ∙ 𝑝𝑛𝑃
10

+ 2 ∙ 𝐹 ∙ 𝑝𝑛𝑃 + 2 ∙ 𝑀 ∙ 𝑝𝑛𝐹) +

𝑝𝑛𝑃 (
𝑝𝑛𝐸
10
+ 𝑝𝑛𝐹 + 𝐹 ∙ 𝑝𝑛𝐸 + 𝑁 ∙ 𝑝𝑛𝐹) +

𝑝𝑛𝐹 (
6 ∙ 𝑝𝑛𝐸
5

+ 𝑝𝑛𝑃 +𝑀 ∙ 𝑝𝑛𝐸 + 𝑁 ∙ 𝑝𝑛𝑃))

𝜆2 +

(

𝑝𝑛𝑃 (𝐹 +
𝑁

10
+ 𝐹 ∙ 𝑁 + 1) +

𝑝𝑛𝐹 (𝑀 +
6 ∙ 𝑁

5
+𝑀 ∙ 𝑁 + 1) +

𝑝𝑛𝐸 (
11 ∙ 𝐹

5
+
11 ∙ 𝑀

10
+ 2 ∙ 𝐹 ∙ 𝑀 +

33

10
)
)

𝜆

(5-7)

Respectively, the total required effort for CIBI-AF design alternative is given by the
equation (5-8).

𝑐(𝜆)𝐶𝐼𝐵𝐼−𝐴𝐹 =

4

3
∙ 𝑝𝑛𝐸 ∙ 𝑝𝑛𝐹 ∙ 𝑝𝑛𝑃 ∙ 𝜆

3 +

1

2

(

𝑝𝑛𝐸 (

21 ∙ 𝑝𝑛𝐹
10

+
𝑝𝑛𝑃
10
+ 𝐹 ∙ 𝑝𝑛𝑃 +𝑀 ∙ 𝑝𝑛𝐹) +

𝑝𝑛𝑃 (
11 ∙ 𝑝𝑛𝐸
10

+ 2 ∙ 𝐹 ∙ 𝑝𝑛𝐸 + 2 ∙ 𝑁 ∙ 𝑝𝑛𝐹) +

𝑝𝑛𝐹 (
11 ∙ 𝑝𝑛𝐸
10

+𝑀 ∙ 𝑝𝑛𝐸 +𝑁 ∙ 𝑝𝑛𝑃))

𝜆2 +

(

𝑝𝑛𝐸 (

21 ∙ 𝐹

10
+
𝑀

10
+ 𝐹 ∙ 𝑀 +

21

10
) +

 𝑝𝑛𝑃 (
11 ∙ 𝑁

10
+ 2 ∙ 𝐹 ∙ 𝑁 +

11

10
) +

 𝑝𝑛𝐹 (
11 ∙ 𝑁

10
+𝑀 ∙ 𝑁 + 1))

𝜆

(5-8)

The total required effort for CVP-PT design alternative is given by the equation (5-9).

Figure 5-9: Conceptual UML class-diagram of CIBI-PT vs CVP-PT design

combinations, including basic design attributes (N,M,F) and analysis of the affected
code units per major maintenance scenario.

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 101

𝑐(𝜆)𝐶𝑉𝑃−𝑃𝑇 =

4

3
∙ 𝑝𝑛𝐸 ∙ 𝑝𝑛𝐹 ∙ 𝑝𝑛𝑃 ∙ 𝜆

3 +

1

2

(

𝑝𝑛𝐸 (

21 ∙ 𝑝𝑛𝐹
10

+
11 ∙ 𝑝𝑛𝑃
10

+ 2 ∙ 𝐹 ∙ 𝑝𝑛𝑃 + 2 ∙ 𝑀 ∙ 𝑝𝑛𝐹) +

𝑝𝑛𝑃 (
𝑝𝑛𝐸
10
+ 𝑝𝑛𝐹 + 𝐹 ∙ 𝑝𝑛𝐸 + 𝑁 ∙ 𝑝𝑛𝐹) +

𝑝𝑛𝐹 (
21 ∙ 𝑝𝑛𝐸
10

+ 𝑝𝑛𝑃 +𝑀 ∙ 𝑝𝑛𝐸 +𝑁 ∙ 𝑝𝑛𝑃))

𝜆2 +

(

𝑝𝑛𝑃 (𝐹 +
𝑁

10
+ 𝐹 ∙ 𝑁 + 1) +

𝑝𝑛𝐹 (𝑀 +
21 ∙ 𝑁

10
+𝑀 ∙ 𝑁 + 2) +

𝑝𝑛𝐸 (
21 ∙ 𝐹

10
+
11 ∙ 𝑀

10
+ 2 ∙ 𝐹 ∙ 𝑀 +

32

5
)
)

𝜆

(5-9)

Finally, the total required effort for CIBI-PT design alternative is given by the equation
(5-10).

𝑐(𝜆)𝐶𝐼𝐵𝐼−𝑃𝑇 =

4

3
∙ 𝑝𝑛𝐸 ∙ 𝑝𝑛𝐹 ∙ 𝑝𝑛𝑃 ∙ 𝜆

3 +

1

2

(

𝑝𝑛𝐸 (2 ∙ 𝑝𝑛𝐹 +

𝑝𝑛𝑃
10
+ 𝐹 ∙ 𝑝𝑛𝑃 +𝑀 ∙ 𝑝𝑛𝐹) +

𝑝𝑛𝑃 (
11 ∙ 𝑝𝑛𝐸
10

+ 2 ∙ 𝐹 ∙ 𝑝𝑛𝐸 + 2 ∙ 𝑁 ∙ 𝑝𝑛𝐹) +

𝑝𝑛𝐹(2 ∙ 𝑝𝑛𝐸 +𝑀 ∙ 𝑝𝑛𝐸 + 𝑁 ∙ 𝑝𝑛𝑃))

𝜆2 +

(

𝑝𝑛𝐸 (2 ∙ 𝐹 +

𝑀

10
+ 𝐹 ∙ 𝑀 +

26

5
) +

𝑝𝑛𝑃 (
11 ∙ 𝑁

10
+ 2 ∙ 𝐹 ∙ 𝑁 +

11

10
) +

𝑝𝑛𝐹(2 ∙ 𝑁 +𝑀 ∙ 𝑁 + 2))

𝜆

(5-10)

Using these equations, the selection of the most maintainable design combination for any
number of future scenario’s interventions (λ) can be supported. Notice that the derived
equations for the latest general problem are quite complex. Τhis is due to the existence of
families of objects that requires extensive interventions to be made for any possible
scenario type as indicated by the response measures or SMC metrics in Figure 5-8 and
Figure 5-9.

5.4.3 Formal Model Application in Examples of Practical Specific Problems

As an application example, consider a GUI with the following initial design attributes and
scenario probabilities {N=55, M=20, F=2} and {pnE=0.88, pnP=0.1, pnF=0.02}. For this
case, the CIBI-AF design combination is preferable since it is the most maintainable,
requiring the lowest effort, as indicated by the results in Figure 5-10. In case of different
probabilities e.g. {pnE=0.48, pnP=0.5, pnF=0.02}, the CVP-AF and CVP-PT design
combinations are almost equally preferred. The long-run amount of gained or
avoided/wasted effort is once more significant.

Figure 5-10: Results of the application of Formal comparison Model on the practical
examples of Graphic User Interface (GUI) specific problems as instances of CVP-AF

vs. CIBI-AF vs. CVP-PT vs. CIBI-PT general problem.

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 102

5.4.4 Average Rate of Gained or Avoided Wasted Effort

In this subsection, the exploration of almost the entire design space of CVP-AF vs. CIBI-
AF vs. CVP-PT vs. CIBI-PT general problem is attempted. A sample of one thousand sets
of parameters has been randomly selected through a random generator of uniform
distributions. The range for each problem’s variable was defined as N=[20, …, 250], M=[5,
…, 150], F=[1, …, 10], pnF=[0.01, …, 0.10], pnE=[0.01, …, rest to 1], pnP =[0.01, …, rest to 1].
The derived formal models have been used for the estimation of the required maintenance
effort per design alternative (i.e., CVP-AF, CIBI-AF, CVP-PT, CIBI-PT). Based on these
values, the rate of the gained or the avoided wasted effort has been computed for each of
the sample’s instances. This rate is equal to the maximum minus the minimum values
divided by the minimum value of the required effort among all design alternatives. The
average of these values for all sample’s instances gives the average gained or the avoided
wasted effort of almost the entire design space of CVP-AF vs. CIBI-AF vs. CVP-PT vs. CIBI-
PT general problem. Figure 5-11 presents boxplots of all the frequency distributions of
problem’s parameters for all sample’s instances.

The results in Figure 5-11 provide some major inferences. Firstly, the distribution of
the effort estimations among design alternatives shows that CVP-AF design alternative is
preferrable for approximately 63% of sample’s instances against the CIBI-AF design
alternative which is preferrable for the rest 37%. Furthermore, the rest design alternatives
(CVP-PT, CIBI-PT) seems that they are never preferable approaching 0% of sample’s
instances. This is a direct indication that the Abstract Factory is generally superior to
Prototype design pattern in respect to their maintainability perspective. It seems that if
there is no other particular reason for using Prototype design pattern, it should be avoided
as far as concern its maintainability perspective in the context of the specific general
problem.

However, the decision-making among the CVP-AF and CIBI-AF design alternatives
remains difficult. This highlights how much ambiguous and difficult is the decision-making
process of CVP-AF vs. CIBI-AF vs. CVP-PT vs. CIBI-PT general problem. Secondly, the
mean or the average of the gained or avoided wasted effort is approximately equal to 27%,
while the half of the sample’s instances lie from 12% to 39%. This highlights the overall
beneficial contribution of the proposed modeling theory and derived formal models in
terms of avoided wasted effort, concerning the CVP-AF vs. CIBI-AF vs. CVP-PT vs. CIBI-
PT general problem.

5.5 Average Rate of Gained or Avoided Wasted Effort of CVP vs CIBI

In this subsection, the exploration of almost the entire design space of CIBI vs. CVP general
problem, analyzed in chapters 3 and 4, is attempted. A sample of one thousand sets of
parameters has been randomly selected through a random generator of uniform

Figure 5-11: Box plots of frequency distributions of sample’s instances, concerning all

the parameters of CVP-AF vs. CIBI-AF vs. CVP-PT vs. CIBI-PT general problem

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 103

distributions. The range for each problem’s variable was defined as N=[20, …, 250], M=[5,
…, 150], pnE=[0.1, …, 0.9], pnP=[0.1, …, rest to 1]. The derived formal models as generated
by the framework in subsection 4.4.3 (equations (4-8) and (4-12)) have been used for the
estimation of the required maintenance effort per design alternative (i.e., CIBI, CVP) as
well as their difference. Based on these values, the rate of the gained or the avoided wasted
effort has been computed for each of the sample’s instances. This rate is equal to the
maximum minus the minimum (max(CIBI, CVP)-min(CIBI, CVP)) divided by the
minimum (min(CIBI, CVP)) of the required effort among all design alternatives. The
average of these values for all sample’s instances gives the average gained or the avoided
wasted effort of almost the entire design space of CIBI vs. CVP general problem. Figure
5-12 presents boxplots of all the frequency distributions of problem’s parameters for all
sample’s instances.

The results in Figure 5-12 provide two major inferences. Firstly, the distribution of the
difference of effort estimations among design alternatives shows that CVP design
alternative is preferrable for approximately 62% of sample’s instances against the CIBI
design alternative which is preferrable for the rest 38%. This highlights how much
ambiguous and difficult is the decision-making process of CIBI vs. CVP general problem.
Secondly, the mean or the average of the gained or avoided wasted effort is approximately
equal to 34%, while the half of the sample’s instances lie from 15% to 52%. This highlights
the overall beneficial contribution of the proposed modeling theory and derived formal
models in terms of avoided wasted effort, concerning the CIBI vs. CVP general problem.

5.6 Summarizing the Contribution of Modeling Method

In this subsection, the beneficial contribution of the proposed modeling method, as
analyzed in previous subsection for different general and significant design problems, is
summarized in Table 5-1.

Table 5-1: Overall results for 1000 instances of design attributes and scenario’s
probabilities per General Problem

General Problem Design Attribute /
Scenario

Design Variation
(Pattern)

Preferable1 Average
Benefit2

Benefit Interval
50%3

Recursive hierarchy of part-whole
representation

Element
Operation

CP+IBI=CIBI 38%
34% 15% - 52%

CP+VP=CVP 62%
Recursive hierarchy of part-whole
representation with extra
Responsibilities

Element
Operation
Responsibility

CIBI+DP 55%
30% 15% - 45%

CVP+DP 45%
Recursive hierarchy of part-whole
representation with independent
interaction

Element
Operation
Mediator or Observer

CVP+MP ≈0%

88% 60% - 110%
CIBI+MP ≈0%
CVP+OP 49%
CIBI+OP 51%

Recursive hierarchy of part-whole
representation with families of objects

Element
Operation

CVP+AF 63%
27% 12% - 39% CIBI+AF 37%

CVP+PT ≈0%

Figure 5-12: Box plots of frequency distributions of sample’s instances, concerning all

the parameters of CIBI vs. CVP general problem

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 104

General Problem Design Attribute /
Scenario

Design Variation
(Pattern)

Preferable1 Average
Benefit2

Benefit Interval
50%3

Abstract factory or
Prototype object

CIBI+PT
≈0%

1 Refers to the portion of sample’s instances for which the design alternative is preferable (requires the minimum effort)
2 Refers to the average of the rates of gained or avoided effort for the entire sample
3 Refers to the interval of the rates of gained or avoided effort for the half instances of each sample

The results in Table 5-1 suggest that the overall benefit, or else, the avoided wasted effort
from the use of the derived formal models corresponds to a significant portion of the
optimal maintenance cost which on average lies between 25% and 90% concerning almost
the entire design space of each general problem under study.

Based on the proposed modeling method and by using the programable MATLAB
framework (Appendix A) as an initial template the cost of analyzing, deriving, and testing
the formal comparison models for the design alternatives of each general problem
presented in this study ranged approximately between 3 (for the basic CVP vs CIBI
problem in Chapter 4) and 6 working man hours (for the most complicate problems
presented in this chapter) for a typical software engineer. These derivation costs are quite
reasonable compared to the actual benefits of using the derived formal models. Given that
the derived formal models are easily reusable in a general family of common problems,
preventing significant loses in terms of maintenance effort; the future benefits of the
proposed technique significantly outweigh its reasonable analysis cost. A more detailed and
formal justification about the maximum allowed derivation cost of formal comparison
models is presented in (Bass et al., 2012) and further specialized subsection 4.4.5.

5.7 Conclusions

5.7.1 General Requirements and Limitations

In general, the analysis of the alternate general problems presented in this chapter are
subject to the same requirements and limitations of the introduced modeling method as
described in subsections 3.6 and 4.6. Furthermore, the actual design structure for a specific
system may deviate from the typical class-diagrams based on which the proposed formal
models have been derived. This is a possible threat to validity regarding the reliability of
the decisions made based on effort predictions of those formal models.

Moreover, it is important that the conducted analysis must be specific enough to
capture all the principal components of each general problem, while at the same time,
general enough bypassing minor functionalities and technical details related to code
implementation to support early decisions and avoid unnecessary complexity.
Consequently, selecting and analyzing the proper (major) maintenance scenarios and
design attributes for a given general design problem is a critical and creative task that may
negatively affect the reliability of the derived formal models.

5.7.2 Extensions and Further Research

All the potentials and research perspectives, as referred in subsections 3.6 and 4.6, are still
valid for the alternate general problems presented in this chapter since they are all subject
to the same principles imposed by the introduced modeling theory. In addition, an
interesting perspective could be the mathematical analysis of the derived formal models for
each variation of the general problem. A such analysis could reveal possible similarities,
differences, conflicts, requirements, limitations, and patterns regarding the evolution and
structural behavior of the used design patterns, thus providing further insight about the
maintenance perspective of each design alternative under comparison, or even about the
nature the general problem itself.

5.7.3 Overall Assessment

Evaluation results using extended problems such as Observer vs. Mediator indicate that
the proposed method can be also applied during the high-level architecture design, to

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 105

handle communication, interfacing, and coordination issues among sub-modules and
components of new or even legacy code. These examples prove the applicability of the
proposed modeling method in a wide spectrum of common and difficult software
architectural design problems.

Furthermore, the results of the indicative examples suggest that the overall benefit, or
else, the avoided wasted effort from the use of the derived formal models corresponds to a
significant portion of the optimal maintenance cost which on average lies between 25%
and 90% concerning almost the entire design space of the general problems under study.
These results highlight the beneficial contribution of the proposed modeling method and
derived formal models to the early decision-making among design alternatives in terms of
avoided wasted effort during software maintenance.

Finally, the deterministic nature of the derived formal models combined with their
computational efficiency through software, allows the exploration of the entire design space
for a given general and significant design problem in the field of software engineering.

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 106

6 Simulation of Software Evolution

6.1 Chapter Overview

In this chapter, the proposed modeling method and derived formal models for the CVP vs.
CIBI general problem, analyzed in chapter 3 and 4, are statistically evaluated based on
massive and homogenous measurement observations which have been generated by a well
calibrated and highly stochastic simulation model that imitates the variability and
underlying activities of actual maintenance process. The proposed modeling theory is
strongly related to structural behavior of well-known and established design patterns
(Gamma et al., 1994) during maintenance. This modeling method derives formal
comparison models among design alternatives for general, significant, and frequently
tackled design problems while provides reusable formal models sensitive to several design
parameters making them easily end repeatedly applied to a wide spectrum of specific
instances of each general problem. More specifically, the derived formal modes try to
predict the impact for each design alternative selection in terms of required maintenance
effort in a deterministic way limiting the ambiguity imposed by the stochastic nature of
actual maintenance process. The design alternative that requires the lowest predicted
maintenance effort is the most beneficial, and thus preferable. The main intent of such
comparison models is to provide reliable decisions through proportionally equivalent effort
estimations for comparison purposes, thus away from the need of accurate effort
estimations in terms of absolute values as discussed in chapter chapter 3. However, it is
substantially difficult to estimate the risk taken during such decisions, or differently, the
possibility of an incorrect selection of a less maintainable design alternative for a given
instance of the general problem. Even if the absolute values of effort predictions returned
by formal models for each design alternative are not of primary interest, their difference
defines the most beneficial design alternative, and thus the outcome of the decision which
is of primary interest. To validate the reliability of the decisions that are based on effort
predictions of formal models, these predictions should be statistically compared to actual
effort measurements of long maintenance periods of real-world systems. Yet, there is a lack
of evidence regarding the effectiveness of the prediction techniques and models of software
maintainability (Riaz et al., 2009a; Shepperd & MacDonell, 2012). In addition, there is a
confirmed need for further validation of maintainability prediction models (Riaz et al.,
2009a), primarily through statistical techniques.

As discussed in chapter 3 and 4, the derived formal models are mainly focused on
maximizing the potential for being general over different instances of a given general
problem. However, formal methods usually suffer from lack of realism of context and
precision of measurements, as discussed in (Stol & Fitzgerald, 2018). Ideally, actual
measurements and observations from case studies that maximize the potential for realism
of context would be preferable for validation purposes. Nevertheless, in real life, finding
identical actual systems with uniform design attributes, developed in different design
variations is almost impossible. Additionally, the number of recorded observations is very
limited per case study, using heterogeneous metrics, and unevenly conducted through
literature. Thus, they are not statistically meaningful, heavily limiting the generalization of
inferences, as pointed in (Langdon et al., 2016; Shepperd & MacDonell, 2012). Moreover,
developer-related aspects, such as experience level and learning rate are also ignored by
these methods since they are heavily biased, as human-related, factors hard to be assessed
and measured. Because of all these reasons, there is no easy way to determine the reliability
of the method referred to possible incorrect design decisions in terms of maintainability.
This is a standard concern with regards to validity since the attempt to validate the formal
models based on a limited number and dissimilar case studies may increase realism of
context while sacrificing generalizability which should be the models’ primary goal.

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 107

This chapter introduces the simulation of system’s structural evolution for different
design alternatives to generate adequate volume of homogenous observations and
measurements towards a statistical validation of the decision reliability of the derived
formal models in chapter 3 and 4. More specifically, the validation process concerns the
significant and general decision problem between the design combinations of Visitor
design pattern and Composition design pattern for data structures, both serving recursive
hierarchies of part-whole aggregations. The derived formal comparison models have been
validated under several statistical techniques to evaluate the proposed modeling method in
chapter 3 and 4. A sample of one thousand possible system’s instances with specific design
attributes and scenarios’ probabilities has been randomly selected. A simulation model that
replicates the underlying activities of actual (real-world) maintenance process, providing
sufficient, unbiased, classified, and homogenous validation data is introduced. The

simulation model has been designed and developed in the forms of MATLAB© functional

model and object-oriented entity model, engaging all problem’s parameters, and providing
additional switches for controlling the simulation settings and environment. Several
intermediate variations of the model based on the multi-resolution modeling technique has
been tested to reach the desired stochastic behavior and realistic outcomes. However, the
validation of the simulation mode’s consistency in terms of actual effort predictions is
subject to the same restrictions as in the case of formal models (i.e., heterogenous real-
world observations). Taking advantage from the fact that accurate effort estimations are
not critical for the decision-making, the consistency of the simulation model has been
verified by matching model’s variability with frequency distributions of real-world (effort
based) observations as illustrated in Figure 1-6. Thus, bypassing the obstacle of a strictly
validation against actual effort estimations, while connecting the simulation model with
the real world and ensuring its decision-making reliability or precision. Concerning the
consistency criterion, the simulation model has been calibrated based on empirical
evidence (frequency distributions) of relevant studies from the field of time series analysis
(Raja et al., 2009; Shariat Yazdi et al., 2016). In principle, the simulation model imitates
the stochastic nature of the actual maintenance process by incorporating developers’
stochastic characteristics such as experience and learning rate as well as other random
factors like uncertainty of scenarios’ probabilities, alternate maintenance scenarios, non-
repeated application patterns, the actual code size of interventions, code aging issues, etc.

 Several intermediate results computed by the simulation model have been compared
against formal models’ deterministic predictions under the hypothesis testing of non-
significant difference. The results demonstrate a high coefficient of correlation (near to
0.96) providing sufficient statistical evidence of formal model’s decision-making reliability.

Figure 6-1: Representation of study’s goals, contribution, and limitations

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 108

Furthermore, the conducted hypothesis tests provide statistical evidence of formal models’
long-term accuracy in terms of absolute effort predictions which, however, is a weak
inference due to the lack of a strictly validation of the simulation model against actual (real
world) estimations. Most importantly, the results showed that the formal models provide
reliable decisions among design alternatives with an overall long-term error-rate about 8%
with only 2% of it being critical in terms of significant wasted effort. Hence, the statistical
validation of the formal models’ decision-making ability is a strong indication that the
introduced modeling method in chapter 3 and 4 trustworthy describes the software
evolution during maintenance process, deriving reliable formal models of limited decision-
risk.

The context of this chapter is based on the significant design problem of part-whole
representations in chapter 3, and the modelling method and framework presented in
chapter 4. The rest of this chapter is organized as follows. Subsection 6.2 presents the
theoretical background of the modeling method, the general problem, and its formal
models under evaluation. Subsection 6.3 refers existing evaluation evidence and further
validity concerns under exploration. Subsection 6.4 analyzes the statistical validation
approach and the introduced simulation model. Subsection 6.5 lists the result and
inference of the experimentation process. Finally, in subsection 6.6, the validity challenges,
limitations, future research issues, and conclusions are presented.

6.2 Background

For the sake of completeness and cohesion, in this subsection, the theoretical background
of the general problem, the characteristics of the used effort metric, and the notation of the
derived formal models under validation are presented. The context of this subsection is in
accordance and directly related to the context in chapters 1, 3, and 4.

6.2.1 Example of Practical General Problem

An example of a significant and general problem is referred to the recursive
implementation of various types of operations upon part-whole aggregations of different
types of elements which encountered in a wide range of critical systems such as compilers,
interpreters, GUIs, CADs, high-level synthesis, Domain Specific Languages, Intermediate
Representations, and hierarchical frameworks. Several design alternatives to address a
such general problem have been reported, usually, as a combination of well-known design
patterns. Visitor and Composite are examples of established design patterns which
combined can provide implementations of part-whole aggregations. The Inheritance Based
Implementation into Composition (CIBI) and Visitor upon Composition (CVP) are the
most prevailing design combinations capable to address this general problem, as presented
in Figure 6-2. However, these design alternatives have opposite characteristics regarding
their maintainability perspective.

More specifically, the main intent of the Composite design Pattern (CP) is to compose
objects into tree structures to represent part-whole hierarchies (Gamma et al., 1994). CP
is the basis of both design combinations and presented on both sides in Figure 6-2. The
number of distinct node or element types, which can be represented by CP, is equal to the
number of leaf classes, denoted as N in Figure 6-2 and Table 6-1. In a Composite structure
(CP), the Inheritance Based Implementation (IBI) can be used to implement operations
uniformly, as presented on the left side combination (CIBI) in Figure 6-2. All distinct
operations, denoted as M in Figure 6-2 and Table 6-1, are declared as virtual methods in
the abstract root class of the hierarchy. The implementation of every distinct operation
(method) is placed in each distinct object (leaf) class of the hierarchy. This pattern
combination makes adding new types of nodes (elements) easier (Gamma et al., 1994)
thanks to the concentration (locality) of the related interventions in a single class.
Alternatively, Visitor design pattern (VP) can be used over CP as presented on the right
side combination (CVP) in Figure 6-2, and further analyzed in (Alexandrescu, 2001;

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 109

Gamma et al., 1994; B. C. d. S. Oliveira et al., 2008; Palsberg & Jay, 1998; Visser, 2001).
For every distinct type of CP node (leaf class), a new virtual method is declared in an
abstract root class called Visitor. In addition, for every distinct operation, a new subclass is
created which includes all the implementations of the methods of distinct node types for
this specific operation. In contrast with IBI, VP makes adding new operations easier
(Gamma et al., 1994) thanks to the concentration (locality) of the related interventions in
a single visitor class.

According to the rule “design for change” (David Lorge Parnas, 1994), in order to
facilitate maintainability or changeability, changes that are likely to occur over the
software’s “lifetime” should be categorized. Since actual changes cannot be precisely
predicted, the categorization is about classes of resembling changes. In principle, this
design rule implies that logical entities that are most likely to change are “confined” to a
small or grouped code entities so that if those entities do change, only a small amount of
code would be affected. Towards this direction, several architectural tactics such as splitting
or rearranging responsibilities target on increasing cohesion and reducing coupling among
the model’s logical entities, and thus improving maintainability (Arbuckle, 2011).
Referring to the general problem of part-whole aggregations, events like adding or
updating or debugging a new or existing type of element constitute a major maintenance
scenario. Similar events referred to a new or existing type of operation is another major
scenario, as presented in Figure 6-2 and Table 6-1.

Table 6-1: Design Characteristics and Model’s Notation of the General Problem of Part-
Whole Representations

Description Notation
Design characteristics of CVP vs CIBI general problem
Composite (design pattern) represents recursive part-whole aggregations or structures of
elements

CP

Visitor (design pattern) links operations to different type of elements of a Composition VP
Inheritance based implementation incorporates operations inside Composition’s
elements

IBI

Design combination of Visitor (operations) over Composite structure (element) CVP

Figure 6-2: Conceptual UML classes diagram of CIBI and CVP design combinations,

including basic design attributes (N,M) and analysis of the affected code units per
major maintenance scenario.

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 110

Description Notation
Design combination of direct attachment of operations inside Composite structure
(element) CIBI

Design attributes/parameters the values of which distinguishes a specific instance of the general problem
Number of initial Elements of Composition N
Number of initial Operations (or Processes) acting on Elements M
probability of Adding/updating/debugging a new/existing Element pnE = 1-pnP
probability of Adding/updating/debugging a new/existing Operation (or Process) pnP = 1-pnE
Model’s parameters and outcome
Number of maintenance scenarios’ applications during software evolution/maintenance λ
Partial effort prediction per applied scenario, expressed by SMC metric in terms of
number of required interventions in different code entities (e.g., classes, methods)

 New Element (pnE=1.0, pnP=0.0) on CVP for λ=1 cm(CVP, N, M, 1.0, 0.0, 1)
 New Operation (pnE=0.0, pnP=1.0) on CVP for λ=1 cm(CVP, N, M, 0.0, 1.0, 1)
 New Element (pnE=1.0, pnP=0.0) on CIBI for λ=1 cm(CIBI, N, M, 1.0, 0.0, 1)
 New Operation (pnE=0.0, pnP=1.0) on CIBI for λ=1 cm(CIBI, N, M, 0.0, 1.0, 1)
Total effort prediction by derived Formal Model
 CVP design combination (solution / alternative) cm(CVP,N,M,pnE,1-pnE,λ)
 CIBI design combination (solution / alternative) cm(CIBI,N,M,pnE,1-pnE,λ)
Total computed effort prediction per design alternative by Simulation Model scm(CVP,N,M,pnE,1-pnE,λ)

scm(CIBI,N,M,pnE,1- pnE,λ)
Error Rate of incorrect decisions (of a single sample instance) among design alternatives
in terms of maintainability

Er

Average Error Rate of incorrect decisions (of all sample instances) avg Er
Critical Error rate of incorrect decisions of high impact (of a single sample instance) cEr
Average Critical Error rate of incorrect decisions of high impact (of all sample instances) avg cEr

In this general problem, the number of initial elements and operations are conceived
as basic design attributes which define a specific system as an instance of the general design
problem. Such design attributes are usually referred to the problem’s logical entities (i.e.,
elements and operations) which are represented by design patterns’ components such as
methods, classes, or modules. The numbers of distinct element types and distinct operation
types, denoted as N and M in Figure 6-2 and Table 6-1, are conceived as key design
attributes referred to the problem’s logical entities. Through these attributes, the number
of required method and class interventions can be quantitatively expressed in the event of
major maintenance scenarios as summarized in memo table in Figure 6-2 and analyzed in
chapter 3 and 4.

Furthermore, since it is impossible to do everything equally easy to change, it is
important to estimate the probability of each class of changes or maintenance scenario.
During maintenance, several of the initial design attributes (i.e., N and M) are updated
according to the behavior of the engaged design patterns based on the individual
probabilities (i.e., pnE and pnP) of major maintenance scenarios, as presented in Table 6-1.
Scenarios’ probabilities are assessments according to the scope of each specific problem’s
instance.

The evolution of software during its maintenance is strongly related and mostly
determined by the behavior of the engaged design patterns in future changes or stimulus
or major maintenance scenarios. The number of the applied scenarios during maintenance
process are denoted as λ in Table 6-1. More specifically, the factor λ represents the total
number of maintenance scenarios that have been occurred and applied (by developers) on
a design combination (of design patterns) during maintenance. Considering the software
maintenance as an evolution process, this factor is an alternate expression of time
perception.

6.2.2 Characteristics of SMC Effort Metric

The effect or the response of each single change or maintenance scenario is quantitatively
expressed by the Structural Maintenance Cost (SMC) metric, introduced in chapter 3. For
each general problem, a set of SMC metrics can be derived as presented in Figure 6-2 and
Table 6-1. In general, for a given problem with x design alternatives and y major
maintenance scenarios, a set of x*y distinct SMC metrics should be derived to fully analyze
the problem as discussed in chapter 3. The outcome of SMC metric (required effort) for
each design alternative (i.e., CVP and CIBI) and type of major scenario (i.e., new element
type and new operation type) depends on the value of the initial design attributes (i.e., N

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 111

and M) and it is referred as cm() in Table 6-1 and Table 6-2. SMC metric is used as
fundamental effort measurement of which the principal characteristics are briefly
discussed.

Table 6-2: Equations of Fundamental Effort Metrics of CIBI vs. CVP General Decision
Problem

Description of maintenance
scenario

Equation for a single scenario
application

Affected design
attributes

Formal / Simulation
Model

New element on CVP cm(CVP,N,M,1,0,1)= 2(M+2) N++ FM & SM
Edit/debug element on CVP 2M SM
Deletei element on CVP 1+M N-- SM
New operation on CVP cm(CVP,N,M,0,1,1)= N+1 M++ FM & SM
Edit/debug operation on CVP N+1 SM
Delete operation on CVP 1 M-- SM
New element on CIBI cm(CIBI,N,M,1,0,1)= M+1 N++ FM & SM
Edit/debug element on CIBI M+1 SM
Delete element on CIBI 1 N-- SM
New operation on CIBI cm(CIBI,N,M,0,1,1)= 2(N+1) M++ FM & SM
Edit/debug operation on CIBI 2N SM
Deleteii operation on CIBI 1+N M-- SM

Equations are derived based on the approach discussed in chapter 3
 i since deleting elements in CVP is rather an efficient task, the number of required interventions is reduced from 2M to 1+M
ii since deleting operations in CIBI is rather an efficient task, the number of required interventions is reduced from 2N to
1+N

The equations of SMC metrics in Table 6-2 can be derived through the derivation
approach presented in subsection 4.3.4. Conceptually, this approach is a stratified cause-

effect analysis trying to quantify change-effects of major maintenance scenarios to
specific design alternatives of a general problem. In subsection 4.3.4, the SMC metrics for
the scenarios of new element and new operation are presented. A more complete logical
model for the CVP design alternative, including the alternate maintenance scenarios of

modifying and deleting existing elements and operations is presented in

Figure 6-3. Notice that for ‘deleting’ scenarios the corresponding design attributes are
decreased accordingly. Respectively, for ‘modifying’ or ‘editing’ scenarios the
corresponding design attributes are left unchanged.

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 112

Respectively, a more complete logical model for the CIBI design alternative, including
the alternate maintenance scenarios of modifying and deleting existing elements and
operations, is presented in Figure 6-4.

In general, fewer method interventions or less affected classes, for a specific
maintenance scenario, imply higher cohesion, and lower code entropy, dispersion,

Figure 6-3: Consequence flow (logical model) during impact analysis for changes on
CVP design combination, including alternate scenarios.

Figure 6-4: Consequence flow (logical model) during impact analysis for changes on
CIBI design combination, including alternate scenarios.

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 113

complexity, coupling, and crosscutting degree. Thus, developers will have decreased work
keeping track of changes that are performed across fewer files or any other segment, entity,
or code unit (Hassan, 2009). SMC metric expands its measurement capacity by
simultaneously counting different types of affected code segments. More specifically, SMC
metric expresses both, the number of interventions (e.g., affected methods), and the locality
or scattering degree of these interventions as well (e.g., expressed by the number of affected
classes). Thus, SMC metric provides an adequate graduation of effort assessments even in
the absence of source code, as suggested in chapters 3 and 4.

To demonstrate how SMC metric captures the effect of maintenance scenarios as they
applied on each design alternative of CIBIvsCVP general problem, a typical code example
is presented in Figure 6-5 according to the analysis in chapters 3 and 4. The design
attributes N and M represent the current number of the logical entities (i.e., Elements and
Operations) represented by the used design patterns in the form of classes and methods.
For example, for an Interpreter implementation, the attribute N may represent the number
of distinct types of the parse-tree nodes derived from a custom BNF grammar (e.g.,
terminal – nonterminal symbols, identifiers, etc.) while the attribute M may represent the
number of distinct types of the operations over nodes (e.g., type checking, code generation,
execution, etc.). Assume that during maintenance there is a need for adding a new element
type (e.g., a parse-tree node) to satisfy user requirements. This task requires several
interventions or maintenance activities to be made by the developer into different code
entities depending on the used design patterns. Initially the corresponding design attribute
is updated (i.e., N++). Referring to CIBI design combination in Figure 6-5, M method
interventions concentrated in a single class should be made, thus totally
cm(CIBI,N,M,1,0,1) = 1+M class and method interventions, as reported in Table 6-2.
Respectively, referring to CVP design combination, M method interventions widespread
through M different classes, plus 2 separate method interventions each in a single class
should be made, thus totally cm(CVP,N,M,1,0,1) = 2(M+2) class and method
interventions. In principle, a maintenance scenario is considered as major when its effect
among design alternatives is significantly different (i.e., 1+M≠2(M+2)). For example, a
minor scenario related to a particular operation for a particular element would affect the
same number of entities or code units (e.g., a single method) in both design alternatives,
thus it would be neutral concerning the comparison and decision-making reliability.
Respectively, in the event of adding a new operation (i.e., M++), proper SMC metrics can
be derived as illustrated in Figure 6-5. This practical example gives insight on how SMC
metric is derived for a given general problem. Keep in mind that as the maintenance
scenarios are continually applied, the design attributes are affected and gradually shifted.
Thus, for each scenario application, the SMC metric is computed based on different values
of design attributes.

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 114

Overall, there several theoretical and empirical evidences about the actual relation of
SMC metric with properties like code size, scattering degree, etc., and thus to required effort
or maintainability degree, as supported in (Aloysius & Arockiam, 2013; Aversano et al.,
2009; Canfora et al., 2010; Hassan, 2009; Heitlager et al., 2007b; Karanikolas et al., 2017;
Ostberg & Wagner, 2014; Riaz et al., 2009a). In addition, the SMC metric is in accordance
with other similar metrics such as Evolution Complexity (Tom Mens & Eden, 2005) and
Computational Complexity (Hills et al., 2011), as shown in chapters 3 and 4.

6.2.3 Software Expansion Concept and Formal Models Derivation

While SMC metric provides effort assessments for a single applied maintenance scenario
(λ=1), the modeling method introduced in chapters 3 and 4 derives formal models for each
general problem and design alternative that provide (total) effort assessments for any

number and type of applied scenarios (λ∈[0, …, +∞)). This theory is based on the expansion
trend of software size over their lifetime, since it must be continually adapted to maintain
user satisfaction, as suggested in (Meir M. Lehman et al., 1997) and supported by empirical
evidences from large repository of historical data (Bakota et al., 2012; Barry et al., 2007; C.
R. Cook & Roesch, 1994; H. Gall et al., 1997; Jazayeri, 2002; M. M. Lehman et al., 1998;
Yuen, 1988). The underlying concept is that the required maintenance effort is
proportional to the size of the code under adjustment as supported in (Araújo et al., 2012;

Figure 6-5: Typical code example after the application of one new element and one
new operation scenarios for CIBI and CVP design alternatives

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 115

Bengtsson & Bosch, 1999; Bosch & Bengtsson, 2001; Dolado, 2001; Hayes et al., 2004;
Hayes & Zhao, 2005; Jabangwe et al., 2015; Jazayeri, 2002; Zhang, 2008). Furthermore,
size properties are identified as the most applicable predictors of effort as concluded in (L.
C. Briand et al., 2002). Thus, software maintainability can be expressed through the
estimation of the required effort during the maintenance process, as concluded in (Riaz et
al., 2009a) and suggested in (Heitlager et al., 2007b). The outcome of the derived formal
models for each design alternative (i.e., CVP and CIBI) depends on a) the initial design
attributes (i.e., N and M), b) the scenarios’ probabilities (i.e., pnE and pnP=1- pnE), c) the
number of the applied maintenance scenarios (λ) and it is referred as cm(CVP/CIBI, N, M,
pnE, 1- pnE, λ) in Table 6-1.

Referring to the general problem of CVP vs CIBI, the derived formal models for CVP
and CIBI design alternatives are expressed by the equations (6-1) and (6-2) respectively,
as analyzed in chapters 3 and 4. The derivation process is based on a strictly mathematical
and quantitative analysis through which the fundamental SMC metrics in Table 6-2 are
used to gradually compute the total progressive effort per design alternative in respect to
all problem’s parameters (i.e., design attributes, scenarios’ probabilities, and number of
applied scenarios). The method integrates the continually affected design attributes and
effort levels through repeated cycles of applied maintenance scenarios (based on their
probabilities) in a single function per design alternative.

𝑐𝑚(𝑁,𝑀, 𝑝𝑛𝐸 , 𝑝𝑛𝑃 , 𝜆)𝐶𝑉𝑃 =
3

2
𝜆2𝑝𝑛𝐸𝑝𝑛𝑃 + 𝜆𝑝𝑛𝑃𝑁 + 2𝜆𝑝𝑛𝐸𝑀 + 𝜆𝑝𝑛𝑃 (6-1)

𝑐𝑚(𝑁,𝑀, 𝑝𝑛𝐸 , 𝑝𝑛𝑃 , 𝜆)𝐶𝐼𝐵𝐼 =
3

2
𝜆2𝑝𝑛𝐸𝑝𝑛𝑃 + 2𝜆𝑝𝑛𝑃𝑁 + 𝜆𝑝𝑛𝐸𝑀 + 𝜆𝑝𝑛𝐸 (6-2)

The equations (6-1) and (6-2) are in accordance with empirical validation evidence in
(Barry et al., 2007), and the entropy-based prediction model in (Bakota et al., 2012). The
selection of the most beneficial design alternative in terms of maintainability is formally

stated as the min {cm(d,N,M,pnE,pnP,λ)}, ∀d∈{CVP, CIBI}. The difference of the total
required effort estimation for CVP and CIBI is given by the equation (6-3).

𝑐𝑚(𝑁,𝑀, 𝑝𝑛𝐸 , 𝑝𝑛𝑃 , 𝜆)𝐶𝑉𝑃 − 𝑐𝑚(𝑁,𝑀, 𝑝𝑛𝐸 , 𝑝𝑛𝑃 , 𝜆)𝐶𝐼𝐵𝐼 = 𝜆(𝑝𝑛𝛦𝑀 − 𝑝𝑛𝑃𝑁 + 𝑝𝑛𝑃 − 𝑝𝑛𝐸) (6-3)

6.2.4 Formal Models Application in Specific Instances of the General Problem

After the formal models have been derived, it can be easily used to repeatedly support
decision-making for any attribute set of a specific instance of the general problem domain.
As an application example, the derived formal models (equations (6-1) and (6-2)) are
applied to the practical instance of an Interpreter implementation where N=40, M=10,
pnE=pnP=0.5, and λ=[1, … ,200] as discussed in chapters 3 and 4 and subsection 6.2.2.
Concentrating on formal outcomes, the diagram in Figure 6-6 indicates that CVP design
alternative is preferred, since it requires approximately 15% less effort during maintenance
than CIBI.

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 116

Figure 6-6 also presents efforts estimations based on simulated results which
discussed in next subsections.

6.3 Method Evaluation and Validity Concerns

The modeling method and the derived formal modes have been evaluated on the general
and significant problem of CVP vs CIBI in chapters 3 and 4. Although extensive
argumentation and validation evidence are provided in chapters 3 and 4, there are still
several critical issues under research.

6.3.1 Effort Measurement Validity Concerns

Referring to the used measurement approach, the SMC metric ignores the actual size (lines
of code) of each elementary method intervention since the code is not available in the
design stage. It is assumed that in a long-term perspective, actual (or business logic) code
would be common for both design alternatives under comparison, and thus it has no
significant impact on the final effort assessment, hence neutral concerning the decision-
making.

6.3.2 Modeling Method Validity Concerns

Referring to the modeling approach, the introduced modeling method concentrates the
analysis only in expansion maintenance scenarios (i.e., adding new element or operation)
as reported in Table 6-1 and Table 6-2. It is assumed that addition scenarios have a
dominant impact on system evolution and maintenance, invoking the innate expansion
trend of software to incorporate additional functionality, and arguing that 66% of changes
enhancing an existing feature do so by adding a new feature as reported in (Paixao et al.,
2017). However, focusing only on addition scenarios seems to deviate from actual (real-
world) maintenance circumstances. Moreover, the introduced method ignores code aging
issues (David Lorge Parnas, 1994) and developers’ aspect, such as experience and learning
rate. As a result, the derived formal models are deterministic, despite the heavy uncertain
and stochastic nature of actual (real-world) maintenance process.

Under these circumstances, there is no easy way to determine the decision-making
reliability of the derived formal models, or their error rate referred to possible incorrect
decisions. The latest concerns, as possible threats to validity, are further analyzed and
tested in this study through several statistical techniques in the context of an attentive
experimentation process.

Figure 6-6: Diagram of formal & simulated comparison models applied on the

practical example of Interpreter (N:40, M:10, pnE:0.5, exp:1) as an instance of CVP vs.
CIBI general problem

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 117

6.4 Method Validation Through Simulation

In this subsection, an experiment is presented to validate the formal models of CIVI vs.
CVP general problem under several statistical techniques. The experiment has been
designed and conducted according to guidelines provided in (Wohlin et al., 2012). In
addition, the guidelines for reporting dynamic simulation studies in software engineering
as proposed in (de Fraça & Travassos, 2016) are followed.

Computer simulations are recommended as a more proper (knowledge-seeking (Stol
et al., 2016)) research strategy that aligns with the validation goals of this study,
approaching better realism of context than formal theories at the cost of lower
generalizability. More specifically, the use of simulation models provides several favorable
conditions such as limiting bias (mostly human) factors, ensuring common comparison
terms, and wide amount of homogenous validation data. Furthermore, the artificial nature
of simulation models offers sufficient control over several stochastic factors toward a better
understanding of possible causal relationships as recommended in (Hannay & Jørgensen,
2008).

6.4.1 Scoping and Planning

The scoping of the conducted experiment is determined by stating its goal framework
according to the template proposed in (V. R. Basili & Rombach, 1988) as follows:

- Analyze the formal models of the CIBI vs. CVP general design problem,

- for the purpose of comparison and evaluation (statistical validation)

- with respect to their reliability (reduced estimating error) in supporting correct selection
of design alternatives (lesser maintenance effort),

- from the point of view of software engineers,

- in the context of an in silico simulated maintenance process that replicates the stochastic
nature and underlying activities of actual maintenance process by evaluating effort
assessments of several randomly generated maintenance scenarios for each design
alternative of the problem.

6.4.2 Hypothesis Formulation

The hypothesis is appropriately stated, in the pursuing of statistical evidence that the two
models return almost similar effort assessments for any possible set of their independent
variables. That implies paired T-tests, meaning that both treatments (formal and
simulation models) are applied in each experiment scenario.

- Null Hypothesis (H0): μd=0, where d = cm - scm, or the mean (μd) of the differences (d =
cm - scm) between formal model (cm) and simulation model (scm) effort assessments for
each experiment scenario is not significantly different from zero

- Alternative Hypothesis (H1): μd≠0 the mean of the differences between models’ effort
assessments is significantly different from zero

Although usually it is perfected to refute the null hypothesis, in this case, reliable formal
model’s assessments are indicated by not rejecting the null hypothesis. According to
statistical theory in (Berenson, Levine, & Timothy, 2012), when the null hypothesis is not
rejected, it is not implied that it is accepted, but mostly that it is still believable based on the
available sampling data. Therefore, proper selection of test’s confidence level and sample
size to maximize the power of the test to detect that H0 is false, is required.

6.4.3 Variables and Treatments Selection

The formal models (equations (6-1) and (6-2)) and the simulation model are the
treatments of the experiment of which the outcomes or dependent variables are under
statistical assessment. All the engaged variables and their characteristics are classified per
treatment and type in Table 6-3. More specifically, the formal model is affected by five

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 118

independent variables returning deterministic assessments through its dependent variable
cm(). The simulation model is affected by ten independent variables plus four dummy
(switch) variables that define the engagement of several stochastic factors, returning
fluctuating assessments through the scm() dependent variable. Hence, the simulation model
introduces random behavior expressed through the following stochastic variables:
uncertainty factor effecting scenarios’ probabilities (fBM, uF), alternate maintenance
scenario application (alt), maintenance scenarios actual size (sizing, ssize), developers
experience level (exp), developers’ learning rate type (r), and code aging issues (aging, age).
The intelligible experiment goal is to explore whether the derived formal models and
related modeling method introduced in chapters 3 and 4 take into consideration all these
random factors in an indirect manner.

Table 6-3: Experiment Variables per Treatment for Formal and Simulation Models on
CIBI vs. CVP General Problem

Description or attribute or
behavior or outcome

C1 Notat
ion

Scale Range Type Options Distribution
(during simulation)

F
M

S
M

Object: System or Design combination under maintenance
Design combination R D Nominal {CVP, CIBI} Indep Constant x x
Initial Elements S N Ratio [1, …, +∞) Indep Initial Variation x x
Initial Operations S M Ratio [1, ..., +∞) Indep Initial Variation x x
New element probability S pnE Ratio [0.0, …, 1.0] Indep Constant x x
Uncertainty Factor of
Brownian Motion

R fBM Ratio [0.0, ... 0.5, …, 1.0] Indep Constant x

Overall Uncertainty Factor
effecting probability pnE

I uF Ratio (-fBM×0.3, …, fBM×0.3) Indep Random fBM×N(0,√λ,0,3)/(10×
√λ)

 x

Number of scenarios R λ Ratio [1, …, +∞) Indep Increased Linearly x x
Scenarios’ actual Size I ssize Ratio [1.0]

(0.01, …, 2.0)
Indep Constant

Random
Fixed=1.0
N(1, 0.33, 0, 3)

 x

Scenarios’ actual Size type R sizing Nominal [Constant, Random] Switch Constant x
Alternate scenarios type R alt Nominal [Only expansion, All] Switch Constant x
Code Aging or expansion or
entropy type

R aging Nominal [Constant, Increased] Switch Constant x

Age factor I age Interval [1.0]
[1.0, …, 2.0]

Indep Constant
Increased

Fixed=1.0
Linearly

 x

Theoretical Subject (perceived as object): Developer(s) / Company
Experience level or
comprehension degree or
quality of resources

I,S exp Interval [1.0]
[0.1, …, 2.0]
(0.1, …, 2.0)

Indep Constant
Sample
Random

Fixed=1.0
Sample value (exp)
N(1.5,0.33,-0.5,3)+.1

 x

Learning Rate type R r Nominal [Constant,Sample,Random] Switch Constant x
Total progressive outcome: size of affected code’s entities, or maintenance effort prediction / assessment
Formal Model - cm() Ratio [0, …, +∞) Depend Deterministic x
Simulation Model I scm() Ratio [0, …, +∞) Depend Variation x

1 Controlled by R: researcher in the lab, S: sampling-random selection, I: internally by Simulation Model according to
switches’ state.
Normal distributions are referred to +/- 3σ limits.
Distribution notation is referred as N(mean, std deviation, skewness, kurtosis) where N(0,1,0,3) is referred to normal
distribution with μ=0, σ=1.

6.4.4 Selection of Sample (Subjects and Objects)

Sample selection: an experiment scenario encloses the object that represents the initial
system’s attributes, and one quasi-subject that represents developer(s) characteristics as
indicated in Figure 6-7. Developers are referred as quasi-objects since their offer in the
maintenance process is simulated by the simulation model. Thus, an experiment scenario
is defined by totally 14 independent variables. Two of those variables (Design, λ) are
controlled by the researcher, five of those (fBM, sizing, alt, aging, r) are switches also controlled
by the researcher, and three of those (ssize, age, uf) are internally controlled by the simulation
model, as classified in Table 6-3 and Figure 6-7. The rest four independent variables (N,
M, pnE, exp) define the design attributes, scenarios’ probabilities, and developer(s)
experience level of a specific system’s instance of the general problem. In particular, the
first three variables (N, M, pnE,) define an object or system’s attributes, and the rest one
(exp) defines the theoretical subject or developer(s) characteristics. The possible
combinations of these variables define the spectrum or a listing of items that make up the
population from which the sample of experiment scenarios is selected. Notice that pnE
indirectly defines pnP=1-pnE. In addition, occasionally, exp variable is also controlled
internally by the simulation model, as indicated in Figure 6-7.

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 119

The sample of system’s properties and developer characteristics, represented by N, M,
pnE, exp variables, is selected through absolute random sampling. In order the sample be
representative of actual object-subjects, the ranges of the independent variables are limited
into N=[20, …, 200], M=[5, …, 150], pnE=[0.05, …, 0.95], and exp=[0.2, …, 2.0]. Given that
the range of each variable covers the majority of any possible (actual) object-subject, the
randomly generated sample adequately represents the whole population. The entire set of
the 1000 sample’s instances is provided in Appendix B.

Confidence level and sample’s size determination: several preliminary trials paired t-
tests on predictions of simulation models, and formal models’ computations for various
parameters showed that there is no need for increasing the confidence level (1-α=0.95).
Furthermore, considering the limitations related to required process-time and the need for
a small sampling error less than 1.3% of the maximum effort's range, the optimal sample
size is selected to n=1000. Setting sampling error less than 1.3% of the maximum effort's
range permits the detection of very small differences, thus reducing β risk of Type-II errors
and increasing the power (1-β) of a statistical test to detect that H0 is false.

6.4.5 Conceptual Analysis of Validation Process

6.4.5.1 Selected Research Strategy

In this subsection, the selected research strategy properly adapted to the context of this
study is conceptually presented and discussed. Scientifically speaking, researchers try to
predict the physical or general systems' behavior through theories, prediction models, and
methods that captures the cause effect relationships among independent and depended
variables or factors of interest. Thus, the reality aspect be approached by a theoretical
aspect. Two basic (modeling) approaches prevail on this try as illustrated in Figure 6-8.

Formal/analytical/empirical study (path A): In this case, a system or a phenomenon
is observed and some possible or intuitive concepts regarding system's behavior are
highlighted. Based on this theoretical concepts, a (prediction) model is proposed, usually
through a special modeling methodology or theory. Next, several (mostly sampling) data -

Figure 6-7: Experimental setup visualization

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 120

observations about the system's behavior are collected through surveys, case studies,
experiments, simulations, sampling processes, etc. These data are usually classified in
independent and dependent variables where the latest are those that can predicted by the
proposed theory and prediction model. Finally, the observed and predicted data are
compared each other under several statistical methods in order the prediction model be
validated. Such validation processes could be t-test, z-test, correlation coefficient, etc. The
successful validation of the proposed model by empirical observations provides sufficient
statistical evidence that the relevant theory or methodology adequately describes,
represents, or reflects the actual system or the phenomenon under study.

Scientific study (path B): In this case, several (mostly sampling) data - observations
about the system's behavior are directly collected through surveys, case studies,
experiments, simulations, sampling processes, etc. Usually, the data collection and
selection process are guided by some fundamental research questions about the system or
the phenomenon under study, however, no particular theory or model that describes the
behavior or cause-effect relationships of the phenomenon is yet available. Next, all the
observed data are analyzed under several statistical techniques such as regression analysis
or by using computer aided techniques such as neural networks and machine learning
algorithms. Through the previous analysis, prediction models are generated regarding the
prediction of the dependent variables based on the (significant) independent variables.
Finally, the observed and predicted data are compared each other under several statistical
methods in order the prediction model be validated. Such validation process could be the
ANOVA test, determination coefficient, cross-cut validation, etc. In addition, an underlying
concept, or a theory about the behavior or cause-effect relationships of the system or the
phenomenon under study can be derived through the interpretation of the prediction
model and its parameters.

Which of the two approaches are the most proper for a given problem (system or
phenomenon) under study is a difficult question and the answer depends on the specific
features of each problem. In general, the derivation of a prediction model through statistical
techniques (path B) requires a significant amount (sample size) and range of historical or
survey data. Moreover, in the case of software maintainability assessment, there also some
other obvious concerns and limitations. For example, the conducted surveys, case studies
and sampling process during software maintenance are extremely costly in time and
resources and thus the number of the observations are very limited per study,

Figure 6-8: Visualization of research strategy, focusing on reality and theoretical

aspects.

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 121

heterogeneous, usually unclassified, and unevenly conducted through literature. In
addition, the historical data in literature, regarding various quantitative measurements and
evidence during maintenance process, are significantly different each other and unequally
distributed and thus, are not comparable and statistically meaningful. Furthermore, the
sampling process during software maintenance is heavily affected by human activities and
many other stochastic and bias factors, arising out of heterogeneity among different
developers’ teams, programming environments-tools, and system’s types. Thus, it is rather
difficult if not impossible, a decent set of observations (sample) be extracted for statistical
analysis and validation purposes, especially in the field of software maintenance. Although,
simulation models running in software could be an alternative toward this direction, a
modeling methodology (through path A) that could provide formal and valid prediction
models without the need of statistical analysis and validation process, would be very
helpful. Especially for the case of comparison of design alternatives based on their
maintainability perspective where homogenous observations are not available. However, a
formal model without a strictly statistical validation against real-world observations may
be subject to several accuracy or reliability issues.

The proposed theory, modeling method, and derived formal models under statistical
validation through simulations are in accordance with the Formal/analytical/empirical
study as represented by the path A in Figure 6-8. More specifically, given that software
maintenance process can be approached from the perspective of software evolution, the
engaged design patterns per design alternative provide an insight regarding the followed
evolution pattern of the system for major maintenance scenarios (classes of resembling
activities). Furthermore, the design attributes of the logical entities of the design problem
under study as they represented by code entities of the engaged design patterns (per design
alternative) gives an extra insight regarding the cause-effect relationships and underlying
evolution theory of the addressed design problem. The introduced modeling theory, the
SMC metric, and the derived formal comparison models (chapters 3 and 4) describes the
underlying concept of software evolution during maintenance based on the architectural
analysis of the engaged design patterns. Due to the absence of adequate volumes of
homogeneous observations, a multi-variable simulation model that replicates the
underlying activities and variability of actual maintenance process providing homogenous
observations is introduced in this chapter. Finally, the simulated observations are
statistically compared with the outcome of formal modes to evaluate the reliability of
initially proposed modeling theory and method.

6.4.5.2 Theoretical and Observational Aspects

In this subsection, the conceptual analysis of the validation process focusing on the
contradistinction among the theoretical and observational aspects is discussed. This study
introduces a (high level) theory regarding the early comparison of design alternatives based
on their maintainability perspective. More specifically, a modeling method that generates
comparison formal models based on change rate analysis of software design attributes
through differential equations is proposed (chapters 3 and 4) as visualized in Figure 6-9.
The modeling method uses the fundamental Structural Maintenance Cost (SMC) metric,
which captures the expansion behavior of the design combinations. The introduced theory
suggests that the modeling method describes the progressive software evolution during the
maintenance process. Hence, the generated formal models predict the required effort
during the maintenance process expressed in terms of numbers of method and class
interventions as measured by the SMC metric. Thus, the predicted maintenance effort
guides the selection among implementation alternatives based on their maintainability
perspective since less maintenance effort corresponds to a better maintainability degree.

The generated formal models predict the required effort based on a small set of
independent variables such as design attributes and scenario probabilities. Although
persuasive argumentation about the modeling method and formal models’ logic is

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 122

provided, the effect of the uncovered or ignored random and stochastic factors in effort
predictions is a significant concern that should be further investigated. Thus, the statistical
validation of the formal models’ prediction ability is required through observations and
measurements about the maintenance process of actual systems.

The statistical validation of the formal models’ effort prediction ability provides
sufficient evidence (or strong indication) that i) the introduced theory is also valid and, thus
the proposed modeling method adequately describes the progressive software evolution
during the maintenance process, and ii) the predicted effort is a reliable (not necessarily
accurate) magnitude toward the comparison and selection among design alternatives
based on their maintainability perspective.

In the absence of adequate sampling data, a simulation model that imitates the
maintenance process of a system while taking into consideration many other random and
stochastic factors as independent variables is proposed. The simulation model uses the
SMC metric and computes the maintenance effort for a large number of systems or
problem’s instances (sample). Hence, the simulation model computes the required effort
during the maintenance process, also expressed in terms of numbers of method and class
interventions as measured by the SMC metric. Notice that the simulation model
encapsulates random and stochastic behavior, and thus it returns different computations
for the same values of its independent variables.

Because simulation in computers is an automated activity that takes place in a
controlled environment, the validation process in the current study is documented and
conducted under the sight of experimentation in software engineering, as described in
(Wohlin et al., 2012). Thus, theoretically, the developers (subjects) perform maintenance
(treatment) over a sample of problem’s instances or systems (objects), which are defined
or distinguished by attributes (independent variables), requiring a specific amount of effort
(dependent variable). However, the maintenance process is imitated by the simulation
model. Hence, in practice, the researcher (subject) performs simulations through the
simulation model (treatment) over a sample of problem’s instances or systems (objects),
which are defined or distinguished by attributes (independent variables), requiring a
specific amount of effort (dependent variable).

Figure 6-9: Visualization of the experiment context, focusing on contradistinction

among theoretical and observational aspects

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 123

The sample of the possible practical systems is selected randomly with a constant
distribution considering meaningful intervals for all independent variables. Dummy
variables (categorical / switches) can be selected systematically to explore the contribution
of each stochastic variable to the simulation model and its outcome. Considering the formal
model as an alternative treatment, the validation process targets to the statistical
comparison between formal models’ effort predictions and simulation model’s effort
computations, for the selected sample of systems and various switch sets and iterations.
More specifically, the statistical validation targets to the inference that the formal models’
predictions are not significantly different from the simulation models’ computations or that
the average of the differences between paired formal model and simulation model
predictions is not significantly different from zero. That inference generalizes the
observation evidence from the sample scope to population scope. In other words, this
outcome provides statistical evidence about i) the formal model’s effort prediction ability
for any actual possible system, and ii) the modeling method’s formulation ability to
(statistically) describe the progressive software evolution during software maintenance.
However, due to the lack of as strictly validation of simulation model against real-world
observations, this inference may be of low importance as discussed in chapter 1 and
subsection 6.1.

Finally, because the selection among design alternatives is based on the minimum
required effort, the statistical comparison between formal model’s and simulation model’s
effort predictions is conducted based on the differences of effort predictions for any
implementation alternative under comparison. Also, because the sign of the difference
between the predictions of design alternatives indicates an opposite selection (incorrect
decision or error), an additional error rate assessment is conducted regarding the reliability
of the decisions. The introduced modeling method and the derived formal models (chapters
3 and 4) must support the decision/selection of the most beneficial design combination
among alternatives based on their maintainability perspective. The decision is based on
fundamental design (pattern) attributes as well as on probability assessments about
primary maintenance scenarios. Hence, the decision is (by default) a probabilistic
assessment, and thus, its accuracy should be determined by a certain confidence level. The
pre-mentioned error rate assessment returns an accurate confidence level about formal
models’ ability not only to provide valid effort assessments, but correct design decisions as
well. After all, proper selection or limited decision-risk among design alternatives is the
main goal of the suggested theory in chapters 3 and 4.

Conclusively, the context of the described experiment is an off-line project, which is
conducted by the researcher through computer-aided simulations (treatment). This
treatment incorporates professionals’ (developers-subjects) behavior and individual
system’s design attributes (objects) as stochastic and random independent variables, for
general purposes, covering almost all the range of possible values of design attributes
(systems-objects). Thus, the generalization of the conclusions about a specific formal
model and design alternatives is valid for any reasonable set of the problem’s instances
(objects of the population) as distinguished by their design attributes.

6.4.6 Experiment Design

The overall experimental setup is visualized in Figure 6-7. In brief, both treatments
(Formal and Simulation Models) are simultaneously applied for each set of experiment
scenario’s variables (system’s attributes and developers’ characteristics), returning effort
assessments through their dependent variables (cm, scm). Furthermore, the tests are
massively conducted for several combinations of the dummy (switches) variables that
control the stochastic behavior of the simulation model. This allows the further exploration
of the contribution of each stochastic variable to the validation process. Overall, the
experiment results are arranged at seven distinct simulation states in which each stochastic
variable is gradually engaged, as presented in Table 6-4. Each state returns data for both

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 124

design combinations, different λ values, and all instances of the random object-subject

sample. Lastly, the modular analysis of the experimental data is described next.

Internal convergence: The convergence control confirms that the simulation model
provides targeted computations (scm) in a limited interval for a specific system (object)
given the fact that simulations are internally affected by several random and stochastic
factors. This preliminary control is repeatedly conducted up to 100 times for all the selected
simulation states in Table 6-4. In principle, this control process approximates the Monte
Carlo Simulation (Rubinstein & Kroese, 2016), since it substitutes several variables’ ranges
by random values based on specific probability distributions for any factor (uF, ssize, exp) in
Table 6-3 that has inherent uncertainty.

Table 6-4: Combinations (States) of Simulation Model’s Independent Variables and
Switches

Simulation Model’s
Variables

Independe
nt

Switches / dummy independent Independent (Sample)

Description of gradually
engaged stochastic
factor

Design
alternative

λ

Uncertainty
Factor

fBM

Alternate
scenarios

alt

Scenario
size
ssizing

Code aging
aging

Developers
learning

rate r

System
attributes
N, M, pne

Developers
(experience)

exp
1. Variable scenario
sequences

CIBI
&

CVP

1, …,
200

Low: 0.0 Only new Constant Constant Constant

Randomly selected
sample size: 1000

instances of the general
problem

(Number of repeated
simulations per sample

instance: 100)

2. Shifting scenarios
probabilities Mid: 0.5 Only new Constant Constant Constant

3. Alternate
maintenance scenarios Mid: 0.5 All Constant Constant Constant

4. Variable
interventions’ size Mid: 0.5 All Normal Constant Constant

5. Code aging &
learning rate Mid: 0.5 All Normal Increased

Sample
value

6. Variable developers’
experience Mid: 0.5 All Normal Increased

Normal
Skewed

7. Highly shifting
scenarios probabilities High: 1.0 All Normal Increased

Normal
Skewed

Total outcomes 2.8x108 2 x 200 x 7 x 1000 x 100

External correlation: Referred to the coefficient of correlation between formal model’s
effort predictions (cm) and simulation model’s computations (scm) for all the selected
simulation states in Table 6-4. This type of control is conducted based on one time (single)
simulation per sample instance since repeated simulations could conveniently manipulate
the statistical significance. Thus, any statistical inference is subject to the stochastic nature
of the simulation model.

Hypothesis Testing: Two-sided, paired t-test among formal model’s (cm) and

simulation model’s (scm) assessments is preferred since the population variation σ2 is

typically unknown, as supported in (L. Briand, Emam, & Morasca, 1996; Montgomery,
2012). In general, the parameters involved in a parametric test should be normally
distributed. However, for large sample sizes, as in this case, either of the parametric or the
nonparametric tests work adequately, and thus the assumption of the t-test is met even for
non-normal measurements. Furthermore, several tests showed that parametric methods,
such as the t-test, are fairly robust to deviations from the preconditions (interval scale) as
long as the deviations are not too large, as discussed in (L. Briand et al., 1996). To address
this concern, the quantitative parameters (Formal and Simulate effort assessments) of the
tests are investigated under the assumption of normal distribution. Again, this test is
conducted based on one time (single) simulation per sample instance as in external
correlation test.

Error rate assessment: Probabilistic models could have some precision issues for
some marginal cases. Thus, decisions based on formal model’s and Simulated results may
conclude to opposite selections among design alternatives for the same set of input
variables, indicating an incorrect decision or “error” due to formal model’s precision issues
and simulation model’s stochastic nature. Hence, the error rate is another sophisticated

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 125

measure of the model’s reliability degree, focusing on the decision-risk taken by the
designers.

In the context of this study, the average error rate (Er) is computed through up to 100

repeated simulations for different λ values and for all the simulation states in Table 6-4.

During each repetition, the intermediate simulated results (scm) are compared to formal
model’s deterministic results (cm) while occurring errors are counted. Repeated executions
are suggested in the context of several studies about testing randomized software for
simulation purposes (Guderlei, Mayer, Schneckenburger, & Fleischer, 2007). In addition,
conducting repeated executions is an approximation of the Monte Carlo Simulation
(Rubinstein & Kroese, 2016), a technique that furnishes the decision-maker with a range
of possible outcomes and the probabilities they will occur for any possible choice of action.
Finally, through further analysis of individual errors, critical errors with high negative
impact in terms of wasted effort and high probability to occur are spotted.

6.4.7 Instrumentation

The main instrument of the experiment was a custom simulation model, which has been
designed based on several related works as proposed in (Barros, Werner, & Travassos,
2004; Kelsen, 2004; Müller & Pfahl, 2008; Stopford & Counsell, 2008).

