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Abstract 

In software architectural design, critical decisions among design alternatives with regards 
to maintainability arise early in the software design cycle. Existing exploration approaches 
are neither design-pattern-oriented nor formal. Such approaches are not reusable, have 
narrow scoping, and usually lead to suboptimal results. Furthermore, the effectiveness of 
existing techniques and models on predicting maintenance effort is usually verified on a 
limited number of case studies under heterogeneous metrics and settings. Conventionally, 
developers use their intuition, experience, or instant judgment to get such decisions, which 
leads to accrued technical debt, high risk, and suboptimal results regarding code quality. 
Owing to the confirmed lack of architectural awareness, developers underestimate the 
negative impact of such early and critical design decisions. Selecting between different 
design options is a crucial decision for object-oriented software developers affecting 
important code quality characteristics such as maintainability. 

In this thesis, a systematic modeling method for deriving formal comparison models 
for the efficient evaluation of object-oriented design alternatives in terms of maintainability 
early in the software design cycle is introduced. The method is suitable for modeling 
significant, general, and frequently tackled design problems which have dominant impact 
on the overall maintainability of the system, where different design alternatives are 
competing to address the same requirements. The derived formal models provide early 
estimates of required effort per design alternative in terms of proportionally equivalent 
effort assessments mainly for comparison purposes. The proposed approach considers the 
software expansion trend through the structural evolution of the engaged design patterns. 
This is achieved by formalizing change rates of individual design attributes for basic 
maintenance scenarios and their probabilities in the form of continuous differential 
equations to predict the required maintenance effort. Alternatively, the required effort is 
assessed by measuring the change impact of repeatedly applied scenarios in connection 
with the evolving design attributes under the view of a gradual (event-based) quantitative 
analysis. The proposed method has been evaluated on the significant and general design 
problem of recursive hierarchies of part-whole aggregations. The generated formal 
comparison models address the selection of Visitor over Composite design patterns against 
the direct inheritance-based approach. The derived models capture maintainability as a 
metric of software quality and provide reliable assessments for each implementation 
alternative. Furthermore, the proposed method suggests the structural maintenance cost 
metric based on which the progressive analysis of maintenance process is introduced. The 
proposed measurement approach has been applied to several test cases for different 
relevant quality metrics. The results prove that the proposed modeling method derives 
formal models which deliver reliable effort assessments mainly for comparison purposes. 
Thus, the proposed method can be used for comparing different implementation 
alternatives against various measures and quality factors, before code development leading 
to reduced effort and cost for software maintenance. 

Furthermore, the introduced modeling method has been applied to three different 
extensions of the general selection problem, thus assessing its applicability to even more 
realistic settings. The Decorator, Mediator, Observer, Abstract Factory, and Prototype 
design patterns have been modeled. The generated formal models have been tested on a 
sample of several specific instances representing the entire design-space of each general 
problem. The results prove that the derived formal models are reliable and can efficiently 
support decision-making among design alternatives early in the design cycle, leading to 
significant benefits in terms of maintenance time and effort. The results also suggest that 
the method can model general problems and support decision-making even in the (high-
level) architectural design stage of systems.  
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In addition, a multi-variable simulation model for validating the decision-making 
reliability of the modeling theory and derived formal comparison models for the significant 
designing problem of recursive hierarchies of part-whole aggregations is introduced. The 
proposed simulation model has been implemented in the forms of functional and modular 
representations. In the absence of a strictly validation against real-world observations, the 
simulation model has been thoroughly calibrated concerning its decision-making precision 
based on empirical evidence from time series analysis, approximating the highly uncertain 
nature of actual maintenance process. The decision reliability of the formal models has 
been statistically validated on a sample of one thousand possible instances of design 
attributes representing the entire design-space of the problem under analysis. Despite the 
limited accuracy of measurements, the results show that the models demonstrate an 
increasing selection reliability in a long-term perspective even under assumptions of high 
variability. Thus, the proposed modeling theory delivers reliable formal comparison 
models that significantly reduce decision-risk, maintenance effort, and relevant cost. 
Methods that yield such formal, general, and reusable models can bring software engineers 
closer to informed design decisions, and thus develop more maintainable software of 
higher quality. 
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Περίληψή 

Στην αρχιτεκτονική σχεδίαση λογισμικού και κατά την διάρκεια του πρόωρου σταδίου  
σχεδίασης, προκύπτουν κρίσιμες αποφάσεις μεταξύ εναλλακτικών σχεδίασης αναφορικά 
με την συντηρησιμότητά τους. Οι υπάρχουσες διερευνητικές προσεγγίσεις δεν είναι  
προσανατολισμένες στα σχεδιαστικά πρότυπα ούτε επαρκώς τυπικές. Τέτοιου είδους 
προσεγγίσεις δεν είναι επαναχρησιμοποιήσιμες,  έχουν περιορισμένο πεδίο εφαρμογής και 
συνήθως καταλήγουν σε μη βέλτιστα αποτελέσματα. Περεταίρω, η αποτελεσματικότητα 
των υπαρχόντων τεχνικών και μοντέλων αναφορικά με την πρόβλεψη της προσπάθειας 
συντήρησης, συνήθως επιβεβαιώνεται από ένα περιορισμένο αριθμό περιπτωσιολογικών 
μελετών υπό το πρίσμα ετερογενών μετρικών και συνθηκών. Συμβατικά, οι 
προγραμματιστές χρησιμοποιούν την διαίσθησή, την εμπειρία ή την στιγμιαία κρίση τους 
προκειμένου να λάβουν τέτοιου είδους αποφάσεις, γεγονός που οδηγεί σε συσσώρευση 
τεχνικού χρέους (αστοχιών), υψηλό ρίσκο και μη βέλτιστα αποτελέσματα αναφορικά με 
την ποιότητα του κώδικα. Λόγω της επιβεβαιωμένης έλλειψης αρχιτεκτονικής συνείδησης, 
οι προγραμματιστές υποτιμούν τον αρνητικό αντίκτυπο τέτοιου είδους πρόωρων και 
κρίσιμων σχεδιαστικών αποφάσεων. Η επιλογή ανάμεσα σε διαφορετικές σχεδιαστικές 
εκδοχές είναι μια κρίσιμη απόφαση για τους προγραμματιστές του αντικειμενοστραφούς 
λογισμικού που επηρεάζει σημαντικά ποιοτικά χαρακτηριστικά του κώδικα όπως η 
συντηρησιμότητά του. 

Σε αυτή την διατριβή εισάγεται μια συστηματική μέθοδος μοντελοποίησης για την 
άντληση τυπικών μοντέλων σύγκρισης για την αποτελεσματική αξιολόγηση 
αντικειμενοστραφών εναλλακτικών σχεδίασης, υπό όρους συντηρησιμότητας, κατά το 
πρόωρο στάδιο σχεδίασης του λογισμικού. Η μέθοδος είναι κατάλληλη για την 
μοντελοποίηση σημαντικών, γενικών και συχνά εμφανιζόμενων σχεδιαστικών 
προβλημάτων τα οποία έχουν κυρίαρχο αντίκτυπο στη συνολική συντηρησιμότητα του 
συστήματος, όπου διαφορετικές σχεδιαστικές προσεγγίσεις ανταγωνίζονται για την 
αντιμετώπιση κοινών απαιτήσεων. Τα προκύπτοντα επίσημα μοντέλα παρέχουν πρόωρες 
εκτιμήσεις της απαιτούμενης προσπάθειας ανά εναλλακτική σχεδίασης υπό όρους 
αναλογικά ισοδύναμων εκτιμήσεων προσπάθειας, κυρίως για σκοπούς σύγκρισης. Η 
προτεινόμενη προσέγγιση λαμβάνει υπόψη την τάση επέκτασης του λογισμικού μέσω της 
δομικής εξέλιξης των εμπλεκόμενων σχεδιαστικών προτύπων. Αυτό επιτυγχάνεται 
διαμέσου των ρυθμών αλλαγής μεμονωμένων χαρακτηριστικών σχεδιασμού για βασικά 
σενάρια συντήρησης και για τις πιθανότητές τους υπό τη μορφή συνεχών διαφορικών 
εξισώσεων προκειμένου να προβλέψουν την απαιτούμενη προσπάθεια συντήρησης. 
Εναλλακτικά, η απαιτούμενη προσπάθεια εκτιμάται δια της μέτρησης του αντικτύπου 
αλλαγής των επαναλαμβανόμενα εφαρμοζόμενων σεναρίων σε σχέση με τις 
μεταβαλλόμενες ιδιότητες σχεδίασης υπό το πρίσμα μιας βαθμιαίας (με βάση τα γεγονότα) 
ποσοτικής ανάλυσης. Η προτεινόμενη μέθοδος αξιολογήθηκε για το σημαντικό και γενικό 
πρόβλημα σχεδίασης των αναδρομικών ιεραρχιών συναθροίσεων (μέρους-όλου). Τα 
παραγόμενα τυπικά μοντέλα σύγκρισης αντιμετωπίζουν την επιλογή ανάμεσα στο 
συνδυασμό των σχεδιαστικών προτύπων «Visitor» και «Composite» και στην άμεση 
προσέγγιση που βασίζεται στην κληρονομικότητα του «Composite» σχεδιαστικού 
προτύπου. Τα παραγόμενα μοντέλα καταγράφουν την συντηρησιμότητα ως μια μετρική 
της ποιότητας λογισμικού και παρέχουν αξιόπιστες εκτιμήσεις για κάθε εναλλακτική 
υλοποίηση. Περεταίρω, η προτεινόμενη μέθοδος εισαγάγει την μετρική του δομικού 
κόστους συντήρησης με βάση την οποία παρουσιάζεται η προοδευτική ανάλυση της 
διαδικασίας συντήρησης. Η προτεινόμενη μέθοδος μέτρησης εφαρμόστηκε σε πολλές 
δοκιμαστικές περιπτώσεις για διαφορετικές μετρικές ποιότητας. Τα αποτελέσματα 
αποδεικνύουν ότι η προτεινόμενη μέθοδος μοντελοποίησης εξάγει τυπικά μοντέλα τα 
οποία παρέχουν αξιόπιστες εκτιμήσεις προσπάθειας κυρίως για σκοπούς σύγκρισης. Έτσι, 
η προτεινόμενη μέθοδος μπορεί να χρησιμοποιηθεί για την σύγκριση διαφορετικών  
εναλλακτικών υλοποιήσεων έναντι διαφόρων μετρικών και παραγόντων ποιότητας, πριν 



 

UNIVERSITY OF 
PELOPONNESE 

“Model-driven Software Architectural Design based on Software 
Evolution Modeling and Simulation and Design Pattern Analysis 
for Design Space Exploration Towards Maintainability” 

 

PhD Thesis  vii
   

το στάδιο ανάπτυξης του κώδικα, οδηγώντας στη μείωση της προσπάθειας και του 
κόστους συντήρησης του λογισμικού. 

Περεταίρω, η εισαγόμενη μέθοδος μοντελοποίησης εφαρμόστηκε σε τρις 
διαφορετικές επεκτάσεις του γενικού προβλήματος επιλογής, αξιολογώντας έτσι την 
ευκολία εφαρμογής της σε ακόμη πιο ρεαλιστικές συνθήκες. Τα σχεδιαστικά πρότυπα 
“Decorator”, “Mediator”, “Observer”, “Abstract Factory”, και “Prototype” 
μοντελοποιήθηκαν για το σκοπό αυτό. Τα παραγόμενα τυπικά μοντέλα δοκιμάστηκαν σε 
ένα δείγμα πολλαπλών στιγμιότυπων που αναπαριστούν το σύνολο του σχεδιαστικού 
χώρου του εκάστοτε γενικού προβλήματος. Τα αποτελέσματα αποδεικνύουν ότι τα 
εξαγόμενα τυπικά μοντέλα είναι αξιόπιστα και μπορούν να υποστηρίζουν αποδοτικά τη 
λήψη σχεδιαστικών αποφάσεων μεταξύ εναλλακτικών σχεδίασης κατά το πρόωρο στάδιο 
σχεδίασης, προσφέροντας σημαντικά οφέλη υπό όρους χρόνου και προσπάθειας 
συντήρησης. Επίσης, τα αποτελέσματα υποδεικνύουν ότι η μέθοδος μπορεί να 
μοντελοποιήσει γενικά προβλήματα καθώς και να υποστηρίξει τη λήψη αποφάσεων 
ακόμη και στο στάδιο της (υψηλού επιπέδου) αρχιτεκτονικής σχεδίασης συστημάτων.  

Επιπρόσθετα, παρουσιάζεται ένα πολύ παραμετρικό μοντέλο εξομοίωσης για τον 
έλεγχο της αξιοπιστίας λήψης αποφάσεων της προτεινόμενης θεωρίας μοντελοποίησης 
και των παραγόμενων τυπικών μοντέλων σύγκρισης, αναφερόμενο στο σημαντικό 
σχεδιαστικό πρόβλημα των αναδρομικών ιεραρχιών των συναθροίσεων μέρους-όλου. Το 
προτεινόμενο μοντέλο εξομοίωσης υλοποιήθηκε στις μορφές της συναρτησιακής και 
αρθρωτής αναπαράστασης. Εν’ απουσία ενός αυστηρού ελέγχου έναντι πραγματικών 
παρατηρήσεων, το μοντέλο εξομοίωσης βαθμονομήθηκε διεξοδικά αναφορικά με την 
ακρίβεια του στη λήψη αποφάσεων με βάση εμπειρικά στοιχεία από την ανάλυση 
χρονοσειρών, προσεγγίζοντας έτσι την εξαιρετικά αβέβαιη φύση της πραγματικής 
διαδικασίας συντήρησης. Η αξιοπιστία των αποφάσεων των τυπικών μοντέλων 
ελέγχθηκαν στατιστικά σε ένα δείγμα χιλίων πιθανών περιπτώσεων των σχεδιαστικών 
ιδιοτήτων, αναπαριστώντας ολόκληρο το σχεδιαστικό χώρο του υπό ανάλυση 
προβλήματος. Παρά την περιορισμένη ακρίβεια των μετρήσεων, τα αποτελέσματα 
έδειξαν ότι τα τυπικά μοντέλα επιδεικνύουν μια αυξανόμενη αξιοπιστία λήψης 
αποφάσεων σε μια μακροπρόθεσμη προοπτική ακόμη και υπό υποθέσεις αυξημένης 
μεταβλητότητας. Έτσι, η προτεινόμενη θεωρία μοντελοποίησης προσφέρει αξιόπιστα 
τυπικά μοντέλα σύγκρισης τα οποία  μειώνουν σημαντικά τον κίνδυνο λήψης 
λανθασμένων αποφάσεων, την προσπάθεα συντήρησης, και το σχετικό κόστος. Μέθοδοι 
που αποδίδουν τέτοια τυπικά, γενικά και επαναχρησιμοποιήσιμα μοντέλα μπορούν να 
φέρουν τους μηχανικούς λογισμικού πιο κοντά σε τεκμηριωμένες αποφάσεις σχεδιασμού 
και έτσι να αναπτύξουν πιο συντηρήσιμο λογισμικό υψηλότερης ποιότητας. 

 

Λέξεις – Κλειδιά 

Αρχιτεκτονικός σχεδιασμός, Υποβοηθούμενη από μοντέλα μηχανική λογισμικού, 
Μηχανική σχεδίασης λογισμικού, Βελτιστοποίηση σχεδιασμού, Αντικειμενοστραφής 
αρχιτεκτονικές, Εξέλιξη λογισμικού, Συντηρησιμότητα, Ανάλυση σχεδιαστικών 
προτύπων, Αντισταθμίσεις σχεδίασης λογισμικού, Μοντέλα εξισώσεων, Μοντελοποίηση 
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1 Introduction 

1.1 Field of Application 

Software architecture, as a process, is a set of design decisions (Bass, Clements, & Kazman, 
2012). It is about (re)arranging structural elements and entities based on proper 
architectural tactics for creating design alternatives that satisfy the pursued quality 
attribute requirement such as maintainability or modifiability (Bass et al., 2012). 
Maintainability is one of the most important quality properties, mostly connected to the 
ease of future maintenance of software code (ISO/IEC 25010, 2011; ISO/IEC 25023, 
2016; ISO/IEC/IEEE 24765, 2010), corresponding up to 75% of the overall cost of 
software projects (Bass et al., 2012; Glass, 2002; Sommerville, 2010). The decisions 
among design alternatives are often complex, crucial, and affect major quality properties of 
the software such as maintainability (Bosch & Bengtsson, 2001; R. Pressman, 2010; 
Sommerville, 2010; Srivastava, 2004).  

A critical decision arises when at least two design alternatives with high impact and 
conflicting pro and cons regarding their maintainability perspective are competing to 
address the same requirements in different design ways. Furthermore, critical design 
decisions arise in different levels of analysis from the high-level architectural design of the 
entire system to the low-level of object-oriented design. Such decisions are usually made 
during the software architecture design stage before code development as illustrated in 
Figure 1-1. A possible incorrect selection of a less maintainable design alternative has 
serious negative impact concerning either: a) the considerable wasted effort and cost 
during maintenance, indicated by (a) arrow in Figure 1-1, or b) the costly setback in the 
design stage of software lifecycle which requires redesign and refactoring of the existing 
code, indicated by (b) arrow in Figure 1-1. Such design decisions are present regardless of 
the followed software development model and their impact usually echoes in different or 
repeated cycles of activities (e.g., waterfall, v-model, incremental, iterative, spiral, Agile 
iterations like Scrum, etc.). Early and critical design decisions have disproportionate weight 
simply because they influence and constrain so much of what follows, especially for 
significant, general, and frequently tackled design problems (Bass et al., 2012).  

In software architecture and object-oriented software development, designers and 
developers face complex design problems (Sommerville, 2010). To handle these issues, 
designers use combinations of established design patterns, such as those introduced by 

 
Figure 1-1: The decision-making between design alternatives in a typical soft-ware 

lifecycle, and the negative consequences in case of wrong selection. 
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Gamma et al. (Gamma, Helm, Johnson, & Vlissides, 1994). These design patterns are 
based on object-oriented models, and usually aim at solving common (frequently tackled) 
and significant design problems. Furthermore, many design (pattern) combinations for 
typical significant problems, such as recursive part-whole aggregations, affect significantly 
the majority of software quality properties (Bosch & Bengtsson, 2001; Srivastava, 2004). 
Efficient exploration, evaluation, and selection among design alternatives (i.e., patterns 
combinations) is crucial and has a direct impact on software quality (R. Pressman, 2010). 

1.2 Necessity of the Introduced Theory 

1.2.1 Need for Early Maintainability Assessment of Design Alternatives 

Designers and developers often have to select between several object-oriented design 
alternatives which compete to solve significant, general, and frequently tackled design 
problems. These design decisions are often complex, crucial, and affect major quality 
attributes of the software such as modifiability and maintainability (Bass et al., 2012; R. 
Pressman, 2010). In general, software maintainability can be expressed through the 
required maintenance effort, and it is closely related to the code’s complexity and size (Riaz, 
Mendes, & Tempero, 2009a). Therefore, early selection among design alternatives with 
regards to their maintainability profoundly affects future maintenance effort and cost as 
stressed in previous subsection. In practice, many designers and developers underestimate 
such critical decisions by using the most acknowledged design combination based on their 
intuition, experience, or instant judgment, thus usually leading to poor design decisions, 
accrued technical debt (Kruchten, Nord, & Ozkaya, 2012), high risk and cost (Williams & 
Carver, 2010), and increased maintenance effort (Xiao, Cai, Kazman, Mo, & Feng, 2016). 
The acknowledgment of designers about the negative consequences of a possible incorrect 
selection is the first step to confront the observed lack of architectural awareness (Paixao, 
Krinke, Han, Ragkhitwetsagul, & Harman, 2017). Consequently, early selection among 
competing design alternatives for significant design problems is a necessary step that must 
be made before code development, thus during the early design stage.  

1.2.2 Need for Formal Models to Support Decision-Making of General Problems 

Despite the observed lack of architectural awareness (Paixao et al., 2017), many software 
quality managers have a clear understanding of possible negative consequences of critical 
(early) design decisions, but they do not have a comprehensible theory or models to predict 
the impact and risk taken for each alternative selection. Whether a specific implementation 
(design alternative) is efficient with regards to maintainability is difficult to be assessed 
without a basis for comparison among design alternatives. The quality assessment of a 
design implementation is only meaningful when compared to other relevant design 
alternatives. The early evaluation and comparison with regards to maintainability of design 
alternatives are generally supported by predictions of the required maintenance effort. The 
design alternative with the minimum required maintenance effort is preferable. Effort 
predictions are usually provided by formal models applied during the design stage before 
code development. In this early design stage, effort prediction models that capture the 
structural evolution of the engaged design patterns, based on as less as possible distinct 
design attributes and parameters, are thus desired. Furthermore, software maintenance is 
a stochastic process heavily affected by many random and ambiguous factors. Hence, there 
is need for systematic approaches that derive (formal) deterministic models for 
maintenance effort estimation mainly for comparison purposes among design alternatives 
towards maintainability. 

1.2.3 Motivation Example of General Design Problem 

One example of significant, general, frequently tackled, and complex design problem is the  
part-whole representations and aggregations based on composite structures of objects 
(Sommerville, 2010). To handle such issues, designers and developers use combinations 
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of established design patterns, which are based on object-oriented models, like the 
Composite and Visitor patterns (introduced in (Gamma et al., 1994)) or inheritance-based 
approaches. The proper choice among different implementation options is crucial and has 
a direct impact on the quality of software under development (R. Pressman, 2010) as 
stressed in previous subsections. More specifically, this general design problem is referred 
to the critical decision (selection) between Visitor design pattern (VP) and inheritance-
based implementation (IBI) over a Composition design pattern (CP). IBI and VP are the 
two dominant implementation options (design alternatives) for a set of operations be 
applied on different types of  elements of a CP object structure or composition (Gamma et 
al., 1994; Hills, Klint, Van Der Storm, & Vinju, 2011). More specifically, IBI is based on the 
standard inheritance property of CP class tree (hierarchy) where each type of operations is 
distributed as distinct methods inside each CP class/element. In VP all the methos for each 
type of operations are defined and placed in a single (visitor) class without changing the 
classes of the CP elements on which it operates. These patterns have opposing 
characteristics regarding their maintainability perspective. A wrong decision on selecting 
the proper pattern during software design stage can lead to substantial higher effort during 
maintenance. The choice between VP over CP (CVP) and IBI over CP (CIBI) is rather clear 
for a problem with a steady Composition structure or a steady set of operations (Gamma 
et al., 1994). However, when a problem with an extensible set of operations and an 
extensible Composition structure is addressed, the decision making becomes very complex. 
This decision is crucial and affects major quality factors of the software such as 
maintainability (R. Pressman, 2010). Such design decisions are usually made during 
software architecture design stage before code development as shown in Figure 1-2. 

The usefulness and the necessity of the proposed work is highlighted through three 
simple examples of software specifications for the general design problem of part-whole 
representations (CVP vs CIBI) described above. Table 1-1 presents the descriptions of 
three practical systems (Compiler, Interpreter, GUI) as indicative examples or instances of 
the general and significant design problem of part-whole representations. Each instance 
has its own design characteristics (i.e., number of initial elements and operations) and 
individual specifications (i.e., likelihood of extensions). As concluded for the cases of 
Interpreter and GUI, when a problem with extensible sets of operations and Composition 
structure is addressed, the decision-making process becomes very complex. 

 
Figure 1-2: Typical timeline for design pattern selection process during software 

design stage referring to the CVP vs CIBI design problem 
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Table 1-1: Examples of Software specifications for part-whole representations  

Problem 
description 

Number of initial distinct 
Elements of Composition 
structure 

Number of initial 
Operations over 
composition’s elements  Individual specifications 

Compiler 
implementation 
for the standard 
C89(1) high-level 
language   

structure of 155 initial 
distinct types of the parse-
tree nodes derived from 
C89 BNF grammar 
(proximally 85 tokens and 
70 non-terminal symbols)  

set of 20 initial distinct 
operations such as 
scope checking, type 
checking, dependency 
analysis, instruction 
selection-scheduling, 
code generation, etc. 

- because C89 is a standard language, the 
structure set is rather unlikely to change 
during maintenance 
- operations could be extended during 
maintenance 

- an incorrect choice of inheritance-based implementation would have cause 155 new methods in 
155 different classes for a single operation addition during maintenance 
- instead, the Visitor design pattern demands all 155 new methods to be placed in a single class, 
which needs far less maintenance effort 
- this is an easy choice due to structure stability based on the Visitor known advantages 

Interpreter 
implementation 
for a new custom 
(extendable) DSL 
language 

structure of 40 initial 
distinct types of the parse-
tree nodes derived from a 
custom BNF grammar 
such as terminal – 
nonterminal symbols, 
identifiers, etc. 

set of 10 initial distinct 
operations type 
checking, code 
generation, executing, 
etc. 

- because DSL is a custom and extendable 
language, both structure and operations 
could be extended during maintenance by 
equal probabilities 

- an incorrect choice of inheritance-based implementation would have cause 40 new methods in 40 
different classes for a single operation addition and a new class with 10 new methods for a single 
element addition, during maintenance 
- instead, the Visitor design pattern demands all 40 new methods to be placed on a single class but 
10 new methods to be placed in 10 different classes, which overall needs less maintenance effort 
- this is a difficult choice due to structure and operations expandability and there is no clear 
advantage 

GUI 
implementation 
for a simple 
graph designing 
tool 

structure of 15 initial 
distinct types such as 
shapes, blocks, containers, 
layers, etc. 

set of 14 initial distinct 
operations such as 
drawing, filling, 
resizing, moving, etc. 

- both structure and operations could be 
extended during maintenance  
- structure is much likely to be extended 
instead of operations by 70%-30% 
probabilities 

- an incorrect choice of Visitor design pattern would have cause 15 new methods to be placed on a 
single class for a single operation addition but 14 new methods to be placed in 14 different classes 
for a single element addition, during maintenance 
- instead, the inheritance-based implementation demands 15 new methods in 15 different classes 
and a new class with 14 new methods, which overall needs more maintenance effort at the 
beginning but much less effort after some future addition due the individual maintenance 
probabilities 
- this is a very difficult choice due to structure and operations expandability, and there is no clear 
advantage for arbitrary maintenance probabilities 

Note: initial source code for Compiler and Interpreter will be generated by a parser tool such as Bison or ANTLR (Parr, 
2013). Interpreter and GUI implementations are real cases descriptions. GUI implementation is direct without using standard 
frameworks such as .NET and WPF 

(1) ANSI C Standard ANSI X3.159-1989 "Programming Language C" 

 

To better understand the impact of future additions or modifications on their codes, 
software developers need a formal and mathematical approach for early exploring and 
evaluating relevant issues and comparing different design pattern combinations. Hence, 
the proposed method evaluates the effectiveness and maintainability degree of a design 
alternative by taking into consideration possible scenarios like future additions or 
modifications. A model that can deliver quantitative results based on specific design 
attributes of each general problem (e.g., initial structure size, number of initial operations 
and possibility of future extensions), is necessary. Using such models, software designers 
and developers can choose between VP and IBI combinations over Composite structures 
in an early stage, during software development phase. The introduced modeling method 
and the derived models address this necessity by providing deterministic results through 
equations based on specific design attributes and parameters of each general problem able 
to support early decision-making among design alternatives towards maintainability. 

1.2.4 Need for Decision-Making Reliability and Validation of Formal Models 

In general, parametric formal models are mainly focused on maximizing the potential for 
being general over different instances of a given general problem. However, formal 
methods usually suffer from lack of realism of context and precision of measurements, as 
discussed in (Stol & Fitzgerald, 2018). Ideally, actual measurements and observations from 
case studies that maximize the potential for realism of context would be preferable for 
validation purposes. Nevertheless, in real life, finding identical actual systems with uniform 
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design attributes, developed in different design variations is almost impossible. 
Additionally, the number of recorded observations is very limited per case study, using 
heterogeneous metrics, and unevenly conducted through literature. Thus, they are not 
statistically meaningful, heavily limiting the generalization of inferences, as pointed in 
(Langdon, Dolado, Sarro, & Harman, 2016; Shepperd & MacDonell, 2012). Moreover, 
developer-related aspects, such as experience level and learning rate are also ignored by 
these methods since they are heavily biased, as human-related, factors hard to be assessed 
and measured. Furthermore, there is a lack of evidence regarding the effectiveness of the 
prediction techniques and models of software maintainability (Riaz et al., 2009a; Shepperd 
& MacDonell, 2012). In addition, there is a confirmed need for further validation of 
maintainability prediction models (Riaz et al., 2009a), primarily through statistical 
techniques. Because of all these reasons, there is no easy way to determine the reliability of 
the models referred to possible incorrect design decisions in terms of maintainability. This 
is a standard concern with regards to validity since the attempt to validate the formal 
models based on a limited number and dissimilar case studies may increase realism of 
context while sacrificing generalizability which should be the models’ primary goal. 

Since the validation of formal models is critical to be made against real-world 
observations, there is a need for generating massive and homogenous observations 
properly classified in respect to all parameters (i.e., design attributes) of the general 
problem under study. Toward this direction, the simulation of software evolution that 
imitates the actual maintenance process and its highly uncertain and stochastic nature is a 
suitable option. 

1.3 Main Research Goals and Contribution 

Challenges arising from the motivation example in Table 1-1 imply that models that can 
deliver quantitative results based on attributes of each specific design problem (e.g., initial 
structure size, number of initial operations, and the possibility of future extensions) are 
needed. Using such models, software developers can choose between design alternatives 
in an early stage, during the software lifecycle, avoiding the possible negative consequences 
of incorrect selections and hence designing better software of higher quality.  

Focusing on software design stage, the main contribution and goals of this thesis are 
reported, as roughly visualized in Figure 1-3. More specifically, the goals of the study are 
briefly described as follows: 

 
Figure 1-3: Decision-making between design alternatives supported by the introduced 

modeling method and derived formal models 
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1) Introduction of a modeling theory and method, as a solution-seeking study (Stol, 
Goedicke, & Jacobson, 2016), through a formal and rigorous mathematical framework 
supported by a concrete theory about software evolution and expansion during 
maintenance. Through this framework, reusable formal prediction models are derived 
which are used in the early stage of software architectural design domain. The purpose of 
these formal models is to compare maintainability degree and select the most maintainable 
option among competing design alternatives with respect to specific design attributes of a 
general problem.  

2) Illustration of the introduced modeling method through the motivation example of 
the recursive part-whole aggregations in Table 1-1. The modeling method derives: a) the 
fundamental effort metrics for each design alternative and scenario type for a single  
scenario application as depicted in (2.a) stage in Figure 1-3, b) the formal prediction 
models, returning total effort predictions for each design alternative and for any number of 
applied scenarios, as depicted in (2.b) stage in Figure 1-3, and c) application of the derived 
formal models on the practical examples in Table 1-1, as indicated in (2.c) arrow in Figure 
1-3. 

3) Demonstration of the applicability of the introduced modeling method by applying 
it to three varieties (extensions) of the general problem presented in Table 1-1, 
incorporating the relevant design patterns of Decorator, Abstract Factory, Prototype, 
Observer, and Mediator, all introduced in (Gamma et al., 1994). 

4) Simulation of Software evolution by introducing a simulation model that imitates 
the actual maintenance process and its highly uncertain and stochastic nature.  

5) Evaluation of the decision-reliability of the introduced, theory, modeling method, 
and derived formal models by statistically validating their outcomes against simulated 
observations. 

6) Exploration of possible alternate uses of the introduced theory through horizon 
analysis and decision-making under conditions of partial or full uncertainty. 

1.4 Brief Review of Related Work (Existing Approaches) 

Different approaches for maintainability assessment have been discussed in the literature 
taking into consideration software evolution, effort/cost estimation, and code complexity. 
Most approaches manage source code analysis through typical code metrics not 
appropriate to support early evaluation of design (pattern) alternatives. Moreover, existing 
approaches do not use formal models for evaluating design pattern combinations before 
code development. Such approaches lead to suboptimal results regarding code quality with 
regards to maintainability. Even the most relevant approaches (Bengtsson & Bosch, 1999; 
Bosch & Bengtsson, 2001) are strongly linked to minor specifications and functionality, 
with no links to design patterns. Thus, such approaches cannot support early evaluation of 
design patterns combination alternatives in an efficient way. Furthermore, the 
effectiveness of software maintainability prediction techniques and models has not been 
adequately proved (Riaz et al., 2009a; Shepperd & MacDonell, 2012). Methods, which are 
not related to well-known design pattern combinations for typical problems, are not easily 
reusable or adaptable. Without the insight provided by the structural behavior and the 
evolution pattern of the used design patterns in the event of major maintenance scenarios, 
existing approaches miss an important aspect of maintainability perspective, thus 
providing suboptimal estimations. This gap is even more obvious during the critical object-
oriented software design stage before code development. Hence, there is great need for a 
well-defined systematic modeling method that generates formal comparison models well-
fitted to specific design attributes allowing early maintainability assessment of design 
alternatives. 
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1.5 Brief Presentation of Proposed Theory 

1.5.1 Modeling Theory and Method 

The ultimate purpose of the introduced modeling theory is to derive formal models that 
provide effort estimations per design alternative for general design problems mainly for 
comparison purposes. During this early decision stage there is no source code for 
evaluation, thus the proposed theory examines (or predicts) the evolution of the engaged 
design patterns during maintenance. As a first step, the modeling method proposes a 
number of design alternatives (as combinations of established design patterns, i.e., CVP, 
CIBI) that address the general design problem under study. To analyze the evolution of 
each design alternative of the general problem, the method derives a number of major 
maintenance scenarios (as classes of resembling activities with common characteristics) 
that have high impact and likelihood to occur during maintenance. The method 
concentrates on those scenarios that add further functionality (i.e., new element, new 
operation) and expand the size of the software during maintenance since the expansion of 
software size is an innate trend of software evolution (Meir M. Lehman, Ramil, Wernick, 
Perry, & Turski, 1997) as confirmed by empirical evidence (Bakota et al., 2012; Barry, 
Kemerer, & Slaughter, 2007; C. R. Cook & Roesch, 1994; H. Gall, Jazayeri, Klosch, & 
Trausmuth, 1997; Jazayeri, 2002; M. M. Lehman, Perry, & Ramil, 1998; Yuen, 1988). 
Furthermore, the method derives a number of relevant design attributes (i.e., number of 
elements and operations) that affected by the major maintenance scenarios. In principle, 
the design attributes are quantitatively expressed and reflect the logical entities of the 
design problem (i.e., elements and operations) as represented by the code entities (i.e., 
methods, classes, modules) of the used design patterns. Each maintenance scenario affects 
each design alternative and relevant design attributes in different and conflicting ways 
depending on the pro and cons of the engaged design patterns. As the maintenance 
scenarios are applied in each design alternative, the required maintenance effort is 
quantitatively assessed based on an innovative measurement approach.  

1.5.2 Structural Maintenance Cost (SMC) Metric 

Measuring the future maintenance effort of a design alternative (combination of design 
patterns) is a challenge since during early design stage there is no source code for 
evaluation. To overcome this burrier, the proposed measurement approach analyzes and 
counts the structural changes for each design alternative per applied maintenance scenario. 
More specifically, the measure counts the number of required interventions (structural 
changes) that take place as a specific scenario applied in a design alternative. Taking 
advantage from the architectural behavior of the used design patterns in the event of a 
major maintenance scenario, the introduced measure expresses the required maintenance 
effort in terms of number of effected code entities (interventions, i.e., methods). 
Furthermore, the measure simultaneously counts different types of affected code entities 
(i.e., classes) to capture not only the number of interventions but the scattering degree or 
the locality of those interventions as well. The principal idea is that the number and the 
locality of required interventions are strongly related to code properties like coupling and 
cohesion degree, and thus these sizes are proportional to the required effort as also 
supported by empirical evidence (Araújo, Monteiro, & Travassos, 2012; L. C. Briand, Melo, 
& Wust, 2002; Jabangwe, Börstler, Šmite, & Wohlin, 2015). Since these code entities (i.e., 
methods, classes, modules) represent the problem’s logical entities or design attributes (i.e., 
number of elements and operations), the required effort depends on the values of the 
problem’s design attributes. Even if the number of interventions is not necessarily linked 
to actual (real-world) effort, the main intent of the proposed metric it to provide 
proportional equivalent effort estimations mainly for comparison purposes among design 
alternatives. That because, the actual effort of distinct (minor) interventions would be 
common for all design alternatives under evaluation, thus neutral concerning the decision-
making process. Due to its properties, the introduced effort metric has been named 
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Structural Maintenance Cost (SMC). Summarizing, SMC metric returns effort assessments 
per design alternative and maintenance scenario expressed in terms of number of affected 
methods (interventions) and classes (locality) as represented by the problem’s design 
attributes. 

1.5.3 Deriving Formal Comparison Models 

Given that SMC metric returns effort assessments for a single applied maintenance 
scenario, the proposed modeling method mathematically derives formal models per design 
alternative that estimate the overall required effort for any number of applied scenarios as 
depicted in Figure 1-4. Furthermore, since there several types of maintenance scenarios 
(i.e., new element, new operation), the engagement and assessment of scenario’s 
probabilities is required. Thus, scenario’s probabilities and design attributes distinguish a 
specific design problem (e.g., Interpreter, Compiler, GUI, etc.) as an instance of the general 
design problem (CVP vs CIBI) under study. However, the overall quality assessment of a 
design alternative requires the measurement of the relevant effort for different types of 
scenarios, each affecting the used design patterns in different and conflicting ways. Thus, 
a combined analysis of the effects of all scenarios based on their probabilities for each 
design alternative is required. By using the SMC metric, the proposed modeling method 
gradually calculates the required effort of several applied scenarios where each type of 
scenarios is engaged based on its individual probability.  

The critical point is that the repeatedly applied maintenance scenarios gradually affect 
and shift the design attributes (i.e., increases the number of elements / operations) based 
on which the SMC metric of the next applied scenario is estimated. Mathematically, the 
modeling method gradually integrates the change rates of the problem’s design attributes 
and required effort for several applied maintenance scenarios based on their individual 
probabilities. This achieved by two ways: a) through a progressive quantitative and distinct 
(event-driven) analysis in chapters 3, and b) under the sight of continuous differential 
equations that examines the software expansion trend through the change rates of the 
problem’s design attributes in chapter 4. As a result of this probabilistic approach, the 
outcome of the derived formal models depends on the design attributes, the scenario’s 

 
Figure 1-4: Overall presentation of the introduced modeling method, derived 

formal/simulation models, and validation process 
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probabilities, and the number of applied scenarios. Thus, the derived formal models 
estimate the overall required effort per design alternative offering a suitable comparison 
base.  

1.5.4 Advantages of Modeling Method & Formal Comparison Models 

The most important advantages of the introduced modeling method in chapters 3 and 4 
are briefly listed below: 

• Relies on the structural analysis of well-known and established design patterns, thus 
the derived formal models address difficult, general, and frequently tackled design 
problems in the field of software architecture. 

• Resolves conflicting issues and tradeoffs among design alternatives concerning their 
pro and cons (advantages and disadvantages) in the event of different types of 
maintenance scenarios. 

• Is capable to provide formal comparison models for different design alternatives, 
metrics, quality attribute requirements, and alternate design problems. 

• Is capable to address general design problems for different levels of analysis from high 
level architectural design of systems to low level of object-oriented design. 

The most important advantages of the introduced SMC metric in chapter 3 are briefly listed 
below: 

• Is an adaptable metric that captures the expansion trend for each design combination 
under comparison by examining the structural evolution or the number of performed 
changes (number of interventions) on the affected code entities of the used design 
patterns. 

• Returns effort assessments which are independent of accurate effort measurements, 
real-world observations, and realized costs by providing proportional equivalent effort 
assessments ideal for comparison purposes among design alternatives. 

• Provides insight of the future required effort even in the absence of source code (during 
the early design stage) by taking advantage from the architectural behavior and 
structural evolution of the engaged design patterns. 

• Relies on the explicit analysis of expansion scenarios which cover all the essence of the 
actual maintenance process among design alternatives mainly for comparison 
purposes. 

• Effort/size assessments in terms of number of (classes and method) interventions are 
reliable measurement (proxy) units for comparison purposes in a mid-to-long term 
perspective. 

The most important advantages of the derived formal comparison models are briefly listed 
below: 

• They are independent of specific code implementations and run-time behavior and, 
thus it is ideal to support early decision-making among design alternatives during early 
design stage. 

• They are sensitive to several design attributes and scenario probabilities, supporting 
decision-making for the entire design space (specific instances) of the general problem 
under study. Thus, they could be easily and repeatedly applied to any instance of the 
general problem under study. 

• They are easily implemented in software for further analysis purposes (e.g., data 
manipulation, graphs generation, etc.) as parametric equations or dynamic functions. 
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• Their deterministic nature combined with their computational efficiency through 
software allows the exploration of the entire design space for a given design problem. 

• Overcome the highly stochastic and uncertain nature of actual maintenance process by 
providing deterministic results (effort assessments) through parametric equations 
based on specific design attributes and parameters of each general design problem. 

• The cumulative gain from the repeated use of the formal models (in terms of avoided 
maintenance effort) significantly overcomes their initial (one-time) derivation cost. 

1.5.4.1 Methods That Do Not Exploit Structural Evolution of Software 

In general, methods that do not exploit the architectural behavior or the structural 
evolution of software during maintenance are unable to support early decision-making 
among design alternatives in an efficient way. During early design stage there is no code 
for evaluation since the actual code should be allocated in the preselected design structures 
(e.g., combinations of design patterns). Thus, in this early stage, the only available 
structures to evaluate are the selection among design alternatives that address the software 
requirements. These design decisions are in the core of architectural design theory (Bass et 
al., 2012) even if their conceptualization is relatively abstract. The proposed modeling 
method facilitates the comparison process and decision-making by analyzing the structural 
evolution of the used design patterns for major maintenance events. This is an active and 
more informative evaluation of maintenance perspective since evaluates the effect of 
various types of possible maintenance scenarios compared to the static evaluation of source 
code properties. 

1.5.4.2 An Example of Formal Model Application 

Referring to the general design problem (CVP vs CIBI) in Table 1-1, the two events of new 
element and new operation are the major types of maintenance scenarios (stimulus) while 
the initial number of elements and operations are the problems’ design attributes. The 
overall representation of the general design problem in the form of UML class diagrams 

 
Figure 1-5: Conceptual class-diagram and relevant effort metrics of CIBI and CVP  

design alternatives. 
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per design alternative (artifact) is visualized in Figure 1-5. In this representation, the 
change impact of each scenario per design alternative is quantitatively expressed by the 
number of required method and class interventions in connection with the problem’s 
design attributes. This change impact is captured by the introduced SMC metric. As an 
example, the SMC metric for adding a new element in CVP design alternative is equal to 
(M+2) method interventions into (M+2) different classes where factor M represents the 
number of operations as analyzed in chapters 3 and 4. Thus, SMC[New element on CVP] 
= 2(M+2). Similar SMC metrics are derived for each maintenance scenario and design 
alternative of the general design problem under study. 

By applying the introduced modeling theory, the formal models for each design 
alternative in the form of parametric equations are derived. For example, the 

Total_Effort[CVP] =
3

2
𝜆2𝑝𝑛𝐸𝑝𝑛𝑃 + 𝜆𝑝𝑛𝑃𝑁 + 2𝜆𝑝𝑛𝐸𝑀+ 4𝜆𝑝𝑛𝐸 + 𝜆𝑝𝑛𝑃  where N and M 

represent the initial design attributes (initial number of elements and operations), pnE and 
pnP represent the probabilities of the scenario types (new Element and new Operations 
respectively), and λ represents the number of applied scenarios. Thus, given the formal 
models in chapter 4, the total required effort per design alternative and any number of 
applied scenarios (λ) can by directly computed and visualized.  

As an example, referring to the specific problem’s instance of Interpreter in Table 1-1, 
the initial number of elements and operations are equal to 40 and 10 respectively. 
Furthermore, the probabilities of the two maintenance scenarios are equal to 0.5 and 0.5 
respectively. The application of the derived formal models in the specific instance of the 
Interpreter (N=40, M=10, pnE=PnP=0.5) is presented in Figure 1-6. In this case, CVP 
design combination is preferable since requires the lesser effort during maintenance. 
Notice that for different values of design attributes or/and scenarios probabilities the 
decision outcome could be different. 

1.5.5 Simulating Software Evolution Towards Statistical Validation 

Despite the argumentation about the validity of the introduced modeling method there still 
several concerns regarding the reliability of the derived formal models to conclude on 
correct design decision. The proposed modeling method introduces several assumptions 
concerning the stochastic nature of actual maintenance process in order to derive 
straightforward and deterministic equations of formal models. More specifically, the 
proposed modeling theory assumes a cyclical pattern of applied scenario types, 

 
Figure 1-6: Results of the application of the Formal comparison Model on the 

practical example of Interpreter as a specific instance of the CVP vs. CIBI general 
design problem. 
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engagement of only expansion scenarios, constant scenarios probabilities, neutral size of 
code interventions, no aging issues (code decay), and neutral developers’ experience level. 
To evaluate the decision-making reliability of multivariable formal models, their 
deterministic outcomes for several values of their parameters (reflecting specific instances 
of the general problem) should be statistically compered to actual effort observation 
recorded during the maintenance of real-world systems. Given the absence of such 
homogenous effort observations properly classified in respect to all problem parameters, 
there is no easy way for a statistical validation base on real-world observations.  

To overcome this barrier, the simulation of software evolution that imitates the actual 
maintenance process is attempted as depicted in Figure 1-4. More specifically, a simulation 
model that replicates the variability and the highly uncertain and stochastic nature of actual 
(real-world) maintenance is introduced. The model replicates several underlying activities 
(overlooked by modeling method as assumptions) by engaging several random and 
stochastic factors while it follows the same structural evolution, design alternatives, 
parameters, and measurement approach as in formal models. Thus, it is properly adapted 
to the general design problem under study while offers a suitable validation base. 
Furthermore, due to its stochastic nature, the returned effort assessments demonstrate a 
variability for repeated simulations under the same parameters. Thus, the model returns 
massive effort assessments classified in respect to all problem’s parameters ideal for 
statistical validation purposes.  

However, the evaluation of the consistency of the simulation model against real-world 
observations is subject to the same constraints and limitation as in the case of formal 
models (i.e., heterogenous, and unclassified observations). Taking advantage from the fact 
that design decisions are based on the difference of proportionally equivalent effort 
estimations, decision-making reliability relays on the variability (precision) of effort 
estimations instead on their accuracy in terms of absolute values. The model’s consistency 
has been tested through intensive calibration efforts (through multi-resolution modeling 
approach) by matching its variability with frequency distributions of real-world effort-
based observations from the field of time series analysis as depicted in Figure 1-4. Thus, 
the consistency of the simulation model in terms of variability is well connected to real-
word empirical evidence. 

1.5.6 Advantages of Simulation Model 

The most important advantages of the introduced simulation model are briefly listed 
below: 

• Is adapted to the general design problem under study by replicating the same evolution 
pattern, design alternatives, design patterns, and measurement process, providing a 
suitable validation base. 

• Is sensitive to the same problem’s parameters as in the formal models providing 
massive amounts of homogenous and classified (effort-based) observations ideal for 
statistical validation purposes. 

• Is well calibrated concerning its variability (precision) against frequency distributions 
of real-world observations from the field of time series analysis. 

• Provides several parametric switches that control the simulation and allows the 
gradual engagement of stochastic behavior.   

• Provides several favorable conditions by ensuring common comparison terms since  its 
artificial nature offers sufficient control over several stochastic factors toward a better 
understanding of possible causal relationships. 
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1.6 Contribution and Innovations of the Study  

1.6.1 Applicability of Formal Comparison Models  

The applicability of the introduced modeling theory and SMC metric has been 
demonstrated on the significant and general design problem of part-whole aggregations in 
chapters 3 and 4. The derived formal models per design alternative (CVP, CIBI) offer a 
sufficient comparison base regarding their maintainability perspective. A series of graphs 
which represent a full-scale visual illustration of almost all solution space of CVP vs CIBI 
comparison is provided. In addition, the derived formal models have been applied on three 
indicative instances (Compiler, Interpreter, GUI, reported in Table 1-1) of the general 
problem to support the selection of the most maintainable design alternative. Furthermore, 
the computational pattern of the model has been compared with two similar metrics 
derived from the evidence of related works (Hills et al., 2011; Tom Mens & Eden, 2005). 
The results of the comparison showed that the assessments of the proposed formal models 
converge to a significant degree to the evidence of related works. 

1.6.2 Adaptability of Modeling Theory 

This thesis introduces a methodology on how the proposed modeling model can be used 
for comparing the impacts on maintainability for similar or different design pattern 
combinations or for alternate general design problems. For this purpose, an analytical step-
by-step description of the suggested methodology, including requirements and limitations, 
is presented in chapters 3. Moreover, in chapter 5,  the proposed modeling method is 
applied to three different extensions of the CVP vs CIBI general problem, assessing its 
applicability to even more realistic settings. In particular, the established design patterns 
of Decorator, Mediator, Observer, Abstract Factory, and Prototype have been engaged and 
modeled. The generated formal models have been tested on several specific instances of 
each general problem. 

1.6.3 Computer-Aided Derivation of Formal Models 

A computer-aided modeling framework developed in MatLab scripts is provided in chapter 
4. This framework represents all the factors of each design problem (i.e., design alternatives 
and attributes, scenarios probabilities, SMC metrics, etc.) in the form of data sets and 
matrixes. It automatically generates the formal models (as dynamic functions - equations) 
per design alternative by performing the underline differential analysis and integration. 
This modeling framework is offered as a suitable template for any further adaptations such 
as different measures and alternate design problems. The general design problem CVP vs 
CIBI as well as its extensions in chapter 5 have been deployed on the modeling framework 
and provided in Appendix A for further research purposes. 

1.6.4 Simulation Model & Statistical Validation 

The proposed modeling method and derived formal models for the CVP vs. CIBI general 
design problem, analyzed in chapter 3 and 4, are statistically evaluated concerning their 
decision-making reliability. The statistical comparison is based on massive and 
homogenous measurement observations which have been generated by a well calibrated 
and highly stochastic simulation model that imitates the variability of actual maintenance 
process, introduced in chapter 6. The derived formal comparison models have been 
validated under several statistical techniques to evaluate the decision-making reliability of 
the proposed modeling method. A sample of one thousand possible system’s instances with 
specific design attributes and scenarios’ probabilities has been randomly selected. A 
simulation model that replicates the underlying activities of actual (real-world) 
maintenance process, providing sufficient, unbiased, classified, and homogenous 
validation data is introduced. The simulation model has been designed and developed in 

the forms of MATLAB© functional model and object-oriented entity model, engaging all 

problem’s parameters, and providing additional switches for controlling the simulation 
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settings and environment. Several intermediate variations of the model based on the multi-
resolution modeling technique has been tested to reach the desired stochastic behavior and 
realistic outcomes. Concerning the consistency criterion, the simulation model has been 
calibrated based on empirical evidence (frequency distributions) of relevant studies from 
the field of time series analysis (Raja, Hale, & Hale, 2009; Shariat Yazdi, Angelis, Kehrer, 
& Kelter, 2016). In principle, the simulation model imitates the stochastic nature of the 
actual maintenance process by incorporating developers’ stochastic characteristics such as 
experience and learning rate as well as other random factors like uncertainty of scenarios’ 
probabilities, alternate maintenance scenarios, non-repeated application patterns, the 
actual code size of interventions, code aging issues, etc. 

Several intermediate results computed by the simulation model have been compared 
against formal models’ deterministic predictions under the hypothesis testing of non-
significant difference. T-test and correlation inferences are based on single (one-time) 
simulation while error rate assessment is based on multiple (repeated Monte Carlo) 
simulations per sample instance. The results demonstrate a high coefficient of correlation 
(near to 0.96) providing sufficient statistical evidence of formal model’s decision-making 
reliability. Furthermore, the conducted hypothesis tests provide statistical evidence of 
formal models’ long-term accuracy in terms of absolute effort predictions which, however, 
is a weak inference due to the lack of a strictly validation of the simulation model against 
actual (real world) estimations. Most importantly, the results showed that the formal 
models provide reliable decisions among design alternatives with an overall long-term 
error-rate about 8% with only 2% of it being critical in terms of significant wasted effort.  

1.6.5 Alternate Computer-Aided Model Implementations 

Alternate computer-aided implementations of the introduced models with the assistant of 
VENSIM tool are presented in chapter 7. This software tool can simulate physical and other 
phenomena and systems through the analysis of their key variables and integration of their 
change rates. This tool can represent both continuous and event-driven models while 
provides a variety of capabilities for representing and compering the results of simulations. 
More specifically, the introduced discrete (event-driven) formal models in chapter 3, the 
continuous formal models in chapter 4, and the event-driven simulation model in chapter 
6, concerning the CVP vs CIBI general problem, are implemented in VENSIM tool. The 
tool is demonstrated on the example of GUI implementation as an instance of the CVP vs 
CIBI general problem. 

1.6.6 Design Decisions Under Uncertainty & Horizon Analysis 

Several alternate and future perspectives of the introduced modeling method are presented 
in chapter 7. More specifically, the introduced modeling method and derived formal 
models are further analyzed to support decision-making under partial of full uncertainty. 
Thus, when software designers are unable to forecast the scenarios’ probabilities in a 
precise manner. The technique is demonstrated on the formal models of the CVP vs CIBI 
general problem through further integration on intervals of probabilities factors. 
Furthermore, the horizon analysis technique is analyzed. This technique separates the 
entire maintenance period to subperiods, where for each subperiod different scenarios’ 
probabilities are applied. In particular, the derived formal models of CVP vs CIBI problem 
are repeatedly applied on a specific instance of the general problem for different scenarios’ 
probabilities. The technique is demonstrated on the example of Interpreter implementation 
as an instance of the CVP vs CIBI general problem. 

1.6.7 Designers and Developers (Practitioners) Perspective 

In a practical level, designers and developers can repeatedly use the derived formal modes 
in different instances of each general design problem to efficiently support decision-making 
among design alternatives, and thus develop more maintainable software of higher quality. 
Under this perspective, the formal models have been already derived for significant, 
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general, and frequently tackled design problems while they are offered as ready to use 
solutions. However, designers and developers can also analyze and derive formal models 
for alternate design problems in a practical level through the introduced modeling method 
for direct or future use. 

1.6.8 Researchers and Accademia Perspective 

In a theoretical level, researchers can analyze and derive formal models for alternate design 
problems through the introduced modeling method mainly for future use in a practical 
level by designers and developers. Furthermore, researchers can explore and adapt the 
modeling method under different factors, metrics, quality requirements, etc. In addition, 
the derived formal models can be statistically validated concerning their decision-making 
reliability by properly adapted simulation models. However, the statistical validation of 
formal models is not necessary since this thesis provide strong indications about the 
reliability of the introduce modeling theory in general. 

1.6.9 Project and Quality Managers Perspective 

In principle, project and quality managers are responsible for the efficient and effective 
development of quality software. Maintainability is one of the most important quality 
attributes requirements as discussed in this chapter. Under this perspective, project and 
quality managers are interested to adopt relevant methods that ensure software 
maintainability as part of their quality policies. The derived formal modes provide reliable 
early design-decision for general design problems leading to more maintainable software 
of higher quality.  

1.6.10 Novelty and Critical Evidence 

The introduced innovations of this thesis are briefly listed below: 

• The introduced SMC metric, relayed on architectural behavior of the used design 
patterns, is an innovative measurement approach. It expresses required effort mainly 
for comparison purposes among design alternatives, thus not necessarily connected to 
accurate real-world observations. Hence, it’s a suitable and versatile measure able to 
support early evaluation and selection among design alternative before code 
development. 

• The progressive analysis through differential and probability- weighted equations is an 
innovation of the proposed modeling method, compared to other existing approaches. 
Maintainability is assessed under the sight of possible maintenance scenarios and their 
probabilities as a dynamic and progressive evolution process that gradually affects 
basic design attributes of the system.  

• The structural evolution and expansion of the used design patterns per design 
alternative constitutes an insightful and innovative approach of software evolution 
during maintenance. This approach is in accordance with the confirmed increasing 
trend of software size during maintenance. 

• The effort predictions of the introduced formal and simulation modes do not represent 
the entire general problem in a universal way. Instead, they are sensitive to several 
design characteristic (parameters) of the addressed design problem. In other words, 
they fragment the problem in distinct instances by classifying their outcomes with 
regard to the parameters of each problem’s instance. This differentiation per sample 
instance is not limited only to the effort assessments but also extends to their variability 
degree. 

Several aspects regarding the beneficial contribution of this thesis are briefly listed below: 

• The average beneficial contribution (gain) from the repeated use of the derived formal 
models (in terms of avoided maintenance effort) concerning the entire design space 
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(possible instances) of each general problem lies between 25% and 90% of the optimal 
required effort which is a considerable performance. 

• Early design decisions supported by formal models are particularly reliable regarding 
the risk taken by designers or else the possibility of an incorrect selection of a less 
maintainable design alternative, demonstrating a long-term average error rate 8% with 
only 2% of it being critical in terms of significant wasted effort even under assumptions 
of high variability. 

• The introduced modeling theory provides formal models based on continuous 
integration through differential analysis, adequately describing an event-driven 
(distinct) phenomenon such software evolution during maintenance. 

• The conducted error rate assessment based on simulated outcomes reveals the pattern 
or the traces of non-critical and critical error occurrences. 

• The statistical validation of the formal models’ decision-making ability is a strong 
indication that the introduced modeling method trustworthy describes the software 
evolution during maintenance process, delivering reliable formal models of limited 
decision-risk. 

1.7 Thesis Organization 

The remainder of this thesis is organized as follows: 

• Chapter 2 overviews the existing works and relevant approaches concerning the 
analysis of design patterns, the general design problem of part-whole aggregations, 
effort estimations during software evolution, and maintainability assessment 
during early design stage. 

• In chapter 3 the SMC metric and the quantitative (distinct) analysis of the general 
design problem of part-whole aggregations are introduced. The derived formal 
models are applied in several instance of the general problem. A step-step modeling 
methodology for deriving formal models for alternate design problems is 
presented.  

• In chapter 4 the modeling method based on software (structural) evolution and 
continuous integrations is proposed. The method is demonstrated upon the general 
design problem of part-whole aggregations. A computer-aided modeling 
framework is presented that facilities model derivation process. 

• In chapter 5 three extended general design problems are modeled by attaching the 
design patterns of Decorate, Observer, Mediator, Abstract Factory, and Prototype. 
The derived formal modes are applied on indicative instances of each general 
problem. The exploration of almost the entire design space of each general problem 
is attempted to assess their overall contribution in terms of avoided wasted effort. 

• Chapter 6 a simulation model that replicates the underlying activities and 
stochastic nature of actual software evolution during maintenance is proposed. The 
returned classified observations are statistically compared with formal model 
outcomes for a representative sample of one thousand problem’s instances to 
evaluate the reliability of the introduced modeling theory. 

• Chapter 7 discusses alternate techniques and uses of derived formal models such 
as decision-making under uncertainty and horizon analysis. Several alternate 
computer-aided implementations of formal and simulation models are presented. 

• Chapter 8 discusses the overall conclusion of this thesis. In addition, the 
contribution of the study in the domain of architectural design and future work are 
discussed. 
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• The chapter 9 includes the appendix presenting technical details, supplementary 
diagrams, and evaluation results.  

 

Figure 1-7 shows a dependence graph of the chapters. Priority should be given in 
chapter 3 in which the principal concepts of this thesis are introduced. 
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Figure 1-7: Dependence graph of chapters. 
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2 Related Work 

2.1 Analysis of Design Patterns 

There have been several research efforts on design pattern analysis. Gamma et al. (Gamma 
et al., 1994) introduced 23 general design patterns that have become popular in object-
oriented programming community. Many of these have been used in finite element 
systems (Fenves, McKena, Scott, & Takahashi, 2004; Liu, Tong, Wu, & Lee, 2003; Mackie, 
2002), or in compiler development (Neff, 2004). Also some of these design patterns have 
been used to identify best practice in object-oriented finite element program design (Heng 
& Mackie, 2009). Some of these like Visitor design pattern have been analyzed and 
developed through template libraries (Dascalu, Hao, & Debnath, 2005; B. C. d. S. Oliveira, 
Wang, & Gibbons, 2008). An approach for detecting these design patterns through a meta-
model for design patterns representation has been proposed in (Bernardi & Di Lucca, 
2010). A design pattern density metric that measures how much of an object-oriented 
design can be understood and represented as instances of design patterns has been 
proposed in (Riehle, 2009) through four real-world case studies. Most common object 

oriented design measures, methods and tools, like (Giuliano Antoniol, Fiutem, & 

Cristoforetti, 1998; Chidamber & Kemerer, 1994; N. E. Fenton & Pfleeger, 1998; Gibbons, 

2006; Keller, Schauer, Robitaille, & Pagé, 1999; Srinivasan & Devi, 2014), quantify properties 
of lower level design units such as classes, attributes, methods etc. in order to evaluate the 

code structure. Briand et al (L. C. Briand, Daly, Porter, & Wüst, 1998; L. C. Briand, Daly, & 

Wüst, 1998, 1999; L. C. Briand, Wüst, Ikonomovski, & Lounis, 1999), studied coupling and 
cohesion measures that quantify object oriented design quality. Also various object 
oriented design metrics and quality indicators have been proposed in (Bandi, Vaishnavi, & 
Turk, 2003; Victor R. Basili, Briand, & Melo, 1996; Li & Henry, 1993) in order to predict 
maintainability and maintenance performance. Almost all of them are based on individual 
characteristics of the source code. These methods are not focused on selecting proper 
design pattern combinations during the early stages of software development (software 
design). Therefore, they are only helpful for analysis and quality control of the produced 
source code and do not target explicitly the reduction of future software maintenance effort 
and cost.  

A case study that analyses 39 version of an evolving object oriented software code is 
presented in (Bieman, Jain, & Yang, 2001). In that study, several perspectives such as 
relationships between design patterns, other design attributes, and the number of changes 
are analyzed. Its purpose is to extract evidence of improvements in adaptability by using 
design patterns and other design structures. That method captures design patterns 
through a set of software metrics and then links them to several future changes in the 
program. In this way, it reveals and relates some basic quality metrics (that capture design 
patterns) with several future changes based on case study evidence. The method discussed 
in  (Bieman et al., 2001) also tries to determine the relationship between design structures 
and external quality factors such as reusability, maintainability, testability, and 
adaptability. Although the objective of the method discussed in (Bieman et al., 2001) is 
similar to the method proposed in this thesis, this methos does not provide a general 
prediction of future changes on specific design pattern combinations during the software 
architecture design phase (before code development). 

2.2 Visitor Design Pattern vs Inheritance-Based Implementation 

Several object-oriented metrics and methods, like (Giuliano Antoniol et al., 1998; Bandi et 
al., 2003; Victor R. Basili et al., 1996; Bernardi & Di Lucca, 2010; Bieman et al., 2001; L. 
C. Briand, Daly, Porter, et al., 1998; L. C. Briand, Daly, & Wüst, 1998; L. C. Briand, Daly, 
et al., 1999; L. C. Briand, Wüst, et al., 1999; Chidamber & Kemerer, 1994; Dascalu et al., 
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2005; N. E. Fenton & Pfleeger, 1998; Fenves et al., 2004; Gibbons, 2006; Heng & Mackie, 
2009; Keller et al., 1999; Li & Henry, 1993; Liu et al., 2003; Mackie, 2002; Neff, 2004; B. 
C. d. S. Oliveira et al., 2008; Riehle, 2009; Srinivasan & Devi, 2014), have been proposed 
to help designers choose among Visitor and inheritance-based implementation or other 
design pattern combinations. Almost all of them are based on individual characteristics of 
the source code through source code analysis. In the proposed context, it seems that none 
of these methods can support the early evaluation (during software design and before code 
development) of these design patterns through a formal mathematical way, especially 
when a problem that has an extensible set of operations and an extensible Composite 
structure is addressed. Thus, through the result of the proposed context, software designers 
and developers can not choose between Visitor design pattern and inheritance-based 
implementation combination over a part-whole representation in an early stage, during 
software design phase. 

The use of these patterns has been also widely discussed for the well-known 
Expression Problem which was coined by (P. Wadler, personal communication, 1998) and 
extended by (Zenger & Odersky, 2005) in order to illustrate modular extensibility issues in 
software evolution, especially when involving recursive data structures like Compositions. 
Expression Problem refers to a fundamental dilemma of programming: to which degree 
can an application be structured in such a way that both the data model and the set of 
virtual operation over it can be extended (extensibility in both dimensions), without the 
need to modify existing code, without the need of code repetition and without runtime type 
errors. An extra requirement added by (Zenger & Odersky, 2005) which predicts the 
possibility for combinations of independently developed extensions that can be used 
jointly. Several solutions have been proposed (Krishnamurthi, Felleisen, & Friedman, 
1998; B. C. Oliveira, 2009; B. C. d. S. Oliveira & Cook, 2012; Torgersen, 2004) which are 
referred to the Expression Problem, all of them mainly focused on presenting a variety of 
object oriented programing methods and technics over Composite, Visitor design patterns 
and inheritance based implementation. These solutions present variations of these design 
patterns by using features such as generics, templates, type-parametrization, and 
subtyping that are available in many (mainly advanced) object-oriented languages, 
attempting to satisfy Expression Problem requirements while improving the extensibility 
of programs. Most of these solutions introduce high code complexity which finally deforms 
the initial design pattern structures. Although the proposed context satisfies the Expression 
Problem requirements in such a way that both the data model and the set of virtual 
operations over it can be extended using Composite, Visitor design patterns and 
inheritance-based implementation, it does not propose any method for selecting proper 
design pattern combinations for a given problem. Usually, software designers must choose 
specific design pattern combinations; otherwise, high code complexity could be introduced. 
In addition, developers often prefer to follow the initial simple structure of design pattern 
avoiding major reforms. Moreover, modifications or additions during software 
maintenance usually take place on the initial code (modules), without satisfying all 
Expression Problem requirements. Most of the pre mentioned concerns remain even for 
the latest proposed solution in (Wang & Oliveira, 2016) which presents a simple solution 
of Expression Problem.  

The proposed method of this thesis is not intended as a solution for the Expression 
problem since it is not attached to the Expression Problem requirements. Furthermore, the 
proposed method tries to eliminate all the pre mentioned concerns and cover the need for 
a formal method for choosing between specific design pattern alternatives. Furthermore, 
the proposed method can be applied for early selecting proper design pattern combinations 
(like Visitor or inheritance-based implementation) even if any of the Expression Problem 
solutions is adopted in a later stage. 

Perhaps the most related case study which compares the Visitor pattern with the 
Interpreter pattern (an inheritance-based implementation) is presented in (Hills et al., 



 

UNIVERSITY OF 
PELOPONNESE 

“Model-driven Software Architectural Design based on Software 
Evolution Modeling and Simulation and Design Pattern Analysis 
for Design Space Exploration Towards Maintainability” 

 

PhD Thesis  20 

2011). In that study, two nearly equivalent versions of an interpreter for a programing 
language (one using Visitor and other using Interpreter pattern) are compared on their 
maintenance characteristic and execution efficiency. The method tries to measure the 
impact of future extensions for new expressions (nodes) or new operations through 
maintenance scenarios, for both versions, introducing a new metric called computational 
complexity. This new metric tries to measure not only the effort to transform the system, 
but also the effort to analyze it before applying any transformations. In other word 
computational complexity can be considered as the complexity of maintenance or as the 
required maintenance effort for specific maintenance scenarios. Summarizing, this model 
estimates maintenance effort by counting various individual actions (performed by the 
developer) for different maintenance scenarios. Although the results of this method are 
depended on source code analysis for a specific case study, the computational complexity 
metric has been used as an alternate metric for the proposed method in this thesis. Again, 
this case study cannot support the early evaluation (during software design and before code 
development) of these design patterns through a formal mathematical way, especially 
when a problem that has an extensible set of operations and an extensible Composite 
structure is addressed. 

2.3 Effort Estimation During Software Evolution and Maintenance 
Process 

Software evolution and maintenance process have been extensively discussed in the 
literature (Arbuckle, 2011; Chapin, Hale, Khan, Ramil, & Tan, 2001; Demeyer, Mens, & 
Wermelinger, 2001; Kemerer & Slaughter, 1999; Meir M. Lehman & Ramil, 2002; Tom 
Mens & Demeyer, 2001). Several general frameworks, methods and models (Dubey & 
Rana, 2011; Granja-Alvarez & Barranco-García, 1997; Heitlager, Kuipers, & Visser, 
2007a; Kumar, Krishna, & Rath, 2017; Land, 2002) have been proposed toward effort 
estimation required during software maintenance or evolution process. In the proposed 
context, none of these methods can support the early comparison (during software design 
before code development) among visitor design pattern and inheritance-based approaches 
through a formal mathematical way, especially when a problem that has an extensible set 
of operations and an extensible composite structure is addressed.  

Furthermore, several approaches and models (Harald Gall, Hajek, & Jazayeri, 1998; 
Ramil & Lehman, 2000, 2001) have been proposed toward software evolution prediction 
mostly through the use of low-level code metrics, ISO metrics, object-oriented specified 
metrics, and so forth. None of these measures and techniques seem to capture code’s 
structural behavior during software evolution and maintenance, frequently leading to 
general probabilistic (Bakota, Hegedűs, Körtvélyesi, Ferenc, & Gyimóthy, 2011; Bakota et 
al., 2012) or static (Ahn, Suh, Kim, & Kim, 2003; Aloysius & Arockiam, 2012; Bandi et al., 
2003; Bansiya & Davis, 2002; Bartosz & Pawel, 2010; Dagpinar & Jahnke, 2003; 
Fioravanti & Nesi, 2001; Hayes, Patel, & Zhao, 2004; Hayes & Zhao, 2005; Rizvi & Khan, 
2010) models for predicting or measuring maintainability degree, delivering suboptimal 
estimations. Moreover, many of these studies analyze software maintenance after it has 
been occurred, more as a retrospective than as predictive approaches.  

In general, the most commonly used metrics and factors toward actual effort 
estimation are source code measurements, and people related metrics, as shown by Wu et 
al. (Wu, Shi, Chen, Wang, & Boehm, 2016) Systematic Literature Review results. 
Additionally, there is not much evidence on the effectiveness, accuracy, and validation of 
software maintainability prediction techniques and models (Riaz et al., 2009a; Shepperd & 
MacDonell, 2012). Although there are several works in the literature regarding design 
pattern recognition and analysis (Giuliano Antoniol et al., 1998; Bernardi & Di Lucca, 
2010; Dascalu et al., 2005; Keller et al., 1999; Riehle, 2009), there is no particular theory 
or method for deriving formal comparison modes based on the structural 
behavior/evolution of the engaged design patterns. Even the prediction models and 
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techniques based on time series analysis (G. Antoniol, Casazza, Di Penta, & Merlo, 2001; 
Raja et al., 2009; Shariat Yazdi et al., 2016) for predicting the evolution of various software 
aspects such as size, clones, bugs, defects, and changes, are not closely related to system’s 
design patterns and attributes. In the proposed context, none of these methods can support 
the early comparison among design (pattern) combinations alternatives in a formal 
mathematical way. This gap is even more obvious in the case of early evaluation during the 
crucial design stage before code development. 

2.4 Assessing Maintainability During Early Design Stage 

A method for the prediction of software maintainability during software design phase is 
presented by Bengtsson and Bosch (Bengtsson & Bosch, 1999). The method takes the 
requirement specifications and the design of the architecture as input and generates a 
prediction of the average effort for a maintenance task. Scenarios are used by the method 
to concretize the maintainability requirements and to analyze the architecture for the 
prediction of the maintainability. Although the method introduces individual scenario 
probabilities and distinct affected volumes for each component and scenario combination 
in a simple linear equation, it does not take under account several issues such as the change 
rate of the component instances. Furthermore, the system components and maintenance 
scenarios are strongly linked to minor specifications and system’s functionality, away from 
design pattern logic. This approach requires at least a detailed architectural design for all 
functionalities, which is not a strictly early evaluation. Moreover, without analysis of design 
pattern behavior, the number of potential maintenance scenarios is especially large, 
making the scenario selection and their weights a subjective and time-consuming process. 
In any case, the method seems that cannot support early comparison between design 
pattern combinations alternatives in an efficient and unbiased way. In addition, methods, 
which are not related to well-known design pattern combinations for common problems, 
are not easily reusable or adaptable. 

A revised technique for analyzing the optimal maintainability of software architecture 
based on a specified scenario profile is presented by Bosch and Bengtsson  (Bosch & 
Bengtsson, 2001). The new equation of optimal maintenance effort engages additional 
corrective factors as productivity measures under several conditions to improve the 
model’s prediction ability. However, this technique also suffers from the same concerns as 
the previous method (Bengtsson & Bosch, 1999).  
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3 Quantitative Analysis of Design Problems 

3.1 Chapter Overview 

In this chapter, a comparison model concerning the application of the object-oriented 
Visitor Pattern (VP) and Inheritance-Based Implementation (IBI) approaches on 
structures based on the Composite design Pattern (CP) is discussed. The proposed model 
is independent on specific code implementations and run-time behavior. So, it can be 
implemented in a very early stage, during software design, before code development to help 
designers make the right decisions and reduce the required effort and cost of software 
maintenance. The proposed model introduces a probabilistic approach for basic 
maintenance scenarios, based on specific design pattern behavior and individual problem 
characteristics or design attributes such as initial number of composition’s elements and 
operations. It analyses software maintenance as a progressive evolution process and 
estimates maintenance effort by introducing the Structural Maintenance Cost (SMC) 
metric. The proposed SMC metric concentrates on the assessment of maintainability 
characteristic through the estimation of required maintenance effort. The metric focuses 
on the number of interventions as well as on the concentration degree (locality) of those 
interventions for each maintenance scenario as a specialization of software entropy concept 
(Bakota et al., 2012). Through the SMC metric, maintainability is related to the ease of 
future maintenance of software code in terms of numbers of interventions or changes as 
well as the locality of those interventions expressed by the numbers of classes (or code units 
in general) that are affected. SMC metric provides proportional equivalent effort 
assessments per design alternative mainly for comparison purposes, thus without the need 
of accurate assessments in terms of real-world maintenance cost. The progressive analysis 
is an innovation of the proposed method, compared to other existing approaches. Τhe 
proposed approach provides a formal model of the behavior of CIBI (CP+IBI) and CVP 
(CP+VP) design combinations even when the structure and the operations’ set are both 
extendable. Moreover, the model’s computations and graphs can be easily implemented in 
software. 

The model has been implemented and tested on many real cases or instances of the 
significant part-whole representation problem, three of which are presented as motivation 
and implementation examples in Table 1-1. Furthermore, the computational pattern of the 
model has been compared with two similar metrics derived from the evidence of related 
works (Hills et al., 2011; Tom Mens & Eden, 2005). The results of the comparison showed 
that the assessments of the proposed model converge to a significant degree to the evidence 
of related works. Also, it has been proven that the proposed model can be reliably used at 
a very early stage, before code development, for the comparison and selection among CIBI 
and CVP design alternatives, focusing on software maintainability while delivering reliable 
results.  

The model provides a series of graphs which represent a full-scale visual illustration of 
entire solution or design space of CIBI and CVP comparison. Also, it has been induced that 
CVP implementation is preferable when companies dedicate more experienced resources 
(e.g., senior developers) during software maintenance. Overall, IBI is easier (than VP) to 
be understood and applied since it is preferable or easier to maintain by less experienced 
developers. 

Furthermore, this chapter introduces a methodology on how the proposed model can 
be used for comparing the impacts on maintainability for similar or different design pattern 
combinations and general design problems. For this purpose, an analytical step-by-step 
description of the suggested methodology, including requirements and limitations, is 
presented. 
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The context of this chapter is based on the motivation examples in chapter 1, and 
related work in chapter 2. The rest of this chapter is organized as follows. Subsection 3.2 
provides a brief presentation of the general principles that support the proposed model. 
Subsection 3.3 presents the general decision problem and the used design patterns under 
evaluation. Subsection 3.4 defines structural maintenance cost metric. Subsection 3.5 
quantifies individual maintenance cost. Subsection 3.6 presents the quantitative analysis 
for a single future addition. Subsection 3.7 introduces progressive analysis based on 
scenario probabilities and presents a graphical analysis for any number of future additions. 
Subsection 3.8 presents application examples of the model and a comparison of three 
existing related measures. Subsection 3.9 suggests a step-by-step methodology and an 
extension example. Finally, in subsection 3.10, the model’s validity challenges, limitations, 
future research issues, and conclusions are presented. 

3.2 General Principles 

3.2.1 General Architectural Design Principles 

In general, the activities of the architectural design entails a series of design decisions (Bass 
et al., 2012). During these activities, several architectural patterns and tactics representing 
the available body of knowledge, practices, methods, and techniques are applied by 
software engineers and designers to address all the functional and quality attribute 
requirements of a system. To conclude on the most proper and beneficial architectural 
patterns and tactics, software engineers are constantly faced with design decisions. Many 
of these design decisions are critical since they are usually irreversible and their impact on 
systems performance is significant (e.g., concerning maintainability perspective). Such 
critical design decisions need to be made after systematic evaluation of the impact of each 
available option otherwise the entire design process is subject to high risk and likelihood to 
conclude on suboptimal solutions.  

A typical flow diagram of the architectural design activities is presented in Figure 3-1. 
The design process begins with the analysis of system’s specifications and requirements 
which entails several sub activities such as defining patterns of general problems, 
specifying logical entities that represent functional requirements, specifying modules and 
responsibilities to satisfy functional requirements, and considering quality attribute 
requirements that must be met. Next, a design model, usually in the form of UML class 
diagrams, is derived base on established design patterns form the available body of 
knowledge. These architectural design patterns are properly selected to fit general 
problem’s requirements and quality attribute requirements. This activity is repeatedly 
performed until all functional requirements has been satisfied. However, in most of the 
cases, there are many architectural patterns that address the same requirements in 
different ways leading to several design alternatives (or artifacts) under consideration.  

Furthermore, a design model could be further refined to satisfy the pursued quality 
requirements. Towards this directions, architectural tactics from the available body of 
knowledge are applied to a design model to improve its design structure. For example, 
tactics like splitting or rearranging responsibilities are used to increase cohesion and reduce 
coupling among the model’s logical entities in a try to improve the quality attribute of 
maintainability. However, the critical point is whether these changes actually improve the 
pursued quality of a design model. Thus, during the next activity, a set of stimuluses of 
possible events that may occur in the future are selected. At the same time, the response, 
or the effect of these stimulus on the design model is assessed. To be more precise, that 
response is quantitatively expressed through a response measure which captures the effect 
of the stimuluses on the design model under the view of the pursued quality attribute. This 
measurement approach is assisted by evaluation models and techniques that allows 
designers to decide whether the applied tactics are actually improve the pursued quality of 
a design model. This kind of design decisions are critical and there is an increasing need 
for evaluation models able to efficiently and trustworthy support such decisions.  



 

UNIVERSITY OF 
PELOPONNESE 

“Model-driven Software Architectural Design based on Software 
Evolution Modeling and Simulation and Design Pattern Analysis 
for Design Space Exploration Towards Maintainability” 

 

PhD Thesis  24 

Finally, designers have to evaluate several design alternatives and select among them 
the most beneficial from the point of view of the pursued quality requirement. Again, such 
design decisions are assisted by evaluation models and techniques that allows designers to 
decide whether the pursued quality requirement of a design alternative is better than 
others. Once more, this kind of design decisions are critical and there is an increasing need 
for evaluation models able to efficiently and trustworthy support such decisions especially 
for general, significant, and frequently tackled design problems. 

The introduced in this chapter modeling method and derived formal models are 
offered as a suitable response measure and comparison (or evaluation) base among design 
alternatives with regards to their maintainability perspective. 

3.2.2 Object-Oriented Design Principles 

To address difficult design problems using computer systems, each problem should be 
firstly analyzed and designed before the development of the source code. These tasks are 

 
Figure 3-1: Typical flow diagram of architectural design activities. 
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performed by Software Engineers and designers through scientific theories, methods, 
tactics, and tools. One of the main tasks of object-oriented modelling is the Object-Oriented 
Design task during which software engineers focus on the conceptual solution (concerning 
software and hardware perspectives) for each problem rather than the solution itself. An 
important responsibility of object-oriented designing process is the definition of  the 
relationships between the basic structural elements of the software as well as the selection 
of the proper Design Patterns which satisfy software quality requirements and 
specifications (Gamma et al., 1994). One of the most important concerns of object-oriented 
methods is to develop software and systems that are easily adaptable and maintainable. 
More details about software engineering as well as object-oriented and architectural design 
are presented in (Larman, 2004; R. S. Pressman, 2001; Sommerville, 2010). This analysis 
places the decision of selecting proper design patterns early into the general life cycle of 
software development while it highlights the importance and the impact of these decisions 
in the design process. Software designers can directly use the design patterns during 
system’s design as part of a wider software life cycle model such as traditional sequential 
development, waterfall or agile. 

Design patterns are suitable for addressing well specified, general, and significant 
design problems which usually are repeatedly addressed during the stage of software 
design. The design patterns that are being described in this thesis are modelled object-
oriented descriptions of interrelated objects and classes, which are properly parameterized 
to address general design problems. They represent the relationships between objects 
participating to the solution and describe their collaborations and associations. By 
facilitating reuse of proven solutions, design patterns help improving software quality and 
reduce development and maintenance time, effort, and cost. Furthermore, object-oriented 
design patterns are especially dedicated on improving adaptability, since patterns generally 
increase the complexity of an initial design to ease future enhancements. For the design 
patterns to provide benefit in terms of maintainability, they must reduce the cost of future 
adaptations. In this thesis design patterns are graphically represented through class 
models of UML diagrams (Larman, 2004). 

3.3 General Decision – Design Problem  

3.3.1 Recursive Hierarchies of Part-Whole Representations 

During the phase of software design, several general and significant implementations 
which have solutions based on recursive hierarchies of part-whole representations/ 
aggregations through composite structures of objects are confronted. In many of these 
cases, a set of different operations are performed on the objects (elements) of these 
structures, where different classes of objects are handled in a unique way by each distinct 
operation. Implementations with such characteristics are common in software design and 
constitute a general and significant design problem, searching for widely acceptable 
solutions. Classical paradigms of part-whole representation/ aggregation problems are 
computer aided design software and compilers (Aho, Lam, Sethi, & Ullman, 2006; 
Baldwin, 2003; Cooper & Torczon, 2011; Neff, 1999). Compilers usually form 
compositions of objects to internally represent intermediate representations (IRs). In all 
these implementations, it is common that each distinct operation (like drawing or filling 
for design software or like type checking for compilers) is applied in a unique way for every 
distinct class of objects (like line, rectangle, block, window objects for design software or 
like identifiers, nonterminal/terminal tokens for compilers). So, during the phase of 
architectural design, software engineers are responsible to design software of high-quality 
standards focusing on its maintainability perspective. Toward this direction, designers use 
combinations of well-known design patterns to represent part-whole representations in an 
efficient and straightforward way in order to implement different operations onto distinct 
type of nodes. 



 

UNIVERSITY OF 
PELOPONNESE 

“Model-driven Software Architectural Design based on Software 
Evolution Modeling and Simulation and Design Pattern Analysis 
for Design Space Exploration Towards Maintainability” 

 

PhD Thesis  26 

3.3.2 Engaged Design Patterns 

A typical problem faced by software engineers, is the choice of a proper pattern as well as 
the choice of a flexible and systematic way for applying operations on distinct elements 
(class objects) of a composition. Over the years, various object-oriented design patterns 
have been proposed in order to solve the above problems. Composite, Visitor, and 
inheritance-based implementation are three of the most widely used design patterns, 
which have been proposed by software engineers through their experience in the field of 
software design. Composite and Visitor design patters that have been used in this work 
have been introduced by  Gamma et al. and are fully presented and analyzed in (Gamma 
et al., 1994). 

• The Composite design pattern (CP) is an inheritance composition of classes used 
to represent the part-whole hierarchy of different types of objects. 

• The inheritance-based implementation (IBI) is a simple and straightforward 
object-oriented approach that takes advantage of the inheritance attribute of 
object-oriented languages and as explained later can be (almost) matched with the 
Interpreter design pattern. Based on this similarity, the inheritance-based 

implementation is often referred as Interpreter design pattern or even as a naïve 
design pattern. 

• The Visitor design pattern (VP) is slightly more complex, using distinct classes for 
visitor operations, while again it takes advantage of the inheritance attribute.  

All patterns take advantage of the virtual method and polymorphism attributes of 
Object Oriented languages during the calling of their methods with different object 
reference (pointer) types, as presented in (Schildt, 2002). In most of the cases, the 
Inheritance-based implementation (IBI) and Visitor design patterns (VP) are combined 
with the Composite design pattern (CP). 

Furthermore, there are several other well-known design patterns, like Interpreter, 
Iterator, and Flyweight, also presented in (Gamma et al., 1994), that could be combined 
with the pre mentioned design patterns to offer additional functionalities. However, CP, 
IBI and VP are the most important and basic design patterns that determine the quality 
characteristics of the software. 

3.3.2.1 Composite Design Pattern 

In a typical hierarchy of classes, the inheritance relationship usually represents a 
generalization between classes rather a part-whole representation. The main intent of 
Composite design pattern (CP) is to compose objects into tree structures to represent part-
whole hierarchies. CP lets clients treat individual objects and compositions of objects 
uniformly (Gamma et al., 1994). Referring to Figure 3-2, a typical structure of CP for a 
CAD system is presented. Point and Line objects are usually contained in objects of graphic 
Blocks which also can contain other Blocks’ objects, etc. There is no need for a Point or Line 
object to have all the attributes and methods of a Block object. In this case, Blocks are 
compositions of other Blocks, Lines and Points. In order Block objects to contain Lines, 
Points, and other Block objects, in a part-whole hierarchy based on CP, all sub-classes 
(Block, Line and Point) should be declared as concrete (non-abstract). These classes should 
be generalized (through inheritance property) to a new abstract class (e.g., 
Structure_Element). In this way a Point object with no content doesn’t have the attributes 
of the Block class (like the vector of the contained sub objects, which in this case is a non-
necessary memory cost). Now, clients and internal methods can treat to individual objects 
(such Lines and Points) and compositions of objects (such Blocks) uniformly through 
references to the abstract class (Structure_Element) taking advantage of polymorphism 
property supported by object-oriented languages. 
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As a general conclusion, in the Composite design pattern (Gamma et al., 1994), all 
classes except leaf classes of a hierarchy should be usually declared as abstract classes. This 
means that objects can be instantiated only through leaf classes. In this pattern the number 
of distinct node types, which can be represented, is equal to the number of leaf classes. 

3.3.2.2 Inheritance-Based Implementation 

In a Composite structure of a part-whole representation, where distinct operations 
(methods) are performed on different type (classes) of objects, the inheritance-based 
implementation can be used. This simple straightforward object-oriented approach is 
based on inheritance attribute of object-oriented languages and can be considered even as 
a naive design pattern. Furthermore, it is equated to the data-centered approach of the 
Expression Problem solutions. In addition, as presented in (Hills et al., 2011), can be 
(almost) matched with the Interpreter design pattern (Gamma et al., 1994). In this case, 
the interpreter operation (method) is implemented into the Composition pattern of the 
language through the inheritance-based implementation. In the general case in Figure 3-3, 
all distinct operations are declared as virtual methods inside the abstract root class of 
hierarchy. The implementation of every distinct operation (method) is placed in each 
distinct object (leaf) class of hierarchy. In this way, an operation (method) can be 
repeatedly called (e.g., recursively) through a general pointer type of the abstract root class 
(based on polymorphism). There is no need to know the specific pointer type of the (leaf) 
class from which an object has been instantiated. 

 
Figure 3-2: Example of class and object diagrams for typical hierarchies of objects. 
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A disadvantage of the IBI is the fact that methods of a specific operation are distributed in 
different (leaf) classes. In this pattern, the addition of a new operation requires a new 
method implementation in every distinct (leaf) class. Contrariwise, the addition of a new 
type of node (leaf class) requires all new (operations) methods be placed in a single (new) 
class. This pattern makes adding new types of nodes (elements) easier (Gamma et al., 
1994). This statement is still valid in case of modifying existing nodes (element) thanks to 
concentration (locality) of interventions. A typical code example based on CP and CIBI 
pattern is presented in Figure 3-5. 

 

3.3.2.3 Visitor Design Pattern 

Instead of using the inheritance-based implementation approach, the Visitor design 
pattern (VP) can be used. This is a more complicated design pattern which is also based on 
inheritance attribute of object-oriented languages. Furthermore, it is equated to the 
operation-centered approach of the Expression Problem solutions. In the general case in 
Figure 3-5, for every distinct type of node (leaf class) a new method is declared as virtual 

 
Figure 3-3: Example of class diagram for a typical structure based on Composite 

design pattern (CP) and inheritance-based implementation (IBI). 

 
Figure 3-4: Typical code example based on Composite design pattern (CP) and 

inheritance-based implementation (IBI). 
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method inside a root abstract class called Visitor. Also, for every distinct operation, a new 
sub-class is created which includes all the implementations of the methods of distinct node 
types for this specific operation. Furthermore, a single method, Accept_Visitor(), is 
declared as virtual method inside the root abstract class of Composite hierarchy. The 
implementation of Accept_Visitor() method is placed in each distinct object (leaf) class of 
hierarchy. The Accept_Visitor() method usually contains very simple code; it gets a Visitor 
object reference (specific process) as argument and then calls the proper method (node 
type) for its node type by passing to it its object reference (pointer) as argument. In this 
pattern, a Visitor object (process) can be repeatedly implemented on Composite objects 
(e.g., recursively) through calls of its Accept_Visitor() methods. There is no need to know 
the pointer type of specific Visitor sub-class or the pointer type of the (leaf) class from 
which objects have been instantiated. A full analysis and examples of the Visitor design 
pattern are presented in (Gamma et al., 1994; Palsberg & Jay, 1998; Santos Oliveira, 2007; 
Visser, 2001). 

An advantage of the VP is that all methods of a specific operation are gathered in a 
single Visitor subclass. In this pattern, the addition of a new operation requires a new 
method implementation for every type of node be placed in a single Visitor subclass which 
is rather simple. Contrariwise, the addition of a new type of node (leaf class) requires all 

 
Figure 3-5: Example of class diagram for a typical structure based on Composite and 

Visitor design patterns (CP, VP). 
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new methods (for every node type) be placed in different Visitor subclasses (operation 
type). In contrast with IBI, it is obvious that this pattern makes adding new operations 
easier (Gamma et al., 1994). This is also truth in case of modifying an existing operation 
thanks to concentration (locality) of interventions. A typical code example based on CP and 
VP patterns is presented in Figure 3-6. 

In practice, VP approach rearranges the methods of all distinct operations from CP 
sub-classes into the new visitor sub-classes. This kind of rearrangement is a typical 
architectural tactic (Bass et al., 2012) towards the improvement of maintainability which 
tries to increase cohesion of VP sub-classes considering that the operations will be more 
prone to changes during maintenance process. However, at the same time, the cohesion of 
CP sub-classes is decreased while their coupling degree with VP sub-classes is increased 
making this design variation less maintainable assuming that the elements will be more 
prone to changes during maintenance process. Usually, the application of an architectural 
tactic is subject to several trade-offs of conflicting pro and cons with regards to 
maintainability, mostly depending on the anticipated type of future events.  

There are many other positive and negative characteristics of VP which are fully 
presented in (Gamma et al., 1994). This study mainly focuses on those characteristics 
which have a direct impact on the quality characteristics of maintainability and 
changeability. 

3.4 Software Quality Measures 

3.4.1 Quality Measures 

To evaluate design pattern combinations at an early stage, the proposed approach 
evaluates quality characteristics before code development based on the initial structure and 
attributes of the used design pattern combination. At this early stage, there is no source 
code for analysis except a design concept or a combination of design patterns, usually in 
the form of UML diagrams. However, even at this early stage, many quality characteristics 
of object-oriented design pattern combinations can be approximated.  

 
Figure 3-6: Typical code example based on Composite and Visitor design patterns 

(CP, VP). 
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The proposed model focuses on a major software quality aspect which in the case of 
CP, VP and IBI is the lowest required effort for extensions or modifications during software 
maintenance. In this way, the proposed model captures and eventually measures 
maintainability of specific design pattern combinations. Measuring maintainability 
requires that proper attributes and quantifiable metrics should be defined. Using these 
metrics, structural properties, which make a design pattern combination more 
maintainable and adaptable than one other, can be identified.  

Maintainability as a software quality characteristic (defined in (ISO/IEC 25010, 2011; 
ISO/IEC/IEEE 24765, 2010)), is related to the ease of future modifications of software 
code and therefore is considered as a very important quality attribute requirement. The 
proposed approach mainly focuses on predicting software maintainability and its 
subdivisions, changeability, and modifiability. 

3.4.2 Expressing Software Maintainability 

Α vast number of metrics, models, methods and case studies that focus on software 
maintainability definition, evaluation, and prediction are available in the literature. Many 
of them have been referenced in Section 2. In this subsection, the interrelation between 
different concepts/aspects of software maintainability assessment through existing 
literature, are discussed. 

In (Bidve & Sarasu, 2016), the coupling degree among classes is related to 
maintainability assessment through existing object-oriented metrics. In (Aloysius & 
Arockiam, 2013), the code complexity is related to maintenance effort prediction through 
three existing object-oriented cognitive complexity metrics. In (Victor R. Basili et al., 1996), 
design complexity is related to fault pronounce and reliability assessment through existing 
CK (Chidamber & Kemerer, 1994) metrics. In (R. Subramanyam & Krishnan, 2003), code 
complexity is related to fault pronounce using existing CK and MOOD metrics. In 
(Aversano, Cerulo, & Di Penta, 2009), the number of defects in design pattern classes is 
related to scattering degree of their induced crosscutting concerns and maintainability 
aspect. In (Canfora, Cerulo, Di Penta, & Pacilio, 2010), the source code complexity is 
related to code disorganization or software entropy concept which is measured by using 
source code entropy. Software entropy was first introduced by (Jacobson, 1992), and 
according to (Hassan, 2009), it is directly related with the intuition that developers will 
have harder work keeping track of changes that are performed across many source files or 
any other code unit such as classes, methods, functions, code chunks respectively. In 
(Bakota et al., 2012), the code disorder (entropy) is related to maintainability through a 
probabilistic model based on software entropy concept. Also, in (Bakota et al., 2011), a 
probabilistic approach for computing high-level quality characteristic such as 
maintainability is presented. In (Heitlager et al., 2007a), a practical model for measuring 
maintainability is presented through which source code metrics can be related to quality 
characteristics (as defined in (ISO/IEC 25010, 2011)) such as maintainability. According 
to this model, a source code measure (such as cyclomatic complexity) indicates one or more 
source code properties (such as code complexity) which in turn influence system quality 
characteristics (such as maintainability). In (Riaz, Mendes, & Tempero, 2009b) review, it 
is concluded that maintainability and its sub-characteristics (as defined in (ISO/IEC 
25010, 2011; ISO/IEC 25023, 2016)) are closely related to complexity and software size. 
Therefore, models using complexity and size metrics as predictors may be likely to be 
equally applicable to any maintainability sub-characteristic. By combining evidence of 
earlier works, an enhanced conceptual diagram for measuring maintainability is derived 
and presented in Figure 3-7. In this diagram, the interrelations between different concepts 
and aspects of software maintainability assessment are indicated in a more clear and 
classified way. 
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Figure 3-7 outlines the maintainability assessment process, starting from low-level 
code measures, passing to code properties, and ending to effort/cost estimation which 
expresses maintainability, as suggested by (Heitlager et al., 2007a). In nearly all the works 
in the literature, probabilistic (Bakota et al., 2011, 2012) and static (Aloysius & Arockiam, 
2012; Bandi et al., 2003; Bansiya & Davis, 2002; Dagpinar & Jahnke, 2003; Fioravanti & 
Nesi, 2001; Rizvi & Khan, 2010) methods and models usually use low-level code measures 
(Bansiya & Davis, 2002; Chidamber & Kemerer, 1994; Li, 1998; Lorenz & Kidd, 1994) to 
capture code properties and throgth which to predict or estimate the required effort and 
relevant cost during maintenance process. Furthermore, low-level code metrics are usually 
used for capturing or estimating more concrete properties such as code complexity and 
crosscutting concerns (scattering degree). More abstract code properties like disorder, 
entropy and interventions locality are usually estimated indirectly through other more solid 
properties and/or through probabilistic models.  

In the case of design pattern comparisons at an early stage before code development, 
there is no code for applying code measures except of an initial design structure. Thus, there 
is a need for a special metric that captures the behavior of specific design pattern 
combinations’ structure during maintenance (evolution) process. This is an intelligent task 
and apparently requires human intervention. Traditional low-level code metrics 
(Chidamber & Kemerer, 1994; Li, 1998), cohesion metrics (Kayarvizhy, Kanmani, & 
Uthariaraj, 2013), ISO metrics (ISO/IEC 25023, 2016), etc. do not seem to capture 
structural behavior and evolution. This is a problem frequently leading to general 
probabilistic models which deliver suboptimal estimations and assessments. For example, 
in the (Bakota et al., 2012) model, maintainability (software entropy/disorder) assessment 
is based only on the size of the source code at a specific time, measured in lines of code 

 
Figure 3-7: Conceptual diagram of interrelation of code properties regarding software 

maintainability assessment. 
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(LOC). Using the LOC metric in a probabilistic model is rather a rough magnitude although 
authors (Bakota et al., 2012) state that their proposed model predicts development cost 
with high accuracy.  

Furthermore, design pattern comparison and analysis do not require an absolute 
maintenance cost prediction regarding available resource e.g. labor cost, operational 
expenditures, capital costs, etc., like (Bakota et al., 2012) model does. Instead, design 
pattern comparison can be achieved through a proportionally equivalent prediction of 
maintenance effort for each implementation alternative under comparison, even if these 
predictions are subjective concerning absolute cost magnitudes. Moreover, with no 
absolute cost prediction, other factors like change rate over time are unnecessary and can 
also be omitted. Additionally, the necessary maintenance cost for the actual code can be 
considered as neutral. This is because the business logic or actual code is the same for all 
implementations under comparison and, thus the required effort for its maintenance can 
be ignored. 

The proposed model, free from the need for absolute cost predictions, is concentrated 
on capturing the locality degree of the required interventions for the anticipated changes 
that will take place during software maintenance process. Although locality is an abstract 
property, hard to be captured by common measures, it is selected due to peculiar case 
related to comparison of design patterns. The key concept is behind the knowledge about 
design pattern behavior and evolution during maintenance process. Knowing the 
individual pattern architectures and their behavior, the number and perhaps the extend of 
future interventions is possible to be determined in a far more precise way than in similar 
probabilistic models such as in (Bakota et al., 2012). Furthermore, the locality of those 
interventions is also possible to be determined in a precise way regarding their allocation 
in separate code units such as classes, modules, and files. Thus, the concept of 
interventions’ locality, is directly related with the intuition that developers will have harder 
work keeping track of changes that are performed across many source files or any other 
code unit (Hassan, 2009). Furthermore, interventions’ locality property is inversely related 
to software entropy and code disorder properties as indicated in Figure 3-7. As (Bakota et 
al., 2012) claims, higher code disorder requires more effort for modifications to be 
performed, and so maintainability can be interpreted as a measure of the disorder 
(entropy) of the source code. Moreover, the locality should be referred to class instead to 
file (code) units since classes’ code normally exists in separate files or it is widespread in 
large files.  

Summarizing, the proposed model captures software maintainability by estimating the 
required effort during maintenance process based on specific design patterns’ behavior, 
focusing on two major (structural) measurment aspects: a) the estimated size of future 
interventions through the number of methods (code units) under maintenance, and b) the 
locality of those interventions through the number of classes (code units) that are affected. 

3.4.3 Deriving Maintainability Effort 

To be meaningful, a metric must provide a numerical value to a software attribute that is 
of genuine interest. The proposed approach uses measurement theory (Baker et al., 1990; 
N. Fenton & Melton, 1990; Melton, Gustafson, Bieman, & Baker, 1990) and related work 
(Offutt, Abdurazik, & Schach, 2008) for this purpose. 

The distinct design pattern combinations (or implementations or design alternatives) 
under comparison are defined in the first step. Referring to the significant problem of 
recursive hierarchies of part-whole representations in subsection 3.3, the proposed model 
focuses on two design pattern combinations: 

• CVP : the combination of CP with VP  

• CIBI : the combination of CP with IBI 
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To measure maintainability, the basic or major maintenance scenarios have been described 
and analyzed with respect to the modification cost. The characteristics and the criteria of 
major maintenance scenarios in the context of the proposed method are discussed in 
subsection 3.4.5. The proposed approach analyzes the two most important maintenance 
scenarios for each design combination: 

• ne : adding or modifying a new node type (or element) on the CP  

• np : adding or modifying a new operation (or process) on the VP or on the CP 
through ΙΒΙ  

The proposed model focuses on the additions and modifications for the operations and 
elements. These are the most relevant and anticipated maintenance scenarios since CVP 
and CIBI exclusively target on the efficient implementation of a set of operations over the 
composition’s elements. Normally, during maintenance, developers are called to manage 
additions and modifications of operations or elements. Moreover, these are exactly the 
scenarios for which CVP and CIBI have different and conflicting quality characteristics 
regarding their maintainability perspective as analyzed in subsection 3.3.2. Although the 
proposed model is described in terms of additions and modifications for operations and 
elements, other types of interventions such as deletions are considered as similar to the 
above scenarios. For example, removing an operation from a design pattern combination 
has the same impact (in terms of number and locality of interventions) like adding an 
operation. Normally, during e.g. an operation’s deletion, developers should modify the 
software at the same locations that were modified during its addition. In general, during 
deletions, developers should reversely perform almost the same interventions as for adding 
or modifying operations and elements which are extensively described in subsection 3.3.2.   

New metrics that quantify specific properties, related to maintainability, have been 
derived based on erlier related metrics such as Maintainability Index (Coleman, Ash, 
Lowther, & Oman, 1994; Oman & Hagemeister, 1994), SIG Maintainability Model 
(Heitlager et al., 2007a), Evolution Complexity (Eden & Mens, 2006; Tom Mens & Eden, 
2005) and Computational Complexity or Complexity of Maintenance as defined in (Hills 
et al., 2011).  

To measure maintainability or the maintenance effort for each of the maintenance 
scenarios, the proposed approach derives two basic and simple aspects of measures as 
analyzed in subsection 3.4.2:   

• am : the number of modifications or interventions on distinct methods which is a 
straightforward measure representing the direct estimation of maintenance cost or 
effort (method aspect), and 

• ac : the number of  modifications or interventions on distinct classes which is a 
measure that captures a non-obvious aspect of maintenance cost or effort relate to 
the locality degree of previous interventions (class aspect) 

To capture maintainability, the number of distinct classes that will be modified (or added) 
should be included in the measured maintenance cost or effort. In this way, the 
maintenance cost does not only capture the number of future modifications or additions 
on distinct methods but also capture a major quality property related to the locality of these 
adaptations regarding their place in separate classes as analyzed in subsection 3.4.2. Thus, 
class interventions or locality degree is a non-obvious measurement aspect since it can be 
reviled only through analysis of the internal structure and behavior of the design pattern 
combination under comparison. This measure may also capture other quality 
characteristics of the software such as extensibility and modularity since high locality of 
maintenance implies minor interventions at the source code including module level. 

In general, maintainability ensures that future software modifications will be 
implemented in the same or in as few as possible classes or even in the same module of 
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code. This makes the maintenance (including debugging) process easier for the developers 
because future modifications during maintenance should be performed only in specific 
classes and/or modules. Moreover, the compilation of the source code usually becomes 
more efficient since only some of their modules will be re-compiled. 

Hence, less maintenance cost means better quality characteristics for maintainability, 
changeability, and adaptability. Object-oriented design patterns are especially used to 
improve adaptability since patterns generally increase the complexity of an initial design 
in order to ease future enhancements. It is important that the proposed metrics are useful 
and can be applied early even if any of the existing Expression Problem solutions is adopted 
at a later stage. In these cases, although extensions based on Expression Problem solutions 
leave the initial code module unchanged, the maintenance cost for these extensions persist, 
since design pattern architecture remains either the extensions are performed in the same 
or seperate code modules.  

It is noteworthy that the proposed metrics target on a consistent comparison of 
maintenance cost between different design pattern combinations and not on accurate cost 
assessment which is subjective as analyzed in subsection 3.4.2.  

The metric Structural Maintenance Cost is defined as follows.  

Definition of Structural Maintenance Cost (SMC): represents the effort required to 
adjust a specific design pattern combination (implementation or artifact) in the event of a 
particular maintenance scenario (stimulus) from a specific structural aspect, expressed in 
terms of number of applied interventions and number of affected code units. 

From the architectural design perspective, the  SMC metric corresponds to the 
Response Measure that quantitatively expresses the Response (or the required changes) of 
an Artifact (design implementation) in the event of a particular Stimulus (maintenance 
scenario) during maintenance, as discussed in subsection 3.2. 

The definitions, terminology, and notation of the section are summarized in Table 3-1. 

Table 3-1: Maintenance Cost Terminology and Notation 

Terminology Range / Values 
Design pattern combination (implementation or artifact) D = { CVP, CIBI } 
Maintenance Scenario or Stimulus S = { ne, np } 
Structural Aspect A = { am, ac } 
Structural Maintenance Cost (SMC) metric cm

S,A = (S,D, A)  

For example, the notation cm
S,A = (ne, CVP, ac) corresponds to the maintenance cost or 

effort that is required to adjust CP and VP combination in the event of a new element from 
class aspect. Alternatively, refers to the number of modifications on distinct classes which 
are necessary in order an element be added on CP and VP combination. The proposed 
model uses the metric of structural maintenance cost to evaluate and compute the total 
modification cost for each extension scenario and for each design combination as analyzed 
next. 

3.4.4 Considerations upon Other Quality Characteristics and Properties 

In this subsection, we answer the question whether the proposed measurement approach 
is affected by or affects other quality characteristic of the software such as reusability, 
complexity, performance, or issues like resourcing and debugging. Furthermore, the 
characteristics of different types of maintenance activities are discussed. 

Reusability and Complexity: At an early stage of software development there is no 
source code for evaluating and analyzing its complexity. Thus, regarding the embedded 
complexity of the used design patterns, it is an acceptable cost in exchange for other 
benefits or advantages such as reusability and extensibility. Thus, design patterns’ 
complexity and reusability can be considered as neutral characteristics at this early stage 
of evaluation. However, the number of interventions and their locality degree, captured by 
the proposed metric, conceive an aspect of reusability since high reusability degree means, 
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in a sense, that the required interventions during maintenance should be allocated in a 
limited number of code units or entities. 

Performance and Resourcing: Focusing on the inner performance and efficiency of 
design patterns, two major aspects arises: a) run-time performance and b) memory 
consumption. Although VP and IBI are based on recursive calls of its operations, VP has 
lower performance and increased memory consumption due to the double dispatching on 
visitor calls. More specifically, memory consumption of VP is higher than IBI, because VP 
double-dispatching causes double calls when a visitor method is engaged. This extra 
memory cost is unavoidable and is proportional to the depth of recursive calls which in this 
case is the depth of the (composition) object tree. Since usually, the depth of object trees 
has a logarithmic order of magnitude on the number of nodes, the double-dispatching 
memory cost is considered as negligible. Respectively, run-time performance of VP is lower 
than IBI, again due to VP double-dispatching. During run-time, each method call 
consumes a standard process time. Although this extra process time is intuitively small, in 
this early stage, it is almost impossible to be compared with the process time of the actual 
(business logic) code. However, in (Hills et al., 2011), the run-time results of four case 
studies showed that in most cases the performance differences between VP and Interpreter 
design pattern (IBI) is not substantial. Thus, based on (Hills et al., 2011) results, the run-
time performance cost for VP is also considered as negligible. 

Debugging issues: A good design pattern combination should reduce debugging effort 
during software maintenance. However, the low debugging effort is ensured through 
maintainability and low complexity discussed above.  

3.4.5 Characteristics and Criteria of Major Maintenance Scenarios 

The main goal of the proposed model is to derive metrics as simple as possible and oriented 
to specific and fundamental quality characteristics of the used design patterns. The 
selection of proper types of maintenance scenarios (i.e., new element and new operation) 
is a critical process since defines the outcome of the measurement approach. In general, 
the method is focused on those maintenance activities or events that are aligned with the 
architectural advantages or disadvantages of the used design patterns and the pursued 
quality requirement of maintainability which is the primary selection criterion among 
design alternatives under evaluation and comparison. However, maintenance activities or 
events varies significantly in respect to many conflicting properties and characteristics. A 
map that represents the tradeoffs between various types of maintenance events is 
presented in Figure 3-8. 

During maintenance, the software specifications change to adapt software 
functionality to the new users’ requirements. Such descriptions and requirements are 
usually referred and translated to specific maintenance events which are oriented to user’s 
perspective and minor or specific functional requirements, thus their potential number of 
types are huge and difficult to be modeled, as illustrated in Figure 3-8. To facilitate the 
modelling approach, specific events should be grouped or classified in more general 
families or classes of resembling events that have similar properties and likelihood to occur 
during maintenance. Thus, general types of events are fewer in number (possible 
overlapped with specific events) and have higher probability to occur. Eventually, the 
analysis should be focused on even more broad types of anticipated events oriented to the 
architectural structure and attributes of the used design patterns, their design attributes, 
and the pursued quality attribute requirement. Thus, basic, or major types of anticipated 
events are even fewer in number (possible overlapped with general events) and have even 
higher repeatability and probability to occur.  

Software engineers should have in mind that the goal of the method is to conclude on 
those types of maintenance events for which their occurrence probability could be 
estimated based on the characteristics of each specific instance of the general problem 
under study. Furthermore, the engaged design patterns demonstrate several pro and cons 
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for different types of anticipated events during maintenance as discussed in subsection 3.3. 
These types of events are usually the most proper candidates to be considered as major 
maintenance scenarios. Design patterns implementations that are more suited to support 
the functional purposes of an application tend to be more prone to change during 
maintenance process (Aversano, Canfora, Cerulo, Del Grosso, & Di Penta, 2007). This 
modelling approach is in accordance with the ‘design for change’ principle (David Lorge 
Parnas, 1994), and the general architectural design principles in software engineering 
(Bass et al., 2012).  

Examples of descriptions for each class of events in Figure 3-8 may be: 

• SPESIFIC/MINOR - Related to minor specifications and user’s requirements, e.g.: 
enhancement for dynamic resizing of selected block, including controls and other 
details. 

• GENERAL - Related to broader specifications and user’s requirements, e.g.: new 
logical entity for block of design elements, new redesign process of all elements of 
block, new control elements in top and popup menus. 

• BASIC/MAJOR - Related to the principal logical entities of the used Design 
Patterns, e.g.: new part-whole element in Composite Design Pattern, new 
recursive redesign operation in Visitor Design Pattern. 

Nevertheless, each class of anticipated events have different and conflicting 
characteristic, while their tradeoffs are visualized as distinct dimensions in Figure 3-8. 
Moving from specific to major events, their repeatability and predictability increases, thus 
lowering the uncertainty degree and the risk to predict their occurrence probability. At the 
same time, the potential of generalization is increased too since broader type of events are 
more likely to be applied in a wider spectrum of possible instances of the general problem 
under study. However, the potential of realism of context and precision of measurements 
are decreased since broader type of events are away from real and specific functionalities 
while the quantification of their effect becomes more abstract and difficult to be measured 
in a precise manner, as suggested in (Stol & Fitzgerald, 2018). 

In principle, an anticipated event (or class of resembling sub-activities) is characterized 
as major maintenance scenario or stimulus when fulfils the following criteria:  

 
Figure 3-8: Tradeoffs between various types of arriving events during maintenance. 
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• has significant impact concerning the pursued quality attribute (i.e., 
maintainability). This criterion is satisfied either when: 

o its impact in terms of required effort significantly differs per design 
alternative, otherwise its effect will be common for all design alternatives 
and, thus neutral concerning the comparison and decision-making process. 
For example, a minor activity with the same effect across all design 
alternatives dose not increase the reliability of the model concerning the 
comparison outcome while it adds unnecessary complexity, OR 

o it affects or changes the principal design attributes of the engaged design 
patterns based on which its effect or the effect of other major events in 
terms of required effort is computed, 

• is neither too abstract nor too specific allowing its application on the early design 
stage before code development (i.e., encompasses various resembling sub-activities 
or changes such as adding, updating, and debugging concerning the maintenance 
of a discrete family of design elements with common characteristics),  

• has recurring nature or considerable possibility to repeatedly occur during 
maintenance. For example, the probability of an extremely rare event is very 
difficult to be assessed while its impact (even if occur) would be negligible against 
the effect of the other more frequent events, and thus, it adds unnecessary 
complexity without significant benefits concerning the comparison outcome. 

3.5 Analysis of Method 

3.5.1 Deriving Problem’s Characteristics and Attributes 

Each design pattern combination has some attributes or characteristics which declare its 
initial state. This initial state can be an existing implementation under maintenance or the 
output of a code generation tool under adjustment. A maintenance scenario changes or 
shifts an initial implementation to a new state by updating its characteristics. To quantify 
the effort for each maintenance scenario, the proposed approach quantitatively derives 
these characteristics of the problem. Thus, for CVP and CIBI design alternatives, two major 
design characteristics or design attributes are derived: 

• N : the number of outer (leaf) classes of a Composite structure CP or the number 
of distinct elements (objects) that can be instantiated from a Composite structure, 
as indicated in Figure 3-9. 

• M : the number of operations that are performed on the objects (or element) of a 
Composite structure, as indicated in Figure 3-9.  
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For example, the ne (add new element) maintenance scenario, increases the number 

of initial elements (N) by one. Similarly, the np (add new operation) maintenance scenario, 
increases the number of initial operations (M) by one. The mathematical notation and 
symbols of the analysis are presented in Table 3-2 and explained next. 

Table 3-2: Maintenance Cost Terminology and Notation 

Notation Description 

Ν The number of outer (leaf) classes of a Composite structure OR  
The number of distinct elements (objects) that can be instantiated (created) from a 
Composite structure 

Μ The number of operations that are  performed on the objects (or elements) of a 
Composite structure 

μ μ =
M

N
↔ M = μ ∙ Ν  

pnE The probability for a new structure Element 
pnE = 1 − pnP 

pnP The probability for a new Process/Operation 
pnP = 1− pnE  

z = ⌈
pnE

1−pnE
⌉ = ⌈

pnE

pnP
⌉    (⌈x⌉ means roundup x) 

ź = ⌈
1−pnE

pnE
⌉ = ⌈

pnP

pnE
⌉  

λ The number of future additions / modifications (new type node/element or new 
process/operation) 

3.5.2 Asymptotic Evaluation of Structural Maintenance Cost 

In this subsection, the previously defined SMC metric is used for evaluating and computing 
the maintenance effort or cost for each extension scenario and each design combination, 
based on the specific characteristic or attributes of the problem. 

The asymptotic notation O(g(x)) denotes the worst case or upper bound evaluation as 
analyzed in (Cormen, Leiserson, Rivest, & Stein, 2009). In the context of the proposed 
work, the asymptotic notation is used to describe an approximation of the maintenance 
effort after a specific action takes place. Moreover, this notation provides a more general 
bound for a large number of initial elements and simpler mathematical formulas for further 
analysis and computations. However, assuming that the conducted analysis is assisted by 
software tools (e.g., MATLAB), the asymptotic notation can be bypassed. 

 
Figure 3-9: Design attributes of typical CIBI and CVP implementations.  
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A visual representation of the interventions’ impact on a typical code example 
regarding each extension scenario, measure aspect, and combination under comparison is 
presented in Figure 3-10. More specific, the implementations of one new element (ne) and 
one new operation or process (np) scenarios are simultaneously presented for both design 
pattern combinations (CVP, CIBI). 

Based on SMC definition and the specific characteristics of the problem, four distinct 
cases are derived, one for each maintenance scenario and design combination.  

New element on CP and VP: When a new element should be added by the developer, 
a wide range of modifications are needed. More specifically, for every new element, a new 
subclass definition in the CP with a new (accept) method are needed. Also, M new methods 
(operation code for the new element), one in every existing visitor (operation) subclass, 
should be created. Totally, 1+M method modifications into 1+M distinct classes are 
necessary to be made as indicated in Figure 3-10.  

The asymptotic maintenance cost for adding a new element onto CP and VP 
combination considering the effect on distinct classes is given by the Equation (3-1). 

cm
S,A(ne, CVP, ac) = O(1 + M) = M (3-1) 

The asymptotic maintenance cost for adding a new element onto CP and VP 
combination considering the effect on distinct methods is given by the Equation (3-2). 

cm
S,A(ne, CVP, am) = O(1 + M) = M (3-2) 

 
Figure 3-10: Typical code example after implementation of one new element and one 

new operation scenarios for CIBI and CVP implementation alternatives.  
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New operation on CP and VP: When a new operation should be added by the 
developer, a smaller range of modifications are needed. More specifically, for every new 
operation, a new method (for every existing element) in a new visitor class (for the new 
operation) should be created. Totally, N method modifications into one new class are 
necessary to be made as indicated in Figure 3-10. 

The asymptotic maintenance cost for adding a new operation onto CP and VP 
combination considering the effect on distinct classes is given by the Equation (3-3). 

cm
S,A(np, CVP, ac) = O(1) = 1 (3-3) 

The asymptotic maintenance cost for adding a new operation onto CP and VP 
combination considering the effect on distinct methods is given by the Equation (3-4). 

cm
S,A(np, CVP, am) = O(N) = N (3-4) 

New element on CP and IBI: When a new element should be added by the developer, 
a new subclass definition as well as new methods (one for every operation) should be 
created. Totally, M method modifications into one new class are necessary to be made as 
indicated in Figure 3-10. 

The asymptotic maintenance cost for adding a new element onto CP and IBI 
combination considering the effect on distinct classes is given by the Equation (3-5). 

cm
S,A(ne, CIBI, ac) = O(1) = 1 (3-5) 

The asymptotic maintenance cost for adding a new element onto CP and IBI combination 
considering the effect on distinct methods is given by the Equation (3-6). 

cm
S,A(ne, CIBI, am) = O(M) = M (3-6) 

New operation on CP and IBI: When a new operation should be added by the 
developer, one new method (for the new operation) in every existing element (type) class, 
should be created. Totally, N method modifications into N distinct classes are necessary to 
be made as indicated in Figure 3-10. 

The asymptotic maintenance cost for adding a new operation onto CP and IBI 
combination considering the effect on distinct classes is given by the Equation (3-7). 

cm
S,A(np, CIBI, ac) = O(1 + N) = N (3-7) 

The asymptotic maintenance cost for adding a new operation onto CP and IBI 
combination considering the effect on distinct methods is given by the Equation (3-8). 

cm
S,A(np, CIBI, am) = O(1 + N) = N (3-8) 

3.5.3 Merging Structural Maintenance Cost 

In this subsection, the previously defined asymptotic maintenance costs are merged to 
represent the structural maintenance cost in a more compact and manageable way. Based 
on the structural maintenance cost of four previous cases, the maintenance cost is merged 
and defined as follows. 

New element on CP and VP:  The maintenance cost for adding a new element onto CP 
and VP combination considering all aspects is given by the Equation (3-9). 

cm
S (ne, CVP) = ∑ cm

S,A(ne, CVP, A)

∀A∈{ac,am}

= 2M (3-9) 
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New operation on CP and VP: The maintenance cost for adding a new operation onto 
CP and VP combination considering all aspects is given by the Equation (3-10). 

cm
S (np, CVP) = ∑ cm

S,A(np, CVP, A)

∀A∈{ac,am}

= N + 1 (3-10) 

New element on CP and IBI: The maintenance cost for adding a new element onto CP 
and IBI combination considering all aspects is given by the Equation (3-11). 

cm
S (ne, CIBI) = ∑ cm

S,A(ne, CIBI, A)

∀A∈{ac,am}

= 1 +M (3-11) 

New operation on CP and IBI: The maintenance cost for adding a new operation onto 
CP and IBI combination considering all aspects is given by the Equation (3-12). 

cm
S (np, CIBI) = ∑ cm

S,A(np, CIBI, A)

∀A∈{ac,am}

= 2N (3-12) 

In Equations (3-9)-(3-12), individual costs for each aspect have been added by equal 
weights. Considering concentration degree as extra (penalty of) required effort, the 
proposed metric implies that this extra effort amount has equal weight to the number of 
method interventions. Furthermore, this additional effort could be captured with different 
weights by introducing a new factor over its magnitude. This is a very interesting 
perspective which discussed in subsection 3.9.2 as an extension example of the method. 