General Description: The simulation model has been developed in two variations with
identical behavior and outcomes. Given the initial formal models and the directions
provided in this subsection, the development cost of the simulation model is expected to be
moderate with the most efforts being placed on its calibration as discussed in subsection
6.4.9. The first variation was through an object-oriented language where its logical entities
such as the scheduler, types of maintenance scenarios, design patterns, and virtual subject
(developer) are represented by separate classes, thus approaching an entity or modular
model (Zeigler, Mittal, & Traore, 2018). The design combinations under assessment are
declared through run-time instances of these classes, like a custom internal Domain
Specific Language (DSL). This variation allows the deployment of the components of a
general problem through an (typical) object-oriented programming language while
provides potentials for adapting the model to different design problems. The second

variation was in the form of MATLAB© dynamic functions and scripts which is a more

versatile implementation in terms of data manipulation and graph generation. However,
this functional model requires a strictly mathematical background and programming style.
In both variations, the total effort for each design alternative is computed through repeated
executions (or applications) of several maintenance scenarios based on their individual
probabilities. It is important that the proposed simulation model generates scenario
sequences and streams of (stochastic) factors’ values which are simultaneously used in all
design alternatives. Furthermore, it replicates the same pattern of structural evolution
under the same parameters as in the formal modes. Thus, the simulation model adapts its
behavior according to its parameters to provide classified observations with regards to
specific design parameters and scenarios probabilities. Thus, these are the perfect
comparison conditions that only a controlled simulation can provide.

6.4.7.1 Description of Parameters and Stochastic Factors

Effort/size measurements: The simulation model’s scheduler is responsible for recording
the virtually provided effort per scenario application. More specifically, the simulation
model computes the maintenance effort for each design combination and maintenance
scenario through the linear equation (6-4) which also uses the formal SMC metric (cm) in
Table 6-2. As a result, even if several stochastic factors are engaged, the simulation model
returns effort assessments (scm) also expressed in terms of numbers of method and class
interventions.

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 126

𝒔𝐜𝒎(CIBI/CVP, N,M, 𝑝𝑛𝐸 , 𝑝𝑛𝑃 , 1) =
𝑎𝑔𝑒 ∙ 𝑠𝑠𝑖𝑧𝑒

𝑒𝑥𝑝
𝐜𝒎(CIBI/CVP, N,M, 𝑝𝑛𝐸 , 𝑝𝑛𝑃 , 1) (6-4)

Conceptually, the equation (6-4) can be perceived as the disaggregation of the actual
required effort in meaningful components or factors. More precisely, the size factor (ssize)
represents the actual action’s size, which is proportional to the formal SMC metric since
grater actions demand more effort. The experience factor (exp) reflects the developers’
efficiency, which is inversely proportional to the required effort since higher experience
degree implies less effort. The age factor (age) can be considered as a friction coefficient that
contradicts developers’ efficiency, and thus it slows down the maintenance process by
requiring more effort. Consequently, the age factor (age) is proportional to the required
effort. The linear relationship between sub-factors such as size and effort is supported by
many studies (Araújo et al., 2012; Bengtsson & Bosch, 1999; Bosch & Bengtsson, 2001;
Dolado, 2001; Hayes et al., 2004; Hayes & Zhao, 2005), including the area of early
Function Point Analysis (Giuliano Antoniol, Lokan, Caldiera, & Fiutem, 1999; B. Boehm
et al., 1995; Barry W. Boehm et al., 2000; Caldiera, Antoniol, Fiutem, & Lokan, 1998; Meli,
1997; Musilek, Pedrycz, Nan Sun, & Succi, 2002). The principal component of SMC metric
cm() makes the simulated measurement of equation (4) representative for a particular
software architecture of interest pertaining to a specific evolution scenario. That because
SMC metric captures the evolution pattern of a particular scenario per design alternative
as affected by the current values of design attributes (described in subsection 6.2.2). Design
decisions for a different design problem would have different scenarios, design attributes,
and set of SMC metrics per maintenance scenario and design alternative, thus adapting the
(simulated) maintenance effort for alternative design decisions as well. Furthermore, the
use of SMC metrics as the core of effort measurements by the simulation model is required
in order the comparison of two treatments’ outcomes be fair.

Sequence of Maintenance Scenarios: The scheduler of the simulation model affects the
sequence or the order of the applied (arriving) maintenance scenarios. The Modeling
Theory under validation considers that the generated scenarios’ sequence is unique flowing
a steady repetition pattern based on individual scenarios’ probabilities. This approach
ignores possible random instances of scenarios’ sequences, and thus, it has been selected
in chapter 3 as an approximation due to its computational formality. In practice, during
the maintenance of real-world systems, there are many possible combinations (sequences)

of scenarios that can occur for a given number of scenarios’ applications (λ) and specific

probabilities. However, the frequency of all these sequences is normally distributed around
the most common case, which is the unique repeated sequence adopted by the formal
models. More specifically, considering the possible maintenance scenario types as separate
events (in this case n=2 events) with probability p1 and 1-p1, the frequency distribution of
all possible sequences of λ event occurrences is represented by the binomial distribution.
Practically, the simulation model generates scenario sequences based on a random
generator, which is affected by the individual scenario’s probabilities. The stochastic
generation of scenarios (set of tasks) is a standard approach in the domain of simulations
(e.g., as Events or Requirements (Kelsen, 2004; Stopford & Counsell, 2008)).

Alternate Maintenance Scenarios: The scheduler of the simulation model can apply
alternate maintenance scenarios through the switch alt:[Only expansion, All]. In ‘Only
expansion’ mode, only the expansion scenarios are engaged in conformity with formal
model and modeling method assumptions. In ‘All’ mode, the alternate maintenance
scenarios for modifications and deletions are engaged in accordance with the additional
SMC metric equations provided in Table 6-2.

Actual Size of Maintenance Scenarios: The scheduler of the simulation model can
influence the size of each maintenance scenario through the switch ssizing:[Constant,
Random]. The scenario’s size factor (ssize) is a value related to the actual size of a single

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 127

method intervention, e.g., the real added code for a new method, including its business
logic code. In ‘Constant’ mode, the factor ssize=1, thus it does not affect standard effort
assessment as assumed by the Modeling Theory under validation. In ‘Random’ mode, the
factor ssize receives randomly generated values in the range (0.01, …, 2.0) based on a normal
distribution pattern. Considering the random factor ssize as the average value of all
individual methods’ actual sizes for a scenario, it could be safely assumed that ssize values
proximally follow a normal distribution pattern regardless of the (real-world) distribution
of the methods’ actual sizes (in accordance with the Central Limit Theorem properties).
Consequently, the SMC metric cm, initially expressed as the number of method
interventions per scenario, multiplied by the stochastic factor ssize (in actual size per method
units), becomes a measure that statistically expresses the actual expected size of the code
affected by a particular maintenance scenario (in actual size per scenario units). Typically,
this approach aggregates a Micro stochastic sequence (individual methods’ sizes) into
macro behavior using law of large numbers expressed in a simpler stochastic form (average
value of all methods’ sizes), as suggested in (Zeigler et al., 2018).

Code Aging: The scheduler of the simulation model takes under account software
aging issues through the switch aging: [Constant, Increased]. In ‘Constant’ mode, the factor
age=1, thus it does not affect standard effort assessment. In ‘Increased’ mode, the age factor
is gradually (linearly) increased in the range of [1.0, …, 2.0] for each maintenance scenario.
In general, software code and its quality tend to be fading mostly due to its increasing size
and complexity, outdated technical and dissimilarity issues, long-term compatibility, and
comprehension issues, etc. All these concerns about software aging are inevitable as
substantiated in (David Lorge Parnas, 1994). In principle, as the system’s code becomes
older, more effort required by the developers for adding or modifying a fixed amount of
code.

Furthermore, code aging or decay is one of the reasons that partially explains the
increment trend of required effort perf fixed number of activities suggested by software
entropy concept (Bakota et al., 2012). As the software entropy concept implies, code has
the innate trend to decay or loss its structural cohesion over (maintenance) time. However,
looser structural cohesion implies higher coupling among code entities (e.g., modules,
classes, methods), lower maintainability degree, and thus higher effort during
maintenance. In terms of entropy, looser structural cohesion implies code of lower order
(higher disorder), and higher entropy as further discussed in subsection 6.4.7.2.

Developers Experience and Learning Rate: The scheduler of the simulation model
incorporates developers' experience and their learning rate in different ways through the
switch r: [Constant, Sample, Random]. In ‘Constant’ mode, the factor exp=1 for all scenario
applications, thus it has no effect on standard effort assessment. In the ‘Sample’ mode, the
factor exp is equal to the sample’s parameter (independent and randomly pre-selected
variable) and it remains constant for all scenario applications. Although developers
experience is evolved during actual maintenance, this unusual situation is intentionally
included for further analysis purposes. In ‘Random’ mode, factor exp is set to a random
value in the range (0.1, …, 2.0) for each scenario application, following a left-skewed
standard normal distribution. Usually, several developers with variant experience levels
could be engaged simultaneously as a team or/and in different periods during actual (real-
world) maintenance of a system. Furthermore, in general, companies and developers tend
to increase their experience and efficiency, e.g., by hiring specialists, through training, etc.
Moreover, the developers’ teams increase their efficiency and their cooperation degree
during the course of the projects. In addition, as technologies mature, developers become
more familiar or expert. All these reasons arising from real-world circumstances cause a
left shifting of the distribution curve of the developers’ experience factor, as confirmed by
IT’s community in (Woolf, 2016).

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 128

Interpretability of factors’ values: The stochastic variables (i.e., ssize, exp) and the
shifting factor age of the simulation model are defined in a specific range of values as
reported in Table 6-3. These factors act as a weight on SMC metric in equation (6-4), and
thus they have been normalized around the neutral value of unit. For example, the factor
of actual scenario size (ssize) lies between 0.01 (implying a very small scenario in terms of
size) and 2.0 (implying a very large scenario in terms of size), where a value of ssize=1.0
implies a scenario with average size. When this factor takes random values from the normal
distribution of mean μ=1 and standard deviation σ=0.33, N(1, 0.33, 0, 3), then around
68% of its possible values lies between 0.67 and 1.33, 68%+27% lies between 0.34 and
1.66, 95%+4% lies between 0.01 and 1.99, and the rest ≈1% lies below 0.01 and above
1.99, thus representing possible extremely small or large scenarios). Notice, that even with
low probability, values far above the range of 2.0 are possibly to occur. Respectively, the
factor of developers’ experience (exp) lies between 0.01 (implying a novice developer or
team) and 2.0 (implying an expert developer or team), where a value of exp=1.0 implies a
typical competent developer or team. Again, values above the range of 2.0 are possibly to
occur. Finally, the increasing factor of code aging (age) lies between 1.0 (implying a fresh
system without aging issues in its code) and 2.0 (implying an old system with aged code).
These ranges and the distributions of the stochastic factors have been selected after
intensive calibration efforts to be realistic as possible as discussed in subsection 6.4.9.

Random behavior: It is important that the introduced simulation model encapsulates
random behavior through several probabilistic components or variables which called
stochastic (Müller & Pfahl, 2008). If a simulation for the same experiment scenario is
repeatedly executed, the results will be different because of the internal randomness
introduced by the stochastic variables (uF, age, ssize, exp) and random scenario sequences as
it would be in a field case study. Especially the uncertainty factor fBM allows researcher to
define the overall uncertainty level of the uF internal factor which randomly shifts scenarios’
probabilities during simulation. That because the initially assessed scenarios probabilities
may be gradually shifted during actual maintenance process by a random and uncertain
way. More precisely, the scenarios probabilities are randomly shifted by an overall
uncertainty factor fBM x uF, where uF factor returns normally distributed random values of

zero mean μ=0, and standard deviation σ=√𝜆, according to the stochastic Brownian
Motion or Wiener process (Bhattacharya & Waymire, 2009; Durrett, 2010). As the

maintenance process evolves or λ factor increases, the standard deviation σ=√𝜆 of the
stochastic values returned by uF factor increases too. The uF factor represents a stochastic
process with stationary independent increments and occur frequently in pure and applied
mathematics as well as in quantitative and evolutionary analysis of real-world systems.
Furthermore, it is a fundamental process in terms of which more sophisticated stochastic
processes can be described.

All the used frequency distributions are realistic assessments mostly derived from the
statistical theory and empirical evidence. Furthermore, the simulation model tries to deal
with highly unlikely but extreme and important events that may occur without any
historical precedent. Normally, simulations from normal distributions allows unbounded
bad or good outcomes. Nevertheless, without increasing extreme outcomes’ probabilities
through fat-tails curves, we may greatly underestimate their likelihood and thus, exhibit
high exposure to tail-risk. To deal with these issues, several types of normal frequency
distributions, including fat-tails variations, have been tested in a try to explore the effect of
highly unlikely but extreme and important outcomes as discussed in subsection 6.4.9.
Finally, all variables’ values are randomly generated based on each specific distribution
type since preliminary tests showed that sophisticated randomized sampling techniques
such as Latin Hypercube sampling (Ye, 1998) do not provide any significant improvement.

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 129

6.4.7.2 Connecting Code Aging with Software Entropy Concept

In this subsection, the connection of code aging (David Lorge Parnas, 1994) with the
software entropy concept (Bakota et al., 2012) is documented. One of the main effects of
code’s aging is the gradual decrement of its structural cohesion. However, looser structural
cohesion implies higher coupling among code entities (e.g., modules, classes, methods),
lower maintainability degree, and thus higher effort during maintenance.

Given a set of software requirements there are several possible implementations. Each
implementation has its own structure, cohesion degree, coupling degree, etc. However,
each structure has different maintainability degree. Structures with high cohesion and low
coupling degree are more maintainable but require higher skills and initial development
effort (e.g., by using proper design pattern combinations) than structures of lower cohesion
and higher coupling degree that may initially requires less development effort but are less
maintainable in the future. Given a structure of high cohesion, any future maintenance
activities should follow the design principles of the initially selected structure. This is for
the interest of developers since this approach requires less maintenance effort and sustains
the structural cohesion and maintainability degree of the code. However, in practice, there
several reasons that may tempt or even force developers to deviate from this approach.
Such reasons may be insufficient code documentation, lack of skills and comprehension
regarding the arrangement and operation of the used design patterns, the pressure
imposed by strict deadlines, minor or trial functionalities that are carelessly or temporary
attached to the code bypassing its formal structure, limited access to relevant source code,
etc. Because of all these reasons, the initial structural cohesion and maintainability degree
of the code tends to be loosened during its evolution or maintenance process as illustrated
in Figure 6-10.

Conceptually, the cohesion degree of a structure reflects its order degree, and thus
higher structural cohesion implies higher code order. Since code of high order (structural
cohesion) is a state that requires increased skills, control, and design effort to be reached
and sustained, it is less likely to spontaneously occur, while as the time pass, states of lower
code order (disorder) are more likely to occur. In terms of code’s entropy, code of high order
reflects states of low possibility and low entropy while code of low order (disorder) reflects
states of high possibility and high entropy as depicted in Figure 6-10. According to the
second law of thermodynamics, the entropy of isolated systems left to spontaneous
evolution cannot decrease with time, as they always arrive at a state of thermodynamic

Figure 6-10: Software entropy concept in relation to code’s aging.

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 130

equilibrium, where the entropy is highest. Respectively, the entropy of isolated software
systems left to spontaneous evolution cannot decrease with time, as they always arrive at
a state of equilibrium, where the entropy is highest (high probability and low code order).
Here, the phrase of “isolated software systems left to spontaneous evolution” refers to the
maintenance (evolution) of code in a spontaneous manner, thus concentrating on
(spontaneous) interventions that satisfies new functionalities and requirements and
excluding (targeted) interventions that reforms and improve the structure and cohesion
degree of the code. Conclusively, software entropy concept implies that the code has the
innate trend to decay (age) or loss its structural cohesion over (maintenance) time given
that no reforming activities of its structure take place.

6.4.7.3 MATLAB Functional Representation of Simulation Model

An indicative and abstract representation of the introduced simulation model is provided
in Figure 6-11. The provided pseudocode is a simplification of the model’s functional
implementation in MATLAB environment. Several details, subroutines, intermediate
variables, initializations, and marginal conditions have been omitted or integrated to keep
the representation condense and focused on its basic functionality. The focus is on the
principal function SM_Cost_CVP_CIBI() which performs a single (one time) simulation
of the maintenance process for the general problem of recursive hierarchies of part-whole
aggregations (CVP vs CIBI). The characteristics (N, M, pnE, pnP, exp) of each specific
(sample) instance of the general problem are declared as separate parameters (avoiding
tables for simplicity). In addition, several other parameters (fBM, λ) and switches (alt, ssizing,
r, aging) related to the control of model’s stochastic behavior are declared. Furthermore,
extra parameters to control the characteristics of the used frequency distributions fοr
developers’ experience and scenarios’ size have been added. The function enables different
levels of stochastic behavior according to the values of these parameters, thus enabling the
user to run all the simulation states in Table 6-4. The effort estimations for both design
alternatives (CVP, CIBI) and for the entire sequence of applied scenarios (λ) are the
function’s output. The model generates sequences of several auxiliary values such as
sequences of age, size, experience, design attributes, simulated cost, and stochastic factors
to keep track their progress as different types of maintenance scenarios are repeatedly
applied. These sequencies of values are gradually and commonly applied in both design
alternatives to ensure fair comparison conditions. The evolution policy of the model is
defined by the discrete types of scenarios, implying a discrete-event or event-driven model.
The SMC metric (Table 6-2) for different types of scenarios is also integrated to facilitate a
homogenous measurement process. However, SMC metric could be coded in a different
function for better abstraction. The used identifiers of the parameters are in accordance
with the notation used in Table 6-3 and Figure 6-7. Finally, this function can be repeatedly
executed (by other functions) to perform massive simulations: a) on different sample
instances of the general problem for generalization and statistical validation purposes, b)
on the same instance (Monte Carlo approach) to investigate frequency patterns, variability,
error rate, and convergence, or even c) combinedly (Monte Carlo approach to all sample
instances) to investigate overall variability and error rate control. Respectively, the formal
models as expressed by the equations (6-1) and (6-2) can be directly coded in parametric
functions to support comparison purposes.

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 131

6.4.7.4 DSL Modular Representation of Simulation Model

An indicative and modular representation of the model in the form of class diagram of a
typical object-oriented language is provided in Figure 6-12. Furthermore, a run-time
representation of model’s objects is depicted in Figure 6-13. Several details, auxiliary
methods, intermediate variables, and marginal conditions have been omitted to keep the
representation condense and focused on its basic functionality. During runt-time, each
design alternative of the problem (e.g., CVP) is conceptually represented by a hierarchy or
tree of associated objects each of them representing a specific design pattern or artifact (e.g.,
Composite, Visitor). Referring to the class diagram, the engaged design patterns (e.g.,
Composite_VP) are represented in a hierarchy of sub-classes under the class “Artifact”
where each of them can contain other artifacts. This structure is a composite
implementation that allows its extension with other artifacts that can be combined or
attached in various possible ways during run-time. Each artifact has its own design
attributes (e.g., N, M) and some common properties like its age and the required effort. For
example, during run-time, the CIBI design alternative is represented by the single (root)
design pattern “Composite_IBI”, while CVP by the root pattern “Composite_VP” and the
attached “Visitor” pattern separately. The maintenance scenarios or stimuluses are applied
on each type of artifact in different ways based on SMC metrics (i.e., Table 6-2). This

Figure 6-11: Abstract (indicative) representation of the Simulation Model

implementation as functional model.

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 132

implementation is an instance of the general design problem of recursive hierarchies of
part-whole aggregations, which ironically is the subject of this study (i.e., CIBI vs CVP).
This is a nice opportunity to demonstrate how this design decision can be supported by the
formal models. In this case, N=3 (distinct types of design patterns or artifacts) and M=6
(distinct types of scenarios or stimuluses). Given that each future addition of an artifact
(e.g., Decorator pattern) requires approximately three new types of stimuluses (e.g.,
Decorator Addition, Modification, and Deletion) in an analogy 1:3, it could be safely
assumed that the probability of a new element against a new operation is pnE=0.25:
pnP=0.75. In less than a minute, the equation (6-3) indicates that cm(CVP)<cm(CIBI) and
thus, CVP is the most beneficial design alternative in terms of maintainability.

Under visitor (CVP) approach, each stimulus (e.g., Elemetnt_Addition) is represented
in a hierarchy of sub-classes under the class “Stimulus”, including characteristics like its
probability and its size (shape of distribution). In addition, each type of stimulus contains
one method per artifact type (e.g., “ApplyToCIBI()”) responsible to apply this specific
stimulus on that specific artifact. The developer is represented as a separate class, including
characteristics like its experience (shape of distribution). The “Scheduler” class represent
the controller of the simulation model with which all the root artifacts (problem’s design
alternatives), the stimuluses, and the developer objects are associated. Initially the
components of the general problem under study should be loaded in the form of associated
instance of classes. The method “Simulate()” initiates the simulation process in a similar
manner as in the functional variation by randomly raising stimuluses based on their
probability. The application of the randomly raised stimuluses (e.g., Element_Addition)

Figure 6-12: Class diagram of an indicative modular representation of the simulation

model

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 133

takes places through the method “Accept_Stimulus()” which invites the stimulus to act on
a specific root artifact. The critical difference is that this method acts recursively or
propagates through all the sub-artifacts of each artifact. Thus, beginning from a root
artifact (e.g., Composite_VP), all its sub-artifacts (e.g., Visitor) will invite the same
stimulus to act on them. Each stimulus through its corresponding method (e.g.,
ApplyToCIBI()) acts on an artifact by updating its design attributes, its age factor, and its
total effort as affected by the overall uncertainty factor in equation (4). Notice that these
methods are referred to specific artifacts (e.g., Visitor design pattern) and not to the entire
design alternative (e.g., CVP), implying that the effect of the SMC metric should be properly
distinguished per engaged design pattern. This approach allows the definition of other
design patterns (as artifacts) which could be combined with others existing artifacts during
run-time to represent more complex design alternatives. Furthermore, it provides the
potential for disassociated characteristics (e.g., age levels) per artifact (design pattern)
instead of a uniform characteristic for the entire design alternative. Respectively, it provides
the potential for different characteristics (e.g., size distribution) per stimulus instead of a
uniform characteristic for all stimuluses. In addition, simulations of higher resolution and
stochastic behavior can be supported (e.g., by subclassing existing classes).

Indicative examples of intermediate results/outcomes of the simulation model for the
CVP design combination are presented in Figure 6-14. Moreover, an example of the
Graphic User Interface (GUI) of the simulation model’s implementation is demonstrated
in Figure 6-15.

Figure 6-13: Object diagram of an indicative run-time representation of the modular

simulation model

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 134

Referring to Figure 6-14, the number of applied scenarios has been defined to 20. The
probability for a scenario effecting an element is equal to 0.5 which further interpreted by
the model as new element probability (pnE=0.275), edit element probability (peE=0.2), and
remove element probability (prE=0.025). The probabilities for a scenario effecting an
operation (pnP, peP, and prP) are defined accordingly. The model generates sequences of a)
scenarios’ types based on previous scenarios’ probabilities, b) scenarios’ actual size factors,
c) aging factors, and d) developers’ experience factors. These sequences of events and
factors are commonly applied on both design alternatives under comparison.

It is essential that the simulation model incorporates internal randomness. For
example, considering a specific experiment scenario with independent variables N=30,

M=18, pne=0.7, λ=30, in 7th fully stochastic simulation state. If this simulation for the

same experiment scenario is repeatedly executed, the results will be different, because of
the internal randomness introduced by the random variables (age, ssize, exp) and random
scenario sequences as it would be in a real case study. These results highlight the vastness
of the potential cases under exploration that are not only limited to the independent

variables but also to the internal randomness. For example, for λ=30, the simulations for

the same experiment scenario would have approximately 1072 different possible outcomes

or λ!/((pnE·λ)!((1-pnE)λ!)) different scenario’s sequences x λ! different scenario’s sizes

x λ! developers’ experience levels. Nevertheless, it is expected that all these outcomes

would converge between them to some degree because of their inverse relationship and
statistic behavior of normally distributed factors based on Central Limit Theorem claims.
However, this random behavior helps to explore the authors’ claims according to which
the simplified proposed formal models and modeling method take into consideration all
these random factors in an indirect but sufficient statistical way.

Figure 6-14: Example of intermediate results/outcomes of DSL implementation of the

Simulation Model for CVP design combination

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 135

6.4.8 Conducting and Data Validation

Preparation and Execution: Initially, the sample of 1000 object-subject instances,
represented by N, M, pnE, exp variables in Table 6-3, is randomly generated through a
computer-aided generator. Next, the forma and simulation models or treatments are
massively applied in all relevant experiment scenarios for several simulation states in Table
6-4. The experiment’s (raw) results of the 7th simulation state are provided online for
further research purposes in (Karanikolas, Dimitroulakos, & Masselos, 2021).

Data normality control: Initially, the frequency distributions of some indicative
simulated (scm) outcomes for all (1000) object-subject instances of the selected sample are
presented in Figure 6-16. Respectively, indicative formal (cm) outcomes are presented in

Figure 6-17. The number of scenario application is λ=200 relevant to the 7th simulation

state in Table 6-4. The outcomes reflect effort assessments for CVP and CIBI combinations
including their difference value (CVP-CIBI) which eventually defines the decision-making.
All the outcome’s distributions approximate the normal distribution without indications
about outlier values, and hence there is no need for any data reduction. Furthermore, the
sample’s normality sufficiently implies population normality, thus amplifying the
reliability of the conducted statistical analysis.

Figure 6-15: Example of GUI of the DSL Implementation of Simulation Model

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 136

SM Internal convergence control: Indicative frequency distributions and related

scatter diagrams of simulated (scm) outcomes, concerning 100 repeated simulations in a
single object-subject instance of the selected sample (N:40, M:10, pne:0.5, exp:1), are

presented in Figure 6-18. The number of scenario application is λ=200 relevant to the 7th

simulation state in Table 6-4. The outcomes include the simulated effort assessments for
CVP and CIBI combinations as well as their difference values (CVP-CIBI). All the outcomes
are normally distributed and thus, are targeted in a limited interval. Conceptually, if effort
expectations, implied by formal model’s predictions, are rational, then the actual required
effort approximated by the simulation model’s outcomes should be normally distributed
around these expectations. Furthermore, the evidence confirms the stochastic behavior of
the simulated maintenance process. As intuitively implied, for most human activities, even
if a specific system had been repeatedly maintained for several times under similar
conditions, the outcomes would be different in some degree, however, converging in a
limited interval.

Figure 6-16: Frequency distributions of Simulation Model’s CVP, CIBI total effort

assessments, and their differences, for all (1000) object-subject instances of the

selected sample, where λ=200, relevant to the 7th simulation state in Table 6-4.

Figure 6-17: Frequency distributions of Formal Model’s CVP, CIBI total effort

assessments, and their differences, for all (1000) object instances of the selected

sample, where λ=200, relevant to the 7th simulation state in Table 6-4.

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 137

6.4.9 Calibration of Model’s Stochastic Behavior

6.4.9.1 Multi-Resolution Modeling Approach

In principle, the simulation model should imitate the heavily stochastic and uncertain
nature of the actual (real-world) maintenance process. The model incorporates developers’
stochastic characteristics such as experience level and learning rate (exp) as well as the
actual size (ssize) of the affected code for each scenario application, as they overall expressed
by the stochastic factor in equation (6-4). Furthermore, the estimated (by the designers)
values of scenarios’ probabilities (i.e., pnE, pnP) may deviate from the realized probabilities
during actual maintenance process. The overall uncertainty factor uf has been incorporated
to address this issue. However, the stochastic behavior of the simulation model, as
described in previous sub-sections and Table 6-3, arises questions about the realism of
model’s outcomes. To address these concerns, the simulation model has been calibrated
based on frequency distributions of real-world evidence of relevant studies from the field
of time series analysis (G. Antoniol et al., 2001; Raja et al., 2009; Shariat Yazdi et al., 2016).

More specifically, during the calibration process the multi-resolution modeling
approach (Zeigler et al., 2018) has been followed. This approach is about gradually
constructing variations of the simulation model in a try to accomplish the required (actual)
behavior while at the same time the consistency of each model variation is checked
compared to reliable evidence of the phenomenon under study. Furthermore, this
approach increases the trustworthiness degree of the simulations through a methodology
for constructing a multiresolution family of models as visualized in Figure 6-19. Initially,
the desired stochastic behavior of the problem is expressed through a set of requirements
and constraints. The technique targets on a simulation model that satisfies all these
requirements, called base model. To reach the target model, lumped models are created by
introducing assumptions (regarding the base model) such as dropping of requirements and
relaxing of constraints. Next, models of higher resolution are created by removing the
previously added assumptions. To this direction, more refined representations (i.e., by
introducing underlying activities, or stochastic factors or/and different dimensions) are
included to address the affected constraints and requirements. The critical point is whether
this (lumped) model variation is trustworthy and consistent compared to real world
circumstances or not. A possible validation based on real world observations is subject to
the same constraints as the formal model validation (i.e., inadequate volume of
homogenous observations for the specific design problem). Thus, frequency distributions

Figure 6-18: Indicative frequency distributions and scatter diagrams of Simulation
Model’s outcomes (CVP, CIBI, CVP-CIBI) for 100 repeated simulations in a single

object-subject instance (N:40, M:10, pne:0.5, exp:1.0), where λ=200 relevant to the 7th

simulation state in Table 6-4.

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 138

of real-world evidence from the field of time series analysis are used for testing the
consistency of each (lumped) model variation, mostly regarding the variability of its
outcomes (i.e., effort assessments). In case of higher consistency, then further assumptions
are removed toward modes of even higher resolution, while in case of lower consistency,
further assumptions are added toward modes of lower resolution. The targeted base model
is achieved when all the initial assumptions have been eliminated. In this case, all the
validity concerns (reported in subsection 6.3) are the assumptions made for the initial
lumped model. In fact, all the simulation states in Table 6-4 are variations of (lumped)
modes while the last two states are considered as the targeted base model. The introduced
simulation model can represent different level of disaggregation through its parameters,
thus supporting all the variations in Table 6-4. Furthermore, several other (lumped) modes
have been tested through sensitivity analysis on model’s parameters including intervals of
their values. Furthermore, the analysis showed that adding further stochastic behavior or
detailed simulation of other activities does not significantly affect the model’s consistency
mostly because their impact is common for all design alternatives, thus not affecting the
comparison outcome and decision-making reliability. More specifically, several detailed
simulations (lumped models) have been tested including the representation of a) the
method interventions as separate sub-activities with distinct actual sizes, b) individual
developers (or teams of developers) as separate sub-activities with distinct experience
levels and learning rates, c) separate aging factors per engaged design pattern for each
design alternative, d) minor maintenance scenarios as separate sub-activities with distinct
actual sizes (similar for all design alternatives) which, however, not affect the design
attributes of the addressed problem.

6.4.9.2 Consistency Criterion

Concerning the consistency criterion, the sequences of values for the stochastic factor in
equation (6-4) and the intermediate values of effort assessments scm()CVP and scm()CIBI per
scenario application have been transformed to time series in respect to the number of
applied maintenance scenarios (λ), as showed in Figure 6-20. Again, Figure 6-20 presents
results for the Interpreter implementation (N:40, M:10, pnE:0.5) as an indicative instance
of the CVP vs CIBI general problem. The histograms of their frequency distributions
demonstrate a normal pattern. The characteristics of these time series and their
distributions have been compared and coordinated with the empirical evidence of real

Figure 6-19: Multi-resolution modeling approach towards calibration of Simulation

Model

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 139

systems. More specifically, large volumes of recorded measurements concerning the
changes (in terms of low and high level edit operations) made during software evolution
between revisions of several real systems have been statistically modeled using Auto
Regression Moving Average (ARMA) models in (Shariat Yazdi et al., 2016). The extracted
time series and the characteristic of their frequency distributions can be used to calibrate
and control the generation of realistic histories of relevant measurements by simulation
models, as suggested in (Shariat Yazdi et al., 2016). Of course, changes per revision are not
equivalent to changes per scenario application, however there is a direct correspondence
and similarity between them at least from a statistical perspective, making these evidence
suitable for calibration purposes. The most important characteristic of a frequency
distribution is the coefficient of variation (CV=σ/μ) which is a dimensionless parameter,
ideal for comparison between data sets with widely different means or different units. The
introduced simulation model, due to its sensitivity on the structural behavior of the
engaged design patterns and their increasing trend (confirmed in chapter 3), demonstrates
distributions of intermediate effort measurements with a slightly lower coefficient of
variation (CV), right skewed, and similar – near to average kurtosis compared to the
empirical evidence in (Shariat Yazdi et al., 2016). Furthermore, given that the CV of the
intermediate effort observations per revision lies between 3 and 4, the expected CV of the
total (after λ=200 revisions) effort observations per (real world) system lies between

3/√200=0.22 and 4/√200=0.28 (due to Central Limit theorem properties). After intensive

calibration efforts, the introduced simulation model demonstrates an overall CV≈0.25
concerning the total effort assessments of all sample’s instances, referring to the 6th
simulation state in Table 6-4. Respectively, under the 7th simulation state the model

demonstrates an overall CV≈0.32 as depicted in Figure 6-16.

6.4.9.3 Coefficient of Variation for Decision-Making Reliability

In this subsection, the underlying concept of the followed consistency criterion during the
calibration of the simulation model under the multi-resolution modeling technique is
further analyzed and documented. The conceptual analysis is visually represented in
Figure 6-21. The principal idea is in the proportional equivalent effort assessments
returned by the simulation model due to the adoption of SMC metrics. Referring to the
CVP vs CIBI design problem, whatever the actual (real-world) effort assessments of CVP
and CIBI alternatives are, the corresponding simulated effort assessments would be in an
analogy with the actuals. Visualizing the frequency distributions of actual effort

Figure 6-20: Frequency distributions and time series of Simulation Model’s overall

stochastic factor and intermediate outcomes (CVP, CIBI) of an indicative single

object-subject instance (N:40, M:10, pne:0.5, exp:1.0), where λ=[1, …, 200], relevant

to the 7th simulation state in Table 6-4.

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 140

assessments in a horizontal axe, the proportional simulated assessments correspond to a
stretched version of this axe. Furthermore, given the (normal) frequency distribution of
possible (realized) effort assessments per design alternative (i.e., CVP, CIBI), the possibility
of an incorrect decision is expressed by the overlapping areas of these distributions. The
greater the surface of the overlapping area, the greater the likelihood of an incorrect design
decision to occur. Thus, the reliability degree of decision-making among design alternatives
depends on the percentage of the overlapping area of relevant frequency distributions as
visualized in Figure 6-21. Given the analogy of measurements, the percentage of the
overlapping area is irrelevant of effort assessments in terms of absolute values (μ:mean)
and mainly depends on the variability (or precision σ:standard deviation) of the
corresponding frequency distributions as expressed by their coefficients of variation
(CV=σ/μ) which is a dimensionless statistical parameter. Conclusively, the consistency of
the simulation model against real-world circumstances, concerning its decision-making
reliability, mainly depends on matching the coefficients of variation (CV) among simulated
and real-world observations as showed in Figure 6-21.

The discussion is now focused on the extraction of the CV statistical parameter from
real world (effort-based) observations. Toward this direction, frequency distributions of
real-world evidence of relevant studies from the field of time series analysis (G. Antoniol et
al., 2001; Raja et al., 2009; Shariat Yazdi et al., 2016) are particularly suitable. Considering
the random variable X as the possible effort-based assessment per revision during
maintenance of real-word systems, the CV(X) parameter expresses the coefficient of
variation of its frequency distribution. At this point the characteristics (i.e., skewness,
kurtosis) of this frequency distribution are not necessarily known. Based on the statistical
theory, the frequency distribution of the total maintenance effort (sum of several-λ

Figure 6-21: Consistency criterion of simulation model’s calibration.

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 141

revisions ΣλX) of real-word systems would approximate a normal distribution with

CV(ΣλX)=CV(X)/√λ regardless of the characteristics of the initial frequency distribution of
X variable. Thus, the CV(ΣλX) statistical parameter of real-world (actual effort-based)
observations referred to the total maintenance effort can be easily extracted from empirical
evidence.

The focus is now on the extraction of the corresponding CV statistical parameter from
simulated (effort-based) observations. Considering the random variable Yi as the possible
effort-based assessment per applied maintenance scenario during the simulation of the ith
sample instance, the CV(Yi) parameter expresses the coefficient of variation of its frequency
distribution. Furthermore, the CV(ΣλYi

repeated) parameter expresses the coefficient of
variation of the frequency distribution of the total effort assessments (for λ applied
scenarios) as extracted by repeated (Mote Carlo) simulations of the same (ith) sample
instance. Even if this parameter is tempting, yet it is referred to a particular instance, and
thus there some concerns regarding its ability to adequately represent any possible system
(sample instance) or the entire design space of the general problem under study. In other
words, CV(ΣλYi

repeated) parameter is sufficiently informed about the variability of a particular
instance of the problem but is insufficient about the overall variability of the general
problem as a whole (for any sample instance). Given that the frequency distribution of real-
world observations represents an overall esteem concerning several real-world systems,
the frequency distribution of simulated observations should represent an overall esteem
concerning several instances (systems) of the addressed general problem as well. To
address this concern, the frequency distribution of the total efforts (ΣλYi

sample) as extracted
by single (one-time) simulation per sample instance is a more representative and informed
parameter. This frequency distribution can by directly extracted by simulated observations
while approximates a normal distribution with known CV(ΣλYi

sample) as confirmed in Figure
6-16. Thus, the CV(ΣλYi

sample) statistical parameter of simulated (effort-based) observations
referred to the total maintenance effort can be easily extracted from simulated outcomes.

The argumentation in previous paragraph reviles one of the most important
advantages of the introduced modeling and simulation methods. More specifically, the
outcomes of the introduced formal and simulation modes do not represent the entire
general problem in a universal way. Instead, they are sensitive to several design
characteristic (parameters) of the addressed design problem. In other words, they
fragment the problem in distinct instances by classifying their outcomes with regard to the
parameters of each problem’s instance. This differentiation per sample instance is not
limited only to the effort assessments but also extends to their variability degree (CV).
Thus, the variability (CV) of the total effort outcomes variates per sample instance. Under
this perspective, the extracted variability CV(ΣλYi

repeated) from repeated (Monte Carlo)
simulations for a specific instance is usually narrower (≈60% of instances with less than
0.10, and ≈90% of instances with less than 0.20) since the model’s outcome are more
precise and adapted to the specific design characteristics (parameters) as indicated in
Figure 6-18. In fact, there some sample instances for which the variability CV(ΣλYi

repeated)
is surprisingly wide (≈3% of instances with more than 0.30) in a range [0.03, …, 0.51]. The
characteristics of the frequency distributions of ΣλYi

repeated variable per sample instance are
presented in Appendix C. In contrast, the extracted variability CV(ΣλYi

sample) of single (one-
time) simulation for all sample instances is wider (≈0.32) since these outcomes represents
the entire design space of the design problem under analysis as indicated in Figure 6-16.
Forcing the simulation model to equalize CV(ΣλYi

repeated) variability to real-world CV(ΣλX)
variability, ignores and neutralizes the model’s capability to adapt its behavior and
variability to specific instances of the general problem. Hence, the CV(ΣλYi

sample) variability,
as a more representative parameter of the entire general problem, is equalized to real-world
CV(ΣλX) variability.

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 142

One final concern is whether the real-world observations per revision are in
accordance or synchronized to simulated observations per applied maintenance scenario.
Thus, whether a revision during maintenance of real-world systems resembles to a
maintenance scenario during simulation. In principle, there is no easy way to ensure that
real-world observations recorded during the maintenance of different systems between
revisions are adequately synchronized in terms of time or activities intervals. Respectively,
there is no easy way to ensure that a simulated maintenance scenario is adequately
synchronized with a real-world revision in terms of time or activities intervals. Notice that
any proportional reduction (smaller time intervals) or increment (larger time intervals) of
effort assessments causes the same analogical effect on the σ (standard deviation) and μ
(mean) parameters of their distributions, thus the CV=σ/μ parameter remain unchanged.
Nevertheless, the main issue is the number of revisions based on which the

CV(ΣλX)=CV(X)/√λ of the total real-world efforts is calculated. It has been assumed that
this number is equal to the number of applied scenarios (λ=200) during simulation, but
this may not the case for a particular real-world system. However, due to the law of large
numbers and statistical theory, it is expected that in a long-term perspective any
desynchronization issues (among number of revisions and number of applied scenarios λ)
will be negligible regarding the dimensionless parameter CV of the corresponding
frequency distributions (i.e., ΣλX and ΣλYi

sample). This is a confirmed argument based on the
conducted sensitivity analysis. Several trial simulations with deviating values of λ
parameter showed that the initial assumption of the consistency criterion is valid.

It is important that CV(ΣλX) and CV(ΣλYi
sample) statistical parameters, as

dimensionless, are irrelevant of absolute effort values. Thus, the accuracy of measurements
is not of primary interest. Based on previous analysis, the consistency criterion is
mathematically expressed by matching the values of CV(ΣλX) and CV(ΣλYi

sample) statistical
parameters. Under this equality, the statistical parameters of the real-world and simulated
observations are interrelated as analyzed in Table 6-5. This criterion verifies the
consistency of the simulation model against real-world circumstances concerning its
variability degree and decision-making reliability.

Table 6-5: Statistical parameters of real-world against simulated effort-based
observations

Random – stochastic variable Shape Statistical parameters of frequency distribution per variable

Referring to the random variable X as the
possible intermediate effort-based
assessment per revision during maintenance
of real-word systems, extracted through time
series analysis

Unknown OR
Right-Skewed

Normal

μ(Χ)
σ(Χ)

CV(Χ) = σ(Χ)/μ(Χ)

Referring to the possible total effort-based
assessment ΣλΧ of several (λ) revisions
during maintenance of real-word systems

Normal

μ(ΣλΧ) = λ·μ(Χ)
σ(ΣλΧ) = λ·σ(Χ)/√λ
CV(ΣλΧ) = σ(ΣλΧ)/μ(ΣλΧ) = λ·σ(Χ)/√λ / λ·μ(Χ) = σ(Χ)/√λ
/ μ(Χ) = CV(X)/√λ

Referring to the random variable Yi as the
possible intermediate effort-based
assessment per applied maintenance
scenario during the simulation of the ith
sample instance

Right-Skewed
Normal

μ(Yi) = μ(w·X) = w·μ(X) given the analogy of
measurements
σ(Yi) = σ(w·X) = w·σ(X)
CV(Yi) = σ(Yi)/μ(Yi) = w·σ(X)/w·μ(X) = σ(Χ)/μ(Χ) = CV(X)
is the coefficient of variation

Referring to the total effort-based assessment
ΣλYi

sample of several (λ) applied scenarios
during simulation of single (one-time)
simulation per sample instance

Normal

μ(ΣλYi
sample) = λ·μ(Yi

sample) = λ·w·μ(X)
σ(ΣλYi

sample) = λ·σ(Yi
sample)/√λ = λ·w·σ(X)/√λ

CV(ΣλYi
sample) = σ(ΣλYi

sample)/μ(ΣλYi
sample) = λ·w·σ(X)/√λ /

λ·w·μ(X) = σ(X)/√λ / μ(X) = CV(X)/√λ = CV(ΣλΧ)
μ: mean value, σ: standard deviation, CV=σ/μ: coefficient of variation (dimensionless)

λ=200 number of applied maintenance scenarios during simulation or revisions during maintenance of real-world systems

sample=1000 instances of the general design problem as defined by their design attributes and scenarios probabilities

w: constant factor representing the analogy of measurements (not necessarily known)

6.4.9.4 Overall Statistical Parameters of the Sample Instances

In this subsection, an overall (graphical) assessment of the statistical parameters of the
ΣλYi

repeated and Yi variables concerning all the sample instances (i:[1, …, 1000]) of CVP vs
CIBI problem is presented. The analysis concentrates on the characteristics (CV, skewness,

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 143

and kurtosis) of the frequency distributions of ΣλYi
repeated and Yi variables as they

numerically presented per sample instance in Appendix C.

Considering Yi variable as the intermediate required effort per applied scenario during
the simulation of the ith sample instance, the frequency distribution of this variable
represents the statistical pattern of intermediate effort assessments for this particular
sample instance. The parameters (μ, σ, CV, skewness, kurtosis) of such frequency
distributions per sample instance are presented in Appendix C. Each Yi distribution is the
result of a single (one time) simulation per sample instance. Figure 6-22 (2nd row) presents
the overall distribution per statistical parameter (CV, skewness, kurtosis) concerning all
the sample instances. Since the intermediate effort outcome (Yi) is a heavily stochastic
variable expressing the required effort per applied scenario, all the parameters of its
frequency distribution variate significantly among different sample instances. More
specifically, CV lies between 0.43 and 2.88, skewness between 0.16 and 11.43, and kurtosis
between 2.31 and 149.62. Thus, depending on the design characteristics of each sample
instance the variability of Yi variable variates significantly. Notice that all Yi distributions
are right skewed and most of them with high kurtosis.

Considering ΣλYi variable as the total required effort during the simulation of the ith
sample instance, the frequency distribution of this variable represents the statistical pattern
of total effort assessments for this particular sample instance. The parameters (μ, σ, CV,
skewness, kurtosis) of such frequency distributions per sample instance are presented in
Appendix C. Each ΣλYi distribution is the result of several repeated (Monte Carlo)
simulations for the same sample instance. Figure 6-22 (1st row) presents the overall
distribution per statistical parameter (CV, skewness, kurtosis) concerning all the sample
instances. Since the total effort outcome (ΣλYi) is the sum of several (λ=200) intermediate
effort assessments (Yi) per applied scenario, its frequency distribution follows (or

Figure 6-22: Overall assessment of the statistical parameters of the ΣλYi

repeated and Yi
variables concerning all the sample instances.

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 144

resembles) a normal distribution pattern with narrower variation (than Yi variable) for all
the sample instances. This is the result of central limit theorem’s properties according to
which CV(ΣλYi)=CV(Yi)/√λ. Thus, its skewness for all sample instances lies around 0 [-
1.09, …, 1.26] and the kurtosis around 3 [1.90, …, 6.06], while CV lies between 0.03 and
0.51. Yet, the CV parameter considerably variates per sample instance with ≈60% of
instances have a CV less than 0.10, ≈90% of instances have a CV less than 0.20, and ≈3%
of instances have a CV more than 0.30.

6.4.9.5 Calibration Process (Flow Chart)

The entire process of simulation model’s calibration based on the multi-resolution
modeling approach is provided in Listing 6-1 in the form of pseudocode. This code presents
the flow-chart of all the repeated sub-activities including the imposed requirements and
assumptions, giving emphasis on the required controls concerning the fulfilment of the
consistency criterion. Notice that sub-activities like add or change assumptions and build
or change a model’s variation are very creative and intelligent tasks that require human
capabilities and skills. Such activities are strongly linked to the specifications and
characteristics of the addressed design problem and the used design patterns.
Furthermore, the presented process holds a copy of all the intermediate (lumped)
variations of the simulation model as each assumption is removed and corresponding
requirement is satisfied.

Listing 6-1: Pseudocode of simulation model calibration based on multi-resolution modeling

6.4.9.6 Times Series Analysis of Simulated Effort Assessments

In this subsection, an indicative analysis of the simulated effort assessments per applied
scenario from the perspective of time series analysis is attempted. Again, Yi variable
represents the intermediate required effort per applied scenario during the simulation of
the ith sample instance. The analysis focus on a (single) simulation of the sample instance
N.002 with parameters N=56, M=90, pnE=0.32, pnP=0.68, while examines the effort

81. λ = 200 % number of applied scenarios or revisions during maintenance

82. CV(X) = 4 % coefficient of variation of distinct observations (X) per revision from time series analysis of several real-world systems

83. CV(ΣλX)=CV(X)/√λ % expected coefficient of variation (variability) of total observations (ΣλΧ) per real-world system

84.

85. Add all requirements to Requirements[] set % reflecting the underlying activities and/or desired stochastic behavior of the problem

86. For each requirement in Requirements[]

87. Add corresponding assumption(s) in Assumptions[] set % exclude underlying activities and/or desired stochastic behavior

88. End For

89.

90. variation=1 % initialization of current variation of simulation model

91. Build SM(variation) based on all Assumptions[] % build initial lumped model that fulfills all the imposed assumptions

92. Repeat

93. If Assumptions[] is NOT empty Then

94. Pick a current_assumption from Assumptions[] % for analysis

95. Change SM(variation) % to satisfy the corresponding requirement towards higher resolution or stochastic behavior

96. Else

97. Pick a requirement from Requirements[] % for refinement of consistency

98. Change SM(variation) % by calibrating its distinct outcomes (Y) to achieve higher consistency (variability)

99. End If

100. For instance=[1:1000] % referring to each sample instance (system) of the general problem

101. Total_Effort(instance) = SM(variation ,instance, λ) % runs simulation, returning total effort (ΣλYi) per system/instance

102. End For

103. CV(ΣλYi, variation) = CV(Total_Effort(:)) % calculates the overall CV(ΣλYi) of all sample instances of the general problem

104. If Abs(CV(ΣλX) - CV(ΣλYi, variation)) < Abs(CV(ΣλX) - CV(ΣλYi, variation-1)) Then % higher consistency from previous variation

105. Remove current_assumption (if exist) from Assumptions[]

106. Flag the corresponding requirement to Requirements[] % that neutralizes the current assumption

107. variation += 1 % increases variation

108. Copy SM(variation-1) to SM(variation) % copying the previous model’s variation to a new variation

109. Else % lower consistency from previous variation

110. Change current_assumption or Add alternate assumption (if exist) to Assumptions[]

111. Discard changes made in SM(variation) % resets current model’s variation

112. End If

113. Until (Assumptions[] is empty) AND (CV(ΣλX) ≈ CV(ΣλYi, variation) % all requirements have been satisfied with high consistency

114. Return SM(variation) % as the base model

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 145

assessments of CVP design alternative for a sequence (or time series) of λ=200*20=4000
applied scenarios. Usually, time series analysis requires long time series of several values
to be effective and consistent, thus a larger number of applied scenarios (λ=4000) has been
selected even if a such value is not so realistic under real-world circumstances.

In time series analysis, each value is expressed or predicted based on the values of
previous instances of the time series. To conclude on a model able to predict future values
based on previous values, time series analysis examines two separate aspects: a)
autoregressive (AR) analysis which is similar to regular regression where the dependent
variable (current value y(λ)) is predicted based on a number of independent variables
(previous values i.e., y(λ-1), y(λ-2), etc.) of the same time series, and b) moving average
(MA) analysis which tries to predict the current level of noise (ε) based on its current and
previous levels (i.e., ε(λ), ε(λ-1), ε(λ-2), etc.).

An autoregressive (AR) model predicts the current value based on a linear combination
of past values of the same time series of values. Normally, autoregressive models are
applied to stationary time series only. Mathematically, an AR(p) model is expressed as
follows:

𝑦𝑡 = 𝑐 + 𝜑1𝑦𝑡−1 + 𝜑2𝑦𝑡−2 +⋯+ 𝜑𝑝𝑦𝑡−𝑝 + 𝜀𝑡

Where p: is the order of regression, c: is a constant, epsilon(ε): noise, and t:time (or the
number applied scenarios λ).

A moving average (MA) model predicts the effect of noise (ε) based on a linear
combination of past noise levels of the same time series. Mathematically, an MA(q) model
is expressed as follows:

𝑦𝑡 = 𝑐 + 𝜃1𝜀𝑡−1 + 𝜃2𝜀𝑡−2 +⋯+ 𝜃𝑞𝜀𝑡−𝑞 + 𝜀𝑡

Where p: is the order, c: is a constant, epsilon(ε): noise, and t:time (or the number applied
scenarios λ).

Αn ARMA(p,q) model is simply the combination of both models into the following
single equation:

𝑦𝑡 = 𝑐 + 𝜑1𝑦𝑡−1 + 𝜑2𝑦𝑡−2 +⋯+ 𝜑𝑝𝑦𝑡−𝑝 + 𝜃1𝜀𝑡−1 + 𝜃2𝜀𝑡−2 +⋯+ 𝜃𝑞𝜀𝑡−𝑞 + 𝜀𝑡

ARMA(p,q) model tries to explain the relationship of a time series with both a) random
noise (moving average part) and b) itself at a previous step (autoregressive part). Given a
time series of values under analysis, the estimation of the weights (i.e., θ and φ factors) of
the ARMA(p,q) model can be performed only for specific (predefined) orders or lags (i.e.,
p and q). Furthermore, the estimation of ARMA model can be assisted by statistical tools
such as the MATLAB environment and its Econometric Modeler.

Concentrating on the time series of the total simulated effort assessments per applied
scenario of the sample N.002, an indicative ARMA (2,3) model is visualized in Figure 6-23.
There is both a trend and perhaps a change in variance in this time series, thus there is a
clear indication of non-stationarity behavior. More specifically:

• KPSS (Kwiatkowski–Phillips–Schmidt–Shin) test for trend stationary confirms
this inference by rejecting Null hypothesis of trend stationary (CL=0.05,
p_val=0.010).

• ADF (Augmented Dickey–Fuller) test for unit root (non-stationary) confirms this
inference by not rejecting Null hypothesis of non-stationary (CL=0.05,
p_val=0.9990 for lag =[1..10]).

Since autoregressive models are normally applied to stationary time series only, the
time series need to be transformed to resemble a stationary behavior.

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 146

ARIMA model stands for Auto Regressive Integrated Moving Average. This model
combines the autoregression model, the moving average model, and differencing. Under
this perspective, integration is the opposite of differentiation. Differencing is suitable to
remove the trend and transform a time series to stationary. It simply involves subtracting
each value in t-1 from time t. Mathematically, an ARIMA(p,d,q) model is expressed by the
following equation:

𝑦′𝑡 = 𝑐 + 𝜑1𝑦′𝑡−1 + 𝜑2𝑦′𝑡−2 +⋯+𝜑𝑝𝑦′𝑡−𝑝 + 𝜃1𝜀𝑡−1 + 𝜃2𝜀𝑡−2 +⋯+ 𝜃𝑞𝜀𝑡−𝑞 + 𝜀𝑡

Where d: is the degree of differencing (number of times it was differenced)

By differentiating (transforming) the time series of the total simulated effort
assessments, the intermediate effort assessments per applied scenario of the sample N.002
are derived. An indicative ARIMA (2,1,3) model of the transformed time series is visualized
in Figure 6-24. However, there is still a trend in this time series, thus there is an indication
of non-stationarity behavior. More specifically:

• KPSS (Kwiatkowski–Phillips–Schmidt–Shin) test for trend stationary confirms
this inference by rejecting Null hypothesis of trend stationary (CL=0.05,
p_val=0.010).

• Nevertheless, ADF (Augmented Dickey–Fuller) test for unit root (non-stationary)
does not confirm this inference by rejecting Null hypothesis of non-stationary
(CL=0.05, p_val=0.0010 for lag =[1..10]).

Since autoregressive models are normally applied to stationary time series only, the
time series need to be further transformed to resemble a stationary behavior.

Figure 6-23: Time series analysis (ARIMA) of total CVP effort assessments

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 147

By double differentiating (transforming) the time series of the total simulated effort
assessments, the marginal changes among intermediate effort assessments per applied
scenario of the sample N.002 are derived. An indicative ARIMA (2,2,3) model of the
transformed time series is visualized in Figure 6-25. This time, there is no trend nor
significant change in variance in this time series, thus there is an indication of stationarity
behavior. More specifically:

• KPSS (Kwiatkowski–Phillips–Schmidt–Shin) test for trend stationary confirms
this inference by not rejecting Null hypothesis of trend stationary (CL=0.05,
p_val=0.100).

• ADF (Augmented Dickey–Fuller) test for unit root (non-stationary) confirm this
inference by rejecting Null hypothesis of non-stationary (CL=0.05, p_val=0.0010
for lag =[1..10]).

Furthermore, the residual plot is presented in Figure 6-25. At this point the ARIMA
(2,2,3) model is rather weak since its residuals are significant (of high values) and
disbalanced around zero level.

Figure 6-24: Time series analysis (ARIMA) of (single differentiated) intermediate CVP

effort assessments

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 148

To conclude on the most consistent ARIMA model, different combinations of orders
(i.e., p and q) should be tried, next fit each ARIMA model with those orders, and use a
criterion for the selection of proper combination of orders. More specifically, the criterion
of Akaike’s Information Criterion (AIC) is suitable for selecting the order (p,d,q) of an
ARIMA model. In practice, the model with the lowest AIC compared to other models is the
most consistent and, thus preferable. AIC is a criterion (goodness of fit) only for
comparison purposes relative to other models. It is possible more parameters (higher p and
q orders) to increase the predictability of the model, however more parameters will increase
the AIC score and thus penalize the model. Hence, AIC is suitable to discover the ARIMA
model with the fewer number of parameters that still provide good results. In the context
of the simulated effort assessments, AIC is used for a constant order of differencing (d=2).

By analyzing a time series (simulated effort assessments) of increased length (4000
applied scenarios) in MATLAB, the ARIMA(0,2,1) model with orders p=0 and q=1
demonstrating the lowest AIC compared to other combinations of orders (i.e., p and q) has
been selected. Even if the ACF (Auto Correlation Function) and PACF (Patrial Auto
Correlation Function) cannot be used to identify reliable values for p and q orders, in the
case of an ARIMA(0,d,q) process: a) the PACF is exponentially decaying or sinusoidal, and
b) the ACF has a significant spike at lag q (in this case q=1) but none after, as confirmed
by the evidence in Figure 6-26.

Figure 6-25: Time series analysis (ARIMA) of (double differentiated) intermediate

CVP effort assessments (simulation of sample instance N. 002)

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 149

An indicative ARIMA (0,2,1) model of the transformed (double differentiated) time
series of 4000 values, escorted by the residual plot, is visualized in Figure 6-27. The
statistical parameters of this model are provided in Table 6-6. Again, the ARIMA (0,2,1)
model is rather weak since its residuals are significant (of high values) and disbalanced
around zero level (especially after the first 1000 applied scenarios). Alternatively, the
ARIMA model seems that fails to adequately predict the positive and peak values of the
time series leading to increased and disbalanced residuals (especially after 100 applied
scenarios). However, there is no autocorrelation evidence as confirmed by the Ljung-Box
Q-Test for autocorrelation (H0: of zero 20lags autocorrelation is not rejected [CL=0.05,
p_val=0.2158]), thus residual values correspond to pure (white) noise. This (white) noise
is the result of the random and stochastic behavior of the simulation model. Similar ARIMA
models can be estimated for alternate time series for different set of parameters (i.e., N, M,
pnE) of sample instances, however with different values in their parameters (i.e., c, ε, and
AR{1}).

Table 6-6: Statistical Parameters of ARIMA Analysis of Simulated Effort Assessments

Parameter Value Standard Error T Statistic P-Value
Constant 0.4884 0.1404 3.4776 5.0595e-004
MA{1} -0.9938 0.0014 -697.1537 0
Variance 9.1196e+05 1.0421e+04 87.5109 0

Figure 6-26: ACF and PACF diagrams of (double differentiated) effort time series

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 150

An ARIMA model with order p=0 for its autoregressive part indicates that previous
values provide no information about the future values of time series. The only relation
concerns the previous and current levels of noise (i.e., ε(t-1) and ε(t)) as captured by the
moving average part of order q=1. This evidence led us to the following interesting
inference. Without the engagement of exogenous factors (e.g., N, M, pnE) related to the
nature of the confronted problem, the time series analysis is unable to conclude on ARIMA
models of high consistency by only relaying on previous values of the time series.
Moreover, this evidence confirms the complicated and heavily stochastic nature of actual
maintenance process as successfully approached by the introduced simulation model.
From time series perspective, the maintenance process (and relevant effort-based
measurements) remains a black-box without a practical envision or even a sense of the
phenomenon under study.

6.5 Results & Inferences

6.5.1 Analysis and Interpretation

The overall evidence of the analysis per simulation state are summarized in Table 6-7 and
analyzed next. Indicative graphs of the final and fully stochastic 7th simulation state are
presented in this subsection.

Figure 6-27: Time series analysis ARIMA(0,2,1) of (double differentiated)

intermediate CVP effort assessments (simulation of sample instance N. 002)

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 151

External correlation control: Indicative scatter diagrams of formal model’s
predictions (cm) against simulation model’s computations (scm) regarding effort
assessments of CVP, CIBI, and their difference, are presented in Figure 6-28. The number
of scenario application emphasizes on early (λ=10), mid (λ=100), and long (λ=200) term
perspectives. Respectively, the correlation coefficient regarding effort assessments of CVP,
CIBI, and CVP-CIBI difference against the number of scenario applications (λ) is
graphically presented in Figure 6-29 (left side).

Hypothesis testing control: The T-Test results for the CVP-CIBI distance’s crucial

values against the number of scenario applications (λ) are presented in Figure 6-29 (right
side).

Error rate control and critical error analysis: Figure 6-29 (middle) summarizes the

results concerning the overall average error rates (Er) for different λ values. In addition,

the critical errors with high impact in terms of wasted effort and high possibility to occur
are further investigated. For this purpose, the critical error is defined:

Critical Error definition: A critical error (cEr) occurs when, for a specific experiment
scenario, a) the rate of average wasted effort (difference) against the minimum average

required effort among design alternatives is greater than 10%, and b) the Error rate Er(λ

) of this experiment scenario is greater than the average Er(λ) of all experiment scenarios

for each specific λ value. Thus, critical are those errors with high severity degree and

likelihood of occurrence.

Figure 6-28: Scatter diagrams of external correlation among formal and simulated

values of total effort (CVP, CIBI, CVP-CIBI), concerning all (1000) sample instances,
of the 7th fully stochastic simulation state in Table 6-4.

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 152

Time orientation of analysis: The analysis for short-term system maintenance (e.g.,

λ<10) does not provide any particular benefit since the importance of the estimated gain

or loss in terms of effort would be negligible. Therefore, the analysis of inferences is

concentrated in a mid-to-long maintenance period, thus for λ>50 up to 200.

Value orientation of analysis: The analysis mainly focuses on the difference between
design alternatives for Formal and Simulated effort assessments [cm(CVP)-cm(CIBI) and
scm(CVP)-scm(CIBI)] since these values define the selection-making process.

Since formal and simulation models are focused on reliable decision-making among
design alternatives, the precision of their measurements (i.e., correlation, error rate,
variability, standard deviation, coefficient of variation, kurtosis, and skewness) is of
primary importance, while the accuracy of their measurements (i.e., absolute values, and
mean) are less important. In principle, higher correlation combined with lower average Er
and cEr suggests higher selection reliability of formal model and vice versa. Finally, when
p-value of hypothesis testing is above the rejection limit, the total effort/size predictions of
formal model are highly precise in terms of absolute values.

6.5.2 Inference Extraction

In this subsection, the experiment’s evidence is gradually analyzed per simulation state,
and summarized in Table 6-7. Indicative graphs of the 1st to 6th simulation states are
presented in this subsection.

Table 6-7: Overall Control Evidence for all Experiment Scenarios and Simulation Model
States

Simulation Model state /
Gradually Engaged factor

External
correlation1,3 of

CVP-CIBI
distance (λ>50

to 200)

Hypothesis control 2,3 on
the difference CVP-CIBI
(T-test, 2tailed, paired),

CL=0.95 / α=0.05

Error rate 1,4 control
(λ>50 to 200)

FM’s reliability
(mid-to-long-term)

control on the
difference CVP-

CIBI
Coefficient of
correlation (r) p-value

H0
rejection Average (Er) Critical (cEr)

Selection
1

Absolute
values2

1. Variable scenario sequences 0.98 ↗ 1.00 > 0.20 No 5.5% ↘ 3.4% 1.0% ↘ 0.0% High High
2. Shifting scenarios
probabilities 0.97 ↗ 0.99 > 0.50 No 6.4% ↘ 5.1% 1.2% ↘ 0.6% High High

3. Alternate maintenance
scenarios 0.97 ↗ 0.99 > 0.10 No 6.4% ↘ 4.8% 1.3% ↘ 0.8% High High

4. Variable interventions’ size 0.97 ↗ 0.98 > 0.20 No 6.7% ↘ 4.8% 1.6% ↘ 0.9% High High

5. Code aging & learning rate 0.76 ↗ 0.78 ≈ 0 Yes 6.5% ↘ 5.2% 1.5% ↘ 0.8% Medium Low
6. Variable developers’
experience level 0.97 ↗ 0.98 > 0.05 (λ>170) Yes/No 6.7% ↘ 5.4% 1.4% ↘ 0.8% High Low

7. Highly shifting scenarios
probabilities 0.94 ↗ 0.96 > 0.05 (λ>150) Yes/No 9.0% ↘ 8.1% 2.5% ↘ 2.0% High Medium

Figure 6-29: Overall control diagrams (left):coefficient of correlation,

(right):hypothesis T-test, (mid):average error rate & critical error rate, concerning
1000 sample instances, of the 7th fully stochastic simulation state in Table 6-4.

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 153

↗↘ slightly increased/decreased to, 1desision-making reliability, 2accuracy reliability, 3single simulation per sample

instance, 4repeated (Monte Carlo) simulations per sample instance

1. In this initial state, most of the random behavior of the simulation model has been
disabled. The only stochastic behavior is the random selection of maintenance scenario
types based on their individual probabilities, thus generating variant sequences of scenario
applications. These results provide sufficient evidence that the implied continuous
integration, used by the formal models, converges to the discrete calculations of the actual
maintenance process as performed by the simulation model. Furthermore, the repeated
scenario sequences, assumed by the formal models, are in accordance with the random-
pattern sequences of the actual maintenance process.

As indicated by the diagrams in Figure 6-44 and Figure 6-45, the long-term coefficient
of correlation is almost perfect (approaching to 1.0), while the critical error rate fades to
0% in a long-term perspective. In addition, according to T-rest results, there is high
accuracy in terms of absolute effort assessments concerning their difference of CVP minus
CIBI.

Figure 6-30: Scatter diagrams of external correlation among formal and simulated

values of total effort (CVP, CIBI, CVP-CIBI), concerning all (1000) sample instances,
of the 1st simulation state in Table 6-4.

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 154

2. In this state, the uncertainty factor effecting scenarios’ probabilities during
simulation is engaged. The value of fBM factor is set to 0.5 implying a medium uncertainty
level. Thus, the overall uncertainty factor fBM x uf ranges in the ±3σ interval of (-0.15, …,
0.15). These results provide sufficient evidence that the repeated scenario sequences based
on constant probabilities, assumed by formal models, approximate the medium
uncertainty level imposed by shifting scenarios’ probabilities during the actual
maintenance process.

As indicated by the diagrams in Figure 6-32 and Figure 6-33, the long-term coefficient

of correlation is almost perfect (approaching to 1.0), while the critical error rate fades to

Figure 6-31: Overall control diagrams (left):coefficient of correlation,

(right):hypothesis T-test, (mid):average error rate & critical error rate, concerning
1000 sample instances, of the 1st simulation state in Table 6-4.

Figure 6-32: Scatter diagrams of external correlation among formal and simulated

values of total effort (CVP, CIBI, CVP-CIBI), concerning all (1000) sample instances,
of the 2nd simulation state in Table 6-4.

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 155

0.6% in a long-term perspective. In addition, according to T-rest results, there is high
accuracy in terms of absolute effort assessments concerning their difference of CVP minus
CIBI.

3. In this state, the alternative maintenance scenarios such as modifications (including

debugging) and deletions are engaged. These results provide sufficient evidence that the
explicit analysis of expansion scenarios, followed by formal models, has a dominant impact
in maintainability assessment, as suggested by the modeling method in chapters 3, 4, and
SMC metric. Thus, the expansion analysis of the engaged design patterns covers all the
essence of the actual maintenance process.

Figure 6-33: Overall control diagrams (left):coefficient of correlation,

(right):hypothesis T-test, (mid):average error rate & critical error rate, concerning
1000 sample instances, of the 2nd simulation state in Table 6-4.

Figure 6-34: Scatter diagrams of external correlation among formal and simulated

values of total effort (CVP, CIBI, CVP-CIBI), concerning all (1000) sample instances,
of the 3rd simulation state in Table 6-4.

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 156

As indicated by the diagrams in Figure 6-34 and Figure 6-35, the long-term coefficient
of correlation is almost perfect (approaching to 1.0), while the critical error rate fades to
0.8% in a long-term perspective. In addition, according to T-rest results, there is high
accuracy in terms of absolute effort assessments concerning their difference of CVP minus
CIBI.