3.5.4 Combining Maintenance Cost 

The proposed model is further generalized through the combination of different 
maintenance scenarios ne and np. This requires the introduction of probability analysis by 
engaging different maintenance scenarios. This is a step over the usual analysis level in 
comparison to the related existing approaches such as (Hills et al., 2011; Tom Mens & 
Eden, 2005). This provides the proposed model with greater flexibility and a wider field for 
further analysis and conclusions. 

Based on specific characteristics of the design pattern combinations, two symmetrical 
probability factors are derived. 

• pne : the probability for a new element against the probability for a new operation 

• pnp : the probability for a new operation (process) against the probability for a new 
element 

For example, pne = 0.8 means that the probability for a new element is 80% against 
20% probability (pnp = 1- pne = 0.2) for a new operation. Developers can specify these 
probabilities for a specific problem since system’s specifications and developers’ experience 
often offer a reliable prediction about their values. It is important that based on probability 

theory (Jaynes, 2003), the probability factors of independent events1 should be 

complementary (as mutually exclusive). Also, the sum2 of the probability mass function3 
for all events is equal to 1. Thus, for the case of two probability factors, they should be 
symmetrical. Furthermore, different maintenance scenarios (such as ne and np) could not 
be additive. Normally, new element and new operation are independent event types. A 
simultaneous addition of different event types is not manageable by the developers. In 
practice each event type usually begins after the completion of one other event type. 

 
1 Two events A, B are independent if and only if one’s realization does not affect the probability of the other or 

P(A/B)=P(A).   
2 The sum of the probability mass function is defined as  ∑ 𝑓𝑋(𝑥𝑖)

𝑚
𝑖=1 = 1  where fX(xi) ≥ 0 

3 The probability mass function for a series of X={x1, x2,…,xm} distinct events is defined as fX(xi) = P(X=xi) 
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Based on structural maintenance cost and probability factors, the combined 
maintenance costs for each design pattern combination are derived as follows: 

Maintenance cost of CP and VP:  The maintenance cost for CP and VP combination 
based on probabilities is given by the Equation (3-13). 

cm(pne, CVP) =  pne ∙ cm
S (ne, CVP) + (1 − pne) ∙ cm

S (np, CVP)

= N(2μpne − pne + 1) + 1 − pne 
(3-13) 

Maintenance cost of CP and IBI: The maintenance cost for CP and IBI combination 
based on probabilities is given by Equation (3-14). 

cm(pne, CIBI) =  pne ∙ cm
S (ne, CIBI) + (1 − pne) ∙ cm

S (np, CIBI)

= N(μpne − 2pne + 2) + pne 
(3-14) 

Factor μ = M/N, used for simpler mathematical representation and further analysis. 

3.5.5 Summarizing Structural Maintenance Cost 

The previously defined equations for structural maintenance cost evaluation are 
summarized in Table 3-3. 

Table 3-3: Asymptotic Evaluation of Structural Maintenance Cost on Inheritance-Based 
Implementation and Visitor Design Pattern 

 Condition Estimation of Structural Maintenance Cost for 
Design Pattern combination Composite (CP) with 

Eq. 3- Maintenance scenario Modification effect / aspect Visitor (CVP) 
Inheritance based 
implementation (CIBI) 

1, 5 New Element (ne) Modifications on distinct 
Classes (ac) 

𝐜𝐦
𝐒,𝐀(n𝑒, CVP, a𝑐) = M 𝐜𝐦

𝐒,𝐀(n𝑒, CIBI, a𝑐) = 1 

3, 7 New Operation (np) 𝐜𝐦
𝐒,𝐀(n𝑝, CVP, a𝑐) = 1 𝐜𝐦

𝐒,𝐀(n𝑝 , CIBI, a𝑐) = N 

2, 6 New Element (ne) Modifications on distinct 
Methods (am) 

𝐜𝐦
𝐒,𝐀(n𝑒, CVP, a𝑚) = M 𝐜𝐦

𝐒,𝐀(n𝑒 , CIBI, a𝑚) = M 

4, 8 New Operation (np) 𝐜𝐦
𝐒,𝐀(n𝑝, CVP, a𝑚) = N 𝐜𝐦

𝐒,𝐀(n𝑝 , CIBI, a𝑚) = N 

9,11 New Element (ne) Modifications on distinct 
Classes and distinct 
Methods (ac^am) 

𝐜𝐦
𝐒 (n𝑒, CVP) = 2M 𝐜𝐦

𝐒 (n𝑒, CIBI) = M+ 1 

10, 12  New Operation (np) 𝐜𝐦
𝐒 (n𝑝, CVP) = N + 1 𝐜𝐦

𝐒 (n𝑝, CIBI) = 2N 

13 
 
14 

New Element 
(possibility pnE) or new 
Operation (possibility 
pnp = 1 − pnE) /(ne^np) 

Modifications on distinct 
Classes and distinct 
Methods (ac^am) 

𝐜𝒎(p𝑛𝐸 , CVP) = N(2μpnE − pnE + 1) + 1 − pnE 

𝐜𝒎(p𝑛𝐸 , CIBI) = N(μpnE − 2pnE + 2) + pnE 

Note: Eq. column refers to the number of equations 

The asymptotic calculations of Equations (3-1)-(3-8) should be applied, having in 
mind a common confrontation for all individual scenarios. In equations (3-9)-(3-12), the 
initial basic asymptotic evaluations are merged in two possible maintenance scenarios. 
These equations confirm the opposite characteristics of IBI and VP discussed in subsection 
3.3.2. This early confirmation of Gamma et al. claims can be considered as proof of validity 
and reliability of the proposed method and measures. 

3.5.6 Maintenance Process 

Design patterns implementations that are more suited to support the functional purposes 
of an application tend to change more frequently during maintenance process (Aversano, 
Canfora, Cerulo, Del Grosso, & Di Penta, 2007). Maintenance is a progressive software 
evolution process that is conceptually described in Figure 3-11. Each maintenance scenario 
Si (such as the introduction of new element or operation) occurs based on its individual 
probability pi and updates a design implementation Dj (such as CVP or CIBI) requiring a 

specific amount of effort or maintenance cost (cm
S ). Each iteration of the maintenance 

process updates the characteristics of the attributes of a specific design implementation. 
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The analysis of the proposed model focuses on the maintenance process over CVP and 
CIBI design combinations (implementations). Α flowchart that visually describes and 
summarizes the maintenance process for both design combinations and scenarios is 
presented in Figure 3-12. Each maintenance scenario (ne, np) occurs based on its 
probability (pne, pnp) and updates a design implementation such as CVP or CIBI requiring 

a specific amount of effort or maintenance cost, cm
S (S, D). At the same time, each iteration 

updates the attributes N and M of each design implementation. 

During this repeated process, the continuously updated values of the design 
characteristics and attributes affect the intermediate computations of the maintenance cost. 
An important aspect at this point is the analysis of the behavior of the proposed metric 
during the maintenance process in a long-term perspective. The proposed approach 
addresses this aspect as presented in the next subsections. 

3.5.7 Combined Analysis 

In the rest of this subsection, the general case of arbitrary probabilities for maintenance 
scenarios is analyzed.  

In case the probability for a new Composite element has an arbitrary value, equations 
(3-9)-(3-12) can be combined to return the maintenance costs of equations (3-13) and 

 
Figure 3-11: Typical conceptual flowchart of software maintenance process. 

 
Figure 3-12: Maintenance process flowchart for CVP and CIBI implementations. 
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(3-14) as summarized in Table 3-3. By replacing M=μΝ, the factors (2μpnE − pnE +

1) and (μpnE − 2pnE + 2) become crucial. More specifically when μ=(1-pnE)/ pnE, then 

(2μpnE − pnE + 1)=(μpnE − 2pnE + 2), meaning that IBI and VP have equal maintenance 
cost. This analysis leads to the general conclusion that the choice between IBI and VP is 

clear only when factor μ≠(1-pnE)/ pnE. 

Furthermore, when pnE=(0..1) and assuming a normal arriving pattern between 
different types of maintenance scenarios, equations (3-13) and (3-14) are valid even in the 
case of more than one possible future additions. This statement is valid because in all cases, 

the normal arriving pattern increases N and M simultaneously, with a rate related to pnE 

and pnP probabilities. So, if initially μ<(1-pnE)/ pnE, means that always μ<(1-pnE)/ pnE , 
no matter how many future additions will take place. If the number of future additions 

becomes large enough, factor μ tends to (1-pnE)/pnE (balance case), where two patterns 
become equal in terms of required effort. 

Equation (3-15) shows the limit of factor μ=Μ/Ν when the number of future additions 

(factor n) tends to infinity for pnE, pnP=(0...1) and  pnP=1-pnE. Usually, a maximum 
number between n=10 to 20 (future additions) is applied by developers. Equation (3-15) 
represents a mathematical model for the purpose of theoretical completeness, however, in 
practice it is less applicable. 

lim
n→+∞

(
𝑀Initial + n(1 − pnE)

𝑁Initial + n(pnE)
) =

(1 − pnE)

pnE
=
pnP
pnE

 (3-15) 

This observation leads to the conclusion that given a Composite structure of N initial 
distinct elements and M=μΝ initial operations, choosing between VP and IBI, is 
independent of the number of additions (new elements or operations) and only depends 
on the individual probabilities for each future addition. In the worst case, after many 
additions, both patterns become equal having similar maintenance costs. Equations (3-13) 

and (3-14) are general and can substitute the equations (3-9)-(3-12) for pnE=1 or pnE=0. 

3.6 Quantitative Analysis 

The impact of one future modification is analyzed and discussed in this subsection. First, a 
basic analysis is presented, followed by combined analysis. A series of graphs are provided 
representing a visual mapping of the model analysis. 

3.6.1 Basic Analysis 

For the sake of completeness, in this subsection, a basic analysis for one future addition is 
presented. The graph in Figure 3-13 presents the maintenance cost of modifications on a 
Composition for a single future addition according to equations (3-9)-(3-12) as 
summarized in Table 3-3. The initial number of nodes has been randomly selected to be 
N=25 since the behavior of linear equations is independent of the number of initial 
elements (N). Axe z of the graph presents a logical range of factor μ=(0,...,3] or a range of 
M=(0,..,3N]. Higher values of factor μ means more initial distinct operations (M) relative 
to initial distinct elements (N). 
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The graph in Figure 3-13 confirms the opposite characteristics of IBI and VP discussed 
in subsection 3.3.2. More specifically, when a steady Composite structure and an extensible 
set of operations (np) are addressed, the VP is preferred since it has better (less) 
maintenance cost independently of μ value. Similarly, when a steady set of operations and 
an extensible Composite structure (ne) are addressed, the IBI is preferred since it has better 
(less) maintenance cost independently of μ value. Also, the statements “Visitor makes 
adding new operations easy” and “Adding new ConcreteElement classes is hard” in 
(Gamma et al., 1994) about CVP are confirmed. This early confirmation of Gamma et al. 
claims can be considered as proof of validity and reliability of the proposed measure and 
method. 

3.6.2 Combined Analysis 

The left graph in Figure 3-14 presents the maintenance cost of a Composition for a single 
future addition according to the general equation (3-13) for VP. Axis x of the graph presents 
a logical range of factor μ=(0,...,3] or else a range of M=(0,..,3N]. Axis z presents the full 
range of the factor pnE=[0,...,1]. Because of pnE=1-pnP, when pnE=0 the elements of the 
structure are steady, and when pnE=1 the set of the operations is steady. 

 
Left graph in Figure 3-14 shows how the maintenance cost of VP changes while pnE 

factor shifts from 0 to 1. It clearly shows the stability of the pattern when pnE=0 (steady 

 
Figure 3-13: Graph of maintenance cost of modifications on a Composition for a 
single future addition referred to the inheritance-based implementation (IBI) and 

Visitor design pattern (VP). 

 
Figure 3-14: Graphs of maintenance cost of modifications on a Composition for a 

single future addition, related to μ and pnE factors, referred to the Visitor design 
pattern (VP) and Inheritance based implementation (IBI). 
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structure) no matter how many operations (M, μ) exist. The right graph in Figure 3-14 
presents the maintenance cost of a Composition for a single future addition according to 
the general equation (3-14) for IBI.  

In general, the graphs in Figure 3-14 do not uniformly illustrate the distance or the 
gain of efficiency between pattern combinations. To prove the increased efficiency of VP 
against IBI, a graph of the distance of maintenance cost is presented in Figure 3-15. Axis y 
of the graph presents the distance of maintenance cost between VP and IBI given by simple 
equation (3-16). 

𝐜𝒎(𝒅𝒊𝒔𝒕)(p𝑛𝐸) = 𝐜𝒎(p𝑛𝐸 , CVP) − 𝐜𝒎(p𝑛𝐸 , CIBI) = NμpnE + ΝpnE − Ν − 2pnE + 1 (3-16) 

When the graph’s surface in Figure 3-15 is under zero level, the VP design alternative 
is preferred for the specific values of μ and pnE factors. Similarly, when the graph’s surface 
is above zero level, the IBI design alternative is preferred. The distance cost (absolute) value 
represents the gain between the patterns. 

 

The graph in Figure 3-15 illustrates a full representation of the solution or the design 
space about CVP and CIBI pattern comparisons. The section limit of the graph surface 
(representing the zero-cost level) in Figure 3-15 is a curved (dot) line that indicates all 
balance cases where VP and IBI have equal cost (or zero distance). In general, the balance 
line is close to the limit of equation (3-15) which is graphically presented in Figure 3-16. 

 

 
Figure 3-15: Graph of asymptotic cost differentiation Cdiff (3) for modifications on a 
Composition for a single future addition, related to μ and pnE factors, referred to the 

Visitor design pattern (VP) and inheritance-based implementation (IBI). 

 
Figure 3-16: Graph of balance cases (equal maintenance cost) for Visitor design 

pattern (VP) vs Inheritance based implementation (IBI). 
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The graphs in Figure 3-15 and Figure 3-16 contain all the information on the behavior 
of VP and IBI on a Composition for a single future addition. They show which pattern 
should be selected based on the values of μ=Μ/Ν and pnE factors. In general, VP is preferred 
when factors μ and pnE have small values. IBI is preferred when factors μ and pnE have large 
values. For a safe choice, factor μ should not be too close to the trace of balance cases 
(indicated by safe area limits in Figure 3-16). Furthermore, Figure 3-15 and Figure 3-16 
clearly show that probability analysis over maintenance scenarios has a decisive role on 
maintenance cost estimation, proving the usefulness of the proposed theory and model. 

3.7 Progressive Analysis 

In this subsection, the progressive behavior of the proposed metrics during maintenance 
process is presented through a formal mathematical analysis. 

3.7.1 Deriving Progressive Maintenance Cost 

In this subsection, the previously defined metric of SMC in Table 3-3  is used for evaluating 
and computing the total progressive maintenance cost for each design combination and for 
several applied maintenance scenarios.  

As mentioned in subsection 3.5.6, maintenance is a progressive software evolution 
process, described in Figure 3-12. During this progressive process, the continuously 
updated values of the design characteristics and attributes affect the intermediate 
computations of the maintenance cost. Thus, to analyze the intermediate behavior of the 
proposed metrics, the progressive structural maintenance cost should be defined.  

Definition of Progressive Structural Maintenance Cost (PSMC): represents the effort 
required to adjust a specific design pattern combination through the progressive 
implementation of several maintenance scenarios, based on their individual probabilities, 
during software maintenance process. 

Based on the above definition and the merged maintenance costs as expressed in 
equations (3-9)-(3-12), the progressive maintenance cost is defined considering the 
maintenance as a progressive evolution process in Figure 3-12. 

Maintenance on D pattern combination: The PSMC (pcm) for progressively 

implementing λ future maintenance scenarios on D∈{CVP, CIBI} pattern combination 
considering a known p (for pne) probability is given by Equation (3-17). 

𝐩𝐜𝐦(λ, p, D) = ∑

(

 
 
∑ cm

S (ne, D)

⌈
p
1−p

⌉

i=1

+ ∑ cm
S (np, D)

⌈
1−p
p
⌉

i=1

)

 
 

λ

⌈
p
1−p

⌉+⌈
1−p
p
⌉

j=1

 (3-17) 

The analysis of maintenance cost as a progressive evolution process, is another 
innovation of the proposed theory and model, compared to existing related work such as 
(Hills et al., 2011; Tom Mens & Eden, 2005). 

The Equation (3-17) assumes a normal or cyclical arriving pattern of events based on 
their individual probabilities. This assumption is necessary to facilitate the mathematical 
representation and formulation of a dynamic phenomenon such as the arrival and 
application of various types of events during maintenance. In addition, a cyclical arriving 
pattern express the most probable sequence of events based on their probabilities and, thus 
it is offered as a safe and reliable approximation of an actual and random sequence of 

events. Furthermore, the z ́ and 𝑧  factors in Table 3-2 convert the real probability factors 
(i.e., pnE, pnP) to integer values, thus, allowing the event-driven and discrete analysis of the 
applied scenarios from a mathematical perspective. For example, if λ=200, pnE=0.25 and 

pnP=0.75 then z = 1 and  ź = 3. Thus, each cycle of arriving events contains the application 
of 1 new Element event and next the continuous application of 3 new Operation events. 
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The total number of cycles or repetitions is given by the formula 𝜆/(𝑧 + z ́ ) = 200/4 = 50. 
Summarizing, the total number of applied events (maintenance scenarios) is represented 
by 50 cycles or repetitions of (1+3)=4 arriving events each, thus λ=50∙4=200. However, 
according to the progressive evolution process in Figure 3-12, each scenario application 
affects the values of design attributes (i.e., N and M). This is an aspect that Equation (3-17) 
misses and further analyzed in following subsections.  

3.7.2 Progressive Maintenance Cost Computation 

Using Visitor equations (3-9) and (3-10) and assuming a normal arriving pattern of events 
based on pnE and pnP propabilities, the progressive maintenance cost for all possible future 
additions (λ) in a Composition with N initial nodes and M initial operations can be 
computed based on the general equation (3-17). Figure 3-17 presents the computation 
steps for λ future additions where p=pnE, N=initial distinct elements, and M=initial distinct 

operations. Each row in Figure 3-17 represents a cycle of (𝑧 + ź) arriving events based on 
their probabilities. Furthermore, the first column represents the new Element events and 
the second column the new Operation events for each cycle of arriving events. The 
intersection of columns and rows represents the continuous application of a specific event 
type for a specific cycle of arriving events. This representation gives emphasis and analyzes 
the intermediate increments of the design attributes (i.e., N and M) as they affected by the 
arriving (applied) maintenance scenarios (events).  

 

Equation (3-18) is extracted from the steps in Figure 3-17. By replacing z and ź (as 
showed in Table 3-3) in equation (3-18), the equation (3-19) is derived, which computes 
the progressive maintenance cost for λ future additions on VP design combination. 

∑

[
 
 
 
 

∑ 2(M + (φ − 1) ⌈
1 − p

p
⌉)

⌈
p
1−p

⌉

i=1

+ ∑ ((Ν + φ ⌈
p

1 − p
⌉) + 1)

⌈
1−p
p
⌉

i=1
]
 
 
 
 

λ

⌈
p
1−p

⌉+⌈
1−p
p
⌉

φ=1

 
(3-18) 

𝐩𝐜𝐦(λ, 𝑝𝑛𝐸 , CVP) = (2zM + źΝ + ź − 2zź +
3zź

2
∙
λ + z + ź

z + ź
) ∙

λ

z + ź
 (3-19) 

Similarly, the equation (3-20) computes the progressive maintenance cost for λ future 
additions on IBI combination. 

𝐩𝐜𝐦(λ, 𝑝𝑛𝐸 , CIBI) = (2źN + zM + z − 2zź +
3zź

2
∙
λ + z + ź

z + ź
) ∙

λ

z + ź
 (3-20) 

Equations (3-19) and (3-20) represent the relative magnitudes of the total required 
maintenance effort or cost during software evolution after λ scenario’s applications, and for 
each implementation alternative (CVP, CIBI). Since the factors λ, M, and N are 
simultaneously increased, both equations have a positive exponentially increased trend. 

 
Figure 3-17: Computation of progressive maintenance cost for λ future 

additions/modifications on a Composite using Visitor design pattern (CVP). 
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Thus, the equations (3-19) and (3-20) is in accordance with Lehman’s second law (Meir 
M. Lehman et al., 1997) since PSMC (pcm) metric is related to code complexity property as 
analyzed in subsection 3.4.2. Furthermore, both equations converge to Bakota’s relevant 
cost curve (Bakota et al., 2012) when the change rate is constant over time. 

By replacing factors z and ź in equation (3-19), the following mathematical 
transformations (assuming pnE>1/2) leads to an alternate formulation of the progressive 
maintenance cost of CVP expressed in terms of all problem’s parameters (i.e., initial N and 
M, pnE, pnP, and λ).  

𝐩𝐜𝐦(λ, 𝑝𝑛𝐸 , CVP) = (2zM + źΝ + ź − 2zź +
3zź

2
∙
λ + z + ź

z + ź
) ∙

λ

z + ź
=
ź=1 (p𝑛𝐸>1/2)
→           

= (2𝑧𝑀 + 𝛮 + 1 − 2𝑧 +
3𝑧

2
∙
𝜆 + 𝑧 + 1

𝑧 + 1
) ∙

𝜆

𝑧 + 1
=
z+1=⌈

p𝑛𝐸
1−p𝑛𝐸

⌉+1≈⌈
1

1−p𝑛𝐸
⌉

→                    

= (2
p𝑛𝐸

1 − p𝑛𝐸
M+Ν + 1 − 2

p𝑛𝐸
1 − p𝑛𝐸

+
3

p𝑛𝐸
1 − p𝑛𝐸
2

∙ (λ +
1

1 − p𝑛𝐸
) ∙ (1 − p𝑛𝐸)) ∙ λ(1 − p𝑛𝐸) 

= (2p𝑛𝐸M+ Ν − Np𝑛𝐸 + 1 − 3p𝑛𝐸 +
3p𝑛𝐸
2
∙ 𝜆(1 − p𝑛𝐸) +

3p𝑛𝐸
2
) ∙ λ = 

= (2p𝑛𝐸M+ Np𝑛𝑃 + 1 − 3p𝑛𝐸 +
3p𝑛𝐸
2
∙ 𝜆p𝑛𝑃 +

3p𝑛𝐸
2
) ∙ λ = 

= (2p𝑛𝐸M+ Np𝑛𝑃 + 1 −
3p𝑛𝐸
2
+
3λp𝑛𝐸p𝑛𝑃

2
) ∙ λ = 

=
3

2
λ2p𝑛𝐸p𝑛𝑃 + 2λp𝑛𝐸M+ λp𝑛𝑃N + λ − λ

3

2
p𝑛𝐸  

 

Respectively, by replacing factors z and ź in equation (3-19), the following 
mathematical transformations (assuming pnE<1/2) leads to a similar formulation of the 
progressive maintenance cost of CVP expressed in terms of all problem’s parameters (i.e., 
initial N and M, pnE, pnP, and λ). 

 

𝐩𝐜𝐦(λ, 𝑝𝑛𝐸 , CVP) = (2zM + źΝ + ź − 2zź +
3zź

2
∙
λ + z + ź

z + ź
) ∙

λ

z + ź
=
𝑧=1 (p𝑛𝐸<1/2)
→           

= (2𝑀 + ź𝛮 + ź − 2ź +
3ź

2
∙
𝜆 + ź + 1

ź + 1
) ∙

𝜆

ź + 1
=
ź+1=⌈

p𝑛𝑃
1−p𝑛𝑃

⌉+1≈⌈
1

1−p𝑛𝑃
⌉

→                    

= (2M +
p𝑛𝑃

1 − p𝑛𝑃
Ν +

p𝑛𝑃
1 − p𝑛𝑃

− 2
p𝑛𝑃

1 − p𝑛𝑃
+
3

p𝑛𝑃
1 − p𝑛𝑃
2

∙ (λ +
1

1 − p𝑛𝑃
) ∙ (1 − p𝑛𝑃)) ∙ λ(1 − p𝑛𝑃) 

= (2M − 2Mp𝑛𝑃 + p𝑛𝑃Ν + p𝑛𝑃 +
3p𝑛𝑃
2
∙ 𝜆(1 − p𝑛𝑃) +

3p𝑛𝑃
2
) ∙ λ = 

= (2M − 2Mp𝑛𝑃 + p𝑛𝑃N + p𝑛𝑃 +
3p𝑛𝑃
2
∙ 𝜆p𝑛𝐸 +

3p𝑛𝑃
2
) ∙ λ = 

= (2Mp𝑛𝐸 + p𝑛𝑃N + p𝑛𝑃 +
3p𝑛𝐸
2
+
3λp𝑛𝐸p𝑛𝑃

2
) ∙ λ = 
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=
3

2
λ2p𝑛𝐸p𝑛𝑃 + 2λp𝑛𝐸M+ λp𝑛𝑃N + λp𝑛𝑃 + λ

3p𝑛𝐸
2

= 

=
3

2
λ2p𝑛𝐸p𝑛𝑃 + 2λp𝑛𝐸M+ λp𝑛𝑃N + λ(1 − p𝑛𝐸) −

3

2
λp𝑛𝐸 = 

=
3

2
λ2p𝑛𝐸p𝑛𝑃 + 2λp𝑛𝐸M+ λp𝑛𝑃N + λ − 𝜆p𝑛𝐸 −

3

2
λp𝑛𝐸 = 

=
3

2
λ2p𝑛𝐸p𝑛𝑃 + 2λp𝑛𝐸M+ λp𝑛𝑃N + λ −

5

2
λp𝑛𝐸  

Because 3/2∙pnE
(for pnE>1/2) ≈ 5/2∙pnE

(for pnE<1/2), the latest expressions of the progressive 
maintenance cost of CVP are almost equivalent for any value of  pnE=[0, .., 1]. Similar 
mathematical transformations can be applied in equation (3-20) for the CIBI design 
alternative. This approach transforms equations with integer parameters (representing an 
event-driven evolution pattern) to equations with real (float) parameters, thus, implying 
that the underlying event-oriented evolution pattern may be also supported by continuous 
integration through integrals as explained in subsection 3.7.5.  

3.7.3 Reverse Analysis (Verification) 

In this subsection, a reverse analysis beginning from the progressive maintenance cost and 
ending to the fundamental equations of structural maintenance cost is presented. This is 

an attempt that verifies the previously conducted analysis. By replacing factors z and ź and 
setting λ=1 in the general equations (3-19) and (3-20), the equations (3-13) and (3-14) 

are derived. Note that for pnE>0.5,  ź = 1 and for pnE<0.5, z = 1. As an example, the 
mathematical operations from equation (3-19) to equation (3-13) for VP are presented 

below (only for pnE = p > 1/2). Similar mathematical operations exist for pnE = p ≤ 1/2 
which end up to the same result. 

𝐩𝐜𝐦(λ, 𝑝𝑛𝐸 , CVP) = (2zM + źΝ + ź − 2zź +
3zź

2
∙
λ + z + ź

z + ź
) ∙

λ

z + ź
=
ź=1 (p>1/2)
→         

= (2𝑧𝑀 + 𝛮 + 1 − 2𝑧 +
3𝑧

2
∙
𝜆 + 𝑧 + 1

𝑧 + 1
) ∙

𝜆

𝑧 + 1
=
z+1=⌈

p

1−p
⌉+1≈⌈

1

1−p
⌉

→                

= (2
p

1 − p
M + Ν + 1 − 2

p

1 − p
+
3

p
1 − p

2
∙ (λ +

1

1 − p
) ∙ (1 − p)) ∙ λ(1 − p) 

= (2pM + Ν − Np + 1 − 3p +
3p

2
∙ (λ − λp + 1)) ∙ λ =

λ=1
→   

= 2pM + Ν − Np + 1 − 3p +
3p

2
∙ (2 − p) 

= 2pM + Ν − Np + 1 +
3p2

2
≈ ⟦

p = [1 2⁄ ,… ,1]

3p2

2
= [3 8⁄ ,… , 3 2⁄ ]

⟧ 

≈ 2pM + Ν − Np + 1 + p  

=   N(2μpnE − pnE + 1) + 1 − pnE = 𝐜𝐦(𝑝𝑛𝐸 , 𝐶𝑉𝑃) 

Also, looking for the sign of distance in equation (3-21) the equation (3-16) is 
extracted. This means that the trend (sign) of the distance of PSMC of equation (3-21) is 
almost identical to equation (3-16). 
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𝐩𝐜𝐦(𝐝𝐢𝐬𝐭)(λ, pnE) = 𝐩𝐜𝐦(λ, 𝑝𝑛𝐸 , CVP) − 𝐩𝐜𝐦(λ, 𝑝𝑛𝐸 , CIBI) = (zμΝ + ź − źN − z) ∙
λ

z + ź
 (3-21) 

 

Furthermore, considering that for pnE>0.5,  ź = 1, and 𝑧 + 1 ≈ 1/(1 − 𝑝𝑛𝐸) then 

  
𝑧

𝑧 + ź
=

𝑧

𝑧 + 1
≈

𝑧

1
1 − 𝑝𝑛𝐸

≈

𝑝𝑛𝐸
1 − 𝑝𝑛𝐸
1

1 − 𝑝𝑛𝐸

= 𝑝𝑛𝐸   

    

 
ź

𝑧 + ź
=

1

𝑧 + 1
≈

1

1
1 − 𝑝𝑛𝐸

= (1 − 𝑝𝑛𝐸) = 𝑝𝑛𝑃 

Respectively, for pnE<0.5,  𝑧 = 1, and ź + 1 ≈ 1/(1 − 𝑝𝑛𝑃) then 

𝑧

𝑧 + ź
=

1

1 + ź
≈

1

1
1 − 𝑝𝑛𝑃

= (1 − 𝑝𝑛𝑃) = 𝑝𝑛𝐸 

 

  
ź

𝑧 + ź
=

ź

1 + ź
≈

ź

1
1 − 𝑝𝑛𝑃

≈

𝑝𝑛𝑃
1 − 𝑝𝑛𝑃
1

1 − 𝑝𝑛𝑃

= 𝑝𝑛𝑃  

Thus, 
𝑧

𝑧+ź
≈ 𝑝𝑛𝐸 and 

ź

𝑧+ź
≈ 𝑝𝑛𝑃 for any decimal value of pnE and pnP factors. Now, the 

similarity of equation (3-21) with the equation (3-16) can be demonstrated as follows: 

 𝐩𝐜𝐦(𝐝𝐢𝐬𝐭)(λ, pnE) = (zμΝ + ź − źN − z) ∙
λ

z + ź
= 𝜆(Νμ𝑝𝑛𝐸 + 𝑝𝑛𝑃 −N𝑝𝑛𝑃 − 𝑝𝑛𝐸) = 

 = 𝜆(Νμ𝑝𝑛𝐸 −N(1 − 𝑝𝑛𝐸) + 𝑝𝑛𝑃 − 𝑝𝑛𝐸) = 𝜆(Νμ𝑝𝑛𝐸 + N𝑝𝑛𝐸 − N + 𝑝𝑛𝑃 − 𝑝𝑛𝐸) ≈ 

≈ 𝜆(Νμ𝑝𝑛𝐸 + N𝑝𝑛𝐸 − N − 2𝑝𝑛𝐸 + 1) 

3.7.4 Graph of Progressive Maintenance Cost 

A graph of the distance of PSMC based on equation (3-21) is presented in Figure 3-18. The 
λ factor has been set to a large value (λ=30) in order to show the stability of graph’s shape 
for almost any number of future additions. 
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The graph surfaces in Figure 3-15 and Figure 3-18 are almost identical, indicating that 
the impact of a single addition (λ=1) and the progressive analysis of maintenance costs are 
matched. It is proven that the choice of the proper design pattern combination can be made 
directly by using the single addition equations (3-13) and (3-14) or the distance equation 
(3-16) or its graph in Figure 3-15. 

3.7.5 Integrated Maintenance Cost 

Equations (3-19), (3-20), and (3-21) are the result of a quantitative analysis returning the 
progressive or total required effort based on the analysis of repeated and distinct scenario’s 
applications. In this subsection, a more typical mathematical perspective about the 
progressive maintenance cost based on calculus and integration concept is presented. 

Equations (3-13), (3-14), and (3-16) compute the maintenance cost for CVP and CIBI 
pattern combinations based on N, M design attributes and pne probability factor for a single 
addition (λ=1). Since N and M attributes are continuously updated during the progressive 
or repeated implementation of different maintenance scenarios in respect to their 
probabilities (pnE, pnP=1-pnE), it is possible to rewrite the equations (3-13), (3-14), and 
(3-16) for N and M values that are based on λth future addition. Thus, equation (3-16) is 
transformed to the equation (3-22). 

𝐜𝐦(𝐝𝐢𝐬𝐭)(pnE) = NμpnE + ΝpnE − Ν − 2pnE + 1 = MpnE + ΝpnE − Ν − 2pnE + 1 

= (λ(1 − pnE) + M
initial)pnE + (λpnE + N

initial)pnE − λpnE − N
initial − 2pnE + 1 

(3-22) 

Where current N = λpnE+Ninitial  and current M = λ(1-pnE) + Minitial 

 
Equation (3-22) computes the distance of maintenance cost only for the λth 

maintenance scenario. The distance of PSMC can be derived through the continuous 
integration of equation (3-22) on λ factor. Thus, the distance of PSMC of equation (3-21) 
can also be expressed by the integral in the general equation (3-23). 

𝐩𝐜𝒎(𝒅𝒊𝒔𝒕)(𝜆, p𝑛𝐸) = ∫𝐜𝒎(𝒅𝒊𝒔𝒕)(p𝑛𝐸) d𝜆

= 𝜆(𝑀𝑖𝑛𝑖𝑡𝑖𝑙𝑎pnE +𝑁
𝑖𝑛𝑖𝑡𝑖𝑙𝑎pnE − 𝑁

𝑖𝑛𝑖𝑡𝑖𝑙𝑎 − 2pnE + 1) + 𝐶 

(3-23) 

Where current N = λpnE+Ninitial  and current M = λ(1-pnE) + Minitial 

 
Figure 3-18: Graph of progressive maintenance cost differentiation pccm(dist)(pnE) for 

modifications on a Composition for λ future additions, related to the μ and pnE factors, 
referred to the Visitor design pattern (VP) and Inheritance based implementation 

(IBI). 
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Equation (3-23) has a simpler mathematical representation than equation (3-21) and 

returns similar results for C=0. For a different set of measures, the equations (3-19)-(3-21), 
and (3-23) could be more complex. The approach of continuous integration is a more direct 
and easier way for deriving formal models and computing progressive costs when 

mathematical tools such Matlab4 or MS Mathematics5 are used. On the other hand, it hides 
a significant aspect of the distinct analysis or the event-driven (cyclical) pattern of applied 
scenarios during maintenance process. 

3.8 Application of the Proposed Model 

In this subsection, a diagram which summarizes the (structural) maintenance cost 
equations, an application flowchart, three application examples of the proposed model, and 
the comparison of the proposed measurement approach with two other relevant existing 
approaches are presented. 

3.8.1 Summarizing Maintenance Cost of the Model 

A diagram summarizing the (structural) maintenance cost equations of the proposed 
model is presented in Figure 3-19. The graph displays all the relations between the 
proposed maintenance metrics and equations for both single addition and progressive 
analysis. Figure 3-19 can also be used as a computational pattern of the model for the 
analysis of other general and significant design problems. 

3.8.2 Classification and Application Flowchart of Proposed Model 

The proposed model is classified based on the diagram in Figure 3-7. The interrelations 
between the proposed model and different concepts and aspects of software 
maintainability assessment are presented in Figure 3-20. 

 
4 Licensed mathematical suite on http://www.mathworks.com/ 
5 Freeware equation solver on https://www.microsoft.com/en-us/download/details.aspx?id=15702 

 
Figure 3-19: Computational pattern of Structural Maintenance Cost.  
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Figure 3-21 presents a simple application flowchart of the proposed model which 
shows the proper use of CP, IBI, VP and Iterator design patterns through simple steps of 
sub-decisions. The Iterator design pattern is usually combined with the other patterns and 
is fully analyzed in (Gamma et al., 1994; Gibbons & Oliveira, 2009). 

 
Figure 3-20: Classification diagram of the proposed model. 
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As shown in subsections 3.4 and 3.5, a safe choice between IBI and VP can be made 
with no concern about the number of future additions, especially when a good estimation 
of pnE probability can be made. Aspect-oriented programming (AOP) technology is a 
possible next step, and presented in (Elrad, Filman, & Bader, 2001; Filman, Elrad, Clarke, 
& Aksit, 2004). However, AOP technology, as a generative approach, usually depends on 
Domain Specific Languages (DSLs) which produce source code for known high-level 
languages. Thus, the requirement for mastering an extra language and the extra 
compilation stage puts AOP under consideration. 

3.8.3 Application Examples 

In this subsection, three case studies of the application of the proposed model based on 
progressive analysis are presented. 

Problem Descriptions: Based on the specifications of the case studies of the 
motivational examples in Table 1-1, the design attributes of each description are derived 
and presented in Table 3-4. Each of these examples corresponds to an instance of the 
general design problem (i.e., CVP vs CIVI) under study. Because all these examples are 
complex problems representing critical systems, maintainable software which can be easily 
modified should be produced. It is assumed that it was decided to use the CP for the 
structure representations, but a decision on IBI or VP for the implementation of the 
operations has not been made. Moreover, both operation and element sets could be 
extended during software maintenance. 

 
Figure 3-21: Application flowchart on the use of Composite, Visitor, Iterator design 

patterns and inheritance-based implementation. 
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Table 3-4: Characteristics and attributes of individual problem descriptions 

Problem description N: number of initial 

distinct Elements of 

Composition structure 

M: number of initial 

Operations over 

composition’s elements 

pne : probability for a new 

element during software 

maintenance process 

Compiler implementation 

for the standard C89 high 

level language   

155 20 0.10 (10%) 

Interpreter implementation 

for a new custom 

(extendable) DSL language 

40 10 0.50 (50%) 

GUI implementation for a 

simple graph designing tool 

15 14 0.70 (70%) 

Note: values of each attribute have been derived from individual specifications in Table 1-1. 

Model Application: The approach described in this chapter has been selected for the 
development of targeted implementations. All necessary data for model application are 
available in Table 3-4. Simply by looking at the graph in Figure 3-16, proper pattern 
combinations can be safely selected as showed in Figure 3-22. 

 

Hence, for the problems described in Table 3-4, it is concluded that the VP can be safely 
selected for Interpreter and Compiler implementations and IBI can be safely selected for 
GUI implementation due to their lower overall maintenance cost. Among the three case 
studies, Compiler is the clearest as expected due its structure stability. For Interpreter and 
GUI, the model clarifies the advantage of maintenance cost for each pattern combination 
although their structures and operation sets are extendable. 

 
Figure 3-22: Graph of balance cases (equal maintenance cost) for CVP vs CIBI. 
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Furthermore, equations (3-19) and (3-20) can compute the exact PSMC for any 
number of future modifications, as presented in Figure 3-23 for the Interpreter 
implementation example. Alternatively, based on the flowchart in Figure 3-21, the use of 

VP can be concluded since 0.25 = μ ≪ (1-pnE)/pnE = 1.  

Although the proposed model implementation seems to be simple, the detailed 
mathematical analysis provides a complete and ready to use evaluation model regarding 
CVP and CIBI comparison. This model including its formal equations and the detailed 
graphs such as those presented in Figure 3-16, Figure 3-18, and Figure 3-21, provide a 
visualization for almost all the solutions or the design space of the significant decision 
problem of recursive hierarchies of part-whole aggregations. 

3.8.4 Alternate Maintenance Measures 

In this subsection, the maintenance measures of the proposed model are compared with 
similar metrics that have been proposed in the literature in Table 3-5. 

Table 3-5: Correlation of Model’s Measures with Related Models 

  Correlated Measures 

Eq. 3- 
Maintenance scenario, 
Implementation 

Structural Maintenance Cost 
(this method) 

Computational 
Complexity Evolution Complexity 

9 cm
S (n𝑒, CVP) 2M N+2M+1 (1) M (3) 

10 cm
S (n𝑝, CVP) N+1 2+N (2) 1 (3) 

11 cm
S (n𝑒, CIBI) M+1 2M+11 (1) 1 (4) 

12 cm
S (n𝑝, CIBI) 2N 3+3N (2) N (4) 

Source: Computational Complexity (Hills et al., 2011), Evolution Complexity (Tom Mens & Eden, 2005). 

Note: Related work measures have been correlated with proposed model measures through matching of similar attributes 
and scenarios. 

1 derived from analysis of scenario S1 – add two new expression operators, adapted for one new operator/element (Hills 
et al., 2011) 

2 derived from analysis of scenario S4 – add outline (new operation) (Hills et al., 2011) 

3 derived from analysis of case study 1:Visitor (Tom Mens & Eden, 2005) 

4 derived based on analysis of case study 1:Visitor correlated to Inheritance based implementation, focusing only on distinct 
class modifications (Tom Mens & Eden, 2005) 

Equations (3-9)-(3-12) represent the merged SMC of four basic maintenance 
scenarios derived from the proposed metrics. Based on these equations and through the 
computational pattern in Figure 3-19, the progressive maintenance cost can be computed 
for any set of related metrics. Thus, single addition and progressive analysis of the 
proposed approach can be implemented for different or similar metrics. This reveals the 
usability and the broad application perspectives of the proposed model considering 
different metrics and quality characteristics. 

 
Figure 3-23: Example: computation of progressive asymptotic cost for inheritance-

based implementation (IBI) and Visitor design pattern (VP). 
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3.8.5 Comparison to Relevant Metrics 

In this subsection, the comparison between the proposed metric and two relevant existing 
metrics is presented. The purpose of this comparison is to demonstrate the usability of the 
proposed model and progressive analysis as a more general framework. Furthermore, the 
behavior of different related metrics about maintenance effort under the progressive 
analysis of the proposed model is explored. More specifically, the maintenance measures 
of Table 3-5 are analyzed through progressive analysis of the proposed model. Next, the 
metrics derived from the progressive analysis, are implemented to the Interpreter example 
data in Table 3-5 as presented in Figure 3-24. 

 

For the SMC metrics of the proposed model, the equations (3-9)-(3-12) and (3-19)-
(3-21) have been used. For Computational Complexity (Hills et al., 2011) and Evolution 
Complexity (Tom Mens & Eden, 2005), the correlated metrics in Table 3-5 have been used 
by which the PSMC pc2

m and pc3
m have been derived through the general equation (3-17). 

The results of the progressive analysis in the form of graphs such as in Figure 3-18 and 
Figure 3-23 are presented in Figure 3-25. These graphs show all the progressive 
computations and their distance produced for each distinct measure set under comparison. 

 

 
Figure 3-24: Diagram of methods comparison through progressive analysis of 

multiple measures. 

 
Figure 3-25: Results of metrics comparison. 
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Computations for new metrics and implementation data can be easily performed by 
using mathematical environments such as Matlab or MS Excel. All computations for this 

comparison have been performed through a custom function which is available online6 for 
demonstration and further tests. 

3.8.6 Discussion 

By analyzing the previous comparison results in Figure 3-25, several interesting 
conclusions can be extracted. It is obvious that CVP pattern combination is preferred for 
all measures since it has smaller progressive cost with an increasing differentiation 
compared to CIBI combination. In a first glance, all metrics are correlated to a significant 
degree despite the variations of computed values. Although two-dimensional graphs offer 
enough information for selecting a proper pattern combination for the specific problem’s 
instance, they do not provide any information about the general behavior of the metrics 
referred to initial problem attributes. This information is provided by three-dimensional 
graphs which present the distance of progressive maintenance cost. Referring to these 
graphs, some major conclusions can be drawn about metrics behavior: a) all metrics are 
consistent regarding their outcome for the marginal values pne={0,1} meaning that CVP is 
always recommended when pne=0 and CIBI is always recommended when pne=1, 
confirming the opposite characteristics of IBI and VP that have been discussed in 
subsections 3.3.2 and 3.5.5; b) the first and third metrics are correlated, referring to 
distance, despite the variations of individual values; c) the second metric’s behavior is 
independent of initial values of attributes N and M and depends only on pne probability 
factor.  

One other conclusion is that the first SMC (this model) and third (Tom Mens & Eden, 
2005) Evolution Complexity metrics seem to be more “sensitive” than the second 
Computational Complexity (Hills et al., 2011) metric since they have different behavior 
with respect to all attributes of the problem. Also, the similarity of results between this 
model SMC metric and Evolution Complexity (Tom Mens & Eden, 2005) metric which is 
based on a visitor implementation case study, confirms the validity of the proposed model. 
However, the proposed SMC metric has a significant advantage compared to Evolution 
Complexity (Tom Mens & Eden, 2005) metric since it captures the locality degree of the 
applied interventions. The previews comparison results can be safely considered as 
confirmation about the validity and reliability of the proposed measures and model. 

Summarizing, the progressive analysis on different metrics can provide a full-scale 
model about measuring behavior during the maintenance process. Furthermore, it 
indicates that different measure aspects have a significant impact on progressive 
computations with respect to initial attributes of a problem and should be carefully defined. 

3.9 Methodology Determination 

3.9.1 Methodology Description 

In this subsection, a methodology based on the introduced theory is proposed and 
discussed through a step-by-step description in Table 3-6. Through this methodology, 
alternate comparison models for similar or different design pattern comparisons or for 
other significant and general design problems can be generated. 

Table 3-6: Methodology for deriving comparison models 

n Description Requirements / Limitations 
Relation to proposed 
comparison model 

1 Define design 
pattern 
combinations under 
comparison  

The defined design pattern combinations should have 
structural nature over the solution. Also, both design 
pattern combinations should be targeted on solving the 
same (general) problem through different design 
architectures.  

D = { CVP, CIBI } 

 
6 Online implementation of the proposed model available in https://www.chriskaranikolas.gr/CIBIvsCVP/  

https://www.chriskaranikolas.gr/CIBIvsCVP/
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n Description Requirements / Limitations 
Relation to proposed 
comparison model 

2 Define quality 
characteristics 
under evaluation 

Conceptually, the defined quality characteristics should be 
objectively measurable. Also, they should be focused on the 
evaluation of design pattern architecture itself.  

Maintainability 
Changeability 

3 Define specific 
quantitative 
problem attributes 
as factors 

The defined problem attributes should be measurable (e.g. 
through UML class diagrams (Lavazza & Agostini, 2005) or 
explicit software specifications). Also, they should be 
general and focused on design patterns architecture itself. 

N: initial number of leaf 
classes of composition 
M: initial number of 
operations over composition 
element 

4 Define major 
maintenance 
scenarios and its 
distinct probability 
factors  

The defined maintenance scenarios should be selected 
based on specific design pattern characteristics. Probability 
factors should be complementary (as mutually exclusive), 
having total sum equal to 1. The total number of 
maintenance scenarios is suggested to be limited.  

S = { ne, np } 
Adding structure element (ne, 
pne)  
Adding operation/process (np, 
pnp) 

5 Define aspects of 
measures  

The defined aspects of measures should be focused on 
capturing quality characteristics defined in step (2). Also, 
they should be focused on the evaluation of design pattern 
architecture itself. Modifications on distinct methods and 
classes are considered as fundamental maintainability 
quality aspects for early design patterns assessment. 

A = { am, ac } 
number of modifications on 
distinct methods (am) and 
distinct classes (ac) 

6 Define metrics,  
other factors for 
quantifying quality 
characteristics 
(defined in step 2) 

An equation should be derived for each design pattern 
combination (defined in step 1), maintenance scenario 
(defined in step 4) and aspect of measure (defined in step 5) 
in correspondence to general Equations (3-1) to (3-8).  
Totally |D|x|S|x|A| equations should be derived by 
involving attribute factors (defined in step 3) as 
independent variables and other constant factors.  

cm
S,A(S,D, A) 

Equations: (3-1) to (3-8)  
|D|x|S|x|A|= 23 = 8 
 
Existing factors: M, N 

7 Derive the 
merged/combined 
equations and 
graphs 

The equations of the previous step should be merged / 
combined using probability factors (defined in step 4). Also, 
new constant factors can be identified and used in 
equations to provide a premium/penalty onto distinct 
amounts regarding their individual weight on quality 
assessment.  

Factors: pne, pnp 
New factors: μ = M/N 
Equations: (3-9)-(3-12), 
(3-13), (3-14), (3-16), 
(3-19)-(3-21), (3-23) 
Graphs : Figure 3-13 to 
Figure 3-16, and Figure 3-18 
Computational pattern: 
Figure 3-19 

8 Seek for 
convergence limits 
of the attribute 
factors (defined in 
step 3) 

Convergence limit can be estimated based on probability 
factors of maintenance scenarios (determined in step 4). A 
convergence limit (if exists) expresses the basic balance 
cases and could detect the convergence limit of specific 
factors during maintenance process while the individual 
attributes (defined in step 3) being updated.  

Equation: (3-15) 

9 Decision making  Helps to infer the most maintainable design pattern 
combination by using the derived equations and graphs 
(defined in step 7). Mathematical tools such as MATLAB, 
Excel can be used to facilitate computations and graphs 
generation. 

Application examples 
(subsection 3.8.3) 
Demonstration page : 
www.chriskaranikolas.gr/CIB
IvsCVP  

1
0 

Save the new 
results for future 
use 

Alternatively, define (update) the new (existing) software 
quality policy plan regarding specific problem family. Also, 
flowcharts can be derived and used by designers during 
repeated implementation of step 9. 

Flowchart: Figure 3-21 

 
Referring to steps 6 and 7 in Table 3-6, other factors can be derived from combinations 

of existing factors targeting computational simplifications and easier graphical 
representations. Also, new constant factors or parameters can be derived based on specific 
requirements of the software quality policy plan. Multivariate linear model (MEMOOD) 
can be helpful for equation derivations as proposed by (Rizvi & Khan, 2010). Moreover, as 
an intuitive conclusion, metrics that have balance (zero distance decision) cases similar to 
the convergence limit (in step 8), provide safe and permanent decisions and usually are 
considered as particularly reliable. 

The efficiency and the degree to which the methodology proposed in Table 3-6 can be 
used to extract alternative comparison models for similar or different design pattern 
solutions can be further explored. For example, one other comparison case could be the 
Decorator design pattern (Gamma et al., 1994) which attaches additional responsibilities 
to CP objects dynamically against the common extension of CP through inheritance. In this 
case, basic maintenance scenarios could be a new element, new operation, and new 
responsibility. Furthermore, various comparison cases could be interesting considering the 
simultaneous implication of VP for the operations. Under this perspective, the proposed 
formal model for comparing CIBI and CVP implementation alternatives could be 
considered as the first step in using and testing the suggested methodology. 
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3.9.2 Example of Weighted Effort Measurement 

At this level of analysis, many other decision factors can be investigated. As an example, 
which reveals the flexibility and extensibility of the described methodology, the following 
model variation is presented.  

In most of the cases, the data of part-whole representation problems are declared 
inside CP classes. In practice, developers usually manage methods’ code which acts directly 
on the data of its class like operations’ code in CIBI implementation. This is a common 
programing technique which is manageable even by less experienced developers. However, 
in CVP implementation, operations’ code which is in the extra VP classes acts indirectly on 
the data of CP classes. Indirect access on the data of CP classes is achieved through the 
double dispatching calls of accept method as referred in subsection 3.3.2.3. This is a more 
complex programing technique which is difficult to be managed by less experienced 
developers. Furthermore, many other concerns such as debugging issues are introduced 
because of the use of double dispatching calls. In general, the indirect access on data of 
different classes through double dispatching calls introduces an extra effort during 
maintenance. Consequently, it can be assumed that the locality of method interventions, in 
the same or separate classes/modules, has different (or higher) significance only for CVP 
implementation. 

In the proposed metric (subsection 3.5.3 and step 7 of methodology in Table 3-6), the  
numbers of methods interventions and affected class (expressing the locality of 
interventions) for CVP have equal weights (equations (3-9), (3-10)). Instead of this, a new 
constant factor can be defined based on previews discussion. For example, the equation 
(3-9) could be reformed as equation (3-24). 

cm
S (ne, CVP) = cm

S,A(ne, CVP, am)+w ∙ cm
S,A(ne, CVP, ac) = M + w ∙ M (3-24) 

The introduced factor w≥1 represents the weight of class aspect magnitude which 
captures the penalty or the extra maintenance effort required for CVP. Thus, for w=1, the 
equation (3-24) and (3-9) are equivalent meaning that developers can equally manage the 
widespread innervations for both IBI and CVP implementations. When w>1, the new 
metric reflects the locality of interventions in a more significant weight for CVP 
implementation. So, CIBI implementations are preferred (have lower maintenance cost) 
than CVP implementations due to w factor presence. By following the other steps of the 
described methodology, a new set of equations (e.g., (3-10), (3-13), (3-14), (3-16), (3-21), 
(3-23)) and graphs (e.g., Figure 3-16 to Figure 3-18) can be derived. As a final stage on 
this example, Figure 3-22 is updated to Figure 3-26. In Figure 3-26, new curved lines have 
been added which show balance cases (zero distance) for different values of w={1.0, 1.5, 
2.0, 3.0, 4.0} factor. Hence, different values of w factor cause a relocation of the curve of 
balance cases. 

Referring to Figure 3-26, some interesting observations and interference can be 
derived about w factor: a) for w=3, alternate GUI implementation decision (ligth purple 
dot) has switched side and IBI is preferred than VP, thus different comprehension degree 
of CVP (e.g. defined by w factor) leads the model to different results; b) as w factor 
increases, the balance curve shifths to the left with a deceleration rate. This graph clearly 
demonstrates that CIBI implementation expands for greater values of w factor or when 
comprehension degree of CVP is smaller. In contrast, CVP implementation expands for 
lower values of w factor or when comprehension degree of CVP is greater.  
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Another interpretation about w factor is related to the concept of software disorder 
(entropy) and particularly the erosion factor introduced by (Bakota et al., 2012). More 
specific erosion factor represents the amount of “damage” (decrease in maintainability) 
caused by changing one line of the code. In a similar manner, w factor can be considered 
as the amount of extra effort (increment in maintenance cost) that required in order the 
method interventions for CVP to be performed concentrated in one class during a 
particular maintenance scenario. Alternatively, the w factor could be named as CVP 
dispersion factor. Following the same logic, w factor normally is smaller for senior 
developers who have significant experience and thus they handle widespread interventions 
of CVP in a better and easier way, dedicating less effort. Also, w factor normally is smaller 
for developer teams which use more advanced resources (developing/versioning suites, 
etc.) and thus they also handle widespread interventions of CVP in a better way, dedicating 
less time and effort. Normally software companies should try to reduce w factor by 
dedicating better resources during software maintenance, reducing overall maintenance 
cost and effort. Thus, another noticeable conclusion is that CVP implementation expands 
when companies dedicate more experienced resources (e.g., senior developers) during 
software maintenance. Consequently, it can be induced that VP is harder (than IBI) to be 
understood and applied since VP is less suitable or maintainable by less experienced 
developers. This conclusion confirms the intuition and perhaps the concerns of some 
developers that VP implementation is harder because of the use of double dispatching calls 
or the extra visitors’ classes. Apparently, this perception discourages many developers for 
using VP. Thus, designers and developers should insist on VP comprehension and use it 
whenever it is recommended in order to avoid the required extra effort during 
maintenance. 

3.9.3 Further Discussion 

Referring to the previous example of weighted effort measurement, there is a key point. 
Equation (3-15) still stands since it is independent of w factor. Thus, during the 
maintenance process, the design attributes N and M increase and factor μ tends to limit 
pnP/pnE. Therefore, each decision point in the new graph in Figure 3-26 is shifting or 
diverting horizontally toward the limit of equation (3-15), represented by the initial curve 
of balance cases for w=1. Although in this case, the diversion has an increasingly 
decelerating rate (due to limit’s behavior), a paradox seems to arise which also looks 
unavoidable. More specifically, for w>1, a pattern combination may be initially preferred 

 
Figure 3-26: Graph of balance cases (equal maintenance cost) for CVP vs CIBI based 

on w factor.  
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for a certain number of future additions. However, after the application of several additions, 
this combination will no longer be the proper choice. That kind of decisions need extra 
caution, and perhaps an assessment of the range of future additions can be helpful toward 
proper selection.  

The later discussion indicates that the SMC metrics in equations (3-9)-(3-12) (w=1) 
are stable and dominant since the curve of balance cases in Figure 3-16 and Figure 3-22 is 
identical to the limit in equation (3-15) which represents the convergence of individual 
characteristics (i.e., N, M, μ) during maintenance process. This equivalence is exactly the 
reason why the proposed model provides straightforward and safe choices independently 
on the number of future additions that will take place during maintenance process, as 
showed in subsection 3.5.7. Thus, the proposed approach and its SMC metric can be 
considered as particularly reliable. As a more general and intuitive conclusion, metrics that 
have similar balance equations to the  above convergence limit are stable, provide safe and 
permanent decisions, and usually considered as particularly reliable. 

3.10 Conclusions 

3.10.1 General Requirements and Limitations 

In this subsection, the basic limitations, and some potential threats to validity regarding 
the proposed approach are briefly discussed. 

To derive realistic equations of asymptotic maintenance effort or cost, it is necessary 
to analyze and precisely understand the way that each design pattern evolves, behaves, and 
reacts with other patterns in the event of future maintenance scenarios. Furthermore, it is 
essential to conclude on those maintenance scenarios and design characteristics that are 
the most influential regarding the pursued quality requirement (i.e., maintainability or 
modifiability). Without this envision, the model’s estimations and consequent design 
decisions could by subjective or unrealistic. If this is the case, then every possible type of 
future action (e.g., additions or modifications) as well as the consequences or the impact of 
these actions can be described in an objective way. Furthermore, the required effort for 
every possible action type or other quality characteristics can be estimated as well. These 
quality characteristics include method/code or data locality in source code or in memory, 
cyclomatic complexity, interface complexity, run or compile time performance estimations, 
data/memory consumption estimations, design or module complexity, depth of class 
inheritance, friendly methods, overwritten methods, any other known quality metric (e.g., 
ISO 9126/25000, McCabe) which can be statically computed by the structure of design 
pattern, etc. As an example of the variety of such measures is the computational complexity 
metric (Hills et al., 2011) which tries to measure not only the effort to transform the 
system, but also the effort to analyze it before applying any transformation.  

The asymptotic or static cost of all the characteristics that have been mentioned can be 
positive or negative or even multiplied by factors and depends on estimations about anyone 
of them. Furthermore, intermediate, or partial costs can be combined and merged to more 
general actions, deriving general equations. During this process, reliable predictions or 
probabilities of different maintenance scenarios can be involved in these equations. In 
general, the accuracy of this method depends on the accuracy of the distinct asymptotic or 
static cost estimations and predictions.  

It is important that the conclusions and the results of this method are general and 
based on static predictions and structure analysis of specific design patterns. They are 
independent to specific program implementations and run time behavior. They are based 
on static estimations about future modifications and additions, while they capture specific 
quality characteristics like maintainability and changeability. Therefore, they should be 
used during the design phase of software before code development to ensure reduced time, 
effort, and relevant cost of future code modifications, updates, and maintenance.  
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Another important point is that the proposed method evaluates, in a formal way, two 
or more combinations of design patterns that have been proposed to address the same 
significant problem in a different (design) way. Thus, absolute maintenance cost 
assessments or effort estimations for individual implementations are out of the scope of the 
proposed approach. Analysis is limited on knowledge of the used design pattern behavior 
through which distinct maintenance scenarios are derived and analyzed. The main goal of 
the proposed model is to deliver reliable and proportionally equivalent effort estimations 
per design alternative for comparison purposes, with no concern regarding the accuracy of 
the effort magnitudes itself. 

Furthermore, the selected maintenance scenarios contribute mainly on the evolution 
or extension of the system features, retaining initial design (pattern) architecture. 
Maintenance scenarios that target on structure reformations change the design 
architecture and the maintainability degree of the system and they are out of scope of the 
suggested approach. 