4. In this state, the scenario’s actual size factor is engaged. These results provide
sufficient evidence that effort/size assessments in terms of number of interventions are
reliable measurement (proxy) units for comparison purposes, as assumed by the used SMC
metric in Table 6-2. Evidence showed that in a mid-to-long-term perspective, the
scenarios’ actual size is statistically neutral. Hence, the SMC metric (introduced in chapter
3) is a reliable comparison measure for mid-to-long term size/effort predictions.

Figure 6-35: Overall control diagrams (left):coefficient of correlation,

(right):hypothesis T-test, (mid):average error rate & critical error rate, concerning
1000 sample instances, of the 3rd simulation state in Table 6-4.

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 157

As indicated by the diagrams in Figure 6-36 and Figure 6-37, the long-term coefficient
of correlation is almost perfect (approaching to 1.0), while the critical error rate fades to
0.9% in a long-term perspective. In addition, according to T-rest results, there is high
accuracy in terms of absolute effort assessments concerning their difference of CVP minus
CIBI.

5. In this state, the aging and learning rate factors are simultaneously engaged. The

developers’ experience level retains a constant value (exp), initially selected from a fully
random or horizontal distribution during sample selection. Under these settings, the
formal model loses its correlation power, also failing to provide precise estimations in terms

Figure 6-36: Scatter diagrams of external correlation among formal and simulated

values of total effort (CVP, CIBI, CVP-CIBI), concerning all (1000) sample instances,
of the 4th simulation state in Table 6-4.

Figure 6-37: Overall control diagrams (left):coefficient of correlation,

(right):hypothesis T-test, (mid):average error rate & critical error rate, concerning
1000 sample instances, of the 4th simulation state in Table 6-4.

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 158

of absolute values on the effort difference (CVP-CIBI) as indicated in Figure 6-39. One the
other hand, its selection reliability, expressed by a low average Er (5.2%), remains high.
Even if the individual effort assessments of CVP and CIBI demonstrate a low coefficient of
correlation (less than 0.5), their difference (CVP-CIBI) demonstrates a relatively high
coefficient of correlation (near to 0.8) in a long-term perspective, as also indicated in Figure
6-38. Logically, this contradictory outcome is explained by the fact that developers with
same experience work on both design alternatives under comparison, counterbalancing the
side effect of constant experience level. However, this is not a usual case since companies
and developers have the trend to improve their experience level during the maintenance
process. In addition, many developers with different experience level may work during the
system’s maintenance. Thus, different frequency distributions of developers’ experience
level are explored in the following simulation state.

Figure 6-38: Scatter diagrams of external correlation among formal and simulated

values of total effort (CVP, CIBI, CVP-CIBI), concerning all (1000) sample instances,
of the 5th simulation state in Table 6-4.

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 159

6. In this state, developers’ experience level is defined based on random values of a left-
skewed normal distribution, which is probably the most realistic assumption, as supported
by empirical evidence in (Woolf, 2016). The results provide sufficient evidence that factors
representing code aging issues and developers’ experience, skills, learning rate, or other
factors that may influence their productivity are negligible since they are common (for both
design alternatives under comparison) and therefore neutral in a mid-to-long-term
perspective, as assumed by the evaluated modeling method in chapters 3 and 4.

As indicated by the diagrams in Figure 6-40 and Figure 6-41, the long-term coefficient

of correlation is almost perfect (approaching to 1.0), while the critical error rate fades to

Figure 6-39: Overall control diagrams (left):coefficient of correlation,

(right):hypothesis T-test, (mid):average error rate & critical error rate, concerning
1000 sample instances, of the 5th simulation state in Table 6-4.

Figure 6-40: Scatter diagrams of external correlation among formal and simulated

values of total effort (CVP, CIBI, CVP-CIBI), concerning all (1000) sample instances,
of the 6th simulation state in Table 6-4.

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 160

0.8% in a long-term perspective. In addition, according to T-rest results, there is low
accuracy in terms of absolute effort assessments concerning their difference of CVP minus
CIBI. Only in a long-term (λ>170) perspective their difference seems to be accurate in
terms of absolute effort assessments.

7. In this final and fully stochastic state, the uncertainty factor effecting scenarios’
probabilities during simulation is increased. The value of fBM factor is set to 1.0 implying a
high uncertainty level. Thus, the overall uncertainty factor fBM x uf ranges in the ±3σ interval
of (-0.3, …, 0.3). The latest results in Figure 6-28 and Figure 6-29 showed that the long-
term coefficient of correlation is almost perfect (approaching to 1.0), while the critical error
rate fades to 2.0% in a long-term perspective. In addition, according to T-rest results, there
is a medium long-term (λ>170) accuracy in terms of absolute effort assessments
concerning their difference of CVP minus CIBI. These results provide sufficient evidence
that the repeated scenario sequences based on constant probabilities, assumed by formal
models, approximate the high uncertainty level imposed by shifting scenarios’ probabilities
during the actual maintenance process. Moreover, the results provide sufficient evidence
that the fully stochastic behavior delivered by the simulation model can be adequately
expressed or approximated by the limited set of variables of the deterministic formal
models introduced in in chapters 3 and 4.

In addition, the formal models’ prediction ability, in terms of absolute effort values, is
confirmed only for the difference (CVP-CIBI) while they falling to provide similar effort
estimations for each individual design alternative as indicated by T-test results in Figure
6-29. Simulation model decreases system’s expansion end required effort due to the
engagement of alternate scenarios, as indicated by the application example in Figure 6-6.

Even if the states 1 to 5 reflect lumped simulation models of low consistency compared
to actual (real-world) maintenance process, they provide insightful evidence and inferences
regarding several aspects of the modeling theory and formal models under validation. The
most important intermediate inferences are presented below:

• the implied continuous integration, used by the formal models, converges to the
discrete calculations of the actual maintenance process as performed by the
simulation model.

• the repeated scenario sequences based on constant probabilities, assumed by
formal models, approximate the medium uncertainty level imposed by shifting
scenarios’ probabilities during the actual maintenance process.

Figure 6-41: Overall control diagrams (left):coefficient of correlation,

(right):hypothesis T-test, (mid):average error rate & critical error rate, concerning
1000 sample instances, of the 6th simulation state in Table 6-4.

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 161

• the explicit analysis of expansion scenarios, followed by formal models, has a
dominant impact in maintainability assessment, as suggested by the modeling
method in chapters 3 and 4, the derived formal models, and SMC metric. Thus,
the expansion analysis of the engaged design patterns covers all the essence of the
actual maintenance process among design alternatives mainly for comparison
purposes.

• effort/size assessments in terms of number of (classes and method) interventions
are reliable measurement (proxy) units for comparison purposes in a mid-to-long
term perspective, as assumed by the used SMC metric in Table 6-2.

• factors representing code aging issues and developers’ experience, skills, learning
rate, or other factors that may influence their productivity are negligible since they
are common (for all design alternatives under comparison) and therefore neutral
concerning the decision-making process in a mid-to-long-term perspective, as
assumed by the evaluated modeling method in chapters 3 and 4.

• the repeated scenario sequences based on constant probabilities, assumed by
formal models, approximate the high uncertainty level imposed by shifting
scenarios’ probabilities during the actual maintenance process.

Finally, it is important, that even under slightly different assumptions such as
frequency distributions (including fat-tails variations of limited exposure to tail-risk),
initial values, and intervals regarding the stochastic variables of the simulation model in
Table 6-3, the results (not included in this thesis) of the performed sensitivity analysis
revealed that the evaluated formal models exhibit a sustainable decision-making
performance.

6.5.3 Pattern Exploration of Decision Errors

In this subsection, a further analysis regarding the pattern of critical error occurrences is
presented. Different design implementations that require different amounts of effort during
maintenance can be seen by managers as alternative investment options. Under this
perspective, managers want to reduce the required maintenance effort/size, retaining a low
risk of possible wrong selection. Prediction models, like the derived formal models, involve
various types of events or classes of resembling maintenance scenarios based on
assessments of their probabilities. As a result, probabilistic models could have some
accuracy issues for some marginal cases, introducing an error rate of wrong selections.
Through further analysis of individual errors, critical errors with high negative impact in
terms of wasted effort, and high severity degree in terms of high probability to occur are
spotted. A more in-depth analysis of critical errors can reveal a classification pattern of
those marginal cases, for which the prediction model is likely to fall into a critical error.
Thus, the error rate is another sophisticated measure of the model’s reliability degree,
focusing on decision-risk taken by the software designers and managers.

6.5.3.1 Error Rate Assessment

More specifically, the error rate (Er) is computed through repeated simulations for

different λ values and 100 repetitions for each λ value and each sample instance, as

illustrated in Figure 6-42 (left side). Repeated executions on the parameters of the same
sample instance are suggested in the context of several studies about testing randomized
software for simulation purposes (Jabangwe et al., 2015). Next, the intermediate results
are compared to formal model’s (deterministic) results, while occurring errors are counted.
The error rate (Er) of all the repeated simulations corresponds to the error rate (Er) of each
specific sample instance. Furthermore, error measurements of all sample instances are

averaged in average error rates (avg Er) per λ value, as analyzed in Figure 6-42. Thus, the

average error rates (avg Er) correspond to the entire design space (of all random sample

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 162

instances) of the general problem under study. Further analysis of error rate distribution
provides evidence about the actual percentage occurrences of critical errors.

The analysis of the results provides average error rates (avg Er) for different λ values,

as presented in Figure 6-29 (middle), referred to the 7th simulation state in Table 6-4. At
first glance, the average error rate (avg Er) is decreased as the number of scenario

applications (λ) is increased. For λ>50, the average Er is less than 9.0%, converging to

8.1% for λ near to 200 scenario applications. The frequency distribution of the error rates

(Er) of each sample instance for λ near to 200, is presented inside Figure 6-43. Almost

68% of the sample instances have an Er between 0% and 3%. The rest 32% of the sample
instances have an Er more than 3%, and only 23% of the sample instances have an Er more

than the average Er(λ)=Er(200)=8.1%. Thus, there are sufficient evidence that the

proposed formal models deliver accurate results with a (long-term) average error rate near
to 8.1%, even under the 7th simulation state of high uncertainty in Table 6-4. However, it
is important the critical errors in terms of wasted effort be further investigated.

6.5.3.2 Critical Error Rate Assessment

A critical error arises when there is a significant amount of wasted effort and a high
probability to occur. Thus, high wasted effort and high probability indicate the significant
impact of a critical error and the risk taken during the decision-making process. More
specifically, the critical error rate (cEr) is computed through the conditional comparison of

intermediate results from error rate assessment in previous step, for each λ value and each

sample instance, as illustrated in Figure 6-42 (right side). Thus, error rate assessment must
precede critical error rate assessment since the results of the first step are prerequisites in
the second step.

Figure 6-42: Experimental error rate assessment.

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 163

The analysis of the results provides average critical error rates (avg cEr) for different

λ values, as also presented in Figure 6-29 (middle), referred to the 7th simulation state in

Table 6-4. The average critical error rate (avg cEr) is also decreased as the number of

scenario applications (λ) is increased. For λ>50, the average critical cEr is less than 2.5%,

converging to 2.0% for λ near to 200 scenario applications. Thus, there are sufficient

evidence that the proposed formal models deliver accurate results with a (long-term)
average critical error rate near to 2.0%, even under the 7th simulation state of high
uncertainty in Table 6-4.

6.5.3.3 Pattern of Sample Instances Prone to Critical Errors

The entire design space of the general problem of CVP vs. CIBI (recursive hierarchies of
part-whole representations) is statistically represented by the sample of 1000 random
instances (defined in subsection 6.4.4) which are graphicly presented in the two-
dimensional scatter diagram in Figure 6-43. Nevertheless, this scatter diagram represents
a seventh-dimensional data space:

• Data dimension 1 and 2: Axis x represents the auxiliary factor μ=M/N which is the
rate of number of initial operations (M) and number of initial elements (N).

• Data dimension 3 and 4: Axis y represents the probability factor (pnE=1-pnP) for a
new element which also indirectly expresses the probability factor (pnP) for a new
operation.

• Data dimension 5: The mark’s size of each sample instance reflects the magnitude
of its error rate (Er) or else the probability or likelihood to occur an incorrect
decision. The larger the mark's size of the sample instance, the higher the
probability the formal model’s predictions to lead to a incorrect decision for that
sample instance.

• Data dimension 6: The mark’s color of each sample instance reflects the magnitude
of the decision’s impact in terms of rate of gained or wasted effort. This magnitude
of decision’s impact is expressed by the rate of the average (for all repeated
simulations) effort difference (CVP-CIBI) to the minimum of the average efforts of
CVP and CIBI design alternatives. The mark's color of the sample instance, as
arranged in the side color-bar, indicates the severity degree or the (%) average rate
of the wasted effort in case of wrong decision for the specific sample instance.

• Data dimension 7: Finally, the red bordered marks of each sample instance reflect
critical error occurrences. As illustrated in Figure 6-42 (right side), a sample
instance is characterized as prone to critical errors if:

o its error rate is greater than the average error rate of all sample instances
(Er > avg Er), reflecting the high probability to occur a wrong decision,
AND

o its average (for all repeated simulations) effort difference (CVP-CIBI) is
greater than the 10% of the minimum of the average efforts of CVP and
CIBI design alternatives, reflecting the high severity degree or the high rate
of wasted effort of possible wrong decisions.

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 164

In principle, a decision error occurs when the sign of the simulation model distance
(CIBI-CVP difference) is different from this returned by formal models. Thus, setting the

difference equation equal to zero, pnE=1-pnE, μ=M/N, for λ>0, the equation of balance

cases is derived pnE(μ)=1(μ+1), which indicates the relation of independent variables

with equal effort estimations between CVP and CIBI alternatives, as showed in subsections
3.5 and 3.6. Scenario instances that satisfy this equation should be prone to potential

errors, as illustrated in Figure 6-43, for λ=200 in the 7rd simulation sate in Table 6-4. In

did, decision errors are more likely to occur (having higher Er or larger mark’s size) for
those sample instances closer to the trace of balance cases. Respectively, moving away from
the trace of balance cases, decision errors are less likely to occur (having lower Er or smaller
mark’s size). However, approaching the trace of balance cases, possible decision errors
have lower severity degree or rate of wasted effort (blue colored marks). Respectively,
moving away from the trace of balance cases, decision errors are more severe with higher
rate of wasted effort (yellow colored mark). This contradiction is confirmed by the sample
instance prone to critical errors, indicated by red bordered marks. Referring to Figure 6-43,
sample instances prone to critical error occurrences follow two separate traces (limits),
which are correlated to the balance equation trace. All the sample instances prone to critical
errors (high probability to occur and high severity degree) are aligned up on those traces.
Moving away from these traces, error occurrences are either almost impossible to arise
(away from the trace of balance cases) or have negligible severity degree or possible rate of
wasted effort (towards the trace of balance cases). Finally, all the sample instances below
the trace of balance cases are suited for CVP design alternative, while all the sample
instances above the trace of balance cases are suited for CIBI design alternative.

Evidence shows that by setting distance equations equal to zero, balance equations can
be derived which reveal the pattern or the traces of non-critical and critical error
occurrences. Furthermore, by placing critical design attributes or factors on diagrams such
as in Figure 6-43, software engineers can develop a “feel” about the design spectrum of
possible instances of a significant and general design problem.

6.5.4 Uncertainty Considerations

As indicated in Figure 6-20, the intermediate effort outcomes per scenario application
resemble to stationary time series with constant mean and finite variation. The irregular

Figure 6-43: Design space representation through 1000 sample instances of CVP vs.
CIBI general problem, including long-term error and critical error rate assessment

(λ=200, 7th simulation state in Table 6-4).

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 165

fluctuations of these series correspond to white noise which is the result of the uncorrelated
random variables engaged by the simulation model. Such time series are not deterministic,
and it is difficult to forecast with certainty what will occur in the future. Time series analysis
(e.g., through ARMA models (G. Antoniol et al., 2001; Shariat Yazdi et al., 2016)) attempts
to understand the nature of time series and it is often useful for future forecasting. These
modes simply predict the statistical properties (i.e., mean, variance, auto correlation) of the
time series, assuming that they will be the same in the future as they have been in the past.
However, this type of analysis completely ignores the nature of the phenomenon under
study. In contrast, the introduced simulation model generates time series of effort
outcomes the values and the variability of which are determined by the model parameters,
the design attributes, specific events, and a standard measurement approach, while several
high uncertainty factors are incorporated. Thus, since the simulation model returns future
effort values per applied scenario in the form of time series, the variability of these series
would be more informative and probably more realistic about the nature of the
phenomenon under study or else about the software evolution during maintenance
process. Besides that, these time series have been calibrated regarding their variability
based on frequency distributions of real-world observations from time series analysis, as
discussed in subsection 6.4.9.

Given that the simulation model provides representative effort assessments in respect
to the design structure of each specific problem, it can be assumed that the average value
of the effort assessments of several repeated (Monte Carlo) simulations for a specific
problem’s instance would approximate the most probable or else the actual or realized
maintenance effort. This exactly implied by the indicative frequency distributions of the
effort outcomes for 100 repeated simulations in Figure 6-18. Any deviations from that
mean value express the uncertainty or the possibility of an incorrect prediction and
consequent decision during the design phase. By analyzing these frequency distributions
for each scenario application (λ), the progressive uncertainty is depicted in Figure 6-44.
Concerning the difference of the effort outcomes (CVP-CIBI), their outlier values in the
distributions explain the error rate of the decision-making. If, for example, the initial effort
predictions during the design stage are near to the mean value, a possible and not
anticipated realization of the maintenance process can be end up to one of the outliers. In
the specific example in Figure 6-44, most of these outliers have values with reverse sign,
implying that the initial effort predictions and the decision made was incorrect.

However, even if the level of uncertainty in Figure 6-44 seems to increase for longer
maintenance period, occasionally, the uncertainty level in software life cycle is expressed
differently. More specifically, it is expressed by the ratio of mean plus deviation to the mean
value or else by the ratio of a possible prediction to realized value. This is the interpretation

Figure 6-44: Frequency distributions (Box Plots) of Simulation Model’s outcomes

(CVP, CIBI, CVP-CIBI) for 100 repeated simulations in a single object-subject
instance (N:40, M:10, pne:0.5, exp:1.0), of the 7th fully stochastic simulation state in

Table 6-4.

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 166

of the uncertainty levels as expressed by the famous cone of uncertainty in (B. Boehm,
2008; B. W. Boehm, 1984). The earlier a decision is made the grater the uncertainty of this
prediction to deviate from the realized cost or size as represented by the unit value of the
horizontal axis in Figure 6-45.

The ratio of mean plus deviation to the mean value for each effort distribution (CVP
and CIBI) in Figure 6-44 is combined with the cone of uncertainty in Figure 6-45. The
order of scenarios’ application has been reversed since the earlier the design decision is
made, the grater the number of future scenario applications (λ). Surprisingly, under this
representation, the earlier (higher λ value) the design decision is made, the narrower the
level of uncertainty, practically reversing the cone of uncertainty. This mean that the effort
predictions and consequent decisions based on the simulated outcomes are more reliable
for longer forecasts. Thus, the longer the maintenance period of software the higher the
probability of the realized cost (effort, size) to be near the predicted (mean) value returned
by the simulation model. Since the simulation model successfully validated the reliability
of the formal modes, the evaluated formal modes and relevant modeling theory in chapters
3 and 4 also exhibit limited uncertainty levels. It is important that reassessment attempts
by reapplying the formal models in a later stage providing it with updated information, as
suggested in (Aroonvatanaporn, Sinthop, & Boehm, 2010; Eveleens & Verhoef, 2009), is
almost meaningless. Even the realization that the initial design selection was incorrect, the
adjustment of the existing code to a different design alternative would require the redesign
of code structure which is an extremely complicated and effort consuming process as
indicated in chapter 3. This is an argument that explains how critical the early design
decisions are since after a specific design alternative has been selected, all the following
interventions during maintenance should be conformed with the initially selected design
structure.

The reason of the limited uncertainty levels in Figure 6-45 is the fact that the formal
models are sensitive and well fitted in the design characteristic of each specific instance of

Figure 6-45: Levels of uncertainty distributions of Simulation Model’s outcomes

(CVP, CIBI) for 100 repeated simulations in a single object-subject instance (N:40,
M:10, pne:0.5, exp:1.0), of the 7th fully stochastic simulation state in Table 6-4.

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 167

a general problem. Since the maintenance process is dictated by the structural behavior of
the engaged design patterns, any random variation or white noise caused by unpredictable
influences would have stationary statistical characteristics, thus minimizing their overall
long-term effect. Notice that all the discussion is about ratios (or analogies) of variations
against means, and not about absolute values which have not been strictly validated against
real-world observations.

6.5.5 Statistical Evaluation per Sample Instance

In this subsection, a statistical evaluation of an indicative instance of the CVP vs CIBI
general design problem is presented. The analyzed instance is referred to the practical
motivation example of GUI implementations in Table 1-1 with the following parameters:
N=15, M=14, pnE=0.70, and pnP=0.30. This implementation corresponds to a marginal
case since the difference of effort assessments among design alternatives is relatively small.
The evaluation is based on the results of the conducted simulations as graphically
represented in Figure 6-46. Furthermore, statistical evaluations for several indicative
sample instances of the CVP vs CIBI general design problem are provided in Appendix D.

Figure 6-46: Statistical evaluation of GUI implementation based on simulation

outcomes

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 168

Referring to Figure 6-46, several subgraphs are presented to provide an in deep
understanding of conducted simulations concerning the GUI implementation (problem’s
instance). The simulated effort assessments are referred to 7th fully stochastic simulation
state in Table 6-4. More specifically, a detailed analysis per subgraph follows:

The upper left graph: provides the deterministic (total) effort assessments returned by
the formal models for CVP and CIBI design alternatives as well as for their difference (CVP-
CIBI). In addition, it provides the stochastic (total) effort assessments returned by the
simulation model for a single indicative simulation. Formal model’s results indicate that
CIBI design alternative is preferable since requires the lesser maintenance effort. However,
it is obvious that the difference of effort assessments is relatively small, thus the specific
GUI implementation (problem’s instance) is probably a marginal case where the decision
outcome provided by formal models may be subject to significant risk. Thus, due to the
stochastic nature of the simulation model, the simulated effort assessments are subject to
several stochastic factors. In this marginal case, the simulated effort assessments per
design alternative are interchanged during maintenance, implying that the decision
outcome is not straightforward as in the case of formal model’s (deterministic) outcomes.

The upper middle graph: provides a clear assessment of the decision risk taken
through the error rate (Er). This assessment is the result of the comparison between
(deterministic) formal models’ outcome and several repeated (Monte Carlo) simulations
for the same problem’s instance. The graph represents the evolution of the error rate (Er)
during the maintenance process as expressed by the number of applied scenarios (λ).
Usually, the error rate constantly decreases during simulation while for the first applied
scenarios (λ<50) its decrement is quite sharply. However, in this marginal case, the result
shows that in a mid-term perspective (λ≈100), the design decision supported by formal
modes is subject to a reasonable risk near 5%, while in a long-term perspective is subject
to a significant risk near to 15%. Because GUI implementation is a marginal case, the
results are quite interesting as the error rate initially decreases and later increases. The
initial (expected) decrement rate is justified by the statistical convergence of the engaged
stochastic factors around their mean values, thus as new scenarios are applied the overall
effect of the stochastic factors tend to become neutral. This reduces possible sharp
fluctuations and the likelihood of unexpected interchanges among design alternatives and,
thus decreasing decision-risk. However, the (unexpected) increment of error rate is
justified by the increased severity (impact) of future interventions that cause sharp
fluctuations that counterbalance and eventually overcome the statistical convergence.
From a different perspective, as the maintenance process evolves and the impact of
interventions increases, instant and sharp fluctuations increase the likelihood of
unexpected interchanges among design alternatives and thus to higher decision-risk.
Again, it is important that this peculiar behavior is due to the marginal nature of the GUI
implementation or the limited difference of effort assessments among design alternatives.
The interpretation of this behavior is insightful about the ability of the simulation model to
imitate the actual software evolution during maintenance as well as its sensitivity to adapt
its behavior to specific instances of the design problem under study.

The upper right graph: provides the number of occurrences per major scenario type
that have been randomly generated (base on their probabilities) and applied during a single
indicative simulation. dE and dP correspond to the maintenance activities for deleting an
element and operation respectively. mE and mP correspond to the maintenance activities
for modifying an element and operation respectively. nE and nP correspond to the
maintenance activities for adding an element and operation respectively. The result shows
that modification and addition of elements have the greater portion since under GUI
implementation the probability of adding new elements is higher (pnE=0.70) as assessed
by the system’s specifications in Table 1-1.

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 169

The second left graph: provides the frequency distribution of the values of the overall
stochastic factor of the simulation model per applied scenario for a single indicative
simulation. The values of this stochastic factor encompass all the variability introduced by
several random and stochastic factors such as method’s actual size, aging issues, and
developers experience.

The second middle graph: provides the frequency distribution of the intermediate (per
applied scenario) CVP effort assessments of the simulation model for a single indicative
simulation. The shape of this distribution is right skewed as a result of the intensive
calibration efforts to imitate the statistical characteristics of real-world (effort-based)
assessments from the field of time series analysis as analyzed in subsection 6.4.9.

The second right graph: provides the frequency distribution of the intermediate (per
applied scenario) CIBI effort assessments of the simulation model for a single indicative
simulation. Again, the shape of this distribution is right skewed as a result of the intensive
calibration efforts as in the case of CVP effort assessments.

The third left graph: provides, in the form of time series, the values of the overall
stochastic factor of the simulation model per applied scenario for a single indicative
simulation.

The third middle graph: provides, in the form of time series, the intermediate (per
applied scenario) CVP effort assessments of the simulation model for a single indicative
simulation. The observed fluctuations correspond to the typical behavior of random
variables representing stochastic processes.

The third right graph: provides, in the form of time series, the intermediate (per
applied scenario) CIBI effort assessments of the simulation model for a single indicative
simulation. Again, the observed fluctuations correspond to the typical behavior of random
variables representing stochastic processes.

The fourth left graph: provides the frequency distributions (per applied scenario) of
the CVP effort assessments of the simulation model for several repeated (Monte Carlo)
simulations for the same problem’s instance. This type of graph represents the evolution
of uncertainty degree during maintenance as discussed in subsection 6.5.4.

The fourth middle graph: provides the frequency distributions (per applied scenario)
of the values of CIBI effort assessments of the simulation model for several repeated (Monte
Carlo) simulations for the same problem’s instance.

The fourth right graph: provides the frequency distributions (per applied scenario) of
the difference of CVP-CIBI effort assessments of the simulation model for several repeated
(Monte Carlo) simulations for the same problem’s instance. This type of graph represents
the evolution of uncertainty degree during maintenance concerning the decision-making
process. The result shows that in an early (λ<50) and long term (λ>150) perspective there
several values below zero, thus representing an opposite decision (CVP) against formal
models’ decision (CIBI). In practice, these (opposite) values confirm the significant error
rate (Er) as quantitatively expressed in the upper middle graph. The more the opposite
values, the higher the likelihood of the formal models to conclude in an incorrect decision.

Referring to the implementation of GUI, the formal models demonstrate a significant
long-term decision-risk (near to 15%) or else a moderate decision-making reliability near
to 85%. Thus, there 85% chance for the formal model to conclude to the right design
decision for the specific GUI implementation (problem’s instance). However, problem’s
instances with high error rate have small severity, thus the possible gain or loss (in terms
of effort) would be limited or even insignificant as discussed in subsection 6.5.3. In general,
even when for a specific problem’s instance, the error rate is significant, its severity or the
possible gain or loss (in terms of effort) would be probably limited. Only a small portion of
error occurrences may be critical in terms of severity as expressed by the critical error rate
(cEr) in Figure 6-29 (middle).

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 170

Referring to the entire sample of instances, the formal models demonstrate variant
decision-risk or decision-making reliability. For example, the sample instance N.001
demonstrate a long-term error rate (Er) near to 25%, the sample instances N.011, 012 less
than 10%, the sample instances N. 14, 15 less than 5%, and the sample instances N.004,
007, 008, 009, 010 fade to zero (0%) as presented in Appendix D. The average of decision-
risk (expressed by the error rate and critical error rate) for the entire sample of problem’s
instances (representing the problem’s design space) is depicted in Figure 6-29 (middle)
and summarized in Table 6-7.

Conclusively, the decision-making reliability of the derived formal models variates and
depends on the parameters of each specific instance of the general problem under study.
Marginal cases with narrow effort differences are the most prone to potential error,
however, most of these errors would be of low severity in terms of wasted effort. The overall
decision-making reliability of the derived formal models is expressed by the average error
rate of a sufficient sample of instances that represents the entire design space of the design
problem under study.

6.5.6 Summarizing Results and Inferences

In general, under medium to high uncertainty assumptions, the evaluated formal models

and modeling method are valid in a mid-to-long-term (λ>50) perspective regarding their

selection ability, demonstrating a) high correlation coefficient ranging from 0.94 to 0.96,
b) decreasing average error rate between 9% and 5.4%, and c) decreasing critical error rate

from 2.5% to 0.8%. Furthermore, the formal models are also valid in a long-term (λ>150)

perspective regarding its prediction ability in absolute effort/size magnitudes, under the
assumption that companies and developers gradually improve their experience and skill
level. However, evidence that imply prediction ability in terms of absolutes values may be
of low importance as stressed in subsection 6.6.1. Summarizing, the decisions based on the

formal models, in a long-term (λ→200) perspective, demonstrate a) high coefficient of

correlation 0.96, b) low average error rate 8%, and c) low critical error rate 2%.

The evidence suggests that simplified modeling approaches such as the introduced
modeling method in chapters 3 and 4are particularly reliable able to approximate dynamic
system's behavior mostly because of mid-to-long-term statistical convergence.
Conceptually, the introduced modeling theory can be considered as a reverse analysis or a
regression analysis on the underlying activities of actual maintenance process, managing
to eliminate transitory and stochastic factors which demonstrate a statistically neutral
long-term effect. Thus, the introduced approach in chapters 3 and 4 seems that achieves to
eliminate transitory and biased factors to enhance mid-to-long-term decision ability.

6.6 Conclusions

6.6.1 General Requirements and Limitations

The introduced validation procedure requires a sophisticated simulation model, properly
adapted to the characteristics of each specific general problem under validation. Thus, the
validation of formal models for different general problems requires the development of an
alternate simulation model that should incorporate all the relevant scenario types, design
attributes, and problem’s parameters. In this case, the coefficient of correlation and the
error rate could be different.

Furthermore, the simulated outcomes are focused only on the required effort for
maintaining the main code of each design alternative. Any additionally required effort for
maintaining linked modules or legacy code would be common for all design alternatives
under comparison, and thus neutral concerning the decision making. The main objective
of the derived formal models in chapters 3 and 4 and therefore of the proposed simulation
approach is to provide proportionally equivalent effort estimations primarily for
comparison purposes. Therefore, in principle, absolute values of simulated effort outcomes

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 171

do not necessarily reflect the actual or realized effort for the entire system. In addition, as
in chapters 3 and 4, absolute maintenance cost assessments in terms of salaries, resources,
assets, expenses, etc., are out of the scope of the proposed simulation approach.

The modeling method in chapters 3 and 4 emphasizes in the maintainability
perspective of general design problems by deriving and analyzing design alternatives,
design attributes, and major maintenance scenarios for each of them. A possible failure to
conclude on the complete set of problem’s parameters, may negatively affect the reliability
of the simulation model which replicates the same structural evolution pattern under the
same parameters.

The proposed simulation model has been calibrated regarding its variability based on
frequency distributions of real-world observations. Thus, further statistical inferences (i.e.,
correlation, error rate) about formal modes decision-making reliability (or precision) are
well supported. However, due to the inadequate volume of homogeneous data, it lacks a
strictly validation of simulated effort predictions against real-world observations. Thus,
further statistical inferences (i.e., t-test) about formal modes accuracy are rather weak.
Moreover, a finer calibration of the simulation model by matching its variability with
frequency distributions from an even larger repository of real-world observations would be
strengthening model’s ability to imitate actual maintenance process.

Referring to the randomly selected sample, all the selected instances adequately
represent the entire design space of the problem or the possible systems’ instances or the
population of the general problem under study. Thus, the population validity, as a type of
external validity, is high enough to reasonably generalize the findings of the experiment
from the selected sample of instances to the entire design space of the general design
problem under study.

Furthermore, since the conducted simulations and the experimental settings and
conditions are adequately controlled by the researcher, it is ensured that there are no
extraneous factors that could explain (or affect) the returned effort outcome by the
simulation model. Thus, since the experiment and the simulation model have high internal
validity, it is confidently concluded that the defined independent variables of the simulation
model adequately predict the depended variable of the required maintenance effort.
However, a possible external threat to validity, as classified in (T. D. Cook & Campbell,
1979), is the concern regarding the ability of the introduced simulation model to imitate
the actual or real-world maintenance process in a more realistic way (e.g., by incorporating
different independent variables and stochastic factors), and thus to limit the generalization
of the experiment results or to create alternate explanations (D. L. Parnas & Curtis, 2009).
This threat encompasses any possible concern about the suitability, limitations, or the
proper interpretation of the selected (or possible other) parameters, stochastic factors,
assumption, constraints, and requirements towards the objectives of the study.

6.6.2 Extensions and Further Research

The introduced approach is a starting point for further research in the domain of software
evolution throughout simulation models which could engage other stochastic factors in
different frequency distributions under other measurement methods and units, or even for
other quality characteristics of the software. These research perspectives could be assisted

by using general (e.g., MATLAB®) or targeted (e.g., VENSIM®) purpose simulation

languages and tools. For example, both formal models as a continuous models and
simulation model as an event-driven model can be implemented and further explored

through the VENSIM® (dynamic, stochastic and quantitative) simulation tool, as

supported in (Müller & Pfahl, 2008) and presented in subsection 7.4. In addition, machine
learning or artificial intelligence techniques may be used to assist simulation model
reaching even more realistic results.

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 172

At the same time, this approach targets on motivating researchers toward the
evaluation of other general and significant problems in software architecture domain for
which proper selection among design alternatives could be modeled through the theoretical
framework in chapters 3 and 4 and statistically validated by simulated observations. For
example, several potential problems under evaluation and validation can emerge by taking
under consideration the implication of several other competitive design patterns such as
Strategy, Decorator, or Prototype against Abstract Factory, or Mediator against Observer,
as introduced in (Gamma et al., 1994) and presented in chapter 5. The simulation of such
problems can be assisted by integrating the proposed simulation model to perform jointly
as a synthesized simulation or co-simulation, as proposed in (Zeigler et al., 2018). In such
cases, existing base models might serve as lumped components of a broader simulation
model forming a hierarchical structure. These potentials highlight the possible usability of
the proposed theoretical framework in (Karanikolas et al., 2017) and the introduced
evaluation method through simulations in a wide spectrum of general and difficult
designing problems in the software architecture field.

6.6.3 Overall Assessment

Decisions made during design stage heavily affect maintainability of software and related
time and effort. The proposed modeling method in chapters 3 and 4 generates probabilistic
comparison models that estimate the maintainability degree of design alternatives through
effort predictions in a formal and deterministic way. This approach manages to limit the
ambiguity imposed by the stochastic nature of the actual maintenance process by relying
on a limited set of problem’s parameters such as design attributes and probabilities of
major maintenance scenarios.

The results of the extensive statistical validation indicate that the evaluated formal
models provide reliable estimations of the expected effort, especially for comparison
purposes. Thus, decisions concerning design alternatives exhibit very limited selection-risk
even under high uncertainty levels regarding the initial estimation of problem’s
parameters. The reliability of the evaluated probabilistic models increases in a mid-to-long
term perspective, and thus, as the maintenance process evolves and decisions' benefits
become more significant, the models' decision ability to conclude in the most beneficial
design alternative in terms of maintainability is increased. Such parsimonious models
eliminate transitory and biased factors to enhance mid-to-long-term decision ability.
Methods that yield such reliable, formal, general, and reusable models reduce the long-
term uncertainty of design decisions and help developers and engineers to elevate the
quality of their decision-making. Thus, early structural analysis of the engaged design
patterns can significantly improve effort assessments and comparison among design
alternatives, practically reversing the (cone of) uncertainty levels. Even if such early and
critical design decisions is not the primary concern in software industry, developers and
designers should turn their attention on them since the cumulative benefits (avoided
wasted effort) from the repeating use of these formal models significantly overcomes their
initial derivation cost.

Finally, the proposed validation approach introduces a new perception about the
statistical evaluation of formal comparison models and relevant theories regarding their
reliability to support design decisions. It relies on massive and homogeneous validation
data, sensitive to several design attributes, generated by widely stochastic simulation
models which have been thoroughly calibrated to replicate the underlying activities and
variability of actual software evolution during maintenance process. Researchers are
encouraged and hopefully inspired to possibly apply the introduced concepts in similar or
different context.

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 173

7 Alternate Use of Formal Comparison Models

7.1 Chapter Overview

In this chapter, several alternate and future perspectives of the introduced modeling
method, derived formal comparison models, and event-driven simulation models are
presented. The purpose of this chapter is to demonstrate and explore further potential
applications of the introduced theory and models. In addition, this material tries to
highlight possible perspectives for further analysis and interpretation of similar or other
design problems in the field of software engineering.

More specifically, the introduced modeling method and derived formal models in
chapters 3 and 4 are further analyzed to support decision-making under partial of full
uncertainty. Thus, when software designers are unable to forecast the scenarios’
probabilities in a precise manner. For that purpose, the derived formal models are further
integrated on their probability factors. Partial uncertainty refers to integration on a specific
interval of possible scenarios’ probabilities, while full uncertainty refers to integration on
the entire range of scenarios’ probabilities. The technique is demonstrated on the formal
models of the general problem of part-whole aggregations.

Furthermore, the horizon analysis technique is analyzed. This technique separates the
entire maintenance period to subperiods, where for each subperiod different scenarios’
probabilities are applied. Under this perspective, even the code development period can be
considered as a separate subperiod or a preliminary maintenance subperiod. In particular,
the derived formal models in chapter 4 are repeatedly applied on a specific instance of the
general problem for different scenarios’ probabilities. The initial values of design attributes
for each subperiod are estimated based on the last step of previous subperiod. The
technique is demonstrated on the example of Interpreter implementation as an instance of
the general problem of part-whole aggregations.

Moreover, alternate computer-aided implementations of the introduced models with
the assistant of VENSIM tool are presented. This software tool can simulate physical and
other phenomena and systems through the analysis of their key variables and their change
rates. In this environment, constant and intermediate variables are combined to compute
other variables. A special type of variables, called ‘levels’, is computed through integration
based on the change rates that effecting it. The software runs the simulation and computes
its variables by performing integration on a special parameter which generally represents
the time dimension of the model. This tool can represent both continuous and event-driven
models while provide a variety of capabilities for representing and compering the results of
simulations. More specifically, the introduced discrete models in chapter 3, the continuous
formal models in chapter 4, and the event-driven simulation model in chapter 6,
concerning the general problem of part-whole aggregations, are implemented in VENSIM
tool. The alternate modes are visually represented while the documentation of the code of
each model is provided. Indicative comparison results of several basic variables among all
models are presented. The tool is demonstrated on an example of GUI implementation as
an instance of the general problem of part-whole aggregations.

Finally, a discussion about seeing software design process as investment is provided.
This discussion examines the decision-making during design phase and the produced
software under the view of financial and accounting analysis.

The context of this chapter is based on the quantitative analysis in chapter 3, the
introduced modelling method and derived formal models in chapter 4, and the introduced
simulation model in chapter 6. The rest of this chapter is organized as follows. Subsection
7.2 demonstrates the decision-making under partial or full uncertainty. Subsection 7.3
introduces the horizon analysis technique. Subsection 7.4 presents alternate computer-
aided implementations of the introduced models. Subsection 7.5 examines the software

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 174

design process under the view of investments. Finally, in subsection 7.6 conclusions are
presented.

7.2 Decisions Under Uncertainty

The introduced modeling method in chapters 3 and 4 is based on estimations of major
scenarios’ probabilities according to the scope of each specific problem’s instance. Referring
to CIBI vs CVP general problem, pnE and pnP are the probabilities for the scenarios of adding
a new composition’s element and adding a new type of operation, respectively. The
equations of the generated formal models are based on specific values of those probabilities’
factors as independent variables. Thus, for each specific instance of the general design
problem, software engineers should estimate those scenario probabilities as absolute
values. For instance, in the case of the Interpreter specific problem with design attributes
N=40 and M=10, the scenario probabilities are estimated as pnE=pnP=0.5. Nevertheless, in
many cases, it is difficult to obtain such absolute probabilities with satisfactory certainty.
In such cases, however, a confidence interval of these probabilities is more likely to be
estimated. In this subsection, a technique that allows the use of the derived formal models
as they are fed by intervals instead of absolute values of scenario’s probabilities is
presented.

7.2.1 Transforming Formal Models to Support Decision-Making Under
Uncertainty

Having extracted formal model equations, the decision-making can be supported based on
estimations of intervals instead of a single value for a specific probability factor. This
approach could be achieved through further integration of formal model equations on the
probability factor of interest. For example, referring to CIBI vs. CVP general problem, the
formal model equation of total effort for CVP design combination is presented in equation
(7-1) where pnP factor has been replaced by 1-pnE.

𝑐(𝐶𝑉𝑃,𝑁,𝑀, 𝑝nE, 𝑝nP, 𝜆) =
3

2
𝜆2𝑝nΕ𝑝n𝑃 + 𝜆𝑝n𝑃𝑁 + 2𝜆𝑝nE𝑀 + 4𝜆𝑝nE + 𝜆𝑝n𝑃 =

3

2
𝜆2𝑝nΕ(1 − 𝑝nE) + 𝜆(1 − 𝑝nE)𝑁 + 2𝜆𝑝nE𝑀 + 4𝜆𝑝nE + 𝜆(1 − 𝑝nE)

(7-1)

By integrating equation (7-1) on the pnE factor, the equation (7-2) is derived, which is
a general equation. Furthermore, by integrating pnE factor for a specific interval of min and
max values, the cumulative prediction of the required effort for all probabilities in this
interval is returned.

𝑐(𝐶𝑉𝑃,𝑁,𝑀, [𝑝nE(min), 𝑝nE(max)], [[1 − 𝑝nE(min), 1 − 𝑝nE(max)], 𝜆) =

 ∫
3

2
𝜆2𝑝nΕ(1 − 𝑝nE) + 𝜆(1 − 𝑝nE)𝑁 + 2𝜆𝑝nE𝑀 + 4𝜆𝑝nE + 𝜆(1 − 𝑝nE)

𝑝nE(𝑚𝑎𝑥)

𝑝nE(𝑚𝑖𝑛)

 𝑑𝑝nE

(7-2)

A similar equation (7-3) can be derived for CIBI design combination.

𝑐(𝐶𝐼𝐵𝐼, 𝑁,𝑀, [𝑝nE(min), 𝑝nE(max)], [[1 − 𝑝nE(min), 1 − 𝑝nE(max)], 𝜆) =

 ∫
3

2
𝜆2𝑝nE(1 − 𝑝nE) + 2𝜆(1 − 𝑝nE)𝑁 + 𝜆𝑝nE𝑀 + 𝜆𝑝nE + 2𝜆(1 − 𝑝nE)

𝑝nE(𝑚𝑎𝑥)

𝑝nE(𝑚𝑖𝑛)

 𝑑𝑝nE

(7-3)

The equations (7-2) and (7-3) are able to support decision making among design
alternatives of the CVP vs. CIBI general problem under conditions of partial of even full
uncertainty. Thus, when designers are unable to estimate scenarios’ probabilities (i.e.,
pnE=1-pnP) in an absolute manner. In such cases, the cumulative effort assessments,
referred to intervals of probabilities, are convenient for comparison purposes even if their

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 175

distinct cumulative values are essentially meaningless. Application examples of these
equations are provided in next subsection.

7.2.2 Example of Decision-Making Under Uncertainty

7.2.2.1 Decision-Making Under Partial Uncertainty

As an indicative example, supposing that pnE factor is estimated to the interval of [0.0, …,
0.5], the equation (7-2) returns the equation (7-4) in which pnE factor has been eliminated
due to the conducted integration.

𝑐(𝐶𝑉𝑃,𝑁,𝑀, [0.0,0.5], [1.0,0.5], 𝜆) =

= ∫
3

2
𝜆2𝑝nΕ(1 − 𝑝nE) + 𝜆(1 − 𝑝nE)𝑁 + 2𝜆𝑝nE𝑀 + 4𝜆𝑝nE + 𝜆(1 − 𝑝nE)

0.5

0

 𝑑𝑝nE =

=
𝑀𝜆

4
+
3𝑁𝜆

8
+
𝜆2

8
+
7𝜆

8

(7-4)

Respectively, the equation (7-3) returns the equation (7-5) which returns the
cumulative prediction of the required effort for all probabilities in the same interval for CIBI
design combination.

𝑐(𝐶𝐼𝐵𝐼, 𝑁,𝑀, [0.0,0.5], [1.0,0.5], 𝜆) =

= ∫
3

2
𝜆2𝑝nΕ(1 − 𝑝nE) + 2𝜆(1 − 𝑝nE)𝑁 + 𝜆𝑝nE𝑀 + 𝜆𝑝nE + 2𝜆(1 − 𝑝nE)

0.5

0

 𝑑𝑝nE =

=
𝑀𝜆

8
+
3𝑁𝜆

4
+
𝜆2

8
+
7𝜆

8

(7-5)

In the case of the Interpreter specific problem with design attributes N=40, and M=10,
the equations (7-4), (7-5), and similar equations for CIBI design combination are
simplified to equations (7-6). These equations imply a clear advantage of CVP design
combination since CVP always requires the lowest cumulative maintenance effort for any
number of scenarios’ applications λ.

𝑐(𝐶𝑉𝑃, 40,10, [0.0, … ,0.5], [1.0, … ,0.5], 𝜆) =
𝜆2 + 147𝜆

8

𝑐(𝐶𝐼𝐵𝐼, 40,10, [0.0, … ,0.5], [1.0, … ,0.5], 𝜆) =
𝜆2 + 257𝜆

8

(7-6)

The general equations (7-2) and (7-3) for CVP and CIBI design combinations can
provide cumulative effort estimations for any interval of pnE factor referring to CIBI vs CVP
general problem. Thus, the generated formal models, through further integration, can
sufficiently support decision making for arbitrary intervals of probabilities factors or else
under partial uncertainty.

7.2.2.2 Decision-Making Under Full Uncertainty

Based on previous logic, decision making can be supported even under full uncertainty or
else for the whole range of a probability factor. Thus, by integrating equation (7-2) and
similar equation for CIBI combination on pnE factor for its whole range [0.0, …, 1.0], the
simplified equations (7-7) are derived (again for the Interpreter specific problem with
design attributes N=40, and M=10).

𝑐(𝐶𝑉𝑃, 40,10, [0, … ,1], [1, … ,0], 𝜆) =
𝜆2

4
+
65𝜆

2
 (7-7)

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 176

𝑐(𝐶𝐼𝐵𝐼, 40,10, [0, … ,1], [1, … ,0], 𝜆) =
𝜆2

4
+
93𝜆

2

The equations (7-7) imply a general (under full uncertainty or any value of pnE factor)
advantage of CVP design combination since CVP requires the lowest cumulative
maintenance effort for any number of scenarios’ applications λ. This inference is visually
confirmed by the design space representation of the CVP vs. CIBI general problem in
Figure 3-18 and Figure 6-43. In Figure 6-43, all the sample instances below the trace of
balance cases are suited for CVP design alternative. Respectively, all the sample instances
above the trace of balance cases are suited for CIBI design alternative. For the Interpreter
example μ=M/N=10/40=0.25. Thus, for μ=0.25, most of the interval of pnE=[0, …, 1] is
allocated below the trace of balance cases which is referred to the CVP design alternative.

However, when μ factor is near to 1, it is difficult to visually infer the most proper
design alternative in Figure 6-43. This is because, in Figure 6-43 there is no graphical
representation of the cumulative required effort of an interval of pnE factor. In such cases,
the Figure 3-18 is more informative since the conceptual surface across z axle for a
particular μ value and pnE interval is a visual representation of the cumulative required
effort. Part of this surface may be below and above the trace of balance cases. The difference
on the area of these contrary parts gives the most beneficial design alternative. Thus, the
larger portion of this area relative to the trace of balance cases indicates the most beneficial
design alternative for the specific μ value and pnE interval. Nevertheless, the graphical
representation of the design space is not always an easy matter especially in the cases of
difficult design problems with multiple design attributes and scenario probabilities. In such
cases, the mathematical analysis through integration presented so far provides a formal
and direct mean which bypasses conceptual and graphical representations. This type of
calculus computations can be easily performed through several software tools such as
MATLAB and Microsoft Mathematics.

7.2.2.3 Decision-Making Under Uncertainty with Multiple Factors of Probabilities

Based on previous logic, decision making can be supported even in the case of multiple
factors of probabilities. The extended problem in subsection 5.2 with Decorator design
pattern attached in the basic CVP vs. CIBI design problem is offered as a suitable example.
The new design problem CVP-DP vs. CIBI-DP has three major maintenance scenarios,
three design attributes, and thus tree probability factors (pnE, pnP, pnD), one for each design
attribute. The extra scenario, design attribute, and probability factor (pnD) is referred to the
event of adding a new decorator element into the design structure.

Again, the key concept is the integration of the formal models on the probability factor
of interest. This time we need to perform repeated integrations in different probability
factor each time. Since the sum of all probability factors is equal to one, one factor is related
and defined by the values of the rest factors. Supposing n as the number of probability
factors, the degree of freedom on setting values on these factors is n-1. Due to this property,
one probability factor should be replaced and expressed by the other probabilities before
the first integration round. Next, we gradually integrate for the rest probability factors, one
at a time, according to the desired intervals. In the case of CVP-DP vs. CIBI-DP design
problem the cumulative effort for CVP-DP design combination is given by the general
equation (7-8) as derive by the equation (5-1) where pnD=(1-pnE-pnP).

𝑐 (
𝐶𝑉𝑃_𝐷𝑃, N,M, D, [p𝑛𝐸(𝑚𝑖𝑛), … , p𝑛𝐸(𝑚𝑎𝑥)], [p𝑛𝑃(𝑚𝑖𝑛), … , p𝑛𝑃(𝑚𝑎𝑥)],

[(1 − p𝑛𝐸(𝑚𝑖𝑛) − p𝑛𝑃(𝑚𝑖𝑛)),… , (1 − p𝑛𝐸(𝑚𝑎𝑥) − p𝑛𝑃(𝑚𝑎𝑥))], 𝜆
) = (7-8)

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 177

= ∫ {∫ (
3

2
∙ 𝑝𝑛𝑃 ∙ ((1 − 𝑝𝑛𝐸 − 𝑝𝑛𝑃) + 𝑝𝑛𝐸) ∙ 𝜆

2 + (𝑝𝑛𝑃 + 2 ∙ (1 − 𝑝𝑛𝐸 − 𝑝𝑛𝑃) ∙ (𝑀
𝑝𝑛𝐸(𝑚𝑎𝑥)

𝑝𝑛𝐸(𝑚𝑖𝑛)

𝑝𝑛𝑃(𝑚𝑎𝑥)

𝑝𝑛𝑃(𝑚𝑖𝑛)

+ 2) + 2 ∙ 𝑝𝑛𝐸 ∙ (𝑀 + 2) + 𝑝𝑛𝑃 ∙ (𝐷 + 𝑁))𝜆) 𝑝𝑛𝐸} 𝑝𝑛𝑃

Respectively, the cumulative effort for CIBI-DP design combination is given by the
general equation (7-9) as derive by the equation (5-2) where pnD=(1-pnE-pnP).

𝑐 (
𝐶𝐼𝐵𝐼_𝐷𝑃, N,M, D, [p𝑛𝐸(𝑚𝑖𝑛), … , p𝑛𝐸(𝑚𝑎𝑥)], [p𝑛𝑃(𝑚𝑖𝑛), … , p𝑛𝑃(𝑚𝑎𝑥)],

[(1 − p𝑛𝐸(𝑚𝑖𝑛) − p𝑛𝑃(𝑚𝑖𝑛)), … , (1 − p𝑛𝐸(𝑚𝑎𝑥) − p𝑛𝑃(𝑚𝑎𝑥))], 𝜆
) =

= ∫ {∫ (
3

2
∙ 𝑝𝑛𝑃 ∙ ((1 − 𝑝𝑛𝐸 − 𝑝𝑛𝑃) + 𝑝𝑛𝐸) ∙ 𝜆

2 + ((1 − 𝑝𝑛𝐸 − 𝑝𝑛𝑃) + 𝑝𝑛𝐸 + 4
𝑝𝑛𝐸(𝑚𝑎𝑥)

𝑝𝑛𝐸(𝑚𝑖𝑛)

𝑝𝑛𝑃(𝑚𝑎𝑥)

𝑝𝑛𝑃(𝑚𝑖𝑛)

∙ 𝑝𝑛𝑃 + 2 ∙ 𝐷 ∙ 𝑝𝑛𝑃 +𝑀 ∙ (1 − 𝑝𝑛𝐸 − 𝑝𝑛𝑃) + 𝑀 ∙ 𝑝𝑛𝐸 + 2 ∙ 𝑁 ∙ 𝑝𝑛𝑃)𝜆) 𝑝𝑛𝐸} 𝑝𝑛𝑃

(7-9)

For demonstration purposes, the above equations are applied and computed for the
interval of scenarios probabilities pnE=[0.0, …, 0.4] and pnP=[0.0, …, 0.3]. The pnD factor
depends on the values of the rest probability factors as previously discussed. Thus, the
equation (7-8) returns the equation (7-10).

𝑐 (
𝐶𝑉𝑃_𝐷𝑃, N,M, D, [0.0,… ,0.4], [0.0,… 0.3],

[(1 − p𝑛𝐸(𝑚𝑖𝑛) − p𝑛𝑃(𝑚𝑖𝑛)), … , (1 − p𝑛𝐸(𝑚𝑎𝑥) − p𝑛𝑃(𝑚𝑎𝑥))], 𝜆
) =

= 𝜆 (
9𝐷
500

 +
9𝑁
500

 +
51𝑀
250

 +
213
500

) +
27𝜆2

1250

(7-10)

Respectively, the equation (7-9) returns the equation (7-11).

𝑐 (
𝐶𝐼𝐵𝐼_𝐷𝑃,N,M,D, [0.0, … ,0.4], [0.0,… 0.3],

[(1 − p𝑛𝐸(𝑚𝑖𝑛) − p𝑛𝑃(𝑚𝑖𝑛)), … , (1 − p𝑛𝐸(𝑚𝑎𝑥) − p𝑛𝑃(𝑚𝑎𝑥))], 𝜆
) =

= 𝜆 (
9𝐷
250

 +
9𝑁
250

 +
51𝑀
500

 +
87
500

) +
27𝜆2

1250

(7-11)

The difference of the equations (7-10) and (7-11) is given by the equation (7-12)

𝑐 (
𝐶𝑉𝑃_𝐷𝑃 − 𝐶𝐼𝐵𝐼_𝐷𝑃, N,M, D, [0.0,… ,0.4], [0.0, … 0.3],

[(1 − p𝑛𝐸(𝑚𝑖𝑛) − p𝑛𝑃(𝑚𝑖𝑛)), … , (1 − p𝑛𝐸(𝑚𝑎𝑥) − p𝑛𝑃(𝑚𝑎𝑥))], 𝜆
) =

= 𝜆
51𝑀 − 9𝐷 − 9𝑁 + 126

500

(7-12)

The equation (7-12) is a general equation that indicates the most beneficial design
alternative for the specific intervals of probability factors {pnE=[0.0, …, 0.4] and pnP=[0.0,
…, 0.3]}. The sign of this equation depends on the values of the design attributes (i.e., N,M,
and D). For example, by setting N=10, M=20, and D=5 , the sign of equation (7-12) is
positive and, thus the CIBI-DP design alternative is preferable. In the case of N=40, M=5,
and D=10 , the sign of equation (7-12) is negative and, thus the CVP-DP design alternative
is preferable. Thus, even in the case of decisions under uncertainty (referred to intervals of
scenarios probabilities) the derived models remain sensitive and informative regarding all
their parameters (design attributes).

7.2.3 Additional Decision-Criteria to Decision-Making Process

The introduced modeling method implies that the selection of the most beneficial or
maintainable design combination is based on a single and dominant criterion; the design
alternative with the lowest required effort. Nevertheless, the decision-making process can

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 178

be further enhanced by introducing additional criteria such as worst or optimum scenario
outcomes.

For instance, referring to CIBI vs. CVP general problem, consider a set of design
attributes N and M for which equations (7-6) referred to the limited interval pnE=[0.0, …,
0.5] suggests CVP design combination. In addition, suppose that equations (7-7) for the
whole pnE range [0.0, …, 1.0] suggest CIBI design combination as the most beneficial.
Under this perspective, the limited interval pnE=[0.0, …, 0.5] reflects an optimum or more
desirable situation with limited uncertainty degree. Respectively, the wider range pnE=[0.0,
…, 1.0], reflects the worst possible or less desirable situation with higher uncertainty
degree. Under these circumstances, the decision-making process can be supported by the
criterion of minimizing the required effort for the worst against optimum possible
situation. If, for example, our decision-criterion is the selection of the most beneficial design
alternative in the worst case of high uncertainty degree, then the CIBI design combination
is the most appropriate option. Accordingly, if our decision-criterion is the selection of the
most beneficial design alternative in the optimum case of limited uncertainty degree, then
the CVP design combination is the most appropriate option.

Hence, the combination of different decision-criteria, supported by transformed
formal models for arbitrary intervals of probabilities factors, provides a robust and formal
background able to support decision-making among design alternatives considering
several comparison perspectives.

7.3 Horizon Analysis

7.3.1 Separating Maintenance Process to Sub-Periods

In practice, attempting to estimate the change-trends of the maintenance process is not
always straightforward and uniform. In some cases, the scenarios’ probabilities may have
different values for different periods of the software life cycle. In such cases, the analysis
can be separated in distinct sub-periods, a technique usually called horizon analysis or
multi-period analysis. This technique helps forecasting the realized effort over various
maintaining periods or horizons where each period has different scenarios’ probabilities.
Under this perspective, even the code’s development stage can be viewed as a preliminary
maintenance period.

For instance, referring to the general problem of part-whole aggregation, the required
development effort can be analyzed in two separate periods. Usually, the CP elements are
implemented first, followed by the implementation of different operations through the
inheritance-based implementation (IBI) or Visitor design pattern (VP) structure according
to the selected design alternative. Thus, focusing on the specific instance of Interpreter with
initial design attributes N=40, M=10, and pnE=0.5 (during maintenance), the development
period can be separated into two phases or sub-periods, one for elements’ development,

where N=0, M=1, pnE=1, pnP=0, and λ=40, and secondly for operations’ development,

where N=40, M=1, pnE=0, pnP=1, and λ=9. Consequently, after the end of the

development period and entering the maintenance period, the design attributes are equal
to the initial attributes N=40, M=10 of the maintenance process, as presented in Table 7-1.
From this point and on, the maintenance horizon can also be separated in sub-periods with
different scenarios’ probabilities. For example, supposing that the scenarios’ probabilities
for the next 50 applied scenarios are estimated to pnE=0.5 and pnP=0.5. Thus, for the first

maintenance period, N=40, M=10, pnE=0.5, pnP=0.5, and λ=50. Hence, after the end of

the first maintenance period, the design attributes are equal to N=40+pne*50=65 and
M=10+pnP*50=35. Now, suppose that the scenarios’ probabilities for the next 50 applied
scenarios are estimated to pnE=0.9 and pnP=0.1. Thus, for the second maintenance period,

N=65, M=35, pnE=0.9, pnP=0.1, and λ=50. As a result, horizon analysis can provide

forecasts of the total required effort, including almost all the software life cycle. Of course,

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 179

the horizon analysis can be limited or expanded to as many periods as required according
to the interest of the software engineer or quality manager. The total required effort is equal
to the sum of the required effort of each sub-period.

Table 7-1: Horizon Analysis Data referred to the Interpreter Specific Instance of CVP vs.
CIBI General Problem

Initial design

attributes
Scenarios’

probabilities
Scenarios

applications
Sub-period (horizon) N M pnE pnP λ
Development of elements (types or methods or classes) 0 1i 1.0 0.0 40
Development of operations (types or methods or classes) 40 1 0.0 1.0 9
Early maintenance 40ii 10ii 0.5iii 0.5 50
Later maintenance 65 35 0.9 iii 0.1 50
End of maintenance (software life cycle) 110 40 - - -

i As a starting state referred to development period, the initial design attribute of operations’ variable (M) starts from value
one; otherwise, the Formal Model equations return zero effort

ii Initial design attributes, referred to the maintenance period, based on the scope of the Interpreter example: N=40, M=10

iii Estimations of scenarios probabilities during maintenance: pnE=0.5 (early period) and pnE=0.9 (later period)

7.3.2 Example of Decision-Making Supported by Horizon Analysis

The generated formal model equations can be applied for each sub-period in Table 7-1,
where the returned effort per design alternative is progressively added to the returned effort
of the previous sub-period. The results can be graphically presented in a unified plot, as
demonstrated in Figure 7-1. The graph in Figure 7-1 provides excellent insight about the
required effort per design alternative for different periods (horizons) of the software life
cycle. Looking at the graph in Figure 7-1, it seems that from a long-term perspective, there
is no significant difference between the total efforts of CVP and CIBI design alternatives. If
the decision is based on a short-term perspective, you should choose the CVP design
combination. However, if the selection criterion is focused only on a long-term aspect,
which in the case of the interpreter is a more realistic orientation, then the CIBI design
combination seems to have better perspectives. But be aware, in this case, the management
should suffer the extra wasted effort until the time where the CIBI combination becomes
the most maintainable option.

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 180

In such cases, where the preferable design options are interchanged across different
periods, the management should consider other investment-oriented criteria such us time-
value or present-value of money and opportunity cost or cost of capital. More specifically,
in Figure 7-1 example, the extra wasted effort of CIBI implies that extra salaries and
expenditures should be invested in a short to mid-term horizon. Even if CIBI combination
is more maintainable (requires less effort) from a long-term perspective, the cost of the
short to mid-term (extra or wasted) used capital may exceed the long-term benefit. For
instance, referred to the beginning of the later maintenance period in Figure 7-1, the CIBI
combination requires approximately 35% more effort (or expenditures or invested capital,
respectively) than CVP combination. If during that particular period the cost of capital (e.g.,
borrowing interest rate, or possible rate of return of the opportunity to invest in another
more profitable asset) to finance the project is too high, then it may be better for
management to select CVP combination, keeping the short to mid-term capital
requirements in low levels and hoping that in a long-term perspective financing conditions
would be improved.

Hence, horizon analysis opens a whole spectrum of different aspects and criteria such
as investing, economics, and financing, regarding the evaluation and selection among
design alternatives for various sub-periods of software lifecycle.

7.4 Alternate Computer-Aided Implementation of Formal Models

The derived formal models can be alternatively implemented through computer-aided
simulations. Even though such implementations are limited only to a single general
problem, it can provide further insight regarding each factor’s contribution. In addition,
through such simulation techniques, the exploration of the dynamic behavior and
evolution patterns of the formal models and their components can be conducted.
Furthermore, results from different simulation settings can be stored and compared for

Figure 7-1: Graph of total effort per design alternative (CVP vs. CIBI) for different

horizons (sub-periods) of the software lifecycle, including preliminary development
stage, referred to the example of Interpreter requirements with initial design attributes

during maintenance N=40 and M=10

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 181

further analysis and interpretation such as sensitivity analysis. In addition, a simulation
can be run in live mode, meaning that the user can change the parameter’s values in real-
time while numerical and graphical outcomes are simultaneously updated. Since the
derived formal models is based on separate integration levels, visual simulation tools like
VENSIM®, supporting change rates, and integrated variables (named ‘levels’), are very
convenient. Moreover, VENSIM® tool is offered as a mean for conducting both continuous
and discrete (event-driven) simulations.

7.4.1 Discrete Implementation of Models

The quantitative analysis of the CIBI vs. CVP general problem, presented in chapter 3,
implies the discrete application of major maintenance scenarios (i.e., new element and
operation) upon design alternatives based on their individual probabilities (i.e., pnE, pnP).
Next, for each implemented scenario the required effort is computed through the
fundamental SMC metrices in terms of number of required (method and class)
interventions.

A computer-aided implementation of the discrete application of individual
maintenance scenarios based on SMC metrics, referred to CIBI vs. CVP general problem,
is presented in Figure 7-2. Each integrated value is presented as “Levels” inside rectangles,
where related change rates are presented as double-lined arrows. In addition, the
interrelations between variables are indicated through simple arrows. The design of the
model provides an understanding of separate integration levels and the implication of SMC
metrics. Notice that the integration of the factors N, M, and total CIBI/CVP effort is discrete
(event-driven) as analyzed by the introduced quantitative analysis in chapter 3.

By setting initial values in the constant variables N, M, and pnE, the implementation in
Figure 7-2 can simulate and compute all the intermediate and final outcomes for the
specific instance of the CVP vs CIBI general problem. The integration of the N, M, and
CIBI/CVP total effort values, presented as “Levels” inside rectangles, are calculated through
discrete integration in terms of number of scenario applications. Thus, the number of
scenario applications has been defined as model’s time or integration parameter. Notice
that the probability factor pnE (pnP=1- pnE) affects the event trigger variable which in turn
directly and simultaneously affects both integration levels concerning design attribute
values N and M and total CVP and CIBI effort values. The code implementation of the
model in Figure 7-2 as generated by VENSIM tool is presented in Listing 7-1.

Figure 7-2: Computer-Aided implementation of the discrete Formal Model for the

general decision problem CIBI vs CVP, using VENSIM® tool.

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 182

Listing 7-1: Code documentation of CVP vs CIBI general problem in VENSIM implementation

Referring to Listing 7-1, the model has been set to integrate its variables in the time
interval of 0 to 200 with a step equal to 1 reflecting by this way the discrete application of
maintenance scenarios. The event random generator defines the ‘Event trigger’ variable
based on scenarios probabilities, thus synchronizing the discrete event driven application
of maintenance scenarios. The ‘Event trigger’ variable simultaneously and uniformly
affects both levels of integration and both design alternatives. The randomly generated
sequence of events (based on scenario probability) is applied for both design alternatives,
thus providing the ideal comparison conditions among design alternatives. It is important
that because of the random nature of the generated sequence of events, different
simulations provide different effort estimations, thus the model’s outcomes are not
deterministic. In practice, this implementation is a non-deterministic simulation model of
the formal models in equations (3-19), (3-20), and (3-21) incorporating a single stochastic
or random factor related to different sequences of events.

7.4.2 Continuous Implementation of Formal Models

An alternate computer-aided implementation of the derived formal models in subsections
4.3 and 4.4, referred to CIBI vs. CVP general problem, is presented in Figure 7-3. Each
integrated value is presented as “Levels” inside rectangles, where related change rates are
presented as double-lined arrows. In addition, the interrelations between variables are
indicated through simple arrows. The design of the model provides an understanding of
separate integration levels and the implication of SMC metrics. Notice that integration of
the factors N, M, and total CIBI/CVP effort is continuous as proposed by the introduced
modeling method in chapter 4.

115. ====== Definition of model’s time representation or integration parameter

116. INITIAL TIME = 0 Units: Day The initial time for the simulation, 1 day is equal to 1 scenario application

117. TIME STEP = 1 Units: Day [1,*] The time step for the simulation

118. SAVEPER = TIME STEP Units: Day [1,*] The frequency with which output is stored

119. FINAL TIME = 200 Units: Day The final time for the simulation

120. ====== Definition of model’s constant parameters or initial values

121. "Initial number of Elements (N)"= 15 Units: Element [1,200]

122. "Initial number of Operations (M)"= 14 Units: Operation [1,150]

123. New Element's Event Probability p_nE= 0.7 Units: probability [0,1]

124. ====== Discrete / Random event generator

125. Random value generator= RANDOM UNIFORM(0, 1 , 0) Units: probability

126. Event trigger= IF THEN ELSE(Random value generator<New Element's Event Probability p_nE, 11 , 21) Units: probability

127. ====== First level of integration concerning Design attribute values

128. New Element dist= IF THEN ELSE(Event trigger<20, 1, 0) Units: Element

129. New Operation dist= IF THEN ELSE(Event trigger>20, 1, 0) Units: Operation

130. Elements' change rate= New Element dist Units: Element/Day

131. Operations' change rate= New Operation dist Units: Operation/Day

132. "Current Composition's Elements (N)"= INTEG (Elements' change rate, "Initial number of Elements (N)") Units: Element

133. "Current Operations over Compostion's Elements (M)"= INTEG (Operations' change rate, "Initial number of Operations (M)")

 Units: Operation

134. ====== Definition of SMC metrics

135. New Element on CVP Effort SMC= "Current Operations over Compostion's Elements (M)" + "Current Operations over Compostion's

Elements (M)" Units: intervention

136. New Operation on CVP Effort SMC="Current Composition's Elements (N)" + 1 Units: intervention

137. New Element on CIBI Effort SMC= "Current Operations over Compostion's Elements (M)" + 1 Units: intervention

138. New Operation on CIBI Effort SMC= "Current Composition's Elements (N)" + "Current Composition's Elements (N)" Units: intervention

139. ====== Second level of integration concerning Total effort values per design alternative

140. New Effort CVP= IF THEN ELSE(Event trigger<20, New Element on CVP Effort SMC, New Operation on CVP Effort SMC)

 Units: intervention

141. New Effort CIBI= IF THEN ELSE(Event trigger<20, New Element on CIBI Effort SMC, New Operation on CIBI Effort SMC)

 Units: intervention

142. New Event's effort OR Total effort change rate = New Effort CVP Units: interventions/Day

143. "-New Event's effort OR Total effort change rate" = New Effort CIBI Units: interventions/Day

144. Total CVP effort= INTEG (New Event's effort OR Total effort change rate, 0) Units: intervention

145. Total CIBI effort= INTEG ("-New Event's effort OR Total effort change rate", 0) Units: intervention

146. ====== Computation of total effort difference among design alternatives

147. "FM CVP-CIBI Total effort difference" = Total CVP effort - Total CIBI effort Units: intervention

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 183

By setting initial values in the constant variables N, M, and pnE, the implementation in
Figure 7-3 can simulate and compute all the intermediate and final outcomes for the
specific instance of the CVP vs CIBI general problem. The integration of the N, M, and
CIBI/CVP total effort values, presented as “Levels” inside rectangles, are calculated through
continuous integration in terms of number of scenario applications. Thus, the number of
scenario applications has been defined as model’s time or integration parameter. Notice,
that the probability factors pnE and pnP are directly and simultaneously affect both
integration levels concerning design attribute values N and M and total CVP and CIBI effort
values. The code implementation of the model in Figure 7-3 as generated by VENSIM tool
is presented in Listing 7-2.

Listing 7-2: Code documentation of CVP vs CIBI Formal Models in VENSIM implementation

Figure 7-3: Computer-Aided implementation of the continuous Formal Model for the

general decision problem CIBI vs CVP, using VENSIM® tool.

148. ====== Definition of model’s time representation or integration parameter

149. INITIAL TIME = 0 Units: Day The initial time for the simulation, 1 day is equal to 1 scenario application

150. TIME STEP = 1 Units: Day [1,*] The time step for the simulation

151. SAVEPER = TIME STEP Units: Day [1,*] The frequency with which output is stored

152. FINAL TIME = 200 Units: Day The final time for the simulation

153. ====== Definition of model’s constant parameters or initial values

154. "Initial number of Elements (N)"= 15 Units: Element [1,200]

155. "Initial number of Operations (M)"= 14 Units: Operation [1,150]

156. “New Element Probability (p_nE)”= 0.7 Units: probability [0,1]

157. “New Operation Probability (p_nP)” = 1 – “New Element Probability (p_nE)” Units: probability [0,1]

158. ====== First level of integration concerning Design attribute values

159. Elements' change rate= 1 * “New Element Probability (p_nE)” Units: Element/Day

160. Operations' change rate= 1 * “New Operation Probability (p_nP)” Units: Operation/Day

161. "Current Composition's Elements (N)"= INTEG (Elements' change rate, "Initial number of Elements (N)") Units: Element

162. "Current Operations over Compostion's Elements (M)"= INTEG (Operations' change rate, "Initial number of Operations (M)")

 Units: Operation

163. ====== Definition of SMC metrics

164. New Element on CVP Effort SMC= "Current Operations over Compostion's Elements (M)" + "Current Operations over Compostion's

Elements (M)" Units: intervention

165. New Operation on CVP Effort SMC="Current Composition's Elements (N)" + 1 Units: intervention

166. New Element on CIBI Effort SMC= "Current Operations over Compostion's Elements (M)" + 1 Units: intervention

167. New Operation on CIBI Effort SMC= "Current Composition's Elements (N)" + "Current Composition's Elements (N)" Units: intervention

168. ====== Second level of integration concerning Total effort values per design alternative

169. New Event's effort OR Total effort change rate = ("New Element probability (p_nE)" * New Element on CVP Effort SMC) +

 ("New Operation probability (p_nP)" * New Operation on CVP Effort SMC) Units: interventions/Day

170. "-New Event's effort OR Total effort change rate" = ("New Element probability (p_nE)" * New Element on CIBI Effort SMC) +

 ("New Operation probability (p_nP)" * New Operation on CIBI Effort SMC) Units: interventions/Day

171. Total CVP effort= INTEG (New Event's effort OR Total effort change rate, 0) Units: intervention

172. Total CIBI effort= INTEG ("-New Event's effort OR Total effort change rate", 0) Units: intervention

173. ====== Computation of total effort difference among design alternatives

174. "FM CVP-CIBI Total effort difference" = Total CVP effort - Total CIBI effort Units: intervention

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 184

Referring to Listing 7-2, the model has been set to integrate its variables in the time
interval of 0 to 200 with a step equal to 1. It is important that due to continuous integration
based on deterministic values, different simulations provide identical effort estimations,
thus the model’s outcomes are deterministic. In practice, this implementation is a
deterministic simulation model of the formal models in equations (4-11), (4-12), and
(4-13) without the incorporation of any stochastic or random factor.

7.4.3 Discrete Implementation of Simulation Model

An alternate computer-aided implementation of the event-driven simulation model in
chapter 6, referred to CIBI vs. CVP general problem, is presented in Figure 7-4. Again, each
integrated value is presented as “Levels” inside rectangles, where related change rates are
presented as double-lined arrows. In addition, the interrelations between variables are
indicated through simple arrows. The design of the model provides an understanding of
separate integration levels and the implication of SMC metrics. Notice that integration of
the factors N, M, and total CIBI/CVP effort is discrete or event-driven as proposed by the
introduced simulation model chapter 6.

By setting initial values in the constant variables N, M, pnE, and Brownian motion
factor, the implementation in Figure 7-4 can simulate and compute all the intermediate
and final outcomes for the specific instance of the CVP vs CIBI general problem. The
integration of the N, M, and CIBI/CVP total effort values, presented as “Levels” inside
rectangles, are calculated through discrete integration in terms of number of scenario
applications. Thus, the number of scenario applications has been defined as model’s time
or integration parameter. Notice that the probability factor pnE (pnP=1- pnE) affects the
event trigger variable which in turn directly and simultaneously affects both integration
levels concerning design attribute values N and M and total CVP and CIBI effort values. In
particular, the model in Figure 7-4 represents the 7th fully stochastic simulation state in
Table 6-4. The Brownian motion factor defines the uncertainty level or else the impact on
Brownian motion level which shifts the values of scenario probability (pnE) during
maintenance process. Thus, the event random generator takes under considerations the
uncertainty regarding the initial estimation of scenarios’ probabilities. Furthermore, the
effort change rates in the second integration level are affected by the overall stochastic
factor which in turn is affected by the aging level and the randomly generated values of
average scenario’s size and developers experience level. In addition, the model incorporates
alternate maintenance scenarios such as edit or remove existing elements or operations.
For that purpose, the intermediate variables of SMC metrics have been enhanced for each
alternate scenario as defined in Table 6-4, while the change rates of the design attributes
are increased, or remain unchanged, or decreased accordingly. The code implementation
of the model in Figure 7-4 as generated by VENSIM tool is presented in Listing 7-3.

Figure 7-4: Computer-Aided implementation of the event-driven Simulation Model

for the general decision problem CIBI vs CVP, using VENSIM® tool.

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 185

Listing 7-3: Code documentation of Simulation Model for CVP vs CIBI general problem in
VENSIM implementation

Referring to Listing 7-3, the model has been set to integrate its variables in the time

interval of 0 to 200 with a step equal to 1 reflecting by this way the discrete application of
maintenance scenarios. The event random generator defines the ‘Event trigger’ variable
based on scenarios probabilities and Brownian motion factor, thus synchronizing the

175. ====== Definition of model’s time representation or integration parameter
176. INITIAL TIME = 0 Units: Day The initial time for the simulation, 1 day is equal to 1 scenario application
177. TIME STEP = 1 Units: Day [1,*] The time step for the simulation
178. SAVEPER = TIME STEP Units: Day [1,*] The frequency with which output is stored
179. FINAL TIME = 200 Units: Day The final time for the simulation
180. ====== Definition of model’s constant parameters or initial values
181. "Initial Elements (N)"= 15 Units: Element [1,200]
182. "Initial Operations (M)"= 14 Units: Operation [1,150]
183. New Element's Event Probability p_nE= 0.7 Units: probability [0,1]
184. Brownian Motion Factor= 1 Units: **undefined**
185. ====== Event-driven or Random event generator
186. Random value generator= RANDOM UNIFORM(0, 1 , 11) Units: probability
187. Brownian motion change= IF THEN ELSE (Random value generator<0.5, -1, 1) Units: **undefined**
188. Brownian motion= INTEG (Brownian motion change, 0) Units: **undefined**
189. Step change rate= 1 Units: Scenario application/Day
190. "Event/Step Counter"= INTEG (Step change rate, 0) Units: **undefined**
191. Shifted Element's Event Probability p_nE= New Element's Event Probability p_nE + Brownian Motion Factor *

 (Brownian motion / (10 * SQRT("Event/Step Counter" + 1))) Units: probability
192. Event trigger= IF THEN ELSE(Random value generator < Shifted Element's Event Probability p_nE * 0.55, 11 ,

 IF THEN ELSE(Random value generator < Shifted Element's Event Probability p_nE * 0.95, 12 ,
 IF THEN ELSE(Random value generator < Shifted Element's Event Probability p_nE * 1.00, 13 ,
 IF THEN ELSE(Random value generator < Shifted Element's Event Probability p_nE +
 (1- Shifted Element's Event Probability p nE) * 0.55, 21 ,
 IF THEN ELSE(Random value generator < Shifted Element's Event Probability p_nE +
 (1- Shifted Element's Event Probability p_nE) * 0.95, 22 , 23))))) Units: **undefined**

193. ====== First level of integration concerning Design attribute values
194. Event New Element= IF THEN ELSE(Event trigger=11, 1, 0) Units: Element
195. Event Remove Element= IF THEN ELSE(Event trigger=13, -1, 0) Units: Element
196. Event Remove Operation= IF THEN ELSE(Event trigger=23, -1, 0) Units: Operation
197. Event New Operation= IF THEN ELSE(Event trigger=21, 1, 0) Units: Operation
198. change rate of N= Event New Element + Event Remove Element Units: Element
199. change rate of M= Event New Operation + Event Remove Operation Units: Operation
200. Current Elements N= INTEG (change rate of N, Initial Elements N) Units: Element
201. Current Operations M= INTEG (change rate of M, Initial Operations M) Units: Operation
202. ====== Definition of SMC metrics for all possible maintenance scenario types per design alternative
203. New Element for CVP Effort SMC= Current Operations M + Current Operations M Units: Intervention
204. New Operation for CVP Effort SMC= Current Elements N + 1 Units: Intervention
205. New Element for CIBI Effort SMC= Current Operations M + 1 Units: Intervention
206. New Operation for CIBI Effort SMC= Current Elements N + Current Elements N Units: Intervention
207. Edit Element for CVP SMC= Current Operations M + Current Operations M Units: Intervention
208. Edit Operation for CVP SMC= Current Elements N + 1 Units: Intervention
209. Edit Element for CIBI SMC= Current Operations M + 1 Units: Intervention
210. Edit Operation for CIBI SMC= Current Elements N + Current Elements N Units: Intervention
211. Remove Element for CVP SMC= Current Operations M + 1 Units: Intervention
212. Remove Operation for CVP SMC= 1 + 0 * Current Elements N Units: Intervention
213. Remove Element for CIBI SMC= 1 + 0 * Current Operations M Units: Intervention
214. Remove Operation for CIBI SMC= Current Elements N + 1 Units: Intervention
215. ====== Definition of stochastic factor for effort estimations
216. Aging change rate= 1/ FINAL TIME Units: **undefined**
217. Current Aging Level= INTEG (Aging change rate, 1) Units: **undefined**
218. Current Developer's Experience level= RANDOM NORMAL(0.1, 2, 1.5, 0.33, 100) Units: **undefined**
219. Average Segment OR Scenario size= RANDOM NORMAL(0, 2, 1, 0.33, 200) Units: **undefined**
220. SM stochastic Factor= (Average Segment OR Scenario size * Current Aging Level) / Current Developer's Experience level
221. ====== Second level of integration concerning Total effort values per design alternative
222. New Event Effort for CVP= IF THEN ELSE(Event trigger=11, New Element for CVP Effort SMC,

 IF THEN ELSE(Event trigger=12, Edit Element for CVP SMC,
 IF THEN ELSE(Event trigger=13, Remove Element for CVP SMC,
 IF THEN ELSE(Event trigger=21, New Operation for CVP Effort SMC,
 IF THEN ELSE(Event trigger=22, Edit Operation for CVP SMC, Remove Operation for CVP SMC))))) Units: Intervention

223. New Event Effort for CIBI= IF THEN ELSE(Event trigger=11, New Element for CIBI Effort SMC,
 IF THEN ELSE(Event trigger=12, Edit Element for CIBI SMC,
 IF THEN ELSE(Event trigger=13, Remove Element for CIBI SMC,
 IF THEN ELSE(Event trigger=21, New Operation for CIBI Effort SMC,
 IF THEN ELSE(Event trigger=22, Edit Operation for CIBI SMC, Remove Operation for CIBI SMC))))) Units: Intervention

224. Total CVP Effort change rate= SM stochastic Factor * New Event Effort for CVP Units: Intervention
225. Total CIBI Effort change rate= SM stochastic Factor * New Event Effort for CIBI Units: Intervention
226. SM Total Effort for CVP= INTEG (Total CVP Effort change rate, 0) Units: Intervention
227. SM Total Effort for CIBI= INTEG (Total CIBI Effort change rate, 0) Units: Intervention
228. ====== Computation of total effort difference among design alternatives
229. "SM CVP-CIBI Total Effort Difference"= SM Total Effort for CVP - SM Total Effort for CIBI Units: Intervention

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 186

discrete event driven application of maintenance scenarios. The ‘Event trigger’ variable
simultaneously and uniformly affects both levels of integration and both design
alternatives. The randomly generated sequence of events (based on the shifted scenario
probability) is applied for both design alternatives. Furthermore, the randomly generated
sequence of values of the stochastic factor is applied for both design alternatives (in the
second integration level), thus providing the ideal comparison conditions among design
alternatives. It is important that because of the random nature of the generated sequence
of events and stochastic factor, different simulations provide different effort estimations,
thus the model’s outcomes are not deterministic. In practice, this implementation is a non-
deterministic representation of the simulation model in chapter 6 incorporating several
stochastic or random factors such as different sequences of events, shifted probabilities,
alternate maintenance scenarios, average scenario’s size, and developers experience level.

7.4.4 Comparison of Implementations’ Outcomes

In this subsection, a comparison of the outcomes of all previous implementations in
VENSIM tool is presented. More specifically, the Discrete Formal Model in subsection
7.4.1 as DFM, the continuous Formal Model in subsection 7.4.2 as FM, and the event-
driven simulation model in subsection 7.4.3 as SM have been merged in one single model.
The random value generators of DFM and SM have been synchronized, thus providing
identical sequences of applied scenarios through the ‘event trigger’ variable for both event-
driven models. The number of scenario applications has been defined as model’s time or
integration parameter with typical time interval between 0 and 200. All initial constant
parameters (N, M, pnE) are commonly defined in all models and referred to the indicative
example of GUI implementation (N=15, M=14, pnE=0.7) in Table 1-1 and Table 3-4. The
Brownian motion factor has been set to 1.00 reflecting the high uncertainty level of the 7th
fully stochastic simulation state in Table 6-4. The analysis concentrates on the values of
total effort outcomes, change rates, and intermediate variables for all models’
implementations. Keep in mind that DFM and SM are non-deterministic models, thus
their results are only an instance of a specific simulation.

The difference of the total effort among CVP and CIBI design alternatives is presented
in Figure 7-5. FM outcome demonstrates a steady trend because of the continuous
integration and its formal and deterministic behavior. DFM and SM outcomes
demonstrate fluctuate trends because of the discrete and event-driven integration and their
stochastic and non-deterministic behavior. However, DFM fluctuations follows the SM
trend since DFM incorporates only one stochastic factor related to different sequences of
applied scenarios. In contrast, SM fluctuations significantly deviates from the SM and DFM
trends since SM demonstrates highly stochastic behavior by incorporating several
stochastic factors related to different sequences of applied scenarios, shifted scenarios’
probabilities, alternate maintenance scenarios, average scenario’s size, and developers
experience level. In the simulation instance presented in Figure 7-5, the SM outcome
confirms the design decision based on FM and DFM outcomes. However, in the case of a
different simulation instance the SM outcome may reject the design decision based on FM
and DFM outcomes, thus indicating a wrong design decision of FM as analyzed in
subsection 6.5. To measure the error rate of a possible wrong decision, several repeated or
Monte Carlo simulations are required per sample insurance. Even though VENSIM tool
provides capabilities for comparison of results among different simulations, the conduction
of massive, repeated simulations is out of the scope of this tool.

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 187

The total effort of CVP and CIBI design alternatives is presented in Figure 7-6. Again,
FM outcome demonstrates a steady trend because of the continuous integration and its
formal and deterministic behavior. DFM and SM outcomes demonstrate fluctuate trends
because of the discrete and event-driven integration and their stochastic and non-
deterministic behavior. Once again, DFM fluctuations follows the SM trend since DFM
incorporates only one stochastic factor related to different sequences of applied scenarios.
In contrast, SM fluctuations significantly deviates from the SM and DFM trends since SM
demonstrates highly stochastic behavior by incorporating several stochastic factors related
to different sequences of applied scenarios, shifted scenarios’ probabilities, alternate
maintenance scenarios, average scenario’s size, and developers experience level. In general,
SM returns reduced values due to the incorporation of the alternate maintenance scenarios
which decelerate the maintenance process, and thus reduce the overall required effort.

The stochastic factor of the SM and its components (average scenario size, code aging
level, and developers experience level) are presented in Figure 7-7. The fluctuations of the
stochastic factor reflect the highly uncertain nature of the SM total effort outcomes. As
expected, the most uncertain factors that affect the overall stochastic factor are the average
scenario size and developers experience level.

Figure 7-5: Difference of total effort among CVP and CIBI design alternatives for
DFM, FM, and SM models, for the GUI implementation (N=15, M=14, pnE=0.7)

Figure 7-6: Total effort of CVP (left) and CIBI (right) design alternatives for DFM,
FM, and SM models, for the GUI implementation (N=15, M=14, pnE=0.7)

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 188

The change rates of the total effort of CVP and CIBI design alternatives is presented in
Figure 7-8. Again, FM change rate demonstrates a steady trend because of the continuous
integration and its formal and deterministic behavior. DFM and SM change rates
demonstrate fluctuate trends because of the discrete and event-driven integration and their
stochastic and non-deterministic behavior. Once again, DFM fluctuations follows the SM
trend since DFM incorporates only one stochastic factor related to different sequences of
applied scenarios. In contrast, SM fluctuations deviates from the SM and DFM trends since
SM demonstrates highly stochastic behavior by incorporating several stochastic factors
related to different sequences of applied scenarios, shifted scenarios’ probabilities, alternate
maintenance scenarios, average scenario’s size, and developers experience level. On
average, SM returns reduced change rate values due to the incorporation of the alternate
maintenance scenarios which decelerate the maintenance process, and thus reduce the
required effort per scenario application.

From a different perspective, the change rates of the total effort of the simulation model
(SM) in Figure 7-8 represent the sequence of required effort per scenario application or else

Figure 7-7: Analysis of Stochastic Factor components of SM model, for the GUI

implementation (N=15, M=14, pnE=0.7)

Figure 7-8: Effort change rate of CVP (left) and CIBI (right) design alternatives for
DFM, FM, and SM models, for the GUI implementation (N=15, M=14, pnE=0.7)

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 189

the time series of required effort values during maintenance process. These time series are
characterized by highly fluctuations or noise and their statistical parameters (i.e., mean,
standard deviation, kurtosis, skewness) reflect the statistical characteristics of the required
effort values per scenario application. The manipulation of those statistical parameters to
approximate the empirical observations from field studies and time series analysis (G.
Antoniol et al., 2001; Raja et al., 2009; Shariat Yazdi et al., 2016) offers a reliable mean for
calibrating the model’s outcomes to imitate the actual maintenance process, as analyzed in
subsection 6.4.9.

The design attributes of elements (N) and operations (M) are presented in Figure 7-9.
Again, FM outcome demonstrates a steady trend because of the continuous integration and
its formal and deterministic behavior. DFM and SM outcomes demonstrate fluctuate
trends because of the discrete and event-driven integration and their stochastic and non-
deterministic behavior. Once again, DFM fluctuations follows the SM trend since DFM
incorporates only one stochastic factor related to different sequences of applied scenarios.
In contrast, SM fluctuations significantly deviates from the SM and DFM trends since SM
demonstrates highly stochastic behavior by incorporating several stochastic factors related
to different sequences of applied scenarios, shifted scenarios’ probabilities, and alternate
maintenance scenarios. In general, SM returns reduced values due to the incorporation of
the alternate maintenance scenarios (edit and remove) which decelerate the maintenance
process, and thus reduce the increment rate of the design attributes.

The scenario probability (pnE) and shifting scenario probability of the simulation
model (SM) are presented in Figure 7-10. The Brownian motion level and factor cause the
shifting of scenario probability value during maintenance process. This situation reflects
the real circumstances of actual maintenance process and the difficulty to predict in
advance the exact value of scenario probability. The shifting value of scenario probability
reflects the highly uncertain nature of the SM.

Figure 7-9: Design attributes of Elements N (left) and Operations M (right) for DFM,
FM, and SM models, for the GUI implementation (N=15, M=14, pnE=0.7)

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 190

7.5 Seeing Software Design as Investment

Designing high-quality software that satisfies user’s requirements is of primary interest
among competing businesses in the software market. Most of the novel and widely used
software systems in the market are the result of costly projects supported by different
experts’ teams for long periods until their retirement. Under this perspective, a software
system can be perceived by the company’s management as a new product in the context of
an investment plan. Furthermore, during the design stage of software (product), each
design alternative is also an investment alternative with different pros and cons. The
evaluation and selection among these alternatives can be made based on different quality
criteria such as maintainability, which heavily influences the degree of success and future
maintenance cost of the system (product). Thus, more maintainable software is related to
lower maintenance costs, which increases the product’s useful life and profitability. Each
time that a software engineer selects a specific design alternative (investment), he misses
the opportunity to use a different – possibly better or more maintainable - design
alternative (investment).

7.5.1 Cost of Missed Opportunities

The introduced modeling method of this thesis provides reliable formal models that can
help software engineers to evaluate different design alternatives (investments) in a formal
way regarding their maintainability perspective. The decision-making is based on the
minimum estimated (required maintenance) effort among compered design alternatives.
For example, selecting CIBI instead of CVP design alternative means that CVP corresponds
to either the missed opportunity (maintenance) cost of the taken decision or the best
(second most maintainable) available alternative or the next lowest cost that a designer
could have achieved if he had selected CVP instead of CIBI. The difference between CVP
and CIBI predictions can be interpreted as the (positive) net maintenance cost, reflecting
the gained (or avoided wasted) maintenance effort as a consequence of the decision-
making process supported by the introduced modeling method.

7.5.2 Accounting Perspective

The introduced modeling method and possibly generated formal models help in designing
software based on formal quality principles regarding its maintainability degree, hence
delaying its expected obsolescence and increasing its useful life. From an accounting
perspective, this is defiantly a desirable outcome when the software is intended to be used
by a company for internal use. In this case, the development cost is capitalized and

Figure 7-10: New element scenario probability (pnE) and shifted scenario probability
of SM model, for the GUI implementation (N=15, M=14, pnE=0.7)

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 191

amortized for a longer period with a decreased annual amortization cost, thus improving
software usefulness and the company’s profitability. However, software that is developed
for sale or lease to others is capitalized and amortized (only) after it has reached
technological feasibility (K. R. Subramanyam, 2013). Before that stage of development, the
software is considered to be Research & Development and it is expensed accordingly.
Nevertheless, formal quality principles such as generated formal models can help with
accelerating the achievement of software’s technological feasibility. Only the one-time cost
associated with the initial formal model generation stage (for significant designing
problems) is conceived as Research & Development expenses.

7.6 Conclusions

The introduced modeling theory and derived formal modes provide a reliable tool for
supporting decision-making among design alternatives in respect to their maintainability
for significant problems as discussed in previous chapters. Given that the derived formal
modes are easily applied and reusable for several instances of each general problem, this
chapter discusses major alternate perspectives and possible ways for applying these formal
models through other techniques taking advantages of their versatility and mathematical
formality.

The representation of design alternatives based on key maintenance scenarios and
design attributes through alternate computer-aided simulations extends the analysis of
each general and significant problem. Such simulation software and tools help to reveal
and explore several aspects concerning the impact of maintenance process on each design
alternative. Comparative and intermediate results and real-time sensitivity analysis among
different simulation settings and parameters provide further insight about factors’
contribution and cause-effect relationships of the problem under study.

The mathematical reformation of the formal models provides a great mean for
supporting design decisions under partial or full uncertainty, allowing decision-making
when scenarios’ probabilities are difficult or even impossible to be estimated in a precise
manner. Furthermore, the horizon analysis technique allows the application of the derived
formal models across long development and maintenance periods, separated in distinct
subperiods with different assumptions and parameters. Both techniques highlight and
extend the practicability and the usability of the introduced theory and derived formal
modes to even more practical, complicated, and realistic conditions.

Each of the alternate application perspectives discussed in this chapter can be further
investigated based on the same or similar principles and techniques concerning similar or
other significant design problems in the field of software architecture and engineering.

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 192

8 Conclusions and Future Work

8.1 Contribution of Dissertation

Software architecture design includes several critical decisions with significant impact on
the pursued quality attribute of maintainability. Such early design decisions heavily affect
related time/effort/cost of software maintenance, updates, and modifications since future
maintenance activities should adapt to the initially selected architecture.

The introduced approach in this thesis suggests a documented modeling method that
generates probabilistic comparison models that estimate the maintainability degree of
design alternatives through effort predictions in a formal and deterministic way. The
theoretical foundation of the proposed modeling method and the results of relevant works
provide strong evidence that the derived formal models return proportional and reliable
effort estimations mainly for comparison purposes among design alternatives. By using the
proposed modeling model, specific characteristics of given design problems are considered
allowing selection of proper design pattern combinations at an early stage of the design
process, before code development. Software quality metrics can be derived directly from
design descriptions of well-known object-oriented design pattern combinations. This
approach resolves conflicting pro and cons among design alternatives with regards to their
maintainability degree. At the same time, it limits the ambiguity imposed by the stochastic
nature of the actual maintenance process by relying on a limited set of problem’s
parameters such as design attributes and probabilities of major maintenance scenarios.

The analysis of the derive formal comparison models, concerning the general design
problem of recursive hierarchies of part-whole aggregations, indicates that different design
pattern combinations have a significant effect on software quality properties like
maintainability. Furthermore, the progressive and probabilistic analysis verify the same
significant effect on future modifications during software maintenance. Also, it is indicated
that probability analysis over maintenance scenarios has a decisive role on maintenance
cost/effort assessment. Models sensitive to design attributes and scenarios probabilities
are particularly informative regarding the maintainability degree of each design alternative.
In addition, seeing software evolution under the view of differential analysis by integrating
change rates of problem’s design attributes is an innovation in the pursuing of realistic
comparison models.

Evaluation results using extended design problems such as Observer vs. Mediator
indicate that the proposed method can be also applied during the high-level architecture
design, to handle communication, interfacing, and coordination issues among sub-
modules and components of new or even legacy code. These examples of alternate design
problems prove the usability and applicability of the proposed modeling method in a wide
spectrum of common, difficult, and frequently tackled design problems in the field of
software architecture. The application of the proposed approach reveals the usability and
extensibility of the suggested method considering different metrics, design
implementations, and quality characteristics. Furthermore, the introduced models can be
easily implemented in software allowing the assessment of the average beneficial
contribution of the method in terms of rate of avoided wasted effort by evaluating the entire
design space of each general problem under analysis.

The results of the extensive statistical validation indicate that the evaluated formal
models provide reliable estimations of the expected effort, especially for comparison
purposes. The reliability of the evaluated probabilistic models increases in a mid-to-long
term perspective, and thus, as the maintenance process evolves and decisions' benefits
become more significant, the models' decision ability to conclude in the most beneficial
design alternative in terms of maintainability is increased. Simulation evidence suggests
that simplified modeling approaches such as the introduced modeling method are

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 193

particularly reliable able to approximate dynamic system's behavior mostly because of
mid-to-long-term statistical convergence. As the maintenance process evolves, and despite
the various stochastic and random factors affecting it, the average long-term effect of these
factors would be eventually negligible, and thus the predictions of the required effort are
increasingly driven by the standard and recurring structural behavior of the used design
patterns. Furthermore, decisions concerning design alternatives exhibit very limited
selection-risk even under high uncertainty levels regarding the initial estimation of
problem’s parameters. Thus, the introduced modeling approach and derived formal
comparison models manage to eliminate transitory and biased factors to enhance mid-to-
long-term decision ability, avoiding significant amounts of wasted maintenance effort and
relevant costs.

Methods that yield such reliable, formal, general, and reusable models reduce the long-
term uncertainty of design decisions and help developers and engineers to elevate the
quality of their decision-making, optimize the design process, and develop more
maintainable software. Predicting future levels of maintenance effort is very important for
comparison purposes and early structural analysis can significantly improve such
assessments, practically reversing the (cone of) uncertainty levels in software project
management. This thesis suggests that even if such early and critical design decisions is
not the primary concern in software industry, developers, designers, and project/quality
manager should turn their attention on them since the cumulative benefits (avoided wasted
effort) from the repeating use of formal models significantly overcomes their initial
derivation cost. It is expected that the emphasis in maintainability assessment will be
shifted from static analysis of code to dynamic analysis of software design structure for
future change flows. The proposed approach in this thesis introduces a new perception of
software evolution during maintenance, while promotes early decision-making culture in
software quality control management.

Finally, this thesis introduces a new conception about the statistical evaluation of
formal comparison models and relevant theories regarding their reliability to support
design decisions. It relies on massive and homogeneous validation data, sensitive to several
design attributes, generated by widely stochastic simulation models which have been
thoroughly calibrated to replicate the underlying activities and variability of actual software
evolution during maintenance process. Researchers are encouraged and hopefully inspired
to possibly apply the introduced concepts in similar or different context.

8.2 Future Work

This thesis targets on stimulating and motivating research community toward the
evaluation of other general, significant, and frequently tackled design problems in software
architecture domain for which proper selection among object-oriented design alternatives
could be modeled through the provided theoretical framework and statistically validated
by simulated observations. Towards this perspective, future research efforts can engage
different or alternate design patterns and aspects under different measurement methods
and units, or even for different software quality characteristics. Furthermore, the proposed
approach can be combined and analyzed in conjunction with other methods on case studies
to determine the relationship between deterministic effort measurements and external
quality factors such as reusability, maintainability, testability, and adaptability. In addition,
the proposed mathematical approach can be used for evaluating and comparing similar or
different design patterns especially in the field of Pattern Languages of Programs.

An interesting research perspective could be the mathematical analysis of the derived
formal comparison models. A such analysis could reveal possible similarities, differences,
conflicts, requirements, limitations, and patterns regarding the evolution and structural
behavior of the used design patterns, thus providing further insight about the maintenance
perspective of each design alternative under comparison, or even about the nature the
addressed general problem itself.

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 194

At the same time, this thesis is a starting point for further research in the domain of
software evolution throughout simulation models which could engage other stochastic
factors in different frequency distributions and intervals under other measurement
methods and units. Furthermore, further research efforts towards a refined calibration of
the introduced simulation model through more informative datasets of real-world
observations are encouraged. These research perspectives could be assisted by using
general or targeted purpose simulation languages and tools. In addition, machine learning
or artificial intelligence techniques may be used to assist simulation model reaching even
more realistic results. Moreover, the simulation of alternate design problems can be
assisted by integrating the proposed simulation model in this thesis to perform jointly as a
synthesized simulation or co-simulation. In such cases, existing base models might serve
as lumped components of a broader simulation model forming a hierarchical structure.

These research perspectives highlight the possible usability of the proposed theoretical
framework and the introduced evaluation method through simulations in a wide spectrum
of general and difficult designing problems in the fields of design optimization and software
architectural design.

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 195

Appendix A: Mat Lab Modeling Framework

%% CODE A.1 ==MODELING FRAMEWORK (DYNAMIC DIFFERENTIAL ANALYSIS AND FORMAL MODEL GENERATION)====

% Data describing (general) comparison problem (CIBI vs CVP) and fundamental (SMC) metric analysis

% In this section, different or alternate problems should be described

D = {'CVP','CIBI'}; % tags of Design combinations under comparison

L_tags = {'N','M'}; % tags of design attributes: N initial elements, M initial operations
A = {'Method aspect', 'Class aspect'}; % tags of Structural aspects

S = {'nE', 'nP'}; % tags of Types of maintenance scenarios: nE new composition element, nP new operation

F = [1 0; 0 1]; % N:+1 and M:+0 for nE, N:+0 and M:+1 for nP (change rates of affected design attributes for each scenario

type |S|x|L|)

% SMC metric factors on design attributes L, for each design combination D, scenario S, and aspect A are stated in K array

K = zeros([size(D,2) size(S,2) size(A,2) size(L_tags,2)+1]); % creates empty matrix with dimensions:
|D|x|S|x|A|x|L|+1

% method class (structural aspects)

% D S N M - N M -

K(1,1,:,:) = [0 1 2 ; 0 1 2]; % on CVP for a nE : totally 0N+1M+0 method + 0N+1M+0 class interventions = 2(M+2)

K(1,2,:,:) = [1 0 0 ; 0 0 1]; % on CVP for a nP : totally 1N+0M+0 method + 0N+0M+1 class interventions = N+1

K(2,1,:,:) = [0 1 0 ; 0 0 1]; % on CIBI for a nE : totally 0N+1M+0 method + 0N+0M+1 class interventions = M+1
K(2,2,:,:) = [1 0 1 ; 1 0 1]; % on CIBI for a nP : totally 1N+0M+0 method + 1N+0M+0 class interventions = 2(N+1)

%%====DIFFERENTIAL ANALYSIS CODE==

% Differential analysis is implemented progressively by using symbolic expressions

% Design attributes |L|, individual scenarios probabilities |P|, and number of scenario applications t or λ, are passed as

parameters to the derived equations
syms t; % creates (single) symbolic variable/parameter for time or the number of scenario applications (λ=t)

L_sym = sym (L_tags); % creates (many) symbolic variables/parameters for all design attributes |L|

% creates (many) symbolic variables/parameters for all individual scenarios probabilities |P|

% symbolic parameters are prefixed/named with p_ index for consistency

for i=[1:size(S,2)]

 P_sym(i) = sym (strcat('p_', S{i}));
end

% First level of integration for each design attribute of L set

for i=[1:size(L,2)]

 l(i)= 0*t; % sets initial value as symbolic expression
 for j= [1:size(S,2)]

 l(i) = l(i) + P_sym(j)*F(j,i);

 end

 l(i) = int (l(i), t) + L_sym(i); % differential equation with initial condition l(0)=L(i) returns C = L(i)

end

% Second level of integration for each design combination of D set

for i=[1:size(D,2)]

 for j=[1:size(S,2)]

 for q=[1:size(A,2)]

 for g=[1:size(L,2)]

 cost_L(g) = K(i,j,q,g)*l(g); % distinct products of current design attributes l(g)
 end

 cost_AL(q) = sum(cost_L(:)) + K(i,j,q,size(L,2)+1); % sub-cost for all design attributes L(g)

 end

 cost_SAL(j) = sum(P_sym(j) * cost_AL(:)); % sub-cost for all structural aspects A(q) [and all attributes L(g)]

 end

 % differential equation with initial condition cost_DSAL(0)=0 returns C=0
% total-cost for all scenario's types S(j) and [all structural aspects A(q) and design attributes L(g)]

 cost_DSAL(i) = int (sum(cost_SAL(:)),t);

end

% Converts symbolic expressions to an array of anonymous function handles

for i=[1:size(D,2)]
 FM_cost_D{i} = matlabFunction(cost_DSAL(i)); % function of total-cost for each design combination D

end

% Converts symbolic expressions to a symbolic function returning multiple results for each design combination |D|

FM_cost_D_f(L_sym, P_sym, t)=cost_DSAL;

%% ===
% Equations of total progressive cost for each design combination (use these equations for further analysis)

% cost_DSAL(i) is a symbolic expression

% FM_cost_D_f is a symbolic function returning an array of computations for all D combinations (parameters are normally

arranged as L_sym, P_sym, t) – RECOMMENTED for direct use

% FM_cost_D{i} is an anonymous function handle for direct computations for each D combination (attention, parameters are

arbitrary arranged)
%% ==

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 196

%% CODE A.2 ======= PLOTTING RESULTS IN A SINGLE GRAPH (PRESENTATION EXAMPLE)=================

% Data (design attributes) derived from specifications of a specific system (instance of general problem)

% In this section, the design attributes of a specific system are placed (multiple attributes can be declared as arrays)

L = [40 10]; % initial values of design attributes N and M

P = [0.5 0.5]; % individual probabilities of each scenario type |S|

%%====PLOTTING CODE ===

lt = 5:5:100; % declares the array of the interval of interest

merged_parameters_values = {}; % merges L(i) and P(i) values of parameters in a single array of cells

for i=[1:size(L_tags,2)]

 merged_parameters_values{i} = L(i);
end

for i=[1:size(P,2)]

 merged_parameters_values{size(L_tags,2)+i} = P(i);

end

% merged_parameters_values are aligned according to FM_cost_D_f symbolic function's declaration

% Uses the FM_cost_D_f symbolic function (returning an array of computations for all D) and computes total effort/cost for
λ=[5:5:100]

for i=[1:20]

 G_lines(i,:) = FM_cost_D_f(merged_parameters_values{:}, i*5);

end

% adds different lines for each design combination D
plot (lt, G_lines, 'MarkerSize',4,'Marker','square');

grid on;

title('Total progressive effort predictions per design combination');

xlabel('Number of scenario applications (λ)');

ylabel('Total progressive effort');

legend(D(:), 'Location', 'northwest');
hold off;

savefig('CIBIvsCVP_FigureFile');

%===

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 197

%% CODE B.1 ===MODELING FRAMEWORK (DYNAMIC DIFFERENTIAL ANALYSIS AND FORMAL MODEL GENERATION)===

% Data describing (general, extended) comparison problem CIBI_DP vs CVP_DP and fundamental (SMC) metric analysis

% In this section, different or alternate problems should be described

D = { 'CVP-DP','CIBI-DP' }; % tags of Design comb. under comparison

L_tags = {'N','M', 'D'}; % tags of design attributes: N initial elements, M initial operations, and V initial decorators
A = {'Method aspect', 'Class aspect'}; % tags of Structural aspects

S = {'nE', 'nP','nD'}; % Types of maintenance scenarios: nE new composition element, nP new operation, nDE new decorator

element, nDP new decorator operation

F = [1 0 0 ; 0 1 0; 0 0 1]; % N:+1 M:+0 D:+0 for nE, N:+0 and M:+1 D:+0 for nP, N:+0 M:+0 D:+1 for nD (change rates

of affected design attributes for each scenario type |S|x|L|)

% SMC metric factors on design attributes L, for each design combination D, scenario S, and aspect A are stated in K array
K = zeros([size(D,2) size(S,2) size(A,2) size(L_tags,2)+1]);%creates empty matrix dimensions: |D|x|S|x|A|x|L|+1

% method class (structural aspects)

% D S N M D - N M D -

K(1,1,:,:) = [0 1 0 2; 0 1 0 2]; %CVP-DP for nE: 0N+1M+0D+2 method + 0N+1M+0D+2 class = 2(M+2)

K(1,2,:,:) = [1 0 1 0; 0 0 0 1]; %CVP-DP for nP: 1N+0M+1D+0 method + 0N+0M+1D+1 class = N+D+1

K(1,3,:,:) = [0 1 0 2; 0 1 0 2]; %CVP-DP for nD: 0N+1M+0D+2 method + 0N+1M+0D+2 class = 2(M+2)

K(2,1,:,:) = [0 1 0 0; 0 0 0 1]; %CIBI-DP for nE: 0N+1M+0D+0 method + 0N+0M+0D+1 class = M+1

K(2,2,:,:) = [1 0 1 2; 1 0 1 2]; %CIBI-DP for nP: 1N+0M+1D+2 method + 1N+0M+1D+2 class = 2(N+1)+2(D+1)

K(2,3,:,:) = [0 1 0 0; 0 0 0 1]; %CIBI-DP for nD: 0N+1M+0D+0 method + 0N+0M+0V+1 class = M+1

%% ===
% Differential analysis and formal model generation code has been parameterized based on set matrices and thus, it is common

and reusable for any set of parameters

%% CODE B.2 ====== PLOTTING RESULTS IN A SINGLE GRAPH (PRESENTATION EXTENDED EXAMPLE)==========

% Data (design attributes) derived from specifications of a specific system (instance of general extended problem)

% In this section, the design attributes of a specific system are placed (multiple attributes can be declared as arrays)
L = [40 10 30]; % initial values of design attributes N, M, and D

P = [0.25 0.25 0.5]; % individual probabilities of each scenario type |S|

%%===

% Plotting code has been parameterized based on set matrices and thus, it is common and reusable for any set of parameters

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 198

%% CODE C.1 ===MODELING FRAMEWORK (DYNAMIC DIFFERENTIAL ANALYSIS AND FORMAL MODEL GENERATION)===

% Data describing (general, extended) comparison problem CIBI_MP vs CVP_MP vs CIBI_OP vs CVP_OP and fundamental (SMC)

metric analysis

% In this section, different or alternate problems should be described

D = { 'CIBI and MP','CVP and MP','CIBI and OP', 'CVP and OP' }; % tags of Design comb. under comparison
L_tags = {'N','M', 'C'}; % tags of design attributes: N initial elements, M initial operations, C initial mediators or observers

A = {'Method aspect', 'Class aspect'}; % tags of Structural aspects

S = {'nE', 'nP','nM'}; % Types of maintenance scenarios: nE new composition element, nP new operation, nM new mediator

or observer

F = [1 0 0 ; 0 1 0; 0 0 1]; % N:+1 M:+0 C:+0 for nE, N:+0 M:+1 C:+0 for nP, N:+0 M:+0 C:+1 for nM (change rates of

affected design attributes for each scenario type |S|x|L|)
% SMC metric factors on design attributes L, for each design combination D, scenario S, and aspect A are stated in K array

K = zeros([size(D,2) size(S,2) size(A,2) size(L_tags,2)+1]);%creates empty matrix dimensions: |D|x|S|x|A|x|L|+1

% method class (structural aspects)

% D S N M C - N M C -

K(1,1,:,:) = [0 1 1 1; 0 0 1 2]; %CIBI-MP for nE: 0N+1M+1C+1 method + 0N+0M+1C+1 class = M+2C+3

K(1,2,:,:) = [1 0 0 1; 1 0 0 1]; %CIBI_MP for nP: 1N+0M+0C+1 method + 1N+0M+0C+1 class = 2(N+1)
K(1,3,:,:) = [0 0 0 2; 0 0 0 1]; %CIBI_MP for nM: 0N+0M+0C+2 method + 0N+0M+0C+1 class = 3

K(2,1,:,:) = [0 1 1 3; 0 1 1 3]; %CIBI_MP for nE: 0N+1M+1C+3 method + 0N+1M+1C+3 class = 2M+2C+6

K(2,2,:,:) = [1 0 0 0; 0 0 0 1]; %CIBI_MP for nP: 1N+0M+0C+0 method + 0N+0M+0C+1 class = N+1

K(2,3,:,:) = [0 0 0 2; 0 0 0 1]; %CIBI_MP for nM: 0N+0M+0C+2 method + 0N+0M+0C+1 class = 3

K(3,1,:,:) = [0 1 0 2; 0 0 0 2]; %CVP_OP for nE : 0N+1M+0C+2 method + 0N+0M+0C+2 class = M+4

K(3,2,:,:) = [1 0 0 1; 1 0 0 1]; %CVP_OP for nP : 1N+0M+0C+1 method + 1N+0M+0C+1 class = 2(N+1)

K(3,3,:,:) = [0 0 0 3; 0 0 0 2]; %CVP_OP for nM : 0N+0M+0C+3 method + 0N+0M+0C+2 class = 5

K(4,1,:,:) = [0 1 0 4; 0 1 0 3]; %CVP_OP for nE : 0N+1M+0C+4 method + 0N+1M+0C+3 class = 2M+7
K(4,2,:,:) = [1 0 0 0; 0 0 0 1]; %CVP_OP for nP : 1N+0M+0C+0 method + 0N+0M+0C+1 class = N+1

K(4,3,:,:) = [0 0 0 3; 0 0 0 2]; %CVP_OP for nM : 0N+0M+0C+3 method + 0N+0M+0C+2 class = 5

%% ===

% Differential analysis and formal model generation code has been parameterized based on set matrices and thus, it is common

and reusable for any set of parameters

%% CODE C.2 ====== PLOTTING RESULTS IN A SINGLE GRAPH (PRESENTATION EXTENDED EXAMPLE)==========

% Data (design attributes) derived from specifications of a specific system (instance of general extended problem)

% In this section, the design attributes of a specific system are placed (multiple attributes can be declared as arrays)

L = [15 14 10]; % initial values of design attributes N, M, and C

P = [0.1 0.2 0.7]; % individual probabilities of each scenario type |S|

%%===
% Plotting code has been parameterized based on set matrices and thus, it is common and reusable for any set of parameters

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 199

Appendix B: Sample Data of General Problem

Parameters of Sample Instances of the CVP vs. CIBI General Problem

n. N M pnE exP n. N M pnE exP n. N M pnE exP
1. 161 60 0,67 1,84 335. 192 124 0,52 0,46 669. 161 116 0,91 2,00
2. 56 90 0,32 0,26 336. 104 17 0,32 1,99 670. 198 57 0,23 1,35
3. 162 119 0,35 1,08 337. 163 60 0,48 0,85 671. 21 72 0,15 0,42
4. 56 123 0,09 0,99 338. 137 23 0,64 0,77 672. 65 70 0,55 0,29
5. 103 94 0,89 0,24 339. 96 123 0,85 1,07 673. 88 49 0,47 0,87
6. 101 12 0,90 0,65 340. 155 100 0,65 0,55 674. 67 30 0,32 1,30
7. 31 7 0,15 0,26 341. 135 15 0,58 1,04 675. 144 24 0,35 0,32
8. 134 112 0,15 1,20 342. 33 47 0,94 1,49 676. 40 47 0,35 1,51
9. 104 38 0,08 1,69 343. 179 35 0,92 0,53 677. 41 76 0,10 1,40
10. 81 6 0,70 1,76 344. 144 111 0,25 1,52 678. 131 44 0,71 0,71
11. 90 58 0,72 1,80 345. 175 48 0,72 0,63 679. 99 42 0,11 1,59
12. 29 102 0,34 1,51 346. 127 31 0,77 1,43 680. 47 46 0,57 1,75
13. 130 146 0,06 1,21 347. 185 82 0,29 1,22 681. 52 92 0,33 0,85
14. 188 133 0,14 0,24 348. 199 127 0,58 1,36 682. 148 33 0,27 0,64
15. 79 51 0,17 1,67 349. 32 35 0,61 0,59 683. 130 14 0,38 1,77
16. 155 91 0,22 0,32 350. 23 100 0,39 0,47 684. 86 18 0,08 0,45
17. 21 5 0,26 1,66 351. 169 89 0,32 1,93 685. 47 114 0,76 1,83
18. 139 132 0,93 1,73 352. 143 148 0,55 1,47 686. 127 60 0,77 1,89
19. 89 126 0,30 1,86 353. 41 63 0,11 1,47 687. 26 8 0,63 1,06
20. 156 138 0,68 1,94 354. 101 146 0,83 0,43 688. 131 44 0,61 1,60
21. 70 99 0,57 1,44 355. 145 43 0,69 0,41 689. 60 84 0,86 1,47
22. 160 13 0,90 0,53 356. 175 49 0,30 1,95 690. 176 112 0,50 0,42
23. 142 69 0,09 0,90 357. 169 84 0,53 0,41 691. 122 105 0,19 1,51
24. 46 89 0,63 1,33 358. 94 33 0,76 0,72 692. 78 68 0,31 1,82
25. 156 55 0,30 1,98 359. 91 39 0,78 0,75 693. 113 148 0,12 0,90
26. 137 78 0,74 1,61 360. 46 113 0,09 1,50 694. 31 30 0,14 0,98
27. 106 82 0,18 1,13 361. 65 82 0,88 0,72 695. 26 97 0,69 0,35
28. 108 39 0,23 1,61 362. 51 95 0,14 0,31 696. 190 35 0,77 0,42
29. 141 24 0,94 0,86 363. 142 125 0,07 1,04 697. 181 134 0,79 0,93
30. 102 35 0,12 1,90 364. 70 70 0,78 1,52 698. 78 76 0,76 1,80
31. 26 33 0,85 1,74 365. 77 33 0,26 1,00 699. 101 11 0,47 0,36
32. 154 99 0,46 0,68 366. 135 144 0,15 1,59 700. 86 136 0,33 0,29
33. 22 68 0,85 1,68 367. 193 149 0,65 0,47 701. 167 39 0,82 1,38
34. 130 58 0,50 0,70 368. 88 91 0,55 0,23 702. 175 147 0,91 0,55
35. 155 9 0,35 0,36 369. 113 131 0,73 0,30 703. 41 119 0,73 1,19
36. 182 111 0,48 1,97 370. 141 147 0,66 1,86 704. 69 74 0,35 1,89
37. 196 41 0,87 1,95 371. 181 56 0,25 1,95 705. 172 117 0,94 0,48
38. 166 103 0,46 1,40 372. 143 54 0,84 0,84 706. 194 96 0,07 1,07
39. 66 139 0,40 1,83 373. 64 101 0,91 0,33 707. 144 47 0,30 1,46
40. 139 134 0,61 1,58 374. 76 13 0,28 1,16 708. 137 29 0,33 1,05
41. 48 89 0,20 1,60 375. 24 27 0,15 0,32 709. 189 15 0,12 1,65
42. 129 114 0,37 1,25 376. 108 59 0,83 1,99 710. 118 127 0,09 0,42
43. 182 119 0,62 1,89 377. 137 139 0,81 0,71 711. 80 125 0,42 0,26
44. 92 29 0,75 0,92 378. 79 117 0,23 1,15 712. 85 38 0,50 1,24
45. 166 51 0,10 0,69 379. 166 101 0,90 1,21 713. 99 69 0,88 0,51
46. 121 133 0,89 0,86 380. 45 98 0,51 1,18 714. 161 29 0,73 0,29
47. 154 108 0,90 1,97 381. 144 19 0,58 0,62 715. 193 47 0,79 0,52
48. 35 133 0,61 0,52 382. 108 54 0,17 0,45 716. 150 114 0,82 0,22
49. 66 90 0,64 1,15 383. 193 92 0,50 0,77 717. 182 96 0,41 1,89
50. 43 76 0,28 0,99 384. 145 15 0,87 1,29 718. 40 28 0,69 1,06
51. 39 138 0,35 0,74 385. 118 142 0,41 1,01 719. 199 98 0,61 1,81
52. 157 118 0,50 1,59 386. 172 92 0,33 1,20 720. 31 136 0,47 1,85
53. 160 139 0,92 1,22 387. 51 123 0,41 1,95 721. 33 112 0,82 1,14
54. 30 150 0,29 0,44 388. 189 72 0,39 0,46 722. 46 115 0,60 1,51
55. 21 130 0,07 0,83 389. 155 11 0,56 1,29 723. 95 18 0,47 1,67
56. 162 126 0,64 1,58 390. 135 102 0,07 1,38 724. 132 66 0,57 0,55
57. 60 137 0,46 1,45 391. 92 125 0,46 0,89 725. 185 56 0,16 1,91
58. 67 140 0,66 0,58 392. 174 103 0,18 0,77 726. 169 30 0,70 1,76
59. 186 16 0,17 0,55 393. 191 19 0,43 1,06 727. 176 75 0,43 0,50
60. 64 142 0,78 1,80 394. 46 35 0,62 1,13 728. 70 120 0,91 1,30
61. 176 20 0,09 1,85 395. 56 84 0,68 0,57 729. 85 76 0,83 1,33
62. 62 112 0,30 1,34 396. 26 131 0,73 0,93 730. 101 131 0,16 1,62
63. 79 139 0,37 1,72 397. 84 23 0,09 1,04 731. 98 22 0,16 0,86
64. 87 124 0,71 1,39 398. 135 63 0,17 0,62 732. 154 79 0,82 1,09
65. 45 123 0,36 0,80 399. 102 53 0,06 0,47 733. 109 15 0,92 1,50
66. 125 119 0,50 0,66 400. 68 140 0,74 1,87 734. 150 73 0,62 1,61
67. 58 39 0,44 1,08 401. 121 55 0,40 0,45 735. 101 89 0,26 0,96
68. 63 128 0,77 1,89 402. 85 6 0,09 1,79 736. 194 75 0,20 0,91
69. 103 118 0,47 0,55 403. 99 142 0,12 1,86 737. 66 93 0,09 0,74
70. 81 78 0,81 0,50 404. 108 54 0,41 1,09 738. 162 106 0,29 1,11
71. 147 66 0,77 1,92 405. 51 37 0,14 1,66 739. 93 74 0,24 0,31
72. 195 90 0,77 1,49 406. 107 42 0,70 1,69 740. 159 89 0,17 1,88
73. 179 21 0,92 1,20 407. 154 36 0,68 0,79 741. 139 58 0,79 0,97
74. 119 13 0,75 0,83 408. 164 54 0,11 1,88 742. 174 118 0,17 0,77
75. 161 37 0,63 1,40 409. 123 109 0,41 0,55 743. 120 35 0,83 0,61
76. 175 92 0,95 1,18 410. 57 43 0,36 1,05 744. 27 29 0,19 1,23

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 200

n. N M pnE exP n. N M pnE exP n. N M pnE exP
77. 46 134 0,10 1,19 411. 47 135 0,28 0,95 745. 46 100 0,45 1,03
78. 146 134 0,29 1,65 412. 78 131 0,72 0,57 746. 131 120 0,55 1,01
79. 113 132 0,82 0,30 413. 110 70 0,45 1,36 747. 197 15 0,24 1,63
80. 70 105 0,63 1,02 414. 106 141 0,22 0,51 748. 95 49 0,93 1,95
81. 63 35 0,10 1,17 415. 166 21 0,64 1,97 749. 186 79 0,43 1,20
82. 96 130 0,54 1,73 416. 137 42 0,83 0,20 750. 156 142 0,13 0,64
83. 186 38 0,55 0,76 417. 128 42 0,06 1,94 751. 182 128 0,43 0,59
84. 41 31 0,13 0,62 418. 82 14 0,14 0,49 752. 186 66 0,36 0,79
85. 60 110 0,77 0,86 419. 169 93 0,64 0,44 753. 193 41 0,54 1,33
86. 103 58 0,75 1,34 420. 59 50 0,78 0,82 754. 121 21 0,89 0,65
87. 26 54 0,66 0,38 421. 155 99 0,37 1,09 755. 104 61 0,26 0,44
88. 181 103 0,07 1,97 422. 122 140 0,90 0,69 756. 154 86 0,34 0,62
89. 153 20 0,10 1,07 423. 105 111 0,58 0,46 757. 183 110 0,41 1,10
90. 161 65 0,25 1,92 424. 138 99 0,73 1,79 758. 28 115 0,94 0,52
91. 155 147 0,07 1,23 425. 98 19 0,62 1,22 759. 146 118 0,60 1,41
92. 102 98 0,47 0,63 426. 149 53 0,49 1,53 760. 123 149 0,20 1,07
93. 152 39 0,25 0,96 427. 185 80 0,85 0,50 761. 95 55 0,77 1,08
94. 83 66 0,08 1,97 428. 94 49 0,93 1,10 762. 32 93 0,31 0,40
95. 87 41 0,53 0,90 429. 145 148 0,69 1,00 763. 86 46 0,73 1,58
96. 141 46 0,67 0,31 430. 147 109 0,72 0,92 764. 187 40 0,32 0,85
97. 111 105 0,77 0,59 431. 167 72 0,05 1,90 765. 75 109 0,56 1,58
98. 189 48 0,43 0,95 432. 137 58 0,37 0,27 766. 102 50 0,43 0,25
99. 197 57 0,66 0,36 433. 61 68 0,58 0,54 767. 199 28 0,06 1,73
100. 117 133 0,45 0,25 434. 122 55 0,95 0,43 768. 132 75 0,27 0,64
101. 191 74 0,77 1,21 435. 190 123 0,35 1,22 769. 41 75 0,73 1,83
102. 140 136 0,35 0,74 436. 81 123 0,91 0,62 770. 37 69 0,44 1,90
103. 29 31 0,79 1,45 437. 144 113 0,61 1,00 771. 164 111 0,46 0,84
104. 73 90 0,70 0,51 438. 75 55 0,62 0,62 772. 131 129 0,16 0,48
105. 151 15 0,51 0,58 439. 125 60 0,09 1,49 773. 61 88 0,89 1,96
106. 169 112 0,15 1,10 440. 73 80 0,26 1,34 774. 25 58 0,80 0,98
107. 43 69 0,11 1,52 441. 76 117 0,61 1,38 775. 135 64 0,06 0,71
108. 166 31 0,07 1,57 442. 109 41 0,73 0,35 776. 93 125 0,69 1,20
109. 33 86 0,65 1,72 443. 173 80 0,15 1,20 777. 93 122 0,36 1,78
110. 32 89 0,18 1,54 444. 29 73 0,38 0,51 778. 187 53 0,87 1,01
111. 153 137 0,94 0,58 445. 145 149 0,78 1,12 779. 140 126 0,07 1,57
112. 66 69 0,33 1,76 446. 34 56 0,45 0,93 780. 177 11 0,77 1,27
113. 57 145 0,75 1,59 447. 89 133 0,28 1,17 781. 41 82 0,39 0,52
114. 147 85 0,26 0,25 448. 53 115 0,13 1,81 782. 69 61 0,32 0,60
115. 192 119 0,65 0,41 449. 138 98 0,58 1,18 783. 124 14 0,05 0,83
116. 154 63 0,72 1,17 450. 41 8 0,36 1,74 784. 147 91 0,40 1,20
117. 93 106 0,88 1,22 451. 164 98 0,68 0,49 785. 157 57 0,06 1,86
118. 141 63 0,93 1,60 452. 156 137 0,25 1,41 786. 82 147 0,75 1,12
119. 161 59 0,49 0,55 453. 41 30 0,44 0,55 787. 76 148 0,64 0,85
120. 184 10 0,69 0,80 454. 112 33 0,30 1,46 788. 35 33 0,32 1,62
121. 196 123 0,67 1,68 455. 73 28 0,70 0,46 789. 75 104 0,10 0,88
122. 146 77 0,30 0,55 456. 63 125 0,15 1,40 790. 54 19 0,93 0,92
123. 90 71 0,40 0,25 457. 176 16 0,44 1,50 791. 113 40 0,32 1,97
124. 31 126 0,44 1,45 458. 25 80 0,75 0,29 792. 165 108 0,20 1,56
125. 130 133 0,94 1,51 459. 88 129 0,79 0,80 793. 128 144 0,90 1,62
126. 148 139 0,05 0,68 460. 183 70 0,67 0,37 794. 129 107 0,48 1,11
127. 126 43 0,94 0,45 461. 116 25 0,30 1,20 795. 132 23 0,76 1,58
128. 192 14 0,08 0,51 462. 157 129 0,39 0,28 796. 113 123 0,55 0,89
129. 114 43 0,35 1,96 463. 130 82 0,21 1,64 797. 49 82 0,67 1,12
130. 48 69 0,50 1,07 464. 174 138 0,48 1,51 798. 75 111 0,35 1,32
131. 179 109 0,64 1,06 465. 193 107 0,32 0,31 799. 37 149 0,20 1,58
132. 87 93 0,17 0,31 466. 88 33 0,84 0,42 800. 63 66 0,49 0,60
133. 53 7 0,33 0,34 467. 190 102 0,57 1,10 801. 163 31 0,38 1,93
134. 132 115 0,79 0,45 468. 197 39 0,13 0,81 802. 142 45 0,75 1,14
135. 149 123 0,72 1,73 469. 70 11 0,89 1,14 803. 183 122 0,44 0,81
136. 132 63 0,29 1,32 470. 174 103 0,93 0,74 804. 138 139 0,14 1,71
137. 184 21 0,30 1,85 471. 99 28 0,45 0,38 805. 45 147 0,70 1,25
138. 179 72 0,27 0,83 472. 173 59 0,39 0,24 806. 66 107 0,19 0,37
139. 88 35 0,18 1,28 473. 183 121 0,80 0,50 807. 136 125 0,37 1,68
140. 76 126 0,25 1,06 474. 59 116 0,15 0,96 808. 92 129 0,16 1,12
141. 82 67 0,61 0,24 475. 159 49 0,56 1,50 809. 159 14 0,46 0,26
142. 65 57 0,33 1,27 476. 105 47 0,65 1,97 810. 130 59 0,84 1,79
143. 195 64 0,90 1,42 477. 182 82 0,16 0,92 811. 184 22 0,22 1,65
144. 67 94 0,37 0,45 478. 34 62 0,18 0,29 812. 107 73 0,28 1,90
145. 38 124 0,78 0,90 479. 74 7 0,78 1,91 813. 99 19 0,18 0,21
146. 109 141 0,32 0,80 480. 36 129 0,10 1,43 814. 166 25 0,70 1,63
147. 146 130 0,83 0,21 481. 52 7 0,75 0,94 815. 85 90 0,39 0,67
148. 36 16 0,11 0,33 482. 104 119 0,94 1,68 816. 132 13 0,79 1,79
149. 90 116 0,28 0,23 483. 78 83 0,69 1,83 817. 175 12 0,31 0,82
150. 33 120 0,59 1,32 484. 177 20 0,90 1,62 818. 75 79 0,19 0,38
151. 119 29 0,31 1,93 485. 150 104 0,58 1,81 819. 68 114 0,62 0,96
152. 136 88 0,54 1,68 486. 37 131 0,74 0,49 820. 188 107 0,55 1,33
153. 117 139 0,64 0,68 487. 95 28 0,90 1,09 821. 99 130 0,07 0,80
154. 99 53 0,14 1,15 488. 142 116 0,78 0,37 822. 184 44 0,15 1,85
155. 137 20 0,13 0,32 489. 149 103 0,87 1,25 823. 42 32 0,67 1,19
156. 45 57 0,73 0,30 490. 94 148 0,34 0,91 824. 47 26 0,83 0,67
157. 61 72 0,95 0,32 491. 175 58 0,56 0,77 825. 108 89 0,81 0,65
158. 105 72 0,63 0,97 492. 191 47 0,92 0,75 826. 136 132 0,71 1,48