In the proposed model, the maintenance events are involved in probabilistic analysis 
considering a repeated (cyclical) arriving pattern, since this is the most common case in 
prediction models. Thus, a possible threat to validity of the proposed model could be the 
special case when maintenance scenarios are performed by the developers in a way that 
significantly deviates from a repeated arriving pattern. 

3.10.2 Extensions and Further Research 

The proposed formal model can be adapted for similar or other design problems. For 
example, additional cost can be added if more additions or modifications are necessary for 
a specific structure or when other quality characteristics or metrics should be captured. The 
proposed approach or an adapted version can be combined and analyzed in conjunction 
with other methods on case studies (e.g. in (R. S. Pressman, 2001)) to determine the 
relationship between static asymptotic cost of design patterns and external quality factors 
such as reusability, maintainability, testability and adaptability. The adaptation and 
implementation of the proposed method in other problems and patterns depends on many 
factors such as the type of the problem, scale of structure or/and operations, complexity of 
operations, quality or other standards-requirements, other collaborated patterns, time, cost 
plan, etc. 

Furthermore, the proposed formal model could be used as a guide by many tools, 
including aspect-oriented programming tools that generate code, templates or libraries 
from a higher level language or through a visual environment (e.g. (Dascalu et al., 2005; B. 
C. d. S. Oliveira et al., 2008; VanDrunen & Palsberg, 2004)) to compare and propose 
appropriate design pattern combinations. An example is ANTLR (Parr, 2013), a powerful 
and flexible tool for scanning and parsing formal languages that by default generates initial 
code for CP, VP and Listener design pattern (a differentiation of VP) based on grammar 
elements. In this case the use of CIBI or other design patterns could be suggested through 
the use of the proposed model based on specific grammar attributes. In addition, the 
proposed mathematical approach can be used as a general framework for estimating and 
comparing similar or different design patterns especially on the field of Pattern Languages 
of Programs. 

Moreover, the proposed model could be used to evaluate and propose efficient pattern 
combinations based on code’s structure through real-time coding intelligence tools during 
code development process. Furthermore, the proposed method can be used for source code 

generation in the generic field of product line engineering (Völter, 2003). More specifically, 
the used design pattern and specific characteristics of a problem could be derived through 
a properly formatted model (e.g. class diagram, XML) or DSL (Zdun & Strembeck, 2009) 
or through a metamodel of the software specifications. In this case, the proposed method 
can be implemented during the process of model analysis and code generation. 
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3.10.3 Overall Assessment 

Selecting between Visitor design pattern and inheritance-based implementation on a part-
hole representation during software architecture design is crucial since software 
maintenance should adapt to the initial architecture. Decisions made at software 
architecture definition stage heavily affect maintainability and changeability of software 
and related time, effort, and cost of software maintenance. 

The proposed approach suggests a documented methodology to support object-
oriented design pattern analysis. Software quality metrics can be derived and computed 
directly from design descriptions of well-known design pattern combinations by analyzing 
their structural behavior and evolution pattern. The model returns effort estimations well 
fitted and sensitive to specific design characteristics and attributes that distinguish a 
specific system as an instance of the general and significant problem. Using the proposed 
model, specific characteristics such as design attributes of given problems are considered 
allowing selection of proper design pattern combinations at an early stage of the design 
process before code development.  

The analysis of the proposed model indicates that different design pattern 
combinations have a significant effect on software quality and its maintenance 
perspectives. Furthermore, the progressive and probabilistic analysis verify the same 
significant effect for a large number of future modifications during software maintenance. 
Moreover, the analysis proves that different metrics aspects and weights have a significant 
impact on progressive computations with respect to initial attributes of a design problem 
and should be carefully defined. Also, it has been indicated that probability analysis over 
maintenance scenarios has a decisive role on maintenance cost and effort estimation.  

The proposed model can be easily implemented in software to support behavior 
analysis and relevant design decisions among Composite, Visitor design patterns and 
inheritance-based implementation, providing a visualization for almost the complete 
solutions or design space of the significant problem of recursive part-whole aggregations. 
The application of the proposed approach reveals the usability and extensibility of the 
suggested methodology considering different or alternate metrics, design alternatives, and 
quality characteristics. 
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4 Modeling Software Evolution  

4.1 Chapter Overview 

In this chapter, a systematic modeling method for the derivation of formal comparison 
models of different implementation alternatives is discussed. The models can be used for 
the early evaluation of the design alternatives with regards to maintainability. The method 
is based on a novel theory focusing on the progressive evolution of a system during the 
maintenance process. The proposed approach analyzes the software’s expansion tendency 
through the formulation of system’s size change rates using differential equations in a two-
level integration process. More specifically, the analysis focus on change rates of individual 
structural attributes of each design combination under consideration. Furthermore, the 
method predicts the required effort during the maintenance process by using the adaptable 
Structural Maintenance Cost (SMC) metric (Karanikolas, Dimitroulakos, & Masselos, 
2017), introduced in chapter 3. This metric is mostly inspired by software entropy concept 
(Bakota et al., 2012). The metric captures the structural expansion behavior of each design 
combination under evaluation. The structural expansion is quantitatively expressed in 
terms of the number of method interventions and the number of classes/modules that are 
affected, for basic maintenance scenarios and their probabilities. Moreover, an alternative 
technique based on the ‘ripple effect’ concept (Turver & Munro, 1994) for deriving basic 
SMC metrics is discussed. In this way, the required effort is predicted in a formal and 
deterministic way, limiting the ambiguity imposed by the stochastic nature of the 
maintenance process. The generated formal models are general and reusable, while they 
can be easily implemented in software and repeatedly applied during the early stage of 
software design before code development. 

The proposed modeling method has been illustrated and evaluated on the important 
and frequently tackled decision problem between the design combinations of Visitor design 
pattern and Composition design pattern for data structures (both serving recursive part-
whole aggregations) as described in subsection 3.3. In this case, the two major types of 
maintenance scenarios effect on i) composition’s elements and ii) different operations over 
these elements. The numbers of initial elements and operations are considered as 
quantitative structural attributes. The applicability of the derived formal modes is 
demonstrated over the practical examples of Interpreter and Graphic User Interface (GUI) 
implementations as defined in subsection 1.2.3. 

Furthermore, a detail modeling framework of the introduced modeling method has 
been implemented in the form of MATLAB code and data structures. This framework 
accelerates and supports the derivation of formal models as well as the generation of 
relevant graphs in a dynamic way through properly parametrized scripts. The effectiveness 
of the framework is demonstrated on the general problem of recursive part-whole 
aggregations. 

The context of this chapter is based on the motivation examples in chapter 1, the 
related work in chapter 2, and the significant design problem of part-whole representations 
in chapter 3. The rest of this chapter is organized as follows. Subsection 4.2 discusses the 
theoretical background of the significant design problem under study. Subsection 4.3 
introduces the proposed approach and the modeling method. Subsection 4.4 presents a 
general and formal implementation of the modeling method in MATLAB structures. 
Subsection 4.5 provides the validation evidence that support the introduced modeling 
method and derived formal models. Finally, in subsection 4.6, the model’s validity 
challenges, limitations, future research issues, and conclusions are presented. 
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4.2 Background of General Decision Problem 

An example of a general, significant, and frequently tackled design problem is referred to 
the recursive implementation of various types of operations upon part-whole aggregations 
of different types of elements as presented in Table 1-1 of chapter 1, and Table 4-1. This 
kind of structures is encountered in a wide spectrum of critical systems such as compilers, 
interpreters, GUI, hierarchical presentation frameworks, DSL, and CAD as their principal 
design background. Usually, each design alternative is a combination of well-known design 
patterns. Visitor and Composite are examples of established design patterns which 
combined can provide implementations of part-whole aggregations. The evolution of 
software during its maintenance is strongly related and mostly determined by the behavior 
of the engaged design patterns in future changes or major maintenance scenarios. 
Referring to the general problem of part-whole aggregations, events like adding or 
updating or debugging a new or existing type of element constitute a major maintenance 
scenario. Similar events referred to a new or existing type of operation is another major 
scenario. In principle, an event is characterized as major maintenance scenario when fulfills 
the following criteria: a) has significant impact concerning the pursued quality attribute 
(i.e., maintainability), b) affects or changes the principal design attributes of the engaged 
design patterns (e.g., number of elements or operations of a structure), c) is neither too 
abstract nor too specific allowing its application on the early design stage before code 
development (i.e., encompasses various resembling sub-activities or changes such as 
adding, updating, and de-bugging concerning the maintenance of a discrete family of 
design elements with common characteristics such as structure elements, and operations), 
and d) has recurring nature or considerable possibility to repeatedly occur during 
maintenance, as further discussed in subsection 3.4.4. In this general design problem, the 
number of initial elements and operations are conceived as basic design attributes which 
define a specific problem as an instance of the general problem. Such design attributes are 
usually referred to problem’s logical entities which are represented by design patterns’ 
components such as methods, classes, and modules. Furthermore, during maintenance, 
several of those initial design attributes are updated according to the behavior of the 
engaged design patterns based on the individual probabilities of major maintenance 
scenarios. Scenarios’ probabilities are assessments according to the scope of each specific 
problem. 

Table 4-1: Example of Interpreter Software Specifications for the General Problem of 
Part-Whole Representations. 

Analysis of the general problem Indicative, practical example of a specific problem as an instance of the 
significant and general problem referred to the recursive implementation of 
various type of operations upon different types of elements of part-whole 
aggregations (compositions) 

Initial design attributes  
• number of initial elements  

• number of initial operations   
conceived as basic design attributes 
which define a specific problem as 
an instance of the general problem 
 
Major maintenance scenarios 
• Adding/updating/debugging a 

new/existing Element 
• Adding/updating/debugging a 

new/existing Operation 
Probabilities of major scenarios as 
assessments according to the scope 
of each specific problem 

Interpreter implementation for a new custom (extendable) DSL language 
 40 initial types of elements (parse-tree nodes derived from a custom BNF 
grammar such as terminal–nonterminal symbols, identifiers, etc.), and  
 10 initial operations (type checking, code generation, executing, etc.) acting on 
elements of parse-tree,  
 
 
since DSL is custom and extendable, both structure and operations could be 
extended during maintenance by equal probabilities (50%-50%) 

Description of the change impact for 
major maintenance scenarios during 
maintenance 
 
A possible wrong decision during 
design stage, before code 
development, has a serious impact 

A wrong selection of the Inheritance-based implementation into Composite’s 
elements (design combination) requires: 
 40 new methods in 40 different classes for a single operation addition and  
 1 new class with 10 new methods for a single element addition  
 which overall requires more maintenance effort 
Instead of the most beneficial alternative of Visitor over Composite’s elements 
(design combination) which requires: 
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Analysis of the general problem Indicative, practical example of a specific problem as an instance of the 
significant and general problem referred to the recursive implementation of 
various type of operations upon different types of elements of part-whole 
aggregations (compositions) 

on system quality evaluation, 
concerning either:  
(a) the increased (wasted) 
effort/cost during maintenance, or 

 40 new methods to be placed on a single class for a single operation addition 
and 
 (only) 10 new methods to be placed in 10 different classes for a single element 
addition 
This is a difficult choice due to structure and operation expandability and there is 
no clear advantage for arbitrary scenarios’ probabilities 

(b) the costly setback, after code 
development, in the design stage of 
software lifecycle which requires 
redesign and refactoring of the 
existing code that usually demand a 
significant amount of extra (wasted) 
effort 

 10 methods for each of 40 (composite) classes, thus totally 400 methods 
(including their references and calls) be revised and moved in 10 different 
(visitor) classes in groups of 40 methods 

Initial source code will be generated by a parser tool such as Bison or ANTLR (Parr, 2013). Interpreter implementation is 
a real case description 

The practical example of the Interpreter implementation in Table 1-1 and Table 4-1, 
as a specific instance of the significant and general problem of recursive part-whole 
aggregations, highlights the negative consequences of wrong design selections as well as 
the necessity for a rigorous modeling method that can support early selection among 
design alternatives regarding their maintainability perspective. 

The Inheritance Based Implementation into Composition (CIBI) and Visitor upon 
Composition (CVP) design combinations have opposite characteristics regarding their 
maintainability perspective, and thus they have been discussed in the context of many 
studies, like the well-known Expression Problem (B. C. d. S. Oliveira & Cook, 2012; 
Torgersen, 2004; Wang & Oliveira, 2016; Zenger & Odersky, 2005). Therefore, the 
selection between CIBI and CVP is rather a crucial and challenging decision since many 
major systems like compilers, interpreters, high-level synthesis, Domain Specific 
Languages, Intermediate Representations, GUIs, hierarchical frameworks, are designed 
over recursive composite structures. For the sake of completeness and uniformity with the 
context of chapters 1 and 3, a brief presentation of the theoretical background of the general 
selection problem, as presented in Table 4-1 follows. A summary of the relevant concepts, 
components, and terms of the analysis in correspondence to the significant problem of 
part-whole aggregations is presented in Table 4-2. 

Table 4-2: Correspondence of Concepts, Components, and Terms to the General Decision 
Problem of Part-Whole Representations. 

 

Basic concepts, components, and terms 
of the analysis 

Correspondence to the significant general problem, referred to the recursive 
implementation of various types of operations upon different types of elements of 
part-whole aggregations (compositions) 
Description of specialized concept Notation 

1
) 

In
tr

o
d

u
ct

io
n

 o
f 

M
o

d
el

in
g

 M
et

h
o

d
 

Distinct design patterns engaged in 
design combinations 

 Composite (design Pattern) represents recursive 
part-whole aggregations or structures of elements 
 Visitor (design Pattern) links operations to 
different type of elements of a Composition 
 Inheritance-Based Implementation incorporates 
operations inside Composition’s elements 

CP 
 

VP 
 

IBI 
 

Combinations of design patterns (as  
solution alternatives of the general 
problem) 

 Visitor over Composite’s elements 
 Inheritance-based implementation into 
Composite’s elements 

CVP = (CP+VP) 
CIBI = (CP+IBI) 

Problem’s initial design attributes   Number of initial Elements of Composition 
 Number of initial Operations (or Processes) acting 
on Elements 

N 
M 

Basic classes of changes or 
maintenance scenarios and their 
individual probabilities 

probability of Adding/updating/debugging a 
new/existing  
 Element type 
 Operation (or Process) type 

 
pnE = 1-pnP 
pnP = 1-pnE 

Number of future scenarios’ 
applications  
Returned predictions of expected 
maintenance effort (per design 
alternative) 

 Number of maintenance scenarios’ applications 
during software evolution/maintenance 
 Total required effort prediction returned by formal 
model per design alternative 

λ 
 

cm(CVP, N, M, pnE, 1-pnE, λ) 
cm(CIBI, N, M, pnE, 1-pnE, λ) 
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a. Derivation of fundamental effort 
metrics (for each design alternative 
and scenario type for a single [λ=1] 
scenario application) 

 New Element (pnE=1.0, pnP=0.0) on CVP for λ=1 
 New Operation (pnE=0.0, pnP=1.0) on CVP for λ=1 
 New Element (pnE=1.0, pnP=0.0) on CIBI for λ=1 
 New Operation (pnE=0.0, pnP=1.0) on CIBI for λ=1 

cm(CVP, N, M, 1.0, 0.0, 1) 
cm(CVP, N, M, 0.0, 1.0, 1) 
cm(CIBI, N, M, 1.0, 0.0, 1) 
cm(CIBI, N, M, 0.0, 1.0, 1) 

 CVP design combination (solution) 
 CIBI design combination (solution) 

cm(CVP, N, M, pnE, 1-pnE, λ) 
cm(CIBI, N, M, pnE, 1-pnE, λ) 
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Basic concepts, components, and terms 
of the analysis 

Correspondence to the significant general problem, referred to the recursive 
implementation of various types of operations upon different types of elements of 
part-whole aggregations (compositions) 
Description of specialized concept Notation 

b. Derivation of formal prediction 
models (for each design alternative and 
any number of applied scenarios λ) 
c. Application of the derived formal 
models on practical examples of 
specific problems 

 Interpreter (N=40, M=10, pnE=0.5) 
 GUI (N=15, M=14, pnE=0.7) 

cm(CVP/CIBI,40,10,0.5,0.5,λ) 
cm(CVP/CIBI,15,14,0.7,0.3,λ) 

 

CP: The main intent of the Composite design Pattern is to compose objects into tree 
structures to represent part-whole hierarchies. CP lets clients treat individual objects and 
compositions of objects uniformly (Gamma et al., 1994). CP is the basis of both design 
combinations and presented on both sides in Figure 4-1. The number of distinct 
nodes/objects or element types, which can be instantiated or represented by CP, is equal 
to the number of leaf classes of the hierarchy, denoted as N in Figure 4-1. 

CIBI (IBI in CP): In a Composite structure, the Inheritance Based Implementation 
(IBI) can be used, as presented on the left side in Figure 4-1. This straightforward object-
oriented approach is based on the inheritance attribute and can be considered even as a 
naïve, and similar to Interpreter design pattern (Gamma et al., 1994; Hills et al., 2011). In 
the general case, all distinct operations, denoted as M in Figure 4-1, are declared as virtual 
methods in the abstract root class of the hierarchy. The implementation of every distinct 
operation (method) is placed in each distinct object (leaf) class of the hierarchy. This 
pattern combination makes adding new types of nodes (elements) easier (Gamma et al., 
1994) thanks to the concentration (locality) of the related interventions in a single class.  

CVP (VP over CP): Visitor design pattern (VP) can be used over CP as presented on 
the right side in Figure 4-1, and further analyzed in (Alexandrescu, 2001; Gamma et al., 
1994; B. C. d. S. Oliveira et al., 2008; Palsberg & Jay, 1998; Visser, 2001). In the general 
case, for every distinct type of CP node, a new virtual method is declared in an abstract root 
class called Visitor. In addition, for every distinct operation, a new subclass is created which 
includes all the implementations of the methods of distinct node types for this specific 
operation. CVP approach rearranges the methods of all distinct operations from CP sub-

 
Figure 4-1: Conceptual UML class-diagram of CIBI (Inheritance-Based 

Implementation inside a Composition) and CVP (Visitor design pattern over 
Composition’s pattern) design combinations. 
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classes into the new visitor sub-classes. In contrast with IBI, VP makes adding new 
operations easier (Gamma et al., 1994) thanks to the increased cohesion or the 
concentration (locality) of the related interventions in a single visitor class.  

The numbers of distinct element types and distinct operation types, denoted as N and 
M in Figure 4-1, are conceived as key design attributes. Through these attributes, the 
number of required method and class interventions can be quantitatively expressed in the 
event of major maintenance scenarios as summarized in memo table in Figure 4-1 and 
analyzed later. Thus, the selection of the most maintainable combination is rather a difficult 
decision problem, especially in the case where elements and operations are both extendable 
during the maintenance process as showed in Table 1-1 and Table 4-1. 

4.3 Modeling Approach 

4.3.1 Designs for Change Principle 

The first step in controlling software changeability or maintainability degree is by applying 
the rule “design for change” as discussed by Parnas (David Lorge Parnas, 1994). Design 
for change can be achieved by trying to categorize the changes that are likely to occur over 
the “lifetime” of the product. Since actual changes cannot be precisely predicted, the 
assessments will be about classes of resembling changes. In principle, this design rule 
implies that logical entities that are most likely to change are “confined” to a small or 
grouped amount of code so that if those entities do change, only a small amount of code 
would be affected. This is exactly one of the fundamental reasons to use well-known design 
patterns in order to ease future enhancements (Bieman et al., 2001). Furthermore, since it 
is impossible to make everything equally easy to change, it is important to estimate the 
probabilities of each class of changes. However, even if these probabilities have been 
estimated, in most of the cases, it is not obvious how specific design combinations are 
evolved during software maintenance with respect to these probabilities. Hence, selection 
among design alternatives is usually left to experts’ intuition, thus introducing high-risk for 
suboptimal choices and low maintainability degree. Identifying what can change, what is 
the likelihood of the change, and what is the impact or cost of the change is in the core of 
architectural design process towards modifiability as suggested in (Bass et al., 2012). 

4.3.2 Corresponding Architectural Design Principles 

In general, the object-oriented (low-level) design is a sub-domain of the Software 
Architectural (high-level) design of systems (Bass et al., 2012). The general architectural 
design principles are roughly analyzed in subsection 3.2.1 and visualized in Figure 3-1. 
However, a direct correspondence exists regarding the notation, terms, and concepts 
between the (low-level) object-oriented design and (high-level) architectural design as 
illustrated in Figure 4-2. For example, the design for change principle corresponds to the 
Quality Attribute requirement of modifiability or maintainability, expressing the ability of 
the system to support changes. The arriving (classes of resembling) events or maintenance 
scenarios correspond to Stimulus, thus to the requested modifications which affect or 
change the Artifacts. The design combinations under assessment, usually represented by 
UML models of classes and methods, correspond to Artifacts generally represented by 
design models of system’s modules and components. The implementation of an arriving 
maintenance scenario or Stimulus corresponds to the Response, thus to the required 
specific modifications on an Artifact.  
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The Response Measure refers to the quantitative measurement of the effect or the 
Response of the Stimulus, focusing on the aspect of the pursued Quality Attribute 
Requirement. Modifiability or maintainability as a Quality Attribute Requirement is 
influenced by the application of Architectural Tactics such as splitting or rearranging 
responsibilities to increase cohesion and reduce coupling among the model’s logical 
entities. The result of this architectural design process leads to alternate design models or 
Artifacts, aiming at improving their Response Measure to a set of Stimulus or maintenance 
scenarios. Architectural design is also about selecting among design alternatives or 
Artifacts the one with the most satisfactory overall Response Measure. Since Modifiability 
refers to the amount of code that should be affected, the Response Measure refers to the 
amount of code (e.g., number of entities) of an Artifact that would be affected as a result of 
an arriving Stimulus or maintenance scenario.  

However, the overall quality assessment of an Artifact requires the measurement of 
the Response on a set of different Stimulus, each affecting the Artifact’s entities in different 
and conflicting ways. Thus, a combined analysis of the effects (Responses) of all Stimulus 
based on their probabilities for each design alternative or Artifact is required. The Response 
of an Artifact to a Stimulus is quantitatively expressed by the Response Measure the 
outcome of which may be subject to several design characteristics and properties of the 
Artifact. As a result, the Response of an Artifact to a Stimulus may be also sensitive to 
specific model’s design attributes such as the initial number of instances of an entity type. 
These design attributes of a model or Artifact identify a specific problem as an instance of 
the general problem. The proposed modeling method derives formal models for each 
design alternative or Artifact of a general design problem. This allows the selection of the 
Artifact with the best combined Response Measure to all possible major Stimulus for 
specific design attributes, concerning the pursued Quality Attribute Requirement of 
modifiability or maintainability. 

From a different point of view concentrating on maintainability perspective, software 
architecture is in accordance with the ‘design for change’ principle. It tries to answer a) 
what can change or what are the anticipated changes or maintenance events, b) what is the 
likelihood or probability of each change, and c) what is the impact or the extend or the 
required effort of each change. The proposed modeling method and derived formal models 
help software engineers to resolve the trade-offs among design alternatives and find the 
sweet spot within the enormous architectural design space that satisfies the pursued QAR 

 
Figure 4-2: Conceptual representation of the architectural design principles connected 

to the proposed theory and Modeling Method 
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by finding the design alternative with the optimal combined response (measure) for all 
major stimuluses. 

4.3.3 Characteristics of SMC Effort Metric 

In the context of this study, the Structural Maintenance Cost or SMC (Karanikolas et al., 
2017), introduced in chapter 3, is used as fundamental effort metric. For the sake of 
completeness, the principal characteristics of the SMC metric are briefly discussed in this 
subsection. In general, fewer method interventions or less affected classes, for a specific 
maintenance scenario, imply lower code dispersion, entropy, complexity, crosscutting 
degree, coupling, and higher cohesion. All these concepts are directly related to the intuition 
that developers will have increased work keeping track of changes that are performed 
across many source files or any other code unit or segment (Hassan, 2009). SMC metric 
enforces the measurement process by simultaneously counting different types of affected 
code segments, expressing by this way not only the number of interventions (e.g., affected 
methods) but the locality or scattering degree of these interventions as well (e.g., expressed 
by the number of affected classes). In particular, the measurement of scattering degree 
magnifies the impact of the relevant interventions with respect to critical characteristics of 
modifiability such as coupling and cohesion among code segments of logical entities. Thus, 
SMC metric encloses all previous concepts in an indirect but sufficient way providing an 
adequate graduation even in the absence of source code. Furthermore, SMC metric ignores 
the actual size (lines of code) of each elementary method intervention since this code i) is 
not available in the design stage, and ii) in a long-term perspective it has no significant 
impact on the final effort assessment. More specifically, it is supported that the actual code 
and size of each method intervention refers to the business logic of the solution (not its 
design perspective) and thus, it would be common or similar for all design alternatives 
under comparison, hence neutral concerning the decision-making. Finally, the SMC metric 
concentrates only on expansion scenarios (additions) and does not take under 
consideration alternate scenarios such as editing, debugging, and deleting, supporting that 
the expansion (new features) scenarios have a dominant role in the progressive evolution 
of the system and thus to effort assessment, as reported in chapter 3 and analyzed in 
subsection 4.3.5. 

Under the view of architectural design principles, the SMC metric corresponds to the 
response measure (or the required effort in terms of number of interventions) representing 
a quantitative assessment of the extend of the required changes of a particular stimulus 
(major maintenance scenario) to a specific artifact (design alternative) as visualized in 
Figure 4-2. In other words, SMC metric quantitatively expresses what is the extend, the 
complexity, and the cost (effort) of an anticipating change scenario (stimulus) during 
maintenance. 

4.3.4 Fundamental SMC Effort Metric Derivation 

In this subsection, a more systematic derivation approach of SMC metrics is presented in 
Figure 4-3, which is a further and detailed specialization of the ‘ripple effect’ concept as 
introduced in (Turver & Munro, 1994). The concepts of ‘ripple effect’ and ‘ripple 
propagation’ are related to the impact analysis of a particular change or scenario during 
maintenance. More specifically, the impact analysis evaluates in layers the consequences 
of a particular change up on a specific design combination to predict the required effort. 
The more a change causes other changes to be made, in general, the higher the required 
effort. The outcome of this process is a consequence flow or logical model as depicted in 
Figure 4-3 which is referred to the Interpreter implementation of the general decision 
problem (described in Table 1-1, Table 4-3, and presented in Figure 4-1) about the impact 
of possible maintenance scenarios on the CVP design combination. 
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More specifically, at the top of Figure 4-3 the major maintenance scenarios are 
depicted as the Event Layer or Level. In this example, the possible scenarios are referred to 
the addition either of one element or one operation with their probabilities as their edges’ 
weights (pnE, pnP).  

Below the Event Layer is the intermediate Attribute Level that exposes the design 
attributes and the way in which these are affected by each scenario type, denoted in their 
edges’ labels. For instance, the scenario of a new element (nE) increases the number of 
Composition’s elements (N) by one (++). The values of these design attributes contribute 
to the evaluation of the SMC metric by the following layers. 

Under the Attribute Level is the Class or Module Level that depicts the type of classes 
that effected by each scenario type. The number of classes that are affected by each change 
type is stated in their edges’ labels. For instance, the scenario of a new element (nE) affects 
one element’s class, the abstract Visitor’s class, and M operation’s (Visitor) sub-classes, 
thus totally M+2 effected classes. 

Next, the Method Level depicts the type of methods that effected as a consequence of 
an intervention in each of the class types of previous Class Level. For instance, referring to 
the scenario of a new element (nE), the single intervention in the element’s class causes an 
intervention on the relative ‘accept visitor’ method, and each of M+1 interventions in the 
operation’s (Visitor) class causes one method intervention, thus totally M+2 method’s 
interventions. 

Hence, the SMC metric for a “new element” scenario on CVP combination is the sum 
of all sub-effects lined up into the scenario’s virtual branch across different layers, formally 
stated as cm(CVP, N, M, 1.0, 0.0, 1) = 2(M+2) according to the notation in Table 4-2. 
Similarly, the SMC metric for a “new operation” scenario is cm(CVP, N, M, 0.0, 1.0, 1) = 
N+1 or N method interventions in one single (visitor) class. The memo table and the class 
diagrams in Figure 4-1 give an extra insight on how SMC metrics are interpreted.  

A similar consequence flow or logical model for CIBI design combination is presented 
in Figure 4-4. In this case, the implementation of both elements and operations are placed 
inside the single design pattern of Composition, thus this model includes fewer type of 
classes and methods. 

 
Figure 4-3: Consequence flow (logical model) during impact analysis for changes on 

the Visitor over Composite design combination (CVP). 
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Both consequence flow or logical model for CVP and CIBI design combinations 
provide the pattern for the complete set of the fundamental or SMC metric equations per 
design combination, as summarized in Table 4-3. From a different perspective, the SMC 
metrics can be conceived as a set of elementary principles which quantitatively signify how 
the added code or the related effort is allocated or spread in the context of an evolution 
pattern that reshapes the code during maintenance, as suggested in (Stopford & Counsell, 
2008). Thus, the effect of each single change is quantitatively depicted by the extracted 
SMC metrics. Conceptually, the whole transformation process is a stratified cause-effect 
analysis trying to quantify change-effects. 

Table 4-3: Equations of Fundamental Effort Metrics of CIBI vs. CVP General Decision 
Problem 

Description of maintenance scenario Equation of total effort for a single 

scenario application 

Affected design 

attributes 

New element on CVP cm(CVP,N,M,1,0,1)= 2(M+2) N++ 

New operation on CVP cm(CVP,N,M,0,1,1)= N+1 M++ 

New element on CIBI cm(CIBI,N,M,1,0,1)= M+1 N++ 

New operation on CIBI cm(CIBI,N,M,0,1,1)= 2(N+1) M++ 

4.3.5 Software Expansion Concept 

In this subsection, the conceptualization of the proposed theory inspired and supported by 
several empirical observations is documented. The description emphasizes into the trends 
and relations among the essential concepts of system’s size, required effort, and 
maintainability degree, concerning software maintenance process. 

According to Lehman’s first and second laws (Meir M. Lehman et al., 1997), referred 
as ‘Continuing Change’ and ‘Continuing Growth’, a software system has the trend to 
expand over their lifetime, since it must be continually adapted to maintain user 
satisfaction. Several studies provide empirical support of these laws (Bakota et al., 2012; 
Barry et al., 2007; C. R. Cook & Roesch, 1994; H. Gall et al., 1997; Jazayeri, 2002; M. M. 
Lehman et al., 1998; Yuen, 1988) mostly based on analysis of large repository of historical 
data. It is noticeable that  66% of changes enhancing an existing feature do so by adding a 

 
Figure 4-4: Consequence flow (logical model) during impact analysis for changes on 
the Inheritance-Based Implementation into Composite design combination (CIBI). 
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new feature as reported in (Paixao et al., 2017). Thus, the system’s size expressed in terms 
of code size has a positive change rate during the maintenance process. 

The required maintenance effort is proportional (linearly) related to the size of the code 
under adjustment as supported in (Araújo et al., 2012; Bengtsson & Bosch, 1999; Bosch & 
Bengtsson, 2001; Dolado, 2001; Hayes et al., 2004; Hayes & Zhao, 2005; Jabangwe et al., 
2015; Jazayeri, 2002; Zhang, 2008). Furthermore, size properties are identified as the 
most ideal predictors of effort as concluded by Briand et al. (L. C. Briand et al., 2002). Thus, 
since the system’s size has a positive change rate, the required effort during the 
maintenance process has a positive change rate as well. 

Software maintainability can be expressed through the estimation of the required effort 
during the maintenance process, as concluded in (Riaz et al., 2009a) and suggested in 
(Heitlager, Kuipers, & Visser, 2007b). Thus, more maintenance effort corresponds to less 
maintainable software, indicating an inverse relation between required effort and software 
maintainability degree. Since the system’s size and required effort have positive change 
rates, software maintainability degree has a negative change rate over time as confirmed 
by the software entropy approach in (Bakota et al., 2012) or by measurements of industrial 
systems in (Land, 2002). Conclusively, the analysis of the system’s size change rate 
provides a concrete theory about the quantification of the required effort toward 
maintainability assessment. 

4.3.6 Analysis of System’s Size Change Rate 

In this subsection, the concept of the system’s size change rate is decomposed to its 
underlying factors. In general, the system’s size is expanded as new code segments are 
added, or existing code segments are enhanced. These incoming code segments usually 
correspond to individual actions or maintenance scenarios (e.g., additions, modifications, 
debugging) as roughly visualized in large lined up code blocks in Figure 4-5. Each action 
type affects the logical entities (e.g., elements or operations) of existing software 
architecture or design pattern combinations. The current state of the affected logical 
entities is expressed by key design attributes such as number of elements or operations 
(e.g. [n] in Figure 4-5). According to the introduced approach, during the design stage, the 
actual size of such action code segments can be approximated by the number of the 
required interventions. Thus, each individual action and its corresponding code segment 
can be considered as a set of smaller or elementary code segments, representing the 
required distinct interventions (e.g., method interventions) as depicted in small stackable 
code bricks per action in Figure 4-5. The number of those interventions for each action 
type can be approximated based on the current state of key design attributes. Furthermore, 
the allocation of the elementary code segments is guided by the design architecture of the 
system and can be expressed by the number of (different and larger) effected code units 
such as classes, as roughly visualized in Figure 4-5. This number reflects the locality or the 
scattering degree of the required interventions for a given action type, capturing major 
characteristics of modifiability such as cohesion and coupling degree among logical entities. 
Thus, the more the affected classes for a given action type, the more the required effort for 
the elementary interventions to be completed. In the context of this study, the number of 
elementary method interventions and the number of affected classes per individual action 
or maintenance scenario are expressed through the derived equations of fundamental effort 
metrics in Table 4-3. 

As an action’s code segment is entering into the system, the current state of design 
attributes is affected, usually by increasing their values due to system’s innate expansion 
trend. Consequently, the size of following actions that is based on current values of those 
design attributes is increasing too. This increasing trend is roughly depicted by the 
increased size of incoming action code segments in Figure 4-5. In general, the incoming 
code segments are directly related to the required maintenance effort, which can be 
considered as incoming energy flow (developers’ effort) to a dynamic system of which the 
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change rate could be described through differential equations. This idea is not surprising 
because in many real-world systems, changes occur, and we want to predict future 
behavior on the basis of how current values change. The dynamic behavior of such systems 
can be modeled through differential equations. Hence, the analysis of the system’s size 
change rate is reduced to the study of incoming actions’ size change rate, as roughly 
visualized by the horizontal left-to-right flow (a) in Figure 4-5.  

In addition, the individual quantitative design attributes (e.g., number of elements or 
operations), which are generally increased determining the number of elementary 
interventions and following actions’ size, can be considered as dynamic sub-systems of 
which the change rates could be described through differential equations as well. Thus, the 
analysis of each action’s size change rate is reduced to the study of individual design 
attributes change rate as roughly depicted by the vertical bottom-to-up flow (b) in Figure 
4-5.  

Conclusively, the analysis of system’s size change rate is reduced to the analysis of 
actions’ size change rate, which further reduced to the analysis of individual design 
attributes change rate per implemented action or maintenance scenario. 

4.3.7 Structural Evolution through Change Rates 

In the next subsections, an innovative approach for deriving formal comparison models is 
presented. The approach further formalizes the software expansion concept and the 
analysis of system’s size change rate presented in previous subsections 4.3.5 and 4.3.6. 
Through the analysis of those change rates, software maintenance or evolution is 
holistically approached more as a going concern than as a static evaluation of the code’s 
characteristics. 

Since the values of effort assessments serve only for comparison purposes, there is no 
need for absolute predictions of actual cost in terms of wages, man-hours, fixed-costs, 
resources, etc. Thus, the evolution’s (maintenance) change rate over time is considered as 
constant and neutral. Hence, instead of actual time, the change rates are expressed in terms 
of number of applied actions or maintenance scenarios, notated by the Greek letter λ as 
indicated in Table 4-2 and Figure 4-5. 

Furthermore, since the metric equations in Table 4-3 assess the effort impact only for 
a single scenario application (λ=1), the introduced approach formulates the system’s size 
change rate through differential equations, assessing the total progressive effort impact for 

 
Figure 4-5: Abstract representation of software dynamic expansion during the 

maintenance process. 
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any number (λ ∈ N*) of scenario applications. The key concept is in design attributes, such 
as the number of elements (N) and the number of operations (M), the values of which are 
constantly affected during repeated scenario applications according to design patterns 
logic. Now the primary interest is concentrated on the formulation of the change rates of 
the system’s size and scenario’s size, as visualized by the horizontal (a) and vertical (b) 
change flows in Figure 4-5. This two-level differential analysis overall expresses the change 
rate of system’s size, expressed in terms of design attributes’ values per applied actions (λ). 
By solving this differential system, equations are derived expressing the total or progressive 
size, in the same terms. 

4.3.8 Differential Analysis and Model Derivation 

In this subsection, the core of the introduced modeling method is presented in a step-by-
step description by using the CIBI vs. CVP general decision problem as an indicative 
example. In general, the equations of the metrics in Table 4-3 are used as basic elements 
for the definition of simple first-order differential equations towards extraction of specific 
equations for precise computations of the total progressive maintenance effort. The 
analysis includes only expansion scenarios (additions) since they have a dominant role in 
the progressive evolution of the system and thus to size/effort assessment, as supported in 
chapter 3. 

SMC metric in Table 4-3, as an indirect metric, involves the measurement of other 
design attributes such as N and M. Thus, it implies that the investigation of the 
maintenance as an evolutionary process requires separate levels of analysis. Hence, the 
system’s expansion is described in two parts: a) one regarding the evolution of the design 
attributes (such as N and M) expressing the change rate of actions’ size, and b) next 
regarding the evolution of each scenario’s size expressing the change rate of the system’s 
size.  

A. Design attribute evolution: For each maintenance scenario, the related design 
attributes are updated based on individual probabilities of each scenario type and design 
pattern structural behavior. Similarly, the change rate of each design attribute is related to 
the individual probability of each scenario and design pattern structural behavior. 

Design attribute N: The change rate of the design attribute N (number of elements) 
for the new element scenario is related to pnE probability and design pattern structural 
behavior, which implies N increment by one for each scenario application, as indicated in 
Figure 4-3 and Table 4-3. In addition, for the new operation scenario, the design attribute 
N remains unchanged. Thus, the change rate of design attribute N is equal to the sum 
factors of each expected scenario probability (pnE and pnP) multiplied by its increment rate 

(+1 and 0 respectively), returning pnE⋅1+ pnP⋅0, or pnE. Thus, the expected change rate of 
design attribute N is expressed by the differential equation (4-1): 

𝑑𝑛

𝑑𝜆
= 𝑝𝑛𝛦1 + 𝑝𝑛𝑃0 → ∫

𝑑𝑛

𝑑𝜆
𝑑𝜆 = ∫𝑝𝑛𝐸 𝑑𝜆 → 𝑛(𝜆) = 𝜆𝑝𝑛𝛦 + 𝐶 (4-1) 

Initially, λ=0, and n(0) is equal to the initial value of attribute N. Thus, the actual value 
of the design attribute N during the λth scenario application is given by the equation (4-2). 

𝑛(0) = 𝑁 → 𝐶 = 𝑁 → 𝑛(𝜆) = 𝜆𝑝𝑛𝛦 + 𝑁  (4-2) 

Design attribute M:  Respectively, the expected change rate of the design attribute M is 
expressed by the differential equation (4-3): 

𝑑𝑚

𝑑𝜆
= 𝑝𝑛𝛦0 + 𝑝𝑛𝑃1 → ∫

𝑑𝑚

𝑑𝜆
𝑑𝜆 = ∫𝑝𝑛𝑃𝑑𝜆 → 𝑚(𝜆) = 𝜆𝑝𝑛𝑃 + 𝐶 (4-3) 

Initially, λ=0, and m(0) is equal to the initial value of attribute M. Thus the actual value 
of the design attribute M during the λth scenario application is given by the equation (4-4). 
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𝑚(0) = 𝑀 → 𝐶 = 𝑀 → 𝑚(𝜆) = 𝜆𝑝𝑛𝑃 +𝑀  (4-4) 

B. Scenario (action) size evolution: For each maintenance scenario, the required 
maintenance effort is related to the scenario’s size and depends on design pattern structural 
behavior based on the current values of design attributes. Similarly, the change rate of the 
required maintenance effort is related to the change rate of the scenario’s size, which is 
related to design pattern structural behavior based on the current values of design 
attributes for each maintenance scenario and its probability. 

From this point and on, the analysis is separately conducted for each design 
combination under comparison. At this level of analysis, the design attributes values are 
replaced by the equations (4-2) and (4-4) of the previous step.  

CVP design combination: The change rate of the scenario’s size for new element 
scenario is approximated by 2(m(λ)+2) or m(λ)+2 method interventions at m(λ)+2 
different classes, based on metric equation cm(CVP,N,M,1,0 1)=2(M+2) in Table 4-3. 
Thus, the expected change rate of the scenario’s size for the new element scenario is 
expressed by the differential equation (4-5): 

𝑑𝑐𝑛𝐸

𝑑𝜆
= 2(𝑚(𝜆) + 2) →

𝑑𝑐𝑛𝛦

𝑑𝜆
= 2((𝜆𝑝𝑛𝑃 +𝑀) + 2)  (4-5) 

The change rate of the scenario’s size for new operation scenario is approximated by 
n(λ)+1 or n(λ) method interventions at one class, based on metric equation 
cm(CVP,N,M,0,1,1)=N+1. Thus, the expected change rate of the scenario’s size for the new 
operation scenario is expressed by the differential equation (4-6): 

𝑑𝑐𝑛𝑃

𝑑𝜆
= 𝑛(𝜆) + 1 →

𝑑𝑐𝑛𝑃

𝑑𝜆
= 𝜆𝑝𝑛𝐸 +𝑁 + 1  (4-6) 

Thus, the expected change rate of both scenarios’ size is equal to the sum of each 
scenario’s size change rate multiplied by its probability factor, as expressed by the 
differential equation (4-7): 

𝑑𝑐

𝑑𝜆
= 𝑝𝑛𝐸

𝑑𝑐𝑛𝐸
𝑑𝜆

+ 𝑝𝑛𝑃
𝑑𝑐𝑛𝑃
𝑑𝜆

→
𝑑𝑐

𝑑𝜆
= 𝑝𝑛𝐸2((𝜆𝑝𝑛𝑃 +𝑀) + 2) + 𝑝𝑛𝑃(𝜆𝑝𝑛𝐸 + 𝑁 + 1) → 

∫
𝑑𝑐

𝑑𝜆
𝑑𝜆 = ∫(3𝜆𝑝𝑛𝐸𝑝𝑛𝑃 + 2𝑝𝑛𝐸𝑀 + 4𝑝𝑛𝐸 + 𝑝𝑛𝑃𝑁 + 𝑝𝑛𝑃)𝑑𝜆 → 

𝑐(𝜆)𝐶𝑉𝑃 =
3

2
𝜆2𝑝𝑛𝐸𝑝𝑛𝑃 + 𝜆𝑝𝑛𝑃𝑁 + 2𝜆𝑝𝑛𝐸𝑀 + 4𝜆𝑝𝑛𝐸 + 𝜆𝑝𝑛𝑃 + 𝐶  

(4-7) 

By definition c(0)=0, since before the maintenance process, the total required 
maintenance effort/size is equal to zero. Thus, the total progressive scenarios’ size or 
required effort, for λ repeated scenario applications based on their individual probabilities, 
is given by the equation (4-8): 

𝑐(0)𝐶𝑉𝑃 = 0 → 𝐶 = 0 → 𝑐(𝜆)𝐶𝑉𝑃 =
3

2
𝜆2𝑝𝑛𝐸𝑝𝑛𝑃 + 𝜆𝑝𝑛𝑃𝑁 + 2𝜆𝑝𝑛𝐸𝑀 + 4𝜆𝑝𝑛𝐸 + 𝜆𝑝𝑛𝑃   (4-8) 

CIBI design combination: The change rate of the scenario’s size for new element 
scenario is approximated by m(λ)+1 or m(λ) method interventions at one class, based on 
metric equation cm(CIBI,N,M,1,0,1)=M+1 in Table 4-3. Thus, the expected change rate of 
the scenario’s size for the new element scenario is expressed by the differential equation 
(4-9): 

𝑑𝑐𝑛𝐸

𝑑𝜆
= 𝑚(𝜆) + 1 →

𝑑𝑐𝑛𝛦

𝑑𝜆
= 𝜆𝑝𝑛𝑃 +𝑀 + 1  (4-9) 

The change rate of the scenario’s size for new operation scenario is approximated by 
2(n(λ)+1) or n(λ)+1 method interventions at n(λ)+1 different classes, based on metric 



 

UNIVERSITY OF 
PELOPONNESE 

“Model-driven Software Architectural Design based on Software 
Evolution Modeling and Simulation and Design Pattern Analysis 
for Design Space Exploration Towards Maintainability” 

 

PhD Thesis  80 

equation cm(CIBI,N,M,0,1,1)=2(N+1). Thus, the expected change rate of the scenario’s size 
for the new operation scenario is expressed by the differential equation (4-10): 

𝑑𝑐𝑛𝑃

𝑑𝜆
= 2𝑛(𝜆) →

𝑑𝑐𝑛𝑃

𝑑𝜆
= 2((𝜆𝑝𝑛𝐸 +𝑁) + 1)  (4-10) 

Thus, the expected change rate of both scenarios’ size is equal to the sum of each 
scenario’s size change rate multiplied by its probability factor, as expressed by the 
differential equation (4-11): 

𝑑𝑐

𝑑𝜆
= 𝑝𝑛𝐸

𝑑𝑐𝑛𝐸
𝑑𝜆

+ 𝑝𝑛𝑃
𝑑𝑐𝑛𝑃
𝑑𝜆

→
𝑑𝑐

𝑑𝜆
= 𝑝𝑛𝐸(𝜆𝑝𝑛𝑃 +𝑀 + 1) + 𝑝𝑛𝑃2((𝜆𝑝𝑛𝐸 +𝑁) + 1) → 

∫
𝑑𝑐

𝑑𝜆
𝑑𝜆 = ∫(3𝜆𝑝𝑛𝐸𝑝𝑛𝑃 + 𝑝𝑛𝐸𝑀 + 𝑝𝑛𝐸 + 2𝑝𝑛𝑃𝑁 + 2𝑝𝑛𝑃)𝑑𝜆 → 

𝑐(𝜆)𝐶𝐼𝐵𝐼 =
3

2
𝜆2𝑝𝑛𝐸𝑝𝑛𝑃 + 2𝜆𝑝𝑛𝑃𝑁 + 𝜆𝑝𝑛𝐸𝑀 + 𝜆𝑝𝑛𝐸 + 2𝜆𝑝𝑛𝑃 + 𝐶 

(4-11) 

By definition c(0)=0, since before the maintenance process, the total required 
maintenance effort/size is equal to zero. Thus, the total progressive scenarios’ size or 
required effort, for λ repeated scenario application based on their individual probabilities, 
is given by the equation (4-12): 

𝑐(0)𝐶𝐼𝐵𝐼 = 0 → 𝐶 = 0 → 𝑐(𝜆)𝐶𝐼𝐵𝐼 =
3

2
𝜆2𝑝𝑛𝐸𝑝𝑛𝑃 + 2𝜆𝑝𝑛𝑃𝑁 + 𝜆𝑝𝑛𝐸𝑀 + 𝜆𝑝𝑛𝐸 + 2𝜆𝑝𝑛𝑃   (4-12) 

Notice that equations (4-7) and (4-11) express a synthetic change rate term or more 
precisely a probability-weighted term. 

C. Selection decision: Maintainability assessment between different design pattern 
combinations can be achieved through the comparison of the estimated total progressive 
maintenance effort or scenarios’ size of each combination for a certain number of scenario 
applications (λ). The selection of the most beneficial design combination regarding its 
maintainability perspective is based on the minimum total progressive amount. 

Thus, the selection of the most beneficial design combination is formally stated: 

Selection = min{c(λ)d}, ∀d∈{CVP,CIBI}. In addition, the difference of the total required 
effort estimation for CVP and CIBI is given by the equation (4-13): 

𝑐(𝜆)𝐶𝑉𝑃−𝐶𝐼𝐵𝐼 = 𝑐(𝜆)𝐶𝑉𝑃 − 𝑐(𝜆)𝐶𝐼𝐵𝐼 → 𝑐(𝜆)𝐶𝑉𝑃−𝐶𝐼𝐵𝐼 = 𝜆(𝑝𝑛𝛦𝑀 − 𝑝𝑛𝑃𝑁 − 𝑝𝑛𝑃 + 3𝑝𝑛𝐸)  (4-13) 

Because the opposite characteristics of CIBI and CVP are inversely aligned, the 
equation (4-13) is a first-degree polynomial, neutralizing the second-degree trend of 
individual equations (4-8) and (4-12). Furthermore, the sign of equation (4-13) depends 
mainly on N, M, and pnE, pnP values, meaning that the decision is not straightforward, and 
thus the generated comparison model is significant and useful in respect to all used 
independent variables. 

Finally, the above differential analysis for the CIBI vs. CVP general problem is 
summarized in Table 4-4, including engaged metrics, change rates, differential 
expressions, and derived equations for each level of analysis. 

Table 4-4: Differential Analysis and Comparison Model Derivation for CVP vs. CIBI 
General Problem 

Level of analysis Engaged SMC metric, 
λ=1 

Change rate differential 
expression 

Derived Equation Eq. 
4- 

1. Design attribute evolution    
Design attribute N 

(elements) 
new element → N++ 𝑑𝑛

𝑑𝜆
= 𝑝𝑛𝛦1+ 𝑝𝑛𝑃0  𝑛(𝜆) = 𝜆𝑝𝑛𝛦 + 𝑁  1,2 

Design attribute M 
(operations) 

new operation → M++ 𝑑𝑚

𝑑𝜆
= 𝑝𝑛𝛦0 + 𝑝𝑛𝑃1  𝑚(𝜆) = 𝜆𝑝𝑛𝑃 +𝑀   3,4 

2. Scenario size evolution    
      a) CVP design combination    
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Level of analysis Engaged SMC metric, 
λ=1 

Change rate differential 
expression 

Derived Equation Eq. 
4- 

New Element cm(CVP,N,M,1,0,1)=2M 𝑑𝑐𝑛𝐸

𝑑𝜆
= 2𝑚(𝜆)   5 

New Operation cm(CVP,N,M,0,1,1)=N+1 𝑑𝑐𝑛𝑃

𝑑𝜆
= 𝑛(𝜆) + 1   6 

Total progressive 
effort CVP 

 𝑑𝑐

𝑑𝜆
= 𝑝𝑛𝐸

𝑑𝑐𝑛𝐸

𝑑𝜆
+ 𝑝𝑛𝑃

𝑑𝑐𝑛𝑃

𝑑𝜆
  𝑐(𝐶𝑉𝑃,𝑁,𝑀, 𝑝𝑛𝐸 , 𝑝𝑛𝑃 , 𝜆) = 

3

2
𝜆2𝑝𝑛𝐸𝑝𝑛𝑃 + 𝜆𝑝𝑛𝑃𝑁 +

2𝜆𝑝𝑛𝐸𝑀+ 4𝜆𝑝𝑛𝐸 + 𝜆𝑝𝑛𝑃  

7,8 

      b) CIBI design combination    
New Element cm(CIBI,N,M,1,0,1)=M+1 𝑑𝑐𝑛𝐸

𝑑𝜆
= 𝑚(𝜆) + 1   9 

New Operation cm(CIBI,N,M,0,1,1)=2N 𝑑𝑐𝑛𝑃

𝑑𝜆
= 2𝑛(𝜆)   10 

Total progressive 
effort CIBI 

 𝑑𝑐

𝑑𝜆
= 𝑝𝑛𝐸

𝑑𝑐𝑛𝐸

𝑑𝜆
+ 𝑝𝑛𝑃

𝑑𝑐𝑛𝑃

𝑑𝜆
  𝑐(𝐶𝐼𝐵𝐼,𝑁,𝑀, 𝑝𝑛𝐸 , 𝑝𝑛𝑃 , 𝜆) = 

3

2
𝜆2𝑝𝑛𝐸𝑝𝑛𝑃 + 2𝜆𝑝𝑛𝑃𝑁 +

𝜆𝑝𝑛𝐸𝑀+ 𝜆𝑝𝑛𝐸 + 2𝜆𝑝𝑛𝑃  

11, 
12 

4.4 Generalizing and Formalizing Modeling Method 

A general formal framework for the introduced modeling method has been developed in 
which the general notation of all aspects of the differential analysis is strictly defined as sets 
and arrays. In this case, the basic (SMC) metric equations are defined as first-degree 
polynomial expressions for all of design attributes’ factors and their weights plus one 
constant factor. In the case of an alternate metric with a different set of independent 
variables, affected by different weights, or expressed through another type of equation, this 
framework provides a sufficient general template for any further adaptation. Although such 
a rigorous framework seems to be complicated, its implementation through software is 
rather a regular task. An indicative (dynamic) implementation of such a framework in 

MATLAB® is described in this subsection and provided online in (Karanikolas, 

Dimitroulakos, & Masselos, n.d.-b) for further research purposes. 

4.4.1 Modeling Framework 

In this sub-section, a more general formal and rigorous framework regarding the 
differential analysis of the introduced modeling method is provided. The general notation 
of all the aspects of the differential analysis is strictly defined through sets and matrixes in 
Table 4-5 in correspondence to CIBI vs. CVP general problem’s notation. 

Table 4-5: Terminology and Notation of Modeling Framework 

Terminology General Notation Correspondence to CIBI vs CVP 
(general problem) Notation 

Design (pattern) combination under 
comparison di ∈ D|items| di ∈ D={CVP, CIBI} 

Initial Design Attributes (of specific 
problem) li ∈ L|items| li ∈ L={N, M} 

Structural (method, class) aspect ai ∈ A|items| ai ∈ A={am, ac} 
Maintenance (change) scenario type si ∈ S|items| si ∈ S={ne, np} 
Individual scenario probability pi ∈ P|items| pi ∈ P={pnP, pnE} 
Change rate of Design Attributes per 
Scenario fi,j ∈ F|L|x|S| 

fi,j ∈ F|L|x|S| = 
{{1,0}, {0,1}} 

Factor of each Design Attribute in 
fundamental (single scenario/SMC) metric 
equation (first degree polynomial expression 
for each of |L| values, plus one constant 
factors) 

ki,j,m,n ∈ K|D|x|S|x|A|x(|L|+1) 

ki,j,m,n∈K|D|x|S|x|A|x(|L|+1)= 

{ { {{0,1,2},{0,1,2}},      
{{1,0,0},{0,0,1}} }, 
{ {{0,1,0},{0,0,1}},     
{{1,0,1},{1,0,1}} } } 

Number of implemented maintenance 
changes (scenarios) λ λ 

Value of specific design attribute during λth 
maintenance changes (scenarios) li(λ): li ∈ L|items| li(λ): li ∈ {N, M} 

Single scenario (λ=1) effort for specific S, D, 
L, and all A cm(di, l1, …, lg, sj, 1)= 

∑(∑(𝑘𝑖,𝑗,𝑞,𝑔 ∙ 𝑙𝑔)

|𝐿|

𝑔=1

+ 𝑘𝑖,𝑗,𝑞,|𝐿|+1)

|𝐴|

𝑞=1

 

s1=ne → pnE=1 & pnP=0  
s2=np → pnE=0 & pnP=1 
cm(CVP,N,M,1,0,1),  
cm(CVP,N,M,0,1,1), 
cm(CIBI,N,M,1,0,1),  
cm(CIBI,N,M,0,1,1) 

Total (progressive) effort for specific λ, P, D, 
L, and all S, A 

cm(di, l1, …, lg, p1, …, pj, λ) cm(D, N, M ,pnE, pnP, λ) 
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More specifically, the set of design alternatives under comparison is represented by D 
set. The initial values of each key design attribute are represented by L set. Furthermore, 
the different structural aspects of the analysis are represented by the auxiliary A set. Each 
structural aspect reflects a different type of affected code segment, such as method (am) and 
class (ac) interventions. Respectively, the different types of major maintenance scenarios 
are represented by the auxiliary (S) set. The values of the individual probabilities for each 
scenario type are represented by P set. The change impact of each scenario type on each 
design attribute is represented by F set. The F set is a matrix of which the dimensions are 
related to the product of lengths of L and S sets, or else |L|x|S|. Thus, the number of F row 
represents the related number of design attributes of L set, and the number of F column 
represents the related number of maintenance scenario of S set. For instance, the first value 
of F set or F[1,1]=1 reflects the increment by one of the 1st element or design attribute in L 
set or L[1]={N} during the application of the 1st element or new element scenario of S set 
or S[1]= {ne}. The values of weight-factors that affect each design attribute (L) for each 
specific structural aspect (A), scenario type (S), and design combination (D) are 
represented by K set. The K set is a matrix of which the dimensions are related to the 
product of lengths of D, S, A, and L sets, or else |D|x|S|x|A|x|L|+1. For instance, the first 
element of K set reflects the weight-factor that affects the CVP design combination, during 
a new element (ne) scenario application, about the structural aspect of method 
interventions (am), for the design attribute of composition’s elements (N). The values of 
these weight-factors (K) combined with the initial values of the design attributes (L) define 
the fundamental (SMC) metric equations (cm) that express the required effort of a specific 
scenario type (S) and design combination (D) for a single scenario application (λ=1). 

Notice that the fundamental (SMC) metric equations (cm) are defined as first-degree 
polynomial expressions for each of the design attribute factors (L) plus one constant factor. 
The constant factor is represented by the extra last value of K set. Thus, in the case where 
other independent variables, not necessarily design attributes, should be added to the 
model, they could be inserted in L set. In addition, if some of those attributes (L) are 
affected by different weight in (SMC) metric equations, this could be inserted into the 
weight-factors’ (K) set. An interesting example of different weights on attributes of SMC 
metric is presented in subsection 3.9.2 as an extension example. However, even if SMC is 
expressed through another type of equation, this framework provides a sufficient general 
description and template for any further adaptation. 