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 201

n. N M pnE exP n. N M pnE exP n. N M pnE exP
159. 104 82 0,44 1,76 493. 127 150 0,73 0,47 827. 115 140 0,15 0,78
160. 92 91 0,87 1,97 494. 79 80 0,60 1,91 828. 158 75 0,94 1,78
161. 99 31 0,06 1,40 495. 195 126 0,72 1,25 829. 78 147 0,47 1,91
162. 197 138 0,17 1,81 496. 44 105 0,42 0,98 830. 39 36 0,44 0,81
163. 114 118 0,17 0,45 497. 189 40 0,09 0,80 831. 188 142 0,28 1,40
164. 92 11 0,47 0,70 498. 113 51 0,90 1,81 832. 115 33 0,14 0,34
165. 169 147 0,39 1,90 499. 165 92 0,79 0,99 833. 169 27 0,86 1,91
166. 26 37 0,95 1,71 500. 124 7 0,22 0,86 834. 105 116 0,36 1,37
167. 78 92 0,23 0,69 501. 85 140 0,86 0,90 835. 62 92 0,48 1,09
168. 145 39 0,29 1,72 502. 109 110 0,57 1,87 836. 112 35 0,86 1,84
169. 97 16 0,35 1,70 503. 45 64 0,11 0,55 837. 91 62 0,84 1,83
170. 103 46 0,89 1,54 504. 105 22 0,47 0,38 838. 73 128 0,76 0,92
171. 58 36 0,94 1,18 505. 49 73 0,85 0,87 839. 63 69 0,10 0,81
172. 30 63 0,90 0,92 506. 175 97 0,78 1,47 840. 178 54 0,29 0,71
173. 51 136 0,90 0,53 507. 169 92 0,38 0,60 841. 46 118 0,25 1,92
174. 77 143 0,05 1,65 508. 167 91 0,49 0,41 842. 41 127 0,36 0,33
175. 129 40 0,26 0,55 509. 179 143 0,79 1,25 843. 92 115 0,68 1,00
176. 177 37 0,26 1,60 510. 141 72 0,30 0,26 844. 196 57 0,30 1,54
177. 34 124 0,45 1,52 511. 52 106 0,21 1,07 845. 98 71 0,07 1,94
178. 196 98 0,90 0,95 512. 27 89 0,07 0,82 846. 33 42 0,74 0,37
179. 122 112 0,50 0,46 513. 146 50 0,18 1,86 847. 170 74 0,23 1,13
180. 94 67 0,24 0,68 514. 60 97 0,85 0,56 848. 65 66 0,42 0,29
181. 33 42 0,46 0,88 515. 127 68 0,12 0,69 849. 134 87 0,73 0,89
182. 165 142 0,40 1,56 516. 134 109 0,91 0,34 850. 77 85 0,12 1,39
183. 26 45 0,19 1,41 517. 87 9 0,85 0,68 851. 131 28 0,07 1,02
184. 82 11 0,10 1,75 518. 132 83 0,06 1,35 852. 142 73 0,53 0,93
185. 118 92 0,81 0,24 519. 122 99 0,47 1,09 853. 86 73 0,21 1,63
186. 183 83 0,45 1,27 520. 177 9 0,73 0,94 854. 62 65 0,29 1,80
187. 36 20 0,80 0,40 521. 58 78 0,14 1,58 855. 50 18 0,62 1,08
188. 122 150 0,76 1,41 522. 130 128 0,79 0,27 856. 48 146 0,47 1,31
189. 146 58 0,48 1,55 523. 131 29 0,45 0,58 857. 183 113 0,55 1,84
190. 115 52 0,64 1,56 524. 98 22 0,13 0,34 858. 105 89 0,56 1,95
191. 59 120 0,16 0,69 525. 162 64 0,31 1,93 859. 110 80 0,91 1,49
192. 90 97 0,94 1,32 526. 109 36 0,26 0,25 860. 191 15 0,35 0,31
193. 144 115 0,86 1,06 527. 124 117 0,81 0,54 861. 68 43 0,77 0,31
194. 193 83 0,89 0,88 528. 186 43 0,33 1,70 862. 82 52 0,71 1,18
195. 66 110 0,57 1,08 529. 97 150 0,11 1,12 863. 193 52 0,85 1,64
196. 40 15 0,22 0,70 530. 27 66 0,71 1,24 864. 64 99 0,09 0,46
197. 131 65 0,90 1,23 531. 27 36 0,88 1,30 865. 120 72 0,92 1,51
198. 30 32 0,72 0,72 532. 68 66 0,36 1,06 866. 170 59 0,24 0,75
199. 83 110 0,68 0,54 533. 69 14 0,81 1,64 867. 112 48 0,46 0,52
200. 120 6 0,54 1,82 534. 123 20 0,24 0,60 868. 87 82 0,59 1,10
201. 181 141 0,56 1,63 535. 133 79 0,30 1,64 869. 113 55 0,76 0,91
202. 125 106 0,67 1,89 536. 131 83 0,22 1,65 870. 162 114 0,66 1,32
203. 105 95 0,42 0,89 537. 163 66 0,59 1,48 871. 179 91 0,66 0,32
204. 161 124 0,92 0,83 538. 62 32 0,34 1,77 872. 178 139 0,30 1,07
205. 170 84 0,56 0,42 539. 105 53 0,15 1,53 873. 121 139 0,91 1,42
206. 20 109 0,86 1,84 540. 147 14 0,73 1,49 874. 137 28 0,26 0,23
207. 174 14 0,38 0,21 541. 176 149 0,11 0,31 875. 22 17 0,68 1,73
208. 72 70 0,63 1,13 542. 162 19 0,35 1,90 876. 32 115 0,46 1,62
209. 58 60 0,63 1,49 543. 24 21 0,50 0,60 877. 191 148 0,18 1,29
210. 102 56 0,21 0,96 544. 47 116 0,81 1,58 878. 63 48 0,08 0,26
211. 165 107 0,21 1,64 545. 153 89 0,84 1,56 879. 151 79 0,54 0,75
212. 140 131 0,84 0,79 546. 106 97 0,61 0,25 880. 159 46 0,40 0,86
213. 46 106 0,21 0,43 547. 52 87 0,25 2,00 881. 159 117 0,06 1,66
214. 137 68 0,25 0,93 548. 117 114 0,60 1,01 882. 108 141 0,91 1,30
215. 116 55 0,47 1,51 549. 174 70 0,06 0,56 883. 192 93 0,24 0,76
216. 61 117 0,15 1,96 550. 36 52 0,52 0,60 884. 115 111 0,44 1,19
217. 31 124 0,08 0,95 551. 70 76 0,82 1,72 885. 159 62 0,21 0,81
218. 119 34 0,06 0,37 552. 45 118 0,26 1,20 886. 22 105 0,39 1,30
219. 35 46 0,28 0,65 553. 147 5 0,45 1,56 887. 58 147 0,67 1,91
220. 53 93 0,56 0,73 554. 26 50 0,48 0,60 888. 189 110 0,31 0,49
221. 143 18 0,81 0,71 555. 61 116 0,45 0,41 889. 191 66 0,89 0,99
222. 106 85 0,83 1,27 556. 109 73 0,66 1,59 890. 55 19 0,71 0,52
223. 34 46 0,06 1,04 557. 125 130 0,78 0,71 891. 61 101 0,59 1,11
224. 171 126 0,91 1,45 558. 144 123 0,41 0,81 892. 190 26 0,24 1,04
225. 66 12 0,71 1,14 559. 83 17 0,43 1,58 893. 106 112 0,47 1,44
226. 178 42 0,74 1,15 560. 80 40 0,45 0,82 894. 178 141 0,38 1,09
227. 97 80 0,09 0,62 561. 146 91 0,33 1,20 895. 116 79 0,53 0,35
228. 118 79 0,43 1,32 562. 91 91 0,69 0,53 896. 130 14 0,11 1,96
229. 174 146 0,49 0,25 563. 112 75 0,87 0,87 897. 166 10 0,18 0,54
230. 151 73 0,59 1,06 564. 115 102 0,25 0,29 898. 148 147 0,11 0,88
231. 181 118 0,46 0,32 565. 33 134 0,07 0,60 899. 167 75 0,52 1,62
232. 161 20 0,34 1,84 566. 80 89 0,71 1,33 900. 114 139 0,92 1,73
233. 105 137 0,60 0,83 567. 65 39 0,43 1,91 901. 89 9 0,49 1,31
234. 184 16 0,82 1,93 568. 193 77 0,60 1,72 902. 88 143 0,83 1,82
235. 72 149 0,86 1,47 569. 98 55 0,18 0,90 903. 26 54 0,87 0,70
236. 58 129 0,16 1,06 570. 87 135 0,94 1,69 904. 85 18 0,19 0,32
237. 195 64 0,90 1,46 571. 102 84 0,36 1,50 905. 112 123 0,86 1,10
238. 188 46 0,69 0,57 572. 131 57 0,57 1,77 906. 141 59 0,43 0,98
239. 28 112 0,57 0,58 573. 84 109 0,12 0,93 907. 168 88 0,44 1,88
240. 48 64 0,34 0,28 574. 181 64 0,75 0,78 908. 199 96 0,32 1,12

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 202

n. N M pnE exP n. N M pnE exP n. N M pnE exP
241. 115 111 0,39 1,98 575. 81 141 0,08 1,32 909. 147 21 0,23 1,00
242. 90 7 0,28 0,27 576. 134 97 0,95 0,80 910. 148 49 0,68 0,73
243. 172 139 0,07 0,69 577. 134 65 0,87 1,71 911. 106 82 0,31 0,47
244. 109 78 0,59 0,44 578. 165 91 0,42 0,20 912. 159 132 0,14 1,94
245. 148 56 0,36 1,04 579. 95 10 0,67 1,54 913. 80 85 0,21 1,97
246. 167 91 0,43 1,37 580. 27 52 0,72 1,74 914. 79 71 0,57 0,96
247. 157 67 0,69 0,20 581. 91 14 0,56 1,52 915. 172 136 0,62 1,68
248. 106 134 0,83 1,34 582. 174 128 0,14 1,48 916. 77 51 0,18 0,23
249. 191 29 0,09 0,40 583. 49 84 0,37 1,08 917. 121 38 0,94 1,00
250. 166 76 0,25 0,75 584. 24 108 0,68 1,96 918. 161 95 0,15 1,06
251. 89 115 0,74 0,51 585. 165 53 0,31 1,01 919. 149 36 0,58 0,50
252. 94 35 0,79 1,01 586. 100 124 0,40 1,34 920. 24 40 0,60 0,89
253. 108 98 0,84 1,17 587. 156 62 0,23 1,13 921. 114 51 0,15 1,27
254. 189 10 0,86 1,89 588. 134 37 0,58 1,07 922. 100 65 0,28 0,57
255. 177 118 0,69 1,37 589. 192 71 0,47 1,28 923. 185 126 0,36 0,43
256. 148 19 0,16 0,25 590. 200 139 0,86 1,85 924. 92 59 0,62 1,61
257. 103 37 0,18 1,79 591. 97 29 0,67 1,46 925. 63 31 0,29 1,25
258. 198 42 0,59 0,85 592. 45 99 0,20 1,79 926. 60 143 0,08 0,49
259. 111 57 0,62 0,56 593. 177 8 0,14 0,59 927. 92 56 0,33 1,97
260. 45 94 0,34 1,50 594. 188 111 0,26 0,71 928. 44 57 0,17 0,82
261. 41 98 0,20 0,81 595. 187 30 0,50 1,40 929. 108 137 0,72 1,76
262. 163 39 0,07 1,55 596. 137 29 0,57 0,88 930. 162 64 0,16 1,35
263. 117 122 0,10 1,64 597. 174 113 0,25 1,54 931. 180 121 0,19 1,84
264. 108 9 0,69 1,72 598. 61 144 0,84 0,38 932. 144 100 0,60 1,45
265. 47 57 0,86 0,69 599. 66 102 0,65 1,69 933. 77 109 0,17 1,48
266. 120 14 0,28 0,53 600. 151 101 0,82 1,48 934. 183 149 0,88 0,21
267. 27 9 0,95 0,24 601. 25 142 0,65 1,36 935. 96 82 0,51 0,33
268. 172 26 0,16 1,21 602. 132 142 0,45 1,26 936. 95 130 0,43 0,73
269. 185 56 0,14 0,33 603. 169 100 0,89 1,75 937. 144 85 0,93 0,86
270. 170 46 0,12 1,04 604. 169 129 0,48 1,76 938. 119 121 0,87 1,03
271. 21 43 0,66 1,83 605. 42 56 0,29 1,35 939. 62 18 0,88 0,90
272. 141 137 0,91 0,33 606. 169 117 0,71 1,37 940. 49 95 0,59 1,77
273. 197 77 0,71 1,72 607. 82 70 0,39 0,23 941. 166 49 0,79 1,19
274. 145 86 0,24 1,17 608. 146 19 0,14 0,94 942. 33 112 0,26 0,30
275. 67 117 0,36 1,96 609. 67 88 0,95 1,75 943. 137 104 0,25 0,87
276. 164 27 0,41 1,37 610. 193 132 0,34 1,05 944. 94 34 0,37 1,09
277. 96 76 0,75 0,85 611. 141 141 0,43 0,30 945. 147 110 0,19 1,69
278. 74 114 0,09 1,06 612. 132 39 0,37 1,47 946. 131 18 0,18 0,56
279. 62 138 0,25 0,40 613. 125 8 0,84 1,98 947. 187 19 0,81 1,22
280. 186 112 0,87 1,69 614. 177 101 0,24 1,79 948. 46 62 0,77 1,81
281. 110 144 0,22 1,20 615. 120 97 0,95 1,91 949. 196 68 0,29 0,40
282. 33 44 0,25 1,30 616. 136 30 0,59 0,70 950. 146 95 0,85 1,57
283. 20 139 0,92 0,73 617. 81 44 0,35 0,30 951. 154 144 0,85 0,52
284. 162 90 0,55 0,76 618. 124 77 0,21 1,31 952. 103 41 0,82 1,61
285. 167 115 0,65 1,21 619. 135 116 0,13 0,83 953. 47 30 0,73 1,51
286. 153 39 0,80 1,79 620. 22 33 0,66 1,75 954. 38 42 0,85 1,89
287. 197 129 0,08 0,62 621. 110 47 0,16 1,44 955. 58 33 0,89 1,78
288. 173 46 0,13 1,95 622. 171 51 0,87 1,81 956. 200 128 0,42 1,64
289. 37 121 0,18 1,78 623. 118 30 0,45 0,32 957. 197 27 0,93 0,49
290. 143 54 0,65 1,92 624. 121 117 0,11 1,42 958. 95 25 0,94 0,51
291. 45 105 0,10 0,33 625. 156 122 0,53 0,30 959. 56 85 0,24 0,60
292. 155 65 0,35 1,72 626. 98 100 0,19 0,49 960. 117 17 0,37 0,23
293. 97 72 0,84 1,82 627. 166 98 0,61 0,33 961. 40 68 0,14 1,78
294. 149 126 0,50 1,22 628. 160 44 0,12 0,44 962. 102 133 0,17 1,86
295. 143 122 0,24 1,97 629. 50 124 0,12 0,55 963. 30 77 0,64 0,92
296. 89 9 0,52 0,98 630. 59 117 0,60 1,42 964. 59 45 0,71 0,53
297. 177 142 0,94 0,38 631. 130 147 0,57 0,85 965. 32 131 0,68 1,19
298. 190 81 0,70 0,45 632. 114 113 0,91 1,19 966. 140 84 0,32 1,94
299. 60 21 0,91 0,94 633. 69 137 0,92 1,86 967. 111 44 0,10 0,92
300. 74 15 0,52 1,47 634. 93 43 0,68 0,91 968. 103 58 0,82 0,50
301. 147 56 0,42 1,79 635. 172 62 0,84 1,49 969. 58 69 0,59 1,21
302. 105 113 0,44 1,42 636. 55 36 0,27 1,02 970. 38 82 0,26 0,85
303. 154 47 0,43 1,78 637. 59 29 0,86 1,42 971. 85 122 0,23 0,57
304. 151 105 0,92 1,84 638. 41 85 0,53 0,61 972. 150 53 0,50 0,27
305. 30 133 0,44 0,53 639. 35 147 0,54 1,37 973. 100 114 0,55 1,68
306. 140 76 0,64 1,32 640. 103 27 0,05 0,74 974. 92 57 0,52 1,81
307. 37 46 0,42 0,83 641. 120 94 0,21 1,61 975. 36 37 0,65 0,46
308. 34 75 0,10 1,88 642. 119 101 0,08 0,47 976. 170 91 0,93 1,52
309. 33 146 0,16 1,48 643. 97 38 0,07 0,94 977. 180 65 0,94 1,61
310. 151 51 0,78 0,80 644. 181 101 0,25 0,78 978. 79 100 0,63 0,73
311. 48 76 0,77 0,44 645. 128 113 0,25 1,29 979. 42 136 0,22 0,57
312. 171 101 0,85 0,72 646. 113 54 0,82 0,34 980. 151 83 0,72 0,60
313. 72 13 0,48 0,81 647. 101 134 0,80 1,71 981. 149 69 0,88 0,81
314. 164 10 0,42 0,58 648. 176 96 0,23 1,10 982. 169 8 0,19 1,62
315. 79 32 0,36 1,25 649. 140 19 0,70 0,54 983. 95 14 0,68 0,62
316. 94 99 0,53 1,47 650. 90 47 0,42 1,60 984. 43 38 0,76 1,57
317. 45 26 0,47 1,86 651. 181 12 0,34 1,03 985. 23 46 0,14 1,76
318. 46 41 0,63 1,68 652. 55 128 0,25 1,31 986. 55 131 0,61 1,16
319. 133 110 0,57 0,60 653. 170 145 0,87 0,33 987. 167 113 0,15 0,65
320. 182 9 0,25 1,18 654. 161 117 0,72 0,43 988. 147 53 0,18 0,26
321. 38 106 0,49 1,17 655. 150 7 0,40 1,07 989. 119 32 0,10 1,58
322. 81 120 0,29 1,20 656. 124 60 0,09 0,93 990. 173 127 0,27 0,99

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 203

n. N M pnE exP n. N M pnE exP n. N M pnE exP
323. 70 26 0,61 0,44 657. 49 100 0,32 0,70 991. 21 62 0,61 1,22
324. 56 36 0,77 1,80 658. 179 38 0,71 1,26 992. 176 71 0,67 1,14
325. 163 94 0,56 1,24 659. 50 109 0,82 0,60 993. 165 24 0,06 0,61
326. 92 63 0,78 0,22 660. 49 35 0,68 0,50 994. 136 147 0,34 0,43
327. 104 56 0,78 1,63 661. 30 13 0,69 1,63 995. 160 141 0,85 1,22
328. 179 53 0,73 1,76 662. 151 144 0,07 1,51 996. 189 119 0,36 1,77
329. 128 32 0,54 1,67 663. 28 10 0,65 1,48 997. 188 16 0,42 0,95
330. 151 67 0,70 0,48 664. 132 139 0,91 0,82 998. 194 104 0,38 0,32
331. 59 76 0,80 1,09 665. 98 35 0,19 0,53 999. 87 27 0,06 0,60
332. 99 46 0,75 0,79 666. 49 97 0,78 0,60 1000. 84 87 0,20 0,60
333. 106 89 0,39 1,39 667. 134 136 0,88 1,00 1001. --- --- --- ---
334. 174 32 0,46 1,22 668. 27 110 0,84 0,30 1002. --- --- --- ---

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 204

Appendix C: Variability of Sample Instances

This appendix presents the statistical parameters of the frequency distributions generated
by single and repeated (Monte Carlo) simulations per sample instance of the CVP vs CIBI
general design problem. The parameters of each sample instance have been pooled by the
randomly generated sample in Appendix B. The conducted simulations are referred to 7th
fully stochastic simulation state in Table 6-4. The focus is on the variability of the
simulations per sample insurance as expressed by the dimensionless parameter of
coefficient of variation (CV). In general, a normal distribution has skewness 0 and kurtosis
3. Negative skewness represents left skewed distributions and positive skewness
represents right skewed distributions. An overall (graphical) assessment of the statistical
parameters of the ΣλYi

repeated and Yi variables concerning all the sample instances (i:[1, …,
1000]) is presented in subsection 6.4.9.4.

Frequency distributions of the total effort assessments (ΣλYi
repeated) per sample instance

In the flowing table, each row of the table represents the corresponding sample instance in
Appendix B. In each row of the table (for each sample instance i), several statistical
parameters of the frequency distribution of the total effort assessments ΣλYi (per design
alternative) for several repeated (Monte Carlo) simulations are presented. Parameter μ
represents the mean value, σ is the standard deviation, CV=σ/μ is the coefficient of
variation, ‘skew’ is the skewness, and ‘kurt’ is the kurtosis of each frequency distribution.
Since the total effort outcome (ΣλYi) is the sum of several (λ=200) intermediate effort
assessments (Yi) per applied scenario, its frequency distribution follows (or resembles) a
normal distribution pattern for all the sample instances. Thus, its skewness for all sample
instances lies around 0 [-1.09, …, 1.26] and the kurtosis around 3 [1.90, …, 6.06], as
discussed in subsection 6.4.9.3. However, the CV parameter considerably variates per
sample instance between 0.03 and 0.51, while ≈60% of instances have a CV less than 0.10,
≈90% of instances have a CV less than 0.20, and ≈3% of instances have a CV more than
0.30.

Statistical Parameters of Total Effort of Repeated (Monte Carlo) Simulations per Sample
Instance

inst. Distribution of CVP total effort (λ=200) Distribution of CIBI total effort (λ=200)
n. μ σ CV skew kurt μ σ CV skew kurt
1. 32361 2275 0,07 -0,07 2,97 34659 6280 0,18 -0,06 2,66
2. 25635 3623 0,14 -0,46 3,01 27037 1655 0,06 -0,29 2,67
3. 42955 3308 0,08 -0,05 3,00 55596 4024 0,07 -0,41 2,89
4. 17914 4713 0,26 0,39 2,27 25048 2079 0,08 0,23 2,58
5. 37234 1422 0,04 0,92 3,87 22943 3424 0,15 0,36 2,27
6. 9004 2695 0,30 0,33 2,40 9193 4433 0,48 0,49 2,61
7. 9404 1756 0,19 0,04 2,51 14275 1254 0,09 0,19 2,87
8. 32613 3953 0,12 0,07 2,54 51115 2397 0,05 0,43 3,37
9. 21800 1549 0,07 0,46 2,74 40026 1666 0,04 -0,26 3,32
10. 12591 2793 0,22 -0,31 2,63 16638 4394 0,26 -0,09 2,72
11. 27277 1371 0,05 -0,31 3,27 24459 3561 0,15 0,03 2,64
12. 23992 3958 0,16 -0,16 2,65 20953 1966 0,09 -0,28 2,80
13. 29405 3849 0,13 0,69 2,60 50824 1785 0,04 0,01 2,74
14. 41375 3528 0,09 0,04 2,07 70142 3383 0,05 -0,38 3,13
15. 20200 2225 0,11 0,04 2,35 31465 1460 0,05 0,73 3,44
16. 35972 2440 0,07 0,41 2,77 55764 3151 0,06 -0,64 3,81
17. 9453 1426 0,15 -0,10 2,33 12153 1230 0,10 0,11 3,35
18. 51209 1639 0,03 0,35 2,67 29554 3663 0,12 0,62 3,07
19. 33606 4164 0,12 -0,41 3,06 37773 1626 0,04 -0,09 2,50
20. 52616 2543 0,05 -0,13 3,78 43784 4167 0,10 -0,07 3,00
21. 34982 2483 0,07 -0,53 3,01 29929 1974 0,07 0,00 3,46
22. 10933 3793 0,35 0,40 2,41 12354 6255 0,51 0,35 2,32
23. 29734 2161 0,07 0,16 2,64 53387 2583 0,05 -0,36 3,58
24. 32478 2204 0,07 0,38 2,74 24561 1728 0,07 -0,19 2,64
25. 33986 1712 0,05 -0,04 2,45 51640 3939 0,08 -0,18 2,86
26. 35445 2093 0,06 -0,06 2,76 31470 5727 0,18 -0,15 2,63
27. 27338 3245 0,12 -0,24 2,30 41147 1745 0,04 0,27 2,73
28. 24733 1556 0,06 -0,38 2,93 39601 2501 0,06 -0,66 3,32
29. 12718 2838 0,22 0,54 2,35 10632 5040 0,47 0,70 2,59

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 205

inst. Distribution of CVP total effort (λ=200) Distribution of CIBI total effort (λ=200)
n. μ σ CV skew kurt μ σ CV skew kurt
30. 21953 1598 0,07 -0,05 2,43 38655 1891 0,05 -0,46 3,03
31. 15288 1338 0,09 -0,14 2,63 10545 2155 0,20 -0,01 2,13
32. 41150 2301 0,06 0,18 2,70 48720 3743 0,08 -0,27 3,41
33. 27034 1431 0,05 0,10 2,39 16393 1713 0,10 0,01 2,99
34. 31353 1592 0,05 -0,37 4,00 38949 3364 0,09 -0,12 2,57
35. 27633 2030 0,07 -0,18 3,09 47384 5386 0,11 -0,06 2,14
36. 46412 2127 0,05 -0,14 3,03 54402 5187 0,10 0,13 2,53
37. 22366 3526 0,16 0,13 2,64 21021 7112 0,34 0,28 2,62
38. 43294 2163 0,05 -0,12 2,95 52005 4353 0,08 -0,66 4,28
39. 36763 4633 0,13 -0,22 3,38 33430 1865 0,06 0,04 2,90
40. 48923 2648 0,05 0,09 2,19 43135 4315 0,10 -0,04 2,51
41. 18439 4099 0,22 0,08 2,62 22901 1931 0,08 0,26 2,53
42. 38863 3352 0,09 0,10 2,37 46329 2651 0,06 -0,08 2,51
43. 49004 1988 0,04 0,26 4,13 48099 5874 0,12 0,12 2,98
44. 18491 1961 0,11 -0,21 3,00 18924 3900 0,21 -0,11 2,86
45. 33370 1622 0,05 0,44 2,94 61000 3507 0,06 -0,38 3,14
46. 51410 2089 0,04 0,33 3,28 30720 3252 0,11 0,56 3,12
47. 43046 1662 0,04 0,38 3,29 27088 4506 0,17 0,51 3,14
48. 41513 4074 0,10 -0,03 2,78 28116 1461 0,05 0,03 2,86
49. 34209 1959 0,06 0,14 2,98 27476 2310 0,08 -0,22 2,69
50. 21054 3254 0,15 -0,24 2,72 22556 1553 0,07 -0,59 3,17
51. 30920 5155 0,17 -0,14 2,57 26262 2211 0,08 -0,49 2,97
52. 45649 2652 0,06 -0,19 2,97 49084 4029 0,08 0,14 2,42
53. 54263 1949 0,04 -0,19 2,99 31418 4120 0,13 0,55 2,26
54. 27243 6452 0,24 0,21 2,42 22711 3109 0,14 -0,04 2,54
55. 11152 5094 0,46 0,92 4,58 12269 2923 0,24 0,85 4,37
56. 49186 2342 0,05 0,05 3,13 45330 4372 0,10 0,07 2,77
57. 37124 4304 0,12 0,15 2,35 31934 1615 0,05 -0,13 2,94
58. 46847 3761 0,08 0,02 2,56 33666 1575 0,05 0,28 2,75
59. 34474 1858 0,05 0,03 2,96 63657 5232 0,08 -0,19 2,27
60. 50735 3276 0,06 -0,17 2,84 31495 2093 0,07 0,18 2,89
61. 33502 1335 0,04 -0,19 2,75 64136 3859 0,06 -0,19 2,57
62. 27902 4005 0,14 -0,42 3,22 29819 1461 0,05 0,06 3,75
63. 35418 4857 0,14 -0,01 3,10 35738 1514 0,04 0,33 2,63
64. 45714 2366 0,05 -0,32 2,90 32589 2635 0,08 -0,28 3,11
65. 29790 4765 0,16 0,20 2,78 26557 1885 0,07 -0,17 2,34
66. 42815 2618 0,06 -0,11 2,75 43437 3223 0,07 -0,06 2,75
67. 20495 1377 0,07 -0,09 3,10 23288 1816 0,08 -0,60 3,87
68. 46455 2514 0,05 0,10 2,32 29568 2156 0,07 -0,15 3,13
69. 39887 3373 0,08 -0,11 4,08 39734 2434 0,06 -0,06 2,81
70. 32338 1668 0,05 0,22 2,69 22953 3301 0,14 -0,25 3,09
71. 31367 2031 0,06 0,10 2,88 28126 5091 0,18 -0,30 2,92
72. 40867 2175 0,05 -0,23 2,76 35490 6581 0,19 -0,06 2,53
73. 13244 3724 0,28 0,67 2,69 12740 6442 0,51 0,80 3,00
74. 15260 2940 0,19 0,02 2,68 19553 5529 0,28 0,28 2,82
75. 27549 2746 0,10 0,01 2,32 35037 6444 0,18 0,07 2,66
76. 37476 2226 0,06 0,18 2,10 23063 5270 0,23 0,63 2,31
77. 15595 4839 0,31 0,59 2,97 21056 2258 0,11 0,41 3,21
78. 41184 3733 0,09 0,43 3,53 53489 2420 0,05 0,09 2,48
79. 50475 2422 0,05 0,07 3,06 33119 3474 0,10 -0,01 2,65
80. 37363 2462 0,07 0,04 3,63 29708 2151 0,07 -0,05 2,86
81. 15053 2166 0,14 0,44 2,36 25374 1321 0,05 0,43 3,24
82. 43752 3205 0,07 -0,39 3,41 38030 2393 0,06 0,24 2,34
83. 31551 2603 0,08 -0,13 3,03 43987 6739 0,15 -0,22 2,99
84. 11813 2168 0,18 0,15 2,33 17876 1302 0,07 0,28 2,78
85. 40807 2256 0,06 0,20 2,86 27135 2196 0,08 -0,50 3,27
86. 27619 1556 0,06 0,02 2,77 24641 4243 0,17 0,22 2,97
87. 22622 1391 0,06 -0,37 3,25 17381 1480 0,09 -0,15 3,19
88. 37074 2374 0,06 0,18 2,20 67728 3195 0,05 -0,18 3,06
89. 29476 1343 0,05 0,43 2,90 56240 3442 0,06 0,07 2,82
90. 35135 1855 0,05 0,01 2,71 55513 4263 0,08 -0,09 2,80
91. 34540 3824 0,11 0,33 2,31 59684 2249 0,04 0,16 2,90
92. 35672 2655 0,07 0,67 6,39 37734 2503 0,07 -0,13 2,92
93. 31227 1544 0,05 -0,32 2,50 51782 4373 0,08 -0,16 3,13
94. 18885 2394 0,13 0,46 2,69 32812 1477 0,05 0,75 3,78
95. 23736 1449 0,06 0,31 3,11 27774 2933 0,11 -0,48 3,66
96. 27770 2163 0,08 -0,66 4,24 30743 5277 0,17 -0,52 3,75
97. 41751 1883 0,05 0,14 2,72 31106 4068 0,13 -0,22 2,69
98. 36028 2034 0,06 0,21 2,61 53293 6028 0,11 -0,06 2,60
99. 33925 2385 0,07 0,01 3,25 39204 6030 0,15 0,10 2,86
100. 43452 3650 0,08 -0,29 2,62 43135 2630 0,06 0,16 2,73
101. 35769 2506 0,07 0,07 2,59 33612 6886 0,20 0,17 2,55
102. 42749 3596 0,08 -0,10 2,66 51484 2557 0,05 -0,29 3,26
103. 15930 1488 0,09 0,30 2,98 12288 2174 0,18 0,00 3,07
104. 34590 1757 0,05 0,30 2,88 26978 3049 0,11 -0,05 2,77
105. 24756 2687 0,11 -1,04 5,80 38000 5736 0,15 -0,70 3,93
106. 37715 3249 0,09 0,10 2,34 63179 3099 0,05 0,01 2,99
107. 13648 3529 0,26 0,28 2,28 19439 1916 0,10 0,32 2,30
108. 32136 1343 0,04 0,11 3,59 61578 3179 0,05 -0,32 3,31
109. 31157 2141 0,07 0,12 3,32 22233 1327 0,06 -0,53 3,80
110. 16040 4119 0,26 0,19 2,19 17918 2168 0,12 -0,15 2,79

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 206

inst. Distribution of CVP total effort (λ=200) Distribution of CIBI total effort (λ=200)
n. μ σ CV skew kurt μ σ CV skew kurt
111. 53126 1771 0,03 0,36 3,64 30429 3950 0,13 0,79 3,53
112. 23904 2912 0,12 -0,07 3,13 28287 1569 0,06 -0,02 3,00
113. 50782 3345 0,07 -0,36 3,10 31891 1631 0,05 0,34 3,23
114. 34631 2231 0,06 -0,26 3,05 52112 2896 0,06 -0,29 3,32
115. 49593 1959 0,04 0,16 2,59 48284 5806 0,12 0,07 3,22
116. 32191 2557 0,08 -0,18 2,66 31941 6446 0,20 -0,17 2,81
117. 41067 1782 0,04 0,47 3,09 25387 3482 0,14 0,42 2,74
118. 27265 2291 0,08 0,53 2,58 18542 5480 0,30 0,72 2,63
119. 34437 1841 0,05 0,03 2,92 44430 5124 0,12 -0,15 3,02
120. 20315 4290 0,21 -0,31 2,84 30398 8134 0,27 -0,07 2,96
121. 50915 1879 0,04 0,21 3,30 47962 6017 0,13 0,01 2,35
122. 34824 1879 0,05 -0,10 2,88 49960 3515 0,07 0,34 2,65
123. 28647 2146 0,07 0,09 2,77 33759 1895 0,06 0,08 3,11
124. 32857 4698 0,14 -0,48 3,47 25013 1938 0,08 -0,61 4,18
125. 51778 2030 0,04 0,19 2,78 29799 3653 0,12 0,46 2,78
126. 32220 3447 0,11 0,65 2,80 57029 2020 0,04 0,08 2,39
127. 19516 2076 0,11 0,47 2,44 13667 4328 0,32 0,86 3,07
128. 36126 1534 0,04 -0,19 2,69 69668 4640 0,07 -0,22 2,14
129. 26850 1334 0,05 0,02 3,08 38443 2901 0,08 -0,32 2,62
130. 26091 2225 0,09 0,11 2,87 23829 1522 0,06 -0,19 2,94
131. 46534 2015 0,04 0,15 2,38 45589 6012 0,13 -0,35 2,97
132. 23949 3701 0,15 0,32 2,73 35098 1558 0,04 0,18 2,56
133. 14341 1127 0,08 -0,19 2,92 20840 1619 0,08 -0,48 2,72
134. 45343 1684 0,04 0,04 2,73 32873 4976 0,15 -0,02 2,77
135. 48574 2040 0,04 -0,07 2,91 39189 4656 0,12 0,14 2,44
136. 31188 1904 0,06 -0,32 3,08 45765 3115 0,07 -0,12 3,24
137. 33499 2292 0,07 -0,41 3,36 58455 5928 0,10 -0,39 3,32
138. 38320 2104 0,05 0,29 3,26 59987 5163 0,09 -0,47 2,59
139. 21014 1822 0,09 -0,27 2,65 33532 1495 0,04 -0,25 2,96
140. 28708 5278 0,18 -0,18 2,77 33645 1977 0,06 0,04 2,92
141. 29392 1561 0,05 0,44 3,50 28040 2863 0,10 -0,30 2,72
142. 22450 2259 0,10 0,00 3,17 27348 1454 0,05 -0,04 2,95
143. 29545 2806 0,09 0,59 2,89 23065 6538 0,28 0,71 3,37
144. 28083 3658 0,13 -0,18 2,87 30103 1443 0,05 0,40 3,74
145. 44089 2953 0,07 -0,19 2,57 26921 1664 0,06 0,23 2,28
146. 38518 4373 0,11 0,07 2,77 43963 1963 0,04 0,19 2,82
147. 51180 2066 0,04 -0,02 2,32 34821 4532 0,13 0,17 2,07
148. 10225 1924 0,19 0,34 2,39 15937 1308 0,08 0,32 2,57
149. 30808 4014 0,13 -0,43 3,37 37462 1711 0,05 -0,10 2,45
150. 37505 3580 0,10 -0,09 2,77 26105 1431 0,05 -0,10 4,71
151. 25702 1433 0,06 0,35 2,76 39839 3245 0,08 -0,06 3,20
152. 37759 1659 0,04 0,03 2,94 40890 3898 0,10 -0,32 2,95
153. 49704 2758 0,06 -0,25 2,99 40178 3265 0,08 -0,19 2,61
154. 22699 2081 0,09 0,31 2,44 38012 1680 0,04 0,13 3,31
155. 27231 1182 0,04 -0,08 2,99 50379 2736 0,05 0,00 3,21
156. 24538 1454 0,06 -0,04 2,72 18903 2321 0,12 -0,21 2,49
157. 28814 1181 0,04 0,17 2,38 16390 2335 0,14 0,83 2,94
158. 32141 1406 0,04 0,51 3,95 31179 3745 0,12 0,02 2,88
159. 32256 2300 0,07 -0,65 4,04 36677 2530 0,07 -0,08 2,91
160. 36196 1680 0,05 0,50 3,54 23165 3604 0,16 0,51 2,68
161. 20235 1406 0,07 0,67 3,21 38146 1605 0,04 -0,10 3,46
162. 44185 3849 0,09 0,04 2,40 72040 3448 0,05 -0,32 2,95
163. 30046 4280 0,14 0,21 2,45 44795 1781 0,04 0,04 2,63
164. 19179 1553 0,08 -0,51 3,60 28096 3370 0,12 -0,09 3,37
165. 49555 3790 0,08 -0,09 2,59 58174 4184 0,07 -0,16 2,25
166. 15766 1112 0,07 0,43 2,44 9431 1783 0,19 0,46 1,99
167. 25475 3447 0,14 0,09 2,91 33043 1654 0,05 0,35 3,19
168. 30457 1348 0,04 0,08 3,00 48354 4126 0,09 -0,38 3,29
169. 21455 1376 0,06 0,55 5,59 32997 3017 0,09 -0,26 3,23
170. 21404 2232 0,10 0,24 2,92 16264 4675 0,29 0,45 2,79
171. 15957 1823 0,11 0,67 2,89 10451 2983 0,29 0,74 2,66
172. 25277 1251 0,05 0,30 2,84 15127 2075 0,14 0,23 2,16
173. 50934 2230 0,04 -0,20 2,81 28238 1813 0,06 -0,16 2,27
174. 19311 4229 0,22 0,91 3,51 31368 1981 0,06 0,70 3,54
175. 28141 1403 0,05 0,48 3,13 45182 3093 0,07 0,04 2,84
176. 34871 1525 0,04 0,35 2,85 58583 4050 0,07 -0,32 2,85
177. 33356 3844 0,12 -0,41 2,84 25611 1709 0,07 -0,43 3,94
178. 40746 2288 0,06 0,15 2,12 28634 6641 0,23 0,22 2,01
179. 41377 2503 0,06 -0,31 2,18 41948 2801 0,07 0,12 2,44
180. 25417 2789 0,11 -0,06 2,38 36227 1599 0,04 -0,15 2,78
181. 18328 1824 0,10 -0,25 2,90 18258 1184 0,06 -0,12 2,76
182. 47978 3105 0,06 -0,27 3,72 56555 4207 0,07 0,10 2,15
183. 12414 3002 0,24 -0,18 2,75 14664 1775 0,12 -0,40 2,66
184. 17399 1280 0,07 0,62 4,49 31545 1365 0,04 -0,22 2,42
185. 38127 1795 0,05 -0,24 2,39 27953 3801 0,14 0,04 2,73
186. 41291 1985 0,05 0,19 2,85 53689 5444 0,10 -0,37 3,20
187. 12978 1679 0,13 -0,35 2,84 11439 2744 0,24 -0,22 2,42
188. 54952 3150 0,06 0,05 3,11 38233 3429 0,09 0,10 3,14
189. 33210 1247 0,04 -0,13 2,99 42762 3803 0,09 -0,26 2,95
190. 27929 1869 0,07 -0,37 3,53 29488 4677 0,16 -0,28 3,95
191. 22021 5270 0,24 -0,01 2,51 27164 2192 0,08 0,01 2,18

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 207

inst. Distribution of CVP total effort (λ=200) Distribution of CIBI total effort (λ=200)
n. μ σ CV skew kurt μ σ CV skew kurt
192. 38027 1464 0,04 -0,03 2,67 21629 2904 0,13 0,64 2,70
193. 45504 1719 0,04 -0,18 2,25 29755 4705 0,16 0,28 2,43
194. 35747 2478 0,07 0,27 2,34 25907 6675 0,26 0,53 2,82
195. 37646 3203 0,09 -0,24 2,92 30354 1782 0,06 0,11 2,54
196. 12380 1769 0,14 -0,09 2,91 17953 1179 0,07 0,33 3,71
197. 28002 2057 0,07 0,29 2,48 19513 4629 0,24 0,36 2,56
198. 16934 1198 0,07 0,03 4,04 14437 1858 0,13 -0,56 4,30
199. 40609 2245 0,06 0,12 3,53 31257 2713 0,09 -0,42 2,90
200. 18837 2637 0,14 -0,55 3,11 28688 4909 0,17 -0,29 2,55
201. 53020 2789 0,05 -0,09 3,64 53086 4631 0,09 -0,05 2,93
202. 42274 2001 0,05 0,31 2,68 36969 4005 0,11 0,02 2,26
203. 34279 2817 0,08 -0,43 3,28 38678 2174 0,06 -0,34 2,71
204. 48784 1890 0,04 0,29 2,54 29656 4234 0,14 0,28 2,41
205. 40068 1827 0,05 -0,03 2,34 45826 5408 0,12 -0,31 3,55
206. 40146 2162 0,05 0,11 2,40 22555 1195 0,05 0,36 3,49
207. 29838 2230 0,07 -0,65 3,97 50063 5546 0,11 -0,47 3,58
208. 29387 1531 0,05 0,10 2,96 26202 2608 0,10 -0,25 2,72
209. 25993 1383 0,05 0,08 3,50 22655 2479 0,11 -0,36 3,37
210. 25106 2302 0,09 -0,25 3,04 38749 1980 0,05 0,07 3,67
211. 38675 3080 0,08 -0,44 2,60 59234 3017 0,05 0,28 2,84
212. 50923 2157 0,04 -0,26 2,91 34516 4821 0,14 0,20 2,71
213. 20576 4861 0,24 -0,06 2,24 23459 2307 0,10 0,00 2,68
214. 31900 2014 0,06 -0,04 3,48 49123 2747 0,06 -0,28 2,76
215. 29251 1439 0,05 0,03 2,23 36305 3353 0,09 0,03 2,61
216. 21042 5076 0,24 0,15 2,01 27514 2049 0,07 0,12 2,27
217. 12734 4825 0,38 0,50 2,18 15776 2557 0,16 0,34 2,04
218. 23876 1347 0,06 0,43 2,22 45187 1825 0,04 -0,30 2,84
219. 16198 2377 0,15 -0,36 2,83 18537 1394 0,08 -0,31 2,94
220. 32144 2399 0,07 -0,20 2,37 26594 1698 0,06 -0,06 3,09
221. 15804 3684 0,23 0,01 2,48 18549 6832 0,37 0,20 2,51
222. 35161 1619 0,05 0,32 3,38 25168 3848 0,15 -0,17 2,65
223. 9596 2589 0,27 0,87 3,11 14984 1516 0,10 0,65 3,01
224. 50034 1940 0,04 0,30 2,85 31205 5430 0,17 0,79 3,91
225. 13454 2251 0,17 -0,39 3,00 15510 3460 0,22 -0,32 2,98
226. 26754 2757 0,10 -0,12 2,38 29893 5915 0,20 -0,15 2,93
227. 22325 3080 0,14 0,70 2,50 38087 1575 0,04 -0,03 2,97
228. 33612 2298 0,07 0,38 3,08 40293 2915 0,07 0,12 2,61
229. 52631 3121 0,06 -0,34 2,84 55696 4762 0,09 -0,25 2,56
230. 36116 1590 0,04 -0,32 2,82 39744 4588 0,12 -0,12 3,45
231. 47100 2391 0,05 -0,15 3,02 56172 4738 0,08 -0,25 3,59
232. 29916 1701 0,06 -0,44 2,69 49807 4459 0,09 -0,27 2,59
233. 47348 3406 0,07 -0,24 2,92 39381 2840 0,07 -0,06 2,59
234. 15787 3884 0,25 -0,21 2,67 19672 7178 0,36 -0,04 2,85
235. 54687 2854 0,05 -0,30 3,10 31803 2126 0,07 -0,14 2,53
236. 22274 4735 0,21 0,04 2,50 27231 2020 0,07 -0,02 2,66
237. 29088 3317 0,11 0,39 2,30 22211 7272 0,33 0,43 2,22
238. 30202 2723 0,09 0,05 2,34 35611 6781 0,19 0,27 2,69
239. 35073 3217 0,09 -0,09 2,85 24633 1162 0,05 -0,25 3,14
240. 21819 2681 0,12 -0,05 2,78 23474 1213 0,05 0,15 2,79
241. 37920 3348 0,09 -0,43 3,23 42797 2595 0,06 -0,25 3,23
242. 19391 998 0,05 -0,14 2,42 31854 2482 0,08 -0,44 3,22
243. 37038 3571 0,10 1,26 5,66 65584 2572 0,04 -0,06 2,75
244. 33656 1613 0,05 -0,13 3,15 34197 3739 0,11 0,01 2,65
245. 32870 1454 0,04 0,18 3,27 47812 4093 0,09 -0,25 3,44
246. 41239 1862 0,05 0,20 2,71 52257 4484 0,09 -0,71 3,69
247. 33557 2302 0,07 -0,47 2,77 33925 5751 0,17 -0,50 2,97
248. 50693 2505 0,05 0,21 3,13 32538 3191 0,10 0,20 2,69
249. 36327 1365 0,04 0,19 2,56 69827 3996 0,06 -0,59 3,27
250. 36717 1947 0,05 0,03 2,68 57323 3664 0,06 -0,17 2,81
251. 43159 2544 0,06 0,03 3,40 30903 3216 0,10 -0,20 2,62
252. 19989 2058 0,10 -0,12 2,98 18956 4241 0,22 0,05 2,75
253. 39428 1613 0,04 0,41 3,15 26553 3193 0,12 0,17 3,22
254. 12535 4427 0,35 -0,03 2,35 16615 7739 0,47 0,01 2,33
255. 48652 1986 0,04 -0,13 3,32 42890 5718 0,13 0,07 2,59
256. 28852 1425 0,05 -0,26 3,13 52484 3815 0,07 -0,19 2,91
257. 23031 1758 0,08 0,24 3,06 38490 2083 0,05 -0,21 2,59
258. 32754 3185 0,10 -0,52 3,74 44246 8146 0,18 -0,28 3,56
259. 29307 1598 0,05 0,39 3,95 30500 4163 0,14 0,11 2,62
260. 25623 3564 0,14 -0,20 2,57 24757 1599 0,06 -0,49 3,78
261. 18673 4291 0,23 0,20 2,75 21049 2070 0,10 0,13 2,42
262. 31876 1509 0,05 0,14 2,90 60112 3330 0,06 0,11 2,39
263. 28031 3687 0,13 0,68 3,76 45755 1769 0,04 0,25 3,28
264. 15209 3016 0,20 -0,40 3,06 20442 5048 0,25 -0,28 2,87
265. 23917 1300 0,05 0,15 3,00 15405 2362 0,15 0,22 2,76
266. 24119 1411 0,06 0,03 4,16 40097 3299 0,08 -0,26 3,02
267. 5239 1530 0,29 0,83 2,90 4020 1989 0,49 0,90 2,80
268. 33173 1386 0,04 0,59 3,40 61364 4372 0,07 -0,61 3,92
269. 36974 1324 0,04 -0,04 2,97 66154 4461 0,07 -0,10 3,03
270. 33899 1428 0,04 -0,14 2,93 62375 3203 0,05 -0,09 2,66
271. 19563 1198 0,06 0,49 3,40 15031 1340 0,09 -0,38 2,94
272. 53392 2012 0,04 -0,03 2,57 31807 4178 0,13 1,03 5,02

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 208

inst. Distribution of CVP total effort (λ=200) Distribution of CIBI total effort (λ=200)
n. μ σ CV skew kurt μ σ CV skew kurt
273. 38540 2712 0,07 0,22 3,52 39029 6613 0,17 -0,03 3,23
274. 34543 2982 0,09 0,00 2,42 52718 3124 0,06 -0,47 2,97
275. 31848 4327 0,14 -0,28 2,58 31438 1576 0,05 0,46 3,56
276. 30049 1948 0,06 -0,19 2,45 46667 5050 0,11 -0,11 2,76
277. 32657 1650 0,05 0,41 3,03 26074 3693 0,14 0,00 2,87
278. 20532 4486 0,22 0,28 2,27 30767 1831 0,06 0,54 3,24
279. 28077 5064 0,18 -0,31 2,83 30462 2121 0,07 -0,38 2,61
280. 45853 2040 0,04 0,04 3,15 31231 5309 0,17 0,22 2,46
281. 34567 4907 0,14 0,45 2,96 44880 1876 0,04 -0,14 2,98
282. 15420 2837 0,18 -0,14 2,39 17597 1530 0,09 -0,18 2,71
283. 51866 2615 0,05 -0,35 2,62 27027 1198 0,04 0,69 3,60
284. 40670 1977 0,05 -0,14 2,72 45077 4705 0,10 0,07 2,33
285. 47102 2180 0,05 -0,28 2,98 44529 5900 0,13 -0,14 3,80
286. 22265 2601 0,12 -0,13 2,88 21756 5574 0,26 0,03 2,71
287. 40959 3018 0,07 0,67 3,12 73848 3515 0,05 0,10 2,61
288. 34471 1485 0,04 0,09 2,75 63058 4091 0,06 -0,27 2,37
289. 18221 6073 0,33 0,19 2,68 20071 3050 0,15 0,07 2,79
290. 30000 2050 0,07 -0,95 4,05 33140 5555 0,17 -0,48 3,31
291. 15609 4141 0,27 0,34 2,91 20855 2141 0,10 0,38 3,00
292. 34748 1809 0,05 0,02 2,42 50706 4470 0,09 -0,40 3,00
293. 30382 1672 0,06 -0,10 3,00 21826 3743 0,17 0,05 3,02
294. 46500 2918 0,06 0,30 2,58 48747 4022 0,08 -0,04 2,49
295. 37544 3554 0,09 0,01 2,67 53602 2753 0,05 -0,13 3,02
296. 17976 1488 0,08 0,00 3,23 25533 2898 0,11 0,07 2,15
297. 55686 2084 0,04 0,26 3,24 32751 4954 0,15 0,67 2,86
298. 39255 2440 0,06 -0,16 2,60 39441 6850 0,17 -0,16 2,60
299. 10978 1950 0,18 0,33 2,38 8407 2959 0,35 0,47 2,67
300. 17420 1326 0,08 -0,20 2,82 22950 3028 0,13 -0,15 2,96
301. 32925 1565 0,05 0,05 2,62 44895 4286 0,10 0,02 2,48
302. 38221 2865 0,07 -0,14 2,78 39951 2306 0,06 -0,98 5,79
303. 31813 1679 0,05 -0,07 2,57 45144 4714 0,10 0,21 2,34
304. 41978 1849 0,04 0,17 2,56 25890 4436 0,17 0,62 2,74
305. 34785 4637 0,13 -0,42 2,96 25737 2193 0,09 -0,21 3,06
306. 35705 1853 0,05 0,15 2,84 36058 4725 0,13 -0,30 3,00
307. 19223 1818 0,09 0,02 2,76 19345 1229 0,06 -0,38 3,12
308. 12103 3675 0,30 0,62 3,31 16297 2032 0,12 0,31 2,62
309. 18758 5650 0,30 0,05 2,40 19418 2834 0,15 -0,05 2,10
310. 27234 2928 0,11 0,11 2,73 26568 6454 0,24 0,28 2,91
311. 30445 1661 0,05 -0,42 3,71 20809 2211 0,11 0,02 2,40
312. 42307 2129 0,05 0,42 2,96 30897 6997 0,23 0,64 3,26
313. 17205 1281 0,07 -0,13 2,90 23438 2641 0,11 -0,39 3,08
314. 27664 2352 0,09 -0,31 2,38 46146 5443 0,12 -0,09 2,34
315. 21113 1380 0,07 -0,31 4,26 29091 1925 0,07 0,06 3,62
316. 36454 2721 0,07 -0,06 2,92 34812 2462 0,07 -0,31 2,58
317. 16995 1196 0,07 0,83 4,14 19500 1785 0,09 -0,22 2,56
318. 20661 1238 0,06 0,03 2,98 18701 1888 0,10 -0,66 3,36
319. 42966 2225 0,05 -0,17 2,85 41480 3893 0,09 -0,42 3,27
320. 32609 2064 0,06 -0,40 3,14 59322 5534 0,09 -0,47 3,27
321. 31524 3128 0,10 -0,24 2,67 25085 1365 0,05 0,07 3,28
322. 31336 4394 0,14 -0,19 2,64 35276 1837 0,05 0,32 3,50
323. 18926 1587 0,08 -0,16 2,97 21224 3177 0,15 -0,29 3,56
324. 18665 1621 0,09 -0,26 3,02 15838 3220 0,20 0,17 3,23
325. 41576 1798 0,04 -0,19 2,96 45466 5111 0,11 -0,39 2,63
326. 28233 1718 0,06 0,13 2,70 22191 3621 0,16 -0,25 2,71
327. 26583 1900 0,07 -0,22 2,49 22091 4253 0,19 0,06 2,42
328. 30860 2772 0,09 0,13 2,38 33237 6643 0,20 0,09 2,52
329. 25665 1763 0,07 0,07 2,41 34611 4311 0,12 -0,19 2,32
330. 33051 2057 0,06 0,17 2,82 32805 5355 0,16 0,12 2,38
331. 30718 1340 0,04 -0,09 2,58 21145 2824 0,13 0,18 2,79
332. 23912 1818 0,08 -0,66 3,81 22149 3975 0,18 -0,31 3,19
333. 33256 2387 0,07 -0,43 3,08 39089 2320 0,06 -0,03 2,54
334. 31515 2091 0,07 -0,21 3,01 47766 5652 0,12 -0,33 3,37
335. 50726 2638 0,05 0,23 2,65 55901 4960 0,09 -0,31 2,93
336. 22149 1357 0,06 -0,20 3,64 34931 3318 0,09 -0,21 3,69
337. 34845 1723 0,05 -0,08 3,41 45622 5143 0,11 -0,07 2,61
338. 22242 2489 0,11 -0,10 2,55 29149 5246 0,18 0,13 2,69
339. 47593 2266 0,05 -0,27 3,56 29572 3304 0,11 0,44 3,13
340. 42441 1836 0,04 0,33 2,55 39954 5014 0,13 -0,23 2,52
341. 21155 2462 0,12 -0,38 2,99 30116 4868 0,16 -0,15 2,90
342. 19513 1190 0,06 0,58 3,26 11560 2000 0,17 0,76 3,07
343. 17330 3173 0,18 0,95 3,53 13720 6091 0,44 0,94 3,13
344. 37341 3298 0,09 -0,29 3,07 52405 2758 0,05 -0,48 3,93
345. 29206 2940 0,10 -0,43 3,52 32278 6500 0,20 -0,29 3,58
346. 19833 2984 0,15 0,14 3,02 20859 6215 0,30 0,46 2,85
347. 40520 1742 0,04 -0,03 2,79 62322 4452 0,07 -0,06 2,66
348. 51904 2399 0,05 0,16 3,53 52765 6287 0,12 -0,26 3,25
349. 17993 1227 0,07 0,05 2,38 16750 1438 0,09 -0,08 2,91
350. 24897 4209 0,17 -0,17 3,46 20044 1878 0,09 -1,07 4,46
351. 39420 2285 0,06 0,00 2,68 56626 3757 0,07 0,15 3,27
352. 52214 2932 0,06 0,26 2,96 47964 3198 0,07 -0,29 3,37
353. 13390 3291 0,25 0,24 2,13 18760 1759 0,09 0,44 2,71

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 209

inst. Distribution of CVP total effort (λ=200) Distribution of CIBI total effort (λ=200)
n. μ σ CV skew kurt μ σ CV skew kurt
354. 54432 2683 0,05 -0,12 2,42 33586 2872 0,09 -0,10 2,79
355. 26647 2311 0,09 -0,26 3,25 29696 5716 0,19 0,12 3,19
356. 35569 1499 0,04 0,29 2,96 56928 4370 0,08 -0,19 3,35
357. 40034 1837 0,05 0,01 2,59 46901 5847 0,12 -0,61 3,42
358. 19633 2080 0,11 -0,42 3,27 19440 4267 0,22 -0,16 3,08
359. 20696 2220 0,11 0,28 3,30 18313 4307 0,24 0,05 2,68
360. 14962 4220 0,28 0,62 2,92 20946 2227 0,11 0,40 2,23
361. 32979 1613 0,05 0,12 2,86 20252 2730 0,13 -0,06 2,12
362. 18075 3777 0,21 0,14 2,34 23523 1833 0,08 0,22 2,49
363. 30759 3025 0,10 0,35 2,47 54573 2043 0,04 -0,36 2,98
364. 29671 1350 0,05 -0,32 2,68 22185 2832 0,13 0,41 2,92
365. 19997 1503 0,08 -0,49 2,83 29650 1688 0,06 0,05 3,30
366. 33628 4293 0,13 0,09 2,37 52987 2062 0,04 -0,32 2,40
367. 57364 2565 0,04 0,20 2,60 50978 5339 0,10 -0,30 3,02
368. 34732 2352 0,07 0,10 2,88 32979 2531 0,08 -0,44 3,86
369. 48939 2542 0,05 -0,02 2,83 35649 3600 0,10 0,04 2,88
370. 54076 2758 0,05 -0,14 3,03 44148 4036 0,09 0,08 3,63
371. 36936 1636 0,04 0,01 3,72 60799 4455 0,07 0,00 2,31
372. 25841 2380 0,09 0,29 2,82 20972 5291 0,25 0,41 2,95
373. 39117 1665 0,04 0,50 3,60 22166 2406 0,11 0,45 2,70
374. 18160 1283 0,07 -0,18 2,70 28015 1985 0,07 0,00 2,61
375. 9541 2369 0,25 -0,03 2,10 12567 1611 0,13 0,02 2,31
376. 26758 2139 0,08 0,37 3,08 20576 4947 0,24 0,03 2,07
377. 52930 2441 0,05 -0,66 3,79 36077 3948 0,11 0,12 3,38
378. 27469 4537 0,17 -0,21 2,28 34159 1826 0,05 0,03 2,91
379. 41186 1657 0,04 0,68 3,66 27553 5284 0,19 0,47 2,48
380. 31053 2610 0,08 -0,27 3,12 25795 1172 0,05 0,09 2,60
381. 23806 2539 0,11 -0,36 2,74 34018 5530 0,16 -0,05 2,87
382. 24976 2271 0,09 0,00 2,89 40957 1924 0,05 0,05 3,55
383. 43942 1749 0,04 -0,04 2,52 53729 5568 0,10 -0,06 4,40
384. 12689 3440 0,27 -0,22 2,12 14357 5811 0,40 -0,14 2,20
385. 43420 3884 0,09 -0,13 2,59 45221 2383 0,05 0,42 3,25
386. 40323 2241 0,06 -0,14 3,76 57876 4178 0,07 0,20 3,08
387. 33431 4230 0,13 -0,55 3,07 29116 1836 0,06 -0,15 2,62
388. 40270 1925 0,05 0,35 3,48 57389 5198 0,09 -0,28 3,57
389. 23179 2981 0,13 0,13 3,21 35393 5864 0,17 0,16 3,09
390. 29044 3124 0,11 0,62 2,55 51901 2039 0,04 -0,27 3,24
391. 39211 3878 0,10 -0,09 2,82 37997 1769 0,05 0,22 3,22
392. 38704 2915 0,08 -0,14 2,74 62828 3962 0,06 -0,20 2,47
393. 31508 2667 0,08 -0,16 2,45 51693 6157 0,12 0,04 2,58
394. 19179 1344 0,07 -0,10 2,41 18366 1962 0,11 0,02 3,33
395. 32326 1737 0,05 0,43 3,27 24752 2091 0,08 -0,31 2,96
396. 44369 3128 0,07 -0,16 3,47 27075 1230 0,05 0,47 3,68
397. 18323 1608 0,09 0,35 2,72 32389 1436 0,04 0,21 2,91
398. 29996 2059 0,07 0,29 3,35 49361 2984 0,06 -0,07 3,20
399. 21878 2033 0,09 0,75 2,98 39401 1593 0,04 0,10 2,43
400. 49681 3076 0,06 -0,11 2,20 32633 2045 0,06 0,48 3,97
401. 29988 1649 0,06 0,13 2,95 39759 3509 0,09 -0,45 2,67
402. 17583 937 0,05 0,27 2,68 32312 1496 0,05 -0,37 2,79
403. 26248 4650 0,18 0,37 2,48 40269 1885 0,05 0,34 3,15
404. 28398 1610 0,06 -0,21 2,53 36779 2842 0,08 -0,26 2,96
405. 14553 2206 0,15 -0,02 2,53 21883 1154 0,05 -0,25 2,48
406. 24307 2139 0,09 -0,27 3,46 25080 4485 0,18 -0,43 3,48
407. 25353 2554 0,10 -0,08 2,23 29960 6188 0,21 -0,14 2,42
408. 33072 1754 0,05 0,44 3,30 60234 3590 0,06 -0,31 3,56
409. 38320 2886 0,08 -0,24 2,52 44106 3077 0,07 -0,24 3,28
410. 20544 1594 0,08 -0,35 3,18 24370 1496 0,06 -0,25 3,05
411. 28190 5296 0,19 0,14 2,79 26760 2063 0,08 -0,03 2,94
412. 46916 2993 0,06 0,22 3,09 32798 2232 0,07 -0,01 2,80
413. 31412 1872 0,06 0,31 2,73 37116 3238 0,09 -0,20 2,74
414. 33489 4493 0,13 0,04 3,25 43348 1948 0,04 0,53 3,70
415. 23696 2737 0,12 -0,04 3,84 33147 5974 0,18 -0,03 3,85
416. 22390 3004 0,13 0,00 2,51 20191 6080 0,30 0,03 2,29
417. 25732 1832 0,07 0,96 4,98 48319 2027 0,04 -0,28 3,04
418. 17974 1321 0,07 -0,21 2,82 31115 1534 0,05 -0,06 3,50
419. 41911 1968 0,05 0,59 3,53 41756 5310 0,13 -0,07 2,28
420. 23017 1311 0,06 0,05 2,70 17865 2868 0,16 -0,07 2,33
421. 39661 2563 0,06 -0,05 3,06 52662 3661 0,07 -0,58 3,41
422. 53741 2020 0,04 0,12 2,67 31140 3461 0,11 0,60 3,12
423. 40990 2458 0,06 0,29 3,83 36963 2742 0,07 -0,20 2,78
424. 41372 1702 0,04 0,08 3,04 35258 4818 0,14 -0,13 2,87
425. 19282 1828 0,09 -0,42 2,51 24577 3941 0,16 -0,29 2,30
426. 31823 1981 0,06 0,50 3,63 41443 4672 0,11 0,44 3,73
427. 35408 2112 0,06 -0,50 3,48 27194 5205 0,19 -0,27 2,58
428. 21288 2024 0,10 0,56 2,41 14385 4071 0,28 0,76 2,92
429. 54847 3032 0,06 0,19 2,48 43081 4215 0,10 -0,07 2,40
430. 44552 1969 0,04 0,15 2,22 37359 4604 0,12 -0,06 2,70
431. 33416 1950 0,06 0,62 4,22 62581 2777 0,04 -0,15 3,06
432. 31739 1685 0,05 0,16 2,71 44881 3888 0,09 -0,21 2,72
433. 27772 1593 0,06 -0,17 3,29 24923 2222 0,09 -0,16 3,82
434. 23412 1943 0,08 0,61 2,49 15000 3929 0,26 0,64 2,47

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 210

inst. Distribution of CVP total effort (λ=200) Distribution of CIBI total effort (λ=200)
n. μ σ CV skew kurt μ σ CV skew kurt
435. 47435 2928 0,06 -0,31 3,26 62925 4781 0,08 0,22 2,42
436. 47069 1737 0,04 0,20 2,93 26817 2487 0,09 0,27 2,05
437. 44690 2499 0,06 -0,18 3,07 42416 3891 0,09 -0,03 3,40
438. 26231 1526 0,06 0,12 3,12 25024 2771 0,11 -0,29 2,67
439. 26541 1882 0,07 0,09 2,40 47548 2177 0,05 -0,11 2,86
440. 24321 3378 0,14 -0,25 2,56 30917 1676 0,05 -0,18 2,95
441. 40501 3166 0,08 -0,34 2,81 32372 1948 0,06 -0,29 3,00
442. 23256 2204 0,09 -0,24 2,81 23347 4998 0,21 -0,20 2,82
443. 36598 1823 0,05 0,05 2,93 63120 3487 0,06 -0,16 2,80
444. 21617 2850 0,13 0,12 3,57 19527 1361 0,07 0,05 3,19
445. 56265 2473 0,04 -0,27 3,67 39965 4161 0,10 0,15 3,14
446. 20817 2244 0,11 -0,37 3,07 19634 1311 0,07 0,29 2,86
447. 34459 4360 0,13 0,02 2,85 38477 1828 0,05 0,22 2,73
448. 18389 4436 0,24 0,20 2,30 24254 2007 0,08 -0,04 2,39
449. 40581 2145 0,05 0,94 6,21 40570 4316 0,11 -0,40 3,05
450. 13125 1165 0,09 -0,14 2,74 17859 1332 0,07 0,06 2,84
451. 42809 1797 0,04 -0,07 3,35 41279 5294 0,13 -0,44 3,19
452. 40893 4326 0,11 0,10 2,52 58190 2898 0,05 -0,07 2,33
453. 17487 1450 0,08 -0,04 3,11 19253 1354 0,07 -0,06 2,80
454. 25160 1340 0,05 0,27 2,54 38592 2869 0,07 0,20 3,64
455. 17906 1718 0,10 -0,01 3,88 18166 3611 0,20 -0,20 2,71
456. 21742 4815 0,22 0,58 4,12 28157 1934 0,07 0,28 2,94
457. 29088 2685 0,09 -0,15 2,75 47476 6317 0,13 -0,01 2,64
458. 30402 1716 0,06 -0,56 4,48 19607 1317 0,07 -0,25 2,76
459. 48193 2417 0,05 -0,32 3,45 31365 2839 0,09 -0,28 2,89
460. 36245 2136 0,06 -0,07 2,54 38815 6022 0,16 0,07 3,10
461. 24783 1225 0,05 0,65 3,66 39301 2978 0,08 0,06 2,36
462. 44670 3620 0,08 0,02 2,49 54358 3370 0,06 0,16 2,66
463. 31400 2542 0,08 -0,35 2,60 48312 2159 0,04 -0,29 3,06
464. 50486 2388 0,05 0,12 4,21 55322 4155 0,08 -0,37 3,65
465. 44929 2206 0,05 0,17 3,02 63787 5313 0,08 -0,10 3,91
466. 17460 2086 0,12 -0,07 2,55 14810 4024 0,27 -0,10 2,28
467. 45219 1945 0,04 -0,51 4,19 49796 6399 0,13 -0,17 3,06
468. 38028 1773 0,05 0,14 2,22 70083 5565 0,08 -0,32 3,13
469. 8448 2665 0,32 0,40 2,29 8366 4071 0,49 0,42 2,31
470. 41673 2087 0,05 0,40 2,55 26147 5247 0,20 0,64 2,77
471. 23055 1406 0,06 0,30 2,77 31953 3228 0,10 -0,46 2,75
472. 36534 1414 0,04 -0,03 3,79 53030 4479 0,08 -0,09 2,94
473. 49282 1864 0,04 0,14 3,06 37997 6441 0,17 -0,25 2,55
474. 20485 4370 0,21 -0,01 2,46 26761 1862 0,07 -0,14 2,25
475. 31436 2011 0,06 -0,37 3,08 39728 5455 0,14 -0,03 2,97
476. 26163 1686 0,06 0,00 3,42 27692 3924 0,14 -0,48 3,39
477. 38031 2142 0,06 0,23 2,98 65856 3340 0,05 -0,41 2,79
478. 14781 3056 0,21 0,09 2,76 17762 1592 0,09 -0,08 3,20
479. 10495 2670 0,25 -0,25 2,48 12707 4038 0,32 -0,19 2,37
480. 14471 4653 0,32 0,27 1,90 17964 2401 0,13 0,12 1,97
481. 10345 2150 0,21 -0,27 2,15 11834 3137 0,27 -0,21 2,35
482. 46041 1509 0,03 0,06 2,79 26221 3057 0,12 0,73 3,51
483. 33371 1722 0,05 -0,64 4,36 26539 2618 0,10 0,14 2,88
484. 13630 3523 0,26 0,20 2,24 14165 6245 0,44 0,23 2,40
485. 42605 2221 0,05 0,05 2,79 43473 4229 0,10 0,03 3,29
486. 45835 2816 0,06 -0,68 4,90 28165 1616 0,06 0,14 2,85
487. 14545 2537 0,17 0,37 2,28 11791 4511 0,38 0,38 2,06
488. 46257 1923 0,04 -0,03 2,50 35828 4852 0,14 -0,18 2,86
489. 41570 1736 0,04 -0,21 2,54 27692 5138 0,19 0,13 2,08
490. 39436 4053 0,10 -0,05 2,79 40867 1845 0,05 0,48 3,29
491. 34810 2221 0,06 0,01 3,47 44111 6184 0,14 0,14 3,70
492. 22449 3190 0,14 0,54 2,86 17938 6822 0,38 0,72 3,32
493. 54843 2971 0,05 -0,17 2,56 40100 3621 0,09 0,21 2,72
494. 32016 1846 0,06 -0,03 2,99 28633 2821 0,10 -0,35 3,15
495. 51971 2080 0,04 0,18 2,98 43972 6121 0,14 -0,24 2,32
496. 29309 3648 0,12 -0,12 2,60 25673 1508 0,06 -0,31 2,77
497. 36524 1429 0,04 0,65 3,84 68804 4216 0,06 -0,05 3,09
498. 22920 2187 0,10 0,42 2,94 16641 4367 0,26 0,21 2,16
499. 39464 1938 0,05 0,15 2,65 31137 6009 0,19 -0,01 2,59
500. 24465 1022 0,04 -0,41 3,62 43159 3215 0,07 -0,78 3,24
501. 52362 2409 0,05 -0,17 2,77 30747 2738 0,09 0,54 3,48
502. 40757 2248 0,06 0,01 3,01 37958 3260 0,09 -0,04 3,01
503. 13399 3198 0,24 0,13 1,94 19735 1659 0,08 0,08 2,23
504. 22762 1263 0,06 0,18 2,91 31798 3056 0,10 0,34 2,78
505. 29441 1763 0,06 1,02 5,39 18844 2312 0,12 0,11 2,54
506. 42130 2128 0,05 0,14 2,28 35349 6695 0,19 -0,06 2,48
507. 40594 2224 0,05 -0,01 2,55 54419 4276 0,08 -0,38 2,77
508. 40956 1857 0,05 0,37 2,70 48462 3971 0,08 -0,28 3,33
509. 55852 2292 0,04 0,13 2,60 40160 5452 0,14 -0,05 2,77
510. 33653 1905 0,06 0,18 3,56 48893 3175 0,06 -0,13 2,87
511. 22684 4278 0,19 -0,44 2,62 25568 1912 0,07 -0,41 2,77
512. 9633 3824 0,40 0,62 2,14 13139 2227 0,17 0,47 2,13
513. 30683 1646 0,05 -0,27 2,84 52163 3210 0,06 -0,15 2,44
514. 37420 1621 0,04 0,24 2,64 23041 2484 0,11 0,14 2,55
515. 27613 2451 0,09 0,36 2,87 47833 2292 0,05 0,07 2,46

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 211

inst. Distribution of CVP total effort (λ=200) Distribution of CIBI total effort (λ=200)
n. μ σ CV skew kurt μ σ CV skew kurt
516. 43277 1890 0,04 0,44 3,42 26243 4073 0,16 0,43 2,36
517. 9535 3158 0,33 0,10 3,27 10983 5096 0,46 0,33 3,48
518. 27717 2403 0,09 0,87 3,08 50859 1899 0,04 -0,19 3,53
519. 38091 2317 0,06 0,15 2,91 41580 3373 0,08 -0,30 2,72
520. 18466 4047 0,22 -0,25 2,54 27198 7358 0,27 -0,20 2,50
521. 17707 3485 0,20 0,49 3,56 25302 1701 0,07 0,21 2,54
522. 49519 2121 0,04 0,15 3,12 34935 4491 0,13 0,25 2,53
523. 26394 1714 0,06 -0,63 3,66 38230 4433 0,12 -0,23 3,05
524. 20599 1238 0,06 0,19 2,51 36717 2314 0,06 -0,95 3,85
525. 35375 1753 0,05 -0,08 2,48 53499 3947 0,07 -0,20 2,66
526. 24873 1561 0,06 -0,10 2,18 39055 2772 0,07 -0,01 2,41
527. 45702 1915 0,04 0,52 4,22 32438 4130 0,13 0,10 2,74
528. 36065 1669 0,05 0,08 2,87 58666 5448 0,09 -0,17 2,39
529. 26043 5036 0,19 0,48 2,42 39610 1943 0,05 0,10 2,55
530. 26203 1529 0,06 -0,09 3,24 18417 1569 0,09 -0,59 3,35
531. 16173 1300 0,08 -0,22 2,47 10730 2045 0,19 -0,10 2,22
532. 24530 2313 0,09 -0,56 3,88 28613 1628 0,06 0,08 3,26
533. 11723 2146 0,18 -0,18 2,66 12455 3556 0,29 0,07 3,11
534. 25220 1248 0,05 0,06 3,14 42599 3589 0,08 -0,39 3,00
535. 33487 2254 0,07 0,17 2,88 47323 3139 0,07 -0,34 3,28
536. 31631 2912 0,09 -0,33 2,34 48717 2582 0,05 -0,39 4,37
537. 35248 1875 0,05 0,61 3,11 41265 5597 0,14 -0,14 3,02
538. 18734 1558 0,08 -0,07 2,61 24930 1814 0,07 -0,09 3,08
539. 23840 2302 0,10 0,26 2,60 39884 1807 0,05 -0,08 2,99
540. 17004 3580 0,21 -0,08 3,10 22633 6278 0,28 0,03 2,99
541. 39631 4370 0,11 0,30 2,03 66917 2703 0,04 -0,08 3,06
542. 29655 1783 0,06 -0,31 3,35 49501 4576 0,09 -0,25 2,76
543. 14216 1233 0,09 0,35 2,67 14232 1368 0,10 -0,19 3,21
544. 42885 2301 0,05 -0,24 4,07 25761 2017 0,08 0,13 2,82
545. 37838 1985 0,05 0,13 2,21 27966 5839 0,21 0,28 2,26
546. 37907 1979 0,05 0,18 3,39 34898 3587 0,10 -0,23 3,05
547. 21949 3372 0,15 -0,11 2,53 24992 1521 0,06 0,41 2,91
548. 42661 2221 0,05 -0,19 3,00 38353 3076 0,08 -0,32 2,69
549. 34740 1942 0,06 0,34 2,49 65375 2795 0,04 -0,22 2,75
550. 21438 1714 0,08 -0,34 2,77 19548 1369 0,07 0,22 2,32
551. 30848 1516 0,05 0,22 2,61 21496 3172 0,15 -0,02 2,44
552. 24706 5023 0,20 0,21 2,66 25058 2124 0,08 0,01 2,43
553. 24064 2647 0,11 -0,16 2,90 39898 5736 0,14 0,08 2,66
554. 19726 2027 0,10 -0,11 3,08 17647 1202 0,07 0,24 3,02
555. 34475 3813 0,11 -0,27 2,77 30650 1428 0,05 0,14 3,19
556. 32407 1767 0,05 0,27 2,65 30127 4156 0,14 -0,21 2,43
557. 49648 2031 0,04 -0,02 3,51 35042 3856 0,11 -0,36 2,80
558. 43589 2920 0,07 -0,27 3,65 49351 3199 0,06 0,12 3,12
559. 19463 1227 0,06 0,16 2,57 27223 2704 0,10 -0,22 3,43
560. 22944 1221 0,05 0,28 3,27 27826 2719 0,10 0,10 3,16
561. 36985 2309 0,06 0,10 2,32 51039 2968 0,06 -0,32 3,47
562. 35837 1845 0,05 -0,50 3,80 29476 3284 0,11 -0,19 2,67
563. 31668 1899 0,06 -0,18 2,56 22461 4327 0,19 0,08 2,66
564. 31890 3203 0,10 -0,07 2,67 44055 2151 0,05 0,44 3,21
565. 12547 5034 0,40 0,86 2,99 16098 2599 0,16 0,73 2,92
566. 35462 1747 0,05 0,04 3,12 27132 2391 0,09 -0,15 2,68
567. 21091 1548 0,07 -0,03 3,55 25044 1952 0,08 0,00 3,45
568. 40263 2018 0,05 -0,10 2,47 46872 6020 0,13 0,27 2,80
569. 23661 2153 0,09 -0,08 2,45 37624 1562 0,04 0,09 2,88
570. 51757 2003 0,04 -0,28 3,09 28279 2493 0,09 0,82 3,08
571. 31233 2233 0,07 0,16 3,06 38182 2184 0,06 -0,23 2,63
572. 30945 1647 0,05 0,16 3,01 35760 4378 0,12 0,04 2,79
573. 22999 4011 0,17 0,42 2,33 34488 1715 0,05 0,44 3,19
574. 33097 2587 0,08 -0,56 3,65 32697 7037 0,22 -0,30 2,59
575. 21882 4588 0,21 0,50 2,65 33482 1788 0,05 0,57 2,83
576. 38709 1400 0,04 0,38 3,00 22506 3427 0,15 0,69 2,54
577. 28627 2222 0,08 -0,08 2,09 20809 5037 0,24 0,04 1,95
578. 40406 1970 0,05 -0,15 2,31 52236 4827 0,09 -0,19 2,55
579. 15057 2655 0,18 -0,63 2,95 19721 4571 0,23 -0,36 2,50
580. 22267 1272 0,06 0,15 2,59 16220 1862 0,11 -0,55 3,50
581. 18134 1835 0,10 -0,80 4,09 24842 3965 0,16 -0,39 3,31
582. 39236 3414 0,09 0,29 3,18 65049 3182 0,05 0,11 3,29
583. 25605 3413 0,13 -0,49 3,29 25155 1317 0,05 -0,09 2,80
584. 36554 2822 0,08 -0,24 2,90 23653 1330 0,06 0,50 3,20
585. 34690 1687 0,05 0,13 2,99 53819 4541 0,08 -0,52 3,69
586. 38021 3814 0,10 0,12 3,29 40250 1960 0,05 -0,01 3,09
587. 33683 2062 0,06 -0,15 2,42 54779 3175 0,06 -0,35 2,73
588. 26556 1966 0,07 0,10 2,23 33497 4747 0,14 0,04 2,22
589. 40056 1956 0,05 0,01 2,82 54212 4902 0,09 -0,41 3,35
590. 54939 1900 0,03 -0,17 2,76 37713 6200 0,16 0,03 2,31
591. 20298 2118 0,10 -0,58 3,44 22856 4298 0,19 -0,63 3,18
592. 19398 4346 0,22 -0,01 3,03 22596 2061 0,09 -0,34 2,87
593. 32986 1413 0,04 0,01 2,52 62739 4127 0,07 -0,41 2,72
594. 43512 2965 0,07 0,63 4,43 65049 4581 0,07 -0,14 4,24
595. 30842 3070 0,10 -0,13 2,53 46144 7555 0,16 0,33 3,01
596. 25025 2155 0,09 -0,18 2,64 33570 5347 0,16 -0,03 2,65

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 212

inst. Distribution of CVP total effort (λ=200) Distribution of CIBI total effort (λ=200)
n. μ σ CV skew kurt μ σ CV skew kurt
597. 41791 2621 0,06 0,27 3,11 61798 3559 0,06 -0,39 3,11
598. 52413 2858 0,05 -0,15 2,81 30661 1772 0,06 -0,16 2,77
599. 37568 2614 0,07 -0,92 4,68 28536 2073 0,07 -0,12 2,33
600. 41878 1788 0,04 0,09 2,91 30806 4304 0,14 -0,13 3,02
601. 44597 4356 0,10 -0,42 2,95 28222 1420 0,05 -0,59 3,72
602. 45826 3557 0,08 -0,30 2,44 48546 2544 0,05 -0,51 2,82
603. 40910 1819 0,04 0,54 4,15 27299 6159 0,23 0,85 3,31
604. 48064 2596 0,05 0,16 2,77 53624 4362 0,08 -0,11 3,28
605. 18301 2865 0,16 -0,10 2,52 20910 1285 0,06 0,40 2,81
606. 47660 2085 0,04 0,33 3,04 40571 5826 0,14 -0,58 3,21
607. 27692 2152 0,08 -0,92 5,97 31924 2060 0,06 -0,27 2,82
608. 28492 1154 0,04 -0,42 3,65 52521 3355 0,06 -0,43 3,34
609. 34747 1394 0,04 0,26 2,86 19809 2439 0,12 0,34 2,12
610. 48177 3137 0,07 -0,43 3,59 65697 3893 0,06 -0,29 4,28
611. 46832 3679 0,08 0,15 2,57 49928 3214 0,06 0,37 2,86
612. 28608 1404 0,05 0,25 3,11 42548 3229 0,08 0,25 3,34
613. 10659 3435 0,32 -0,12 2,79 13642 5578 0,41 -0,06 2,91
614. 40292 2871 0,07 0,12 2,65 62574 4381 0,07 -0,32 3,02
615. 38677 1260 0,03 0,40 3,17 23008 3454 0,15 0,50 2,27
616. 24886 2498 0,10 -0,13 2,80 32128 5282 0,16 -0,17 3,05
617. 23050 1384 0,06 0,15 3,09 30322 2046 0,07 -0,02 2,92
618. 30581 2232 0,07 -0,06 2,44 45930 2399 0,05 -0,22 2,96
619. 31604 3556 0,11 0,22 2,34 51850 1912 0,04 0,08 3,50
620. 16913 1266 0,07 -0,07 2,54 13925 1785 0,13 -0,57 2,95
621. 24469 1827 0,07 -0,03 2,63 41425 2355 0,06 -0,18 2,33
622. 24907 3000 0,12 0,21 2,35 20749 6405 0,31 0,16 2,04
623. 25114 1540 0,06 -0,78 5,28 35104 4110 0,12 -0,42 3,17
624. 29977 3601 0,12 0,01 2,29 47091 1847 0,04 0,21 2,53
625. 46782 2565 0,05 0,11 2,89 48993 4082 0,08 0,11 2,79
626. 27803 3273 0,12 -0,28 2,85 39279 1785 0,05 0,08 2,49
627. 43122 2131 0,05 0,01 3,03 44155 5104 0,12 0,08 2,51
628. 32100 1482 0,05 0,44 3,17 58361 4199 0,07 -0,49 2,97
629. 17506 4850 0,28 0,82 3,61 23088 2335 0,10 0,74 3,62
630. 39059 3437 0,09 -0,64 3,54 30046 1729 0,06 -0,02 3,26
631. 50739 3271 0,06 -0,64 4,07 45035 2825 0,06 -0,12 2,56
632. 44140 1536 0,03 -0,01 2,81 25800 3224 0,12 0,77 3,35
633. 52040 2138 0,04 0,44 3,53 28371 1913 0,07 0,43 2,95
634. 23722 1373 0,06 0,04 2,50 24083 3079 0,13 -0,17 2,63
635. 30118 2770 0,09 -0,08 2,87 26112 6755 0,26 0,18 2,86
636. 17686 1698 0,10 -0,04 2,80 23344 1281 0,05 -0,09 3,24
637. 15020 2100 0,14 0,05 2,38 12070 3609 0,30 0,17 2,35
638. 29294 2449 0,08 -0,45 4,41 23780 1372 0,06 0,13 2,80
639. 41303 4769 0,12 -0,37 2,86 29046 1734 0,06 -0,58 3,47
640. 21093 1481 0,07 0,32 2,39 39603 1694 0,04 -0,27 3,48
641. 30962 2935 0,09 -0,26 3,13 45959 2202 0,05 -0,62 3,41
642. 26198 2932 0,11 0,87 4,24 46124 1660 0,04 -0,34 2,92
643. 20596 1909 0,09 0,46 2,84 37132 1483 0,04 0,22 2,96
644. 41448 2768 0,07 -0,04 3,37 63318 4057 0,06 -0,40 4,61
645. 35213 3318 0,09 -0,16 3,11 48513 2194 0,05 -0,62 4,99
646. 25453 2032 0,08 0,23 2,73 21087 4854 0,23 0,28 3,46
647. 50008 2047 0,04 0,01 2,79 33573 3181 0,09 -0,17 2,82
648. 39632 3002 0,08 -0,11 2,14 61913 3757 0,06 -0,34 3,39
649. 19685 3144 0,16 -0,52 3,90 25459 6224 0,24 -0,08 3,92
650. 25227 1460 0,06 0,28 2,60 31829 2388 0,08 -0,39 2,75
651. 31183 2332 0,07 -0,91 3,99 54228 5553 0,10 -0,47 2,88
652. 25972 4944 0,19 -0,06 2,87 27757 2058 0,07 0,03 2,63
653. 56331 2321 0,04 -0,21 2,74 36276 5236 0,14 0,46 2,67
654. 47580 1943 0,04 0,23 3,35 39957 4940 0,12 -0,18 3,06
655. 25717 2080 0,08 -0,41 3,33 42914 4775 0,11 -0,10 2,91
656. 26482 2103 0,08 0,12 2,65 46962 1975 0,04 0,01 2,54
657. 25023 4264 0,17 -0,49 2,83 25415 1794 0,07 -0,32 3,39
658. 26955 3110 0,12 0,00 2,54 32444 6959 0,21 0,08 2,77
659. 40621 1843 0,05 -0,13 3,17 25211 1814 0,07 -0,02 2,68
660. 18788 1320 0,07 -0,17 3,81 17135 2491 0,15 -0,47 3,08
661. 11653 1572 0,13 0,11 3,42 11721 2373 0,20 0,10 3,82
662. 32961 3724 0,11 0,82 2,97 58042 2155 0,04 -0,11 2,75
663. 11506 1403 0,12 -0,75 4,37 12206 1962 0,16 -0,60 4,24
664. 53664 1912 0,04 0,14 2,72 31435 3628 0,12 0,48 2,62
665. 22347 1761 0,08 0,10 3,60 36424 1991 0,05 -0,25 3,19
666. 36019 1807 0,05 -0,21 2,50 24107 1855 0,08 -0,07 2,61
667. 52696 1946 0,04 -0,11 3,18 32500 3498 0,11 0,19 2,64
668. 40679 2578 0,06 -0,34 2,83 23373 1377 0,06 -0,22 2,32
669. 46026 1730 0,04 0,31 3,31 28206 4763 0,17 0,77 2,90
670. 39284 1712 0,04 0,37 2,94 67667 5541 0,08 -0,10 2,89
671. 11270 3418 0,30 0,25 2,30 12703 2084 0,16 0,16 2,32
672. 28237 1734 0,06 -0,07 2,37 26153 1908 0,07 0,08 2,51
673. 25581 1467 0,06 0,46 3,27 30441 2735 0,09 0,07 1,99
674. 19382 1479 0,08 -0,05 2,90 26345 1656 0,06 0,08 2,60
675. 28084 1594 0,06 0,05 3,67 45152 4274 0,09 -0,32 3,14
676. 18548 2083 0,11 -0,21 2,58 20261 1168 0,06 -0,05 2,72
677. 12626 2946 0,23 0,50 2,60 18498 1629 0,09 0,25 2,39

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 213

inst. Distribution of CVP total effort (λ=200) Distribution of CIBI total effort (λ=200)
n. μ σ CV skew kurt μ σ CV skew kurt
678. 25490 2135 0,08 -0,43 3,08 26216 4939 0,19 -0,23 2,93
679. 21918 2240 0,10 0,59 2,81 38326 1427 0,04 -0,27 2,80
680. 21819 1242 0,06 -0,01 3,26 20653 1613 0,08 -0,26 3,47
681. 25660 3688 0,14 -0,28 3,41 26286 1548 0,06 0,32 3,54
682. 30087 1320 0,04 0,32 3,87 49737 3562 0,07 0,61 3,45
683. 24540 2010 0,08 -1,21 6,34 39191 4674 0,12 -1,09 6,06
684. 18139 1361 0,08 0,51 3,42 33204 1462 0,04 0,08 2,51
685. 41136 2804 0,07 -0,25 5,17 26563 1819 0,07 -0,08 2,90
686. 29116 2048 0,07 0,12 2,32 25817 5112 0,20 0,01 2,50
687. 11096 1275 0,11 -0,71 3,91 12078 1663 0,14 -0,52 3,71
688. 27724 1986 0,07 -0,20 3,31 32903 4383 0,13 -0,10 2,54
689. 33316 1367 0,04 -0,09 3,24 20901 2655 0,13 0,09 2,38
690. 46055 2468 0,05 -0,06 2,96 51898 4905 0,09 0,05 2,67
691. 30748 3566 0,12 -0,12 2,45 46908 2265 0,05 -0,07 2,79
692. 25283 2533 0,10 -0,29 2,66 31585 1732 0,05 0,04 3,32
693. 28463 4284 0,15 0,47 2,47 45043 1554 0,03 -0,08 2,44
694. 10306 2500 0,24 -0,06 2,10 14562 1452 0,10 0,01 2,61
695. 33948 2789 0,08 -0,25 2,47 22353 1468 0,07 0,00 2,52
696. 23957 3770 0,16 -0,29 2,64 27031 7872 0,29 0,01 2,71
697. 53230 1906 0,04 0,31 3,31 39807 5743 0,14 -0,39 2,71
698. 31376 1483 0,05 0,18 3,29 23226 3246 0,14 -0,27 2,84
699. 20239 1523 0,08 -0,30 3,00 30142 3289 0,11 -0,16 3,10
700. 34931 4575 0,13 -0,01 2,90 37877 1442 0,04 -0,03 2,74
701. 22493 3496 0,16 0,13 2,45 22109 7201 0,33 0,27 2,71
702. 57428 2313 0,04 0,38 3,10 34146 5117 0,15 0,92 3,81
703. 41917 2663 0,06 0,31 3,29 27025 1638 0,06 -0,45 3,04
704. 25489 2651 0,10 -0,14 3,31 29013 1467 0,05 0,44 3,27
705. 46827 2111 0,05 0,56 3,42 28646 5539 0,19 1,00 3,54
706. 39012 2421 0,06 0,34 3,14 72356 3752 0,05 0,02 2,77
707. 31175 1442 0,05 0,43 3,14 48132 3739 0,08 -0,20 2,91
708. 27983 1493 0,05 -0,02 3,47 44206 3296 0,07 -0,23 2,88
709. 35420 1520 0,04 -0,24 3,04 67477 4694 0,07 -0,47 2,71
710. 27744 3934 0,14 0,69 2,90 45960 1753 0,04 0,06 2,59
711. 37124 4131 0,11 -0,15 2,96 35672 1829 0,05 0,05 3,00
712. 23158 1366 0,06 0,44 3,75 27091 3157 0,12 -0,81 4,16
713. 28911 1820 0,06 0,42 2,48 19365 3899 0,20 0,24 2,20
714. 22518 3155 0,14 -0,09 2,58 27193 6362 0,23 0,20 2,94
715. 27066 3174 0,12 -0,23 2,56 27663 7236 0,26 0,02 2,45
716. 45957 1865 0,04 0,33 3,12 32706 4429 0,14 0,03 2,78
717. 43371 1730 0,04 -0,33 3,44 56557 4419 0,08 0,04 2,71
718. 16531 1256 0,08 0,68 4,90 15193 2167 0,14 -0,13 2,63
719. 45417 2163 0,05 -0,01 2,75 49221 6397 0,13 -0,30 2,53
720. 35853 5619 0,16 -0,24 3,06 26236 2058 0,08 -0,51 3,46
721. 40858 2464 0,06 0,17 2,80 24441 1450 0,06 0,29 3,28
722. 36557 3286 0,09 -0,32 2,91 27606 1313 0,05 0,46 3,88
723. 20393 1492 0,07 -0,49 2,91 28569 3373 0,12 -0,18 2,93
724. 32963 1571 0,05 0,39 3,62 36788 4399 0,12 0,00 2,72
725. 37217 1601 0,04 0,06 2,44 65856 4273 0,06 -0,63 4,00
726. 24714 3103 0,13 -0,19 3,02 31294 6501 0,21 -0,08 2,76
727. 39209 1697 0,04 0,23 2,45 52239 5094 0,10 -0,02 2,78
728. 45985 1779 0,04 0,49 3,70 26231 2341 0,09 0,38 2,37
729. 31385 1674 0,05 0,51 2,91 21724 3474 0,16 0,26 3,11
730. 27743 4907 0,18 0,90 3,30 40688 1813 0,04 0,31 2,92
731. 21257 1324 0,06 -0,12 2,89 36283 1962 0,05 -0,42 2,61
732. 34868 2161 0,06 0,17 2,60 27018 5444 0,20 0,00 2,52
733. 9843 2831 0,29 0,55 2,53 9270 4617 0,50 0,68 2,67
734. 35739 1755 0,05 0,42 3,22 38422 4866 0,13 -0,08 2,32
735. 28805 3277 0,11 -0,41 2,98 39124 1775 0,05 -0,06 2,99
736. 40346 1832 0,05 -0,03 3,08 67996 4222 0,06 0,01 2,63
737. 17326 3608 0,21 0,83 3,68 27254 1549 0,06 0,70 3,45
738. 39287 2930 0,07 -0,21 2,79 57076 3574 0,06 -0,36 3,41
739. 26365 2917 0,11 -0,17 2,89 36292 1838 0,05 -0,53 2,63
740. 35064 2566 0,07 0,26 3,16 58248 2784 0,05 -0,44 3,53
741. 28680 1990 0,07 -0,49 3,02 26148 5458 0,21 0,08 2,83
742. 39113 3327 0,09 0,20 2,19 64412 3390 0,05 -0,16 3,00
743. 19257 2376 0,12 0,16 2,74 17504 4709 0,27 0,32 3,01
744. 11231 2247 0,20 -0,78 3,01 14498 1520 0,10 -0,53 2,94
745. 30210 3549 0,12 -0,45 2,55 26111 1634 0,06 0,29 3,21
746. 44096 2526 0,06 0,23 3,37 43276 3658 0,08 -0,16 3,70
747. 34951 2248 0,06 -0,27 2,98 63369 6036 0,10 -0,10 2,97
748. 21479 1906 0,09 0,50 2,58 14247 3943 0,28 0,67 2,50
749. 40597 1917 0,05 0,09 2,46 55373 5902 0,11 -0,42 4,12
750. 36533 4152 0,11 0,11 2,40 59612 2599 0,04 0,20 3,52
751. 48809 2806 0,06 -0,31 2,66 58203 5015 0,09 -0,24 2,69
752. 38775 1678 0,04 -0,02 2,73 57742 5136 0,09 -0,25 2,40
753. 32887 2509 0,08 -0,20 2,61 45861 6771 0,15 -0,09 2,66
754. 12547 3096 0,25 0,55 2,80 11393 5229 0,46 0,62 2,88
755. 26778 2119 0,08 -0,19 2,85 38768 2168 0,06 -0,16 3,05
756. 38165 2004 0,05 -0,26 2,86 51717 3472 0,07 -0,34 2,64
757. 45038 2532 0,06 -0,03 2,92 58109 4607 0,08 -0,19 2,80
758. 43711 2030 0,05 -0,06 3,31 23342 1540 0,07 0,55 2,95

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 214

inst. Distribution of CVP total effort (λ=200) Distribution of CIBI total effort (λ=200)
n. μ σ CV skew kurt μ σ CV skew kurt
759. 46337 2385 0,05 -0,25 2,89 43927 4090 0,09 -0,11 3,00
760. 34938 4341 0,12 -0,17 2,89 48327 1833 0,04 -0,14 2,95
761. 25904 1934 0,07 -0,09 2,80 21470 4166 0,19 -0,13 2,42
762. 21441 3650 0,17 -0,25 2,99 20472 1785 0,09 -0,32 2,98
763. 23500 1695 0,07 0,06 3,45 21840 3743 0,17 -0,15 2,98
764. 35782 1692 0,05 -0,42 3,64 58738 5291 0,09 -0,11 2,80
765. 37482 3013 0,08 -0,35 2,96 32049 2003 0,06 -0,14 2,54
766. 26969 1503 0,06 -0,17 2,97 34221 2957 0,09 -0,08 2,61
767. 37711 1420 0,04 -0,17 2,55 73519 3873 0,05 -0,11 2,24
768. 32201 2337 0,07 -0,06 2,72 47164 2830 0,06 0,04 3,20
769. 29561 1665 0,06 0,10 2,90 20792 1720 0,08 -0,15 2,87
770. 23192 2174 0,09 -0,18 3,03 21324 1202 0,06 0,07 2,69
771. 44657 2472 0,06 -0,55 3,38 51724 4703 0,09 -0,28 3,33
772. 33536 4300 0,13 -0,22 2,33 50579 2381 0,05 0,00 2,84
773. 34739 1544 0,04 0,39 3,02 20954 2701 0,13 0,11 2,64
774. 23740 1403 0,06 0,06 2,77 15741 1899 0,12 0,20 2,58
775. 27878 2236 0,08 1,22 5,67 51506 2188 0,04 -0,44 2,71
776. 45244 2879 0,06 -0,07 2,21 34137 3037 0,09 0,09 2,74
777. 35491 4044 0,11 -0,07 2,50 38491 1816 0,05 0,32 2,98
778. 26171 2794 0,11 0,00 2,37 22126 6307 0,29 0,33 2,45
779. 30831 3214 0,10 0,66 2,91 54111 1634 0,03 0,14 3,23
780. 16396 4630 0,28 -0,13 2,57 23045 8505 0,37 0,01 2,43
781. 24880 3350 0,13 -0,07 2,39 23185 1507 0,06 0,09 2,97
782. 23248 2244 0,10 -0,48 3,17 28683 1444 0,05 -0,09 3,06
783. 24343 1029 0,04 -0,06 2,78 46985 2058 0,04 -0,02 2,52
784. 38402 2044 0,05 0,10 2,58 48618 4129 0,08 0,35 2,58
785. 31276 1637 0,05 0,42 2,77 59523 3254 0,05 -0,23 3,13
786. 52032 3379 0,06 -0,08 2,54 34880 2496 0,07 0,28 3,01
787. 49554 3817 0,08 -0,42 2,84 35764 1799 0,05 0,34 3,02
788. 15434 1702 0,11 -0,17 2,72 18058 1220 0,07 -0,09 2,90
789. 20295 3819 0,19 0,31 2,38 30959 1613 0,05 0,47 2,84
790. 10223 1812 0,18 0,24 2,59 7830 2696 0,34 0,44 2,57
791. 26292 1362 0,05 -0,02 2,57 38997 2846 0,07 -0,41 3,18
792. 38721 2943 0,08 -0,31 2,39 59944 3642 0,06 -0,06 3,18
793. 55698 2007 0,04 -0,35 3,51 32615 3639 0,11 0,40 2,25
794. 40020 2796 0,07 -1,05 5,35 43843 3268 0,07 -0,07 2,36
795. 18401 2769 0,15 -0,22 2,92 21364 5068 0,24 -0,35 2,88
796. 43443 3352 0,08 -0,01 2,71 40196 3094 0,08 0,08 3,38
797. 31517 1614 0,05 0,16 3,94 22999 1949 0,08 -0,55 3,56
798. 31679 4086 0,13 -0,17 2,54 33591 1557 0,05 0,43 3,47
799. 22335 6102 0,27 0,15 2,62 22136 3015 0,14 -0,16 2,65
800. 26508 1906 0,07 -0,10 3,16 26425 1923 0,07 -0,28 2,41
801. 31027 1759 0,06 -0,10 2,70 48438 4864 0,10 0,08 3,12
802. 25885 2464 0,10 -0,09 3,01 26837 5932 0,22 0,34 3,19
803. 47845 2579 0,05 -0,11 2,41 56877 4637 0,08 0,38 3,23
804. 33630 4339 0,13 0,52 3,47 53053 2338 0,04 0,36 3,40
805. 48731 4259 0,09 -0,23 2,60 31256 1569 0,05 0,28 2,95
806. 22006 4910 0,22 0,25 2,46 29014 1814 0,06 -0,01 2,68
807. 41232 3208 0,08 -0,14 2,80 49392 2701 0,05 0,26 2,73
808. 27209 4214 0,15 0,17 3,12 37956 1565 0,04 -0,07 3,17
809. 26274 2492 0,09 -0,56 3,37 42027 5519 0,13 -0,39 2,77
810. 27510 2327 0,08 0,52 3,32 22286 5474 0,25 0,32 3,08
811. 33989 1722 0,05 -0,43 3,44 60854 5076 0,08 -0,27 3,24
812. 28581 2299 0,08 -0,37 3,13 39943 2002 0,05 -0,28 3,25
813. 21519 1249 0,06 0,28 3,53 36766 1918 0,05 0,35 3,01
814. 22938 3118 0,14 -0,75 3,86 29336 6627 0,23 -0,45 3,56
815. 30622 2745 0,09 0,01 2,97 34014 1899 0,06 -0,48 3,46
816. 14192 3314 0,23 0,04 2,53 17692 5588 0,32 0,16 2,68
817. 30556 2088 0,07 -0,14 2,72 53277 6267 0,12 -0,07 2,45
818. 22204 3466 0,16 -0,33 2,55 31230 1601 0,05 0,06 2,36
819. 39609 2801 0,07 0,35 2,95 30739 1823 0,06 -0,33 3,70
820. 46394 2203 0,05 0,43 4,13 52032 6235 0,12 -0,15 2,85
821. 24022 4653 0,19 0,99 3,70 39600 1642 0,04 0,71 3,73
822. 36085 1419 0,04 0,35 2,98 66042 4706 0,07 -0,58 2,74
823. 17651 1090 0,06 -0,28 3,94 16131 2110 0,13 -0,29 3,03
824. 13968 1900 0,14 -0,01 2,46 11274 3032 0,27 0,08 2,44
825. 36493 1727 0,05 0,32 2,65 26481 4237 0,16 -0,06 2,58
826. 50069 2271 0,05 -0,65 4,53 38804 4180 0,11 -0,37 2,91
827. 31228 5133 0,16 0,15 2,58 45727 1970 0,04 0,09 3,06
828. 31593 2159 0,07 0,98 3,96 20723 4895 0,24 0,58 2,55
829. 41582 3697 0,09 0,24 2,90 36891 1663 0,05 0,36 2,92
830. 17733 1561 0,09 0,02 3,11 19014 1401 0,07 -0,11 2,60
831. 47577 4048 0,09 0,31 2,51 65846 4226 0,06 -0,03 2,22
832. 24265 1507 0,06 0,47 3,13 43265 2173 0,05 0,35 3,08
833. 17544 3559 0,20 0,10 2,30 18063 6970 0,39 0,36 2,58
834. 35941 3450 0,10 -0,13 2,95 41019 2244 0,05 -0,23 2,65
835. 31359 2553 0,08 0,21 2,64 28999 1666 0,06 0,27 4,31
836. 18391 2147 0,12 0,22 3,25 15768 4123 0,26 0,15 2,87
837. 27222 1737 0,06 0,32 3,09 19929 3567 0,18 0,03 2,56
838. 46913 2742 0,06 -0,11 2,32 31019 2215 0,07 0,22 2,44
839. 16776 2947 0,18 0,70 3,28 26220 1334 0,05 0,34 2,52

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 215

inst. Distribution of CVP total effort (λ=200) Distribution of CIBI total effort (λ=200)
n. μ σ CV skew kurt μ σ CV skew kurt
840. 36701 1408 0,04 -0,17 2,60 58659 4988 0,09 -0,25 2,49
841. 23990 4464 0,19 -0,17 2,91 24784 1879 0,08 -0,31 2,96
842. 30107 4977 0,17 -0,03 2,96 26061 2045 0,08 -0,15 2,85
843. 42604 2361 0,06 0,26 2,74 32483 2698 0,08 -0,17 3,45
844. 39083 1790 0,05 0,91 5,26 63278 5330 0,08 -0,48 3,26
845. 22295 2631 0,12 0,48 2,47 38342 1627 0,04 -0,30 4,15
846. 19816 1272 0,06 -0,04 3,25 15266 2187 0,14 -0,01 3,16
847. 36951 2010 0,05 0,48 5,47 59290 4062 0,07 -0,11 2,62
848. 25591 1838 0,07 -0,44 4,05 27552 1419 0,05 -0,09 2,85
849. 37362 1728 0,05 -0,19 2,89 32008 5247 0,16 -0,05 3,03
850. 20349 3580 0,18 0,41 2,38 31414 1470 0,05 0,19 2,66
851. 26120 1348 0,05 0,60 3,39 49594 2222 0,04 0,03 3,27
852. 35530 1686 0,05 -0,10 2,72 41536 4546 0,11 -0,07 2,78
853. 24017 2637 0,11 -0,31 2,51 34262 1448 0,04 -0,37 3,78
854. 22487 2673 0,12 0,17 2,38 27079 1485 0,05 0,18 3,01
855. 15294 1267 0,08 0,00 2,66 16962 2149 0,13 -0,21 2,12
856. 39212 4637 0,12 0,00 2,67 30448 1678 0,06 0,02 2,85
857. 47474 2278 0,05 0,19 2,75 51784 5999 0,12 -0,34 2,98
858. 35634 1936 0,05 -0,36 2,57 35372 2863 0,08 -0,26 2,12
859. 32808 1466 0,04 0,33 2,45 20653 3602 0,17 0,44 2,37
860. 32432 2225 0,07 -0,35 2,94 55796 5739 0,10 -0,13 2,28
861. 21307 1668 0,08 -0,54 3,38 18008 3325 0,18 -0,29 2,99
862. 24982 1498 0,06 0,64 3,28 22120 3471 0,16 -0,25 2,70
863. 26559 3355 0,13 0,07 2,47 23918 7632 0,32 0,23 2,48
864. 17733 3770 0,21 0,52 2,64 27011 1652 0,06 0,35 2,83
865. 29623 1805 0,06 0,35 2,52 18951 4296 0,23 0,77 3,07
866. 35785 1696 0,05 -0,01 2,75 58214 4275 0,07 -0,20 2,60
867. 27939 1418 0,05 0,26 2,90 35471 3067 0,09 -0,76 3,66
868. 33556 1899 0,06 -0,17 2,80 30195 2879 0,10 -0,36 3,90
869. 27349 2015 0,07 0,18 2,92 25110 4741 0,19 -0,09 2,61
870. 46387 2305 0,05 -0,22 3,69 42629 4670 0,11 -0,23 2,49
871. 41704 2158 0,05 -0,28 3,14 41889 6504 0,16 -0,02 2,96
872. 46316 3245 0,07 -0,08 3,46 62592 3724 0,06 -0,10 2,70
873. 53664 2063 0,04 0,24 2,80 30843 3458 0,11 0,43 2,28
874. 28016 1321 0,05 0,00 3,28 46756 3748 0,08 -0,33 3,52
875. 12704 1210 0,10 -0,21 2,55 12031 1738 0,14 -0,48 3,37
876. 31324 4020 0,13 0,07 3,17 24385 1848 0,08 -0,43 3,05
877. 44347 3743 0,08 0,52 3,07 70409 3427 0,05 -0,29 2,80
878. 15104 2254 0,15 0,63 2,69 25471 1049 0,04 0,19 3,00
879. 37531 1608 0,04 0,01 2,49 42676 4118 0,10 -0,01 2,88
880. 32538 1822 0,06 -0,02 3,46 47711 4715 0,10 -0,12 3,20
881. 33137 2980 0,09 0,68 2,93 60413 2212 0,04 -0,26 2,70
882. 54121 2192 0,04 -0,18 2,99 30535 3014 0,10 0,48 2,52
883. 42318 2148 0,05 0,11 3,80 66931 4848 0,07 -0,04 2,99
884. 39418 3092 0,08 -0,18 3,02 41921 3038 0,07 0,05 4,14
885. 34112 1879 0,06 0,02 3,36 56869 3936 0,07 -0,28 2,20
886. 25479 4714 0,19 -0,36 2,76 20178 2313 0,11 -0,44 2,97
887. 47889 3948 0,08 -0,34 3,13 33355 1669 0,05 -0,13 2,94
888. 44265 2507 0,06 -0,12 3,32 63463 4477 0,07 -0,66 2,89
889. 29988 3212 0,11 0,52 2,96 22929 7136 0,31 0,58 2,48
890. 14424 2250 0,16 -0,49 3,29 14982 3721 0,25 -0,40 2,98
891. 35178 2291 0,07 -0,35 3,31 28884 1616 0,06 -0,44 2,83
892. 35251 1820 0,05 0,17 3,20 62641 5424 0,09 -0,03 2,67
893. 38691 2947 0,08 -0,17 2,84 39769 2066 0,05 -0,17 2,67
894. 49180 3465 0,07 -0,14 2,29 59690 4324 0,07 -0,47 3,26
895. 34159 1812 0,05 -0,69 3,74 36846 3480 0,09 -0,13 2,48
896. 25690 1082 0,04 0,14 2,54 48190 2824 0,06 -0,47 2,80
897. 31017 1354 0,04 -0,37 3,08 57484 3535 0,06 -0,17 3,24
898. 34468 4479 0,13 0,31 2,39 57165 2215 0,04 -0,30 2,92
899. 38089 1899 0,05 -0,64 3,50 46332 5395 0,12 -0,05 2,93
900. 53417 1968 0,04 0,09 2,72 30243 3211 0,11 0,71 2,95
901. 18041 1633 0,09 -0,44 3,54 26158 3534 0,14 -0,04 3,06
902. 53181 2782 0,05 -0,36 3,02 33254 2645 0,08 -0,15 2,52
903. 22304 1187 0,05 0,07 2,36 14134 2159 0,15 0,22 2,49
904. 19255 1312 0,07 0,09 2,63 32216 1868 0,06 -0,63 4,07
905. 47358 1976 0,04 0,05 2,67 30110 3753 0,12 0,51 3,46
906. 32740 1471 0,04 0,03 2,56 44156 4376 0,10 0,00 2,32
907. 40415 1787 0,04 -0,14 2,91 51451 4587 0,09 -0,11 2,62
908. 44473 2125 0,05 -0,07 3,05 65960 5045 0,08 -0,09 2,64
909. 28934 1355 0,05 0,14 3,59 50220 3883 0,08 0,19 2,49
910. 28421 2291 0,08 -0,33 2,93 31124 5574 0,18 -0,11 2,98
911. 30775 2248 0,07 0,16 3,31 39692 2462 0,06 -0,38 3,15
912. 37065 4244 0,11 0,08 2,22 59525 2879 0,05 -0,48 3,98
913. 23711 3364 0,14 0,08 2,26 32887 1422 0,04 -0,10 2,70
914. 30030 1654 0,06 0,18 2,98 28038 2570 0,09 0,24 2,94
915. 52075 2811 0,05 0,44 2,43 49109 4377 0,09 -0,40 2,96
916. 19869 2303 0,12 0,06 2,89 30666 1389 0,05 0,50 2,99
917. 17970 2451 0,14 0,45 2,30 13246 4602 0,35 0,59 2,57
918. 35469 2462 0,07 0,02 2,97 59986 3264 0,05 0,03 2,54
919. 27382 2388 0,09 -0,44 3,78 35070 5560 0,16 -0,62 4,47
920. 18728 1293 0,07 -0,18 4,64 15644 1610 0,10 -0,77 3,77

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 216

inst. Distribution of CVP total effort (λ=200) Distribution of CIBI total effort (λ=200)
n. μ σ CV skew kurt μ σ CV skew kurt
921. 25374 1913 0,08 0,14 3,23 43040 1986 0,05 0,14 3,41
922. 27213 2452 0,09 -0,14 3,06 37524 2347 0,06 -0,12 3,23
923. 46712 2588 0,06 -0,16 4,47 62419 4072 0,07 -0,70 3,77
924. 28118 1570 0,06 -0,13 2,89 27941 3481 0,12 -0,30 2,84
925. 18631 1625 0,09 -0,24 3,34 25338 1504 0,06 -0,29 3,17
926. 18094 4769 0,26 0,80 3,44 26125 2043 0,08 0,34 2,55
927. 25795 1850 0,07 -0,22 2,85 34568 1821 0,05 0,05 2,59
928. 15319 3017 0,20 -0,03 2,52 20456 1535 0,08 -0,11 2,57
929. 50468 2771 0,05 -0,12 2,86 37100 3236 0,09 -0,03 3,40
930. 33818 1805 0,05 -0,21 2,39 58578 2957 0,05 0,01 2,72
931. 40731 3531 0,09 0,28 2,62 65772 3257 0,05 -0,64 3,83
932. 41676 1915 0,05 -0,36 2,77 40915 4032 0,10 0,11 2,70
933. 23236 4122 0,18 0,48 3,23 32646 1538 0,05 0,01 2,73
934. 58136 2025 0,03 0,30 3,01 37038 5669 0,15 0,27 2,21
935. 33052 1812 0,05 0,04 2,53 33715 2658 0,08 -0,26 2,49
936. 39454 3822 0,10 -0,08 2,39 39385 2100 0,05 0,46 3,96
937. 34727 1814 0,05 0,50 3,46 21760 4544 0,21 0,54 2,58
938. 47322 2029 0,04 0,39 3,40 30188 4105 0,14 0,15 2,13
939. 11148 2481 0,22 0,09 2,13 9761 3925 0,40 0,19 1,96
940. 33313 2654 0,08 -0,18 3,40 25974 1439 0,06 0,30 3,83
941. 26937 2978 0,11 0,23 2,73 26294 6577 0,25 0,16 2,25
942. 21236 5153 0,24 -0,08 2,51 20620 2493 0,12 -0,13 2,74
943. 34942 2903 0,08 0,12 2,39 50703 2634 0,05 -0,07 2,80
944. 23114 1098 0,05 0,20 2,37 32960 2469 0,07 -0,50 3,43
945. 35022 3302 0,09 0,07 3,03 54539 2510 0,05 -0,54 3,74
946. 26025 1225 0,05 0,40 2,75 46607 2930 0,06 0,10 2,24
947. 18049 4382 0,24 -0,25 2,28 22643 8222 0,36 -0,17 2,18
948. 25890 1195 0,05 0,22 2,43 18913 2189 0,12 -0,05 2,65
949. 40297 1687 0,04 0,44 3,65 62856 5615 0,09 -0,44 3,00
950. 39468 1821 0,05 0,12 2,91 27905 5129 0,18 0,07 2,15
951. 55630 2209 0,04 0,19 2,82 35942 4609 0,13 0,19 2,22
952. 21522 2265 0,11 -0,20 2,42 19133 4753 0,25 -0,08 2,25
953. 16889 1720 0,10 -0,23 3,71 15087 2971 0,20 -0,25 2,75
954. 18925 1380 0,07 -0,20 2,47 13243 2625 0,20 -0,01 2,46
955. 15607 1895 0,12 0,40 2,58 11199 3293 0,29 0,51 2,49
956. 50730 2767 0,05 -0,22 3,01 63624 5303 0,08 -0,20 3,46
957. 15608 3858 0,25 0,51 2,52 14720 7239 0,49 0,51 2,38
958. 12868 2528 0,20 0,48 2,27 10124 4251 0,42 0,69 2,64
959. 21557 3682 0,17 -0,18 2,45 25882 1588 0,06 -0,21 2,88
960. 23808 1376 0,06 0,00 2,66 36978 2830 0,08 -0,28 2,90
961. 13935 3226 0,23 0,17 2,09 18873 1821 0,10 0,08 2,17
962. 28842 4662 0,16 0,10 2,39 41240 1887 0,05 0,31 2,58
963. 28139 2490 0,09 -0,40 3,66 20795 1334 0,06 0,17 2,52
964. 22349 1346 0,06 0,17 2,55 19739 2747 0,14 -0,05 2,28
965. 43514 3646 0,08 -0,42 3,18 27501 1339 0,05 -0,04 3,42
966. 35449 2540 0,07 0,54 4,20 48691 3355 0,07 0,05 3,35
967. 23618 1970 0,08 0,32 2,09 42217 1892 0,04 -0,45 3,49
968. 26228 1877 0,07 0,18 2,64 21147 4397 0,21 0,18 2,72
969. 27957 1965 0,07 -0,31 2,84 24713 1735 0,07 -0,15 2,74
970. 19702 3699 0,19 -0,17 2,54 21031 1826 0,09 -0,45 2,68
971. 28733 5121 0,18 0,01 2,51 36168 1801 0,05 0,13 2,71
972. 32370 1596 0,05 -0,36 2,44 42657 4143 0,10 -0,23 3,21
973. 40424 2640 0,07 -0,18 2,94 37457 2576 0,07 0,07 3,30
974. 27688 1605 0,06 -0,14 3,13 31168 3078 0,10 0,02 3,21
975. 18825 1201 0,06 -0,31 3,24 16970 1756 0,10 -0,30 2,81
976. 37171 2290 0,06 1,03 4,46 23472 5065 0,22 0,63 2,79
977. 27809 2250 0,08 0,73 2,85 18320 5127 0,28 0,88 3,22
978. 37523 2483 0,07 -0,39 3,58 30657 2280 0,07 -0,14 3,70
979. 24022 5669 0,24 0,36 3,30 24158 2741 0,11 0,37 3,35
980. 37049 1859 0,05 0,20 2,95 33503 5362 0,16 0,20 2,51
981. 30323 2143 0,07 0,07 2,67 21763 5218 0,24 0,34 2,64
982. 31313 1442 0,05 -0,02 2,54 58025 4349 0,07 0,11 2,48
983. 16064 2380 0,15 -0,32 3,36 20300 4216 0,21 -0,46 3,34
984. 18754 1473 0,08 0,06 2,61 14732 2710 0,18 0,02 2,64
985. 10806 3018 0,28 -0,05 2,82 12936 1901 0,15 0,26 3,47
986. 42723 3918 0,09 -0,13 2,34 30991 1454 0,05 -0,33 4,05
987. 37441 3070 0,08 0,48 2,95 61551 2895 0,05 -0,35 3,10
988. 31216 1841 0,06 0,03 3,14 52573 3641 0,07 -0,55 3,38
989. 24478 1491 0,06 0,31 2,90 44738 2101 0,05 -0,42 3,06
990. 43847 3282 0,07 -0,11 2,80 61090 4099 0,07 0,10 3,35
991. 23630 2091 0,09 -0,31 4,44 17778 1145 0,06 0,02 2,98
992. 36270 2010 0,06 -0,61 3,62 38124 6017 0,16 -0,21 2,92
993. 31723 1285 0,04 0,31 3,16 61711 3393 0,05 -0,28 3,17
994. 43333 4021 0,09 0,15 2,89 51142 2539 0,05 -0,09 3,43
995. 54510 2260 0,04 0,05 2,39 36027 4613 0,13 -0,06 2,31
996. 46740 2366 0,05 0,18 2,98 61996 4563 0,07 -0,13 2,73
997. 30407 2901 0,10 -0,02 2,51 50067 6958 0,14 0,27 3,00
998. 45818 2295 0,05 -0,30 3,31 61136 5160 0,08 0,15 2,54
999. 18382 1433 0,08 0,46 2,63 33888 1409 0,04 0,17 2,56

1000. 24691 3583 0,15 0,09 2,65 34303 1364 0,04 0,90 5,02

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 217

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 218

Frequency distributions of the intermediate effort assessments (Yi) per sample instance

In the flowing table, each row of the table represents the corresponding sample instance in
Appendix B. In each row of the table (for each sample instance i), several statistical
parameters of the frequency distribution of the intermediate effort assessments Yi (per
design alternative) of several applied scenarios (λ=200) for a single (indicative) simulation
are presented. Parameter μ represents the mean value, σ is the standard deviation, CV=σ/μ
is the coefficient of variation, ‘skew’ is the skewness, and ‘kurt’ is the kurtosis of each
frequency distribution. Since the intermediate effort outcome (Yi) is a heavily stochastic
variable expressing the required effort per applied scenario, all the parameters of its
frequency distribution variate significantly among different sample instances. CV lies
between 0.43 and 2.88, skewness between 0.16 and 11.43, and kurtosis between 2.31 and
149.62, as discussed in subsection 6.4.9.4.

Statistical Parameters of Intermediate Effort of Repeated Applied Scenarios (of a Single
Simulation) per Sample Instance

inst. Distribution of CVP intermediate effort Distribution of CIBI intermediate effort
n. μ σ CV skew kurt μ σ CV skew kurt

1. 153,69 94,57 0,62 1,24 5,01 177,59 210,43 1,18 2,00 6,63
2. 112,58 115,54 1,03 2,55 9,79 138,48 68,24 0,49 0,67 2,88
3. 208,13 141,72 0,68 2,02 10,97 309,35 195,72 0,63 1,09 3,81
4. 117,76 135,20 1,15 2,91 13,89 139,15 86,68 0,62 1,84 8,11
5. 183,75 106,94 0,58 1,13 4,85 102,54 60,60 0,59 1,03 4,38
6. 59,03 54,34 0,92 3,04 19,01 69,08 116,24 1,68 3,42 19,32
7. 46,32 40,24 0,87 3,38 19,68 75,73 46,24 0,61 1,10 5,33
8. 161,29 109,67 0,68 1,92 8,29 260,51 127,16 0,49 0,93 3,86
9. 106,92 56,40 0,53 1,07 5,46 208,65 103,53 0,50 1,55 6,69
10. 84,64 74,97 0,89 2,79 17,38 116,01 156,30 1,35 3,07 18,07
11. 140,12 85,41 0,61 2,88 20,70 122,35 119,05 0,97 2,06 7,61
12. 161,19 195,08 1,21 4,87 43,01 121,73 92,85 0,76 4,76 43,70
13. 130,25 72,68 0,56 1,22 6,98 257,04 131,88 0,51 1,68 9,03
14. 195,20 112,98 0,58 2,08 11,44 357,50 160,68 0,45 0,81 3,48
15. 103,17 79,12 0,77 2,04 7,99 154,52 81,81 0,53 0,99 4,40
16. 172,40 112,26 0,65 1,81 7,70 288,63 177,97 0,62 2,11 10,34
17. 48,30 55,15 1,14 2,79 11,37 59,17 35,95 0,61 1,09 4,65
18. 258,87 135,95 0,53 1,19 4,99 152,94 93,84 0,61 1,81 8,09
19. 171,48 165,24 0,96 1,87 6,63 178,12 109,96 0,62 1,35 6,03
20. 269,02 143,04 0,53 0,87 4,16 199,94 127,48 0,64 1,52 5,85
21. 168,06 134,14 0,80 1,95 8,60 158,07 103,02 0,65 1,56 7,54
22. 48,59 71,34 1,47 3,42 14,68 58,18 149,67 2,57 3,61 15,37
23. 133,45 78,70 0,59 1,36 8,75 258,66 122,96 0,48 0,72 3,21
24. 159,40 135,75 0,85 1,99 10,12 122,75 73,55 0,60 1,51 7,55
25. 173,37 112,54 0,65 2,08 11,84 214,56 202,00 0,94 2,00 9,38
26. 181,19 94,61 0,52 1,04 4,13 207,82 176,06 0,85 1,45 5,52
27. 126,51 85,54 0,68 2,25 11,76 207,00 107,47 0,52 0,82 3,70
28. 137,28 107,02 0,78 2,99 18,00 205,43 139,49 0,68 0,88 4,18
29. 50,35 36,96 0,73 3,61 20,81 31,78 62,96 1,98 7,58 61,75
30. 110,77 64,82 0,59 1,30 6,89 205,68 117,58 0,57 1,23 6,40
31. 69,52 39,59 0,57 1,79 8,49 48,01 65,67 1,37 4,64 29,16
32. 191,03 110,15 0,58 0,95 5,02 234,69 189,95 0,81 1,37 5,00
33. 137,44 157,67 1,15 7,38 81,79 82,95 81,10 0,98 6,53 69,03
34. 153,07 87,43 0,57 0,97 4,77 184,70 181,37 0,98 1,75 6,70
35. 128,59 89,18 0,69 1,05 4,53 221,27 197,81 0,89 0,98 3,84
36. 219,47 108,83 0,50 0,49 3,34 245,95 186,60 0,76 1,28 3,99
37. 161,47 105,74 0,65 1,67 7,45 199,33 243,43 1,22 1,98 7,32
38. 214,18 138,73 0,65 1,34 5,34 267,07 193,47 0,72 1,13 4,83
39. 212,45 216,70 1,02 1,93 8,03 169,16 104,37 0,62 1,14 5,83
40. 225,20 141,72 0,63 1,62 7,40 212,13 143,92 0,68 1,07 4,05
41. 66,96 67,67 1,01 3,72 19,80 106,82 56,89 0,53 1,63 7,18
42. 211,49 149,42 0,71 2,68 15,49 242,79 216,10 0,89 5,21 48,94
43. 248,17 149,21 0,60 1,47 6,56 211,74 183,44 0,87 2,30 10,38
44. 92,35 55,50 0,60 1,14 5,02 99,88 106,41 1,07 1,75 6,07
45. 165,18 92,71 0,56 1,32 6,97 296,19 163,93 0,55 0,77 3,49
46. 247,98 137,30 0,55 1,79 8,36 141,96 106,91 0,75 2,60 13,11
47. 238,15 143,28 0,60 2,24 10,83 129,57 91,29 0,70 1,75 7,20
48. 222,81 185,14 0,83 3,12 24,38 133,89 89,72 0,67 3,05 24,63
49. 167,32 105,00 0,63 1,31 5,59 124,97 92,65 0,74 2,18 9,69
50. 110,80 109,05 0,98 2,18 8,92 112,33 60,84 0,54 1,22 6,55
51. 154,15 188,44 1,22 2,25 9,52 126,35 86,42 0,68 1,78 8,47
52. 225,62 135,67 0,60 1,37 5,84 272,03 195,62 0,72 1,27 5,05
53. 251,50 122,38 0,49 0,65 3,60 169,21 137,81 0,81 2,46 10,36
54. 93,18 155,79 1,67 2,72 10,06 91,68 69,95 0,76 2,09 8,23
55. 25,47 36,08 1,42 7,19 62,07 41,37 24,51 0,59 2,04 10,66
56. 243,13 154,08 0,63 1,27 5,57 258,54 198,83 0,77 1,31 4,40
57. 189,65 163,35 0,86 1,83 7,49 166,54 103,16 0,62 1,15 4,52

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 219

inst. Distribution of CVP intermediate effort Distribution of CIBI intermediate effort
n. μ σ CV skew kurt μ σ CV skew kurt

58. 249,03 206,57 0,83 1,52 6,28 171,54 100,64 0,59 1,12 5,19
59. 167,86 103,03 0,61 0,83 4,69 315,34 203,73 0,65 1,00 4,96
60. 250,18 172,23 0,69 2,20 11,94 155,88 91,38 0,59 1,76 8,32
61. 152,91 94,16 0,62 0,76 4,48 293,79 188,58 0,64 0,88 4,55
62. 157,18 269,86 1,72 8,32 92,35 152,28 136,33 0,90 6,85 72,97
63. 169,75 172,36 1,02 2,80 13,36 181,96 109,07 0,60 2,45 15,80
64. 206,48 124,82 0,60 0,69 3,29 157,65 125,56 0,80 3,87 26,07
65. 121,54 139,31 1,15 2,44 10,24 119,90 71,57 0,60 1,51 6,43
66. 218,91 129,56 0,59 1,18 4,43 224,12 168,12 0,75 1,79 7,79
67. 99,50 77,87 0,78 1,90 7,73 125,79 77,56 0,62 0,94 4,00
68. 238,13 151,11 0,63 0,75 4,08 150,47 107,24 0,71 3,68 29,14
69. 181,08 141,37 0,78 1,40 4,90 210,28 156,41 0,74 2,59 14,40
70. 164,87 107,69 0,65 2,66 16,06 116,25 130,43 1,12 4,59 33,52
71. 159,83 93,12 0,58 1,74 8,02 125,69 128,72 1,02 2,68 11,94
72. 198,27 100,33 0,51 0,67 3,04 144,48 151,04 1,05 2,99 13,09
73. 63,88 50,63 0,79 2,97 14,90 54,57 106,53 1,95 4,18 21,05
74. 92,77 69,85 0,75 1,51 5,74 116,16 157,45 1,36 1,90 6,12
75. 123,54 96,17 0,78 2,51 13,26 147,11 198,69 1,35 2,93 14,85
76. 189,36 105,47 0,56 2,08 9,60 101,45 63,25 0,62 1,80 7,50
77. 74,22 104,37 1,41 4,31 24,15 103,13 53,56 0,52 2,01 9,80
78. 199,03 142,97 0,72 1,19 4,38 251,17 173,32 0,69 2,02 10,07
79. 265,27 163,68 0,62 1,14 4,80 181,00 145,73 0,81 2,32 10,92
80. 202,63 127,59 0,63 1,15 4,57 155,91 103,07 0,66 1,73 6,98
81. 77,47 51,38 0,66 2,02 10,15 128,07 63,43 0,50 0,54 3,26
82. 239,26 153,29 0,64 1,02 4,21 176,84 116,14 0,66 2,11 10,44
83. 184,78 109,60 0,59 0,78 4,60 299,84 223,58 0,75 1,14 5,23
84. 56,56 54,91 0,97 2,98 13,84 90,04 53,80 0,60 1,50 7,28
85. 200,89 114,43 0,57 1,20 5,55 120,27 75,45 0,63 1,68 7,13
86. 131,96 74,86 0,57 1,54 7,20 114,57 137,19 1,20 3,36 16,47
87. 111,44 72,02 0,65 1,40 5,83 94,68 78,36 0,83 2,06 9,05
88. 189,14 123,87 0,65 2,39 13,35 330,43 180,94 0,55 1,52 9,75
89. 146,18 75,79 0,52 0,33 3,17 287,22 153,16 0,53 0,36 3,05
90. 183,41 110,87 0,60 1,01 4,33 297,17 186,36 0,63 1,00 3,95
91. 143,09 77,87 0,54 0,84 4,86 292,16 146,89 0,50 1,14 5,28
92. 169,00 113,11 0,67 1,05 3,91 164,79 110,26 0,67 1,09 4,35
93. 158,92 94,36 0,59 1,57 7,05 258,57 178,64 0,69 1,29 5,65
94. 81,45 45,92 0,56 1,84 10,40 160,56 87,84 0,55 2,29 12,03
95. 115,71 66,97 0,58 0,96 4,34 164,85 122,83 0,75 1,15 4,61
96. 134,80 86,71 0,64 1,36 5,23 164,35 185,01 1,13 2,00 7,01
97. 215,55 111,22 0,52 1,32 5,42 115,22 57,69 0,50 1,05 4,66
98. 176,98 95,28 0,54 0,74 3,46 246,93 202,81 0,82 0,99 3,24
99. 168,04 101,07 0,60 1,17 4,75 189,47 212,00 1,12 1,76 5,95
100. 221,29 179,78 0,81 2,25 9,89 240,54 161,49 0,67 1,28 5,27
101. 178,08 100,86 0,57 1,25 5,82 203,74 217,03 1,07 1,99 7,59
102. 228,22 163,89 0,72 1,38 4,70 232,66 139,45 0,60 1,26 6,16
103. 84,97 49,71 0,59 1,02 4,14 65,90 65,24 0,99 3,30 18,73
104. 174,90 109,46 0,63 1,16 4,99 155,54 138,98 0,89 4,59 34,64
105. 109,64 89,48 0,82 1,21 4,30 165,22 197,93 1,20 1,38 4,19
106. 175,30 104,96 0,60 1,27 6,35 328,45 193,25 0,59 1,85 8,64
107. 60,54 66,76 1,10 4,22 23,68 93,27 47,41 0,51 1,02 4,46
108. 165,55 82,58 0,50 0,78 4,31 324,68 166,85 0,51 0,83 4,15
109. 146,28 101,05 0,69 1,12 4,09 115,09 78,32 0,68 2,40 16,04
110. 114,00 117,06 1,03 2,02 7,66 111,01 74,24 0,67 2,24 11,45
111. 271,02 160,11 0,59 1,41 6,22 185,06 171,83 0,93 4,37 33,91
112. 120,76 98,41 0,81 1,66 6,04 134,06 81,46 0,61 1,05 4,75
113. 283,53 162,59 0,57 1,38 6,37 146,93 86,38 0,59 1,74 8,27
114. 171,25 105,10 0,61 1,57 6,62 261,54 155,81 0,60 0,72 3,22
115. 246,74 144,44 0,59 0,97 4,33 245,19 223,51 0,91 2,26 9,70
116. 145,11 78,40 0,54 1,27 6,21 119,08 149,08 1,25 3,39 15,78
117. 206,60 109,14 0,53 1,31 5,90 129,37 120,59 0,93 3,36 17,56
118. 122,36 61,53 0,50 1,54 8,69 60,60 32,72 0,54 1,18 7,50
119. 164,38 92,90 0,57 0,86 3,93 232,04 200,85 0,87 1,23 4,41
120. 102,17 119,53 1,17 1,71 5,70 167,35 252,13 1,51 1,76 5,55
121. 263,32 142,62 0,54 1,01 4,00 226,07 193,47 0,86 1,64 5,41
122. 174,25 121,68 0,70 1,43 5,22 237,70 173,62 0,73 1,99 9,74
123. 142,13 86,53 0,61 1,54 6,63 172,13 117,75 0,68 1,22 4,81
124. 195,45 167,61 0,86 2,26 13,84 137,22 83,72 0,61 1,87 11,31
125. 257,00 140,56 0,55 0,91 3,67 169,55 151,23 0,89 4,37 29,71
126. 161,93 135,99 0,84 3,67 22,63 289,73 174,02 0,60 2,93 22,23
127. 89,01 44,21 0,50 0,87 3,96 53,43 65,46 1,23 4,99 30,66
128. 169,74 127,59 0,75 2,31 13,46 309,29 265,02 0,86 2,27 12,56
129. 122,26 75,43 0,62 1,01 4,62 184,00 138,81 0,75 1,41 5,96
130. 127,74 120,64 0,94 1,77 6,30 124,02 80,66 0,65 1,57 6,74
131. 227,25 141,18 0,62 1,44 6,64 209,80 257,32 1,23 3,32 16,72
132. 127,26 111,78 0,88 2,40 9,71 173,35 88,69 0,51 1,05 4,91
133. 75,40 50,97 0,68 1,53 6,17 108,10 87,21 0,81 1,73 8,30
134. 221,33 106,21 0,48 0,98 3,74 122,34 75,83 0,62 1,79 7,96
135. 234,71 132,74 0,57 0,95 3,94 219,68 189,83 0,86 2,06 8,81
136. 159,50 110,54 0,69 2,44 13,22 209,58 191,94 0,92 2,90 16,69
137. 173,60 100,13 0,58 1,01 4,97 339,85 202,52 0,60 1,01 4,90
138. 203,23 105,67 0,52 1,08 5,50 329,02 217,92 0,66 1,13 5,43

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 220

inst. Distribution of CVP intermediate effort Distribution of CIBI intermediate effort
n. μ σ CV skew kurt μ σ CV skew kurt