The two levels of the differential analysis and integration are formulated by presenting 
their change rate differential expressions and the derived outcome of each level, as 
presented in Table 4-6. In the first row, the evolution of design attributes’ values (L) is 
analyzed by stating their change rates per scenario application. Thus, the change rate of 
each design attribute is expressed by multiplying individual scenario probabilities (P) and 
their related impact-weight (F) for all scenario’s types (S). Consequently, the derived 
equations li(λ) express the expected value of each design attribute after any number (λ) of 
scenario applications. In the second row in Table 4-6, the evolution of scenario size is 
analyzed by stating their change rates per scenario application. Thus, the change rate of 
scenarios’ size is expressed by multiplying individual design attributes (L) and their related 
weight-factors (K) for all attributes (L), and all structural aspects (A), also probability-
weighted through (P), and for all scenario’s types (S). Consequently, the derived equations 
cm(…,λ) express the total progressive or expected value of maintenance effort/size for each 
design alternative (D) after any number (λ) of scenario applications. Finally, the 
selection/decision is derived from the minimum total progressive effort, as typically 
expressed by the equation (4-14). 
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Table 4-6: Modeling Framework of Differential Analysis and Comparison Model 
Generation 

Level of analysis Engaged SMC 
metric 

Change rate differential expression Derived  Outcome 

Design attribute evolution   

∀ li ∈ L|items| 

 
𝑑𝑙𝑖
𝑑𝜆
=∑𝑝𝑗 ∙ 𝑓𝑖,𝑗

|𝑆|

𝑗=1

 𝑙𝑖(𝜆)  

Scenario size evolution   

Total progressive 
maintenance 

size/effort  
∀ di ∈ D|items| 

cm(di, l1, …, lg, sj, 1) 

𝑑𝑐𝑖
𝑑𝜆
=∑(𝑝𝑗 ∙ 𝑐𝑚(𝑑𝑖 , 𝐿, 𝑠𝑗 , 1))

|𝑆|

𝑗=1

= 

=∑(𝑝𝑗∑(∑(𝑘𝑖,𝑗,𝑞,𝑔 ∙ 𝑙𝑔(𝜆))

|𝐿|

𝑔=1

+ 𝑘𝑖,𝑗,𝑞,|𝐿|+1)

|𝐴|

𝑞=1

)

|𝑆|

𝑗=1

 

𝑐𝑚 (
𝑑𝑖 , 𝑙1,… , 𝑙𝑔 ,

𝑝1, … , 𝑝𝑗 , 𝜆
)  

 

Although the presented framework of analysis seems to be complicated, its 
implementation through software (e.g., MATLAB®, MS Mathematics) is rather a regular 
task. In general, solving a differential equation is not always an easy matter. Still, for the 

simple first-order form y’=f(λ) used in the proposed modeling method framework, an 

explicit solution can be easily derived through integration in both sides of each differential 
equation, as supported by calculus theory in (Stewart, 2015). 

min∀di∈D {∫ (∑(𝑝𝑗∑(∑(𝑘𝑖,𝑗,𝑞,𝑔∫ (∑𝑝𝑔 ∙ 𝑓𝑔,𝑣

|𝑆|

𝑣=1

)
𝜆

𝑡2=0

𝑑𝑡2)

|𝐿|

𝑔=1

+ 𝑘𝑖,𝑗,𝑞,|𝐿|+1)

|𝐴|

𝑞=1

)

|𝑆|

𝑗=1

)
𝜆

𝑡1=0

𝑑𝑡1} (4-14) 

4.4.2 Framework Implementation on General Problems using MATLAB® 

In this subsection, an indicative (dynamic) implementation of the framework using 

MATLAB® is presented in Code A.1 of Appendix A. The code is adapted to CIBI vs. CVP 

general problem to be meaningful and help the researcher towards further adaptations. In 
Listing 4-1, the parameters of the CIBI vs. CVP general problem are loaded to the sets and 
matrixes of the proposed modeling framework. Each level of the differential analysis 
presented in Table 4-6 has been implemented into separate code segments. By running the 
script, several intermediate differential expressions are formed and solved. Furthermore, 
all the formal model’s equations are dynamically generated and stored in several 
expressions and function types supported by MATLAB® environment. These dynamic 
functions can be further used for massively computations for any combination of the 
independent variables, producing useful data sheets and graphs. All the presented code has 
been tested on MATLAB® R2016a version.  

Listing 4-1: Loading CIBI vs CVP general problem to MatLab Modeling Framework 

 

1. % Data describing (general) comparison problem (CIBI vs CVP) and fundamental (SMC) metric analysis 

2. % In this section, different or alternate problems should be described 

3. D = {'CVP','CIBI'}; % tags of Design combinations under comparison 

4. L_tags = {'N','M'}; % tags of design attributes: N initial elements, M initial operations 

5. A = {'Method aspect', 'Class aspect'}; % tags of Structural aspects 

6. S = {'nE', 'nP'}; % tags of Types of maintenance scenarios: nE new composition element, nP new operation 

7. F = [1 0; 0 1]; % N:+1 and M:+0 for nE, N:+0 and M:+1 for nP (change rates of affected design attributes for each scenario type |S|x|L|) 

8. % SMC metric factors on design attributes L, for each design combination D, scenario S, and aspect A are stated in K array 

9. K = zeros([size(D,2) size(S,2) size(A,2) size(L_tags,2)+1]); % creates empty matrix with dimensions: |D|x|S|x|A|x|L|+1 

10. %             method  class   (structural aspects) 

11. % D S          N M -   N M - 

12. K(1,1,:,:) = [0 1 2 ; 0 1 2]; % on CVP  for a nE : totally 0N+1M+0 method + 0N+1M+0 class interventions = 2(M+2) 

13. K(1,2,:,:) = [1 0 0 ; 0 0 1]; % on CVP  for a nP : totally 1N+0M+0 method + 0N+0M+1 class interventions = N+1 

14. % ------------------------------------------------------------------------------------------------------------------------------------------------------ 

15. K(2,1,:,:) = [0 1 0 ; 0 0 1]; % on CIBI for a nE : totally 0N+1M+0 method + 0N+0M+1 class interventions = M+1 

16. K(2,2,:,:) = [1 0 1 ; 1 0 1]; % on CIBI for a nP : totally 1N+0M+0 method + 1N+0M+0 class interventions = 2(N+1) 
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4.4.3 Graph Generation and Decision-Making for Specific Practical Systems 
using MATLAB® 

In this subsection, the generated expressions and dynamic functions produced by the 
previous code are used for decision-making support among design alternatives in Code A.2 
of Appendix A. More specifically, any possible combination of initial design attribute values 
and their individual probabilities, describing a specific and practical system 
implementation (e.g., Compiler, Interpreter/DSL, GUI), can be provided through the 
parameter sets L and P. Next, the example of plotting code can draw meaningful graphs to 
support decision-making. Notice that the plotting code has been parameterized based on 
set matrices, and thus it is common and reusable for any set of parameters.  

In Listing 4-2, the design attributes (N=40, M=10) and scenario’s probabilities 
(pmE=pnP=0.5) of the Interpreter implementation which  represents an instance of the CIBI 
vs. CVP general problem, are loaded to the sets and matrixes of the proposed modeling 
framework. Then, the symbolic functions named ‘FM_cost_D_f’, dynamically generated 
by the modeling framework, are used for the estimation of required effort per design 
alternative and for different values of scenario’s applications (λ). For example, the function 
call ‘FM_cost_D_f{1}(40, 10, 0.5, 0.5,80)’ returns the total required effort for the 1st design 
alternative (i.e., CVP), with specific design attributes (i.e., N=40, M=10) and scenario’s 
probabilities (i.e., pmE=pnP=0.5), after the application of a certain (λ=80) number of 
scenarios. Respectively, the decision-making code for the tow similar frameworks adapted 
to the extended general designing problems are presented in Code B.1,2 and C.1,2 of 
Appendix A. 

Listing 4-2: Loading Interpreter characteristics to MatLab Modeling Framework 

 

4.4.4 Formal Model Application in Examples of Practical Specific Problems 

After the formal model has been derived, it can be easily used to repeatedly support 
decision-making for any attribute set of a specific system. Alternatively, each formal model 
is a parametric solution of the general problem under study. Furthermore, the (indicative) 

dynamic implementation of the framework in MATLAB®, provided online in (Karanikolas 

et al., n.d.-b), can be used for generating the formal models and creating meaningful 
diagrams of the required effort for different λ values. In addition, the derived formal model, 
as general and reusable, can be integrated into the company’s quality policy for future use 
in similar projects as illustrated in Figure 1-3. As an application example, the derived 
formal model is applied to the practical examples of an Interpreter implementation 
(presented in Table 1-1 and Table 4-1), and a Graphic User Interface (GUI) 
implementation (presented in Table 1-1). The initial values of the design attributes (N, M, 
pnE, pnP) for each practical example are referred in the title of each graph in Figure 4-6.  

17. % Data (design attributes) derived from specifications of a specific system (instance of general problem) 

18. % In this section, the design attributes of a specific system are placed (multiple attributes can be declared as arrays) 

19. L = [40 10]; % initial values of design attributes N and M 

20. P = [0.5 0.5]; % individual probabilities of each scenario type |S| 

21. %%====PLOTTING CODE =========================================================== 

22. lt = 5:5:100; % declares the array of the interval of interest 

23. merged_parameters_values = {}; % merges L(i) and P(i) values of parameters in a single array of cells 

24. for i=[1:size(L_tags,2)] 

25.     merged_parameters_values{i} = L(i); 

26. end 

27. for i=[1:size(P,2)] 

28.     merged_parameters_values{size(L_tags,2)+i} = P(i); 

29. end 

30. % merged_parameters_values are aligned according to FM_cost_D_f symbolic function's declaration 

31. % Uses the FM_cost_D_f symbolic function (returning an array of computations for all D) and computes total effort for λ=[5:5:100] 

32. for i=[1:20] 

33.     G_lines(i,:) = FM_cost_D_f(merged_parameters_values{:}, i*5); 

34. end 

35. % adds different lines for each design combination D  

36. plot (lt, G_lines, 'MarkerSize',4,'Marker','square'); 
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The generated diagrams in Figure 4-6 indicate that CVP design combination is 
preferred in the case of Interpreter implementation, since it requires less effort during 
maintenance for any number of scenario applications or λ value. Respectively, CIBI design 
combination is preferred in the case of GUI implementation, thus proper design 
combination depends on the specific characteristics or design attributes of a particular 
instance of the general problem. Consequently, the selection’s outcome is not about that 
one design alternative is generally superior of some others, but instead, the most beneficial 
design alternative variates and depends on the model’s parameters (design attributes and 
scenarios probabilities). Thus, it is very difficult to make such complex decisions based on 
real-world experience. Furthermore, the long-term gain, between CVP and CIBI required 
effort, exceeds 20% of optimum (minimum) effort for all implementations, highlighting the 
beneficial contribution of the formal model to the decision-making process.  

Given that the derived formal models are easily reusable in a general family of common 
problems, preventing significant loses in terms of maintenance effort; the future benefits 
of the proposed technique outweigh its analysis cost. A more detailed and formal 
justification about the maximum allowed derivation cost of Formal comparison Models is 
presented following subsection. 

4.4.5 Justification of Formal Model’s Derivation Cost 

One critical issue that should be addressed is whether the long-run benefits from the 
repeated implementation of a formal model to specific instances of a general designing 
problem justifies or exceeds its initial derivation cost. From a company’s perspective, the 
formal model’s derivation cost is an investment. The long-run benefits from the 
implementation of that formal model are the investment’s return. Typically, the evaluation 
of such investments can be assessed through standard financial methods and measures 
such as Net Present Value (NPV) and Internal Rate of Return (IRR). However, a simpler 
formula for finding the relation between initial model’s derivation cost and long-term 
benefits (return) is suggested in (Bass et al., 2012) and presented in Table 4-7.  

Table 4-7: Formula for Finding the Relation Between Initial Model’s Derivation Cost and 
Long-Term Benefits (Return) 

Description of Factor Notation / Equation 
The number of possible design decisions among competing design 
alternatives for different and specific systems for a general designing 
problem 

Ndes 

 
Figure 4-6: Results of the application of the Formal comparison Model on the 
practical examples of Interpreter, and Graphic User Inter-face (GUI), specific 

problems as instances of CVP vs. CIBI general problem. 
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Description of Factor Notation / Equation 
  The more general and significant the problem the higher the 
possible number of design decisions  for different instances (systems) 
of the general designing problem 
The average lifetime cost of those different and specific systems 
  at least 60% of software life-time cost is about maintenance cost 
until their retirement as suggested by real case evidence 

Lcost 
 
Mcost = 0.6 * Lcost 

The (one-time) derivation cost of the formal models (through the 
proposed modeling method) for the particular (general) designing 
problem 

Dcost 
 

The cost of making a design decision for a particular system by using 
the derived formal models (implementation cost) 
  usually is very small since the derived equations of the formal 
model return the estimated long-term effort per design alternative 
only through a single computation , thus tends to zero 

Icost → 0 

The possibility of making the right (most maintainable) 
selection/decision among design alternatives  based on developers’ 
experience or intuition 

Prdes 

The average portion of wasted effort against the optimal maintenance 
cost (Mcost) in case of a wrong decision-making 
  approximated to at least 30% of systems’ maintenance cost as 
suggested by the evidence of the study 

Pweffort = 0.3 

The average negative impact of making a design decision for a 
particular system by not using the derived formal models, usually 
through experience or intuition  
  is related to the average amount of wasted effort in case of a wrong 
decision-making (Experience based cost) 
  depends on the possibility of making a wrong decision (1-Prdes) 

Ecost =  
Pweffort * Mcost * (1-Prdes) = 
Pweffort * 0.6 * Lcost * (1-Prdes) = 
0.3 * 0.6 * Lcost * (1-Prdes) =  
0.18 * Lcost * (1-Prdes) 

The relation that justifies a formal method to support decision-making 
among alternatives for a particular general designing problem 
  the average negative impact per decision-making multiplied by the 
number of possible design decisions should be exceeds the initial 
(one-time) derivation cost of the formal models plus the 
implementation cost multiplied by the number of possible design 
decisions 

Ndes*Ecost > Dcost + Ndes * Icost →  

Ndes*Ecost > Dcost + Ndes * 0 → 
Ndes*Ecost > Dcost  →  

Dcost < Ndes * Ecost  → 
Dcost < Ndes * 0.18 * Lcost * (1-Prdes) 

Example of the relation (pessimistic assumption) 
  experienced developers with portability Prdes = 66% to take the 
right decision based on their experience or intuition 
  small software life-cycle cost of Lcost = 20000$ 
  small number of formal model’s implementations to specific 
systems, Ndes=5 

Dcost < Ndes * 0.18 * Lcost * (1-Prdes) → 

Dcost < 5 * 0.18 * 20000$ * (1-0.66) → 

Dcost < 6.000$  

Example of the relation (realistic-regular assumption) 
  experienced developers with portability Prdes = 66% to take the 
right decision based on their experience or intuition 
  software life-cycle cost of Lcost = 100000$ 
  number of formal model’s implementations to specific systems, 
Ndes=20 

Dcost < Ndes * 0.18 * Lcost * (1-Prdes) → 

Dcost < 20 * 0.18 * 100000$ * (1-0.66)→ 

Dcost < 120.000$ 

 

According to the assumptions and definitions in Table 4-7, the relation that justifies 
the initial derivation cost of formal models is given by the Equation (4-15). In particular, 
the (one-time) derivation cost (Dcost) should be less than the product of the number of 
possible design decisions (Ndes), the constant factor (0.18), the average lifetime cost of the 
systems on which the decisions are made, and the probability of making a wrong decision 
based on developers’ experience (1-Prdes). Thus, the higher the possibility of using the 
model (Ndes) or the higher the average lifetime cost of the systems in which the model 
applied (Lcost) or the lower the experience level of developers (Prdes), the higher the 
allowed derivation cost of the formal model (Dcost). It is important that the difference 
between the maximum allowed derivation cost obtained by the formula and the actual 
derivation cost represents the net present value (NPV) or the extra profit as a result of the 
use of the formal model. 

𝐷𝑐𝑜𝑠𝑡 < 𝑁𝑑𝑒𝑠 ∗ 0.18 ∗ 𝐿𝑐𝑜𝑠𝑡 ∗ (1 − 𝑃𝑟𝑑𝑒𝑠) (4-15) 

Referring to the first example in Table 4-7, even for the most pessimistic assumptions 
of formula parameters, there is enough justification for analyzing and generating formal 
models for general and significant design problems through the proposed modeling 
method. For the more usual and realistic parameters in Table 4-7, there is no doubt about 
the significant value and competitive advantage provided by the introduced modeling 
method through the derived formal models. 
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4.5 Validation Evidence 

The generated formal model for the comparison of CIBI vs. CVP general problem is 
validated by many other theoretical and empirical studies in the literature. This proves the 
validity of the proposed modeling method. More specifically, the argumentation of SMC 
metrics in Table 4-3 provides sufficient theoretical background about SMC’s actual relation 
to properties like code size, scattering degree, cohesion, coupling, etc., and thus to the 
required effort or maintainability degree, as discussed in (Aloysius & Arockiam, 2013; 
Aversano et al., 2009; Canfora et al., 2010; Hassan, 2009; Heitlager et al., 2007b; 
Karanikolas et al., 2017; Riaz et al., 2009a). Furthermore, the SMC metric is in accordance 
with other similar metrics such as the Evolution Complexity (Tom Mens & Eden, 2005) 
and the Computational Complexity (Hills et al., 2011), as discussed in chapter 3. The 
equations (4-8), (4-12), (4-13), and the application results in Figure 4-6 are also confirmed 
by the quantitative analysis in chapter 3 in which computations for CIBI vs. CVP 
comparison have been performed through a custom function. This function is available 
online for demonstration purposes and further tests (Karanikolas, Dimitroulakos, & 
Masselos, n.d.-a). Moreover, the permanently second-degree increased rate of equations 
(4-8) and (4-12) is in accordance with Barry et al. (Barry et al., 2007) empirical validation 
evidence, and Bakota et al. general prediction model (Bakota et al., 2012). 

Furthermore, the SMC metrics focus on expansion scenarios and magnify the impact 
of the relevant interventions concerning critical characteristics of modifiability such as 
coupling and cohesion among code segments of logical entities. This reasoning is prior 
evidence of the method’s validity towards its main objective i.e., to compare design 
alternatives with regards to their modifiability perspective.  

Finally, taking into consideration the assumptions and characteristics of SMC metric 
with regards to the common and neutral to decision-making factors, mentioned in 
subsection 4.3.3, the following conclusions can be drawn. As the maintenance process 
evolves, and despite the various stochastic and random factors affecting it, the average 
long-term effect of these factors would be eventually negligible, and thus the predictions of 
the required effort are increasingly driven by the standard and recurring structural 
behavior of the used design patterns. Hence, the proposed approach aims at eliminating 
transitory and biased factors to enhance mid-to-long-term predictive ability and selection 
accuracy. 

4.6 Conclusions 

4.6.1 General Requirements and Limitations 

The proposed modeling method is mainly useful for comparing design alternatives that 
solve the same general problem using different design approaches. Thus, absolute 
maintenance cost assessments or effort estimations for individual design implementations 
are out of the scope of the proposed approach. In any case, the proposed method is suitable 
only for modeling design alternatives of important families (classes) of problems which 
also have a dominant impact on the overall maintainability of the system.  

Furthermore, the proposed formal method is (by definition) focused on maximizing 
the potential for being general over different instances of a given general problem. 
However, formal methods usually suffer from lack of realism of context and precision of 
measurements, as stressed in (Stol & Fitzgerald, 2018). Ideally, actual observations from 
field experiments or case studies that maximize the potential for realism of context would 
be preferable for validation purposes. Nevertheless, in real life, finding identical actual 
systems with common design attributes, developed in different design variations is almost 
impossible. Additionally, the number of recorded observations is very limited per case 
study, using heterogeneous metrics, and unevenly conducted through literature. Thus, they 
are not statistically meaningful, heavily limiting the generalization of inferences, as pointed 
in (Langdon et al., 2016; Shepperd & MacDonell, 2012). Moreover, developer-related 
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aspects, such as experience level and learning rate are also ignored by the method since 
they are heavily biased (human-related) factors hard to be assessed and measured. Because 
of all these reasons, there is no easy way to determine the accuracy of the method referred 
to possible wrong decisions. This is a standard concern with regards to validity since the 
attempt to validate the method based on a limited number and dissimilar case studies may 
increase realism of context while sacrificing generalizability which should be the method’s 
primary focus. A possible solution to this issue may be the simulation of system’s structural 
evolution for different design alternatives to produce adequate number of homogenous 
observations and measurements towards a statistical validation. These issues and 
potentials are explored in Chapter 6 through an intensive experimentation process. 

4.6.2 Extensions and Further Research 

The proposed modeling method can be used to support different tools, including aspect-
oriented programming tools that generate source code (Völter, 2003), templates or 
libraries from a higher-level language to evaluate appropriate design pattern combinations. 
Furthermore, the generated formal models can be used as fitness functions (effort 
estimators) for optimization problems or design space exploration (seeking for optimal 
design solution among many alternatives) solved through heuristic algorithms such as 
genetic algorithms (Clarke et al., 2003). Under this perspective, the proposed modeling 
method and the generated formal models can be used in by refactoring tools and 
techniques for UML diagrams and design patterns such as those discussed in (Jahnke & 
Zündorf, 1997; T. Mens & Tourwe, 2001), as proposed in (T. Mens & Tourwe, 2004).  

The provided modeling framework can be used for analyzing alternate general and 
significant design problems in software engineering. For example, many significant 
variations or extensions of the general problem of part-whole representations can be 
considered by attaching other well-known design patterns such as Decorator, Observer, 
Mediator, Abstract Factory, and Prototype. All these potentials are discussed in Chapter 5. 

Furthermore, a promising perspective of the proposed modeling method is towards 
supporting decision-making among design alternatives even under full or partial 
uncertainty (e.g., for the whole range or for an interval of scenarios’ probabilities). In this 
case, decision criteria such as minimization of wasted effort in the worst case or 
maximization of gained effort in the optimal case can be supported by the derived equations 
through further integration on probabilities’ factors (e.g., pnE, pnP). Similarly, decision-
making can be amplified through the horizon analysis technique. That is, forecasting the 
realized effort over various maintaining periods or horizons where each period has different 
scenarios’ probabilities. Under this perspective, even the development process can be 
considered as a preliminary maintenance period. Horizon analysis opens a whole spectrum 
of different aspects and criteria such as investing, economic, and financing, regarding the 
evaluation and selection among design alternatives for various sub-periods of software 
lifecycle. In these ways the proposed framework is extended to even more realistic settings 
as demonstrated in Chapter 7.  

4.6.3 Overall Assessment 

Software architecture design includes several decisions with significant impact on the 
pursued quality attributes. Decisions made during software architecture design also heavily 
affect maintainability and modifiability of software and the relevant time and effort. Due to 
software complexity, decisions made by experienced developers lead to suboptimal results. 
The proposed modeling method generates probabilistic comparison models that estimate 
maintainability of object-oriented design alternatives through effort predictions in a formal 
and deterministic way. This approach limits the ambiguity imposed by the stochastic 
nature of the maintenance process.  

The theoretical foundation of the proposed modeling method and the results of 
relevant works provide strong evidence that the derived formal models provide reliable 
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estimations of the expected effort. Thus, decisions concerning design alternatives exhibit 
very limited selection-risk, avoiding significant amounts of wasted maintenance effort. 
Methods that yield such formal, general, and reusable models can help engineers improve 
the quality of their decision-making and develop more maintainable software. 
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5 Extended General Design Problems 

5.1 Chapter Overview 

In this chapter, the proposed modeling method, analyzed in chapter 3 and chapter 4, is 
applied to three different extensions of the CVP vs CIBI general problem, assessing its 
applicability to even more realistic settings. In particular, the established design patterns 
of Decorator, Mediator, Observer, Abstract Factory, and Prototype have been engaged and 
modeled. In addition, the generated formal models have been tested on several specific 
instances of each general problem. Moreover, the exploration of almost the entire design 
space of each general problem through samples of one thousand sets of their parameters 
has been attempted. The results prove that the proposed modeling theory and derived 
formal models can efficiently support decision-making among design alternatives, leading 
to considerable reduction of the maintenance effort that lies between 25% and 90% of the 
optimal required effort. 

More specifically, the proposed modeling method is applied to three important general 
problems in the field of object-oriented design. Each of these problems is an extension of 
the basic CVP vs CIBI problem, altering its applicability to even more complex and realistic 
settings. The new general problems incorporate the well-known object-oriented design 
patterns of Decorator, Mediator, Observer, Abstract Factory, and Prototype, introduced by 
Gamma et al. (Gamma et al., 1994). These patterns are frequently combined with the 
Composite and Visitor design patterns to enhance their functionality (e.g., by providing on 
demand additional functionality on elements, synchronizing communication, and 
coordination among elements through common interface, instantiating additional families 
of elements, etc.). Thus, such design patterns are significant and widely used in the filled 
of software engineering. Since many of these design patterns are affected by major 
maintenance scenarios in complex and conflicting ways, the proposed modeling method 
derives appropriate formal models that resolve conflicting issues and tradeoffs to support 
early decision-making among different design alternatives. 

The context of this chapter is based on the on the motivation examples in chapter 1, 
the significant design problem of part-whole representations in chapter 3, and the 
modelling method and framework presented in chapter 4. The rest of this chapter is 
organized as follows. Subsection 5.2 attaches and evaluates the Decorator design pattern. 
Subsection 5.3 attaches and evaluates the Mediator and Observer design patterns. 
Subsection 5.4 attaches and evaluates the Abstract Factory and Prototype design patterns. 
Subsection 5.5 evaluates the initial design problem of part-whole representations. 
Subsection 5.6 summarizes the contribution evidence of the modeling method.  Finally, in 
subsection 5.7, the validity challenges, limitations, future research issues, and conclusions 
are presented. 

5.2 Attaching Decorator Design Pattern 

5.2.1 Problem Description 

In this subsection, an extension of the CIBI vs. CVP problem is discussed by attaching the 
Decorator design pattern. A conceptual UML diagram of the new problem and the 
response measures or SMC metrics per maintenance scenario, are presented in Figure 5-1. 
More specifically, the Composite (CP) design pattern is often combined with the Decorator 
(DP) design pattern (Gamma et al., 1994). DP design pattern allows extending the 
functionality of CP concrete elements, during run-time, against the costly alternative of 
sub-classing existing CP elements. This situation is very common, especially for GUI 
implementations where several extra (on demand) functionalities or responsibilities can be 
attached in a graphical component during run-time. Each Decorator instance can be 
dynamically linked to a concrete CP element directly or through recursive calls in a chain 
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of several nested Decorators. Thus, DP is placed as an abstract sub-class into CP, which is 
further analyzed to several concrete decorators’ sub-classes, implementing the required 
responsibilities. Hence, from the Decorator pattern perspective, a composite is a concrete 
component. Respectively, from the Composite’s pattern perspective each decorator is part 
of its hierarchy, similar to a concrete CP element with a common interface. Furthermore, 
each Decorator usually contains the same operations, which can be also implemented 
through the Visitor design pattern (as CVP-DP combination versus the straight 
inheritance-based implementation (CIBI-DP)). Thus, in this case, two alternative design 
combinations arise (CVP-DP, CIBI-DP).  

The selection between these alternatives can be supported by the introduced modeling 
method in chapters 3 and 4. The key design attributes are enhanced as N, M, and D for the 
initial number of decorators. Furthermore, major maintenance scenarios and their 
probabilities are enhanced as pnE, pnP, and pnD for adding a new decorator. Using the 
response measures or SMC metrics in Figure 5-1, the new problem can be easily 
formulated through the provided modeling method framework in subsection 4.4. 

5.2.2 Derivation of Effort Measurements and Formal Models 

A (dynamic) formal model generation for the new problem through the modeling method 
framework using MATLAB® code is available online in (Karanikolas et al., n.d.-b) and 
discussed in subsection 4.4. In addition, the modeling framework adapted to the extended 
with the Decorator design pattern CIBI-DP vs. CVP-DP general designing problem is 
presented in Code B.1 of Appendix A. In Listing 5-1, the parameters of the CIBI-DP vs. 
CVP-DP general problem are loaded to the sets and matrixes of the proposed modeling 
framework.  

 
Figure 5-1: Conceptual UML class-diagram of CIBI-DP vs CVP-DP design 

combinations. 
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Listing 5-1: Loading CIBI-DP vs. CVP-DP general problem to MatLab Modeling Framework 

 

The macro generates one formal model equation for each alternative design 
combination and produces its results as a single graph for specific design attributes and 
scenarios’ probabilities. More specifically, the generated formal models are returned in the 
form of the symbolic expression cost_DSAL(D) where D={CVP-DP, CIBI-DP}. Thus, the 
total required effort for CVP-DP design alternative is given by the equation (5-1). 

𝑐(𝜆)𝐶𝑉𝑃−𝐷𝑃 = 

3

2
∙ 𝑝𝑛𝑃 ∙ (𝑝𝑛𝐷 + 𝑝𝑛𝐸) ∙ 𝜆

2 + 

(𝑝𝑛𝑃 + 2 ∙ 𝑝𝑛𝐷 ∙ (𝑀 + 2) + 2 ∙ 𝑝𝑛𝐸 ∙ (𝑀 + 2) + 𝑝𝑛𝑃 ∙ (𝐷 + 𝑁))𝜆 

(5-1) 

Respectively, the total required effort for CIBI-DP design alternative is given by the 
equation (5-2). 

𝑐(𝜆)𝐶𝐼𝐵𝐼−𝐷𝑃 = 

3

2
∙ 𝑝𝑛𝑃 ∙ (𝑝𝑛𝐷 + 𝑝𝑛𝐸) ∙ 𝜆

2 + 

(𝑝𝑛𝐷 + 𝑝𝑛𝐸 + 4 ∙ 𝑝𝑛𝑃  + 2 ∙ 𝐷 ∙ 𝑝𝑛𝑃 +𝑀 ∙ 𝑝𝑛𝐷 +𝑀 ∙ 𝑝𝑛𝐸 + 2 ∙ 𝑁 ∙ 𝑝𝑛𝑃)𝜆 

(5-2) 

Using these equations, the selection of the most maintainable design combination for 
any number of future scenario’s interventions (λ) can be supported. 

5.2.3 Formal Model Application in Examples of Practical Specific Problems 

As an application example, consider a GUI system with the following initial design 
attributes and scenario probabilities {N=15, M=14, D=14} and {pnE=0.1, pnP=0.8, 
pnD=0.1}. For this specific system, the CVP-DP design combination is preferable since it is 
the most maintainable, requiring the lowest effort, as indicated by the outcome in Figure 
5-2. Respectively, in the case of different probabilities e.g. {pnE=0.4, pnP=0.2, pnD=0.4}, the 
CIBI-DP design combination is preferable. Once more, it is important that the long-run 
difference, between the optimum (less effort) and the worst (higher effort) design options, 
exceeds 20% of optimum effort, which is a considerable amount of effort. 

37. % Data describing (general, extended) comparison problem CIBI_DP vs CVP_DP and fundamental (SMC) metric analysis 

38. % In this section, different or alternate problems should be described 

39. D = { 'CVP-DP','CIBI-DP' }; % tags of Design comb. under comparison 

40. L_tags = {'N','M', 'D'}; % tags of design attributes: N initial elements, M initial operations, and V initial decorators  

41. A = {'Method aspect', 'Class aspect'}; % tags of Structural aspects 

42. S = {'nE', 'nP','nD'}; % Types of maintenance scenarios: nE new composition element, nP new operation, nDE new decorator element, 

nDP new decorator operation 

43. F = [1 0 0 ; 0 1 0; 0 0 1]; % N:+1 M:+0 D:+0 for nE, N:+0 and M:+1 D:+0 for nP, N:+0 M:+0 D:+1 for nD (change rates of affected design 

attributes for each scenario type |S|x|L|) 

44. % SMC metric factors on design attributes L, for each design combination D, scenario S, and aspect A are stated in K array 

45. K = zeros([size(D,2) size(S,2) size(A,2) size(L_tags,2)+1]); %creates empty matrix dimensions: |D|x|S|x|A|x|L|+1 

46. %            method         class        (structural aspects) 

47. % D S          N M D - N M D - 

48. K(1,1,:,:) = [0 1 0 2; 0 1 0 2]; %CVP-DP for nE: 0N+1M+0D+2 method + 0N+1M+0D+2 class = 2(M+2) 

49. K(1,2,:,:) = [1 0 1 0; 0 0 0 1]; %CVP-DP for nP: 1N+0M+1D+0 method + 0N+0M+1D+1 class = N+D+1 

50. K(1,3,:,:) = [0 1 0 2; 0 1 0 2]; %CVP-DP for nD: 0N+1M+0D+2 method + 0N+1M+0D+2 class = 2(M+2) 

51. % -------------------------------------------------------------------------------------------------------------------------------------------- 

52. K(2,1,:,:) = [0 1 0 0; 0 0 0 1]; %CIBI-DP for nE: 0N+1M+0D+0 method + 0N+0M+0D+1 class = M+1 

53. K(2,2,:,:) = [1 0 1 2; 1 0 1 2]; %CIBI-DP for nP: 1N+0M+1D+2 method + 1N+0M+1D+2 class = 2(N+1)+2(D+1) 

54. K(2,3,:,:) = [0 1 0 0; 0 0 0 1]; %CIBI-DP for nD: 0N+1M+0D+0 method + 0N+0M+0V+1 class = M+1 
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5.2.4 Average Rate of Gained or Avoided Wasted Effort 

In this subsection, the exploration of almost the entire design space of CIBI-DP vs. CVP-
DP general problem is attempted. A sample of one thousand sets of parameters has been 
randomly selected through a random generator of uniform distributions. The range for 
each problem’s variable was defined as N=[20, …, 250], M=[5, …, 150], D=[2, …, 100], 
pnE=[0.1, …, 0.9], pnP=[0.09, …, rest to 1], pnD=[0.01, …, rest to 1]. The derived formal 
models have been used for the estimation of the required maintenance effort per design 
alternative (i.e., CIBI-DP, CVP-DP) as well as their difference. Based on these values, the 
rate of the gained or the avoided wasted effort has been computed for each of the sample’s 
instances. This rate is equal to the maximum minus the minimum (max(CIBI-DP, CVP-
DP)-min(CIBI-DP, CVP-DP)) divided by the minimum (min(CIBI-DP, CVP-DP)) of the 
required effort among all design alternatives. The average of these values for all sample’s 
instances gives the average gained or the avoided wasted effort of almost the entire design 
space of CIBI-DP vs. CVP-DP general problem. Figure 5-3 presents boxplots of all the 
frequency distributions of problem’s parameters for all sample’s instances.  

 

The results in Figure 5-3 provide two major inferences. Firstly, the distribution of the 
difference of effort estimations among design alternatives shows that CIBI-DP design 
alternative is preferrable for approximately 55% of sample’s instances against the CVP-DP 
design alternative which is preferrable for the rest 45%. This highlights how much 
ambiguous and difficult is the decision-making process of CIBI-DP vs. CVP-DP general 
problem. Secondly, the mean or the average of the gained or avoided wasted effort is 

 
Figure 5-2: Results of the application of the Formal comparison Model on the 

practical examples of Graphic User Interface (GUI) specific problems as instances of 
CVP-DP vs. CIBI-DP general problem. 

 
Figure 5-3: Box plots of frequency distributions of sample’s instances, concerning all 

the parameters of CIBI-DP vs. CVP-DP general problem  
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approximately equal to 30%, while the half of the sample’s instances lie from 15% to 45%. 
This highlights the overall beneficial contribution of the proposed modeling theory and 
derived formal models in terms of avoided wasted effort, concerning the CIBI-DP vs. CVP-
DP general problem. 

5.3 Attaching Mediator and Observer Design Patterns 

5.3.1 Problem Description 

In this subsection, an alternate extension of the CIBI vs. CVP problem is discussed by 
attaching the Mediator and Observer design patterns. The Composite (CP) design pattern 
is often combined with the Mediator (MP) design pattern. MP design pattern defines an 
object (e.g., concrete mediator) that encapsulates or hardcodes the way in which a set of 
objects (e.g., CP elements) interact. Mediator promotes loose coupling by blocking objects 
from referring to each other explicitly. Furthermore it allows changing their interaction 
independently, as analyzed in (Gamma et al., 1994) and presented in Figure 5-4.  

 
A similar alternative to Mediator pattern is the Observer (OP) design pattern. OP 

design pattern defines a one-to-many dependency among objects (e.g. CP elements) so that 
when one object changes state, all its dependents are notified and updated automatically, 
as analyzed in (Gamma et al., 1994) and presented in Figure 5-5. In OP, the way a set of 
objects interact is encapsulated or hardcoded in an external, separate code entity. The 
selection between MP and OP is not only relevant on the low-level object-oriented design. 
It is still relevant in high-level architectural design, dealing with communication, 
interfacing, and coordination issues among system's sub-modules and components 
including legacy code. At the same time, the interacting objects may be implemented by 
the Composition design pattern (CP), the operations of which can be implemented through 
CVP and CIBI design combinations, as discussed in the initial problem. Thus, in this case, 
four alternative design combinations arise (CVP-MP, CIBI-MP, CVP-OP, CIBI-OP). 

 
Figure 5-4: Conceptual UML class-diagram of CIBI-MP vs CVP-MP design 

combinations. 
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The selection between these alternatives can be supported by the proposed modeling 
method in chapters 3 and 4. The key design attributes are enhanced as N, M, and C or S 
for the initial number of mediators or observers. Furthermore, the major maintenance 
scenarios and their probabilities are enhanced as pnE, pnP, and pnM or pnO for adding a new 
mediator or observer. Using the response measures or SMC metrics in Figure 5-4 and 
Figure 5-5, the new problem can be easily formulated through the provided modeling 
method framework in subsection 4.4. 

5.3.2 Derivation of Effort Measurement and Formal Models 

A (dynamic) formal model generation through the modeling method framework using 
MATLAB® code is provided online (Karanikolas et al., n.d.-b) and discussed in subsection 
4.4. In addition, the modeling framework adapted to the extended with the Mediator and 
Observer design patents CIBI-MP vs. CVP-MP vs. CIBI-OP vs. CVP-OP general designing 
problem is presented in Code C.1 of Appendix A. In Listing 5-2, the parameters of the 
current general problem are loaded to the sets and matrixes of the proposed modeling 
framework.  

 
Figure 5-5: Conceptual UML class-diagram of CIBI-OP vs CVP-OP design 

combinations. 
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Listing 5-2: Loading CIBI-MP vs CVP-MP vs CIBI-OP vs CVP-OP general problem to MatLab 
Modeling Framework 

 

The macro generates one formal model equation for each alternate design combination 
and produces its results as a single graph for specific design attributes and scenarios’ 
probabilities. More specifically, the generated formal models are returned in the form of 
the symbolic expression cost_DSAL(D) where D={CIBI-MP, CVP-MP, CIBI-OP, CVP-
OP}. Thus, the total required effort for CIBI-MP design alternative is given by the equation 
(5-3). 

𝑐(𝜆)𝐶𝐼𝐵𝐼−𝑀𝑃 = 

2 ∙ 𝑝𝑛𝑀 + 3 ∙ 𝑝𝑛𝑃
2

∙ 𝑝𝑛𝐸 ∙ 𝜆
2 + 

+(3 ∙ 𝑝𝑛𝐸 + 3 ∙ 𝑝𝑛𝑀 + 2 ∙ 𝑝𝑛𝑃 + 2 ∙ 𝐶 ∙ 𝑝𝑛𝐸 +𝑀 ∙ 𝑝𝑛𝐸 + 2 ∙ 𝑁 ∙ 𝑝𝑛𝑃)𝜆 

(5-3) 

Respectively, the total required effort for CVP-MP design alternative is given by the 
equation (5-4). 

𝑐(𝜆)𝐶𝑉𝑃−𝑀𝑃 = 

2 ∙ 𝑝𝑛𝑀 + 3 ∙ 𝑝𝑛𝑃
2

∙ 𝑝𝑛𝐸 ∙ 𝜆
2 + 

+(3 ∙ 𝑝𝑛𝑀 + 𝑝𝑛𝑃 +𝑁 ∙ 𝑝𝑛𝑃 + 2 ∙ 𝑝𝑛𝐸 ∙ (𝐶 + 𝑀 + 3))𝜆 

(5-4) 

The total required effort for CIBI-OP design alternative is given by the equation (5-5). 

𝑐(𝜆)𝐶𝐼𝐵𝐼−𝑂𝑃 = 

3

2
∙ 𝑝𝑛𝐸 ∙ 𝑝𝑛𝑃 ∙ 𝜆

2 + (4 ∙ 𝑝𝑛𝐸 + 5 ∙ 𝑝𝑛𝑀 + 2 ∙ 𝑝𝑛𝑃 +𝑀 ∙ 𝑝𝑛𝐸 + 2 ∙ 𝑁 ∙ 𝑝𝑛𝑃)𝜆 

(5-5) 

Finally, the total required effort for CVP-OP design alternative is given by the equation 
(5-6). 

𝑐(𝜆)𝐶𝑉𝑃−𝛰𝑃 = (5-6) 

55. % Data describing (general, extended) comparison problem CIBI_MP vs CVP_MP vs CIBI_OP vs CVP_OP and fundamental (SMC) metric 

analysis 

56. % In this section, different or alternate problems should be described 

57. D = { 'CIBI and MP','CVP and MP','CIBI and OP', 'CVP and OP' }; % tags of Design comb. under comparison 

58. L_tags = {'N','M', 'C'}; % tags of design attributes: N initial elements, M initial operations, C initial mediators or observers 

59. A = {'Method aspect', 'Class aspect'}; % tags of Structural aspects 

60. S = {'nE', 'nP','nM'}; % Types of maintenance scenarios: nE new composition element, nP new operation, nM new mediator or observer 

61. F = [1 0 0 ; 0 1 0; 0 0 1]; % N:+1 M:+0 C:+0 for nE, N:+0 M:+1 C:+0 for nP, N:+0 M:+0 C:+1 for nM (change rates of affected design 

attributes for each scenario type |S|x|L|) 

62. % SMC metric factors on design attributes L, for each design combination D, scenario S, and aspect A are stated in K array 

63. K = zeros([size(D,2) size(S,2) size(A,2) size(L_tags,2)+1]); %creates empty matrix dimensions: |D|x|S|x|A|x|L|+1 

64. %             method      class        (structural aspects) 

65. % D S          N M C - N M C - 

66. K(1,1,:,:) = [0 1 1 1; 0 0 1 2]; %CIBI-MP for nE: 0N+1M+1C+1 method + 0N+0M+1C+1 class = M+2C+3 

67. K(1,2,:,:) = [1 0 0 1; 1 0 0 1]; %CIBI_MP for nP: 1N+0M+0C+1 method + 1N+0M+0C+1 class = 2(N+1) 

68. K(1,3,:,:) = [0 0 0 2; 0 0 0 1]; %CIBI_MP for nM: 0N+0M+0C+2 method + 0N+0M+0C+1 class = 3 

69. % -------------------------------------------------------------------------------------------------------------------------------------------- 

70. K(2,1,:,:) = [0 1 1 3; 0 1 1 3]; %CIBI_MP for nE: 0N+1M+1C+3 method + 0N+1M+1C+3 class = 2M+2C+6 

71. K(2,2,:,:) = [1 0 0 0; 0 0 0 1]; %CIBI_MP for nP: 1N+0M+0C+0 method + 0N+0M+0C+1 class = N+1 

72. K(2,3,:,:) = [0 0 0 2; 0 0 0 1]; %CIBI_MP for nM: 0N+0M+0C+2 method + 0N+0M+0C+1 class = 3 

73. % -------------------------------------------------------------------------------------------------------------------------------------------- 

74. K(3,1,:,:) = [0 1 0 2; 0 0 0 2]; %CVP_OP for nE  : 0N+1M+0C+2 method + 0N+0M+0C+2 class = M+4 

75. K(3,2,:,:) = [1 0 0 1; 1 0 0 1]; %CVP_OP for nP  : 1N+0M+0C+1 method + 1N+0M+0C+1 class = 2(N+1) 

76. K(3,3,:,:) = [0 0 0 3; 0 0 0 2]; %CVP_OP for nM : 0N+0M+0C+3 method + 0N+0M+0C+2 class = 5 

77. % -------------------------------------------------------------------------------------------------------------------------------------------- 

78. K(4,1,:,:) = [0 1 0 4; 0 1 0 3]; %CVP_OP for nE  : 0N+1M+0C+4 method + 0N+1M+0C+3 class = 2M+7 

79. K(4,2,:,:) = [1 0 0 0; 0 0 0 1]; %CVP_OP for nP  : 1N+0M+0C+0 method + 0N+0M+0C+1 class = N+1 

80. K(4,3,:,:) = [0 0 0 3; 0 0 0 2]; %CVP_OP for nM : 0N+0M+0C+3 method + 0N+0M+0C+2 class = 5 
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3

2
∙ 𝑝𝑛𝐸 ∙ 𝑝𝑛𝑃 ∙ 𝜆

2 + (7 ∙ 𝑝𝑛𝐸 + 5 ∙ 𝑝𝑛𝑀 + 𝑝𝑛𝑃 + 2 ∙ 𝑀 ∙ 𝑝𝑛𝐸 + 𝑁 ∙ 𝑝𝑛𝑃)𝜆 

Using these equations, the selection of the most maintainable design combination for 
any number of future scenario’s interventions (λ) can be supported. 

5.3.3 Formal Model Application in Examples of Practical Specific Problems 

As an application example, consider a GUI system with the following initial design 
attributes and scenario probabilities {N=15, M=14, C=10} and {pnE=0.5, pnP=0.2, 
pnM=0.3}. For this specific case, the CIBI_OP design combination is preferable since it is 
the most maintainable, requiring the lowest effort, as indicated by the results in Figure 5-6. 
Respectively, in the case of different probabilities e.g. {pnE=0.1, pnP=0.2, pnM=0.7}, the CVP-
OP design combination is preferable. It is impressive that the long-run difference, between 
the optimum (less effort) and worst (higher effort) design choices, exceeds almost by 100% 
that of best section’s effort, which is a huge amount of effort. 

 

5.3.4 Average Rate of Gained or Avoided Wasted Effort 

In this subsection, the exploration of almost the entire design space of CVP-MP vs. CIBI-
MP vs. CVP-OP vs. CIBI-OP general problem is attempted. A sample of one thousand sets 
of parameters has been randomly selected through a random generator of uniform 
distributions. The range for each problem’s variable was defined as N=[20, …, 250], M=[5, 
…, 150], C/S=[1, …, 100], pnE=[0.1, …, 0.9], pnP=[0.09, …, rest to 1], pnM/pnO =[0.01, …, rest 
to 1]. The derived formal models have been used for the estimation of the required 
maintenance effort per design alternative (i.e., CIBI-MP, CVP-MP, CIBI-OP, CVP-OP). 
Based on these values, the rate of the gained or the avoided wasted effort has been 
computed for each of the sample’s instances. This rate is equal to the maximum minus the 
minimum values divided by the minimum value of the required effort among all design 
alternatives. The average of these values for all sample’s instances gives the average gained 
or the avoided wasted effort of almost the entire design space of CVP-MP vs. CIBI-MP vs. 
CVP-OP vs. CIBI-OP general problem. Figure 5-7 presents boxplots of all the frequency 
distributions of problem’s parameters for all sample’s instances.  

 
Figure 5-6: Results of the application of the Formal comparison Model on the 

practical examples of Graphic User Interface (GUI) specific problems as instances of 
CVP-MP vs. CIBI-MP vs. CVP-OP vs. CIBI-OP general problem. 
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The results in Figure 5-7 provide some major inferences. Firstly, the distribution of the 
effort estimations among design alternatives shows that CIBI-OP design alternative is 
preferrable for approximately 51% of sample’s instances against the CVP-OP design 
alternative which is preferrable for the rest 49%. Furthermore, the rest design alternatives 
(CIBI-MP, CVP-MP) seems that they are never preferable approaching 0% of sample’s 
instances. This is a direct indication that the Observer is generally superior to Mediator 
design pattern in respect to their maintainability perspective. The equations (5-5) and 
(5-6) provide an explanation since they are not dependent on C or S (initial number of 
concrete subjects or observers) factor. In the Observer design pattern, all the required 
adaptations related to existing of new subjects of observers are concentrated and 
hardcoded in a single initialization method, as indicated in Figure 5-5. It seems that if there 
is no other particular reason for using Mediator design pattern, it should be avoided as far 
as concern its maintainability perspective in the context of the specific general problem. 

However, the decision-making among the CIBI-OP and CVP-OP design alternatives 
remains difficult. This highlights how much ambiguous and difficult is the decision-making 
process of CVP-MP vs. CIBI-MP vs. CVP-OP vs. CIBI-OP general problem. Secondly, the 
mean or the average of the gained or avoided wasted effort is approximately equal to 88%, 
while the half of the sample’s instances lie from 60% to 110%. Even when the avoided 
wasted effort is compared to the second-best solution, the average of the gained or avoided 
wasted effort is approximately equal to 23%, while the half of the sample’s instances lie 
from 10% to 30%. This highlights the overall beneficial contribution of the proposed 
modeling theory and derived formal models in terms of avoided wasted effort, concerning 
the MP vs. CIBI-MP vs. CVP-OP vs. CIBI-OP general problem. 

5.4 Attaching Abstract Factory and Prototype Design Patterns 

5.4.1 Problem Description 

In this section, an alternative extension of the CIBI vs. CVP problem is discussed by 
attaching the Abstract Factory and Prototype design patterns. In many real-life systems, 
elements of part-whole aggregations, represented by Composite (CP) design pattern, 
should be implemented in different variants or families to support multiple cases such as 
look-and-feel standards with different appearances and behavior. The Abstract Factory 
(AF) design pattern provides an interface for creating families of related or dependent 
objects (e.g., CP elements) without specifying their concrete classes. AF allows loose 
coupling by avoiding hardcoding the instantiation of family-specific objects.  This makes 
changing all object instantiations from a different family easy, as analyzed in (Gamma et 
al., 1994) and presented in Figure 5-8.  

 

 
Figure 5-7: Box plots of frequency distributions of sample’s instances, concerning all 

the parameters of CIBI-DP vs. CVP-DP general problem  
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A similar alternative to Abstract Factory pattern is the Prototype (PT) design pattern. 
PT design pattern specifies the families of objects (e.g. CP elements) to create using 
prototype instances, and creates new objects by copying or cloning this prototypes, as 
analyzed in (Gamma et al., 1994) and presented in Figure 5-9. In PT, the instantiation of 
those family-specific prototype instances is encapsulated or hard-coded in a separate code 
entity. Thus, in this case, four different alternative design combinations exist (CVP-AF, 
CIBI-AF, CVP-PT, CIBI-PT). 

The selection among which can be supported by the proposed modeling method in 
chapters 3 and 4. The key design attributes are enhanced as N, M, and F for the initial 
number of families of objects. Furthermore, the major maintenance scenarios and their 
probabilities are enhanced as pnE, pnP, and pnF for adding a new family of objects. It should 
be noted that usually the probability of a new family of objects is very small compared to 
other more frequently appeared scenarios during maintenance. However, its impact on 
system’s code is significant, requiring extensive interventions. Thus, it is an important 
scenario that should be modeled. Using the response measures or SMC metrics in Figure 
5-8 and Figure 5-9, the new problem can be formulated through the provided modeling 
method framework in subsection 4.4. 

 
Figure 5-8: Conceptual UML class-diagram of CIBI-AF vs CVP-AF design 

combinations. 
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5.4.2 Derivation of Effort Measurement and Formal Models 

The generated formal models are returned in the form of the symbolic expression 
cost_DSAL(D) where D={CVP-AF, CIBI-AF, CVP-PT, CIBI-PT}. Thus, the total required 
effort for CVP-AF design alternative is given by the equation (5-7). 

𝑐(𝜆)𝐶𝑉𝑃−𝐴𝐹 = 
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(5-7) 

Respectively, the total required effort for CIBI-AF design alternative is given by the 
equation (5-8). 
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(5-8) 

The total required effort for CVP-PT design alternative is given by the equation (5-9). 

 
Figure 5-9: Conceptual UML class-diagram of CIBI-PT vs CVP-PT design 

combinations, including basic design attributes (N,M,F) and analysis of the affected 
code units per major maintenance scenario.  
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𝑐(𝜆)𝐶𝑉𝑃−𝑃𝑇 = 
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Finally, the total required effort for CIBI-PT design alternative is given by the equation 
(5-10). 

𝑐(𝜆)𝐶𝐼𝐵𝐼−𝑃𝑇 = 

4

3
∙ 𝑝𝑛𝐸 ∙ 𝑝𝑛𝐹 ∙ 𝑝𝑛𝑃 ∙ 𝜆

3 + 

1

2

(

 
 
𝑝𝑛𝐸 (2 ∙ 𝑝𝑛𝐹 +

𝑝𝑛𝑃
10
+ 𝐹 ∙ 𝑝𝑛𝑃 +𝑀 ∙ 𝑝𝑛𝐹) +

𝑝𝑛𝑃 (
11 ∙ 𝑝𝑛𝐸
10

+ 2 ∙ 𝐹 ∙ 𝑝𝑛𝐸 + 2 ∙ 𝑁 ∙ 𝑝𝑛𝐹) +

𝑝𝑛𝐹(2 ∙ 𝑝𝑛𝐸 +𝑀 ∙ 𝑝𝑛𝐸 + 𝑁 ∙ 𝑝𝑛𝑃) )

 
 
𝜆2  +  

(

 
 
𝑝𝑛𝐸 (2 ∙ 𝐹 +

𝑀

10
+ 𝐹 ∙ 𝑀 +

26

5
) +

𝑝𝑛𝑃 (
11 ∙ 𝑁

10
+ 2 ∙ 𝐹 ∙ 𝑁 +

11

10
) +

𝑝𝑛𝐹(2 ∙ 𝑁 +𝑀 ∙ 𝑁 +  2) )

 
 
𝜆 

(5-10) 

Using these equations, the selection of the most maintainable design combination for any 
number of future scenario’s interventions (λ) can be supported. Notice that the derived 
equations for the latest general problem are quite complex. Τhis is due to the existence of 
families of objects that requires extensive interventions to be made for any possible 
scenario type as indicated by the response measures or SMC metrics in Figure 5-8 and 
Figure 5-9. 

5.4.3 Formal Model Application in Examples of Practical Specific Problems 

As an application example, consider a GUI with the following initial design attributes and 
scenario probabilities {N=55, M=20, F=2} and {pnE=0.88, pnP=0.1, pnF=0.02}. For this 
case, the CIBI-AF design combination is preferable since it is the most maintainable, 
requiring the lowest effort, as indicated by the results in Figure 5-10. In case of different 
probabilities e.g. {pnE=0.48, pnP=0.5, pnF=0.02}, the CVP-AF and CVP-PT design 
combinations are almost equally preferred. The long-run amount of gained or 
avoided/wasted effort is once more significant. 

 

 
Figure 5-10: Results of the application of Formal comparison Model on the practical 
examples of Graphic User Interface (GUI) specific problems as instances of CVP-AF 

vs. CIBI-AF vs. CVP-PT vs. CIBI-PT general problem. 
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5.4.4 Average Rate of Gained or Avoided Wasted Effort 

In this subsection, the exploration of almost the entire design space of CVP-AF vs. CIBI-
AF vs. CVP-PT vs. CIBI-PT general problem is attempted. A sample of one thousand sets 
of parameters has been randomly selected through a random generator of uniform 
distributions. The range for each problem’s variable was defined as N=[20, …, 250], M=[5, 
…, 150], F=[1, …, 10], pnF=[0.01, …, 0.10], pnE=[0.01, …, rest to 1], pnP =[0.01, …, rest to 1]. 
The derived formal models have been used for the estimation of the required maintenance 
effort per design alternative (i.e., CVP-AF, CIBI-AF, CVP-PT, CIBI-PT). Based on these 
values, the rate of the gained or the avoided wasted effort has been computed for each of 
the sample’s instances. This rate is equal to the maximum minus the minimum values 
divided by the minimum value of the required effort among all design alternatives. The 
average of these values for all sample’s instances gives the average gained or the avoided 
wasted effort of almost the entire design space of CVP-AF vs. CIBI-AF vs. CVP-PT vs. CIBI-
PT general problem. Figure 5-11 presents boxplots of all the frequency distributions of 
problem’s parameters for all sample’s instances.  

 

The results in Figure 5-11 provide some major inferences. Firstly, the distribution of 
the effort estimations among design alternatives shows that CVP-AF design alternative is 
preferrable for approximately 63% of sample’s instances against the CIBI-AF design 
alternative which is preferrable for the rest 37%. Furthermore, the rest design alternatives 
(CVP-PT, CIBI-PT) seems that they are never preferable approaching 0% of sample’s 
instances. This is a direct indication that the Abstract Factory is generally superior to 
Prototype design pattern in respect to their maintainability perspective. It seems that if 
there is no other particular reason for using Prototype design pattern, it should be avoided 
as far as concern its maintainability perspective in the context of the specific general 
problem. 

However, the decision-making among the CVP-AF and CIBI-AF design alternatives 
remains difficult. This highlights how much ambiguous and difficult is the decision-making 
process of CVP-AF vs. CIBI-AF vs. CVP-PT vs. CIBI-PT general problem. Secondly, the 
mean or the average of the gained or avoided wasted effort is approximately equal to 27%, 
while the half of the sample’s instances lie from 12% to 39%. This highlights the overall 
beneficial contribution of the proposed modeling theory and derived formal models in 
terms of avoided wasted effort, concerning the CVP-AF vs. CIBI-AF vs. CVP-PT vs. CIBI-
PT general problem. 

5.5 Average Rate of Gained or Avoided Wasted Effort of CVP vs CIBI 

In this subsection, the exploration of almost the entire design space of CIBI vs. CVP general 
problem, analyzed in chapters 3 and 4, is attempted. A sample of one thousand sets of 
parameters has been randomly selected through a random generator of uniform 

 
Figure 5-11: Box plots of frequency distributions of sample’s instances, concerning all 

the parameters of CVP-AF vs. CIBI-AF vs. CVP-PT vs. CIBI-PT general problem  
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distributions. The range for each problem’s variable was defined as N=[20, …, 250], M=[5, 
…, 150], pnE=[0.1, …, 0.9], pnP=[0.1, …, rest to 1]. The derived formal models as generated 
by the framework in subsection 4.4.3 (equations (4-8) and (4-12)) have been used for the 
estimation of the required maintenance effort per design alternative (i.e., CIBI, CVP) as 
well as their difference. Based on these values, the rate of the gained or the avoided wasted 
effort has been computed for each of the sample’s instances. This rate is equal to the 
maximum minus the minimum (max(CIBI, CVP)-min(CIBI, CVP)) divided by the 
minimum (min(CIBI, CVP)) of the required effort among all design alternatives. The 
average of these values for all sample’s instances gives the average gained or the avoided 
wasted effort of almost the entire design space of CIBI vs. CVP general problem. Figure 
5-12 presents boxplots of all the frequency distributions of problem’s parameters for all 
sample’s instances.  

 

The results in Figure 5-12 provide two major inferences. Firstly, the distribution of the 
difference of effort estimations among design alternatives shows that CVP design 
alternative is preferrable for approximately 62% of sample’s instances against the CIBI 
design alternative which is preferrable for the rest 38%. This highlights how much 
ambiguous and difficult is the decision-making process of CIBI vs. CVP general problem. 
Secondly, the mean or the average of the gained or avoided wasted effort is approximately 
equal to 34%, while the half of the sample’s instances lie from 15% to 52%. This highlights 
the overall beneficial contribution of the proposed modeling theory and derived formal 
models in terms of avoided wasted effort, concerning the CIBI vs. CVP general problem. 

5.6 Summarizing the Contribution of Modeling Method 

In this subsection, the beneficial contribution of the proposed modeling method, as 
analyzed in previous subsection for different general and significant design problems, is 
summarized in Table 5-1. 

Table 5-1: Overall results for 1000 instances of design attributes and scenario’s 
probabilities per General Problem 

General Problem Design Attribute / 
Scenario 

Design Variation 
(Pattern) 

Preferable1  Average 
Benefit2 

Benefit Interval 
50%3 

Recursive hierarchy of part-whole 
representation  

Element 
Operation 

CP+IBI=CIBI 38% 
34% 15% - 52% 

CP+VP=CVP 62% 
Recursive hierarchy of part-whole 
representation with extra 
Responsibilities 

Element 
Operation 
Responsibility 

CIBI+DP 55% 
30% 15% - 45% 

CVP+DP 45% 
Recursive hierarchy of part-whole 
representation with independent 
interaction 

Element 
Operation 
Mediator or Observer 

CVP+MP ≈0% 

88% 60% - 110% 
CIBI+MP  ≈0% 
CVP+OP  49% 
CIBI+OP 51% 

Recursive hierarchy of part-whole 
representation with families of objects 

Element 
Operation 

CVP+AF 63% 
27% 12% - 39% CIBI+AF 37% 

CVP+PT ≈0% 

 
Figure 5-12: Box plots of frequency distributions of sample’s instances, concerning all 

the parameters of CIBI vs. CVP general problem  
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General Problem Design Attribute / 
Scenario 

Design Variation 
(Pattern) 

Preferable1  Average 
Benefit2 

Benefit Interval 
50%3 

Abstract factory or 
Prototype object 

CIBI+PT 
≈0% 

1 Refers to the portion of sample’s instances for which the design alternative is preferable (requires the minimum effort) 
2 Refers to the average of the rates of gained or avoided effort for the entire sample 
3 Refers to the interval of the rates of gained or avoided effort for the half instances of each sample 

 

The results in Table 5-1 suggest that the overall benefit, or else, the avoided wasted effort 
from the use of the derived formal models corresponds to a significant portion of the 
optimal maintenance cost which on average lies between 25% and 90% concerning almost 
the entire design space of each general problem under study. 

Based on the proposed modeling method and by using the programable MATLAB 
framework (Appendix A) as an initial template the cost of analyzing, deriving, and testing 
the formal comparison models for the design alternatives of each general problem 
presented in this study ranged approximately between 3 (for the basic CVP vs CIBI 
problem in Chapter 4) and 6 working man hours (for the most complicate problems 
presented in this chapter) for a typical software engineer. These derivation costs are quite 
reasonable compared to the actual benefits of using the derived formal models. Given that 
the derived formal models are easily reusable in a general family of common problems, 
preventing significant loses in terms of maintenance effort; the future benefits of the 
proposed technique significantly outweigh its reasonable analysis cost. A more detailed and 
formal justification about the maximum allowed derivation cost of formal comparison 
models is presented in (Bass et al., 2012) and further specialized subsection 4.4.5. 

5.7 Conclusions 

5.7.1 General Requirements and Limitations 

In general, the analysis of the alternate general problems presented in this chapter are 
subject to the same requirements and limitations of the introduced modeling method as 
described in subsections 3.6 and 4.6. Furthermore, the actual design structure for a specific 
system may deviate from the typical class-diagrams based on which the proposed formal 
models have been derived. This is a possible threat to validity regarding the reliability of 
the decisions made based on effort predictions of those formal models. 

Moreover, it is important that the conducted analysis must be specific enough to 
capture all the principal components of each general problem, while at the same time, 
general enough bypassing minor functionalities and technical details related to code 
implementation to support early decisions and avoid unnecessary complexity. 
Consequently, selecting and analyzing the proper (major) maintenance scenarios and 
design attributes for a given general design problem is a critical and creative task that may 
negatively affect the reliability of the derived formal models. 

5.7.2 Extensions and Further Research 

All the potentials and research perspectives, as referred in subsections 3.6 and 4.6, are still 
valid for the alternate general problems presented in this chapter since they are all subject 
to the same principles imposed by the introduced modeling theory. In addition, an 
interesting perspective could be the mathematical analysis of the derived formal models for 
each variation of the general problem. A such analysis could reveal possible similarities, 
differences, conflicts, requirements, limitations, and patterns regarding the evolution and 
structural behavior of the used design patterns, thus providing further insight about the 
maintenance perspective of each design alternative under comparison, or even about the 
nature the general problem itself.  

5.7.3 Overall Assessment 

Evaluation results using extended problems such as Observer vs. Mediator indicate that 
the proposed method can be also applied during the high-level architecture design, to 
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handle communication, interfacing, and coordination issues among sub-modules and 
components of new or even legacy code. These examples prove the applicability of the 
proposed modeling method in a wide spectrum of common and difficult software 
architectural design problems.  

Furthermore, the results of the indicative examples suggest that the overall benefit, or 
else, the avoided wasted effort from the use of the derived formal models corresponds to a 
significant portion of the optimal maintenance cost which on average lies between 25% 
and 90% concerning almost the entire design space of the general problems under study. 
These results highlight the beneficial contribution of the proposed modeling method and 
derived formal models to the early decision-making among design alternatives in terms of 
avoided wasted effort during software maintenance. 

Finally, the deterministic nature of the derived formal models combined with their 
computational efficiency through software, allows the exploration of the entire design space 
for a given general and significant design problem in the field of software engineering. 
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6 Simulation of Software Evolution 

6.1 Chapter Overview 

In this chapter, the proposed modeling method and derived formal models for the CVP vs. 
CIBI general problem, analyzed in chapter 3 and 4, are statistically evaluated based on 
massive and homogenous measurement observations which have been generated by a well 
calibrated and highly stochastic simulation model that imitates the variability and 
underlying activities of actual maintenance process. The proposed modeling theory is 
strongly related to structural behavior of well-known and established design patterns 
(Gamma et al., 1994) during maintenance. This modeling method derives formal 
comparison models among design alternatives for general, significant, and frequently 
tackled design problems while provides reusable formal models sensitive to several design 
parameters making them easily end repeatedly applied to a wide spectrum of specific 
instances of each general problem. More specifically, the derived formal modes try to 
predict the impact for each design alternative selection in terms of required maintenance 
effort in a deterministic way limiting the ambiguity imposed by the stochastic nature of 
actual maintenance process. The design alternative that requires the lowest predicted 
maintenance effort is the most beneficial, and thus preferable. The main intent of such 
comparison models is to provide reliable decisions through proportionally equivalent effort 
estimations for comparison purposes, thus away from the need of accurate effort 
estimations in terms of absolute values as discussed in chapter chapter 3. However, it is 
substantially difficult to estimate the risk taken during such decisions, or differently, the 
possibility of an incorrect selection of a less maintainable design alternative for a given 
instance of the general problem. Even if the absolute values of effort predictions returned 
by formal models for each design alternative are not of primary interest, their difference 
defines the most beneficial design alternative, and thus the outcome of the decision which 
is of primary interest. To validate the reliability of the decisions that are based on effort 
predictions of formal models, these predictions should be statistically compared to actual 
effort measurements of long maintenance periods of real-world systems. Yet, there is a lack 
of evidence regarding the effectiveness of the prediction techniques and models of software 
maintainability (Riaz et al., 2009a; Shepperd & MacDonell, 2012). In addition, there is a 
confirmed need for further validation of maintainability prediction models (Riaz et al., 
2009a), primarily through statistical techniques. 

As discussed in chapter 3 and 4, the derived formal models are mainly focused on 
maximizing the potential for being general over different instances of a given general 
problem. However, formal methods usually suffer from lack of realism of context and 
precision of measurements, as discussed in (Stol & Fitzgerald, 2018). Ideally, actual 
measurements and observations from case studies that maximize the potential for realism 
of context would be preferable for validation purposes. Nevertheless, in real life, finding 
identical actual systems with uniform design attributes, developed in different design 
variations is almost impossible. Additionally, the number of recorded observations is very 
limited per case study, using heterogeneous metrics, and unevenly conducted through 
literature. Thus, they are not statistically meaningful, heavily limiting the generalization of 
inferences, as pointed in (Langdon et al., 2016; Shepperd & MacDonell, 2012). Moreover, 
developer-related aspects, such as experience level and learning rate are also ignored by 
these methods since they are heavily biased, as human-related, factors hard to be assessed 
and measured. Because of all these reasons, there is no easy way to determine the reliability 
of the method referred to possible incorrect design decisions in terms of maintainability. 
This is a standard concern with regards to validity since the attempt to validate the formal 
models based on a limited number and dissimilar case studies may increase realism of 
context while sacrificing generalizability which should be the models’ primary goal. 



 

UNIVERSITY OF 
PELOPONNESE 

“Model-driven Software Architectural Design based on Software 
Evolution Modeling and Simulation and Design Pattern Analysis 
for Design Space Exploration Towards Maintainability” 

 

PhD Thesis  107 

This chapter introduces the simulation of system’s structural evolution for different 
design alternatives to generate adequate volume of homogenous observations and 
measurements towards a statistical validation of the decision reliability of the derived 
formal models in chapter 3 and 4. More specifically, the validation process concerns the 
significant and general decision problem between the design combinations of Visitor 
design pattern and Composition design pattern for data structures, both serving recursive 
hierarchies of part-whole aggregations. The derived formal comparison models have been 
validated under several statistical techniques to evaluate the proposed modeling method in 
chapter 3 and 4. A sample of one thousand possible system’s instances with specific design 
attributes and scenarios’ probabilities has been randomly selected. A simulation model that 
replicates the underlying activities of actual (real-world) maintenance process, providing 
sufficient, unbiased, classified, and homogenous validation data is introduced. The 

simulation model has been designed and developed in the forms of MATLAB© functional 

model and object-oriented entity model, engaging all problem’s parameters, and providing 
additional switches for controlling the simulation settings and environment. Several 
intermediate variations of the model based on the multi-resolution modeling technique has 
been tested to reach the desired stochastic behavior and realistic outcomes. However, the 
validation of the simulation mode’s consistency in terms of actual effort predictions is 
subject to the same restrictions as in the case of formal models (i.e., heterogenous real-
world observations). Taking advantage from the fact that accurate effort estimations are 
not critical for the decision-making, the consistency of the simulation model has been 
verified by matching model’s variability with frequency distributions of real-world (effort 
based) observations as illustrated in Figure 1-6. Thus, bypassing the obstacle of a strictly 
validation against actual effort estimations, while connecting the simulation model with 
the real world and ensuring its decision-making reliability or precision. Concerning the 
consistency criterion, the simulation model has been calibrated based on empirical 
evidence (frequency distributions) of relevant studies from the field of time series analysis 
(Raja et al., 2009; Shariat Yazdi et al., 2016). In principle, the simulation model imitates 
the stochastic nature of the actual maintenance process by incorporating developers’ 
stochastic characteristics such as experience and learning rate as well as other random 
factors like uncertainty of scenarios’ probabilities, alternate maintenance scenarios, non-
repeated application patterns, the actual code size of interventions, code aging issues, etc. 

  Several intermediate results computed by the simulation model have been compared 
against formal models’ deterministic predictions under the hypothesis testing of non-
significant difference. The results demonstrate a high coefficient of correlation (near to 
0.96) providing sufficient statistical evidence of formal model’s decision-making reliability. 

 
Figure 6-1: Representation of study’s goals, contribution, and limitations 
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Furthermore, the conducted hypothesis tests provide statistical evidence of formal models’ 
long-term accuracy in terms of absolute effort predictions which, however, is a weak 
inference due to the lack of a strictly validation of the simulation model against actual (real 
world) estimations. Most importantly, the results showed that the formal models provide 
reliable decisions among design alternatives with an overall long-term error-rate about 8% 
with only 2% of it being critical in terms of significant wasted effort. Hence, the statistical 
validation of the formal models’ decision-making ability is a strong indication that the 
introduced modeling method in chapter 3 and 4 trustworthy describes the software 
evolution during maintenance process, deriving reliable formal models of limited decision-
risk. 

The context of this chapter is based on the significant design problem of part-whole 
representations in chapter 3, and the modelling method and framework presented in 
chapter 4. The rest of this chapter is organized as follows. Subsection 6.2 presents the 
theoretical background of the modeling method, the general problem, and its formal 
models under evaluation. Subsection 6.3 refers existing evaluation evidence and further 
validity concerns under exploration. Subsection 6.4 analyzes the statistical validation 
approach and the introduced simulation model. Subsection 6.5 lists the result and 
inference of the experimentation process.  Finally, in subsection 6.6, the validity challenges, 
limitations, future research issues, and conclusions are presented. 

6.2 Background 

For the sake of completeness and cohesion, in this subsection, the theoretical background 
of the general problem, the characteristics of the used effort metric, and the notation of the 
derived formal models under validation are presented. The context of this subsection is in 
accordance and directly related to the context in chapters 1, 3, and 4. 

6.2.1 Example of Practical General Problem 

An example of a significant and general problem is referred to the recursive 
implementation of various types of operations upon part-whole aggregations of different 
types of elements which encountered in a wide range of critical systems such as compilers, 
interpreters, GUIs, CADs, high-level synthesis, Domain Specific Languages, Intermediate 
Representations, and hierarchical frameworks. Several design alternatives to address a 
such general problem have been reported, usually, as a combination of well-known design 
patterns. Visitor and Composite are examples of established design patterns which 
combined can provide implementations of part-whole aggregations. The Inheritance Based 
Implementation into Composition (CIBI) and Visitor upon Composition (CVP) are the 
most prevailing design combinations capable to address this general problem, as presented 
in Figure 6-2. However, these design alternatives have opposite characteristics regarding 
their maintainability perspective. 

More specifically, the main intent of the Composite design Pattern (CP) is to compose 
objects into tree structures to represent part-whole hierarchies (Gamma et al., 1994). CP 
is the basis of both design combinations and presented on both sides in Figure 6-2. The 
number of distinct node or element types, which can be represented by CP, is equal to the 
number of leaf classes, denoted as N in Figure 6-2 and Table 6-1. In a Composite structure 
(CP), the Inheritance Based Implementation (IBI) can be used to implement operations 
uniformly, as presented on the left side combination (CIBI) in Figure 6-2. All distinct 
operations, denoted as M in Figure 6-2 and Table 6-1, are declared as virtual methods in 
the abstract root class of the hierarchy. The implementation of every distinct operation 
(method) is placed in each distinct object (leaf) class of the hierarchy. This pattern 
combination makes adding new types of nodes (elements) easier (Gamma et al., 1994) 
thanks to the concentration (locality) of the related interventions in a single class. 
Alternatively, Visitor design pattern (VP) can be used over CP as presented on the right 
side combination (CVP) in Figure 6-2, and further analyzed in (Alexandrescu, 2001; 
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Gamma et al., 1994; B. C. d. S. Oliveira et al., 2008; Palsberg & Jay, 1998; Visser, 2001). 
For every distinct type of CP node (leaf class), a new virtual method is declared in an 
abstract root class called Visitor. In addition, for every distinct operation, a new subclass is 
created which includes all the implementations of the methods of distinct node types for 
this specific operation. In contrast with IBI, VP makes adding new operations easier 
(Gamma et al., 1994) thanks to the concentration (locality) of the related interventions in 
a single visitor class. 

According to the rule “design for change” (David Lorge Parnas, 1994), in order to 
facilitate maintainability or changeability, changes that are likely to occur over the 
software’s “lifetime” should be categorized. Since actual changes cannot be precisely 
predicted, the categorization is about classes of resembling changes. In principle, this 
design rule implies that logical entities that are most likely to change are “confined” to a 
small or grouped code entities so that if those entities do change, only a small amount of 
code would be affected. Towards this direction, several architectural tactics such as splitting 
or rearranging responsibilities target on increasing cohesion and reducing coupling among 
the model’s logical entities, and thus improving maintainability (Arbuckle, 2011). 
Referring to the general problem of part-whole aggregations, events like adding or 
updating or debugging a new or existing type of element constitute a major maintenance 
scenario. Similar events referred to a new or existing type of operation is another major 
scenario, as presented in Figure 6-2 and Table 6-1. 

Table 6-1: Design Characteristics and Model’s Notation of the General Problem of Part-
Whole Representations 

Description Notation 
Design characteristics of CVP vs CIBI general problem 
Composite (design pattern) represents recursive part-whole aggregations or structures of 
elements 

CP 

Visitor (design pattern) links operations to different type of elements of a Composition VP 
Inheritance based implementation incorporates operations inside Composition’s 
elements 

IBI 

Design combination of Visitor (operations) over Composite structure (element) CVP 

 
Figure 6-2: Conceptual UML classes diagram of CIBI and CVP design combinations, 

including basic design attributes (N,M) and analysis of the affected code units per 
major maintenance scenario. 
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Description Notation 
Design combination of direct attachment of operations inside Composite structure 
(element) CIBI 

Design attributes/parameters the values of which distinguishes a specific instance of the general problem 
Number of initial Elements of Composition N 
Number of initial Operations (or Processes) acting on Elements M 
probability of Adding/updating/debugging a new/existing Element pnE = 1-pnP 
probability of Adding/updating/debugging a new/existing Operation (or Process) pnP = 1-pnE 
Model’s parameters and outcome 
Number of maintenance scenarios’ applications during software evolution/maintenance λ 
Partial effort prediction per applied scenario, expressed by SMC metric in terms of 
number of required interventions in different code entities (e.g., classes, methods) 

 

   New Element (pnE=1.0, pnP=0.0) on CVP for λ=1 cm(CVP, N, M, 1.0, 0.0, 1) 
   New Operation (pnE=0.0, pnP=1.0) on CVP for λ=1 cm(CVP, N, M, 0.0, 1.0, 1) 
   New Element (pnE=1.0, pnP=0.0) on CIBI for λ=1 cm(CIBI, N, M, 1.0, 0.0, 1) 
   New Operation (pnE=0.0, pnP=1.0) on CIBI for λ=1 cm(CIBI, N, M, 0.0, 1.0, 1) 
Total effort prediction by derived Formal Model  
   CVP design combination (solution / alternative) cm(CVP,N,M,pnE,1-pnE,λ) 
   CIBI design combination (solution / alternative) cm(CIBI,N,M,pnE,1-pnE,λ) 
Total computed effort prediction per design alternative by Simulation Model scm(CVP,N,M,pnE,1-pnE,λ) 

scm(CIBI,N,M,pnE,1- pnE,λ) 
Error Rate of incorrect decisions (of a single sample instance) among design alternatives 
in terms of maintainability 

Er 

Average Error Rate of incorrect decisions (of all sample instances) avg Er 
Critical Error rate of incorrect decisions of high impact (of a single sample instance) cEr 
Average Critical Error rate of incorrect decisions of high impact (of all sample instances) avg cEr 

 

In this general problem, the number of initial elements and operations are conceived 
as basic design attributes which define a specific system as an instance of the general design 
problem. Such design attributes are usually referred to the problem’s logical entities (i.e., 
elements and operations) which are represented by design patterns’ components such as 
methods, classes, or modules. The numbers of distinct element types and distinct operation 
types, denoted as N and M in Figure 6-2 and Table 6-1, are conceived as key design 
attributes referred to the problem’s logical entities. Through these attributes, the number 
of required method and class interventions can be quantitatively expressed in the event of 
major maintenance scenarios as summarized in memo table in Figure 6-2 and analyzed in 
chapter 3 and 4.  

Furthermore, since it is impossible to do everything equally easy to change, it is 
important to estimate the probability of each class of changes or maintenance scenario. 
During maintenance, several of the initial design attributes (i.e., N and M) are updated 
according to the behavior of the engaged design patterns based on the individual 
probabilities (i.e., pnE and pnP) of major maintenance scenarios, as presented in Table 6-1. 
Scenarios’ probabilities are assessments according to the scope of each specific problem’s 
instance.  

The evolution of software during its maintenance is strongly related and mostly 
determined by the behavior of the engaged design patterns in future changes or stimulus 
or major maintenance scenarios. The number of the applied scenarios during maintenance 
process are denoted as λ in Table 6-1. More specifically, the factor λ represents the total 
number of maintenance scenarios that have been occurred and applied (by developers) on 
a design combination (of design patterns) during maintenance. Considering the software 
maintenance as an evolution process, this factor is an alternate expression of time 
perception. 

6.2.2 Characteristics of SMC Effort Metric 

The effect or the response of each single change or maintenance scenario is quantitatively 
expressed by the Structural Maintenance Cost (SMC) metric, introduced in chapter 3. For 
each general problem, a set of SMC metrics can be derived as presented in Figure 6-2 and 
Table 6-1. In general, for a given problem with x design alternatives and y major 
maintenance scenarios, a set of x*y distinct SMC metrics should be derived to fully analyze 
the problem as discussed in chapter 3. The outcome of SMC metric (required effort) for 
each design alternative (i.e., CVP and CIBI) and type of major scenario (i.e., new element 
type and new operation type) depends on the value of the initial design attributes (i.e., N 
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and M) and it is referred as cm() in Table 6-1 and Table 6-2. SMC metric is used as 
fundamental effort measurement of which the principal characteristics are briefly 
discussed. 

Table 6-2: Equations of Fundamental Effort Metrics of CIBI vs. CVP General Decision 
Problem 

Description of maintenance 
scenario 

Equation for a single scenario 
application 

Affected design 
attributes 

Formal / Simulation 
Model 

New element on CVP cm(CVP,N,M,1,0,1)= 2(M+2) N++ FM & SM 
Edit/debug element on CVP 2M  SM 
Deletei element on CVP 1+M N-- SM 
New operation on CVP cm(CVP,N,M,0,1,1)= N+1 M++ FM & SM 
Edit/debug operation on CVP N+1  SM 
Delete operation on CVP 1 M-- SM 
New element on CIBI cm(CIBI,N,M,1,0,1)= M+1 N++ FM & SM 
Edit/debug element on CIBI M+1  SM 
Delete element on CIBI 1 N-- SM 
New operation on CIBI cm(CIBI,N,M,0,1,1)= 2(N+1) M++ FM & SM 
Edit/debug operation on CIBI 2N  SM 
Deleteii operation on CIBI 1+N M-- SM 

Equations are derived based on the approach discussed in chapter 3 
 i since deleting elements in CVP is rather an efficient task, the number of required interventions is reduced from 2M to 1+M 
ii since deleting operations in CIBI is rather an efficient task, the number of required interventions is reduced from 2N to 
1+N 

The equations of SMC metrics in Table 6-2 can be derived through the derivation 
approach presented in subsection 4.3.4. Conceptually, this approach is a stratified cause-

effect analysis trying to quantify change-effects of major maintenance scenarios to 
specific design alternatives of a general problem. In subsection 4.3.4, the SMC metrics for 
the scenarios of new element and new operation are presented. A more complete logical 
model for the CVP design alternative, including the alternate maintenance scenarios of 

modifying and deleting existing elements and operations is presented in 

 

Figure 6-3. Notice that for ‘deleting’ scenarios the corresponding design attributes are 
decreased accordingly. Respectively, for ‘modifying’ or ‘editing’ scenarios the 
corresponding design attributes are left unchanged. 
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Respectively, a more complete logical model for the CIBI design alternative, including 
the alternate maintenance scenarios of modifying and deleting existing elements and 
operations, is presented in Figure 6-4. 

 

In general, fewer method interventions or less affected classes, for a specific 
maintenance scenario, imply higher cohesion, and lower code entropy, dispersion, 

 

Figure 6-3: Consequence flow (logical model) during impact analysis for changes on 
CVP design combination, including alternate scenarios. 

 

Figure 6-4: Consequence flow (logical model) during impact analysis for changes on 
CIBI design combination, including alternate scenarios. 
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complexity, coupling, and crosscutting degree. Thus, developers will have decreased work 
keeping track of changes that are performed across fewer files or any other segment, entity, 
or code unit (Hassan, 2009). SMC metric expands its measurement capacity by 
simultaneously counting different types of affected code segments. More specifically, SMC 
metric expresses both, the number of interventions (e.g., affected methods), and the locality 
or scattering degree of these interventions as well (e.g., expressed by the number of affected 
classes). Thus, SMC metric provides an adequate graduation of effort assessments even in 
the absence of source code, as suggested in chapters 3 and 4. 

To demonstrate how SMC metric captures the effect of maintenance scenarios as they 
applied on each design alternative of CIBIvsCVP general problem, a typical code example 
is presented in Figure 6-5 according to the analysis in chapters 3 and 4. The design 
attributes N and M represent the current number of the logical entities (i.e., Elements and 
Operations) represented by the used design patterns in the form of classes and methods. 
For example, for an Interpreter implementation, the attribute N may represent the number 
of distinct types of the parse-tree nodes derived from a custom BNF grammar (e.g., 
terminal – nonterminal symbols, identifiers, etc.) while the attribute M may represent the 
number of distinct types of the operations over nodes (e.g., type checking, code generation, 
execution, etc.). Assume that during maintenance there is a need for adding a new element 
type (e.g., a parse-tree node) to satisfy user requirements. This task requires several 
interventions or maintenance activities to be made by the developer into different code 
entities depending on the used design patterns. Initially the corresponding design attribute 
is updated (i.e., N++). Referring to CIBI design combination in Figure 6-5, M method 
interventions concentrated in a single class should be made, thus totally 
cm(CIBI,N,M,1,0,1) = 1+M class and method interventions, as reported in Table 6-2. 
Respectively, referring to CVP design combination, M method interventions widespread 
through M different classes, plus 2 separate method interventions each in a single class 
should be made, thus totally cm(CVP,N,M,1,0,1) = 2(M+2) class and method 
interventions. In principle, a maintenance scenario is considered as major when its effect 
among design alternatives is significantly different (i.e., 1+M≠2(M+2)). For example, a 
minor scenario related to a particular operation for a particular element would affect the 
same number of entities or code units (e.g., a single method) in both design alternatives, 
thus it would be neutral concerning the comparison and decision-making reliability. 
Respectively, in the event of adding a new operation (i.e., M++), proper SMC metrics can 
be derived as illustrated in Figure 6-5. This practical example gives insight on how SMC 
metric is derived for a given general problem. Keep in mind that as the maintenance 
scenarios are continually applied, the design attributes are affected and gradually shifted. 
Thus, for each scenario application, the SMC metric is computed based on different values 
of design attributes. 
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Overall, there several theoretical and empirical evidences about the actual relation of 
SMC metric with properties like code size, scattering degree, etc., and thus to required effort 
or maintainability degree, as supported in (Aloysius & Arockiam, 2013; Aversano et al., 
2009; Canfora et al., 2010; Hassan, 2009; Heitlager et al., 2007b; Karanikolas et al., 2017; 
Ostberg & Wagner, 2014; Riaz et al., 2009a). In addition, the SMC metric is in accordance 
with other similar metrics such as Evolution Complexity (Tom Mens & Eden, 2005) and 
Computational Complexity (Hills et al., 2011), as shown in chapters 3 and 4. 

6.2.3 Software Expansion Concept and Formal Models Derivation 

While SMC metric provides effort assessments for a single applied maintenance scenario 
(λ=1), the modeling method introduced in chapters 3 and 4 derives formal models for each 
general problem and design alternative that provide (total) effort assessments for any 

number and type of applied scenarios (λ∈[0, …, +∞)). This theory is based on the expansion 
trend of software size over their lifetime, since it must be continually adapted to maintain 
user satisfaction, as suggested in (Meir M. Lehman et al., 1997) and supported by empirical 
evidences from large repository of historical data (Bakota et al., 2012; Barry et al., 2007; C. 
R. Cook & Roesch, 1994; H. Gall et al., 1997; Jazayeri, 2002; M. M. Lehman et al., 1998; 
Yuen, 1988). The underlying concept is that the required maintenance effort is 
proportional to the size of the code under adjustment as supported in (Araújo et al., 2012; 

 

Figure 6-5: Typical code example after the application of one new element and one 
new operation scenarios for CIBI and CVP design alternatives 
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Bengtsson & Bosch, 1999; Bosch & Bengtsson, 2001; Dolado, 2001; Hayes et al., 2004; 
Hayes & Zhao, 2005; Jabangwe et al., 2015; Jazayeri, 2002; Zhang, 2008). Furthermore, 
size properties are identified as the most applicable predictors of effort as concluded in (L. 
C. Briand et al., 2002). Thus, software maintainability can be expressed through the 
estimation of the required effort during the maintenance process, as concluded in (Riaz et 
al., 2009a) and suggested in (Heitlager et al., 2007b). The outcome of the derived formal 
models for each design alternative (i.e., CVP and CIBI) depends on a) the initial design 
attributes (i.e., N and M), b) the scenarios’ probabilities (i.e., pnE and pnP=1- pnE), c) the 
number of the applied maintenance scenarios (λ) and it is referred as cm(CVP/CIBI, N, M, 
pnE, 1- pnE, λ) in Table 6-1. 

Referring to the general problem of CVP vs CIBI, the derived formal models for CVP 
and CIBI design alternatives are expressed by the equations (6-1) and (6-2) respectively, 
as analyzed in chapters 3 and 4. The derivation process is based on a strictly mathematical 
and quantitative analysis through which the fundamental SMC metrics in Table 6-2 are 
used to gradually compute the total progressive effort per design alternative in respect to 
all problem’s parameters (i.e., design attributes, scenarios’ probabilities, and number of 
applied scenarios). The method integrates the continually affected design attributes and 
effort levels through repeated cycles of applied maintenance scenarios (based on their 
probabilities) in a single function per design alternative. 

𝑐𝑚(𝑁,𝑀, 𝑝𝑛𝐸 , 𝑝𝑛𝑃 , 𝜆)𝐶𝑉𝑃 =
3

2
𝜆2𝑝𝑛𝐸𝑝𝑛𝑃 + 𝜆𝑝𝑛𝑃𝑁 + 2𝜆𝑝𝑛𝐸𝑀 + 𝜆𝑝𝑛𝑃  (6-1) 

𝑐𝑚(𝑁,𝑀, 𝑝𝑛𝐸 , 𝑝𝑛𝑃 , 𝜆)𝐶𝐼𝐵𝐼 =
3

2
𝜆2𝑝𝑛𝐸𝑝𝑛𝑃 + 2𝜆𝑝𝑛𝑃𝑁 + 𝜆𝑝𝑛𝐸𝑀 + 𝜆𝑝𝑛𝐸  (6-2) 

The equations (6-1) and (6-2) are in accordance with empirical validation evidence in 
(Barry et al., 2007), and the entropy-based prediction model in (Bakota et al., 2012). The 
selection of the most beneficial design alternative in terms of maintainability is formally 

stated as the min {cm(d,N,M,pnE,pnP,λ)}, ∀d∈{CVP, CIBI}. The difference of the total 
required effort estimation for CVP and CIBI is given by the equation (6-3). 

𝑐𝑚(𝑁,𝑀, 𝑝𝑛𝐸 , 𝑝𝑛𝑃 , 𝜆)𝐶𝑉𝑃 − 𝑐𝑚(𝑁,𝑀, 𝑝𝑛𝐸 , 𝑝𝑛𝑃 , 𝜆)𝐶𝐼𝐵𝐼 = 𝜆(𝑝𝑛𝛦𝑀 − 𝑝𝑛𝑃𝑁 + 𝑝𝑛𝑃 − 𝑝𝑛𝐸) (6-3) 

6.2.4 Formal Models Application in Specific Instances of the General Problem 

After the formal models have been derived, it can be easily used to repeatedly support 
decision-making for any attribute set of a specific instance of the general problem domain. 
As an application example, the derived formal models (equations (6-1) and (6-2)) are 
applied to the practical instance of an Interpreter implementation where N=40, M=10, 
pnE=pnP=0.5, and λ=[1, … ,200] as discussed in chapters 3 and 4 and subsection 6.2.2. 
Concentrating on formal outcomes, the diagram in Figure 6-6 indicates that CVP design 
alternative is preferred, since it requires approximately 15% less effort during maintenance 
than CIBI. 
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Figure 6-6 also presents efforts estimations based on simulated results which 
discussed in next subsections. 

6.3 Method Evaluation and Validity Concerns 

The modeling method and the derived formal modes have been evaluated on the general 
and significant problem of CVP vs CIBI in chapters 3 and 4. Although extensive 
argumentation and validation evidence are provided in chapters 3 and 4, there are still 
several critical issues under research.  

6.3.1 Effort Measurement Validity Concerns 

Referring to the used measurement approach, the SMC metric ignores the actual size (lines 
of code) of each elementary method intervention since the code is not available in the 
design stage. It is assumed that in a long-term perspective, actual (or business logic) code 
would be common for both design alternatives under comparison, and thus it has no 
significant impact on the final effort assessment, hence neutral concerning the decision-
making.  

6.3.2 Modeling Method Validity Concerns 

Referring to the modeling approach, the introduced modeling method concentrates the 
analysis only in expansion maintenance scenarios (i.e., adding new element or operation) 
as reported in Table 6-1 and Table 6-2. It is assumed that addition scenarios have a 
dominant impact on system evolution and maintenance, invoking the innate expansion 
trend of software to incorporate additional functionality, and arguing that 66% of changes 
enhancing an existing feature do so by adding a new feature as reported in (Paixao et al., 
2017). However, focusing only on addition scenarios seems to deviate from actual (real-
world) maintenance circumstances. Moreover, the introduced method ignores code aging 
issues (David Lorge Parnas, 1994) and developers’ aspect, such as experience and learning 
rate. As a result, the derived formal models are deterministic, despite the heavy uncertain 
and stochastic nature of actual (real-world) maintenance process.  

Under these circumstances, there is no easy way to determine the decision-making 
reliability of the derived formal models, or their error rate referred to possible incorrect 
decisions. The latest concerns, as possible threats to validity, are further analyzed and 
tested in this study through several statistical techniques in the context of an attentive 
experimentation process. 

 
Figure 6-6: Diagram of formal & simulated comparison models applied on the 

practical example of Interpreter (N:40, M:10, pnE:0.5, exp:1) as an instance of CVP vs. 
CIBI general problem 
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6.4 Method Validation Through Simulation 

In this subsection, an experiment is presented to validate the formal models of CIVI vs. 
CVP general problem under several statistical techniques. The experiment has been 
designed and conducted according to guidelines provided in (Wohlin et al., 2012). In 
addition, the guidelines for reporting dynamic simulation studies in software engineering 
as proposed in (de Fraça & Travassos, 2016) are followed. 

Computer simulations are recommended as a more proper (knowledge-seeking (Stol 
et al., 2016)) research strategy that aligns with the validation goals of this study, 
approaching better realism of context than formal theories at the cost of lower 
generalizability. More specifically, the use of simulation models provides several favorable 
conditions such as limiting bias (mostly human) factors, ensuring common comparison 
terms, and wide amount of homogenous validation data. Furthermore, the artificial nature 
of simulation models offers sufficient control over several stochastic factors toward a better 
understanding of possible causal relationships as recommended in (Hannay & Jørgensen, 
2008). 

6.4.1 Scoping and Planning 

The scoping of the conducted experiment is determined by stating its goal framework 
according to the template proposed in (V. R. Basili & Rombach, 1988) as follows: 

- Analyze the formal models of the CIBI vs. CVP general design problem, 

- for the purpose of comparison and evaluation (statistical validation) 

- with respect to their reliability (reduced estimating error) in supporting correct selection 
of design alternatives (lesser maintenance effort), 

- from the point of view of software engineers,  

- in the context of an in silico simulated maintenance process that replicates the stochastic 
nature and underlying activities of actual maintenance process by evaluating effort 
assessments of several randomly generated maintenance scenarios for each design 
alternative of the problem. 

6.4.2 Hypothesis Formulation 

The hypothesis is appropriately stated, in the pursuing of statistical evidence that the two 
models return almost similar effort assessments for any possible set of their independent 
variables. That implies paired T-tests, meaning that both treatments (formal and 
simulation models) are applied in each experiment scenario.  

- Null Hypothesis (H0): μd=0, where d = cm - scm, or the mean (μd) of the differences (d = 
cm - scm) between formal model (cm) and simulation model (scm) effort assessments for 
each experiment scenario is not significantly different from zero 

- Alternative Hypothesis (H1): μd≠0 the mean of the differences between models’ effort 
assessments is significantly different from zero 

Although usually it is perfected to refute the null hypothesis, in this case, reliable formal 
model’s assessments are indicated by not rejecting the null hypothesis. According to 
statistical theory in (Berenson, Levine, & Timothy, 2012), when the null hypothesis is not 
rejected, it is not implied that it is accepted, but mostly that it is still believable based on the 
available sampling data. Therefore, proper selection of test’s confidence level and sample 
size to maximize the power of the test to detect that H0 is false, is required. 

6.4.3 Variables and Treatments Selection 

The formal models (equations (6-1) and (6-2)) and the simulation model are the 
treatments of the experiment of which the outcomes or dependent variables are under 
statistical assessment. All the engaged variables and their characteristics are classified per 
treatment and type in Table 6-3. More specifically, the formal model is affected by five 
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independent variables returning deterministic assessments through its dependent variable 
cm(). The simulation model is affected by ten independent variables plus four dummy 
(switch) variables that define the engagement of several stochastic factors, returning 
fluctuating assessments through the scm() dependent variable. Hence, the simulation model 
introduces random behavior expressed through the following stochastic variables: 
uncertainty factor effecting scenarios’ probabilities (fBM, uF), alternate maintenance 
scenario application (alt), maintenance scenarios actual size (sizing, ssize), developers 
experience level (exp), developers’ learning rate type (r), and code aging issues (aging, age). 
The intelligible experiment goal is to explore whether the derived formal models and 
related modeling method introduced in chapters 3 and 4 take into consideration all these 
random factors in an indirect manner. 

Table 6-3: Experiment Variables per Treatment for Formal and Simulation Models on 
CIBI vs. CVP General Problem 

Description or attribute or 
behavior or outcome 

C1 Notat
ion 

Scale Range Type Options Distribution 
(during simulation) 

F
M 

S
M 

Object: System or Design combination under maintenance 
Design combination R D Nominal {CVP, CIBI} Indep Constant  x x 
Initial Elements S N Ratio [1, …, +∞) Indep Initial Variation x x 
Initial Operations S M Ratio [1, ..., +∞) Indep Initial Variation x x 
New element probability S pnE Ratio [0.0, …, 1.0] Indep Constant  x x 
Uncertainty Factor of 
Brownian Motion 

R fBM Ratio [0.0, ... 0.5, …, 1.0] Indep Constant   x 

Overall Uncertainty Factor 
effecting probability pnE 

I uF Ratio (-fBM×0.3, …, fBM×0.3) Indep Random fBM×N(0,√λ,0,3)/(10×
√λ) 

 x 

Number of scenarios R λ Ratio [1, …, +∞) Indep Increased Linearly x x 
Scenarios’ actual Size I ssize Ratio [1.0] 

(0.01, …, 2.0) 
Indep Constant 

Random 
Fixed=1.0 
N(1, 0.33, 0, 3) 

 x 

Scenarios’ actual Size type R sizing Nominal [Constant, Random] Switch Constant   x 
Alternate scenarios type  R alt Nominal [Only expansion, All] Switch Constant   x 
Code Aging or expansion or 
entropy type 

R aging Nominal [Constant, Increased] Switch Constant   x 

Age factor I age Interval [1.0] 
[1.0, …, 2.0] 

Indep Constant 
Increased 

Fixed=1.0 
Linearly 

 x 

Theoretical Subject (perceived as object): Developer(s) / Company 
Experience level or 
comprehension degree or 
quality of resources 

I,S exp Interval [1.0] 
[0.1, …, 2.0] 
(0.1, …, 2.0) 

Indep Constant 
Sample 
Random 

Fixed=1.0 
Sample value (exp) 
N(1.5,0.33,-0.5,3)+.1 

 x 

Learning Rate type R r Nominal [Constant,Sample,Random] Switch Constant   x 
Total progressive outcome: size of affected code’s entities, or maintenance effort prediction / assessment 
Formal Model - cm() Ratio [0, …, +∞) Depend  Deterministic x  
Simulation Model I scm() Ratio [0, …, +∞) Depend  Variation  x 

1 Controlled by R: researcher in the lab, S: sampling-random selection, I: internally by Simulation Model according to 
switches’ state.  
Normal distributions are referred to +/- 3σ limits.  
Distribution notation is referred as N(mean, std deviation, skewness, kurtosis) where N(0,1,0,3) is referred to normal 
distribution with μ=0, σ=1. 

6.4.4 Selection of Sample (Subjects and Objects) 

Sample selection: an experiment scenario encloses the object that represents the initial 
system’s attributes, and one quasi-subject that represents developer(s) characteristics as 
indicated in Figure 6-7. Developers are referred as quasi-objects since their offer in the 
maintenance process is simulated by the simulation model. Thus, an experiment scenario 
is defined by totally 14 independent variables. Two of those variables (Design, λ) are 
controlled by the researcher, five of those (fBM, sizing, alt, aging, r) are switches also controlled 
by the researcher, and three of those (ssize, age, uf) are internally controlled by the simulation 
model, as classified in Table 6-3 and Figure 6-7. The rest four independent variables (N, 
M, pnE, exp) define the design attributes, scenarios’ probabilities, and developer(s) 
experience level of a specific system’s instance of the general problem. In particular, the 
first three variables (N, M, pnE,) define an object or system’s attributes, and the rest one 
(exp) defines the theoretical subject or developer(s) characteristics. The possible 
combinations of these variables define the spectrum or a listing of items that make up the 
population from which the sample of experiment scenarios is selected. Notice that pnE 
indirectly defines pnP=1-pnE. In addition, occasionally, exp variable is also controlled 
internally by the simulation model, as indicated in Figure 6-7. 
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The sample of system’s properties and developer characteristics, represented by N, M, 
pnE, exp variables, is selected through absolute random sampling. In order the sample be 
representative of actual object-subjects, the ranges of the independent variables are limited 
into N=[20, …, 200], M=[5, …, 150], pnE=[0.05, …, 0.95], and exp=[0.2, …, 2.0]. Given that 
the range of each variable covers the majority of any possible (actual) object-subject, the 
randomly generated sample adequately represents the whole population. The entire set of 
the 1000 sample’s instances is provided in Appendix B.  

Confidence level and sample’s size determination:  several preliminary trials paired t-
tests on predictions of simulation models, and formal models’ computations for various 
parameters showed that there is no need for increasing the confidence level (1-α=0.95). 
Furthermore, considering the limitations related to required process-time and the need for 
a small sampling error less than 1.3% of the maximum effort's range, the optimal sample 
size is selected to n=1000. Setting sampling error less than 1.3% of the maximum effort's 
range permits the detection of very small differences, thus reducing β risk of Type-II errors 
and increasing the power (1-β) of a statistical test to detect that H0 is false. 

6.4.5 Conceptual Analysis of Validation Process 

6.4.5.1 Selected Research Strategy 

In this subsection, the selected research strategy properly adapted to the context of this 
study is conceptually presented and discussed. Scientifically speaking, researchers try to 
predict the physical or general systems' behavior through theories, prediction models, and 
methods that captures the cause effect relationships among independent and depended 
variables or factors of interest. Thus, the reality aspect be approached by a theoretical 
aspect. Two basic (modeling) approaches prevail on this try as illustrated in Figure 6-8.  

Formal/analytical/empirical study (path A): In this case, a system or a phenomenon 
is observed and some possible or intuitive concepts regarding system's behavior are 
highlighted. Based on this theoretical concepts, a (prediction) model is proposed, usually 
through a special modeling methodology or theory. Next, several (mostly sampling) data - 

 
Figure 6-7: Experimental setup visualization 
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observations about the system's behavior are collected through surveys, case studies, 
experiments, simulations, sampling processes, etc. These data are usually classified in 
independent and dependent variables where the latest are those that can predicted by the 
proposed theory and prediction model. Finally, the observed and predicted data are 
compared each other under several statistical methods in order the prediction model be 
validated. Such validation processes could be t-test, z-test, correlation coefficient, etc. The 
successful validation of the proposed model by empirical observations provides sufficient 
statistical evidence that the relevant theory or methodology adequately describes, 
represents, or reflects the actual system or the phenomenon under study. 

Scientific study (path B): In this case, several (mostly sampling) data - observations 
about the system's behavior are directly collected through surveys, case studies, 
experiments, simulations, sampling processes, etc. Usually, the data collection and 
selection process are guided by some fundamental research questions about the system or 
the phenomenon under study, however, no particular theory or model that describes the 
behavior or cause-effect relationships of the phenomenon is yet available. Next, all the 
observed data are analyzed under several statistical techniques such as regression analysis 
or by using computer aided techniques such as neural networks and machine learning 
algorithms. Through the previous analysis, prediction models are generated regarding the 
prediction of the dependent variables based on the (significant) independent variables. 
Finally, the observed and predicted data are compared each other under several statistical 
methods in order the prediction model be validated. Such validation process could be the 
ANOVA test, determination coefficient, cross-cut validation, etc. In addition, an underlying 
concept, or a theory about the behavior or cause-effect relationships of the system or the 
phenomenon under study can be derived through the interpretation of the prediction 
model and its parameters. 

Which of the two approaches are the most proper for a given problem (system or 
phenomenon) under study is a difficult question and the answer depends on the specific 
features of each problem. In general, the derivation of a prediction model through statistical 
techniques (path B) requires a significant amount (sample size) and range of historical or 
survey data. Moreover, in the case of software maintainability assessment, there also some 
other obvious concerns and limitations. For example, the conducted surveys, case studies 
and sampling process during software maintenance are extremely costly in time and 
resources and thus the number of the observations are very limited per study, 

 
Figure 6-8: Visualization of research strategy, focusing on reality and theoretical 

aspects. 
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heterogeneous, usually unclassified, and unevenly conducted through literature. In 
addition, the historical data in literature, regarding various quantitative measurements and 
evidence during maintenance process, are significantly different each other and unequally 
distributed and thus, are not comparable and statistically meaningful. Furthermore, the 
sampling process during software maintenance is heavily affected by human activities and 
many other stochastic and bias factors, arising out of heterogeneity among different 
developers’ teams, programming environments-tools, and system’s types. Thus, it is rather 
difficult if not impossible, a decent set of observations (sample) be extracted for statistical 
analysis and validation purposes, especially in the field of software maintenance. Although, 
simulation models running in software could be an alternative toward this direction, a 
modeling methodology (through path A) that could provide formal and valid prediction 
models without the need of statistical analysis and validation process, would be very 
helpful. Especially for the case of comparison of design alternatives based on their 
maintainability perspective where homogenous observations are not available. However, a 
formal model without a strictly statistical validation against real-world observations may 
be subject to several accuracy or reliability issues. 

The proposed theory, modeling method, and derived formal models under statistical 
validation through simulations are in accordance with the Formal/analytical/empirical 
study as represented by the path A in Figure 6-8. More specifically, given that software 
maintenance process can be approached from the perspective of software evolution, the 
engaged design patterns per design alternative provide an insight regarding the followed 
evolution pattern of the system for major maintenance scenarios (classes of resembling 
activities). Furthermore, the design attributes of the logical entities of the design problem 
under study as they represented by code entities of the engaged design patterns (per design 
alternative) gives an extra insight regarding the cause-effect relationships and underlying 
evolution theory of the addressed design problem. The introduced modeling theory, the 
SMC metric, and the derived formal comparison models (chapters 3 and 4) describes the 
underlying concept of software evolution during maintenance based on the architectural 
analysis of the engaged design patterns. Due to the absence of adequate volumes of 
homogeneous observations, a multi-variable simulation model that replicates the 
underlying activities and variability of actual maintenance process providing homogenous 
observations is introduced in this chapter. Finally, the simulated observations are 
statistically compared with the outcome of formal modes to evaluate the reliability of 
initially proposed modeling theory and method. 

6.4.5.2 Theoretical and Observational Aspects 

In this subsection, the conceptual analysis of the validation process focusing on the 
contradistinction among the theoretical and observational aspects is discussed. This study 
introduces a (high level) theory regarding the early comparison of design alternatives based 
on their maintainability perspective. More specifically, a modeling method that generates 
comparison formal models based on change rate analysis of software design attributes 
through differential equations is proposed (chapters 3 and 4) as visualized in Figure 6-9. 
The modeling method uses the fundamental Structural Maintenance Cost (SMC) metric, 
which captures the expansion behavior of the design combinations. The introduced theory 
suggests that the modeling method describes the progressive software evolution during the 
maintenance process. Hence, the generated formal models predict the required effort 
during the maintenance process expressed in terms of numbers of method and class 
interventions as measured by the SMC metric. Thus, the predicted maintenance effort 
guides the selection among implementation alternatives based on their maintainability 
perspective since less maintenance effort corresponds to a better maintainability degree. 

The generated formal models predict the required effort based on a small set of 
independent variables such as design attributes and scenario probabilities. Although 
persuasive argumentation about the modeling method and formal models’ logic is 
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provided, the effect of the uncovered or ignored random and stochastic factors in effort 
predictions is a significant concern that should be further investigated. Thus, the statistical 
validation of the formal models’ prediction ability is required through observations and 
measurements about the maintenance process of actual systems.  

The statistical validation of the formal models’ effort prediction ability provides 
sufficient evidence (or strong indication) that i) the introduced theory is also valid and, thus 
the proposed modeling method adequately describes the progressive software evolution 
during the maintenance process, and ii) the predicted effort is a reliable (not necessarily 
accurate) magnitude toward the comparison and selection among design alternatives 
based on their maintainability perspective. 

In the absence of adequate sampling data, a simulation model that imitates the 
maintenance process of a system while taking into consideration many other random and 
stochastic factors as independent variables is proposed. The simulation model uses the 
SMC metric and computes the maintenance effort for a large number of systems or 
problem’s instances (sample). Hence, the simulation model computes the required effort 
during the maintenance process, also expressed in terms of numbers of method and class 
interventions as measured by the SMC metric. Notice that the simulation model 
encapsulates random and stochastic behavior, and thus it returns different computations 
for the same values of its independent variables. 

Because simulation in computers is an automated activity that takes place in a 
controlled environment, the validation process in the current study is documented and 
conducted under the sight of experimentation in software engineering, as described in 
(Wohlin et al., 2012). Thus, theoretically, the developers (subjects) perform maintenance 
(treatment) over a sample of problem’s instances or systems (objects), which are defined 
or distinguished by attributes (independent variables), requiring a specific amount of effort 
(dependent variable). However, the maintenance process is imitated by the simulation 
model. Hence, in practice, the researcher (subject) performs simulations through the 
simulation model (treatment) over a sample of problem’s instances or systems (objects), 
which are defined or distinguished by attributes (independent variables), requiring a 
specific amount of effort (dependent variable).  

 
Figure 6-9: Visualization of the experiment context, focusing on contradistinction 

among theoretical and observational aspects 
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The sample of the possible practical systems is selected randomly with a constant 
distribution considering meaningful intervals for all independent variables. Dummy 
variables (categorical / switches) can be selected systematically to explore the contribution 
of each stochastic variable to the simulation model and its outcome. Considering the formal 
model as an alternative treatment, the validation process targets to the statistical 
comparison between formal models’ effort predictions and simulation model’s effort 
computations, for the selected sample of systems and various switch sets and iterations. 
More specifically, the statistical validation targets to the inference that the formal models’ 
predictions are not significantly different from the simulation models’ computations or that 
the average of the differences between paired formal model and simulation model 
predictions is not significantly different from zero. That inference generalizes the 
observation evidence from the sample scope to population scope. In other words, this 
outcome provides statistical evidence about i) the formal model’s effort prediction ability 
for any actual possible system, and ii) the modeling method’s formulation ability to 
(statistically) describe the progressive software evolution during software maintenance. 
However, due to the lack of as strictly validation of simulation model against real-world 
observations, this inference may be of low importance as discussed in chapter 1 and 
subsection 6.1. 

Finally, because the selection among design alternatives is based on the minimum 
required effort, the statistical comparison between formal model’s and simulation model’s 
effort predictions is conducted based on the differences of effort predictions for any 
implementation alternative under comparison. Also, because the sign of the difference 
between the predictions of design alternatives indicates an opposite selection (incorrect 
decision or error), an additional error rate assessment is conducted regarding the reliability 
of the decisions. The introduced modeling method and the derived formal models (chapters 
3 and 4) must support the decision/selection of the most beneficial design combination 
among alternatives based on their maintainability perspective. The decision is based on 
fundamental design (pattern) attributes as well as on probability assessments about 
primary maintenance scenarios. Hence, the decision is (by default) a probabilistic 
assessment, and thus, its accuracy should be determined by a certain confidence level. The 
pre-mentioned error rate assessment returns an accurate confidence level about formal 
models’ ability not only to provide valid effort assessments, but correct design decisions as 
well. After all, proper selection or limited decision-risk among design alternatives is the 
main goal of the suggested theory in chapters 3 and 4. 

Conclusively, the context of the described experiment is an off-line project, which is 
conducted by the researcher through computer-aided simulations (treatment). This 
treatment incorporates professionals’ (developers-subjects) behavior and individual 
system’s design attributes (objects) as stochastic and random independent variables, for 
general purposes, covering almost all the range of possible values of design attributes 
(systems-objects). Thus, the generalization of the conclusions about a specific formal 
model and design alternatives is valid for any reasonable set of the problem’s instances 
(objects of the population) as distinguished by their design attributes. 

6.4.6 Experiment Design 

The overall experimental setup is visualized in Figure 6-7. In brief, both treatments 
(Formal and Simulation Models) are simultaneously applied for each set of experiment 
scenario’s variables (system’s attributes and developers’ characteristics), returning effort 
assessments through their dependent variables (cm, scm). Furthermore, the tests are 
massively conducted for several combinations of the dummy (switches) variables that 
control the stochastic behavior of the simulation model. This allows the further exploration 
of the contribution of each stochastic variable to the validation process. Overall, the 
experiment results are arranged at seven distinct simulation states in which each stochastic 
variable is gradually engaged, as presented in Table 6-4. Each state returns data for both 
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design combinations, different λ values, and all instances of the random object-subject 

sample. Lastly, the modular analysis of the experimental data is described next. 

Internal convergence:  The convergence control confirms that the simulation model 
provides targeted computations (scm) in a limited interval for a specific system (object) 
given the fact that simulations are internally affected by several random and stochastic 
factors. This preliminary control is repeatedly conducted up to 100 times for all the selected 
simulation states in Table 6-4. In principle, this control process approximates the Monte 
Carlo Simulation (Rubinstein & Kroese, 2016), since it substitutes several variables’ ranges 
by random values based on specific probability distributions for any factor (uF, ssize, exp) in 
Table 6-3 that has inherent uncertainty. 

Table 6-4: Combinations (States) of Simulation Model’s Independent Variables and 
Switches 

Simulation Model’s 
Variables 

Independe
nt 

Switches / dummy independent Independent (Sample) 

Description of gradually 
engaged stochastic 
factor 

Design 
alternative 

λ        

Uncertainty 
Factor 

fBM 

Alternate 
scenarios 

alt 

Scenario 
size 
ssizing 

Code aging 
aging 

Developers 
learning 

rate r 

System 
attributes 
N, M, pne 

Developers 
(experience) 

exp 
1. Variable scenario 
sequences 

CIBI 
& 

CVP 

1, …, 
200 

Low: 0.0 Only new Constant Constant Constant 

Randomly selected 
sample size: 1000 

instances of the general 
problem 

(Number of repeated 
simulations per sample 

instance: 100) 

2. Shifting scenarios 
probabilities Mid: 0.5 Only new Constant Constant Constant 

3. Alternate 
maintenance scenarios Mid: 0.5 All Constant Constant Constant 

4. Variable 
interventions’ size Mid: 0.5 All Normal Constant Constant 

5. Code aging & 
learning rate Mid: 0.5 All Normal Increased 

Sample 
value 

6. Variable developers’ 
experience Mid: 0.5 All Normal Increased 

Normal 
Skewed 

7. Highly shifting 
scenarios probabilities High: 1.0 All Normal Increased 

Normal 
Skewed 

Total outcomes 2.8x108 2 x 200 x 7 x 1000 x 100 

 

External correlation: Referred to the coefficient of correlation between formal model’s 
effort predictions (cm) and simulation model’s computations (scm) for all the selected 
simulation states in Table 6-4. This type of control is conducted based on one time (single) 
simulation per sample instance since repeated simulations could conveniently manipulate 
the statistical significance. Thus, any statistical inference is subject to the stochastic nature 
of the simulation model. 

Hypothesis Testing: Two-sided, paired t-test among formal model’s (cm) and 

simulation model’s (scm) assessments is preferred since the population variation σ2 is 

typically unknown, as supported in (L. Briand, Emam, & Morasca, 1996; Montgomery, 
2012). In general, the parameters involved in a parametric test should be normally 
distributed. However, for large sample sizes, as in this case, either of the parametric or the 
nonparametric tests work adequately, and thus the assumption of the t-test is met even for 
non-normal measurements. Furthermore, several tests showed that parametric methods, 
such as the t-test, are fairly robust to deviations from the preconditions (interval scale) as 
long as the deviations are not too large, as discussed in (L. Briand et al., 1996). To address 
this concern, the quantitative parameters (Formal and Simulate effort assessments) of the 
tests are investigated under the assumption of normal distribution. Again, this test is 
conducted based on one time (single) simulation per sample instance as in external 
correlation test. 

Error rate assessment:  Probabilistic models could have some precision issues for 
some marginal cases. Thus, decisions based on formal model’s and Simulated results may 
conclude to opposite selections among design alternatives for the same set of input 
variables, indicating an incorrect decision or “error” due to formal model’s precision issues 
and simulation model’s stochastic nature. Hence, the error rate is another sophisticated 
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measure of the model’s reliability degree, focusing on the decision-risk taken by the 
designers. 

In the context of this study, the average error rate (Er) is computed through up to 100 

repeated simulations for different λ values and for all the simulation states in Table 6-4. 

During each repetition, the intermediate simulated results (scm) are compared to formal 
model’s deterministic results (cm) while occurring errors are counted. Repeated executions 
are suggested in the context of several studies about testing randomized software for 
simulation purposes (Guderlei, Mayer, Schneckenburger, & Fleischer, 2007). In addition, 
conducting repeated executions is an approximation of the Monte Carlo Simulation 
(Rubinstein & Kroese, 2016), a technique that furnishes the decision-maker with a range 
of possible outcomes and the probabilities they will occur for any possible choice of action. 
Finally, through further analysis of individual errors, critical errors with high negative 
impact in terms of wasted effort and high probability to occur are spotted. 

6.4.7 Instrumentation 

The main instrument of the experiment was a custom simulation model, which has been 
designed based on several related works as proposed in (Barros, Werner, & Travassos, 
2004; Kelsen, 2004; Müller & Pfahl, 2008; Stopford & Counsell, 2008). 

General Description: The simulation model has been developed in two variations with 
identical behavior and outcomes. Given the initial formal models and the directions 
provided in this subsection, the development cost of the simulation model is expected to be 
moderate with the most efforts being placed on its calibration as discussed in subsection 
6.4.9. The first variation was through an object-oriented language where its logical entities 
such as the scheduler, types of maintenance scenarios, design patterns, and virtual subject 
(developer) are represented by separate classes, thus approaching an entity or modular 
model (Zeigler, Mittal, & Traore, 2018). The design combinations under assessment are 
declared through run-time instances of these classes, like a custom internal Domain 
Specific Language (DSL). This variation allows the deployment of the components of a 
general problem through an (typical) object-oriented programming language while 
provides potentials for adapting the model to different design problems. The second 

variation was in the form of MATLAB© dynamic functions and scripts which is a more 

versatile implementation in terms of data manipulation and graph generation. However, 
this functional model requires a strictly mathematical background and programming style. 
In both variations, the total effort for each design alternative is computed through repeated 
executions (or applications) of several maintenance scenarios based on their individual 
probabilities. It is important that the proposed simulation model generates scenario 
sequences and streams of (stochastic) factors’ values which are simultaneously used in all 
design alternatives. Furthermore, it replicates the same pattern of structural evolution 
under the same parameters as in the formal modes. Thus, the simulation model adapts its 
behavior according to its parameters to provide classified observations with regards to 
specific design parameters and scenarios probabilities. Thus, these are the perfect 
comparison conditions that only a controlled simulation can provide. 

6.4.7.1 Description of Parameters and Stochastic Factors 

Effort/size measurements: The simulation model’s scheduler is responsible for recording 
the virtually provided effort per scenario application. More specifically, the simulation 
model computes the maintenance effort for each design combination and maintenance 
scenario through the linear equation (6-4) which also uses the formal SMC metric (cm) in 
Table 6-2. As a result, even if several stochastic factors are engaged, the simulation model 
returns effort assessments (scm) also expressed in terms of numbers of method and class 
interventions. 
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𝒔𝐜𝒎(CIBI/CVP, N,M, 𝑝𝑛𝐸 , 𝑝𝑛𝑃 , 1) =
𝑎𝑔𝑒 ∙ 𝑠𝑠𝑖𝑧𝑒

𝑒𝑥𝑝
𝐜𝒎( CIBI/CVP, N,M, 𝑝𝑛𝐸 , 𝑝𝑛𝑃 , 1) (6-4) 

Conceptually, the equation (6-4) can be perceived as the disaggregation of the actual 
required effort in meaningful components or factors. More precisely, the size factor (ssize) 
represents the actual action’s size, which is proportional to the formal SMC metric since 
grater actions demand more effort. The experience factor (exp) reflects the developers’ 
efficiency, which is inversely proportional to the required effort since higher experience 
degree implies less effort. The age factor (age) can be considered as a friction coefficient that 
contradicts developers’ efficiency, and thus it slows down the maintenance process by 
requiring more effort. Consequently, the age factor (age) is proportional to the required 
effort. The linear relationship between sub-factors such as size and effort is supported by 
many studies (Araújo et al., 2012; Bengtsson & Bosch, 1999; Bosch & Bengtsson, 2001; 
Dolado, 2001; Hayes et al., 2004; Hayes & Zhao, 2005), including the area of early 
Function Point Analysis (Giuliano Antoniol, Lokan, Caldiera, & Fiutem, 1999; B. Boehm 
et al., 1995; Barry W. Boehm et al., 2000; Caldiera, Antoniol, Fiutem, & Lokan, 1998; Meli, 
1997; Musilek, Pedrycz, Nan Sun, & Succi, 2002). The principal component of SMC metric 
cm() makes the simulated measurement of equation (4) representative for a particular 
software architecture of interest pertaining to a specific evolution scenario. That because 
SMC metric captures the evolution pattern of a particular scenario per design alternative 
as affected by the current values of design attributes (described in subsection 6.2.2). Design 
decisions for a different design problem would have different scenarios, design attributes, 
and set of SMC metrics per maintenance scenario and design alternative, thus adapting the 
(simulated) maintenance effort for alternative design decisions as well. Furthermore, the 
use of SMC metrics as the core of effort measurements by the simulation model is required 
in order the comparison of two treatments’ outcomes be fair. 

Sequence of Maintenance Scenarios: The scheduler of the simulation model affects the 
sequence or the order of the applied (arriving) maintenance scenarios. The Modeling 
Theory under validation considers that the generated scenarios’ sequence is unique flowing 
a steady repetition pattern based on individual scenarios’ probabilities. This approach 
ignores possible random instances of scenarios’ sequences, and thus, it has been selected 
in chapter 3 as an approximation due to its computational formality. In practice, during 
the maintenance of real-world systems, there are many possible combinations (sequences) 

of scenarios that can occur for a given number of scenarios’ applications (λ) and specific 

probabilities. However, the frequency of all these sequences is normally distributed around 
the most common case, which is the unique repeated sequence adopted by the formal 
models. More specifically, considering the possible maintenance scenario types as separate 
events (in this case n=2 events) with probability p1 and 1-p1, the frequency distribution of 
all possible sequences of λ event occurrences is represented by the binomial distribution. 
Practically, the simulation model generates scenario sequences based on a random 
generator, which is affected by the individual scenario’s probabilities. The stochastic 
generation of scenarios (set of tasks) is a standard approach in the domain of simulations 
(e.g., as Events or Requirements (Kelsen, 2004; Stopford & Counsell, 2008)). 

Alternate Maintenance Scenarios: The scheduler of the simulation model can apply 
alternate maintenance scenarios through the switch alt:[Only expansion, All]. In ‘Only 
expansion’ mode, only the expansion scenarios are engaged in conformity with formal 
model and modeling method assumptions. In ‘All’ mode, the alternate maintenance 
scenarios for modifications and deletions are engaged in accordance with the additional 
SMC metric equations provided in Table 6-2.  

Actual Size of Maintenance Scenarios: The scheduler of the simulation model can 
influence the size of each maintenance scenario through the switch ssizing:[Constant, 
Random]. The scenario’s size factor (ssize) is a value related to the actual size of a single 
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method intervention, e.g., the real added code for a new method, including its business 
logic code. In ‘Constant’ mode, the factor ssize=1, thus it does not affect standard effort 
assessment as assumed by the Modeling Theory under validation. In ‘Random’ mode, the 
factor ssize receives randomly generated values in the range (0.01, …, 2.0) based on a normal 
distribution pattern. Considering the random factor ssize as the average value of all 
individual methods’ actual sizes for a scenario, it could be safely assumed that ssize values 
proximally follow a normal distribution pattern regardless of the (real-world) distribution 
of the methods’ actual sizes (in accordance with the Central Limit Theorem properties). 
Consequently, the SMC metric cm, initially expressed as the number of method 
interventions per scenario, multiplied by the stochastic factor ssize (in actual size per method 
units), becomes a measure that statistically expresses the actual expected size of the code 
affected by a particular maintenance scenario (in actual size per scenario units). Typically, 
this approach aggregates a Micro stochastic sequence (individual methods’ sizes) into 
macro behavior using law of large numbers expressed in a simpler stochastic form (average 
value of all methods’ sizes), as suggested in (Zeigler et al., 2018).  

Code Aging: The scheduler of the simulation model takes under account software 
aging issues through the switch aging: [Constant, Increased]. In ‘Constant’ mode, the factor 
age=1, thus it does not affect standard effort assessment. In ‘Increased’ mode, the age factor 
is gradually (linearly) increased in the range of [1.0, …, 2.0] for each maintenance scenario. 
In general, software code and its quality tend to be fading mostly due to its increasing size 
and complexity, outdated technical and dissimilarity issues, long-term compatibility, and 
comprehension issues, etc. All these concerns about software aging are inevitable as 
substantiated in (David Lorge Parnas, 1994). In principle, as the system’s code becomes 
older, more effort required by the developers for adding or modifying a fixed amount of 
code.  

Furthermore, code aging or decay is one of the reasons that partially explains the 
increment trend of required effort perf fixed number of activities suggested by software 
entropy concept (Bakota et al., 2012). As the software entropy concept implies, code has 
the innate trend to decay or loss its structural cohesion over (maintenance) time. However, 
looser structural cohesion implies higher coupling among code entities (e.g., modules, 
classes, methods), lower maintainability degree, and thus higher effort during 
maintenance. In terms of entropy, looser structural cohesion implies code of lower order 
(higher disorder), and higher entropy as further discussed in subsection 6.4.7.2. 

Developers Experience and Learning Rate: The scheduler of the simulation model 
incorporates developers' experience and their learning rate in different ways through the 
switch r: [Constant, Sample, Random]. In ‘Constant’ mode, the factor exp=1 for all scenario 
applications, thus it has no effect on standard effort assessment. In the ‘Sample’ mode, the 
factor exp is equal to the sample’s parameter (independent and randomly pre-selected 
variable) and it remains constant for all scenario applications. Although developers 
experience is evolved during actual maintenance, this unusual situation is intentionally 
included for further analysis purposes. In ‘Random’ mode, factor exp is set to a random 
value in the range (0.1, …, 2.0) for each scenario application, following a left-skewed 
standard normal distribution. Usually, several developers with variant experience levels 
could be engaged simultaneously as a team or/and in different periods during actual (real-
world) maintenance of a system. Furthermore, in general, companies and developers tend 
to increase their experience and efficiency, e.g., by hiring specialists, through training, etc. 
Moreover, the developers’ teams increase their efficiency and their cooperation degree 
during the course of the projects. In addition, as technologies mature, developers become 
more familiar or expert. All these reasons arising from real-world circumstances cause a 
left shifting of the distribution curve of the developers’ experience factor, as confirmed by 
IT’s community in (Woolf, 2016). 
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Interpretability of factors’ values: The stochastic variables (i.e., ssize, exp) and the 
shifting factor age of the simulation model are defined in a specific range of values as 
reported in Table 6-3. These factors act as a weight on SMC metric in equation (6-4), and 
thus they have been normalized around the neutral value of unit. For example, the factor 
of actual scenario size (ssize) lies between 0.01 (implying a very small scenario in terms of 
size) and 2.0 (implying a very large scenario in terms of size), where a value of ssize=1.0 
implies a scenario with average size. When this factor takes random values from the normal 
distribution of mean μ=1 and standard deviation σ=0.33, N(1, 0.33, 0, 3), then around 
68% of its possible values lies between 0.67 and 1.33, 68%+27% lies between 0.34 and 
1.66, 95%+4% lies between 0.01 and 1.99, and the rest ≈1% lies below 0.01 and above 
1.99, thus representing possible extremely small or large scenarios). Notice, that even with 
low probability, values far above the range of 2.0 are possibly to occur. Respectively, the 
factor of developers’ experience (exp) lies between 0.01 (implying a novice developer or 
team) and 2.0 (implying an expert developer or team), where a value of exp=1.0 implies a 
typical competent developer or team. Again, values above the range of 2.0 are possibly to 
occur. Finally, the increasing factor of code aging (age) lies between 1.0 (implying a fresh 
system without aging issues in its code) and 2.0 (implying an old system with aged code). 
These ranges and the distributions of the stochastic factors have been selected after 
intensive calibration efforts to be realistic as possible as discussed in subsection 6.4.9. 

Random behavior: It is important that the introduced simulation model encapsulates 
random behavior through several probabilistic components or variables which called 
stochastic (Müller & Pfahl, 2008). If a simulation for the same experiment scenario is 
repeatedly executed, the results will be different because of the internal randomness 
introduced by the stochastic variables (uF, age, ssize, exp) and random scenario sequences as 
it would be in a field case study. Especially the uncertainty factor fBM allows researcher to 
define the overall uncertainty level of the uF internal factor which randomly shifts scenarios’ 
probabilities during simulation. That because the initially assessed scenarios probabilities 
may be gradually shifted during actual maintenance process by a random and uncertain 
way.  More precisely, the scenarios probabilities are randomly shifted by an overall 
uncertainty factor fBM x uF, where uF factor returns normally distributed random values of 

zero mean μ=0, and standard deviation σ=√𝜆, according to the stochastic Brownian 
Motion or Wiener process (Bhattacharya & Waymire, 2009; Durrett, 2010). As the 

maintenance process evolves or λ factor increases, the standard deviation σ=√𝜆 of the 
stochastic values returned by uF factor increases too. The uF factor represents a stochastic 
process with stationary independent increments and occur frequently in pure and applied 
mathematics as well as in quantitative and evolutionary analysis of real-world systems. 
Furthermore, it is a fundamental process in terms of which more sophisticated stochastic 
processes can be described.  

All the used frequency distributions are realistic assessments mostly derived from the 
statistical theory and empirical evidence. Furthermore, the simulation model tries to deal 
with highly unlikely but extreme and important events that may occur without any 
historical precedent. Normally, simulations from normal distributions allows unbounded 
bad or good outcomes. Nevertheless, without increasing extreme outcomes’ probabilities 
through fat-tails curves, we may greatly underestimate their likelihood and thus, exhibit 
high exposure to tail-risk. To deal with these issues, several types of normal frequency 
distributions, including fat-tails variations, have been tested in a try to explore the effect of 
highly unlikely but extreme and important outcomes as discussed in subsection 6.4.9. 
Finally, all variables’ values are randomly generated based on each specific distribution 
type since preliminary tests showed that sophisticated randomized sampling techniques 
such as Latin Hypercube sampling (Ye, 1998) do not provide any significant improvement. 
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6.4.7.2 Connecting Code Aging with Software Entropy Concept 

In this subsection, the connection of code aging (David Lorge Parnas, 1994) with the 
software entropy concept (Bakota et al., 2012) is documented. One of the main effects of 
code’s aging is the gradual decrement of its structural cohesion. However, looser structural 
cohesion implies higher coupling among code entities (e.g., modules, classes, methods), 
lower maintainability degree, and thus higher effort during maintenance. 

Given a set of software requirements there are several possible implementations. Each 
implementation has its own structure, cohesion degree, coupling degree, etc. However, 
each structure has different maintainability degree. Structures with high cohesion and low 
coupling degree are more maintainable but require higher skills and initial development 
effort (e.g., by using proper design pattern combinations) than structures of lower cohesion 
and higher coupling degree that may initially requires less development effort but are less 
maintainable in the future. Given a structure of high cohesion, any future maintenance 
activities should follow the design principles of the initially selected structure. This is for 
the interest of developers since this approach requires less maintenance effort and sustains 
the structural cohesion and maintainability degree of the code. However, in practice, there 
several reasons that may tempt or even force developers to deviate from this approach. 
Such reasons may be insufficient code documentation, lack of skills and comprehension 
regarding the arrangement and operation of the used design patterns, the pressure 
imposed by strict deadlines, minor or trial functionalities that are carelessly or temporary 
attached to the code bypassing its formal structure, limited access to relevant source code, 
etc. Because of all these reasons, the initial structural cohesion and maintainability degree 
of the code tends to be loosened during its evolution or maintenance process as illustrated 
in Figure 6-10. 

Conceptually, the cohesion degree of a structure reflects its order degree, and thus 
higher structural cohesion implies higher code order. Since code of high order (structural 
cohesion) is a state that requires increased skills, control, and design effort to be reached 
and sustained, it is less likely to spontaneously occur, while as the time pass, states of lower 
code order (disorder) are more likely to occur. In terms of code’s entropy, code of high order 
reflects states of low possibility and low entropy while code of low order (disorder) reflects 
states of high possibility and high entropy as depicted in Figure 6-10. According to the 
second law of thermodynamics, the entropy of isolated systems left to spontaneous 
evolution cannot decrease with time, as they always arrive at a state of thermodynamic 

 
Figure 6-10: Software entropy concept in relation to code’s aging. 
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equilibrium, where the entropy is highest. Respectively, the entropy of isolated software 
systems left to spontaneous evolution cannot decrease with time, as they always arrive at 
a state of equilibrium, where the entropy is highest (high probability and low code order). 
Here, the phrase of “isolated software systems left to spontaneous evolution” refers to the 
maintenance (evolution) of code in a spontaneous manner, thus concentrating on 
(spontaneous) interventions that satisfies new functionalities and requirements and 
excluding (targeted) interventions that reforms and improve the structure and cohesion 
degree of the code. Conclusively, software entropy concept implies that the code has the 
innate trend to decay (age) or loss its structural cohesion over (maintenance) time given 
that no reforming activities of its structure take place. 

6.4.7.3 MATLAB Functional Representation of Simulation Model 

An indicative and abstract representation of the introduced simulation model is provided 
in Figure 6-11. The provided pseudocode is a simplification of the model’s functional 
implementation in MATLAB environment. Several details, subroutines, intermediate 
variables, initializations, and marginal conditions have been omitted or integrated to keep 
the representation condense and focused on its basic functionality. The focus is on the 
principal function SM_Cost_CVP_CIBI() which performs a single (one time) simulation 
of the maintenance process for the general problem of recursive hierarchies of part-whole 
aggregations (CVP vs CIBI). The characteristics (N, M, pnE, pnP, exp) of each specific 
(sample) instance of the general problem are declared as separate parameters (avoiding 
tables for simplicity). In addition, several other parameters (fBM, λ) and switches (alt, ssizing, 
r, aging) related to the control of model’s stochastic behavior are declared. Furthermore, 
extra parameters to control the characteristics of the used frequency distributions fοr 
developers’ experience and scenarios’ size have been added. The function enables different 
levels of stochastic behavior according to the values of these parameters, thus enabling the 
user to run all the simulation states in Table 6-4. The effort estimations for both design 
alternatives (CVP, CIBI) and for the entire sequence of applied scenarios (λ) are the 
function’s output. The model generates sequences of several auxiliary values such as 
sequences of age, size, experience, design attributes, simulated cost, and stochastic factors 
to keep track their progress as different types of maintenance scenarios are repeatedly 
applied. These sequencies of values are gradually and commonly applied in both design 
alternatives to ensure fair comparison conditions. The evolution policy of the model is 
defined by the discrete types of scenarios, implying a discrete-event or event-driven model. 
The SMC metric (Table 6-2) for different types of scenarios is also integrated to facilitate a 
homogenous measurement process. However, SMC metric could be coded in a different 
function for better abstraction. The used identifiers of the parameters are in accordance 
with the notation used in Table 6-3 and Figure 6-7. Finally, this function can be repeatedly 
executed (by other functions) to perform massive simulations: a) on different sample 
instances of the general problem for generalization and statistical validation purposes, b) 
on the same instance (Monte Carlo approach) to investigate frequency patterns, variability, 
error rate, and convergence, or even c) combinedly (Monte Carlo approach to all sample 
instances) to investigate overall variability and error rate control. Respectively, the formal 
models as expressed by the equations (6-1) and (6-2) can be directly coded in parametric 
functions to support comparison purposes. 
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6.4.7.4 DSL Modular Representation of Simulation Model 

An indicative and modular representation of the model in the form of class diagram of a 
typical object-oriented language is provided in Figure 6-12. Furthermore, a run-time 
representation of model’s objects is depicted in Figure 6-13. Several details, auxiliary 
methods, intermediate variables, and marginal conditions have been omitted to keep the 
representation condense and focused on its basic functionality. During runt-time, each 
design alternative of the problem (e.g., CVP) is conceptually represented by a hierarchy or 
tree of associated objects each of them representing a specific design pattern or artifact (e.g., 
Composite, Visitor). Referring to the class diagram, the engaged design patterns (e.g., 
Composite_VP) are represented in a hierarchy of sub-classes under the class “Artifact” 
where each of them can contain other artifacts. This structure is a composite 
implementation that allows its extension with other artifacts that can be combined or 
attached in various possible ways during run-time. Each artifact has its own design 
attributes (e.g., N, M) and some common properties like its age and the required effort. For 
example, during run-time, the CIBI design alternative is represented by the single (root) 
design pattern “Composite_IBI”, while CVP by the root pattern “Composite_VP” and the 
attached “Visitor” pattern separately. The maintenance scenarios or stimuluses are applied 
on each type of artifact in different ways based on SMC metrics (i.e., Table 6-2). This 

 
Figure 6-11: Abstract (indicative) representation of the Simulation Model 

implementation as functional model. 
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implementation is an instance of the general design problem of recursive hierarchies of 
part-whole aggregations, which ironically is the subject of this study (i.e., CIBI vs CVP). 
This is a nice opportunity to demonstrate how this design decision can be supported by the 
formal models. In this case, N=3 (distinct types of design patterns or artifacts) and M=6 
(distinct types of scenarios or stimuluses). Given that each future addition of an artifact 
(e.g., Decorator pattern) requires approximately three new types of stimuluses (e.g., 
Decorator Addition, Modification, and Deletion) in an analogy 1:3, it could be safely 
assumed that the probability of a new element against a new operation is pnE=0.25: 
pnP=0.75. In less than a minute, the equation (6-3) indicates that cm(CVP)<cm(CIBI) and 
thus, CVP is the most beneficial design alternative in terms of maintainability. 

 

Under visitor (CVP) approach, each stimulus (e.g., Elemetnt_Addition) is represented 
in a hierarchy of sub-classes under the class “Stimulus”, including characteristics like its 
probability and its size (shape of distribution). In addition, each type of stimulus contains 
one method per artifact type (e.g., “ApplyToCIBI()”) responsible to apply this specific 
stimulus on that specific artifact. The developer is represented as a separate class, including 
characteristics like its experience (shape of distribution). The “Scheduler” class represent 
the controller of the simulation model with which all the root artifacts (problem’s design 
alternatives), the stimuluses, and the developer objects are associated. Initially the 
components of the general problem under study should be loaded in the form of associated 
instance of classes. The method “Simulate()” initiates the simulation process in a similar 
manner as in the functional variation by randomly raising stimuluses based on their 
probability. The application of the randomly raised stimuluses (e.g., Element_Addition) 

 
Figure 6-12: Class diagram of an indicative modular representation of the simulation 

model 
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takes places through the method “Accept_Stimulus()” which invites the stimulus to act on 
a specific root artifact. The critical difference is that this method acts recursively or 
propagates through all the sub-artifacts of each artifact. Thus, beginning from a root 
artifact (e.g., Composite_VP), all its sub-artifacts (e.g., Visitor) will invite the same 
stimulus to act on them. Each stimulus through its corresponding method (e.g., 
ApplyToCIBI()) acts on an artifact by updating its design attributes, its age factor, and its 
total effort as affected by the overall uncertainty factor in equation (4). Notice that these 
methods are referred to specific artifacts (e.g., Visitor design pattern) and not to the entire 
design alternative (e.g., CVP), implying that the effect of the SMC metric should be properly 
distinguished per engaged design pattern. This approach allows the definition of other 
design patterns (as artifacts) which could be combined with others existing artifacts during 
run-time to represent more complex design alternatives. Furthermore, it provides the 
potential for disassociated characteristics (e.g., age levels) per artifact (design pattern) 
instead of a uniform characteristic for the entire design alternative. Respectively, it provides 
the potential for different characteristics (e.g., size distribution) per stimulus instead of a 
uniform characteristic for all stimuluses. In addition, simulations of higher resolution and 
stochastic behavior can be supported (e.g., by subclassing existing classes). 

 

Indicative examples of intermediate results/outcomes of the simulation model for the 
CVP design combination are presented in Figure 6-14. Moreover, an example of the 
Graphic User Interface (GUI) of the simulation model’s implementation is demonstrated 
in Figure 6-15. 

 
Figure 6-13: Object diagram of an indicative run-time representation of the modular 

simulation model 



 

UNIVERSITY OF 
PELOPONNESE 

“Model-driven Software Architectural Design based on Software 
Evolution Modeling and Simulation and Design Pattern Analysis 
for Design Space Exploration Towards Maintainability” 

 

PhD Thesis  134 

 

Referring to Figure 6-14, the number of applied scenarios has been defined to 20. The 
probability for a scenario effecting an element is equal to 0.5 which further interpreted by 
the model as new element probability (pnE=0.275), edit element probability (peE=0.2), and 
remove element probability (prE=0.025). The probabilities for a scenario effecting an 
operation (pnP, peP, and prP) are defined accordingly. The model generates sequences of a) 
scenarios’ types based on previous scenarios’ probabilities, b) scenarios’ actual size factors, 
c) aging factors, and d) developers’ experience factors. These sequences of events and 
factors are commonly applied on both design alternatives under comparison. 

It is essential that the simulation model incorporates internal randomness. For 
example, considering a specific experiment scenario with independent variables N=30, 

M=18, pne=0.7, λ=30, in 7th fully stochastic simulation state. If this simulation for the 

same experiment scenario is repeatedly executed, the results will be different, because of 
the internal randomness introduced by the random variables (age, ssize, exp) and random 
scenario sequences as it would be in a real case study. These results highlight the vastness 
of the potential cases under exploration that are not only limited to the independent 

variables but also to the internal randomness.  For example, for λ=30, the simulations for 

the same experiment scenario would have approximately 1072 different possible outcomes 

or λ!/((pnE·λ)!((1-pnE)λ!)) different scenario’s sequences x λ! different scenario’s sizes 

x λ! developers’ experience levels. Nevertheless, it is expected that all these outcomes 

would converge between them to some degree because of their inverse relationship and 
statistic behavior of normally distributed factors based on Central Limit Theorem claims. 
However, this random behavior helps to explore the authors’ claims according to which 
the simplified proposed formal models and modeling method take into consideration all 
these random factors in an indirect but sufficient statistical way. 

 
Figure 6-14: Example of intermediate results/outcomes of DSL implementation of the 

Simulation Model for CVP design combination 
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6.4.8 Conducting and Data Validation 

Preparation and Execution: Initially, the sample of 1000 object-subject instances, 
represented by N, M, pnE, exp variables in Table 6-3, is randomly generated through a 
computer-aided generator. Next, the forma and simulation models or treatments are 
massively applied in all relevant experiment scenarios for several simulation states in Table 
6-4. The experiment’s (raw) results of the 7th simulation state are provided online for 
further research purposes in (Karanikolas, Dimitroulakos, & Masselos, 2021). 

Data normality control: Initially, the frequency distributions of some indicative 
simulated (scm) outcomes for all (1000) object-subject instances of the selected sample are 
presented in Figure 6-16. Respectively, indicative formal (cm) outcomes are presented in 

Figure 6-17. The number of scenario application is λ=200 relevant to the 7th simulation 

state in Table 6-4. The outcomes reflect effort assessments for CVP and CIBI combinations 
including their difference value (CVP-CIBI) which eventually defines the decision-making. 
All the outcome’s distributions approximate the normal distribution without indications 
about outlier values, and hence there is no need for any data reduction. Furthermore, the 
sample’s normality sufficiently implies population normality, thus amplifying the 
reliability of the conducted statistical analysis. 

 
Figure 6-15: Example of GUI of the DSL Implementation of Simulation Model 
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SM Internal convergence control:  Indicative frequency distributions and related 

scatter diagrams of simulated (scm) outcomes, concerning 100 repeated simulations in a 
single object-subject instance of the selected sample (N:40, M:10, pne:0.5, exp:1), are 

presented in Figure 6-18. The number of scenario application is λ=200 relevant to the 7th 

simulation state in Table 6-4. The outcomes include the simulated effort assessments for 
CVP and CIBI combinations as well as their difference values (CVP-CIBI). All the outcomes 
are normally distributed and thus, are targeted in a limited interval. Conceptually, if effort 
expectations, implied by formal model’s predictions, are rational, then the actual required 
effort approximated by the simulation model’s outcomes should be normally distributed 
around these expectations. Furthermore, the evidence confirms the stochastic behavior of 
the simulated maintenance process. As intuitively implied, for most human activities, even 
if a specific system had been repeatedly maintained for several times under similar 
conditions, the outcomes would be different in some degree, however, converging in a 
limited interval. 

 
Figure 6-16: Frequency distributions of Simulation Model’s CVP, CIBI total effort 

assessments, and their differences, for all (1000) object-subject instances of the 

selected sample, where λ=200, relevant to the 7th simulation state in Table 6-4. 

 
Figure 6-17: Frequency distributions of Formal Model’s CVP, CIBI total effort 

assessments, and their differences, for all (1000) object instances of the selected 

sample, where λ=200, relevant to the 7th simulation state in Table 6-4. 
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6.4.9 Calibration of Model’s Stochastic Behavior 

6.4.9.1 Multi-Resolution Modeling Approach  

In principle, the simulation model should imitate the heavily stochastic and uncertain 
nature of the actual (real-world) maintenance process. The model incorporates developers’ 
stochastic characteristics such as experience level and learning rate (exp) as well as the 
actual size (ssize) of the affected code for each scenario application, as they overall expressed 
by the stochastic factor in equation (6-4). Furthermore, the estimated (by the designers) 
values of scenarios’ probabilities (i.e., pnE, pnP) may deviate from the realized probabilities 
during actual maintenance process. The overall uncertainty factor uf has been incorporated 
to address this issue. However, the stochastic behavior of the simulation model, as 
described in previous sub-sections and Table 6-3, arises questions about the realism of 
model’s outcomes. To address these concerns, the simulation model has been calibrated 
based on frequency distributions of real-world evidence of relevant studies from the field 
of time series analysis (G. Antoniol et al., 2001; Raja et al., 2009; Shariat Yazdi et al., 2016).  

More specifically, during the calibration process the multi-resolution modeling 
approach (Zeigler et al., 2018) has been followed. This approach is about gradually 
constructing variations of the simulation model in a try to accomplish the required (actual) 
behavior while at the same time the consistency of each model variation is checked 
compared to reliable evidence of the phenomenon under study. Furthermore, this 
approach increases the trustworthiness degree of the simulations through a methodology 
for constructing a multiresolution family of models as visualized in Figure 6-19. Initially, 
the desired stochastic behavior of the problem is expressed through a set of requirements 
and constraints. The technique targets on a simulation model that satisfies all these 
requirements, called base model. To reach the target model, lumped models are created by 
introducing assumptions (regarding the base model) such as dropping of requirements and 
relaxing of constraints. Next, models of higher resolution are created by removing the 
previously added assumptions. To this direction, more refined representations (i.e., by 
introducing underlying activities, or stochastic factors or/and different dimensions) are 
included to address the affected constraints and requirements. The critical point is whether 
this (lumped) model variation is trustworthy and consistent compared to real world 
circumstances or not. A possible validation based on real world observations is subject to 
the same constraints as the formal model validation (i.e., inadequate volume of 
homogenous observations for the specific design problem). Thus, frequency distributions 

 
Figure 6-18: Indicative frequency distributions and scatter diagrams of Simulation 
Model’s outcomes (CVP, CIBI, CVP-CIBI) for 100 repeated simulations in a single 

object-subject instance (N:40, M:10, pne:0.5, exp:1.0), where λ=200 relevant to the 7th 

simulation state in Table 6-4. 
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of real-world evidence from the field of time series analysis are used for testing the 
consistency of each (lumped) model variation, mostly regarding the variability of its 
outcomes (i.e., effort assessments). In case of higher consistency, then further assumptions 
are removed toward modes of even higher resolution, while in case of lower consistency, 
further assumptions are added toward modes of lower resolution. The targeted base model 
is achieved when all the initial assumptions have been eliminated. In this case, all the 
validity concerns (reported in subsection 6.3) are the assumptions made for the initial 
lumped model. In fact, all the simulation states in Table 6-4 are variations of (lumped) 
modes while the last two states are considered as the targeted base model. The introduced 
simulation model can represent different level of disaggregation through its parameters, 
thus supporting all the variations in Table 6-4. Furthermore, several other (lumped) modes 
have been tested through sensitivity analysis on model’s parameters including intervals of 
their values. Furthermore, the analysis showed that adding further stochastic behavior or 
detailed simulation of other activities does not significantly affect the model’s consistency 
mostly because their impact is common for all design alternatives, thus not affecting the 
comparison outcome and decision-making reliability. More specifically, several detailed 
simulations (lumped models) have been tested including the representation of a) the 
method interventions as separate sub-activities with distinct actual sizes, b) individual 
developers (or teams of developers) as separate sub-activities with distinct experience 
levels and learning rates, c) separate aging factors per engaged design pattern for each 
design alternative, d) minor maintenance scenarios as separate sub-activities with distinct 
actual sizes (similar for all design alternatives) which, however, not affect the design 
attributes of the addressed problem. 

 

6.4.9.2 Consistency Criterion 

Concerning the consistency criterion, the sequences of values for the stochastic factor in 
equation (6-4) and the intermediate values of effort assessments scm()CVP and scm()CIBI per 
scenario application have been transformed to time series in respect to the number of 
applied maintenance scenarios (λ), as showed in Figure 6-20. Again, Figure 6-20 presents 
results for the Interpreter implementation (N:40, M:10, pnE:0.5) as an indicative instance 
of the CVP vs CIBI general problem. The histograms of their frequency distributions 
demonstrate a normal pattern. The characteristics of these time series and their 
distributions have been compared and coordinated with the empirical evidence of real 

 
Figure 6-19: Multi-resolution modeling approach towards calibration of Simulation 

Model 
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systems. More specifically, large volumes of recorded measurements concerning the 
changes (in terms of low and high level edit operations) made during software evolution 
between revisions of several real systems have been statistically modeled using Auto 
Regression Moving Average (ARMA) models in (Shariat Yazdi et al., 2016). The extracted 
time series and the characteristic of their frequency distributions can be used to calibrate 
and control the generation of realistic histories of relevant measurements by simulation 
models, as suggested in (Shariat Yazdi et al., 2016). Of course, changes per revision are not 
equivalent to changes per scenario application, however there is a direct correspondence 
and similarity between them at least from a statistical perspective, making these evidence 
suitable for calibration purposes. The most important characteristic of a frequency 
distribution is the coefficient of variation (CV=σ/μ) which is a dimensionless parameter, 
ideal for comparison between data sets with widely different means or different units. The 
introduced simulation model, due to its sensitivity on the structural behavior of the 
engaged design patterns and their increasing trend (confirmed in chapter 3), demonstrates 
distributions of intermediate effort measurements with a slightly lower coefficient of 
variation (CV), right skewed, and similar – near to average kurtosis compared to the 
empirical evidence in (Shariat Yazdi et al., 2016). Furthermore, given that the CV of the 
intermediate effort observations per revision lies between 3 and 4, the expected CV of the 
total (after λ=200 revisions) effort observations per (real world) system lies between 

3/√200=0.22 and 4/√200=0.28 (due to Central Limit theorem properties). After intensive 

calibration efforts, the introduced simulation model demonstrates an overall CV≈0.25 
concerning the total effort assessments of all sample’s instances, referring to the 6th 
simulation state in Table 6-4. Respectively, under the 7th simulation state the model 

demonstrates an overall CV≈0.32 as depicted in Figure 6-16. 

 

6.4.9.3 Coefficient of Variation for Decision-Making Reliability 

In this subsection, the underlying concept of the followed consistency criterion during the 
calibration of the simulation model under the multi-resolution modeling technique is 
further analyzed and documented. The conceptual analysis is visually represented in 
Figure 6-21. The principal idea is in the proportional equivalent effort assessments 
returned by the simulation model due to the adoption of SMC metrics. Referring to the 
CVP vs CIBI design problem, whatever the actual (real-world) effort assessments of CVP 
and CIBI alternatives are, the corresponding simulated effort assessments would be in an 
analogy with the actuals. Visualizing the frequency distributions of actual effort 

 
Figure 6-20: Frequency distributions and time series of Simulation Model’s overall 

stochastic factor and intermediate outcomes (CVP, CIBI) of an indicative single 

object-subject instance (N:40, M:10, pne:0.5, exp:1.0), where λ=[1, …, 200], relevant 

to the 7th simulation state in Table 6-4. 
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assessments in a horizontal axe, the proportional simulated assessments correspond to a 
stretched version of this axe. Furthermore, given the (normal) frequency distribution of 
possible (realized) effort assessments per design alternative (i.e., CVP, CIBI), the possibility 
of an incorrect decision is expressed by the overlapping areas of these distributions. The 
greater the surface of the overlapping area, the greater the likelihood of an incorrect design 
decision to occur. Thus, the reliability degree of decision-making among design alternatives 
depends on the percentage of the overlapping area of relevant frequency distributions as 
visualized in Figure 6-21. Given the analogy of measurements, the percentage of the 
overlapping area is irrelevant of effort assessments in terms of absolute values (μ:mean) 
and mainly depends on the variability (or precision σ:standard deviation) of the 
corresponding frequency distributions as expressed by their coefficients of variation 
(CV=σ/μ) which is a dimensionless statistical parameter. Conclusively, the consistency of 
the simulation model against real-world circumstances, concerning its decision-making 
reliability, mainly depends on matching the coefficients of variation (CV) among simulated 
and real-world observations as showed in Figure 6-21. 

 

The discussion is now focused on the extraction of the CV statistical parameter from 
real world (effort-based) observations. Toward this direction, frequency distributions of 
real-world evidence of relevant studies from the field of time series analysis (G. Antoniol et 
al., 2001; Raja et al., 2009; Shariat Yazdi et al., 2016) are particularly suitable. Considering 
the random variable X as the possible effort-based assessment per revision during 
maintenance of real-word systems, the CV(X) parameter expresses the coefficient of 
variation of its frequency distribution. At this point the characteristics (i.e., skewness, 
kurtosis) of this frequency distribution are not necessarily known. Based on the statistical 
theory, the frequency distribution of the total maintenance effort (sum of several-λ 

 
Figure 6-21: Consistency criterion of simulation model’s calibration. 
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revisions ΣλX) of real-word systems would approximate a normal distribution with 

CV(ΣλX)=CV(X)/√λ regardless of the characteristics of the initial frequency distribution of 
X variable. Thus, the CV(ΣλX) statistical parameter of real-world (actual effort-based) 
observations referred to the total maintenance effort can be easily extracted from empirical 
evidence. 

The focus is now on the extraction of the corresponding CV statistical parameter from 
simulated (effort-based) observations. Considering the random variable Yi as the possible 
effort-based assessment per applied maintenance scenario during the simulation of the ith 
sample instance, the CV(Yi) parameter expresses the coefficient of variation of its frequency 
distribution. Furthermore, the CV(ΣλYi

repeated) parameter expresses the coefficient of 
variation of the frequency distribution of the total effort assessments (for λ applied 
scenarios) as extracted by repeated (Mote Carlo) simulations of the same (ith) sample 
instance. Even if this parameter is tempting, yet it is referred to a particular instance, and 
thus there some concerns regarding its ability to adequately represent any possible system 
(sample instance) or the entire design space of the general problem under study. In other 
words, CV(ΣλYi

repeated) parameter is sufficiently informed about the variability of a particular 
instance of the problem but is insufficient about the overall variability of the general 
problem as a whole (for any sample instance). Given that the frequency distribution of real-
world observations represents an overall esteem concerning several real-world systems, 
the frequency distribution of simulated observations should represent an overall esteem 
concerning several instances (systems) of the addressed general problem as well. To 
address this concern, the frequency distribution of the total efforts (ΣλYi

sample) as extracted 
by single (one-time) simulation per sample instance is a more representative and informed 
parameter. This frequency distribution can by directly extracted by simulated observations 
while approximates a normal distribution with known CV(ΣλYi

sample) as confirmed in Figure 
6-16. Thus, the CV(ΣλYi

sample) statistical parameter of simulated (effort-based) observations 
referred to the total maintenance effort can be easily extracted from simulated outcomes.  

The argumentation in previous paragraph reviles one of the most important 
advantages of the introduced modeling and simulation methods. More specifically, the 
outcomes of the introduced formal and simulation modes do not represent the entire 
general problem in a universal way. Instead, they are sensitive to several design 
characteristic (parameters) of the addressed design problem. In other words, they 
fragment the problem in distinct instances by classifying their outcomes with regard to the 
parameters of each problem’s instance. This differentiation per sample instance is not 
limited only to the effort assessments but also extends to their variability degree (CV). 
Thus, the variability (CV) of the total effort outcomes variates per sample instance. Under 
this perspective, the extracted variability CV(ΣλYi

repeated) from repeated (Monte Carlo) 
simulations for a specific instance is usually narrower (≈60% of instances with less than 
0.10, and ≈90% of instances with less than 0.20) since the model’s outcome are more 
precise and adapted to the specific design characteristics (parameters) as indicated in 
Figure 6-18. In fact, there some sample instances for which the variability CV(ΣλYi

repeated) 
is surprisingly wide (≈3% of instances with more than 0.30) in a range [0.03, …, 0.51]. The 
characteristics of the frequency distributions of ΣλYi

repeated variable per sample instance are 
presented in Appendix C. In contrast, the extracted variability CV(ΣλYi

sample) of single (one-
time) simulation for all sample instances is wider (≈0.32) since these outcomes represents 
the entire design space of the design problem under analysis as indicated in Figure 6-16. 
Forcing the simulation model to equalize CV(ΣλYi

repeated) variability to real-world CV(ΣλX) 
variability, ignores and neutralizes the model’s capability to adapt its behavior and 
variability to specific instances of the general problem. Hence, the CV(ΣλYi

sample) variability, 
as a more representative parameter of the entire general problem, is equalized to real-world 
CV(ΣλX) variability. 
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One final concern is whether the real-world observations per revision are in 
accordance or synchronized to simulated observations per applied maintenance scenario. 
Thus, whether a revision during maintenance of real-world systems resembles to a 
maintenance scenario during simulation. In principle, there is no easy way to ensure that 
real-world observations recorded during the maintenance of different systems between 
revisions are adequately synchronized in terms of time or activities intervals. Respectively, 
there is no easy way to ensure that a simulated maintenance scenario is adequately 
synchronized with a real-world revision in terms of time or activities intervals. Notice that 
any proportional reduction (smaller time intervals) or increment (larger time intervals) of 
effort assessments causes the same analogical effect on the σ (standard deviation) and μ 
(mean) parameters of their distributions, thus the CV=σ/μ parameter remain unchanged. 
Nevertheless, the main issue is the number of revisions based on which the 

CV(ΣλX)=CV(X)/√λ of the total real-world efforts is calculated. It has been assumed that 
this number is equal to the number of applied scenarios (λ=200) during simulation, but 
this may not the case for a particular real-world system. However, due to the law of large 
numbers and statistical theory, it is expected that in a long-term perspective any 
desynchronization issues (among number of revisions and number of applied scenarios λ) 
will be negligible regarding the dimensionless parameter CV of the corresponding 
frequency distributions (i.e., ΣλX and ΣλYi

sample). This is a confirmed argument based on the 
conducted sensitivity analysis. Several trial simulations with deviating values of λ 
parameter showed that the initial assumption of the consistency criterion is valid. 

It is important that CV(ΣλX) and CV(ΣλYi
sample) statistical parameters, as 

dimensionless, are irrelevant of absolute effort values. Thus, the accuracy of measurements 
is not of primary interest. Based on previous analysis, the consistency criterion is 
mathematically expressed by matching the values of CV(ΣλX) and CV(ΣλYi

sample) statistical 
parameters. Under this equality, the statistical parameters of the real-world and simulated 
observations are interrelated as analyzed in Table 6-5. This criterion verifies the 
consistency of the simulation model against real-world circumstances concerning its 
variability degree and decision-making reliability.  

Table 6-5: Statistical parameters of real-world against simulated effort-based 
observations  

Random – stochastic variable  Shape Statistical parameters of frequency distribution per variable 

Referring to the random variable X as the 
possible intermediate effort-based 
assessment per revision during maintenance 
of real-word systems, extracted through time 
series analysis 

Unknown OR 
Right-Skewed 

Normal 

μ(Χ)  
σ(Χ)  

CV(Χ) = σ(Χ)/μ(Χ)  

Referring to the possible total effort-based 
assessment ΣλΧ of several (λ) revisions 
during maintenance of real-word systems 

Normal 

μ(ΣλΧ) = λ·μ(Χ) 
σ(ΣλΧ) = λ·σ(Χ)/√λ 
CV(ΣλΧ) = σ(ΣλΧ)/μ(ΣλΧ) = λ·σ(Χ)/√λ / λ·μ(Χ) = σ(Χ)/√λ 
/ μ(Χ) = CV(X)/√λ 

Referring to the random variable Yi as the 
possible intermediate effort-based 
assessment per applied maintenance 
scenario during the simulation of the ith 
sample instance 

Right-Skewed 
Normal 

μ(Yi) = μ(w·X) = w·μ(X) given the analogy of 
measurements 
σ(Yi) = σ(w·X) = w·σ(X)  
CV(Yi) = σ(Yi)/μ(Yi) = w·σ(X)/w·μ(X) = σ(Χ)/μ(Χ) = CV(X) 
is the coefficient of variation 

Referring to the total effort-based assessment 
ΣλYi

sample of several (λ) applied scenarios 
during simulation of single (one-time) 
simulation per sample instance 

Normal 

μ(ΣλYi
sample) = λ·μ(Yi

sample) = λ·w·μ(X) 
σ(ΣλYi

sample) = λ·σ(Yi
sample)/√λ = λ·w·σ(X)/√λ 

CV(ΣλYi
sample) = σ(ΣλYi

sample)/μ(ΣλYi
sample) = λ·w·σ(X)/√λ / 

λ·w·μ(X) = σ(X)/√λ / μ(X) = CV(X)/√λ = CV(ΣλΧ) 
μ: mean value,  σ: standard deviation,  CV=σ/μ: coefficient of variation (dimensionless) 

λ=200 number of applied maintenance scenarios during simulation or revisions during maintenance of real-world systems 

sample=1000 instances of the general design problem as defined by their design attributes and scenarios probabilities 

w: constant factor representing the analogy of measurements (not necessarily known) 

6.4.9.4 Overall Statistical Parameters of the Sample Instances 

In this subsection, an overall (graphical) assessment of the statistical parameters of the 
ΣλYi

repeated and Yi variables concerning all the sample instances (i:[1, …, 1000]) of CVP vs 
CIBI problem is presented. The analysis concentrates on the characteristics (CV, skewness, 
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and kurtosis) of the frequency distributions of ΣλYi
repeated and Yi variables as they 

numerically presented per sample instance in Appendix C. 

 

Considering Yi variable as the intermediate required effort per applied scenario during 
the simulation of the ith sample instance, the frequency distribution of this variable 
represents the statistical pattern of intermediate effort assessments for this particular 
sample instance. The parameters (μ, σ, CV, skewness, kurtosis) of such frequency 
distributions per sample instance are presented in Appendix C. Each Yi distribution is the 
result of a single (one time) simulation per sample instance. Figure 6-22 (2nd row) presents 
the overall distribution per statistical parameter (CV, skewness, kurtosis) concerning all 
the sample instances. Since the intermediate effort outcome (Yi) is a heavily stochastic 
variable expressing the required effort per applied scenario, all the parameters of its 
frequency distribution variate significantly among different sample instances. More 
specifically, CV lies between 0.43 and 2.88, skewness between 0.16 and 11.43, and kurtosis 
between 2.31 and 149.62. Thus, depending on the design characteristics of each sample 
instance the variability of Yi variable variates significantly. Notice that all Yi distributions 
are right skewed and most of them with high kurtosis. 

Considering ΣλYi variable as the total required effort during the simulation of the ith 
sample instance, the frequency distribution of this variable represents the statistical pattern 
of total effort assessments for this particular sample instance. The parameters (μ, σ, CV, 
skewness, kurtosis) of such frequency distributions per sample instance are presented in 
Appendix C. Each ΣλYi distribution is the result of several repeated (Monte Carlo) 
simulations for the same sample instance. Figure 6-22 (1st row) presents the overall 
distribution per statistical parameter (CV, skewness, kurtosis) concerning all the sample 
instances. Since the total effort outcome (ΣλYi) is the sum of several (λ=200) intermediate 
effort assessments (Yi) per applied scenario, its frequency distribution follows (or 

 
Figure 6-22: Overall assessment of the statistical parameters of the ΣλYi

repeated and Yi 
variables concerning all the sample instances. 
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resembles) a normal distribution pattern with narrower variation (than Yi variable) for all 
the sample instances. This is the result of central limit theorem’s properties according to 
which CV(ΣλYi)=CV(Yi)/√λ. Thus, its skewness for all sample instances lies around 0 [-
1.09, …, 1.26] and the kurtosis around 3 [1.90, …, 6.06], while CV lies between 0.03 and 
0.51. Yet, the CV parameter considerably variates per sample instance with ≈60% of 
instances have a CV less than 0.10, ≈90% of instances have a CV less than 0.20, and ≈3% 
of instances have a CV more than 0.30. 

6.4.9.5 Calibration Process (Flow Chart) 

The entire process of simulation model’s calibration based on the multi-resolution 
modeling approach is provided in Listing 6-1 in the form of pseudocode. This code presents 
the flow-chart of all the repeated sub-activities including the imposed requirements and 
assumptions, giving emphasis on the required controls concerning the fulfilment of the 
consistency criterion. Notice that sub-activities like add or change assumptions and build 
or change a model’s variation are very creative and intelligent tasks that require human 
capabilities and skills. Such activities are strongly linked to the specifications and 
characteristics of the addressed design problem and the used design patterns. 
Furthermore, the presented process holds a copy of all the intermediate (lumped) 
variations of the simulation model as each assumption is removed and corresponding 
requirement is satisfied.    

Listing 6-1: Pseudocode of simulation model calibration based on multi-resolution modeling  

 

6.4.9.6 Times Series Analysis of Simulated Effort Assessments 

In this subsection, an indicative analysis of the simulated effort assessments per applied 
scenario from the perspective of time series analysis is attempted. Again, Yi variable 
represents the intermediate required effort per applied scenario during the simulation of 
the ith sample instance. The analysis focus on a (single) simulation of the sample instance 
N.002 with parameters N=56, M=90, pnE=0.32, pnP=0.68, while examines the effort 

81. λ = 200  % number of applied scenarios or revisions during maintenance 

82. CV(X) = 4  % coefficient of variation of  distinct observations (X) per revision from time series analysis of several real-world systems 

83. CV(ΣλX)=CV(X)/√λ   % expected coefficient of variation (variability) of total observations (ΣλΧ) per real-world system 

84.  

85. Add all requirements to Requirements[] set   % reflecting the underlying activities and/or desired stochastic behavior of the problem 

86. For each requirement in Requirements[]  

87.  Add corresponding assumption(s) in Assumptions[] set   % exclude underlying activities and/or desired stochastic behavior 

88. End For 

89.  

90. variation=1   % initialization of current variation of simulation model  

91. Build SM(variation) based on all Assumptions[]    % build initial lumped model that fulfills all the imposed assumptions 

92. Repeat 

93.  If Assumptions[] is NOT empty Then  

94.            Pick a current_assumption from Assumptions[]  % for analysis    

95.            Change SM(variation)  % to satisfy the corresponding requirement towards higher resolution or stochastic behavior   

96.  Else 

97.            Pick a requirement from Requirements[]   % for refinement of consistency 

98.            Change SM(variation)  % by calibrating its distinct outcomes (Y) to achieve higher consistency (variability) 

99.  End If 

100.  For instance=[1:1000]  % referring to each sample instance (system) of the general problem 

101.            Total_Effort(instance) = SM(variation ,instance, λ)  % runs simulation, returning total effort (ΣλYi) per system/instance 

102.  End For 

103.  CV(ΣλYi, variation) = CV(Total_Effort(:))  % calculates the overall CV(ΣλYi) of all sample instances of the general problem 

104.  If Abs( CV(ΣλX) - CV(ΣλYi, variation) ) < Abs( CV(ΣλX) - CV(ΣλYi, variation-1) ) Then  % higher consistency from previous variation 

105.            Remove current_assumption (if exist) from Assumptions[] 

106.            Flag the corresponding requirement to Requirements[]  % that neutralizes the current assumption  

107.            variation += 1  % increases variation 

108.            Copy SM(variation-1) to SM(variation)  % copying the previous model’s variation to a new variation 

109.  Else  % lower consistency from previous variation 

110.            Change current_assumption or Add alternate assumption (if exist) to Assumptions[] 

111.            Discard changes made in SM(variation)   % resets current model’s variation 

112.  End If 

113. Until (Assumptions[] is empty) AND (CV(ΣλX) ≈ CV(ΣλYi, variation)  % all requirements have been satisfied with high consistency 

114. Return SM(variation)   % as the base model 
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assessments of CVP design alternative for a sequence (or time series) of λ=200*20=4000 
applied scenarios. Usually, time series analysis requires long time series of several values 
to be effective and consistent, thus a larger number of applied scenarios (λ=4000) has been 
selected even if a such value is not so realistic under real-world circumstances. 

In time series analysis, each value is expressed or predicted based on the values of 
previous instances of the time series. To conclude on a model able to predict future values 
based on previous values, time series analysis examines two separate aspects: a) 
autoregressive (AR) analysis which is similar to regular regression where the dependent 
variable (current value y(λ)) is predicted based on a number of independent variables 
(previous values i.e., y(λ-1), y(λ-2), etc.) of the same time series, and b) moving average 
(MA) analysis which tries to predict the current level of noise (ε) based on its current and 
previous levels (i.e., ε(λ), ε(λ-1), ε(λ-2), etc.).  

An autoregressive (AR) model predicts the current value based on a linear combination 
of past values of the same time series of values. Normally, autoregressive models are 
applied to stationary time series only. Mathematically, an AR(p) model is expressed as 
follows: 

𝑦𝑡 = 𝑐 + 𝜑1𝑦𝑡−1 + 𝜑2𝑦𝑡−2 +⋯+ 𝜑𝑝𝑦𝑡−𝑝 + 𝜀𝑡 

Where p: is the order of regression, c: is a constant, epsilon(ε): noise, and t:time (or the 
number applied scenarios λ).  

A moving average (MA) model predicts the effect of noise (ε) based on a linear 
combination of past noise levels of the same time series. Mathematically, an MA(q) model 
is expressed as follows: 

𝑦𝑡 = 𝑐 + 𝜃1𝜀𝑡−1 + 𝜃2𝜀𝑡−2 +⋯+ 𝜃𝑞𝜀𝑡−𝑞 + 𝜀𝑡  

Where p: is the order, c: is a constant, epsilon(ε): noise, and t:time (or the number applied 
scenarios λ).  

Αn ARMA(p,q) model is simply the combination of both models into the following  
single equation: 

𝑦𝑡 = 𝑐 + 𝜑1𝑦𝑡−1 + 𝜑2𝑦𝑡−2 +⋯+ 𝜑𝑝𝑦𝑡−𝑝 + 𝜃1𝜀𝑡−1 + 𝜃2𝜀𝑡−2 +⋯+ 𝜃𝑞𝜀𝑡−𝑞 + 𝜀𝑡  

ARMA(p,q) model tries to explain the relationship of a time series with both a) random 
noise (moving average part) and b) itself at a previous step (autoregressive part). Given a 
time series of values under analysis, the estimation of the weights (i.e., θ and φ factors) of 
the ARMA(p,q) model can be performed only for specific (predefined) orders or lags (i.e., 
p and q). Furthermore, the estimation of ARMA model can be assisted by statistical tools 
such as the MATLAB environment and its Econometric Modeler. 

Concentrating on the time series of the total simulated effort assessments per applied 
scenario of the sample N.002, an indicative ARMA (2,3) model is visualized in Figure 6-23. 
There is both a trend and perhaps a change in variance in this time series, thus there is a 
clear indication of non-stationarity behavior. More specifically:  

• KPSS (Kwiatkowski–Phillips–Schmidt–Shin) test for trend stationary confirms 
this inference by rejecting Null hypothesis of trend stationary (CL=0.05, 
p_val=0.010).  

• ADF (Augmented Dickey–Fuller) test for unit root (non-stationary) confirms this 
inference by not rejecting Null hypothesis of non-stationary (CL=0.05, 
p_val=0.9990 for lag =[1..10]). 

Since autoregressive models are normally applied to stationary time series only, the 
time series need to be transformed to resemble a stationary behavior. 
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ARIMA model stands for Auto Regressive Integrated Moving Average. This model 
combines the autoregression model, the moving average model, and differencing. Under 
this perspective, integration is the opposite of differentiation. Differencing is suitable to 
remove the trend and transform a time series to stationary. It simply involves subtracting 
each value in t-1 from time t. Mathematically, an ARIMA(p,d,q) model is expressed by the 
following  equation: 

𝑦′𝑡 = 𝑐 + 𝜑1𝑦′𝑡−1 + 𝜑2𝑦′𝑡−2 +⋯+𝜑𝑝𝑦′𝑡−𝑝 + 𝜃1𝜀𝑡−1 + 𝜃2𝜀𝑡−2 +⋯+ 𝜃𝑞𝜀𝑡−𝑞 + 𝜀𝑡 

Where d: is the degree of differencing (number of times it was differenced) 

 

By differentiating (transforming) the time series of the total simulated effort 
assessments, the intermediate effort assessments per applied scenario of the sample N.002 
are derived. An indicative ARIMA (2,1,3) model of the transformed time series is visualized 
in Figure 6-24. However, there is still a trend in this time series, thus there is an indication 
of non-stationarity behavior. More specifically:  

• KPSS (Kwiatkowski–Phillips–Schmidt–Shin) test for trend stationary confirms 
this inference by rejecting Null hypothesis of trend stationary (CL=0.05, 
p_val=0.010).  

• Nevertheless, ADF (Augmented Dickey–Fuller) test for unit root (non-stationary) 
does not confirm this inference by rejecting Null hypothesis of non-stationary 
(CL=0.05, p_val=0.0010 for lag =[1..10]). 

Since autoregressive models are normally applied to stationary time series only, the 
time series need to be further transformed to resemble a stationary behavior. 

 
Figure 6-23: Time series analysis (ARIMA) of total CVP effort assessments 
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By double differentiating (transforming) the time series of the total simulated effort 
assessments, the marginal changes among intermediate effort assessments per applied 
scenario of the sample N.002 are derived. An indicative ARIMA (2,2,3) model of the 
transformed time series is visualized in Figure 6-25. This time, there is no trend nor 
significant change in variance in this time series, thus there is an indication of stationarity 
behavior. More specifically:  

• KPSS (Kwiatkowski–Phillips–Schmidt–Shin) test for trend stationary confirms 
this inference by not rejecting Null hypothesis of trend stationary (CL=0.05, 
p_val=0.100). 

• ADF (Augmented Dickey–Fuller) test for unit root (non-stationary) confirm this 
inference by rejecting Null hypothesis of non-stationary (CL=0.05, p_val=0.0010 
for lag =[1..10]). 

Furthermore, the residual plot is presented in Figure 6-25. At this point the ARIMA 
(2,2,3) model is rather weak since its residuals are significant (of high values) and 
disbalanced around zero level. 

 
Figure 6-24: Time series analysis (ARIMA) of (single differentiated) intermediate CVP 

effort assessments 
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To conclude on the most consistent ARIMA model, different combinations of orders 
(i.e., p and q) should be tried, next fit each ARIMA model with those orders, and use a 
criterion for the selection of proper combination of orders. More specifically, the criterion 
of Akaike’s Information Criterion (AIC) is suitable for selecting the order (p,d,q) of an 
ARIMA model. In practice, the model with the lowest AIC compared to other models is the 
most consistent and, thus preferable. AIC is a criterion (goodness of fit) only for 
comparison purposes relative to other models. It is possible more parameters (higher p and 
q orders) to increase the predictability of the model, however more parameters will increase 
the AIC score and thus penalize the model. Hence, AIC is suitable to discover the ARIMA 
model with the fewer number of parameters that still provide good results. In the context 
of the simulated effort assessments, AIC is used for a constant order of differencing (d=2).  

By analyzing a time series (simulated effort assessments) of increased length (4000 
applied scenarios) in MATLAB, the ARIMA(0,2,1) model with orders p=0 and q=1 
demonstrating the lowest AIC compared to other combinations of orders (i.e., p and q) has 
been selected. Even if the ACF (Auto Correlation Function) and PACF (Patrial Auto 
Correlation Function) cannot be used to identify reliable values for p and q orders, in the 
case of an ARIMA(0,d,q) process: a) the PACF is exponentially decaying or sinusoidal, and 
b) the ACF has a significant spike at lag q (in this case q=1) but none after, as confirmed 
by the evidence in Figure 6-26. 

 
Figure 6-25: Time series analysis (ARIMA) of (double differentiated) intermediate 

CVP effort assessments (simulation of sample instance N. 002) 
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An indicative ARIMA (0,2,1) model of the transformed (double differentiated) time 
series of 4000 values, escorted by the residual plot, is visualized in Figure 6-27. The 
statistical parameters of this model are provided in Table 6-6. Again, the ARIMA (0,2,1) 
model is rather weak since its residuals are significant (of high values) and disbalanced 
around zero level (especially after the first 1000 applied scenarios). Alternatively, the 
ARIMA model seems that fails to adequately predict the positive and peak values of the 
time series leading to increased and disbalanced residuals (especially after 100 applied 
scenarios). However, there is no autocorrelation evidence as confirmed by the Ljung-Box 
Q-Test for autocorrelation (H0: of zero 20lags autocorrelation is not rejected [CL=0.05, 
p_val=0.2158]), thus residual values correspond to pure (white) noise. This (white) noise 
is the result of the random and stochastic behavior of the simulation model. Similar ARIMA 
models can be estimated for alternate time series for different set of parameters (i.e., N, M, 
pnE) of sample instances, however with different values in their parameters (i.e., c, ε, and 
AR{1}). 

Table 6-6: Statistical Parameters of ARIMA Analysis of Simulated Effort Assessments 

Parameter Value Standard Error T Statistic P-Value 
Constant  0.4884 0.1404 3.4776 5.0595e-004 
MA{1} -0.9938 0.0014 -697.1537 0 
Variance 9.1196e+05 1.0421e+04 87.5109 0 

 
Figure 6-26: ACF and PACF diagrams of (double differentiated) effort time series 
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An ARIMA model with order p=0 for its autoregressive part indicates that previous 
values provide no information about the future values of time series. The only relation 
concerns the previous and current levels of noise (i.e., ε(t-1) and ε(t)) as captured by the 
moving average part of order q=1. This evidence led us to the following interesting 
inference. Without the engagement of exogenous factors (e.g., N, M, pnE) related to the 
nature of the confronted problem, the time series analysis is unable to conclude on ARIMA 
models of high consistency by only relaying on previous values of the time series. 
Moreover, this evidence confirms the complicated and heavily stochastic nature of actual 
maintenance process as successfully approached by the introduced simulation model. 
From time series perspective, the maintenance process (and relevant effort-based 
measurements) remains a black-box without a practical envision or even a sense of the 
phenomenon under study.  

6.5 Results & Inferences 

6.5.1 Analysis and Interpretation 

The overall evidence of the analysis per simulation state are summarized in Table 6-7 and 
analyzed next. Indicative graphs of the final and fully stochastic 7th simulation state are 
presented in this subsection. 

 
Figure 6-27: Time series analysis ARIMA(0,2,1) of (double differentiated) 

intermediate CVP effort assessments (simulation of sample instance N. 002) 
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External correlation control: Indicative scatter diagrams of formal model’s 
predictions (cm) against simulation model’s computations (scm) regarding effort 
assessments of CVP, CIBI, and their difference, are presented in Figure 6-28. The number 
of scenario application emphasizes on early (λ=10), mid (λ=100), and long (λ=200) term 
perspectives. Respectively, the correlation coefficient regarding effort assessments of CVP, 
CIBI, and CVP-CIBI difference against the number of scenario applications (λ) is 
graphically presented in Figure 6-29 (left side). 

 
Hypothesis testing control:  The T-Test results for the CVP-CIBI distance’s crucial 

values against the number of scenario applications (λ) are presented in Figure 6-29 (right 
side).  

Error rate control and critical error analysis:  Figure 6-29 (middle) summarizes the 

results concerning the overall average error rates (Er) for different λ values. In addition, 

the critical errors with high impact in terms of wasted effort and high possibility to occur 
are further investigated. For this purpose, the critical error is defined: 

Critical Error definition:  A critical error (cEr) occurs when, for a specific experiment 
scenario, a) the rate of average wasted effort (difference) against the minimum average 

required effort among design alternatives is greater than 10%, and b) the Error rate Er(λ

) of this experiment scenario is greater than the average Er(λ) of all experiment scenarios 

for each specific λ value. Thus, critical are those errors with high severity degree and 

likelihood of occurrence. 

 
Figure 6-28: Scatter diagrams of external correlation among formal and simulated 

values of total effort (CVP, CIBI, CVP-CIBI), concerning all (1000) sample instances, 
of the 7th fully stochastic simulation state in Table 6-4. 
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Time orientation of analysis: The analysis for short-term system maintenance (e.g., 

λ<10) does not provide any particular benefit since the importance of the estimated gain 

or loss in terms of effort would be negligible. Therefore, the analysis of inferences is 

concentrated in a mid-to-long maintenance period, thus for λ>50 up to 200.  

Value orientation of analysis: The analysis mainly focuses on the difference between 
design alternatives for Formal and Simulated effort assessments [cm(CVP)-cm(CIBI) and 
scm(CVP)-scm(CIBI)] since these values define the selection-making process. 

Since formal and simulation models are focused on reliable decision-making among 
design alternatives, the precision of their measurements (i.e., correlation, error rate, 
variability, standard deviation, coefficient of variation, kurtosis, and skewness) is of 
primary importance, while the accuracy of their measurements (i.e., absolute values, and 
mean) are less important. In principle, higher correlation combined with lower average Er 
and cEr suggests higher selection reliability of formal model and vice versa. Finally, when 
p-value of hypothesis testing is above the rejection limit, the total effort/size predictions of 
formal model are highly precise in terms of absolute values. 

6.5.2 Inference Extraction 

In this subsection, the experiment’s evidence is gradually analyzed per simulation state, 
and summarized in Table 6-7. Indicative graphs of the 1st to 6th simulation states are 
presented in this subsection. 

Table 6-7: Overall Control Evidence for all Experiment Scenarios and Simulation Model 
States 

Simulation Model state / 
Gradually Engaged factor 

External 
correlation1,3 of 

CVP-CIBI 
distance (λ>50 

to 200) 

Hypothesis control 2,3  on 
the difference CVP-CIBI 
(T-test, 2tailed, paired), 

CL=0.95 / α=0.05 

Error rate 1,4  control 
(λ>50 to 200) 

FM’s reliability 
(mid-to-long-term) 

control on the 
difference CVP-

CIBI 
Coefficient of 
correlation (r) p-value 

H0 
rejection Average (Er) Critical (cEr) 

Selection
1 

Absolute 
values2 

1. Variable scenario sequences 0.98 ↗ 1.00 > 0.20 No 5.5% ↘ 3.4% 1.0% ↘ 0.0% High High 
2. Shifting scenarios 
probabilities 0.97 ↗ 0.99 > 0.50 No 6.4% ↘ 5.1% 1.2% ↘ 0.6% High High 

3. Alternate maintenance 
scenarios 0.97 ↗ 0.99 > 0.10 No 6.4% ↘ 4.8% 1.3% ↘ 0.8% High High 

4. Variable interventions’ size 0.97 ↗ 0.98 > 0.20 No 6.7% ↘ 4.8% 1.6% ↘ 0.9% High High 

5. Code aging & learning rate 0.76 ↗ 0.78 ≈ 0 Yes 6.5% ↘ 5.2% 1.5% ↘ 0.8% Medium Low 
6. Variable developers’ 
experience level 0.97 ↗ 0.98 > 0.05 (λ>170) Yes/No 6.7% ↘ 5.4% 1.4% ↘ 0.8% High Low 

7. Highly shifting scenarios 
probabilities 0.94 ↗ 0.96 > 0.05 (λ>150) Yes/No 9.0% ↘ 8.1% 2.5% ↘ 2.0% High Medium 

 
Figure 6-29: Overall control diagrams (left):coefficient of correlation, 

(right):hypothesis T-test, (mid):average error rate & critical error rate, concerning 
1000 sample instances, of the 7th fully stochastic simulation state in Table 6-4. 
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↗↘ slightly increased/decreased to, 1desision-making reliability, 2accuracy reliability, 3single simulation per sample 

instance, 4repeated (Monte Carlo) simulations per sample instance 

 

1. In this initial state, most of the random behavior of the simulation model has been 
disabled. The only stochastic behavior is the random selection of maintenance scenario 
types based on their individual probabilities, thus generating variant sequences of scenario 
applications. These results provide sufficient evidence that the implied continuous 
integration, used by the formal models, converges to the discrete calculations of the actual 
maintenance process as performed by the simulation model. Furthermore, the repeated 
scenario sequences, assumed by the formal models, are in accordance with the random-
pattern sequences of the actual maintenance process. 

 

As indicated by the diagrams in Figure 6-44 and Figure 6-45, the long-term coefficient 
of correlation is almost perfect (approaching to 1.0), while the critical error rate fades to 
0% in a long-term perspective. In addition, according to T-rest results, there is high 
accuracy in terms of absolute effort assessments concerning their difference of CVP minus 
CIBI.  

 
Figure 6-30: Scatter diagrams of external correlation among formal and simulated 

values of total effort (CVP, CIBI, CVP-CIBI), concerning all (1000) sample instances, 
of the 1st simulation state in Table 6-4. 
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2. In this state, the uncertainty factor effecting scenarios’ probabilities during 
simulation is engaged. The value of fBM factor is set to 0.5 implying a medium uncertainty 
level. Thus, the overall uncertainty factor fBM x uf ranges in the ±3σ interval of (-0.15, …, 
0.15). These results provide sufficient evidence that the repeated scenario sequences based 
on constant probabilities, assumed by formal models, approximate the medium 
uncertainty level imposed by shifting scenarios’ probabilities during the actual 
maintenance process. 

 
As indicated by the diagrams in Figure 6-32 and Figure 6-33, the long-term coefficient 

of correlation is almost perfect (approaching to 1.0), while the critical error rate fades to 

 
Figure 6-31: Overall control diagrams (left):coefficient of correlation, 

(right):hypothesis T-test, (mid):average error rate & critical error rate, concerning 
1000 sample instances, of the 1st simulation state in Table 6-4. 

 
Figure 6-32: Scatter diagrams of external correlation among formal and simulated 

values of total effort (CVP, CIBI, CVP-CIBI), concerning all (1000) sample instances, 
of the 2nd simulation state in Table 6-4. 
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0.6% in a long-term perspective. In addition, according to T-rest results, there is high 
accuracy in terms of absolute effort assessments concerning their difference of CVP minus 
CIBI.  

 
3. In this state, the alternative maintenance scenarios such as modifications (including 

debugging) and deletions are engaged. These results provide sufficient evidence that the 
explicit analysis of expansion scenarios, followed by formal models, has a dominant impact 
in maintainability assessment, as suggested by the modeling  method in  chapters 3, 4, and 
SMC metric. Thus, the expansion analysis of the engaged design patterns covers all the 
essence of the actual maintenance process. 

 

 
Figure 6-33: Overall control diagrams (left):coefficient of correlation, 

(right):hypothesis T-test, (mid):average error rate & critical error rate, concerning 
1000 sample instances, of the 2nd simulation state in Table 6-4. 

 
Figure 6-34: Scatter diagrams of external correlation among formal and simulated 

values of total effort (CVP, CIBI, CVP-CIBI), concerning all (1000) sample instances, 
of the 3rd simulation state in Table 6-4. 
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As indicated by the diagrams in Figure 6-34 and Figure 6-35, the long-term coefficient 
of correlation is almost perfect (approaching to 1.0), while the critical error rate fades to 
0.8% in a long-term perspective. In addition, according to T-rest results, there is high 
accuracy in terms of absolute effort assessments concerning their difference of CVP minus 
CIBI.  

 

4. In this state, the scenario’s actual size factor is engaged. These results provide 
sufficient evidence that effort/size assessments in terms of number of interventions are 
reliable measurement (proxy) units for comparison purposes, as assumed by the used SMC 
metric in Table 6-2. Evidence showed that in a mid-to-long-term perspective, the 
scenarios’ actual size is statistically neutral. Hence, the SMC metric (introduced in chapter 
3) is a reliable comparison measure for mid-to-long term size/effort predictions. 

 
Figure 6-35: Overall control diagrams (left):coefficient of correlation, 

(right):hypothesis T-test, (mid):average error rate & critical error rate, concerning 
1000 sample instances, of the 3rd simulation state in Table 6-4. 
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As indicated by the diagrams in Figure 6-36 and Figure 6-37, the long-term coefficient 
of correlation is almost perfect (approaching to 1.0), while the critical error rate fades to 
0.9% in a long-term perspective. In addition, according to T-rest results, there is high 
accuracy in terms of absolute effort assessments concerning their difference of CVP minus 
CIBI.  

 
5. In this state, the aging and learning rate factors are simultaneously engaged. The 

developers’ experience level retains a constant value (exp), initially selected from a fully 
random or horizontal distribution during sample selection. Under these settings, the 
formal model loses its correlation power, also failing to provide precise estimations in terms 

 
Figure 6-36: Scatter diagrams of external correlation among formal and simulated 

values of total effort (CVP, CIBI, CVP-CIBI), concerning all (1000) sample instances, 
of the 4th simulation state in Table 6-4. 

 
Figure 6-37: Overall control diagrams (left):coefficient of correlation, 

(right):hypothesis T-test, (mid):average error rate & critical error rate, concerning 
1000 sample instances, of the 4th simulation state in Table 6-4. 
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of absolute values on the effort difference (CVP-CIBI) as indicated in Figure 6-39. One the 
other hand, its selection reliability, expressed by a low average Er (5.2%), remains high. 
Even if the individual effort assessments of CVP and CIBI demonstrate a low coefficient of 
correlation (less than 0.5), their difference (CVP-CIBI) demonstrates a relatively high 
coefficient of correlation (near to 0.8) in a long-term perspective, as also indicated in Figure 
6-38. Logically, this contradictory outcome is explained by the fact that developers with 
same experience work on both design alternatives under comparison, counterbalancing the 
side effect of constant experience level. However, this is not a usual case since companies 
and developers have the trend to improve their experience level during the maintenance 
process. In addition, many developers with different experience level may work during the 
system’s maintenance. Thus, different frequency distributions of developers’ experience 
level are explored in the following simulation state. 

 

 
Figure 6-38: Scatter diagrams of external correlation among formal and simulated 

values of total effort (CVP, CIBI, CVP-CIBI), concerning all (1000) sample instances, 
of the 5th simulation state in Table 6-4. 



 

UNIVERSITY OF 
PELOPONNESE 

“Model-driven Software Architectural Design based on Software 
Evolution Modeling and Simulation and Design Pattern Analysis 
for Design Space Exploration Towards Maintainability” 

 

PhD Thesis  159 

 

6. In this state, developers’ experience level is defined based on random values of a left-
skewed normal distribution, which is probably the most realistic assumption, as supported 
by empirical evidence in (Woolf, 2016). The results provide sufficient evidence that factors 
representing code aging issues and developers’ experience, skills, learning rate, or other 
factors that may influence their productivity are negligible since they are common (for both 
design alternatives under comparison) and therefore neutral in a mid-to-long-term 
perspective, as assumed by the evaluated modeling method in chapters 3 and 4.  

 
As indicated by the diagrams in Figure 6-40 and Figure 6-41, the long-term coefficient 

of correlation is almost perfect (approaching to 1.0), while the critical error rate fades to 

 
Figure 6-39: Overall control diagrams (left):coefficient of correlation, 

(right):hypothesis T-test, (mid):average error rate & critical error rate, concerning 
1000 sample instances, of the 5th simulation state in Table 6-4. 

 
Figure 6-40: Scatter diagrams of external correlation among formal and simulated 

values of total effort (CVP, CIBI, CVP-CIBI), concerning all (1000) sample instances, 
of the 6th simulation state in Table 6-4. 
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0.8% in a long-term perspective. In addition, according to T-rest results, there is low 
accuracy in terms of absolute effort assessments concerning their difference of CVP minus 
CIBI. Only in a long-term (λ>170) perspective their difference seems to be accurate in 
terms of absolute effort assessments. 

 

7. In this final and fully stochastic state, the uncertainty factor effecting scenarios’ 
probabilities during simulation is increased. The value of fBM factor is set to 1.0 implying a 
high uncertainty level. Thus, the overall uncertainty factor fBM x uf ranges in the ±3σ interval 
of (-0.3, …, 0.3). The latest results in Figure 6-28 and Figure 6-29 showed that the long-
term coefficient of correlation is almost perfect (approaching to 1.0), while the critical error 
rate fades to 2.0% in a long-term perspective. In addition, according to T-rest results, there 
is a medium long-term (λ>170) accuracy in terms of absolute effort assessments 
concerning their difference of CVP minus CIBI. These results provide sufficient evidence 
that the repeated scenario sequences based on constant probabilities, assumed by formal 
models, approximate the high uncertainty level imposed by shifting scenarios’ probabilities 
during the actual maintenance process. Moreover, the results provide sufficient evidence 
that the fully stochastic behavior delivered by the simulation model can be adequately 
expressed or approximated by the limited set of variables of the deterministic formal 
models introduced in in chapters 3 and 4. 

In addition, the formal models’ prediction ability, in terms of absolute effort values, is 
confirmed only for the difference (CVP-CIBI) while they falling to provide similar effort 
estimations for each individual design alternative as indicated by T-test results in Figure 
6-29. Simulation model decreases system’s expansion end required effort due to the 
engagement of alternate scenarios, as indicated by the application example in Figure 6-6. 

Even if the states 1 to 5 reflect lumped simulation models of low consistency compared 
to actual (real-world) maintenance process, they provide insightful evidence and inferences 
regarding several aspects of the modeling theory and formal models under validation. The 
most important intermediate inferences are presented below: 

• the implied continuous integration, used by the formal models, converges to the 
discrete calculations of the actual maintenance process as performed by the 
simulation model. 

• the repeated scenario sequences based on constant probabilities, assumed by 
formal models, approximate the medium uncertainty level imposed by shifting 
scenarios’ probabilities during the actual maintenance process. 

 
Figure 6-41: Overall control diagrams (left):coefficient of correlation, 

(right):hypothesis T-test, (mid):average error rate & critical error rate, concerning 
1000 sample instances, of the 6th simulation state in Table 6-4. 
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• the explicit analysis of expansion scenarios, followed by formal models, has a 
dominant impact in maintainability assessment, as suggested by the modeling  
method in chapters 3 and 4, the derived formal models, and SMC metric. Thus, 
the expansion analysis of the engaged design patterns covers all the essence of the 
actual maintenance process among design alternatives mainly for comparison 
purposes. 

• effort/size assessments in terms of number of (classes and method) interventions 
are reliable measurement (proxy) units for comparison purposes in a mid-to-long 
term perspective, as assumed by the used SMC metric in Table 6-2. 

• factors representing code aging issues and developers’ experience, skills, learning 
rate, or other factors that may influence their productivity are negligible  since they 
are common (for all design alternatives under comparison) and therefore neutral 
concerning the decision-making process in a mid-to-long-term perspective, as 
assumed by the evaluated modeling method in chapters 3 and 4. 

• the repeated scenario sequences based on constant probabilities, assumed by 
formal models, approximate the high uncertainty level imposed by shifting 
scenarios’ probabilities during the actual maintenance process. 

Finally, it is important, that even under slightly different assumptions such as 
frequency distributions (including fat-tails variations of limited exposure to tail-risk), 
initial values, and intervals regarding the stochastic variables of the simulation model in 
Table 6-3, the results (not included in this thesis) of the performed sensitivity analysis 
revealed that the evaluated formal models exhibit a sustainable decision-making 
performance. 

6.5.3 Pattern Exploration of Decision Errors 

In this subsection, a further analysis regarding the pattern of critical error occurrences is 
presented. Different design implementations that require different amounts of effort during 
maintenance can be seen by managers as alternative investment options. Under this 
perspective, managers want to reduce the required maintenance effort/size, retaining a low 
risk of possible wrong selection. Prediction models, like the derived formal models, involve 
various types of events or classes of resembling maintenance scenarios based on 
assessments of their probabilities. As a result, probabilistic models could have some 
accuracy issues for some marginal cases, introducing an error rate of wrong selections. 
Through further analysis of individual errors, critical errors with high negative impact in 
terms of wasted effort, and high severity degree in terms of high probability to occur  are 
spotted. A more in-depth analysis of critical errors can reveal a classification pattern of 
those marginal cases, for which the prediction model is likely to fall into a critical error. 
Thus, the error rate is another sophisticated measure of the model’s reliability degree, 
focusing on decision-risk taken by the software designers and managers. 

6.5.3.1 Error Rate Assessment  

More specifically, the error rate (Er) is computed through repeated simulations for 

different λ values and 100 repetitions for each λ value and each sample instance, as 

illustrated in Figure 6-42 (left side). Repeated executions on the parameters of the same 
sample instance are suggested in the context of several studies about testing randomized 
software for simulation purposes (Jabangwe et al., 2015). Next, the intermediate results 
are compared to formal model’s (deterministic) results, while occurring errors are counted. 
The error rate (Er) of all the repeated simulations corresponds to the error rate (Er) of each 
specific sample instance. Furthermore, error measurements of all sample instances are 

averaged in average error rates (avg Er) per λ value, as analyzed in Figure 6-42. Thus, the 

average error rates (avg Er) correspond to the entire design space (of all random sample 
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instances) of the general problem under study. Further analysis of error rate distribution 
provides evidence about the actual percentage occurrences of critical errors. 

 

The analysis of the results provides average error rates (avg Er) for different λ values, 

as presented in Figure 6-29 (middle), referred to the 7th simulation state in Table 6-4. At 
first glance, the average error rate (avg Er) is decreased as the number of scenario 

applications (λ) is increased. For λ>50, the average Er is less than 9.0%, converging to 

8.1% for λ near to 200 scenario applications. The frequency distribution of the error rates 

(Er) of each sample instance for λ near to 200, is presented inside Figure 6-43. Almost 

68% of the sample instances have an Er between 0% and 3%. The rest 32% of the sample 
instances have an Er more than 3%, and only 23% of the sample instances have an Er more 

than the average Er(λ)=Er(200)=8.1%. Thus, there are sufficient evidence that the 

proposed formal models deliver accurate results with a (long-term) average error rate near 
to 8.1%, even under the 7th simulation state of high uncertainty in Table 6-4. However, it 
is important the critical errors in terms of wasted effort be further investigated.  

6.5.3.2 Critical Error Rate Assessment 

A critical error arises when there is a significant amount of wasted effort and a high 
probability to occur. Thus, high wasted effort and high probability indicate the significant 
impact of a critical error and the risk taken during the decision-making process. More 
specifically, the critical error rate (cEr) is computed through the conditional comparison of 

intermediate results from error rate assessment in previous step, for each λ value and each 

sample instance, as illustrated in Figure 6-42 (right side). Thus, error rate assessment must 
precede critical error rate assessment since the results of the first step are prerequisites in 
the second step. 

 
Figure 6-42: Experimental error rate assessment. 
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The analysis of the results provides average critical error rates (avg cEr) for different 

λ values, as also presented in Figure 6-29 (middle), referred to the 7th simulation state in 

Table 6-4. The average critical error rate (avg cEr) is also decreased as the number of 

scenario applications (λ) is increased. For λ>50, the average critical cEr is less than 2.5%, 

converging to 2.0% for λ near to 200 scenario applications. Thus, there are sufficient 

evidence that the proposed formal models deliver accurate results with a (long-term) 
average critical error rate near to 2.0%, even under the 7th simulation state of high 
uncertainty in Table 6-4. 

6.5.3.3 Pattern of Sample Instances Prone to Critical Errors 

The entire design space of the general problem of CVP vs. CIBI (recursive hierarchies of 
part-whole representations) is statistically represented by the sample of 1000 random 
instances (defined in subsection 6.4.4) which are graphicly presented in the two-
dimensional scatter diagram in Figure 6-43. Nevertheless, this scatter diagram represents 
a seventh-dimensional data space:  

• Data dimension 1 and 2: Axis x represents the auxiliary factor μ=M/N which is the 
rate of number of initial operations (M) and number of initial elements (N).  

• Data dimension 3 and 4: Axis y represents the probability factor (pnE=1-pnP) for a 
new element which also indirectly expresses the probability factor (pnP) for a new 
operation.  

• Data dimension 5: The mark’s size of each sample instance reflects the magnitude 
of its error rate (Er) or else the probability or likelihood to occur an incorrect 
decision. The larger the mark's size of the sample instance, the higher the 
probability the formal model’s predictions to lead to a incorrect decision for that 
sample instance.  

• Data dimension 6: The mark’s color of each sample instance reflects the magnitude 
of the decision’s impact in terms of rate of gained or wasted effort. This magnitude 
of decision’s impact is expressed by the rate of the average (for all repeated 
simulations) effort difference (CVP-CIBI) to the minimum of the average efforts of 
CVP and CIBI design alternatives. The mark's color of the sample instance, as 
arranged in the side color-bar, indicates the severity degree or the (%) average rate 
of the wasted effort in case of wrong decision for the specific sample instance.  

• Data dimension 7: Finally, the red bordered marks of each sample instance reflect 
critical error occurrences. As illustrated in Figure 6-42 (right side), a sample 
instance is characterized as prone to critical errors if: 

o its error rate is greater than the average error rate of all sample instances 
(Er > avg Er), reflecting the high probability to occur a wrong decision, 
AND 

o its average (for all repeated simulations) effort difference (CVP-CIBI) is 
greater than the 10% of the minimum of the average efforts of CVP and 
CIBI design alternatives, reflecting the high severity degree or the high rate 
of wasted effort of possible wrong decisions. 
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In principle, a decision error occurs when the sign of the simulation model distance 
(CIBI-CVP difference) is different from this returned by formal models. Thus, setting the 

difference equation equal to zero, pnE=1-pnE, μ=M/N, for λ>0, the equation of balance 

cases is derived pnE(μ)=1(μ+1), which indicates the relation of independent variables 

with equal effort estimations between CVP and CIBI alternatives, as showed in subsections 
3.5 and 3.6. Scenario instances that satisfy this equation should be prone to potential 

errors, as illustrated in Figure 6-43, for λ=200 in the 7rd simulation sate in Table 6-4. In 

did, decision errors are more likely to occur (having higher Er or larger mark’s size) for 
those sample instances closer to the trace of balance cases. Respectively, moving away from 
the trace of balance cases, decision errors are less likely to occur (having lower Er or smaller 
mark’s size). However, approaching the trace of balance cases, possible decision errors 
have lower severity degree or rate of wasted effort (blue colored marks). Respectively, 
moving away from the trace of balance cases, decision errors are more severe with higher 
rate of wasted effort (yellow colored mark). This contradiction is confirmed by the sample 
instance prone to critical errors, indicated by red bordered marks. Referring to Figure 6-43, 
sample instances prone to critical error occurrences follow two separate traces (limits), 
which are correlated to the balance equation trace. All the sample instances prone to critical 
errors (high probability to occur and high severity degree) are aligned up on those traces. 
Moving away from these traces, error occurrences are either almost impossible to arise 
(away from the trace of balance cases) or have negligible severity degree or possible rate of 
wasted effort (towards the trace of balance cases). Finally, all the sample instances below 
the trace of balance cases are suited for CVP design alternative, while all the sample 
instances above the trace of balance cases are suited for CIBI design alternative. 

Evidence shows that by setting distance equations equal to zero, balance equations can 
be derived which reveal the pattern or the traces of non-critical and critical error 
occurrences. Furthermore, by placing critical design attributes or factors on diagrams such 
as in Figure 6-43, software engineers can develop a “feel” about the design spectrum of 
possible instances of a significant and general design problem. 

6.5.4 Uncertainty Considerations 

As indicated in Figure 6-20, the intermediate effort outcomes per scenario application 
resemble to stationary time series with constant mean and finite variation. The irregular 

 
Figure 6-43: Design space representation through 1000 sample instances of CVP vs. 
CIBI general problem, including long-term error and critical error rate assessment 

(λ=200, 7th simulation state in Table 6-4). 
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fluctuations of these series correspond to white noise which is the result of the uncorrelated 
random variables engaged by the simulation model. Such time series are not deterministic, 
and it is difficult to forecast with certainty what will occur in the future. Time series analysis 
(e.g., through ARMA models (G. Antoniol et al., 2001; Shariat Yazdi et al., 2016)) attempts 
to understand the nature of time series and it is often useful for future forecasting. These 
modes simply predict the statistical properties (i.e., mean, variance, auto correlation) of the 
time series, assuming that they will be the same in the future as they have been in the past. 
However, this type of analysis completely ignores the nature of the phenomenon under 
study. In contrast, the introduced simulation model generates time series of effort 
outcomes the values and the variability of which are determined by the model parameters, 
the design attributes, specific events, and a standard measurement approach, while several 
high uncertainty factors are incorporated. Thus, since the simulation model returns future 
effort values per applied scenario in the form of time series, the variability of these series 
would be more informative and probably more realistic about the nature of the 
phenomenon under study or else about the software evolution during maintenance 
process. Besides that, these time series have been calibrated regarding their variability 
based on frequency distributions of real-world observations from time series analysis, as 
discussed in subsection 6.4.9. 

Given that the simulation model provides representative effort assessments in respect 
to the design structure of each specific problem, it can be assumed that the average value 
of the effort assessments of several repeated (Monte Carlo) simulations for a specific 
problem’s instance would approximate the most probable or else the actual or realized 
maintenance effort. This exactly implied by the indicative frequency distributions of the 
effort outcomes for 100 repeated simulations in Figure 6-18. Any deviations from that 
mean value express the uncertainty or the possibility of an incorrect prediction and 
consequent decision during the design phase. By analyzing these frequency distributions 
for each scenario application (λ), the progressive uncertainty is depicted in Figure 6-44. 
Concerning the difference of the effort outcomes (CVP-CIBI), their outlier values in the 
distributions explain the error rate of the decision-making. If, for example, the initial effort 
predictions during the design stage are near to the mean value, a possible and not 
anticipated realization of the maintenance process can be end up to one of the outliers. In 
the specific example in Figure 6-44, most of these outliers have values with reverse sign, 
implying that the initial effort predictions and the decision made was incorrect. 

 

However, even if the level of uncertainty in Figure 6-44 seems to increase for longer 
maintenance period, occasionally, the uncertainty level in software life cycle is expressed 
differently. More specifically, it is expressed by the ratio of mean plus deviation to the mean 
value or else by the ratio of a possible prediction to realized value. This is the interpretation 

 
Figure 6-44: Frequency distributions (Box Plots) of Simulation Model’s outcomes 

(CVP, CIBI, CVP-CIBI) for 100 repeated simulations in a single object-subject 
instance (N:40, M:10, pne:0.5, exp:1.0), of the 7th fully stochastic simulation state in 

Table 6-4. 
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of the uncertainty levels as expressed by the famous cone of uncertainty in (B. Boehm, 
2008; B. W. Boehm, 1984). The earlier a decision is made the grater the uncertainty of this 
prediction to deviate from the realized cost or size as represented by the unit value of the 
horizontal axis in Figure 6-45. 

 

The ratio of mean plus deviation to the mean value for each effort distribution (CVP 
and CIBI) in Figure 6-44 is combined with the cone of uncertainty in Figure 6-45. The 
order of scenarios’ application has been reversed since the earlier the design decision is 
made, the grater the number of future scenario applications (λ). Surprisingly, under this 
representation, the earlier (higher λ value) the design decision is made, the narrower the 
level of uncertainty, practically reversing the cone of uncertainty. This mean that the effort 
predictions and consequent decisions based on the simulated outcomes are more reliable 
for longer forecasts. Thus, the longer the maintenance period of software the higher the 
probability of the realized cost (effort, size) to be near the predicted (mean) value returned 
by the simulation model. Since the simulation model successfully validated the reliability 
of the formal modes, the evaluated formal modes and relevant modeling theory in chapters 
3 and 4 also exhibit limited uncertainty levels. It is important that reassessment attempts 
by reapplying the formal models in a later stage providing it with updated information, as 
suggested in (Aroonvatanaporn, Sinthop, & Boehm, 2010; Eveleens & Verhoef, 2009), is 
almost meaningless. Even the realization that the initial design selection was incorrect, the 
adjustment of the existing code to a different design alternative would require the redesign 
of code structure which is an extremely complicated and effort consuming process as 
indicated in chapter 3. This is an argument that explains how critical the early design 
decisions are since after a specific design alternative has been selected, all the following 
interventions during maintenance should be conformed with the initially selected design 
structure. 

The reason of the limited uncertainty levels in Figure 6-45  is the fact that the formal 
models are sensitive and well fitted in the design characteristic of each specific instance of 

 
Figure 6-45: Levels of uncertainty distributions of Simulation Model’s outcomes 

(CVP, CIBI) for 100 repeated simulations in a single object-subject instance (N:40, 
M:10, pne:0.5, exp:1.0), of the 7th fully stochastic simulation state in Table 6-4. 
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a general problem. Since the maintenance process is dictated by the structural behavior of 
the engaged design patterns, any random variation or white noise caused by unpredictable 
influences would have stationary statistical characteristics, thus minimizing their overall 
long-term effect. Notice that all the discussion is about ratios (or analogies) of variations 
against means, and not about absolute values which have not been strictly validated against 
real-world observations. 

6.5.5 Statistical Evaluation per Sample Instance 

In this subsection, a statistical evaluation of an indicative instance of the CVP vs CIBI 
general design problem is presented. The analyzed instance is referred to the practical 
motivation example of GUI implementations in Table 1-1 with the following parameters: 
N=15, M=14, pnE=0.70, and pnP=0.30. This implementation corresponds to a marginal 
case since the difference of effort assessments among design alternatives is relatively small. 
The evaluation is based on the results of the conducted simulations as graphically 
represented in Figure 6-46. Furthermore, statistical evaluations for several indicative 
sample instances of the CVP vs CIBI general design problem are provided in Appendix D. 

 

 

 
Figure 6-46: Statistical evaluation of GUI implementation based on simulation 

outcomes 
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Referring to Figure 6-46, several subgraphs are presented to provide an in deep 
understanding of conducted simulations concerning the GUI implementation (problem’s 
instance). The simulated effort assessments are referred to 7th fully stochastic simulation 
state in Table 6-4. More specifically, a detailed analysis per subgraph follows: 

The upper left graph: provides the deterministic (total) effort assessments returned by 
the formal models for CVP and CIBI design alternatives as well as for their difference (CVP-
CIBI). In addition, it provides the stochastic (total) effort assessments returned by the 
simulation model for a single indicative simulation. Formal model’s results indicate that 
CIBI design alternative is preferable since requires the lesser maintenance effort. However, 
it is obvious that the difference of effort assessments is relatively small, thus the specific 
GUI implementation (problem’s instance) is probably a marginal case where the decision 
outcome provided by formal models may be subject to significant risk. Thus, due to the 
stochastic nature of the simulation model, the simulated effort assessments are subject to 
several stochastic factors. In this marginal case, the simulated effort assessments per 
design alternative are interchanged during maintenance, implying that the decision 
outcome is not straightforward as in the case of formal model’s (deterministic) outcomes. 

The upper middle graph: provides a clear assessment of the decision risk taken 
through the error rate (Er). This assessment is the result of the comparison between 
(deterministic) formal models’ outcome and several repeated (Monte Carlo) simulations 
for the same problem’s instance. The graph represents the evolution of the error rate (Er) 
during the maintenance process as expressed by the number of applied scenarios (λ). 
Usually, the error rate constantly decreases during simulation while for the first applied 
scenarios (λ<50) its decrement is quite sharply. However, in this marginal case, the result 
shows that in a mid-term perspective (λ≈100), the design decision supported by formal 
modes is subject to a reasonable risk near 5%, while in a long-term perspective is subject 
to a significant risk near to 15%. Because GUI implementation is a marginal case, the 
results are quite interesting as the error rate initially decreases and later increases. The 
initial (expected) decrement rate is justified by the statistical convergence of the engaged 
stochastic factors around their mean values, thus as new scenarios are applied the overall 
effect of the stochastic factors tend to become neutral. This reduces possible sharp 
fluctuations and the likelihood of unexpected interchanges among design alternatives and, 
thus decreasing decision-risk. However, the (unexpected) increment of error rate is 
justified by the increased severity (impact) of future interventions that cause sharp 
fluctuations that counterbalance and eventually overcome the statistical convergence. 
From a different perspective, as the maintenance process evolves and the impact of 
interventions increases, instant and sharp fluctuations increase the likelihood of 
unexpected interchanges among design alternatives and thus to higher decision-risk. 
Again, it is important that this peculiar behavior is due to the marginal nature of the GUI 
implementation or the limited difference of effort assessments among design alternatives. 
The interpretation of this behavior is insightful about the ability of the simulation model to 
imitate the actual software evolution during maintenance as well as its sensitivity to adapt 
its behavior to specific instances of the design problem under study. 

The upper right graph: provides the number of occurrences per major scenario type 
that have been randomly generated (base on their probabilities) and applied during a single 
indicative simulation. dE and dP correspond to the maintenance activities for deleting an 
element and operation respectively. mE and mP correspond to the maintenance activities 
for modifying an element and operation respectively. nE and nP correspond to the 
maintenance activities for adding an element and operation respectively. The result shows 
that modification and addition of elements have the greater portion since under GUI 
implementation the probability of adding new elements is higher (pnE=0.70) as assessed 
by the system’s specifications in Table 1-1. 
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The second left graph: provides the frequency distribution of the values of the overall 
stochastic factor of the simulation model per applied scenario for a single indicative 
simulation. The values of this stochastic factor encompass all the variability introduced by 
several random and stochastic factors such as method’s actual size, aging issues, and 
developers experience. 

The second middle graph: provides the frequency distribution of the intermediate (per 
applied scenario) CVP effort assessments of the simulation model for a single indicative 
simulation. The shape of this distribution is right skewed as a result of the intensive 
calibration efforts to imitate the statistical characteristics of real-world (effort-based) 
assessments from the field of time series analysis as analyzed in subsection 6.4.9. 

The second right graph: provides the frequency distribution of the intermediate (per 
applied scenario) CIBI effort assessments of the simulation model for a single indicative 
simulation. Again, the shape of this distribution is right skewed as a result of the intensive 
calibration efforts as in the case of CVP effort assessments. 

The third left graph: provides, in the form of time series, the values of the overall 
stochastic factor of the simulation model per applied scenario for a single indicative 
simulation. 

The third middle graph: provides, in the form of time series, the intermediate (per 
applied scenario) CVP effort assessments of the simulation model for a single indicative 
simulation. The observed fluctuations correspond to the typical behavior of random 
variables representing stochastic processes. 

The third right graph: provides, in the form of time series, the intermediate (per 
applied scenario) CIBI effort assessments of the simulation model for a single indicative 
simulation. Again, the observed fluctuations correspond to the typical behavior of random 
variables representing stochastic processes. 

The fourth left graph: provides the frequency distributions (per applied scenario) of 
the CVP effort assessments of the simulation model for several repeated (Monte Carlo) 
simulations for the same problem’s instance. This type of graph represents the evolution 
of uncertainty degree during maintenance as discussed in subsection 6.5.4. 

The fourth middle graph: provides the frequency distributions (per applied scenario) 
of the values of CIBI effort assessments of the simulation model for several repeated (Monte 
Carlo) simulations for the same problem’s instance. 

The fourth right graph: provides the frequency distributions (per applied scenario) of 
the difference of CVP-CIBI effort assessments of the simulation model for several repeated 
(Monte Carlo) simulations for the same problem’s instance. This type of graph represents 
the evolution of uncertainty degree during maintenance concerning the decision-making 
process. The result shows that in an early (λ<50) and long term (λ>150) perspective there 
several values below zero, thus representing an opposite decision (CVP) against formal 
models’ decision (CIBI). In practice, these (opposite) values confirm the significant error 
rate (Er) as quantitatively expressed in the upper middle graph. The more the opposite 
values, the higher the likelihood of the formal models to conclude in an incorrect decision.  

Referring to the implementation of GUI, the formal models demonstrate a significant 
long-term decision-risk (near to 15%) or else a moderate decision-making reliability near 
to 85%. Thus, there 85% chance for the formal model to conclude to the right design 
decision for the specific GUI implementation (problem’s instance). However, problem’s 
instances with high error rate have small severity, thus the possible gain or loss (in terms 
of effort) would be limited or even insignificant as discussed in subsection 6.5.3. In general, 
even when for a specific problem’s instance, the error rate is significant, its severity or the 
possible gain or loss (in terms of effort) would be probably limited. Only a small portion of 
error occurrences may be critical in terms of severity as expressed by the critical error rate 
(cEr) in Figure 6-29 (middle). 
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Referring to the entire sample of instances, the formal models demonstrate variant 
decision-risk or decision-making reliability. For example, the sample instance N.001 
demonstrate a long-term error rate (Er) near to 25%, the sample instances N.011, 012 less 
than 10%, the sample instances N. 14, 15 less than 5%, and the sample instances N.004, 
007, 008, 009, 010 fade to zero (0%) as presented in Appendix D. The average of decision-
risk (expressed by the error rate and critical error rate) for the entire sample of problem’s 
instances (representing the problem’s design space) is depicted in Figure 6-29 (middle) 
and summarized in Table 6-7. 

Conclusively, the decision-making reliability of the derived formal models variates and 
depends on the parameters of each specific instance of the general problem under study. 
Marginal cases with narrow effort differences are the most prone to potential error, 
however, most of these errors would be of low severity in terms of wasted effort. The overall 
decision-making reliability of the derived formal models is expressed by the average error 
rate of a sufficient sample of instances that represents the entire design space of the design 
problem under study. 

6.5.6 Summarizing Results and Inferences 

In general, under medium to high uncertainty assumptions, the evaluated formal models 

and modeling method are valid in a mid-to-long-term (λ>50) perspective regarding their 

selection ability, demonstrating a) high correlation coefficient ranging from 0.94 to 0.96, 
b) decreasing average error rate between 9% and 5.4%, and c) decreasing critical error rate 

from 2.5% to 0.8%. Furthermore, the formal models are also valid in a long-term (λ>150) 

perspective regarding its prediction ability in absolute effort/size magnitudes, under the 
assumption that companies and developers gradually improve their experience and skill 
level. However, evidence that imply prediction ability in terms of absolutes values may be 
of low importance as stressed in subsection 6.6.1. Summarizing, the decisions based on the 

formal models, in a long-term (λ→200) perspective, demonstrate a) high coefficient of 

correlation 0.96, b) low average error rate 8%, and c) low critical error rate 2%.  

The evidence suggests that simplified modeling approaches such as the introduced 
modeling method in chapters 3 and 4are particularly reliable able to approximate dynamic 
system's behavior mostly because of mid-to-long-term statistical convergence. 
Conceptually, the introduced modeling theory can be considered as a reverse analysis or a 
regression analysis on the underlying activities of actual maintenance process, managing 
to eliminate transitory and stochastic factors which demonstrate a statistically neutral 
long-term effect. Thus, the introduced approach in chapters 3 and 4 seems that achieves to 
eliminate transitory and biased factors to enhance mid-to-long-term decision ability. 

6.6 Conclusions 

6.6.1 General Requirements and Limitations 

The introduced validation procedure requires a sophisticated simulation model, properly 
adapted to the characteristics of each specific general problem under validation. Thus, the 
validation of formal models for different general problems requires the development of an 
alternate simulation model that should incorporate all the relevant scenario types, design 
attributes, and problem’s parameters. In this case, the coefficient of correlation and the 
error rate could be different. 

Furthermore, the simulated outcomes are focused only on the required effort for 
maintaining the main code of each design alternative. Any additionally required effort for 
maintaining linked modules or legacy code would be common for all design alternatives 
under comparison, and thus neutral concerning the decision making. The main objective 
of the derived formal models in chapters 3 and 4 and therefore of the proposed simulation 
approach is to provide proportionally equivalent effort estimations primarily for 
comparison purposes. Therefore, in principle, absolute values of simulated effort outcomes 
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do not necessarily reflect the actual or realized effort for the entire system. In addition, as  
in chapters 3 and 4, absolute maintenance cost assessments in terms of salaries, resources, 
assets, expenses, etc., are out of the scope of the proposed simulation approach. 

The modeling method in chapters 3 and 4 emphasizes in the maintainability 
perspective of general design problems by deriving and analyzing design alternatives, 
design attributes, and major maintenance scenarios for each of them.  A possible failure to 
conclude on the complete set of problem’s parameters, may negatively affect the reliability 
of the simulation model which replicates the same structural evolution pattern under the 
same parameters.  

The proposed simulation model has been calibrated regarding its variability based on 
frequency distributions of real-world observations. Thus, further statistical inferences (i.e., 
correlation, error rate) about formal modes decision-making reliability (or precision) are 
well supported. However, due to the inadequate volume of homogeneous data, it lacks a 
strictly validation of simulated effort predictions against real-world observations. Thus, 
further statistical inferences (i.e., t-test) about formal modes accuracy are rather weak. 
Moreover, a finer calibration of the simulation model by matching its variability with 
frequency distributions from an even larger repository of real-world observations would be 
strengthening model’s ability to imitate actual maintenance process. 

Referring to the randomly selected sample, all the selected instances adequately 
represent the entire design space of the problem or the possible systems’ instances or the 
population of the general problem under study. Thus, the population validity, as a type of 
external validity, is high enough to reasonably generalize the findings of the experiment 
from the selected sample of instances to the entire design space of the general design 
problem under study.  

Furthermore, since the conducted simulations and the experimental settings and 
conditions are adequately controlled by the researcher, it is ensured that there are no 
extraneous factors that could explain (or affect) the returned effort outcome by the 
simulation model. Thus, since the experiment and the simulation model have high internal 
validity, it is confidently concluded that the defined independent variables of the simulation 
model adequately predict the depended variable of the required maintenance effort. 
However, a possible external threat to validity, as classified in (T. D. Cook & Campbell, 
1979), is the concern regarding the ability of the introduced simulation model to imitate 
the actual or real-world maintenance process in a more realistic way (e.g., by incorporating 
different independent variables and stochastic factors), and thus to limit the generalization 
of the experiment results or to create alternate explanations (D. L. Parnas & Curtis, 2009). 
This threat encompasses any possible concern about the suitability, limitations, or the 
proper interpretation of the selected (or possible other) parameters, stochastic factors, 
assumption, constraints, and requirements towards the objectives of the study. 

6.6.2 Extensions and Further Research 

The introduced approach is a starting point for further research in the domain of software 
evolution throughout simulation models which could engage other stochastic factors in 
different frequency distributions under other measurement methods and units, or even for 
other quality characteristics of the software. These research perspectives could be assisted 

by using general (e.g., MATLAB®) or targeted (e.g., VENSIM®) purpose simulation 

languages and tools. For example, both formal models as a continuous models and 
simulation model as an event-driven model can be implemented and further explored 

through the VENSIM® (dynamic, stochastic and quantitative) simulation tool, as 

supported in (Müller & Pfahl, 2008) and presented in subsection 7.4.  In addition, machine 
learning or artificial intelligence techniques may be used to assist simulation model 
reaching even more realistic results. 
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At the same time, this approach targets on motivating researchers toward the 
evaluation of other general and significant problems in software architecture domain for 
which proper selection among design alternatives could be modeled through the theoretical 
framework in chapters 3 and 4 and statistically validated by simulated observations. For 
example, several potential problems under evaluation and validation can emerge by taking 
under consideration the implication of several other competitive design patterns such as 
Strategy, Decorator, or Prototype against Abstract Factory, or Mediator against Observer, 
as introduced in (Gamma et al., 1994) and presented in chapter 5. The simulation of such 
problems can be assisted by integrating the proposed simulation model to perform jointly 
as a synthesized simulation or co-simulation, as proposed in (Zeigler et al., 2018). In such 
cases, existing base models might serve as lumped components of a broader simulation 
model forming a hierarchical structure. These potentials highlight the possible usability of 
the proposed theoretical framework in (Karanikolas et al., 2017) and the introduced 
evaluation method through simulations in a wide spectrum of general and difficult 
designing problems in the software architecture field. 

6.6.3 Overall Assessment 

Decisions made during design stage heavily affect maintainability of software and related 
time and effort. The proposed modeling method in chapters 3 and 4 generates probabilistic 
comparison models that estimate the maintainability degree of design alternatives through 
effort predictions in a formal and deterministic way. This approach manages to limit the 
ambiguity imposed by the stochastic nature of the actual maintenance process by relying 
on a limited set of problem’s parameters such as design attributes and probabilities of 
major maintenance scenarios.  

The results of the extensive statistical validation indicate that the evaluated formal 
models provide reliable estimations of the expected effort, especially for comparison 
purposes. Thus, decisions concerning design alternatives exhibit very limited selection-risk 
even under high uncertainty levels regarding the initial estimation of problem’s 
parameters. The reliability of the evaluated probabilistic models increases in a mid-to-long 
term perspective, and thus, as the maintenance process evolves and decisions' benefits 
become more significant, the models' decision ability to conclude in the most beneficial 
design alternative in terms of maintainability is increased. Such parsimonious models 
eliminate transitory and biased factors to enhance mid-to-long-term decision ability. 
Methods that yield such reliable, formal, general, and reusable models reduce the long-
term uncertainty of design decisions and help developers and engineers to elevate the 
quality of their decision-making. Thus, early structural analysis of the engaged design 
patterns can significantly improve effort assessments and comparison among design 
alternatives, practically reversing the (cone of) uncertainty levels. Even if such early and 
critical design decisions is not the primary concern in software industry, developers and 
designers should turn their attention on them since the cumulative benefits (avoided 
wasted effort) from the repeating use of these formal models significantly overcomes their 
initial derivation cost. 

Finally, the proposed validation approach introduces a new perception about the 
statistical evaluation of formal comparison models and relevant theories regarding their 
reliability to support design decisions. It relies on massive and homogeneous validation 
data, sensitive to several design attributes, generated by widely stochastic simulation 
models which have been thoroughly calibrated to replicate the underlying activities and 
variability of actual software evolution during maintenance process. Researchers are 
encouraged and hopefully inspired to possibly apply the introduced concepts in similar or 
different context. 
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7 Alternate Use of Formal Comparison Models 

7.1 Chapter Overview 

In this chapter, several alternate and future perspectives of the introduced modeling 
method, derived formal comparison models, and event-driven simulation models are 
presented. The purpose of this chapter is to demonstrate and explore further potential 
applications of the introduced theory and models. In addition, this material tries to 
highlight possible perspectives for further analysis and interpretation of similar or other 
design problems in the field of software engineering. 

More specifically, the introduced modeling method and derived formal models in 
chapters 3 and 4 are further analyzed to support decision-making under partial of full 
uncertainty. Thus, when software designers are unable to forecast the scenarios’ 
probabilities in a precise manner. For that purpose, the derived formal models are further 
integrated on their probability factors. Partial uncertainty refers to integration on a specific 
interval of possible scenarios’ probabilities, while full uncertainty refers to integration on 
the entire range of scenarios’ probabilities. The technique is demonstrated on the formal 
models of the general problem of part-whole aggregations. 

Furthermore, the horizon analysis technique is analyzed. This technique separates the 
entire maintenance period to subperiods, where for each subperiod different scenarios’ 
probabilities are applied. Under this perspective, even the code development period can be 
considered as a separate subperiod or a preliminary maintenance subperiod. In particular, 
the derived formal models in chapter 4 are repeatedly applied on a specific instance of the 
general problem for different scenarios’ probabilities. The initial values of design attributes 
for each subperiod are estimated based on the last step of previous subperiod. The 
technique is demonstrated on the example of Interpreter implementation as an instance of 
the general problem of part-whole aggregations. 

Moreover, alternate computer-aided implementations of the introduced models with 
the assistant of VENSIM tool are presented. This software tool can simulate physical and 
other phenomena and systems through the analysis of their key variables and their change 
rates. In this environment, constant and intermediate variables are combined to compute 
other variables. A special type of variables, called ‘levels’, is computed through integration 
based on the change rates that effecting it. The software runs the simulation and computes 
its variables by performing integration on a special parameter which generally represents 
the time dimension of the model. This tool can represent both continuous and event-driven 
models while provide a variety of capabilities for representing and compering the results of 
simulations. More specifically, the introduced discrete models in chapter 3, the continuous 
formal models in chapter 4, and the event-driven simulation model in chapter 6, 
concerning the general problem of part-whole aggregations, are implemented in VENSIM 
tool. The alternate modes are visually represented while the documentation of the code of 
each model is provided. Indicative comparison results of several basic variables among all 
models are presented. The tool is demonstrated on an example of GUI implementation as 
an instance of the general problem of part-whole aggregations. 

Finally, a discussion about seeing software design process as investment is provided. 
This discussion examines the decision-making during design phase and the produced 
software under the view of financial and accounting analysis. 

The context of this chapter is based on the quantitative analysis in chapter 3, the 
introduced modelling method and derived formal models in chapter 4, and the introduced 
simulation model in chapter 6. The rest of this chapter is organized as follows. Subsection 
7.2 demonstrates the decision-making under partial or full uncertainty. Subsection 7.3 
introduces the horizon analysis technique. Subsection 7.4 presents alternate computer-
aided implementations of the introduced models. Subsection 7.5 examines the software 
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design process under the view of investments. Finally, in subsection 7.6 conclusions are 
presented. 

7.2 Decisions Under Uncertainty 

The introduced modeling method in chapters 3 and 4 is based on estimations of major 
scenarios’ probabilities according to the scope of each specific problem’s instance. Referring 
to CIBI vs CVP general problem, pnE and pnP are the probabilities for the scenarios of adding 
a new composition’s element and adding a new type of operation, respectively. The 
equations of the generated formal models are based on specific values of those probabilities’ 
factors as independent variables. Thus, for each specific instance of the general design 
problem, software engineers should estimate those scenario probabilities as absolute 
values. For instance, in the case of the Interpreter specific problem with design attributes 
N=40 and M=10, the scenario probabilities are estimated as pnE=pnP=0.5. Nevertheless, in 
many cases, it is difficult to obtain such absolute probabilities with satisfactory certainty. 
In such cases, however, a confidence interval of these probabilities is more likely to be 
estimated. In this subsection, a technique that allows the use of the derived formal models 
as they are fed by intervals instead of absolute values of scenario’s probabilities is 
presented. 

7.2.1 Transforming Formal Models to Support Decision-Making Under 
Uncertainty 

Having extracted formal model equations, the decision-making can be supported based on 
estimations of intervals instead of a single value for a specific probability factor. This 
approach could be achieved through further integration of formal model equations on the 
probability factor of interest. For example, referring to CIBI vs. CVP general problem, the 
formal model equation of total effort for CVP design combination is presented in equation 
(7-1) where pnP factor has been replaced by 1-pnE. 

𝑐(𝐶𝑉𝑃,𝑁,𝑀, 𝑝nE, 𝑝nP, 𝜆) =  
3

2
𝜆2𝑝nΕ𝑝n𝑃 + 𝜆𝑝n𝑃𝑁 + 2𝜆𝑝nE𝑀 + 4𝜆𝑝nE + 𝜆𝑝n𝑃 = 

3

2
𝜆2𝑝nΕ(1 − 𝑝nE) + 𝜆(1 − 𝑝nE)𝑁 + 2𝜆𝑝nE𝑀 + 4𝜆𝑝nE + 𝜆(1 − 𝑝nE) 

(7-1) 

By integrating equation (7-1) on the pnE factor, the equation (7-2) is derived, which is 
a general equation. Furthermore, by integrating pnE factor for a specific interval of min and 
max values, the cumulative prediction of the required effort for all probabilities in this 
interval is returned.  

𝑐(𝐶𝑉𝑃,𝑁,𝑀, [𝑝nE(min), 𝑝nE(max)], [[1 − 𝑝nE(min), 1 − 𝑝nE(max)], 𝜆) = 

 ∫
3

2
𝜆2𝑝nΕ(1 − 𝑝nE) + 𝜆(1 − 𝑝nE)𝑁 + 2𝜆𝑝nE𝑀 + 4𝜆𝑝nE + 𝜆(1 − 𝑝nE)

𝑝nE(𝑚𝑎𝑥)

𝑝nE(𝑚𝑖𝑛)

 𝑑𝑝nE 

(7-2) 

A similar equation (7-3) can be derived for CIBI design combination. 

𝑐(𝐶𝐼𝐵𝐼, 𝑁,𝑀, [𝑝nE(min), 𝑝nE(max)], [[1 − 𝑝nE(min), 1 − 𝑝nE(max)], 𝜆) = 

 ∫
3

2
𝜆2𝑝nE(1 − 𝑝nE) + 2𝜆(1 − 𝑝nE)𝑁 + 𝜆𝑝nE𝑀 + 𝜆𝑝nE + 2𝜆(1 − 𝑝nE)

𝑝nE(𝑚𝑎𝑥)

𝑝nE(𝑚𝑖𝑛)

 𝑑𝑝nE 

(7-3) 

The equations (7-2) and (7-3) are able to support decision making among design 
alternatives of the CVP vs. CIBI general problem under conditions of partial of even full 
uncertainty. Thus, when designers are unable to estimate scenarios’ probabilities (i.e., 
pnE=1-pnP) in an absolute manner. In such cases, the cumulative effort assessments, 
referred to intervals of probabilities, are convenient for comparison purposes even if their 
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distinct cumulative values are essentially meaningless. Application examples of these 
equations are provided in next subsection. 

7.2.2 Example of Decision-Making Under Uncertainty 

7.2.2.1 Decision-Making Under Partial Uncertainty 

As an indicative example, supposing that pnE factor is estimated to the interval of [0.0, …, 
0.5], the equation (7-2) returns the equation (7-4) in which pnE factor has been eliminated 
due to the conducted integration. 

𝑐(𝐶𝑉𝑃,𝑁,𝑀, [0.0,0.5], [1.0,0.5], 𝜆) = 

= ∫
3

2
𝜆2𝑝nΕ(1 − 𝑝nE) + 𝜆(1 − 𝑝nE)𝑁 + 2𝜆𝑝nE𝑀 + 4𝜆𝑝nE + 𝜆(1 − 𝑝nE)

0.5

0

 𝑑𝑝nE = 

=
𝑀𝜆

4
+
3𝑁𝜆

8
+
𝜆2

8
+
7𝜆

8
 

(7-4) 

Respectively, the equation (7-3) returns the equation (7-5) which returns the 
cumulative prediction of the required effort for all probabilities in the same interval for CIBI 
design combination. 

𝑐(𝐶𝐼𝐵𝐼, 𝑁,𝑀, [0.0,0.5], [1.0,0.5], 𝜆) = 

= ∫
3

2
𝜆2𝑝nΕ(1 − 𝑝nE) + 2𝜆(1 − 𝑝nE)𝑁 + 𝜆𝑝nE𝑀 + 𝜆𝑝nE + 2𝜆(1 − 𝑝nE)

0.5

0

 𝑑𝑝nE = 

=
𝑀𝜆

8
+
3𝑁𝜆

4
+
𝜆2

8
+
7𝜆

8
 

(7-5) 

In the case of the Interpreter specific problem with design attributes N=40, and M=10, 
the equations (7-4), (7-5), and similar equations for CIBI design combination are 
simplified to equations (7-6). These equations imply a clear advantage of CVP design 
combination since CVP always requires the lowest cumulative maintenance effort for any 
number of scenarios’ applications λ. 

𝑐(𝐶𝑉𝑃, 40,10, [0.0, … ,0.5], [1.0, … ,0.5], 𝜆) =
𝜆2 + 147𝜆

8
 

𝑐(𝐶𝐼𝐵𝐼, 40,10, [0.0, … ,0.5], [1.0, … ,0.5], 𝜆) =
𝜆2 + 257𝜆

8
 

(7-6) 

The general equations (7-2) and (7-3) for CVP and CIBI design combinations can 
provide cumulative effort estimations for any interval of pnE factor referring to CIBI vs CVP 
general problem. Thus, the generated formal models, through further integration, can 
sufficiently support decision making for arbitrary intervals of probabilities factors or else 
under partial uncertainty. 

7.2.2.2 Decision-Making Under Full Uncertainty 

Based on previous logic, decision making can be supported even under full uncertainty or 
else for the whole range of a probability factor. Thus, by integrating equation (7-2) and 
similar equation for CIBI combination on pnE factor for its whole range [0.0, …, 1.0], the 
simplified equations (7-7) are derived (again for the Interpreter specific problem with 
design attributes N=40, and M=10). 

𝑐(𝐶𝑉𝑃, 40,10, [0, … ,1], [1, … ,0], 𝜆) =
𝜆2

4
+
65𝜆

2
 (7-7) 
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𝑐(𝐶𝐼𝐵𝐼, 40,10, [0, … ,1], [1, … ,0], 𝜆) =
𝜆2

4
+
93𝜆

2
 

The equations (7-7) imply a general (under full uncertainty or any value of pnE factor) 
advantage of CVP design combination since CVP requires the lowest cumulative 
maintenance effort for any number of scenarios’ applications λ. This inference is visually 
confirmed by the design space representation of the CVP vs. CIBI general problem in 
Figure 3-18 and Figure 6-43. In Figure 6-43, all the sample instances below the trace of 
balance cases are suited for CVP design alternative. Respectively, all the sample instances 
above the trace of balance cases are suited for CIBI design alternative. For the Interpreter 
example μ=M/N=10/40=0.25. Thus, for μ=0.25, most of the interval of pnE=[0, …, 1] is 
allocated below the trace of balance cases which is referred to the CVP design alternative. 

However, when μ factor is near to 1, it is difficult to visually infer the most proper 
design alternative in Figure 6-43. This is because, in Figure 6-43 there is no graphical 
representation of the cumulative required effort of an interval of pnE factor. In such cases, 
the Figure 3-18 is more informative since the conceptual surface across z axle for a 
particular μ value and pnE interval is a visual representation of the cumulative required 
effort. Part of this surface may be below and above the trace of balance cases. The difference 
on the area of these contrary parts gives the most beneficial design alternative. Thus, the 
larger portion of this area relative to the trace of balance cases indicates the most beneficial 
design alternative for the specific μ value and pnE interval. Nevertheless, the graphical 
representation of the design space is not always an easy matter especially in the cases of 
difficult design problems with multiple design attributes and scenario probabilities. In such 
cases, the mathematical analysis through integration presented so far provides a formal 
and direct mean which bypasses conceptual and graphical representations. This type of 
calculus computations can be easily performed through several software tools such as 
MATLAB and Microsoft Mathematics. 

7.2.2.3 Decision-Making Under Uncertainty with Multiple Factors of Probabilities 

Based on previous logic, decision making can be supported even in the case of multiple 
factors of probabilities. The extended problem in subsection 5.2 with Decorator design 
pattern attached in the basic CVP vs. CIBI design problem is offered as a suitable example. 
The new design problem CVP-DP vs. CIBI-DP has three major maintenance scenarios, 
three design attributes, and thus tree probability factors (pnE, pnP, pnD), one for each design 
attribute. The extra scenario, design attribute, and probability factor (pnD) is referred to the 
event of adding a new decorator element into the design structure. 

Again, the key concept is the integration of the formal models on the probability factor 
of interest. This time we need to perform repeated integrations in different probability 
factor each time. Since the sum of all probability factors is equal to one, one factor is related 
and defined by the values of the rest factors. Supposing n as the number of probability 
factors, the degree of freedom on setting values on these factors is n-1. Due to this property, 
one probability factor should be replaced and expressed by the other probabilities before 
the first integration round. Next, we gradually integrate for the rest probability factors, one 
at a time, according to the desired intervals. In the case of CVP-DP vs. CIBI-DP design 
problem the cumulative effort for CVP-DP design combination is given by the general 
equation (7-8) as derive by the equation (5-1) where pnD=(1-pnE-pnP). 

𝑐 (
𝐶𝑉𝑃_𝐷𝑃, N,M, D, [p𝑛𝐸(𝑚𝑖𝑛), … , p𝑛𝐸(𝑚𝑎𝑥)], [p𝑛𝑃(𝑚𝑖𝑛), … , p𝑛𝑃(𝑚𝑎𝑥)],

[(1 − p𝑛𝐸(𝑚𝑖𝑛) − p𝑛𝑃(𝑚𝑖𝑛)),… , (1 − p𝑛𝐸(𝑚𝑎𝑥) − p𝑛𝑃(𝑚𝑎𝑥))], 𝜆
) = (7-8) 
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= ∫ {∫ (
3

2
∙ 𝑝𝑛𝑃 ∙ ((1 − 𝑝𝑛𝐸 − 𝑝𝑛𝑃) + 𝑝𝑛𝐸) ∙ 𝜆

2 + (𝑝𝑛𝑃 + 2 ∙ (1 − 𝑝𝑛𝐸 − 𝑝𝑛𝑃) ∙ (𝑀
𝑝𝑛𝐸(𝑚𝑎𝑥)

𝑝𝑛𝐸(𝑚𝑖𝑛)

𝑝𝑛𝑃(𝑚𝑎𝑥)

𝑝𝑛𝑃(𝑚