139. 95,18 57,09 0,60 1,82 11,37 154,79 99,05 0,64 2,60 19,80
140. 135,77 122,93 0,91 2,09 8,05 173,69 125,03 0,72 5,96 60,52
141. 143,70 85,08 0,59 1,69 9,05 115,76 101,01 0,87 2,14 9,47
142. 119,39 79,32 0,66 1,09 4,14 126,11 86,34 0,68 1,59 6,97
143. 176,16 103,23 0,59 1,25 5,06 185,12 200,62 1,08 1,62 4,90
144. 138,96 122,60 0,88 1,47 4,25 144,37 77,82 0,54 1,11 5,57
145. 244,53 145,64 0,60 2,61 20,09 129,11 73,46 0,57 2,41 18,82
146. 198,05 196,67 0,99 4,33 33,93 218,00 142,34 0,65 1,81 8,25
147. 248,57 131,04 0,53 1,33 6,59 163,99 145,34 0,89 2,67 11,79
148. 50,64 45,52 0,90 2,22 8,20 72,27 40,40 0,56 1,22 5,00
149. 168,21 135,76 0,81 1,95 8,55 187,29 101,23 0,54 0,72 3,69
150. 184,08 201,36 1,09 2,32 11,82 129,97 91,06 0,70 2,27 13,14
151. 117,09 73,51 0,63 0,82 3,62 194,21 146,72 0,76 1,18 4,29
152. 170,85 102,75 0,60 1,01 4,56 217,86 158,22 0,73 1,16 4,19
153. 241,32 173,92 0,72 3,13 21,11 202,09 136,54 0,68 1,62 6,59
154. 106,19 67,03 0,63 1,68 7,19 180,50 103,29 0,57 1,39 7,05
155. 145,19 80,20 0,55 0,73 3,60 240,62 157,49 0,65 0,87 3,81
156. 117,84 104,65 0,89 3,41 20,52 89,53 77,50 0,87 2,27 9,79
157. 139,17 73,77 0,53 1,41 6,80 79,64 55,49 0,70 2,02 8,64
158. 164,48 98,69 0,60 1,55 7,03 170,37 145,96 0,86 2,36 12,88
159. 157,27 100,02 0,64 1,57 7,80 185,56 131,48 0,71 1,84 8,47
160. 183,30 89,85 0,49 1,37 7,16 107,18 64,66 0,60 1,70 8,74
161. 95,87 52,17 0,54 1,91 14,54 186,21 87,62 0,47 0,47 3,24
162. 228,62 138,77 0,61 1,21 4,64 350,86 193,47 0,55 1,33 5,31
163. 171,28 140,03 0,82 1,86 6,11 227,99 113,24 0,50 2,07 11,45
164. 81,51 65,30 0,80 1,45 5,33 107,11 138,03 1,29 1,94 6,56
165. 249,80 170,49 0,68 1,89 9,10 296,15 189,32 0,64 1,27 5,25
166. 78,68 43,27 0,55 1,69 8,48 50,54 63,03 1,25 5,45 43,37
167. 136,42 116,58 0,85 3,53 23,46 161,86 89,34 0,55 1,02 4,50
168. 150,97 95,96 0,64 1,61 7,17 236,18 161,34 0,68 1,52 7,11
169. 106,94 66,44 0,62 1,16 5,33 172,51 102,46 0,59 0,68 3,35
170. 105,64 58,10 0,55 1,13 4,34 78,15 98,11 1,26 2,92 11,45
171. 76,10 48,44 0,64 2,24 11,84 54,19 89,25 1,65 4,91 30,78
172. 125,03 78,72 0,63 3,74 30,84 65,87 49,73 0,76 4,19 29,79
173. 259,56 198,49 0,76 4,77 43,58 145,95 106,16 0,73 4,03 32,59
174. 110,74 101,01 0,91 2,82 12,83 160,12 90,28 0,56 1,46 9,26
175. 141,30 77,45 0,55 0,59 3,40 214,19 146,68 0,68 0,97 4,08
176. 165,39 99,71 0,60 0,95 4,33 293,59 196,65 0,67 0,97 3,93
177. 143,94 161,11 1,12 2,94 18,12 119,44 79,68 0,67 2,21 14,03
178. 188,20 101,69 0,54 1,38 6,34 109,93 103,92 0,95 3,30 17,03
179. 210,76 127,76 0,61 1,12 4,94 199,23 144,47 0,73 1,65 6,79
180. 151,49 105,37 0,70 1,80 6,80 189,11 135,06 0,71 2,11 10,51
181. 72,92 65,32 0,90 3,57 20,99 101,36 53,97 0,53 1,02 4,94
182. 227,47 130,89 0,58 0,99 4,57 299,78 194,71 0,65 1,21 5,27
183. 82,13 84,14 1,02 2,28 9,70 82,25 51,29 0,62 1,30 5,24
184. 88,26 57,51 0,65 1,53 7,22 163,88 112,85 0,69 1,60 7,97
185. 181,42 116,42 0,64 2,91 18,99 154,07 145,93 0,95 2,15 8,42
186. 199,78 111,37 0,56 1,16 6,17 323,99 226,31 0,70 0,95 3,92
187. 62,77 40,42 0,64 1,45 5,69 43,35 52,41 1,21 4,46 30,11
188. 268,95 169,50 0,63 1,15 4,30 196,52 133,95 0,68 1,86 9,24
189. 167,00 109,17 0,65 2,49 14,52 203,87 197,83 0,97 3,36 24,98
190. 138,30 92,47 0,67 2,48 13,75 142,28 172,10 1,21 2,50 10,63
191. 126,58 140,82 1,11 2,04 6,62 143,77 80,13 0,56 1,13 4,84
192. 190,28 110,27 0,58 2,22 13,52 146,13 128,60 0,88 2,01 6,99
193. 223,69 124,70 0,56 0,99 4,46 179,87 196,48 1,09 3,20 15,90
194. 195,11 119,49 0,61 1,73 8,29 198,26 247,04 1,25 2,82 13,06
195. 198,56 135,14 0,68 1,05 4,27 153,16 137,06 0,89 4,64 36,43
196. 70,82 58,03 0,82 2,15 9,00 90,37 73,08 0,81 4,18 34,55
197. 135,59 71,03 0,52 0,89 3,49 111,16 136,25 1,23 2,63 9,57
198. 85,20 66,00 0,77 2,06 8,91 77,72 56,53 0,73 1,31 4,41
199. 215,22 131,15 0,61 1,66 8,60 156,34 115,04 0,74 1,97 8,35
200. 104,94 74,81 0,71 1,08 5,33 170,52 161,27 0,95 1,21 4,98
201. 258,06 148,99 0,58 1,14 5,25 265,92 240,45 0,90 2,42 11,50
202. 197,95 127,77 0,65 2,64 14,77 224,47 159,52 0,71 1,32 5,24
203. 165,75 131,28 0,79 1,64 5,87 212,69 126,45 0,59 1,17 4,53
204. 231,71 114,34 0,49 0,87 4,65 146,87 119,83 0,82 3,83 24,61
205. 206,69 122,89 0,59 1,16 5,26 251,86 214,52 0,85 1,43 5,22
206. 223,04 160,30 0,72 3,90 29,86 114,01 81,53 0,72 3,65 27,72
207. 152,62 92,04 0,60 0,25 2,59 271,31 198,82 0,73 0,37 2,35
208. 140,99 101,35 0,72 1,53 5,59 154,02 95,86 0,62 0,86 3,58
209. 133,64 74,44 0,56 0,93 4,09 125,93 106,91 0,85 2,01 7,43
210. 123,60 73,33 0,59 1,56 6,72 217,93 128,20 0,59 1,54 7,27
211. 198,60 149,71 0,75 2,69 15,62 310,86 245,82 0,79 4,25 34,06
212. 258,95 131,93 0,51 0,76 3,54 151,41 109,50 0,72 2,35 12,98
213. 92,20 110,65 1,20 3,21 15,66 114,57 61,50 0,54 1,28 5,52
214. 150,81 94,74 0,63 1,29 5,91 247,98 150,40 0,61 0,93 3,84
215. 149,05 99,07 0,66 1,47 6,39 167,97 165,18 0,98 1,88 7,27
216. 141,87 147,82 1,04 2,02 7,45 135,37 79,54 0,59 0,97 4,07
217. 44,63 53,99 1,21 5,20 34,86 70,95 41,22 0,58 2,85 19,12
218. 118,98 67,62 0,57 0,69 3,58 210,97 129,16 0,61 0,96 3,95
219. 81,29 81,27 1,00 1,92 6,33 86,21 45,87 0,53 0,59 3,01

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 221

inst. Distribution of CVP intermediate effort Distribution of CIBI intermediate effort
n. μ σ CV skew kurt μ σ CV skew kurt

220. 136,72 135,60 0,99 1,75 5,89 127,31 72,29 0,57 1,01 4,40
221. 105,11 118,11 1,12 5,04 44,19 142,42 252,14 1,77 4,75 38,71
222. 179,06 105,78 0,59 1,95 9,04 124,98 101,06 0,81 1,68 5,57
223. 68,79 76,85 1,12 2,70 11,14 86,24 49,79 0,58 1,05 3,74
224. 247,26 132,64 0,54 0,83 3,96 204,77 164,37 0,80 1,84 7,46
225. 88,42 63,85 0,72 1,37 5,92 111,40 105,60 0,95 1,48 5,36
226. 141,22 101,84 0,72 2,05 9,95 169,64 225,67 1,33 2,32 9,78
227. 113,98 87,55 0,77 3,26 21,44 194,22 147,30 0,76 5,13 43,80
228. 166,30 96,74 0,58 1,33 6,61 217,18 138,68 0,64 0,88 3,61
229. 267,09 173,52 0,65 1,47 5,66 296,79 192,21 0,65 0,94 3,88
230. 186,98 109,35 0,58 1,75 7,53 223,82 211,60 0,95 2,11 9,39
231. 225,34 140,87 0,63 1,63 9,12 310,73 253,75 0,82 2,54 15,40
232. 149,03 88,82 0,60 0,84 4,14 246,41 192,30 0,78 1,00 4,01
233. 255,16 183,90 0,72 2,67 16,56 209,41 152,50 0,73 1,50 5,55
234. 95,88 94,22 0,98 2,18 7,94 119,09 205,29 1,72 2,47 8,54
235. 286,42 152,65 0,53 1,33 6,60 147,56 81,48 0,55 1,18 5,90
236. 124,51 139,19 1,12 2,46 9,35 142,73 76,73 0,54 0,62 3,42
237. 126,03 63,31 0,50 1,25 5,16 75,65 89,72 1,19 5,11 33,16
238. 151,68 128,63 0,85 2,91 15,36 192,21 291,25 1,52 2,82 13,06
239. 200,03 144,39 0,72 1,33 6,01 124,57 84,50 0,68 1,85 10,14
240. 97,41 95,48 0,98 2,72 13,68 118,94 76,82 0,65 1,37 6,70
241. 173,99 123,73 0,71 1,47 5,83 200,73 115,26 0,57 1,05 5,11
242. 90,45 51,88 0,57 1,14 6,93 171,81 101,28 0,59 1,16 7,37
243. 178,23 131,32 0,74 3,26 22,63 323,36 215,51 0,67 5,29 48,48
244. 172,32 96,27 0,56 1,17 4,69 158,13 143,60 0,91 2,71 13,90
245. 145,83 77,61 0,53 0,58 3,41 242,03 148,53 0,61 0,70 3,42
246. 199,45 105,79 0,53 0,63 3,36 211,68 175,28 0,83 1,40 4,91
247. 162,36 83,53 0,51 0,85 3,76 144,20 155,02 1,08 2,29 8,79
248. 262,62 146,92 0,56 2,31 12,52 149,94 104,70 0,70 1,99 8,11
249. 195,58 105,84 0,54 0,92 4,49 380,21 209,46 0,55 1,11 4,64
250. 178,12 100,83 0,57 0,92 4,80 291,79 184,07 0,63 0,84 3,48
251. 200,13 118,46 0,59 0,91 3,83 144,79 102,90 0,71 1,40 5,23
252. 106,04 71,69 0,68 2,37 12,30 94,93 131,98 1,39 3,98 23,39
253. 198,10 104,41 0,53 1,31 5,88 120,83 94,87 0,79 2,19 9,46
254. 67,63 83,94 1,24 3,29 17,34 85,85 178,75 2,08 3,38 16,74
255. 245,12 127,78 0,52 1,21 5,81 216,46 208,21 0,96 3,11 17,36
256. 151,47 103,10 0,68 2,71 18,46 288,87 201,48 0,70 3,08 20,77
257. 109,05 69,43 0,64 2,01 10,08 196,64 126,58 0,64 2,17 12,44
258. 146,73 99,43 0,68 1,54 6,86 174,97 217,06 1,24 2,09 7,97
259. 135,99 82,31 0,61 1,44 6,62 138,09 165,87 1,20 2,91 12,49
260. 84,89 96,90 1,14 2,75 11,05 107,84 59,24 0,55 1,02 4,82
261. 87,56 93,44 1,07 2,01 6,63 106,27 78,23 0,74 5,29 48,95
262. 166,28 106,14 0,64 1,16 5,98 277,87 170,41 0,61 1,20 4,94
263. 140,81 111,64 0,79 2,84 13,71 229,72 115,56 0,50 1,24 6,08
264. 73,37 67,54 0,92 2,43 10,64 86,70 141,16 1,63 3,03 13,02
265. 116,18 54,92 0,47 0,57 3,48 67,41 50,50 0,75 4,35 30,67
266. 123,89 64,62 0,52 0,48 2,97 166,84 130,85 0,78 1,03 3,45
267. 17,29 8,19 0,47 0,90 4,10 9,36 4,45 0,48 0,55 3,78
268. 161,74 77,44 0,48 0,98 5,01 296,30 154,58 0,52 0,91 5,00
269. 181,36 111,62 0,62 1,09 5,11 296,55 226,40 0,76 1,15 4,64
270. 172,58 105,26 0,61 2,12 12,03 342,84 206,60 0,60 2,33 12,81
271. 91,78 65,38 0,71 1,15 4,15 77,84 53,04 0,68 1,33 4,78
272. 245,40 146,35 0,60 1,77 10,40 163,21 132,22 0,81 2,47 11,31
273. 181,83 104,63 0,58 1,09 4,91 205,61 225,56 1,10 1,93 6,81
274. 186,80 118,22 0,63 1,19 4,85 268,42 196,90 0,73 1,91 9,17
275. 189,31 163,06 0,86 2,85 19,10 153,67 96,13 0,63 1,61 8,97
276. 152,22 109,30 0,72 1,24 5,54 239,50 225,04 0,94 1,43 6,03
277. 160,92 84,13 0,52 0,68 3,28 120,13 102,75 0,86 3,12 17,51
278. 88,91 80,90 0,91 3,57 19,99 145,03 72,87 0,50 1,51 6,55
279. 115,77 140,30 1,21 2,77 11,63 140,92 74,66 0,53 1,27 6,51
280. 237,03 109,65 0,46 0,66 3,64 137,93 94,24 0,68 2,10 11,12
281. 161,74 136,35 0,84 2,33 9,38 230,89 118,68 0,51 1,49 6,69
282. 78,99 98,03 1,24 2,54 9,91 81,79 50,85 0,62 1,18 4,80
283. 261,88 138,61 0,53 0,93 4,73 137,42 79,40 0,58 1,59 9,61
284. 198,72 107,98 0,54 0,61 3,36 222,41 173,03 0,78 1,18 4,11
285. 226,94 150,93 0,67 2,58 14,42 224,12 162,56 0,73 0,83 3,28
286. 117,51 74,73 0,64 1,53 6,51 112,87 161,18 1,43 2,61 10,00
287. 192,10 91,75 0,48 0,56 4,60 382,01 173,28 0,45 0,94 5,00
288. 165,99 99,27 0,60 1,02 5,11 285,06 188,13 0,66 1,28 5,91
289. 42,01 41,28 0,98 3,98 22,62 73,94 37,85 0,51 1,30 5,46
290. 160,56 95,45 0,59 1,48 6,66 167,41 201,61 1,20 2,49 10,32
291. 86,51 107,83 1,25 2,85 10,85 115,45 68,31 0,59 1,19 4,64
292. 174,56 105,26 0,60 1,18 4,87 266,57 191,19 0,72 1,32 5,84
293. 148,85 75,16 0,50 0,93 4,10 119,38 126,46 1,06 2,50 10,20
294. 209,45 169,26 0,81 4,34 34,60 264,56 171,13 0,65 2,20 12,88
295. 171,67 115,14 0,67 1,83 7,04 256,15 142,11 0,55 1,27 6,57
296. 101,15 80,34 0,79 1,58 7,91 158,59 152,19 0,96 1,62 8,69
297. 278,65 142,04 0,51 0,70 2,88 163,49 95,57 0,58 1,14 5,63
298. 206,94 124,44 0,60 2,52 18,24 242,77 216,16 0,89 1,49 5,09
299. 40,30 19,49 0,48 1,18 6,16 21,33 13,43 0,63 2,32 15,22
300. 88,54 62,30 0,70 1,51 6,32 118,16 138,88 1,18 1,82 6,52

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 222

inst. Distribution of CVP intermediate effort Distribution of CIBI intermediate effort
n. μ σ CV skew kurt μ σ CV skew kurt

301. 162,32 105,03 0,65 1,12 4,74 210,62 184,26 0,87 1,43 5,43
302. 201,18 132,84 0,66 1,24 5,62 193,00 124,59 0,65 1,48 6,67
303. 157,26 90,88 0,58 0,72 3,37 230,16 201,59 0,88 1,07 3,55
304. 211,55 116,53 0,55 0,88 3,47 111,96 69,06 0,62 1,24 6,44
305. 175,84 182,93 1,04 1,71 6,41 121,58 81,80 0,67 1,62 6,85
306. 174,07 102,28 0,59 1,33 6,48 196,65 186,85 0,95 1,71 6,22
307. 97,63 86,10 0,88 1,48 4,75 93,50 58,30 0,62 1,09 4,09
308. 61,71 82,38 1,33 3,43 16,43 82,27 48,70 0,59 1,33 4,89
309. 104,03 154,86 1,49 2,65 9,62 105,47 70,57 0,67 1,65 6,52
310. 140,05 81,04 0,58 1,11 4,56 150,24 172,44 1,15 1,96 6,76
311. 158,80 81,52 0,51 1,47 6,86 97,37 76,08 0,78 2,29 9,41
312. 219,95 131,82 0,60 2,91 20,46 156,27 148,18 0,95 2,72 12,10
313. 82,34 61,74 0,75 1,42 5,15 100,26 115,72 1,15 2,17 8,28
314. 151,59 93,40 0,62 0,88 4,21 253,87 210,12 0,83 0,75 3,29
315. 104,54 68,67 0,66 1,83 7,99 149,25 133,94 0,90 2,24 10,60
316. 182,94 105,17 0,57 1,12 4,30 158,98 96,78 0,61 0,85 3,30
317. 81,80 60,18 0,74 1,66 6,14 95,07 72,01 0,76 0,86 3,05
318. 103,28 66,10 0,64 1,32 5,39 89,22 79,21 0,89 2,87 14,77
319. 227,36 120,84 0,53 0,94 4,36 207,18 161,44 0,78 1,94 8,14
320. 171,10 92,79 0,54 0,41 3,14 296,05 206,15 0,70 0,53 2,71
321. 188,19 151,99 0,81 2,03 11,51 123,71 80,17 0,65 1,52 8,33
322. 169,03 187,91 1,11 3,50 22,89 194,58 244,93 1,26 10,61 135,43
323. 91,63 67,56 0,74 1,88 8,82 105,67 131,49 1,24 2,82 13,96
324. 101,61 64,57 0,64 2,16 10,77 98,31 94,88 0,97 2,31 9,68
325. 191,94 109,35 0,57 1,32 6,42 228,47 169,24 0,74 1,33 4,98
326. 129,61 83,20 0,64 3,97 34,32 77,27 79,16 1,02 4,07 22,72
327. 143,81 78,40 0,55 0,82 3,69 116,44 109,27 0,94 2,17 7,73
328. 161,05 89,90 0,56 0,92 4,29 192,94 193,68 1,00 1,25 3,50
329. 117,96 85,80 0,73 1,67 7,90 166,57 177,67 1,07 1,95 8,23
330. 162,60 81,54 0,50 1,07 4,86 160,78 175,81 1,09 2,13 7,84
331. 162,07 104,67 0,65 2,42 16,19 95,73 69,66 0,73 3,53 26,69
332. 120,61 87,70 0,73 2,50 12,76 121,41 173,31 1,43 3,33 17,39
333. 147,81 99,98 0,68 1,31 5,11 200,39 123,54 0,62 1,12 4,66
334. 161,64 90,66 0,56 0,95 4,58 258,47 188,02 0,73 1,03 4,73
335. 268,80 213,79 0,80 5,40 52,62 264,59 200,22 0,76 1,38 5,41
336. 102,33 64,32 0,63 0,94 4,28 162,83 127,39 0,78 1,18 4,92
337. 164,54 96,05 0,58 0,99 4,39 208,93 197,15 0,94 1,48 5,12
338. 110,68 89,44 0,81 1,39 4,77 157,94 201,87 1,28 1,55 4,61
339. 233,76 109,05 0,47 0,86 4,36 145,79 126,36 0,87 3,51 21,16
340. 206,89 108,53 0,52 0,77 3,50 185,62 161,79 0,87 2,08 7,72
341. 99,90 78,56 0,79 1,33 4,57 138,08 171,88 1,24 1,62 4,96
342. 102,47 57,25 0,56 1,39 5,95 59,36 47,66 0,80 3,33 22,31
343. 70,58 31,19 0,44 1,05 4,93 37,22 24,91 0,67 4,78 43,99
344. 189,84 145,08 0,76 2,01 9,08 266,80 174,99 0,66 1,26 5,60
345. 120,12 91,83 0,76 2,93 14,85 101,57 186,31 1,83 4,24 23,17
346. 91,06 63,30 0,70 1,88 7,90 83,78 130,53 1,56 3,16 13,46
347. 210,52 136,63 0,65 3,19 25,71 300,35 211,86 0,71 0,99 3,74
348. 266,08 144,55 0,54 0,95 4,21 255,61 232,32 0,91 1,92 7,93
349. 92,24 71,91 0,78 1,54 5,83 83,16 55,94 0,67 1,14 4,28
350. 109,98 146,61 1,33 2,95 14,31 95,02 70,53 0,74 2,25 11,37
351. 210,92 132,28 0,63 2,91 20,25 261,73 198,60 0,76 1,03 3,43
352. 250,11 173,22 0,69 1,40 5,41 214,57 147,27 0,69 1,25 4,76
353. 63,10 82,06 1,30 4,58 30,18 88,54 54,61 0,62 2,22 11,24
354. 256,90 146,84 0,57 0,90 3,62 162,36 108,33 0,67 2,27 13,78
355. 128,18 101,90 0,79 4,03 30,62 139,04 236,66 1,70 5,03 40,26
356. 172,76 108,90 0,63 1,43 6,19 278,36 231,26 0,83 1,59 6,36
357. 200,98 120,69 0,60 1,30 5,17 202,40 187,16 0,92 1,62 5,42
358. 96,58 68,81 0,71 1,95 7,84 95,40 139,12 1,46 2,93 12,17
359. 106,49 79,72 0,75 4,10 33,10 103,24 114,11 1,11 1,80 5,57
360. 53,83 41,85 0,78 3,72 23,17 96,77 47,87 0,49 0,87 3,95
361. 164,15 77,44 0,47 1,23 6,01 80,98 41,87 0,52 0,78 5,27
362. 110,15 130,46 1,18 2,30 7,84 124,05 67,66 0,55 0,87 3,37
363. 136,49 77,55 0,57 1,30 6,19 263,61 126,39 0,48 1,15 5,50
364. 146,85 72,68 0,49 0,49 2,47 94,07 82,30 0,87 2,81 12,76
365. 107,89 65,42 0,61 1,42 5,90 141,43 104,10 0,74 1,21 5,03
366. 208,24 155,85 0,75 2,04 7,89 263,11 154,53 0,59 2,20 13,27
367. 282,37 155,44 0,55 0,73 3,47 234,97 194,98 0,83 1,76 6,43
368. 161,92 107,20 0,66 1,36 5,40 152,57 103,64 0,68 1,32 5,23
369. 221,38 134,11 0,61 1,05 3,73 181,80 119,73 0,66 1,33 6,40
370. 271,79 173,24 0,64 1,37 5,64 207,47 151,04 0,73 1,71 7,00
371. 189,20 100,76 0,53 1,26 5,79 282,30 197,88 0,70 1,17 5,77
372. 127,18 71,71 0,56 1,26 4,77 111,87 142,08 1,27 2,58 9,26
373. 207,89 129,94 0,63 2,11 11,22 124,58 105,15 0,84 3,14 17,03
374. 99,69 62,51 0,63 0,99 3,95 141,47 116,40 0,82 1,82 7,09
375. 50,08 59,01 1,18 3,25 16,50 62,20 39,99 0,64 1,31 5,51
376. 142,14 96,25 0,68 3,99 32,37 108,09 123,78 1,15 3,27 17,68
377. 281,65 184,02 0,65 2,03 9,66 183,36 148,36 0,81 1,87 7,06
378. 140,52 139,76 0,99 2,20 8,32 173,50 90,62 0,52 1,45 7,58
379. 230,67 120,28 0,52 1,24 6,07 162,82 134,10 0,82 2,25 9,82
380. 159,83 118,76 0,74 1,61 6,83 130,42 77,48 0,59 2,00 11,06
381. 143,56 100,39 0,70 1,08 4,02 235,75 213,23 0,90 1,02 3,70

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 223

inst. Distribution of CVP intermediate effort Distribution of CIBI intermediate effort
n. μ σ CV skew kurt μ σ CV skew kurt

382. 126,05 80,68 0,64 1,74 10,03 207,50 158,17 0,76 2,27 12,73
383. 219,25 120,56 0,55 0,97 4,73 269,03 236,20 0,88 1,40 4,55
384. 73,32 72,36 0,99 2,48 10,92 91,31 159,54 1,75 2,65 10,49
385. 222,26 149,08 0,67 0,93 3,51 203,41 106,27 0,52 1,04 5,12
386. 191,84 117,47 0,61 1,80 8,43 293,97 203,44 0,69 1,81 9,13
387. 171,23 185,94 1,09 2,88 13,74 151,30 99,92 0,66 1,61 6,78
388. 215,71 161,21 0,75 4,37 37,47 304,71 210,74 0,69 1,14 4,83
389. 150,32 93,01 0,62 1,58 7,46 212,95 188,82 0,89 1,57 7,00
390. 136,98 79,27 0,58 1,21 5,06 251,97 135,06 0,54 1,18 5,07
391. 192,55 151,87 0,79 2,39 13,50 201,86 130,75 0,65 1,33 5,30
392. 205,34 113,17 0,55 0,99 4,05 310,10 189,60 0,61 1,03 4,21
393. 158,02 114,19 0,72 0,99 3,76 256,14 260,35 1,02 0,99 3,23
394. 98,51 78,11 0,79 1,64 6,00 98,20 69,98 0,71 1,55 6,96
395. 172,68 102,33 0,59 0,69 3,03 119,67 81,92 0,68 1,83 8,08
396. 207,95 161,05 0,77 1,27 5,47 133,34 82,83 0,62 1,22 5,48
397. 91,55 67,90 0,74 1,84 8,13 147,19 87,57 0,59 1,06 5,05
398. 149,14 113,87 0,76 2,68 13,57 246,34 146,91 0,60 1,23 5,26
399. 108,43 90,71 0,84 3,44 19,64 190,95 102,69 0,54 1,37 5,74
400. 242,72 174,91 0,72 1,31 5,13 180,72 101,82 0,56 1,01 4,23
401. 148,77 89,10 0,60 2,58 18,04 214,44 143,51 0,67 1,01 4,03
402. 87,59 58,81 0,67 1,53 7,63 162,09 99,51 0,61 0,95 4,53
403. 125,34 110,09 0,88 3,97 28,80 208,07 112,28 0,54 1,12 4,95
404. 146,62 94,31 0,64 1,46 6,14 184,50 143,84 0,78 1,54 7,31
405. 94,15 85,63 0,91 3,02 16,53 114,81 74,82 0,65 1,45 6,68
406. 127,26 79,04 0,62 1,67 7,75 145,13 149,37 1,03 2,64 13,47
407. 115,31 87,25 0,76 1,77 7,10 139,81 188,83 1,35 2,04 7,23
408. 157,59 100,17 0,64 1,23 5,95 276,69 154,78 0,56 0,89 4,62
409. 210,49 156,72 0,74 2,13 9,88 232,57 166,58 0,72 1,56 6,59
410. 97,16 75,87 0,78 1,73 6,61 111,25 73,45 0,66 1,56 7,06
411. 105,74 137,36 1,30 3,35 17,15 123,31 72,29 0,59 1,65 7,72
412. 226,04 144,45 0,64 1,04 3,70 180,97 115,45 0,64 1,92 10,53
413. 156,07 109,20 0,70 1,57 6,70 203,75 165,75 0,81 1,64 6,83
414. 157,81 141,75 0,90 3,27 17,75 233,56 129,98 0,56 1,16 4,78
415. 106,38 84,33 0,79 1,14 3,64 140,47 186,59 1,33 1,55 4,26
416. 91,00 67,35 0,74 3,57 24,45 78,60 140,68 1,79 4,79 31,72
417. 122,47 64,18 0,52 0,63 4,29 244,60 118,30 0,48 0,99 5,03
418. 73,16 44,49 0,61 1,26 6,87 148,86 82,66 0,56 1,71 8,25
419. 203,27 111,01 0,55 0,99 5,23 174,58 193,01 1,11 2,95 12,69
420. 110,14 55,28 0,50 1,00 4,66 98,55 98,65 1,00 2,16 7,75
421. 208,85 123,86 0,59 1,63 7,80 281,61 202,15 0,72 1,07 4,09
422. 269,44 130,03 0,48 0,74 3,48 149,53 79,64 0,53 0,93 4,64
423. 213,22 137,32 0,64 1,58 6,98 182,51 119,85 0,66 1,66 6,65
424. 193,96 99,69 0,51 0,89 3,91 182,79 168,25 0,92 2,22 9,44
425. 107,32 71,78 0,67 1,25 5,50 146,32 149,36 1,02 1,33 4,21
426. 175,93 95,54 0,54 1,14 4,34 218,03 186,27 0,85 1,58 5,93
427. 169,30 92,88 0,55 1,10 4,78 136,47 170,58 1,25 2,88 11,61
428. 101,64 55,42 0,55 3,33 26,58 57,88 51,72 0,89 3,90 22,49
429. 284,25 167,58 0,59 2,54 16,81 186,31 133,50 0,72 1,49 5,36
430. 218,12 114,47 0,52 1,04 5,47 180,99 157,16 0,87 1,97 6,88
431. 173,41 101,67 0,59 1,22 6,28 308,04 186,47 0,61 1,22 6,16
432. 166,55 106,45 0,64 1,34 5,85 201,02 164,86 0,82 1,33 5,15
433. 140,55 110,14 0,78 3,27 24,26 130,66 94,28 0,72 1,49 6,08
434. 108,40 55,71 0,51 1,29 5,92 55,04 30,79 0,56 1,04 5,15
435. 235,97 128,28 0,54 1,03 5,25 278,95 200,09 0,72 1,07 3,45
436. 237,47 144,91 0,61 1,79 8,37 134,57 104,16 0,77 2,87 16,52
437. 232,33 129,74 0,56 1,94 10,03 179,31 151,79 0,85 2,46 11,60
438. 133,78 97,16 0,73 3,19 22,50 134,93 109,46 0,81 1,79 7,40
439. 130,30 83,34 0,64 2,05 13,60 243,95 157,98 0,65 2,54 17,21
440. 114,67 109,70 0,96 2,86 14,60 149,86 100,84 0,67 2,42 14,67
441. 191,60 141,77 0,74 1,24 4,20 168,33 103,52 0,61 1,15 4,62
442. 116,73 74,07 0,63 1,77 8,19 128,39 156,11 1,22 2,60 11,22
443. 190,11 113,42 0,60 0,96 4,69 294,21 196,16 0,67 1,26 5,75
444. 98,90 94,29 0,95 1,64 5,30 94,91 50,91 0,54 0,56 2,91
445. 293,57 164,84 0,56 1,64 7,54 205,57 158,93 0,77 2,43 11,48
446. 106,58 96,12 0,90 1,98 8,28 96,19 60,63 0,63 1,38 5,89
447. 167,87 170,63 1,02 1,74 5,13 182,84 96,76 0,53 0,59 2,98
448. 86,34 86,72 1,00 2,72 10,90 122,76 67,05 0,55 2,42 16,03
449. 192,85 114,23 0,59 1,07 4,98 195,05 140,27 0,72 1,38 4,99
450. 62,53 44,90 0,72 1,20 4,99 83,33 73,08 0,88 1,33 5,07
451. 220,80 131,95 0,60 1,23 5,21 222,13 214,17 0,96 2,53 11,87
452. 170,42 135,75 0,80 2,37 10,77 274,93 145,93 0,53 1,29 6,35
453. 87,30 53,47 0,61 1,28 5,44 86,10 64,67 0,75 1,60 6,64
454. 121,83 67,86 0,56 0,60 2,97 178,54 137,63 0,77 0,90 3,12
455. 92,79 51,51 0,56 1,26 5,72 87,98 89,95 1,02 2,50 10,28
456. 146,03 152,65 1,05 2,02 7,09 154,41 85,44 0,55 0,58 2,88
457. 122,28 103,91 0,85 1,02 3,17 200,03 229,71 1,15 1,05 2,95
458. 152,19 92,45 0,61 1,08 5,68 90,44 60,15 0,67 2,13 9,84
459. 250,10 161,67 0,65 1,02 4,03 160,78 101,65 0,63 1,72 10,70
460. 170,01 93,51 0,55 1,06 5,19 172,39 196,82 1,14 2,03 7,70
461. 141,05 84,86 0,60 1,23 5,64 201,19 156,25 0,78 1,37 5,97
462. 232,07 137,59 0,59 1,65 7,75 300,52 190,21 0,63 1,10 4,25

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 224

inst. Distribution of CVP intermediate effort Distribution of CIBI intermediate effort
n. μ σ CV skew kurt μ σ CV skew kurt

463. 161,94 112,43 0,69 2,04 11,90 229,54 147,32 0,64 1,26 5,41
464. 241,86 135,88 0,56 0,92 4,09 266,10 191,94 0,72 1,45 5,36
465. 230,19 124,49 0,54 1,17 4,48 326,62 209,54 0,64 0,96 4,05
466. 101,87 99,08 0,97 7,42 81,83 102,02 111,29 1,09 1,88 6,42
467. 222,29 120,16 0,54 1,02 4,65 245,80 211,21 0,86 1,65 6,33
468. 191,36 101,19 0,53 1,25 7,11 380,56 199,07 0,52 1,37 7,44
469. 33,65 33,90 1,01 3,93 22,11 28,56 66,67 2,33 5,22 32,35
470. 218,39 124,06 0,57 1,18 4,89 172,01 194,93 1,13 2,94 13,10
471. 113,73 64,69 0,57 1,40 6,27 139,30 139,10 1,00 1,62 5,44
472. 184,40 101,88 0,55 1,07 4,90 284,16 191,50 0,67 0,82 3,44
473. 237,93 129,53 0,54 1,89 11,48 175,63 182,41 1,04 2,86 12,79
474. 81,04 70,14 0,87 4,37 35,08 133,66 70,38 0,53 1,55 7,08
475. 145,79 95,29 0,65 2,68 18,22 171,24 218,69 1,28 2,79 15,49
476. 153,19 146,09 0,95 6,61 66,56 157,88 139,60 0,88 1,82 7,06
477. 193,58 110,23 0,57 1,81 10,00 333,27 190,15 0,57 0,86 3,95
478. 78,45 81,39 1,04 2,06 7,05 89,50 51,43 0,57 0,95 3,61
479. 63,86 47,75 0,75 1,34 5,25 74,21 99,19 1,34 2,24 7,85
480. 91,22 118,85 1,30 2,35 8,31 98,52 63,17 0,64 1,43 5,86
481. 45,93 38,69 0,84 1,56 5,76 56,24 82,59 1,47 2,17 7,22
482. 224,84 119,08 0,53 1,33 6,41 136,45 88,41 0,65 2,01 9,94
483. 164,48 97,25 0,59 1,28 5,70 118,60 102,73 0,87 2,36 9,93
484. 65,37 76,95 1,18 3,33 15,07 75,07 165,25 2,20 3,49 15,31
485. 232,73 142,38 0,61 2,11 10,06 206,02 177,76 0,86 1,96 7,49
486. 243,16 147,78 0,61 1,01 4,12 139,06 87,20 0,63 1,48 8,47
487. 67,58 39,69 0,59 2,04 11,26 50,11 75,44 1,51 4,52 27,22
488. 239,50 181,23 0,76 4,44 33,99 188,22 165,89 0,88 2,25 9,20
489. 219,53 122,72 0,56 1,65 7,33 175,44 170,76 0,97 2,42 10,31
490. 176,62 155,91 0,88 1,91 6,98 209,59 123,79 0,59 2,19 12,62
491. 150,81 85,29 0,57 1,38 6,50 158,23 167,00 1,06 1,80 5,80
492. 107,40 62,86 0,59 1,90 9,76 83,62 126,82 1,52 3,81 19,57
493. 253,65 155,33 0,61 1,27 5,14 204,19 144,29 0,71 1,85 9,14
494. 148,19 100,36 0,68 1,27 4,86 144,20 96,35 0,67 1,06 3,85
495. 244,78 131,49 0,54 1,27 6,28 148,01 104,74 0,71 2,09 8,26
496. 100,74 109,75 1,09 2,03 6,76 119,01 67,67 0,57 1,02 4,39
497. 192,38 111,66 0,58 1,95 11,92 381,88 212,65 0,56 2,38 14,10
498. 109,17 69,37 0,64 3,36 18,90 68,44 101,70 1,49 6,74 58,70
499. 200,25 104,53 0,52 0,99 4,95 166,20 138,51 0,83 2,05 7,85
500. 122,39 78,82 0,64 0,71 3,71 215,84 169,33 0,78 0,80 3,43
501. 268,41 155,43 0,58 2,28 13,08 137,62 91,68 0,67 2,08 11,39
502. 216,03 192,27 0,89 3,87 28,01 210,57 134,73 0,64 1,58 7,72
503. 66,81 57,94 0,87 2,76 12,56 102,80 48,46 0,47 0,89 3,64
504. 113,26 69,73 0,62 1,41 5,94 143,18 136,33 0,95 1,80 7,29
505. 146,62 82,36 0,56 1,14 4,80 82,68 49,23 0,60 1,09 5,27
506. 208,20 121,23 0,58 1,41 7,32 225,87 180,95 0,80 0,96 3,11
507. 208,34 123,46 0,59 1,74 8,50 293,89 189,85 0,65 1,18 5,62
508. 211,19 130,91 0,62 1,34 5,68 251,72 242,68 0,96 2,41 10,67
509. 283,58 147,36 0,52 1,25 5,40 208,56 168,56 0,81 1,74 6,14
510. 171,35 106,48 0,62 1,39 5,51 257,56 173,40 0,67 1,52 6,72
511. 144,35 147,38 1,02 1,84 6,29 146,13 88,33 0,60 1,05 4,01
512. 25,85 12,70 0,49 0,91 5,14 50,91 23,70 0,47 1,32 5,71
513. 138,48 79,28 0,57 1,20 6,23 275,94 154,06 0,56 1,41 6,67
514. 183,96 109,32 0,59 0,79 3,42 129,42 79,56 0,61 1,31 5,45
515. 121,09 70,10 0,58 1,91 10,57 235,16 120,76 0,51 1,40 7,14
516. 207,85 100,74 0,48 0,93 4,03 107,85 62,52 0,58 0,89 4,60
517. 54,12 41,40 0,77 2,11 9,24 53,89 87,98 1,63 3,09 12,92
518. 138,55 90,60 0,65 1,44 6,27 253,35 158,00 0,62 1,78 8,12
519. 185,33 120,30 0,65 0,89 3,54 180,67 134,35 0,74 1,88 7,72
520. 106,33 106,02 1,00 1,75 6,27 169,33 230,56 1,36 1,73 5,69
521. 71,45 89,07 1,25 5,75 45,35 114,83 62,73 0,55 1,79 8,54
522. 255,24 135,28 0,53 1,01 4,10 146,24 83,81 0,57 1,09 5,59
523. 135,65 84,58 0,62 1,33 6,07 193,31 167,63 0,87 1,72 7,87
524. 100,71 57,37 0,57 2,06 13,84 190,41 96,43 0,51 0,65 3,54
525. 184,00 112,67 0,61 1,67 8,27 275,73 199,18 0,72 1,47 8,37
526. 118,92 67,94 0,57 0,71 3,87 198,00 125,25 0,63 0,95 4,06
527. 237,47 140,76 0,59 2,77 19,88 154,35 116,95 0,76 2,19 8,62
528. 174,28 85,98 0,49 0,49 2,90 278,22 200,95 0,72 0,59 2,62
529. 98,20 55,55 0,57 0,64 3,61 196,59 103,80 0,53 0,87 3,87
530. 140,90 125,56 0,89 3,31 24,87 102,48 66,95 0,65 2,29 15,70
531. 78,62 42,11 0,54 0,94 4,41 42,50 23,97 0,56 1,13 5,46
532. 108,21 100,26 0,93 2,19 8,35 140,54 76,90 0,55 1,98 12,60
533. 41,82 46,83 1,12 4,73 34,71 41,90 97,94 2,34 5,19 36,60
534. 122,80 84,59 0,69 2,54 18,45 189,27 179,34 0,95 2,64 17,52
535. 157,68 100,87 0,64 1,38 5,31 208,63 164,25 0,79 1,49 5,65
536. 139,52 104,19 0,75 3,08 18,67 242,81 124,63 0,51 0,56 2,94
537. 191,48 112,07 0,59 1,13 4,67 218,08 199,86 0,92 1,62 5,62
538. 96,24 66,32 0,69 2,05 8,69 124,45 81,42 0,65 0,89 3,87
539. 113,50 78,13 0,69 1,77 8,01 197,30 105,70 0,54 0,91 3,79
540. 88,86 80,43 0,91 1,64 6,11 125,66 175,02 1,39 1,84 6,11
541. 210,19 129,76 0,62 2,07 12,16 330,92 177,27 0,54 0,83 3,85
542. 153,43 89,35 0,58 0,72 3,14 211,31 194,67 0,92 1,00 3,14
543. 79,37 70,01 0,88 1,44 4,81 73,84 53,09 0,72 1,45 6,24

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 225

inst. Distribution of CVP intermediate effort Distribution of CIBI intermediate effort
n. μ σ CV skew kurt μ σ CV skew kurt

544. 210,73 121,63 0,58 1,66 8,16 132,39 89,72 0,68 3,19 22,65
545. 188,50 103,05 0,55 1,31 5,38 126,94 137,29 1,08 4,04 23,67
546. 171,99 97,25 0,57 0,71 3,40 175,32 139,36 0,79 1,69 6,31
547. 132,87 116,56 0,88 1,46 4,85 139,79 86,04 0,62 1,54 6,55
548. 210,73 143,33 0,68 1,34 5,14 176,15 113,91 0,65 1,12 4,18
549. 182,83 125,37 0,69 2,50 15,31 335,64 230,12 0,69 2,95 20,66
550. 95,21 77,06 0,81 2,42 14,57 86,17 63,70 0,74 1,56 5,60
551. 152,56 78,12 0,51 1,02 4,10 90,82 70,06 0,77 3,73 25,44
552. 143,72 153,57 1,07 1,97 7,26 122,46 70,00 0,57 1,17 5,48
553. 128,57 103,19 0,80 1,44 6,81 215,48 197,71 0,92 0,87 3,24
554. 93,88 93,91 1,00 1,74 6,63 80,49 53,28 0,66 1,09 4,36
555. 157,68 130,23 0,83 1,19 3,80 151,30 87,03 0,58 1,19 5,15
556. 164,63 92,89 0,56 1,17 6,04 142,26 127,25 0,89 2,15 8,48
557. 248,27 135,95 0,55 1,04 4,66 173,67 131,53 0,76 1,91 7,46
558. 205,72 150,43 0,73 1,63 7,03 244,02 134,15 0,55 0,95 3,83
559. 96,53 61,43 0,64 0,95 3,84 124,10 102,71 0,83 1,17 3,83
560. 111,29 71,17 0,64 1,63 8,25 149,15 117,90 0,79 1,29 4,95
561. 181,98 111,38 0,61 1,33 5,51 246,54 168,11 0,68 1,05 3,72
562. 175,69 119,80 0,68 1,90 8,93 174,24 136,31 0,78 1,99 9,90
563. 164,16 89,72 0,55 1,09 5,11 124,67 115,45 0,93 3,10 17,43
564. 168,60 117,28 0,70 1,24 4,24 227,39 141,92 0,62 1,50 5,99
565. 84,73 126,22 1,49 2,97 12,55 92,49 61,91 0,67 1,75 7,40
566. 174,74 108,05 0,62 0,93 3,63 134,66 97,39 0,72 1,51 6,56
567. 100,56 62,55 0,62 1,05 4,49 103,94 74,86 0,72 1,36 4,90
568. 203,17 126,74 0,62 1,73 10,17 230,51 252,20 1,09 2,65 14,62
569. 103,10 64,57 0,63 1,89 9,48 185,05 94,11 0,51 0,64 2,85
570. 234,77 126,50 0,54 0,75 3,56 140,52 93,68 0,67 1,42 6,14
571. 150,60 112,78 0,75 2,53 12,75 190,25 119,25 0,63 1,08 5,17
572. 150,33 87,94 0,58 1,04 4,26 214,86 173,92 0,81 1,16 4,01
573. 107,87 90,60 0,84 2,45 10,17 171,40 103,25 0,60 1,80 7,53
574. 170,57 81,32 0,48 0,58 2,68 170,30 175,15 1,03 1,66 4,90
575. 137,34 154,08 1,12 2,69 10,48 166,39 84,30 0,51 0,92 4,38
576. 186,42 83,54 0,45 1,04 5,04 93,24 54,34 0,58 2,54 19,47
577. 143,80 70,73 0,49 0,72 3,64 93,36 88,26 0,95 3,40 17,67
578. 197,66 125,65 0,64 2,35 15,20 242,34 225,71 0,93 3,81 29,40
579. 85,53 62,36 0,73 0,97 3,80 122,87 136,99 1,11 1,29 4,04
580. 113,96 128,66 1,13 6,04 57,01 92,97 81,02 0,87 3,49 22,62
581. 101,43 67,99 0,67 0,96 3,80 153,85 133,34 0,87 1,18 4,34
582. 155,86 103,68 0,67 1,47 8,12 327,32 191,09 0,58 1,92 9,98
583. 149,02 118,10 0,79 3,12 21,09 132,55 95,49 0,72 1,66 6,99
584. 213,34 144,11 0,68 1,59 7,67 113,72 71,30 0,63 1,54 7,50
585. 163,52 82,77 0,51 0,69 4,27 276,09 175,85 0,64 0,83 4,02
586. 157,81 124,41 0,79 1,71 6,97 192,92 113,01 0,59 1,39 6,06
587. 180,34 99,71 0,55 1,23 6,37 269,44 185,87 0,69 0,74 3,17
588. 134,78 99,15 0,74 2,55 15,37 158,63 174,38 1,10 1,85 7,15
589. 216,30 121,39 0,56 2,05 14,57 323,64 267,89 0,83 2,03 12,69
590. 266,89 131,96 0,49 1,22 4,86 175,82 135,59 0,77 2,45 11,41
591. 97,38 68,25 0,70 1,64 7,11 113,88 144,36 1,27 2,29 9,06
592. 89,99 109,30 1,21 2,39 8,54 101,98 60,54 0,59 1,27 5,63
593. 160,10 103,71 0,65 0,94 4,16 297,55 207,66 0,70 0,92 4,17
594. 226,15 154,52 0,68 1,60 6,65 291,57 207,07 0,71 1,86 8,51
595. 143,54 96,33 0,67 0,88 3,68 221,29 218,42 0,99 0,93 3,11
596. 112,40 72,11 0,64 0,82 3,15 132,05 151,53 1,15 1,55 4,53
597. 206,89 137,04 0,66 2,70 18,87 284,40 182,57 0,64 0,82 3,28
598. 263,99 164,03 0,62 0,42 2,31 149,68 86,88 0,58 0,37 2,90
599. 189,67 129,81 0,68 1,16 5,79 137,38 97,63 0,71 2,28 10,46
600. 201,09 100,64 0,50 0,84 3,60 134,46 119,04 0,89 3,03 15,04
601. 260,13 163,14 0,63 0,65 3,66 143,25 88,85 0,62 0,86 4,63
602. 229,29 168,74 0,74 1,67 8,38 204,26 129,53 0,63 1,48 6,38
603. 191,19 100,51 0,53 2,48 15,72 100,13 64,41 0,64 2,57 13,62
604. 240,81 171,86 0,71 2,37 12,35 264,87 188,28 0,71 1,38 5,63
605. 84,06 84,81 1,01 3,07 17,04 102,78 59,98 0,58 1,18 4,86
606. 242,62 136,67 0,56 1,39 6,13 221,41 162,50 0,73 1,18 4,17
607. 129,20 88,50 0,69 1,78 8,14 157,40 104,65 0,66 1,66 8,68
608. 149,85 89,17 0,60 1,43 9,48 237,64 160,58 0,68 0,69 3,13
609. 170,81 98,61 0,58 1,65 7,77 121,10 113,09 0,93 4,13 32,41
610. 248,23 163,56 0,66 2,28 11,15 313,53 217,57 0,69 1,10 5,01
611. 198,51 154,40 0,78 2,13 9,63 227,08 134,23 0,59 0,78 3,30
612. 134,39 82,42 0,61 0,96 4,88 224,98 153,44 0,68 0,72 3,19
613. 60,71 63,08 1,04 2,02 7,82 87,26 138,70 1,59 2,10 7,29
614. 213,73 144,06 0,67 2,72 15,93 295,59 212,32 0,72 1,32 5,78
615. 193,57 111,37 0,58 2,35 14,38 113,07 92,43 0,82 2,77 12,47
616. 106,75 76,30 0,71 1,35 5,61 145,69 169,41 1,16 1,65 5,74
617. 120,92 74,47 0,62 1,52 6,34 139,60 101,97 0,73 1,08 3,92
618. 138,25 90,30 0,65 1,63 9,64 217,63 132,24 0,61 0,69 3,20
619. 166,69 108,40 0,65 1,73 6,83 265,73 142,55 0,54 0,73 3,39
620. 82,93 60,40 0,73 1,80 9,42 68,76 53,13 0,77 1,61 5,77
621. 118,40 66,99 0,57 0,70 4,48 214,74 127,91 0,60 1,07 5,24
622. 99,88 43,31 0,43 0,82 4,04 51,03 23,79 0,47 0,88 5,25
623. 126,38 87,53 0,69 1,77 9,80 180,31 182,25 1,01 2,07 10,43
624. 139,80 109,62 0,78 1,94 8,11 224,26 133,15 0,59 1,68 8,40

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 226

inst. Distribution of CVP intermediate effort Distribution of CIBI intermediate effort
n. μ σ CV skew kurt μ σ CV skew kurt

625. 223,92 133,52 0,60 2,03 10,24 268,56 199,74 0,74 2,01 10,55
626. 112,52 79,29 0,70 1,88 8,37 187,52 110,64 0,59 1,79 7,88
627. 214,00 123,01 0,57 0,88 3,85 242,82 182,67 0,75 1,10 3,52
628. 152,70 86,46 0,57 0,91 4,47 249,62 188,76 0,76 1,02 4,23
629. 55,07 53,39 0,97 4,61 29,96 99,81 51,14 0,51 0,73 3,81
630. 204,69 147,98 0,72 1,16 4,18 146,85 88,63 0,60 0,79 3,57
631. 259,14 195,49 0,75 2,02 8,88 230,58 167,32 0,73 1,99 10,31
632. 217,22 117,10 0,54 1,88 10,82 110,71 67,78 0,61 1,83 10,27
633. 240,96 126,20 0,52 0,64 2,84 144,25 88,39 0,61 1,79 9,72
634. 116,84 62,78 0,54 0,98 4,03 112,64 111,57 0,99 1,68 5,22
635. 160,80 102,41 0,64 1,69 7,04 141,09 194,01 1,38 3,15 14,25
636. 71,25 54,64 0,77 2,23 10,67 108,29 63,55 0,59 1,08 4,80
637. 69,81 37,20 0,53 0,88 3,51 48,71 56,14 1,15 3,31 15,36
638. 151,68 111,26 0,73 1,40 6,50 112,50 70,62 0,63 1,52 6,20
639. 192,04 190,64 0,99 2,20 10,33 152,16 95,00 0,62 1,57 7,73
640. 104,42 66,21 0,63 2,29 14,18 191,24 111,07 0,58 2,94 23,34
641. 152,98 105,84 0,69 1,77 7,83 237,11 134,43 0,57 1,16 4,79
642. 117,58 57,88 0,49 0,49 3,79 229,04 106,72 0,47 0,65 3,28
643. 102,52 69,18 0,67 2,14 10,34 185,50 97,68 0,53 1,33 5,91
644. 191,09 124,10 0,65 1,27 6,13 310,62 216,96 0,70 1,42 6,71
645. 170,41 111,14 0,65 1,59 6,49 227,65 144,78 0,64 0,95 4,00
646. 127,94 60,60 0,47 0,97 4,37 103,39 114,19 1,10 2,72 11,52
647. 250,68 145,94 0,58 1,74 9,53 150,04 96,35 0,64 1,50 6,34
648. 192,10 109,04 0,57 1,37 6,79 295,60 175,98 0,60 0,69 3,24
649. 106,86 83,60 0,78 1,68 6,92 143,81 187,17 1,30 1,93 6,79
650. 120,49 68,07 0,56 1,13 4,62 127,99 103,70 0,81 1,44 5,63
651. 155,24 135,97 0,88 2,44 14,69 270,04 291,60 1,08 2,23 12,39
652. 150,10 157,09 1,05 2,18 8,53 140,93 84,75 0,60 1,28 4,57
653. 288,88 151,14 0,52 1,00 4,39 162,15 120,91 0,75 2,71 14,49
654. 238,85 142,76 0,60 1,46 6,81 185,29 169,58 0,92 2,42 9,87
655. 118,33 97,42 0,82 1,34 5,69 185,75 212,19 1,14 1,46 5,31
656. 135,66 84,01 0,62 1,65 7,82 228,69 137,59 0,60 1,59 8,87
657. 107,14 117,87 1,10 1,91 6,03 116,24 62,85 0,54 0,89 3,38
658. 145,87 99,89 0,68 1,84 9,33 181,90 220,13 1,21 2,21 9,58
659. 199,76 141,59 0,71 1,25 4,67 137,86 93,26 0,68 1,46 5,98
660. 95,83 54,51 0,57 0,89 3,96 96,56 80,60 0,83 1,33 4,01
661. 64,11 46,31 0,72 1,14 4,53 74,73 74,14 0,99 1,54 5,24
662. 147,00 80,76 0,55 1,50 10,70 298,51 149,68 0,50 2,07 13,37
663. 59,29 47,59 0,80 2,49 15,77 80,71 86,59 1,07 3,48 26,07
664. 268,33 136,93 0,51 1,61 8,49 144,50 97,58 0,68 2,46 13,12
665. 100,89 57,90 0,57 2,71 20,95 188,71 90,99 0,48 0,49 3,26
666. 180,64 125,47 0,69 1,86 8,89 120,14 76,55 0,64 1,56 6,31
667. 264,63 117,91 0,45 0,58 3,25 132,84 78,62 0,59 2,37 19,58
668. 203,92 163,71 0,80 2,18 11,86 127,32 90,75 0,71 1,82 8,47
669. 232,61 130,59 0,56 0,98 4,18 166,87 182,96 1,10 4,32 27,47
670. 196,58 110,79 0,56 0,98 4,59 310,95 235,90 0,76 1,12 4,42
671. 67,55 105,84 1,57 3,17 13,24 69,13 51,11 0,74 2,05 8,36
672. 157,45 109,74 0,70 1,47 5,33 135,00 107,73 0,80 2,80 15,22
673. 118,18 78,12 0,66 1,79 8,06 144,23 93,58 0,65 1,18 5,37
674. 98,46 61,70 0,63 2,49 17,11 139,12 93,74 0,67 0,92 3,63
675. 137,66 72,84 0,53 0,51 3,12 238,59 140,78 0,59 0,52 2,88
676. 84,97 91,01 1,07 3,15 16,12 101,34 64,48 0,64 1,16 4,32
677. 63,72 76,24 1,20 6,15 54,16 94,63 53,08 0,56 1,58 9,02
678. 134,33 71,31 0,53 1,20 4,58 140,57 161,12 1,15 1,96 6,41
679. 96,99 49,57 0,51 0,33 3,18 194,51 94,63 0,49 0,55 3,17
680. 105,35 59,93 0,57 0,99 3,92 101,44 86,10 0,85 1,98 8,82
681. 108,82 110,99 1,02 4,15 32,42 133,78 82,37 0,62 1,62 8,18
682. 152,11 81,48 0,54 0,99 5,15 255,91 153,54 0,60 0,55 3,55
683. 110,90 70,23 0,63 0,54 2,86 174,05 155,21 0,89 0,81 2,74
684. 100,02 58,37 0,58 1,44 5,27 159,86 90,84 0,57 0,93 3,96
685. 208,95 119,19 0,57 1,38 7,58 114,60 63,20 0,55 1,01 6,11
686. 141,69 84,17 0,59 1,00 4,03 127,17 125,80 0,99 2,36 9,95
687. 56,45 44,72 0,79 1,34 4,41 66,40 64,93 0,98 2,05 8,65
688. 133,45 75,56 0,57 0,90 3,84 154,15 165,42 1,07 1,66 5,28
689. 157,81 106,99 0,68 1,75 8,01 111,61 87,18 0,78 2,85 16,28
690. 228,89 144,91 0,63 1,71 7,73 283,22 197,65 0,70 1,10 4,49
691. 117,73 75,97 0,65 1,94 11,68 218,56 108,06 0,49 0,75 3,86
692. 113,62 75,36 0,66 1,82 8,92 171,71 125,91 0,73 2,40 15,24
693. 138,48 116,00 0,84 2,89 13,07 221,81 126,23 0,57 3,56 29,80
694. 44,78 53,87 1,20 3,62 17,22 63,50 38,04 0,60 2,81 20,36
695. 187,45 131,16 0,70 1,80 9,12 111,57 67,53 0,61 1,60 7,69
696. 124,20 84,69 0,68 1,09 4,01 153,27 190,60 1,24 1,54 4,41
697. 269,92 133,77 0,50 0,62 3,54 193,07 160,25 0,83 2,78 13,60
698. 143,88 79,84 0,55 1,18 5,47 79,62 55,94 0,70 2,07 10,05
699. 90,78 60,89 0,67 1,42 7,24 139,08 132,86 0,96 1,66 6,93
700. 150,71 169,17 1,12 2,76 11,75 184,28 91,35 0,50 1,12 4,42
701. 98,65 73,74 0,75 3,25 19,18 81,82 150,00 1,83 4,79 29,33
702. 279,34 142,69 0,51 1,36 7,18 140,95 85,99 0,61 1,10 6,21
703. 213,31 170,28 0,80 1,12 4,04 133,15 77,66 0,58 1,05 4,10
704. 137,77 93,75 0,68 1,22 4,31 142,45 96,20 0,68 1,82 8,19
705. 229,40 115,31 0,50 1,26 6,09 165,90 149,14 0,90 2,58 12,24

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 227

inst. Distribution of CVP intermediate effort Distribution of CIBI intermediate effort
n. μ σ CV skew kurt μ σ CV skew kurt

706. 210,15 131,24 0,62 1,05 4,77 361,24 224,61 0,62 1,29 5,36
707. 158,06 102,47 0,65 1,07 4,49 249,99 176,93 0,71 1,06 4,71
708. 141,54 90,95 0,64 1,14 4,80 226,04 174,63 0,77 1,33 5,47
709. 173,86 89,68 0,52 0,30 3,35 340,34 167,75 0,49 0,67 3,46
710. 116,32 62,23 0,53 1,06 6,96 231,44 117,08 0,51 1,38 8,20
711. 206,91 183,20 0,89 2,30 10,73 189,33 122,56 0,65 1,43 5,40
712. 116,81 73,00 0,62 1,51 6,51 138,28 109,39 0,79 1,21 4,14
713. 131,80 86,88 0,66 3,13 21,25 69,60 62,00 0,89 3,41 19,75
714. 105,46 69,66 0,66 1,67 6,68 109,91 157,08 1,43 2,37 8,40
715. 129,39 68,80 0,53 1,42 5,96 103,21 133,93 1,30 2,95 12,52
716. 222,84 115,59 0,52 0,97 4,10 142,49 117,06 0,82 3,52 22,74
717. 217,02 122,03 0,56 1,46 8,11 264,71 196,81 0,74 1,50 5,83
718. 83,10 48,89 0,59 1,34 5,93 69,81 73,81 1,06 3,03 16,22
719. 232,69 140,18 0,60 1,23 6,70 271,58 251,81 0,93 1,55 5,58
720. 159,34 174,78 1,10 1,76 6,50 125,73 77,05 0,61 1,46 6,43
721. 206,30 118,13 0,57 1,20 5,15 122,24 73,52 0,60 1,20 5,21
722. 163,54 136,24 0,83 1,16 3,71 126,72 74,46 0,59 0,84 4,42
723. 103,24 61,34 0,59 1,04 4,23 138,59 114,20 0,82 1,11 3,87
724. 167,46 98,02 0,59 1,02 5,13 197,37 151,76 0,77 1,11 3,53
725. 196,60 120,20 0,61 2,26 13,65 368,86 212,50 0,58 1,05 5,05
726. 130,17 90,50 0,70 1,00 3,47 163,73 197,26 1,20 1,52 4,39
727. 196,33 114,25 0,58 1,66 7,45 249,82 182,30 0,73 1,29 5,30
728. 213,27 113,79 0,53 0,86 4,42 130,83 77,50 0,59 1,70 8,93
729. 165,76 84,07 0,51 1,14 4,42 104,96 85,55 0,82 3,11 17,39
730. 134,93 114,75 0,85 2,37 9,70 194,37 100,15 0,52 1,05 5,19
731. 88,09 52,07 0,59 1,13 5,97 176,68 93,03 0,53 1,45 6,88
732. 153,05 74,67 0,49 1,00 4,52 83,34 62,12 0,75 2,68 14,88
733. 56,11 45,05 0,80 2,08 8,16 59,19 94,08 1,59 2,91 11,52
734. 180,70 105,95 0,59 1,46 6,94 202,79 197,12 0,97 2,20 10,45
735. 140,69 124,65 0,89 4,22 31,76 212,65 162,34 0,76 3,46 24,82
736. 206,10 136,93 0,66 3,00 21,81 364,26 270,07 0,74 3,21 24,49
737. 81,94 82,80 1,01 3,61 18,64 130,73 63,81 0,49 1,06 5,04
738. 175,74 91,93 0,52 0,89 4,61 303,57 169,27 0,56 0,63 2,99
739. 127,09 109,12 0,86 2,62 11,41 182,84 95,82 0,52 0,57 2,88
740. 146,55 83,73 0,57 0,94 5,69 285,61 165,17 0,58 1,34 6,22
741. 140,59 74,97 0,53 1,30 5,67 127,51 143,26 1,12 2,04 6,69
742. 172,64 102,60 0,59 1,23 7,52 325,86 178,90 0,55 1,64 9,23
743. 99,74 62,17 0,62 1,58 6,85 95,63 126,10 1,32 2,76 11,52
744. 58,27 57,39 0,99 2,85 13,03 74,92 47,41 0,63 1,65 7,38
745. 175,44 138,35 0,79 1,04 3,53 138,31 77,86 0,56 0,83 3,87
746. 239,46 162,46 0,68 1,46 5,56 243,10 166,10 0,68 2,27 13,71
747. 172,11 126,28 0,73 0,73 3,20 323,81 263,36 0,81 0,73 3,04
748. 98,38 56,88 0,58 2,54 17,11 54,73 46,66 0,85 3,89 25,41
749. 208,09 119,69 0,58 1,43 7,07 325,45 226,67 0,70 1,69 8,76
750. 168,61 121,42 0,72 2,58 12,42 272,59 132,40 0,49 0,90 4,61
751. 270,98 178,84 0,66 1,28 4,94 311,45 229,42 0,74 1,44 6,00
752. 189,53 124,06 0,65 1,60 7,29 292,29 230,17 0,79 1,76 8,44
753. 186,34 101,30 0,54 0,96 4,74 265,73 227,24 0,86 1,24 4,78
754. 56,18 48,75 0,87 3,68 19,54 47,29 102,94 2,18 4,60 25,02
755. 133,72 86,32 0,65 1,37 5,70 213,19 139,73 0,66 1,92 9,60
756. 181,33 120,42 0,66 1,46 5,45 263,38 179,53 0,68 1,79 9,35
757. 242,33 141,14 0,58 0,89 3,76 299,37 226,92 0,76 1,24 4,78
758. 214,36 107,66 0,50 1,09 4,85 111,76 72,38 0,65 2,63 16,14
759. 248,51 174,12 0,70 3,30 22,42 215,71 182,99 0,85 1,92 7,42
760. 194,98 193,21 0,99 3,04 15,90 241,98 137,68 0,57 1,16 4,93
761. 141,24 77,86 0,55 1,26 5,21 126,65 126,91 1,00 2,26 8,87
762. 85,75 90,03 1,05 2,25 8,07 99,51 52,86 0,53 0,99 4,48
763. 117,08 67,01 0,57 0,85 3,09 114,69 135,45 1,18 1,85 5,61
764. 181,99 104,96 0,58 0,92 3,92 254,24 217,10 0,85 1,14 3,86
765. 178,87 115,43 0,65 1,20 4,54 156,85 106,74 0,68 1,51 5,55
766. 128,84 84,81 0,66 1,45 7,74 163,31 129,48 0,79 1,29 4,36
767. 188,43 104,65 0,56 1,03 5,54 362,80 201,46 0,56 1,21 6,19
768. 145,21 83,84 0,58 1,66 6,47 245,13 140,10 0,57 1,19 5,26
769. 147,65 120,39 0,82 1,52 5,87 112,14 68,33 0,61 1,19 5,35
770. 102,69 102,87 1,00 1,47 4,34 98,42 58,91 0,60 1,29 6,03
771. 200,89 120,79 0,60 1,39 7,96 280,95 218,77 0,78 2,26 13,46
772. 156,05 128,86 0,83 2,73 13,46 244,76 120,14 0,49 1,10 5,22
773. 173,29 109,65 0,63 1,50 6,38 125,06 99,45 0,80 2,75 14,41
774. 135,60 147,32 1,09 7,74 84,86 86,44 84,67 0,98 5,34 46,54
775. 150,58 81,06 0,54 0,88 4,70 256,42 146,76 0,57 0,84 3,66
776. 224,55 146,01 0,65 1,70 12,17 156,76 103,92 0,66 1,76 7,21
777. 163,27 125,95 0,77 1,78 6,10 195,21 109,51 0,56 1,28 6,55
778. 128,12 104,68 0,82 4,98 43,76 112,81 209,53 1,86 6,35 57,99
779. 148,61 119,24 0,80 5,58 50,81 266,49 129,02 0,48 1,07 5,06
780. 42,40 58,95 1,39 4,05 21,71 47,34 123,84 2,62 4,24 22,26
781. 131,27 110,44 0,84 1,43 5,67 118,80 77,99 0,66 1,66 6,68
782. 119,86 105,29 0,88 1,74 6,02 130,96 78,62 0,60 0,91 3,94
783. 109,68 60,50 0,55 0,51 3,09 219,95 114,86 0,52 0,71 3,27
784. 198,30 111,47 0,56 1,24 5,18 225,98 181,58 0,80 1,86 8,98
785. 149,42 74,49 0,50 0,80 5,01 300,59 141,05 0,47 1,16 5,41
786. 236,72 179,92 0,76 1,65 6,70 194,83 113,89 0,58 1,35 5,67

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 228

inst. Distribution of CVP intermediate effort Distribution of CIBI intermediate effort
n. μ σ CV skew kurt μ σ CV skew kurt

787. 270,41 212,39 0,79 3,00 21,98 166,98 111,90 0,67 2,53 16,86
788. 82,82 65,09 0,79 2,81 15,10 105,95 65,70 0,62 1,38 5,93
789. 84,05 54,58 0,65 2,04 10,01 154,53 79,60 0,52 1,38 6,53
790. 54,29 38,10 0,70 1,97 7,70 43,25 65,37 1,51 3,56 16,07
791. 128,38 76,61 0,60 1,66 9,64 222,44 160,78 0,72 1,74 9,30
792. 214,36 209,80 0,98 5,94 54,74 313,09 181,76 0,58 1,18 5,21
793. 277,49 130,71 0,47 0,81 3,76 142,99 96,66 0,68 5,01 49,29
794. 195,78 138,97 0,71 1,44 5,32 225,93 136,43 0,60 1,52 8,29
795. 92,01 55,10 0,60 1,42 6,00 104,00 126,35 1,21 2,05 7,08
796. 241,83 190,93 0,79 5,54 54,43 189,76 137,53 0,72 2,28 12,48
797. 161,73 133,33 0,82 4,59 42,41 104,89 83,86 0,80 3,31 21,04
798. 127,35 111,07 0,87 1,72 5,82 159,72 87,04 0,54 1,41 5,88
799. 183,87 181,06 0,98 1,40 4,80 136,57 80,22 0,59 1,01 4,54
800. 120,29 77,89 0,65 1,35 6,49 124,45 106,82 0,86 4,05 31,68
801. 154,10 103,66 0,67 1,20 4,56 247,49 223,38 0,90 1,11 3,92
802. 121,48 111,40 0,92 6,66 68,01 132,94 223,78 1,68 7,30 77,88
803. 250,92 147,66 0,59 1,35 6,25 286,67 215,54 0,75 1,48 5,64
804. 139,22 100,96 0,73 5,85 61,34 270,87 128,39 0,47 0,77 3,75
805. 236,22 166,16 0,70 0,82 3,37 159,39 95,07 0,60 1,44 7,05
806. 139,73 114,70 0,82 1,53 5,23 150,69 95,78 0,64 1,49 6,91
807. 196,75 137,92 0,70 1,64 7,10 245,12 147,93 0,60 1,38 5,64
808. 152,35 168,14 1,10 3,48 22,12 190,29 118,55 0,62 3,21 23,60
809. 120,87 82,97 0,69 0,57 2,77 200,74 180,71 0,90 0,70 2,61
810. 133,30 77,89 0,58 1,66 7,01 103,78 140,01 1,35 3,43 16,19
811. 176,42 110,57 0,63 2,43 16,68 306,82 205,06 0,67 0,80 4,07
812. 113,58 69,13 0,61 1,72 9,55 199,89 107,64 0,54 0,90 4,48
813. 114,68 74,11 0,65 1,29 5,29 177,14 132,59 0,75 1,47 6,03
814. 148,02 89,80 0,61 1,00 4,99 220,21 195,88 0,89 1,20 4,82
815. 175,29 137,61 0,79 3,13 23,17 142,21 90,71 0,64 1,58 8,20
816. 37,33 43,45 1,16 4,28 24,35 36,36 90,18 2,48 4,86 27,87
817. 151,07 94,24 0,62 1,95 12,43 263,95 206,32 0,78 1,75 10,01
818. 119,11 96,13 0,81 2,05 8,34 153,02 83,40 0,55 1,02 5,62
819. 194,57 141,36 0,73 1,79 7,21 157,24 101,56 0,65 1,02 4,04
820. 234,07 146,27 0,62 1,24 4,79 289,83 232,67 0,80 1,61 6,05
821. 99,73 57,42 0,58 1,30 7,15 190,52 93,64 0,49 0,87 4,47
822. 180,00 93,29 0,52 0,41 3,07 326,59 191,11 0,59 0,57 2,95
823. 93,16 69,20 0,74 2,40 12,50 81,08 86,72 1,07 2,93 14,45
824. 80,86 49,66 0,61 1,46 5,97 74,26 82,59 1,11 2,87 14,58
825. 200,44 112,47 0,56 1,81 10,25 143,84 123,81 0,86 2,54 11,22
826. 245,73 142,64 0,58 1,12 5,82 181,03 115,52 0,64 1,44 5,64
827. 184,24 159,97 0,87 2,87 15,10 246,55 135,41 0,55 1,90 11,42
828. 152,50 80,33 0,53 1,17 5,62 99,23 113,26 1,14 4,75 33,87
829. 220,26 228,76 1,04 2,98 15,16 202,47 132,93 0,66 1,93 8,14
830. 84,10 64,36 0,77 2,33 11,03 89,54 60,80 0,68 1,05 3,61
831. 251,03 186,46 0,74 2,34 14,74 363,28 332,20 0,91 3,83 27,62
832. 107,43 55,11 0,51 0,80 4,25 210,12 102,94 0,49 0,69 3,57
833. 106,25 90,36 0,85 3,22 20,80 116,81 195,54 1,67 3,56 20,92
834. 200,09 133,30 0,67 1,43 6,18 192,13 123,11 0,64 1,43 5,99
835. 161,87 121,48 0,75 1,22 4,39 139,51 88,16 0,63 1,68 8,07
836. 91,93 55,09 0,60 1,68 8,88 80,89 114,82 1,42 3,23 15,30
837. 130,36 76,35 0,59 2,23 11,83 84,93 106,11 1,25 6,09 54,04
838. 236,26 144,13 0,61 1,01 4,84 150,94 104,36 0,69 1,63 7,18
839. 122,89 119,65 0,97 1,74 5,45 131,95 64,42 0,49 0,54 2,94
840. 185,73 106,43 0,57 0,72 3,84 293,16 213,22 0,73 0,92 3,83
841. 118,14 161,75 1,37 4,24 28,64 124,30 80,00 0,64 2,85 19,34
842. 112,11 120,21 1,07 2,17 7,90 122,76 67,94 0,55 0,82 3,71
843. 214,60 139,98 0,65 1,42 5,96 184,97 144,38 0,78 2,02 8,75
844. 196,83 113,80 0,58 0,87 4,06 290,94 228,02 0,78 1,09 4,10
845. 98,24 55,36 0,56 1,03 5,59 183,69 99,98 0,54 1,50 7,50
846. 89,56 49,93 0,56 1,12 5,02 68,17 62,48 0,92 2,65 11,37
847. 178,74 107,74 0,60 1,80 9,74 318,51 225,55 0,71 1,77 9,25
848. 120,95 86,74 0,72 1,18 4,01 148,38 100,82 0,68 1,83 8,02
849. 171,19 96,08 0,56 1,29 5,28 97,77 71,18 0,73 2,01 8,81
850. 80,35 48,93 0,61 2,55 18,07 158,54 77,51 0,49 1,34 5,72
851. 116,83 63,59 0,54 0,53 3,15 238,79 118,79 0,50 0,78 3,29
852. 182,55 103,13 0,56 0,99 4,09 219,09 182,29 0,83 1,47 5,26
853. 135,99 131,42 0,97 2,83 15,55 163,43 112,60 0,69 2,19 11,48
854. 120,67 125,53 1,04 2,39 9,64 134,00 78,20 0,58 1,35 7,54
855. 73,73 44,97 0,61 0,85 3,25 83,30 77,31 0,93 1,61 5,52
856. 138,13 163,08 1,18 2,76 12,80 132,40 74,89 0,57 1,92 9,80
857. 261,99 210,16 0,80 4,16 27,85 276,41 263,63 0,95 3,07 17,62
858. 159,12 118,78 0,75 3,58 23,50 201,12 134,53 0,67 0,83 3,30
859. 163,66 99,31 0,61 1,75 7,27 130,13 127,93 0,98 2,25 9,10
860. 155,82 116,93 0,75 1,39 5,31 275,08 255,04 0,93 1,24 4,58
861. 101,38 58,46 0,58 1,78 9,63 82,68 82,05 0,99 2,65 13,72
862. 137,93 81,70 0,59 1,18 4,46 122,80 105,13 0,86 2,06 8,40
863. 165,79 262,02 1,58 11,43 149,62 187,62 540,67 2,88 11,13 143,39
864. 72,37 48,82 0,67 2,61 15,63 129,47 61,08 0,47 0,73 3,14
865. 151,10 76,56 0,51 0,59 3,39 100,18 107,07 1,07 3,42 17,94
866. 166,46 96,25 0,58 0,78 4,39 300,27 176,88 0,59 0,51 3,01
867. 128,84 81,63 0,63 1,19 6,02 183,02 140,47 0,77 1,11 4,30

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 229

inst. Distribution of CVP intermediate effort Distribution of CIBI intermediate effort
n. μ σ CV skew kurt μ σ CV skew kurt

868. 167,22 99,36 0,59 1,02 4,09 144,94 114,03 0,79 1,98 8,16
869. 141,65 81,17 0,57 0,94 4,05 140,10 127,39 0,91 1,75 6,21
870. 239,68 117,06 0,49 0,39 2,96 189,69 156,08 0,82 2,73 14,42
871. 186,13 102,80 0,55 0,81 4,22 173,02 196,94 1,14 2,48 10,03
872. 241,58 147,48 0,61 1,57 6,17 305,84 187,55 0,61 0,85 4,25
873. 267,02 128,47 0,48 1,06 5,13 133,37 68,91 0,52 0,62 4,57
874. 123,55 72,22 0,58 0,61 3,32 216,94 148,14 0,68 0,82 3,48
875. 59,15 40,60 0,69 1,57 6,90 61,84 75,17 1,22 2,87 13,78
876. 129,09 147,85 1,15 1,84 6,21 108,37 67,58 0,62 1,18 4,74
877. 228,20 191,89 0,84 3,61 23,60 323,08 196,98 0,61 1,62 7,86
878. 93,65 68,96 0,74 1,69 6,20 131,67 66,55 0,51 0,97 5,10
879. 177,43 108,10 0,61 1,69 7,73 205,99 157,95 0,77 1,77 8,62
880. 163,09 99,14 0,61 1,17 5,82 237,51 170,73 0,72 0,97 3,77
881. 153,81 83,23 0,54 1,28 6,36 302,03 154,95 0,51 1,27 6,32
882. 275,34 152,37 0,55 1,66 7,88 134,75 80,92 0,60 1,30 6,85
883. 208,95 114,11 0,55 1,01 4,14 319,69 207,06 0,65 1,20 5,12
884. 211,86 130,19 0,61 1,36 5,93 193,34 141,50 0,73 1,71 6,97
885. 187,31 96,09 0,51 0,87 4,24 307,39 196,39 0,64 0,65 3,05
886. 101,66 137,57 1,35 2,73 12,56 90,26 63,18 0,70 2,07 10,88
887. 248,11 181,91 0,73 1,17 4,24 186,30 110,27 0,59 1,72 10,63
888. 224,89 115,49 0,51 0,78 3,48 327,09 217,63 0,67 1,11 4,44
889. 139,23 80,78 0,58 1,81 7,18 92,27 144,01 1,56 4,72 25,18
890. 66,07 38,80 0,59 1,00 3,94 62,26 74,37 1,19 2,32 8,27
891. 165,04 132,67 0,80 2,15 11,06 134,64 96,85 0,72 1,73 7,74
892. 168,45 104,16 0,62 0,71 3,70 296,06 227,53 0,77 0,75 3,27
893. 189,37 129,91 0,69 1,39 5,13 213,05 139,00 0,65 1,39 5,28
894. 240,40 143,64 0,60 1,20 4,71 303,55 194,55 0,64 1,36 5,91
895. 176,37 98,47 0,56 1,33 5,32 157,43 140,42 0,89 2,18 9,40
896. 121,07 69,47 0,57 0,83 4,74 237,08 133,69 0,56 1,01 5,14
897. 164,05 104,53 0,64 1,68 9,56 297,32 211,60 0,71 1,72 9,72
898. 150,78 101,66 0,67 2,03 10,68 275,29 157,06 0,57 1,28 6,34
899. 195,64 107,76 0,55 1,25 5,79 282,42 225,03 0,80 1,53 6,49
900. 254,11 124,22 0,49 0,94 4,09 162,08 111,04 0,69 2,12 9,42
901. 98,54 71,09 0,72 1,76 8,59 150,37 127,29 0,85 1,61 7,24
902. 261,01 157,09 0,60 1,25 6,48 171,99 121,95 0,71 2,10 10,27
903. 115,86 67,56 0,58 1,58 7,69 76,72 71,96 0,94 2,55 10,33
904. 84,06 44,24 0,53 0,42 3,57 163,55 84,81 0,52 0,56 3,68
905. 238,59 190,30 0,80 6,89 73,61 161,02 140,49 0,87 3,01 16,97
906. 160,19 100,92 0,63 1,86 8,37 206,70 162,55 0,79 1,62 8,09
907. 206,82 129,60 0,63 1,08 4,46 233,91 194,67 0,83 1,77 7,38
908. 213,31 113,52 0,53 0,68 3,62 347,73 229,84 0,66 0,98 4,15
909. 134,20 94,06 0,70 1,19 6,06 216,09 205,17 0,95 1,26 5,44
910. 135,07 93,43 0,69 1,61 6,08 144,56 195,56 1,35 2,46 9,09
911. 191,01 161,83 0,85 2,45 11,64 195,88 129,68 0,66 1,27 5,27
912. 185,35 134,14 0,72 2,45 13,07 296,97 169,71 0,57 1,21 5,87
913. 106,50 91,21 0,86 2,45 10,64 161,90 85,77 0,53 1,90 11,56
914. 149,14 87,43 0,59 1,37 6,79 137,51 111,91 0,81 2,10 8,28
915. 284,69 244,49 0,86 5,66 54,55 281,14 255,66 0,91 2,30 10,40
916. 99,12 77,55 0,78 2,95 15,84 155,71 77,16 0,50 0,96 4,42
917. 98,87 73,63 0,74 3,49 20,01 76,11 134,27 1,76 5,46 37,42
918. 190,83 120,03 0,63 1,54 7,30 317,03 185,29 0,58 1,37 5,97
919. 147,78 102,04 0,69 2,53 14,20 195,78 186,62 0,95 2,46 15,50
920. 91,94 72,49 0,79 1,66 6,52 79,56 54,51 0,69 1,37 5,58
921. 119,12 66,18 0,56 1,36 7,19 220,73 112,96 0,51 0,98 4,97
922. 119,76 92,63 0,77 2,66 12,73 195,61 122,46 0,63 1,96 9,95
923. 212,82 138,49 0,65 1,66 8,04 305,20 170,48 0,56 0,79 3,92
924. 147,68 95,28 0,65 2,39 14,27 129,50 110,61 0,85 1,75 5,97
925. 93,99 104,70 1,11 7,29 78,64 130,90 91,63 0,70 1,86 8,93
926. 102,38 128,10 1,25 3,31 15,25 133,74 78,40 0,59 2,03 10,58
927. 132,84 84,23 0,63 1,52 6,35 178,70 114,77 0,64 0,92 3,87
928. 57,13 68,66 1,20 4,04 21,42 88,66 43,12 0,49 1,01 4,56
929. 253,33 155,77 0,61 2,23 13,23 177,25 138,46 0,78 2,17 8,44
930. 168,92 99,01 0,59 1,93 11,14 305,33 178,70 0,59 2,47 16,09
931. 186,46 118,75 0,64 1,05 5,10 336,41 181,46 0,54 0,89 3,85
932. 208,37 117,28 0,56 1,23 5,90 187,34 157,84 0,84 2,00 8,51
933. 113,24 110,72 0,98 3,43 18,81 165,34 86,42 0,52 1,47 6,54
934. 283,69 142,18 0,50 0,86 3,62 150,99 88,48 0,59 1,10 5,17
935. 167,01 88,98 0,53 0,87 3,65 141,96 115,68 0,81 1,72 6,24
936. 154,39 135,22 0,88 2,10 8,02 191,84 123,14 0,64 2,85 16,80
937. 182,88 99,57 0,54 1,37 6,39 108,83 81,00 0,74 2,02 9,61
938. 234,85 147,90 0,63 2,60 14,32 138,08 113,25 0,82 2,74 13,42
939. 81,99 57,95 0,71 1,40 5,98 87,46 110,28 1,26 2,24 8,04
940. 160,57 126,35 0,79 1,52 6,35 122,89 74,46 0,61 1,21 5,30
941. 119,72 67,77 0,57 1,27 5,12 91,42 128,26 1,40 3,32 14,19
942. 119,42 158,25 1,33 2,68 11,32 106,52 74,59 0,70 1,94 8,59
943. 191,78 125,40 0,65 1,64 6,73 249,14 160,55 0,64 1,28 5,54
944. 107,90 75,11 0,70 2,36 15,11 142,86 151,64 1,06 3,06 19,07
945. 183,86 125,36 0,68 1,93 8,20 277,44 151,25 0,55 1,10 4,55
946. 125,42 72,15 0,58 0,65 3,39 210,31 148,88 0,71 0,71 3,28
947. 85,67 75,21 0,88 2,14 8,97 98,66 164,12 1,66 2,62 10,03
948. 129,77 100,57 0,77 3,58 24,88 91,17 94,21 1,03 3,68 22,79

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 230

inst. Distribution of CVP intermediate effort Distribution of CIBI intermediate effort
n. μ σ CV skew kurt μ σ CV skew kurt

949. 192,41 107,03 0,56 0,70 3,73 334,88 217,85 0,65 0,81 3,69
950. 201,15 105,37 0,52 1,31 5,59 140,84 150,12 1,07 3,10 14,31
951. 293,46 168,80 0,58 2,67 18,08 158,99 104,43 0,66 2,52 13,68
952. 104,03 95,54 0,92 5,79 53,25 92,17 198,33 2,15 6,60 59,29
953. 86,74 62,01 0,71 1,62 7,09 96,90 69,59 0,72 1,37 5,31
954. 100,12 68,78 0,69 1,63 7,24 82,83 76,49 0,92 2,22 8,98
955. 73,23 38,48 0,53 2,29 14,10 43,10 39,54 0,92 4,67 33,25
956. 248,48 164,47 0,66 1,99 9,31 326,56 196,95 0,60 0,77 3,79
957. 58,08 57,81 1,00 6,33 53,53 41,54 113,79 2,74 8,31 75,96
958. 82,16 59,53 0,72 1,74 8,01 87,07 125,05 1,44 2,66 11,29
959. 101,94 122,67 1,20 2,73 10,46 125,00 67,67 0,54 1,33 5,73
960. 121,28 80,60 0,66 2,08 12,04 182,41 167,72 0,92 2,03 11,74
961. 83,13 112,42 1,35 4,79 35,17 104,44 65,82 0,63 2,21 12,24
962. 167,58 155,82 0,93 2,57 11,52 210,72 116,45 0,55 0,92 3,49
963. 143,00 123,83 0,87 1,90 8,89 102,16 64,68 0,63 1,57 7,22
964. 107,01 67,76 0,63 1,23 5,34 101,61 89,42 0,88 1,89 6,93
965. 244,82 157,27 0,64 1,58 7,29 130,23 80,45 0,62 1,38 6,47
966. 158,97 103,37 0,65 1,89 9,54 243,21 173,99 0,72 2,67 17,87
967. 123,34 85,77 0,70 1,93 8,92 200,00 134,73 0,67 2,74 18,95
968. 130,55 63,62 0,49 1,12 5,24 86,96 90,45 1,04 3,84 22,45
969. 122,10 89,00 0,73 1,59 6,43 110,71 70,54 0,64 1,22 5,07
970. 76,58 80,38 1,05 2,27 8,10 94,42 52,32 0,55 1,01 4,38
971. 141,04 141,13 1,00 3,13 15,62 200,95 128,26 0,64 1,77 7,75
972. 146,19 85,41 0,58 0,67 3,87 198,67 187,92 0,95 1,32 4,45
973. 192,67 140,46 0,73 1,85 9,29 189,13 113,34 0,60 1,48 5,96
974. 119,65 73,27 0,61 0,98 4,49 145,13 132,40 0,91 1,82 6,81
975. 97,36 64,33 0,66 1,96 10,19 81,53 91,68 1,12 3,17 17,28
976. 169,78 96,10 0,57 1,98 10,29 83,38 51,16 0,61 1,56 8,72
977. 144,71 77,97 0,54 1,21 4,70 112,72 145,99 1,30 3,08 12,85
978. 193,17 118,49 0,61 1,36 5,24 154,27 103,46 0,67 1,14 4,28
979. 85,34 158,30 1,85 4,84 33,89 101,71 80,22 0,79 3,56 23,42
980. 184,18 101,60 0,55 1,17 5,81 167,95 169,68 1,01 1,91 6,26
981. 155,18 89,94 0,58 1,37 5,11 112,51 155,78 1,38 3,38 14,95
982. 168,46 96,19 0,57 1,34 7,14 309,38 180,22 0,58 1,64 8,61
983. 80,66 60,36 0,75 2,21 11,27 105,98 135,65 1,28 2,32 10,20
984. 95,48 60,36 0,63 1,96 11,26 70,73 65,50 0,93 2,33 8,96
985. 56,64 75,97 1,34 3,23 14,18 68,76 46,01 0,67 1,58 6,23
986. 207,28 173,41 0,84 1,79 8,62 154,98 91,81 0,59 1,37 6,98
987. 205,20 144,52 0,70 1,60 6,03 286,69 185,88 0,65 2,08 11,98
988. 140,95 78,91 0,56 1,01 6,02 245,38 165,11 0,67 1,22 5,83
989. 108,94 50,16 0,46 0,26 3,25 219,27 95,25 0,43 0,46 3,27
990. 222,87 134,77 0,60 1,07 4,95 279,41 176,57 0,63 0,88 3,52
991. 111,88 83,26 0,74 1,11 4,38 80,56 53,96 0,67 1,29 5,73
992. 193,07 143,36 0,74 5,28 51,91 191,53 181,42 0,95 1,29 3,81
993. 149,62 72,30 0,48 0,16 3,02 299,29 135,23 0,45 0,42 3,00
994. 217,27 150,08 0,69 1,35 5,21 242,71 150,59 0,62 1,20 5,32
995. 254,63 128,77 0,51 1,11 4,81 197,79 150,35 0,76 1,66 6,10
996. 211,90 142,59 0,67 2,02 10,44 275,30 181,89 0,66 1,17 5,60
997. 165,94 111,69 0,67 1,02 4,17 257,64 244,95 0,95 1,11 3,75
998. 215,86 146,46 0,68 2,16 12,81 322,78 233,89 0,72 1,32 4,90
999. 100,04 66,54 0,67 2,79 19,83 181,40 130,06 0,72 3,06 22,64

1000. 110,50 100,32 0,91 3,14 16,71 160,97 84,24 0,52 1,04 4,49

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 231

Appendix D: Graphs of Statistical Evaluation

This appendix presents statistical evaluations of several indicative sample instances of the
CVP vs CIBI design problem. The simulated effort assessments are graphically represented
and referred to 7th fully stochastic simulation state in Table 6-4. The parameters of each
sample instance have been pooled by the randomly generated sample in Appendix B. The
interpretation of each subgraph is analyzed in subsection 6.5.5. The error rate (Er) in upper
mid graph and the frequency distributions in the bottom graphs have been assessed based
on repeated (Monte Carlo) simulations. The rest graphs are referred to indicative outcomes
of a single (on-time) simulation.

Figure 0-1: Sample instance N. 001 (N=161, M=60, pnE=0.67, pnP=0.33)

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 232

Figure 0-2: Sample instance N. 004 (N=56, M=123, pnE=0.09, pnP=0.91)

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 233

Figure 0-3: Sample instance N. 006 (N=101, M=12, pnE=0.90, pnP=0.10)

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 234

Figure 0-4: Sample instance N. 007 (N=31, M=7, pnE=0.15, pnP=0.85)

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 235

Figure 0-5: Sample instance N. 008 (N=134, M=112, pnE=0.15, pnP=0.85)

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 236

Figure 0-6: Sample instance N. 009 (N=104, M=38, pnE=0.08, pnP=0.92)

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 237

Figure 0-7: Sample instance N. 010 (N=81, M=6, pnE=0.70, pnP=0.30)

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 238

Figure 0-8: Sample instance N. 011 (N=90, M=58, pnE=0.72, pnP=0.28)

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 239

Figure 0-9: Sample instance N. 012 (N=29, M=102, pnE=0.34, pnP=0.66)

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 240

Figure 0-10: Sample instance N. 014 (N=188, M=133, pnE=0.14, pnP=0.86)

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 241

Figure 0-11: Sample instance N. 016 (N=155, M=91, pnE=0.22, pnP=0.78)

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 242

Figure 0-12: Sample instance N. 017 (N=21, M=5, pnE=0.26, pnP=0.74)

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 243

Figure 0-13: Sample instance N. 018 (N=139, M=132, pnE=0.93, pnP=0.07)

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 244

Figure 0-14: Sample instance N. 019 (N=89, M=126, pnE=0.30, pnP=0.70)

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 245

Figure 0-15: Sample instance N. 020 (N=156, M=138, pnE=0.68, pnP=0.32)

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 246

Figure 0-16: Sample instance N. 021 (N=70, M=99, pnE=0.57, pnP=0.43)

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 247

Figure 0-17: Sample instance N. 022 (N=160, M=13, pnE=0.90, pnP=0.10)

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 248

Figure 0-18: Sample instance N. 024 (N=46, M=89, pnE=0.63, pnP=0.37)

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 249

Figure 0-19: Sample instance N. 025 (N=156, M=55, pnE=0.30, pnP=0.70)

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 250

Figure 0-20: Sample instance N. 026 (N=137, M=78, pnE=0.74, pnP=0.26)

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 251

Figure 0-21: Sample instance N. 027 (N=106, M=82, pnE=0.18, pnP=0.82)

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 252

Figure 0-22: Sample instance N. 029 (N=141, M=24, pnE=0.94, pnP=0.06)

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 253

Figure 0-23: Sample instance N. 031 (N=26, M=33, pnE=0.85, pnP=0.15)

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 254

Figure 0-24: Sample instance N. 032 (N=154, M=99, pnE=0.46, pnP=0.54)

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 255

Figure 0-25: Sample instance N. 033 (N=22, M=68, pnE=0.85, pnP=0.15)

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 256

Figure 0-26: Sample instance N. 034 (N=130, M=58, pnE=0.50, pnP=0.50)

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 257

Figure 0-27: Sample instance N. 035 (N=155, M=9, pnE=0.35, pnP=0.65)

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 258

Figure 0-28: Sample instance N. 036 (N=182, M=111, pnE=0.48, pnP=0.52)

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 259

Figure 0-29: Sample instance N. 037 (N=196, M=41, pnE=0.87, pnP=0.13)

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 260

Figure 0-30: Sample instance N. 038 (N=166, M=103, pnE=0.46, pnP=0.54)

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 261

Figure 0-31: Sample instance N. 039 (N=66, M=139, pnE=0.40, pnP=0.60)

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 262

Figure 0-32: Sample instance N. 040 (N=139, M=134, pnE=0.61, pnP=0.39)

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 263

Figure 0-33: Sample instance N. 041 (N=48, M=89, pnE=0.20, pnP=0.80)

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 264

Figure 0-34: Sample instance N. 042 (N=129, M=114, pnE=0.37, pnP=0.63)

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 265

Figure 0-35: Sample instance N. 043 (N=182, M=119, pnE=0.62, pnP=0.38)

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 266

Figure 0-36: Sample instance N. 045 (N=166, M=51, pnE=0.10, pnP=0.90)

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 267

Figure 0-37: Sample instance N. 046 (N=121, M=133, pnE=0.89, pnP=0.11)

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 268

Figure 0-38: Sample instance N. 047 (N=154, M=108, pnE=0.90, pnP=0.10)

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 269

Figure 0-39: Sample instance N. 048 (N=35, M=133, pnE=0.61, pnP=0.39)

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 270

Figure 0-40: Sample instance N. 049 (N=66, M=90, pnE=0.64, pnP=0.36)

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 271

Figure 0-41: Sample instance N. 050 (N=43, M=76, pnE=0.28, pnP=0.72)

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 272

Figure 0-42: Sample instance N. 051 (N=39, M=138, pnE=0.35, pnP=0.65)

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 273

Figure 0-43: Sample instance N. 052 (N=157, M=118, pnE=0.50, pnP=0.50)

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 274

Figure 0-44: Sample instance N. 053 (N=160, M=139, pnE=0.92, pnP=0.08)

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 275

Publications

C. Karanikolas, G. Dimitroulakos, and K. Masselos, “Early Evaluation of Implementation
Alternatives of Composite Data Structures Toward Maintainability”, ACM
Transactions on Software Engineering and Methodology (TOSEM), vol. 26, no. 2, p.
8:1-8:44, Oct. 2017, doi: 10.1145/3132731

C. Karanikolas, G. Dimitroulakos, and K. Masselos, “Simulating Software Evolution to
Evaluate the Reliability of Early Decision-Making among Design Alternatives towards
Maintainability”, ACM Transactions on Software Engineering and Methodology
(TOSEM), p. 1-46, 2022, doi: 10.1145/3569931, under press (just accepted)

C. Karanikolas, G. Dimitroulakos, and K. Masselos, “Object Oriented Software Design
Space Exploration for Maintainability based on Evolution Modeling”, under peer-
review in journal

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 276

Bibliography

Ahn, Y., Suh, J., Kim, S., & Kim, H. (2003). The Software Maintenance Project Effort Estimation
Model Based on Function Points. Journal of Software Maintenance, 15(2), 71–85.
http://dx.doi.org/10.1002/smr.269

Aho, A. V., Lam, M. S., Sethi, R., & Ullman, J. D. (2006). Compilers: Principles, Techniques, and
Tools (2nd ed.). Boston: Addison Wesley.

Alexandrescu, A. (2001). Modern C++ Design: Generic Programming and Design Patterns
Applied. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.

Aloysius, A., & Arockiam, L. (2012). Coupling Complexity Metric: A Cognitive Approach.
International Journal of Information Technology and Computer Science, 4(9), 29–35.
http://dx.doi.org/10.5815/ijitcs.2012.09.04

Aloysius, A., & Arockiam, L. (2013). Maintenance effort prediction model using cognitive
complexity metrics. International Journal of Advanced Research in Computer Science and
Software Engineering, 3(11), 1599–1608.

Antoniol, G., Casazza, G., Di Penta, M., & Merlo, E. (2001). Modeling clones evolution through time
series. Proceedings IEEE International Conference on Software Maintenance. ICSM 2001,
273–280. https://doi.org/10.1109/ICSM.2001.972740

Antoniol, Giuliano, Fiutem, R., & Cristoforetti, L. (1998). Using metrics to identify design patterns
in Object-Oriented software. International Software Metrics Symposium, Proceedings, 23–33.
Scopus. http://dx.doi.org/10.1109/METRIC.1998.731224

Antoniol, Giuliano, Lokan, C., Caldiera, G., & Fiutem, R. (1999). A Function Point-Like Measure for
Object-Oriented Software. Empirical Software Engineering, 4(3), 263–287.
https://doi.org/10.1023/A:1009834811663

Araújo, M. A. P., Monteiro, V. F., & Travassos, G. H. (2012). Towards a model to support in silico
studies of software evolution. Proceedings of the 2012 ACM-IEEE International Symposium on
Empirical Software Engineering and Measurement, 281–289.
https://doi.org/10.1145/2372251.2372303

Arbuckle, T. (2011). Studying Software Evolution Using Artefacts’ Shared Information Content. Sci.
Comput. Program., 76(12), 1078–1097. http://dx.doi.org/10.1016/j.scico.2010.11.005

Aroonvatanaporn, P., Sinthop, C., & Boehm, B. (2010). Reducing estimation uncertainty with
continuous assessment: Tracking the “cone of uncertainty.” 337–340. Scopus.
https://doi.org/10.1145/1858996.1859065

Aversano, L., Canfora, G., Cerulo, L., Del Grosso, C., & Di Penta, M. (2007). An Empirical Study on
the Evolution of Design Patterns. Proceedings of the the 6th Joint Meeting of the European
Software Engineering Conference and the ACM SIGSOFT Symposium on The Foundations of
Software Engineering, 385–394. New York, NY, USA: ACM.
http://dx.doi.org/10.1145/1287624.1287680

Aversano, L., Cerulo, L., & Di Penta, M. (2009). Relationship between design patterns defects and
crosscutting concern scattering degree: An empirical study. IET Software, 3(5), 395–409.
http://dx.doi.org/10.1049/iet-sen.2008.0105

Baker, A. L., Bieman, J. M., Fenton, N., Gustafson, D. A., Melton, A., & Whitty, R. (1990). A
Philosophy for Software Measurement. Journal of System and Software, 12(3), 277–281.
http://dx.doi.org/10.1016/0164-1212(90)90050-V

Bakota, T., Hegedűs, P., Körtvélyesi, P., Ferenc, R., & Gyimóthy, T. (2011). A probabilistic software
quality model. 2011 27th IEEE International Conference on Software Maintenance (ICSM),
243–252. http://dx.doi.org/10.1109/ICSM.2011.6080791

Bakota, T., Hegedűs, Peter., Ladányi, G., Körtvélyesi, P., Ferenc, R., & Gyimóthy, T. (2012). A cost
model based on software maintainability. 2012 28th IEEE International Conference on
Software Maintenance (ICSM), 316–325. http://dx.doi.org/10.1109/ICSM.2012.6405288

Baldwin, D. (2003). A compiler for teaching about compilers. SIGCSE ’03 Proceedings of the 34th
SIGCSE Technical Symposium on Computer Science Education, 220–223. Reno, Navada, USA:
ACM. Scopus. http://dx.doi.org/10.1145/611892.611974

Bandi, R. K., Vaishnavi, V. K., & Turk, D. E. (2003). Predicting maintenance performance using
object-oriented design complexity metrics. IEEE Transactions on Software Engineering, 29(1),
77–87. http://dx.doi.org/10.1109/TSE.2003.1166590

Bansiya, J., & Davis, C. G. (2002). A Hierarchical Model for Object-Oriented Design Quality
Assessment. IEEE Trans. Softw. Eng., 28(1), 4–17. http://dx.doi.org/10.1109/32.979986

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 277

Barros, M. D. O., Werner, C. M. L., & Travassos, G. H. (2004). Supporting Risks in Software Project
Management. J. Syst. Softw., 70(1–2), 21–35. https://doi.org/10.1016/S0164-
1212(02)00155-3

Barry, E. J., Kemerer, C. F., & Slaughter, S. A. (2007). How software process automation affects
software evolution: A longitudinal empirical analysis. Journal of Software Maintenance and
Evolution: Research and Practice, 19(1), 1–31. https://doi.org/10.1002/smr.342

Bartosz, W., & Pawel, M. (2010). Hierarchical Model for Evaluating Software Design Quality. E-
Informatica Software Engineering Journal, 4(1), 21–30.

Basili, V. R., & Rombach, H. D. (1988). The TAME project: Towards improvement-oriented
software environments. IEEE Transactions on Software Engineering, 14(6), 758–773.
https://doi.org/10.1109/32.6156

Basili, Victor R., Briand, L. C., & Melo, W. L. (1996). A Validation of Object-Oriented Design Metrics
As Quality Indicators. IEEE Transactions on Software Engineering, 22(10), 751–761. Scopus.
http://dx.doi.org/10.1109/32.544352

Bass, L., Clements, P., & Kazman, R. (2012). Software Architecture in Practice (3rd Edition). Upper
Saddle River, NJ: Addison-Wesley Professional.

Bengtsson, P., & Bosch, J. (1999). Architecture level prediction of software maintenance.
Proceedings of the Third European Conference on Software Maintenance and Reengineering
(Cat. No. PR00090), 139–147. https://doi.org/10.1109/CSMR.1999.756691

Berenson, M. L., Levine, D. M., & Timothy, K. C. (2012). Basic Business Statistics, Concepts and
Applications (12 edition). Pearson.

Bernardi, M. L., & Di Lucca, G. A. (2010). Model-driven detection of Design Patterns. 2010 IEEE
International Conference on Software Maintenance (ICSM), 1–5.
http://dx.doi.org/10.1109/ICSM.2010.5609740

Bhattacharya, R. N., & Waymire, E. C. (2009). Stochastic Processes with Applications (Siam
Classics ed. edition). Philadelphia: Society for Industrial and Applied Mathematics.

Bidve, V. S., & Sarasu, P. (2016). Tool for Measuring Coupling in Object- Oriented Java Software.
International Journal of Engineering and Technology, 8(2), 812–820.

Bieman, J. M., Jain, D., & Yang, H. J. (2001). OO design patterns, design structure, and program
changes: An industrial case study. IEEE International Conference on Software Maintenance,
2001. Proceedings, 580–589. http://dx.doi.org/10.1109/ICSM.2001.972775

Boehm, B. (2008). Making a Difference in the Software Century. Computer, 41(3), 32–38.
https://doi.org/10.1109/MC.2008.91

Boehm, B., Clark, B., Horowitz, E., Westland, C., Madachy, R., & Selby, R. (1995). Cost models for
future software life cycle processes: COCOMO 2.0. Annals of Software Engineering, 1(1), 57–
94. https://doi.org/10.1007/BF02249046

Boehm, B. W. (1984). Software Engineering Economics. IEEE Transactions on Software
Engineering, SE-10(1), 4–21. https://doi.org/10.1109/TSE.1984.5010193

Boehm, Barry W., Clark, Horowitz, Brown, Reifer, Chulani, … Steece, B. (2000). Software Cost
Estimation with Cocomo II (1st ed.). Upper Saddle River, NJ, USA: Prentice Hall PTR.

Bosch, J., & Bengtsson, P. (2001). Assessing optimal software architecture maintainability.
Proceedings Fifth European Conference on Software Maintenance and Reengineering, 168–
175. https://doi.org/10.1109/.2001.914981

Briand, L. C., Daly, J., Porter, V., & Wüst, J. (1998). Comprehensive empirical validation of design
measures for object-oriented systems. International Software Metrics Symposium, Proceedings,
246–257. Scopus. http://dx.doi.org/10.1109/METRIC.1998.731251

Briand, L. C., Daly, J. W., & Wüst, J. K. (1998). A Unified Framework for Cohesion Measurement
in Object-Oriented Systems. Empirical Software Engineering, 3(1), 65–117. Scopus.
http://dx.doi.org/10.1023/A:1009783721306

Briand, L. C., Daly, J. W., & Wüst, J. K. (1999). A unified framework for coupling measurement in
object-oriented systems. IEEE Transactions on Software Engineering, 25(1), 91–121.
http://dx.doi.org/10.1109/32.748920

Briand, L. C., Melo, W. L., & Wust, J. (2002). Assessing the applicability of fault-proneness models
across object-oriented software projects. IEEE Transactions on Software Engineering, 28(7),
706–720. https://doi.org/10.1109/TSE.2002.1019484

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 278

Briand, L. C., Wüst, J. K., Ikonomovski, S. V., & Lounis, H. (1999). Investigating quality factors in
object-oriented designs: An industrial case study. Proceedings - International Conference on
Software Engineering, 345–354. Scopus. http://dx.doi.org/10.1145/302405.302654

Briand, L., Emam, K. E., & Morasca, S. (1996). On the application of measurement theory in
software engineering. Empirical Software Engineering, 1(1), 61–88.
https://doi.org/10.1007/BF00125812

Caldiera, G., Antoniol, G., Fiutem, R., & Lokan, C. (1998). Definition and experimental evaluation
of function points for object-oriented systems. Proceedings Fifth International Software Metrics
Symposium. Metrics (Cat. No.98TB100262), 167–178.
https://doi.org/10.1109/METRIC.1998.731242

Canfora, G., Cerulo, L., Di Penta, M. D., & Pacilio, F. (2010). An Exploratory Study of Factors
Influencing Change Entropy. International Conference on Program Comprehension, 134–143.
Los Alamitos, CA, USA: IEEE Computer Society. http://dx.doi.org/10.1109/ICPC.2010.32

Chapin, N., Hale, J. E., Khan, K. Md., Ramil, J. F., & Tan, W.-G. (2001). Types of software evolution
and software maintenance. Journal of Software Maintenance and Evolution: Research and
Practice, 13(1), 3–30. http://dx.doi.org/10.1002/smr.220

Chidamber, S. R., & Kemerer, C. F. (1994). A metrics suite for object oriented design. IEEE
Transactions on Software Engineering, 20(6), 476–493.
http://dx.doi.org/10.1109/32.295895

Clarke, J., Dolado, J. J., Harman, M., Hierons, R., Jones, B., Lumkin, M., … Shepperd, M. (2003).
Reformulating software engineering as a search problem. IEE Proceedings - Software, 150(3),
161–175. https://doi.org/10.1049/ip-sen:20030559

Coleman, D., Ash, D., Lowther, B., & Oman, P. (1994). Using Metrics to Evaluate Software System
Maintainability. Computer, 27(8), 44–49. http://dx.doi.org/10.1109/2.303623

Cook, C. R., & Roesch, A. (1994). Real-time Software Metrics. J. Syst. Softw., 24(3), 223–237.
https://doi.org/10.1016/0164-1212(94)90065-5

Cook, T. D., & Campbell, D. T. (1979). Quasi-experimentation: Design & Analysis Issues for Field
Settings. Boston: Houghton Mifflin.

Cooper, K., & Torczon, L. (2011). Engineering a Compiler, Second Edition (2 edition). Amsterdam ;
Boston: Morgan Kaufmann.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009). Introduction to Algorithms, 3rd
Edition (3rd ed.). Cambridge, Mass.: The MIT Press.

Dagpinar, M., & Jahnke, J. H. (2003). Predicting maintainability with object-oriented metrics -an
empirical comparison. 10th Working Conference on Reverse Engineering, 2003. WCRE 2003.
Proceedings., 155–164. http://dx.doi.org/10.1109/WCRE.2003.1287246

Dascalu, S., Hao, N., & Debnath, N. (2005). Design patterns automation with template library.
Proceedings of the Fifth IEEE International Symposium on Signal Processing and Information
Technology, 2005, 699–705. http://dx.doi.org/10.1109/ISSPIT.2005.1577183

de Fraça, B. B. N., & Travassos, G. H. (2016). Experimentation with dynamic simulation models in
software engineering: Planning and reporting guidelines. Empirical Software Engineering,
21(3), 1302–1345. Scopus. https://doi.org/10.1007/s10664-015-9386-4

Demeyer, S., Mens, T., & Wermelinger, M. (2001). Towards a Software Evolution Benchmark.
Proceedings of the 4th International Workshop on Principles of Software Evolution, 174–177.
New York, NY, USA: ACM. https://doi.org/10.1145/602461.602502

Dolado, J. J. (2001). On the problem of the software cost function. Information and Software
Technology, 1(43), 61–72.

Dubey, S. K., & Rana, A. (2011). Assessment of Maintainability Metrics for Object-oriented Software
System. SIGSOFT Softw. Eng. Notes, 36(5), 1–7.
http://dx.doi.org/10.1145/2020976.2020983

Durrett, R. (2010). Probability: Theory and Examples (4th edition). Cambridge ; New York:
Cambridge University Press.

Eden, A. H., & Mens, T. (2006). Measuring software flexibility. IEE Proceedings - Software, 153(3),
113. http://dx.doi.org/10.1049/ip-sen:20050045

Elrad, T., Filman, R. E., & Bader, A. (2001). Aspect-oriented Programming: Introduction. Commun.
ACM, 44(10), 29–32. http://dx.doi.org/10.1145/383845.383853

Eveleens, J. L., & Verhoef, C. (2009). Quantifying IT forecast quality. Science of Computer
Programming, 74(11–12), 934–988. Scopus. https://doi.org/10.1016/j.scico.2009.09.005

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 279

Fenton, N. E., & Pfleeger, S. L. (1998). Software Metrics: A Rigorous and Practical Approach (2nd
ed.). Boston, MA, USA: PWS Publishing Co.

Fenton, N., & Melton, A. (1990). Deriving Structurally Based Software Measures. Journal of System
and Software, 12(3), 177–187. http://dx.doi.org/10.1016/0164-1212(90)90038-N

Fenves, G., McKena, F., Scott, M., & Takahashi, Y. (2004). An object-oriented software environment
for collaborative network simulation. Proceedings of the 13th World Conference on Earthquake
Engineering. Vancouver, Canada.

Filman, R. E., Elrad, T., Clarke, S., & Aksit, M. (2004). Aspect-Oriented Software Development (1st
ed.). Harlow: Addison-Wesley Professional.

Fioravanti, F., & Nesi, P. (2001). Estimation and Prediction Metrics for Adaptive Maintenance
Effort of Object-Oriented Systems. IEEE Trans. Softw. Eng., 27(12), 1062–1084.
http://dx.doi.org/10.1109/32.988708

Gall, H., Jazayeri, M., Klosch, R. R., & Trausmuth, G. (1997). Software evolution observations based
on product release history. 1997 Proceedings International Conference on Software
Maintenance, 160–166. https://doi.org/10.1109/ICSM.1997.624242

Gall, Harald, Hajek, K., & Jazayeri, M. (1998). Detection of logical coupling based on product release
history. Proceedings of the International Conference on Software Maintenance, 190–198.
Washington, DC, USA: IEEE Computer Society. https://doi.org/10.1109/ICSM.1998.738508

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1994). Design Patterns: Elements of Reusable
Object-Oriented Software. Pearson Education.

Gibbons, J. (2006). Design Patterns As Higher-order Datatype-generic Programs. Proceedings of
the 2006 ACM SIGPLAN Workshop on Generic Programming, 1–12. New York, NY, USA:
ACM. https://doi.org/10.1145/1159861.1159863

Gibbons, J., & Oliveira, B. C. d. S. (2009). The essence of the Iterator pattern. Journal of Functional
Programming, 19(3–4), 377–402. http://dx.doi.org/10.1017/S0956796809007291

Glass, R. L. (2002). Software Engineering: Facts and Fallacies. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc.

Granja-Alvarez, J. C., & Barranco-García, M. J. (1997). A Method for Estimating Maintenance Cost
in a Software Project: A Case Study. Journal of Software Maintenance, 9(3), 161–175.
http://dx.doi.org/10.1002/(SICI)1096-908X(199705)9:3<161::AID-SMR148>3.0.CO;2-8

Guderlei, R., Mayer, J., Schneckenburger, C., & Fleischer, F. (2007). Testing randomized software
by means of statistical hypothesis tests. 46–54. Scopus.
https://doi.org/10.1145/1295074.1295084

Hannay, J., & Jørgensen, M. (2008). The Role of Deliberate Artificial Design Elements in Software
Engineering Experiments. IEEE Transactions on Software Engineering, 34(2), 242–259.
https://doi.org/10.1109/TSE.2008.13

Hassan, A. E. (2009). Predicting Faults Using the Complexity of Code Changes. Proceedings of the
31st International Conference on Software Engineering, 78–88. Washington, DC, USA: IEEE
Computer Society. http://dx.doi.org/10.1109/ICSE.2009.5070510

Hayes, J. H., Patel, S. C., & Zhao, L. (2004). A metrics-based software maintenance effort model.
Eighth European Conference on Software Maintenance and Reengineering, 2004. CSMR 2004.
Proceedings., 254–258. http://dx.doi.org/10.1109/CSMR.2004.1281427

Hayes, J. H., & Zhao, L. (2005). Maintainability prediction: A regression analysis of measures of
evolving systems. 21st IEEE International Conference on Software Maintenance (ICSM’05),
601–604. http://dx.doi.org/10.1109/ICSM.2005.59

Heitlager, I., Kuipers, T., & Visser, J. (2007a). A Practical Model for Measuring Maintainability.
Proceedings of the 6th International Conference on Quality of Information and
Communications Technology, 30–39. Washington, DC, USA: IEEE Computer Society.
http://dx.doi.org/10.1109/QUATIC.2007.8

Heitlager, I., Kuipers, T., & Visser, J. (2007b). A Practical Model for Measuring Maintainability.
Proceedings of the 6th International Conference on Quality of Information and
Communications Technology, 30–39. Washington, DC, USA: IEEE Computer Society.
http://dx.doi.org/10.1109/QUATIC.2007.7

Heng, P. B. C., & Mackie, I. R. (2009). Using design patterns in object-oriented finite element
programming. Computers & Structures, 87(15–16), 952–961.
http://dx.doi.org/10.1016/j.compstruc.2008.04.016

Hills, M., Klint, P., Van Der Storm, T., & Vinju, J. (2011). A Case of Visitor Versus Interpreter
Pattern. Proceedings of the 49th International Conference on Objects, Models, Components,

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 280

Patterns, 228–243. Berlin, Heidelberg: Springer-Verlag. http://dx.doi.org/10.1007/978-3-
642-21952-8_17

ISO/IEC 25010. (2011). ISO/IEC 25010:2011—Systems and software engineering—Systems and
software Quality Requirements and Evaluation (SQuaRE)—System and software quality
models. ISO. Retrieved from
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=35733

ISO/IEC 25023. (2016). ISO/IEC 25023:2016—Systems and software engineering—Systems and
software Quality Requirements and Evaluation (SQuaRE)—Measurement of system and
software product quality. ISO. Retrieved from
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=35747

ISO/IEC/IEEE 24765. (2010). ISO/IEC/IEEE 24765:2010—Systems and software engineering –
Vocabulary. ISO/IEC/IEEE, 1–418. http://dx.doi.org/10.1109/IEEESTD.2010.5733835

Jabangwe, R., Börstler, J., Šmite, D., & Wohlin, C. (2015). Empirical evidence on the link between
object-oriented measures and external quality attributes: A systematic literature review.
Empirical Software Engineering, 20(3), 640–693. https://doi.org/10.1007/s10664-013-
9291-7

Jacobson, I. (1992). Object Oriented Software Engineering: A Use Case Driven Approach (1
edition). New York : Wokingham, Eng. ; Reading, Mass: Addison-Wesley Professional.

Jahnke, J., & Zündorf, A. (1997). Rewriting poor Design Patterns by good Design Patterns. Proc.
ESEC/FSE ’97 Workshop ObjectOriented Reeng.

Jaynes, E. T. (2003). Probability Theory: The Logic of Science (1 edition; G. L. Bretthorst, Ed.).
Cambridge, UK ; New York, NY: Cambridge University Press.

Jazayeri, M. (2002). On Architectural Stability and Evolution. Reliable Software Technologies —
Ada-Europe 2002, 13–23. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-
48046-3_2

Karanikolas, C., Dimitroulakos, G., & Masselos, K. (2017). Early Evaluation of Implementation
Alternatives of Composite Data Structures Toward Maintainability. ACM Trans. Softw. Eng.
Methodol., 26(2), 8:1-8:44. https://doi.org/10.1145/3132731

Karanikolas, C., Dimitroulakos, G., & Masselos, K. (2021). Experimental Results of Formal and
Simulated Models’ Outcomes for CIBIvsCVP General Problem. Retrieved from
http://www.chriskaranikolas.gr/CIBIvsCVP/Results_CIBI_CVP_7_SimulationState.xls

Karanikolas, C., Dimitroulakos, G., & Masselos, K. (n.d.-a). Dynamic Formal comparison Model
implementation of CIBIvsCVP General Problem. Retrieved from Open research domain website:
http://www.chriskaranikolas.gr/CIBIvsCVP/

Karanikolas, C., Dimitroulakos, G., & Masselos, K. (n.d.-b). MatLab macro of Modeling Framework
implementation for CIBIvsCVP plus DP and MPvsAF general designing problem. Retrieved
from Open research domain website:
http://www.chriskaranikolas.gr/CIBIvsCVP/MatLab_CIBIvsCVP_DP_MP_OP_General_De
signing_Problems.rar

Kayarvizhy, N., Kanmani, S., & Uthariaraj, V. R. (2013). High precision cohesion metric. WSEAS
Transactions on Information Science and Applications, 10(3), 79–89.

Keller, R. K., Schauer, R., Robitaille, S., & Pagé, P. (1999). Pattern-based Reverse-engineering of
Design Components. Proceedings of the 21st International Conference on Software
Engineering, 226–235. New York, NY, USA: ACM. http://dx.doi.org/10.1145/302405.302622

Kelsen, P. (2004). A simple static model for understanding the dynamic behavior of programs.
Proceedings. 12th IEEE International Workshop on Program Comprehension, 2004., 46–51.
https://doi.org/10.1109/WPC.2004.1311046

Kemerer, C. F., & Slaughter, S. (1999). An empirical approach to studying software evolution. IEEE
Transactions on Software Engineering, 25(4), 493–509. https://doi.org/10.1109/32.799945

Krishnamurthi, S., Felleisen, M., & Friedman, D. P. (1998). Synthesizing Object-Oriented and
Functional Design to Promote Re-Use. Proceedings of the 12th European Conference on Object-
Oriented Programming, 91–113. London, UK, UK: Springer-Verlag.
http://dx.doi.org/10.1007/BFb0054088

Kruchten, P., Nord, R. L., & Ozkaya, I. (2012). Technical Debt: From Metaphor to Theory and
Practice. IEEE Software, 29(6), 18–21. https://doi.org/10.1109/MS.2012.167

Kumar, L., Krishna, A., & Rath, S. K. (2017). The impact of feature selection on maintainability
prediction of service-oriented applications. Service Oriented Computing and Applications,
11(2), 137–161. http://dx.doi.org/10.1007/s11761-016-0202-9

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 281

Land, R. (2002). Measurements of Software Maintainability. Proceedings of ARTES Graduate
Student Conference (Neither Reviewed nor Officially Published), ARTES.

Langdon, W. B., Dolado, J., Sarro, F., & Harman, M. (2016). Exact Mean Absolute Error of Baseline
Predictor, MARP0. Inf. Softw. Technol., 73(C), 16–18.
https://doi.org/10.1016/j.infsof.2016.01.003

Larman, C. (2004). Applying UML and Patterns: An Introduction to Object-Oriented Analysis and
Design and Iterative Development (3rd ed.). Harlow: Prentice Hall.

Lavazza, L., & Agostini, A. (2005). Automated Measurement of UML Models: An open toolset
approach. Journal of Object Technology, 4, 115–134.
http://dx.doi.org/10.5381/jot.2005.4.4.a2

Lehman, M. M., Perry, D. E., & Ramil, J. F. (1998). On evidence supporting the FEAST hypothesis
and the laws of software evolution. Proceedings Fifth International Software Metrics
Symposium. Metrics (Cat. No.98TB100262), 84–88.
https://doi.org/10.1109/METRIC.1998.731229

Lehman, Meir M., & Ramil, J. F. (2002). Software Evolution and Software Evolution Processes.
Annals of Software Engineering, 14(1–4), 275–309.
http://dx.doi.org/10.1023/A:1020557525901

Lehman, Meir M., Ramil, J. F., Wernick, P. D., Perry, D. E., & Turski, W. M. (1997). Metrics and
laws of software evolution-the nineties view. Proceedings Fourth International Software Metrics
Symposium, 20–32. IEEE Computer Society.
http://dx.doi.org/10.1109/METRIC.1997.637156

Li, W. (1998). Another Metric Suite for Object-oriented Programming. Journal of Systems and
Software, 44(2), 155–162. http://dx.doi.org/10.1016/S0164-1212(98)10052-3

Li, W., & Henry, S. (1993). Object-oriented Metrics That Predict Maintainability. Journal of
Systems and Software, 23(2), 111–122. http://dx.doi.org/10.1016/0164-1212(93)90077-B

Liu, W., Tong, M., Wu, X., & Lee, G. (2003). Object-Oriented Modeling of Structural Analysis and
Design with Application to Damping Device Configuration. Journal of Computing in Civil
Engineering, 17(2), 113–122. http://dx.doi.org/10.1061/(ASCE)0887-3801(2003)17:2(113)

Lorenz, M., & Kidd, J. (1994). Object-Oriented Software Metrics (1 edition). Englewood Cliffs, NJ:
Prentice Hall.

Mackie, R. I. (2002). Object-Oriented Methods and Finite Element Analysis. Kippen, Stirling, UK:
Saxe-Coburg Publications.

Meli, R. (1997). Early and Extended Function Point: A new method for Function Points estimation.
15–19. Arizona.

Melton, A. C., Gustafson, D. A., Bieman, J. M., & Baker, A. L. (1990). A mathematical perspective
for software measures research. Software Engineering Journal, 5(5), 246–254.
http://dx.doi.org/10.1049/sej.1990.0027

Mens, T., & Tourwe, T. (2001). A declarative evolution framework for object-oriented design
patterns. Proceedings IEEE International Conference on Software Maintenance. ICSM 2001,
570–579. https://doi.org/10.1109/ICSM.2001.972774

Mens, T., & Tourwe, T. (2004). A survey of software refactoring. IEEE Transactions on Software
Engineering, 30(2), 126–139. https://doi.org/10.1109/TSE.2004.1265817

Mens, Tom, & Demeyer, S. (2001). Future Trends in Software Evolution Metrics. Proceedings of
the 4th International Workshop on Principles of Software Evolution, 83–86. New York, NY,
USA: ACM. http://dx.doi.org/10.1145/602461.602476

Mens, Tom, & Eden, A. H. (2005). On the Evolution Complexity of Design Patterns. Electronic
Notes in Theoretical Computer Science, 127(3), 147–163.
http://dx.doi.org/10.1016/j.entcs.2004.08.041

Montgomery, D. C. (2012). Design and Analysis of Experiments (8th ed.). John Wiley & Sons,
Incorporated.

Müller, M., & Pfahl, D. (2008). Simulation Methods. In F. Shull, J. Singer, & D. I. K. Sjøberg (Eds.),
Guide to Advanced Empirical Software Engineering (pp. 117–152). London: Springer London.
https://doi.org/10.1007/978-1-84800-044-5_5

Musilek, P., Pedrycz, W., Nan Sun, & Succi, G. (2002). On the sensitivity of COCOMO II software
cost estimation model. Proceedings Eighth IEEE Symposium on Software Metrics, 13–20.
https://doi.org/10.1109/METRIC.2002.1011321

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 282

Neff, N. (1999). OO design in compiling an OO language. SIGCSE Bulletin (Association for
Computing Machinery, Special Interest Group on Computer Science Education), 31(1), 326–
330. Scopus. http://dx.doi.org/10.1145/384266.299798

Neff, N. (2004). Attribute Based Compiler Implemented Using Visitor Pattern. Proceedings of the
35th SIGCSE Technical Symposium on Computer Science Education, 130–134. New York, NY,
USA: ACM. http://dx.doi.org/10.1145/971300.971347

Offutt, J., Abdurazik, A., & Schach, S. R. (2008). Quantitatively Measuring Object-oriented
Couplings. Software Quality Journal, 16(4), 489–512. http://dx.doi.org/10.1007/s11219-
008-9051-x

Oliveira, B. C. (2009). Modular Visitor Components. Proceedings of the 23rd European Conference
on ECOOP 2009 — Object-Oriented Programming, 269–293. Berlin, Heidelberg: Springer-
Verlag. https://dx.doi.org/10.1007/978-3-642-03013-0_13

Oliveira, B. C. d. S., & Cook, W. R. (2012). Extensibility for the Masses: Practical Extensibility with
Object Algebras. Proceedings of the 26th European Conference on Object-Oriented
Programming, 2–27. Berlin, Heidelberg: Springer-Verlag. http://dx.doi.org/10.1007/978-3-
642-31057-7_2

Oliveira, B. C. d. S., Wang, M., & Gibbons, J. (2008). The Visitor Pattern As a Reusable, Generic,
Type-safe Component. Proceedings of the 23rd ACM SIGPLAN Conference on Object-Oriented
Programming Systems Languages and Applications, 439–456. New York, NY, USA: ACM.
http://dx.doi.org/10.1145/1449764.1449799

Oman, P., & Hagemeister, J. (1994). Construction and testing of polynomials predicting software
maintainability. Journal of Systems and Software, 24(3), 251–266.
http://dx.doi.org/10.1016/0164-1212(94)90067-1

Ostberg, J.-P., & Wagner, S. (2014). On Automatically Collectable Metrics for Software
Maintainability Evaluation. 2014 Joint Conference of the International Workshop on Software
Measurement and the International Conference on Software Process and Product
Measurement, 32–37. https://doi.org/10.1109/IWSM.Mensura.2014.19

Paixao, M., Krinke, J., Han, D., Ragkhitwetsagul, C., & Harman, M. (2017). Are Developers Aware
of the Architectural Impact of Their Changes? Proceedings of the 32Nd IEEE/ACM
International Conference on Automated Software Engineering, 95–105. Piscataway, NJ, USA:
IEEE Press. Retrieved from http://dl.acm.org/citation.cfm?id=3155562.3155578

Palsberg, J., & Jay, C. B. (1998). Essence of the visitor pattern. IEEE Computer Society’s
International Computer Software and Applications Conference (COMPSAC ’98), 9–15.
Washington, DC, USA: IEEE Computer Society. Scopus.
http://dx.doi.org/10.1109/CMPSAC.1998.716629

Parnas, D. L., & Curtis, B. (2009). Point/Counterpoint: Are rigorous experiments realistic for
software engineering? IEEE Software, 26(6), 56–59. https://doi.org/10.1109/MS.2009.184

Parnas, David Lorge. (1994). Software Aging. Proceedings of the 16th International Conference on
Software Engineering, 279–287. Los Alamitos, CA, USA: IEEE Computer Society Press.
Retrieved from http://dl.acm.org/citation.cfm?id=257734.257788

Parr, T. (2013). The Definitive ANTLR 4 Reference (2nd ed.). Dallas, Texas: Pragmatic Bookshelf.

Pressman, R. (2010). Software Engineering: A Practitioner’s Approach (7th ed.). New York, NY,
USA: McGraw-Hill, Inc.

Pressman, R. S. (2001). Software Engineering: A Practitioner’s Approach (5th ed.). McGraw-Hill
Higher Education.

Raja, U., Hale, D. P., & Hale, J. E. (2009). Modeling software evolution defects: A time series
approach. Journal of Software Maintenance and Evolution: Research and Practice, 21(1), 49–
71.

Ramil, J. F., & Lehman, M. M. (2000). Metrics of software evolution as effort predictors—A case
study. Proceedings 2000 International Conference on Software Maintenance, 163–172.
Washington, DC, USA: IEEE Computer Society. https://doi.org/10.1109/ICSM.2000.883036

Ramil, J. F., & Lehman, M. M. (2001). Defining and applying metrics in the context of continuing
software evolution. Proceedings of the 7th International Symposium on Software Metrics, 199–
209. Washington, DC, USA: IEEE Computer Society.
https://doi.org/10.1109/METRIC.2001.915529

Riaz, M., Mendes, E., & Tempero, E. (2009a). A systematic review of software maintainability
prediction and metrics. 2009 3rd International Symposium on Empirical Software Engineering
and Measurement, 367–377. Washington, DC, USA: IEEE Computer Society.
http://dx.doi.org/10.1109/ESEM.2009.5314233

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 283

Riaz, M., Mendes, E., & Tempero, E. (2009b). A Systematic Review of Software Maintainability
Prediction and Metrics. Proceedings of the 2009 3rd International Symposium on Empirical
Software Engineering and Measurement, 367–377. Washington, DC, USA: IEEE Computer
Society. http://dx.doi.org/10.1109/ESEM.2009.5314233

Riehle, D. (2009). Design Pattern Density Defined. Proceedings of the 24th ACM SIGPLAN
Conference on Object Oriented Programming Systems Languages and Applications, 469–480.
New York, NY, USA: ACM. https://doi.org/10.1145/1640089.1640125

Rizvi, S. W. A., & Khan, R. A. (2010). Maintainability Estimation Model for Object-Oriented
Software in Design Phase (MEMOOD). Journal of Computing, 2(4). Retrieved from
http://arxiv.org/abs/1004.4447

Rubinstein, R. Y., & Kroese, D. P. (2016). Simulation and the Monte Carlo Method (3 edition).
Wiley.

Santos Oliveira, B. C. (2007). Genericity, Extensibility and Type-Safety in the VISITOR Pattern.
(PhD Thesis, University of Oxford). University of Oxford. Retrieved from
http://www.cs.ox.ac.uk/people/bruno.oliveira/Thesis.pdf

Schildt, H. (2002). C++: The Complete Reference, 4th Edition (4th ed.). New York: McGraw-Hill
Osborne Media.

Shariat Yazdi, H., Angelis, L., Kehrer, T., & Kelter, U. (2016). A framework for capturing, statistically
modeling and analyzing the evolution of software models. Journal of Systems and Software,
118(C), 176–207. https://doi.org/10.1016/j.jss.2016.05.010

Shepperd, M., & MacDonell, S. (2012). Evaluating prediction systems in software project
estimation. Information and Software Technology, 54(8), 820–827.
https://doi.org/10.1016/j.infsof.2011.12.008

Sommerville, I. (2010). Software Engineering (9th ed.). Boston: Addison-Wesley.

Srinivasan, K. P., & Devi, N. T. (2014). A complete and comprehensive metrics suite for object-
oriented design quality assessment. International Journal of Software Engineering and Its
Applications, 8(2), 173–188. Scopus. http://dx.doi.org/10.14257/ijseia.2014.8.2.17

Srivastava, B. (2004). A decision-support framework for component reuse and maintenance in
software project management. Eighth European Conference on Software Maintenance and
Reengineering, 2004. CSMR 2004. Proceedings., 125–134.
https://doi.org/10.1109/CSMR.2004.1281413

Stewart, J. (2015). Calculus, Early Transcendentals, International Metric Edition (8 edition).
Brooks Cole.

Stol, K.-J., & Fitzgerald, B. (2018). The ABC of Software Engineering Research. ACM Trans. Softw.
Eng. Methodol., 27(3), 11:1-11:51. https://doi.org/10.1145/3241743

Stol, K.-J., Goedicke, M., & Jacobson, I. (2016). Introduction to the special section—General
Theories of Software Engineering: New advances and implications for research. Information
and Software Technology, 70, 176–180. https://doi.org/10.1016/j.infsof.2015.07.010

Stopford, B., & Counsell, S. (2008). A Framework for the Simulation of Structural Software
Evolution. ACM Trans. Model. Comput. Simul., 18(4), 17:1-17:36.
https://doi.org/10.1145/1391978.1391983

Subramanyam, K. R. (2013). Financial Statement Analysis (11th ed.). McGraw-Hill Publishing.
Retrieved from https://www.mheducation.com/highered/product/financial-statement-
analysis-subramanyam/M9780078110962.html

Subramanyam, R., & Krishnan, M. S. (2003). Empirical analysis of CK metrics for object-oriented
design complexity: Implications for software defects. IEEE Transactions on Software
Engineering, 29(4), 297–310. http://dx.doi.org/10.1109/TSE.2003.1191795

Torgersen, M. (2004). The Expression Problem Revisited—Four new solutions using generics.
Proceedings of the 18th European Conference on Object-Oriented Programming, 123–146.
Springer-Verlag. http://dx.doi.org/10.1007/978-3-540-24851-4_6

Turver, R. J., & Munro, M. (1994). An early impact analysis technique for software maintenance.
Journal of Software Maintenance: Research and Practice, 6(1), 35–52. Scopus.
https://doi.org/10.1002/smr.4360060104

VanDrunen, T., & Palsberg, J. (2004). Visitor-oriented Programming. Proceedings of FOOL-11,
11th ACM SIGPLAN International Workshop on Foundations of Object-Oriented Languages.
Presented at the 11th ACM SIGPLAN International Workshop on Foundations of Object-
Oriented Languages, New York, NY, USA. New York, NY, USA: ACM Press.

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 284

Visser, J. (2001). Visitor combination and traversal control. Proceedings of the Conference on
Object-Oriented Programming Systems, Languages, and Applications, OOPSLA, 36, 270–282.
New York, NY, USA: ACM SIGPLAN. Scopus. http://dx.doi.org/10.1145/504311.504302

Völter, M. (2003). A Catalog of Patterns for Program Generation. In K. Henney & D. Schütz (Eds.),
Proceedings of the 8th European Conference on Pattern Languages of Programms (EuroPLoP
’2003), Irsee, Germany, June 25-29, 2003 (pp. 285–320). UVK - Universitätsverlag Konstanz.

Wadler, P. (1998). The expression problem. Posted on the Java Genericity mailing list.

Wang, Y., & Oliveira, B. C. d. S. (2016). The Expression Problem, Trivially! Proceedings of the 15th
International Conference on Modularity, 37–41. New York, NY, USA: ACM.
https://dx.doi.org/10.1145/2889443.2889448

Williams, B. J., & Carver, J. C. (2010). Characterizing Software Architecture Changes: A Systematic
Review. Inf. Softw. Technol., 52(1), 31–51. https://doi.org/10.1016/j.infsof.2009.07.002

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., & Wesslén, A. (2012).
Experimentation in Software Engineering. Springer Publishing Company.
https://doi.org/10.1007/978-3-642-29044-2

Woolf, M. (2016). Visualizing How Developers Rate Their Own Programming Skills. Retrieved May
12, 2018, from Minimaxir | Max Woolf’s Blog website: http://minimaxir.com/2016/07/stack-
overflow/

Wu, H., Shi, L., Chen, C., Wang, Q., & Boehm, B. (2016). Maintenance Effort Estimation for Open
Source Software: A Systematic Literature Review. 2016 IEEE International Conference on
Software Maintenance and Evolution (ICSME), 32–43.
https://doi.org/10.1109/ICSME.2016.87

Xiao, L., Cai, Y., Kazman, R., Mo, R., & Feng, Q. (2016). Identifying and Quantifying Architectural
Debt. 2016 IEEE/ACM 38th International Conference on Software Engineering (ICSE), 488–
498. https://doi.org/10.1145/2884781.2884822

Ye, Q. K. (1998). Orthogonal column latin hypercubes and their application in computer
experiments. Journal of the American Statistical Association, 93(444), 1430–1439.

Yuen, C. K. S. C. H. (1988). On analytic maintenance process data at the global and the detailed
levels: A case study. Proceedings. Conference on Software Maintenance, 1988., 248–255.
https://doi.org/10.1109/ICSM.1988.10170

Zdun, U., & Strembeck, M. (2009). Reusable architectural decisions for DSL design: Foundational
decisions in DSL development. Proceedings of EuroPLoP 2009 - 14th Annual European.
Presented at the Conference on Pattern Languages of Programming. Scopus. Retrieved from
Scopus.

Zeigler, B. P., Mittal, S., & Traore, M. K. (2018). MBSE with/out Simulation: State of the Art and
Way Forward. Systems, 6(4), 40. https://doi.org/10.3390/systems6040040

Zenger, M., & Odersky, M. (2005). Independently Extensible Solutions to the Expression Problem.
Workshop on Foundations of Object-Oriented Languages (FOOL). Long Beach, California (in
conjunction with POPL).

Zhang, J. (2008). The Establishment and Application of Effort Regression Equation. 2008
International Conference on Computer Science and Software Engineering, 2, 11–14.
https://doi.org/10.1109/CSSE.2008.726

UNIVERSITY OF
PELOPONNESE

“Model-driven Software Architectural Design based on Software
Evolution Modeling and Simulation and Design Pattern Analysis
for Design Space Exploration Towards Maintainability”

PhD Thesis 285

Author’s Statement:

I hereby expressly declare that, according to the article 8 of Law 1559/1986, this dissertation is solely

the product of my personal work, does not infringe any intellectual property, personality and personal

data rights of third parties, does not contain works/contributions from third parties for which the

permission of the authors/beneficiaries is required, is not the product of partial or total plagiarism, and

that the sources used are limited to the literature references alone and meet the rules of scientific citations.

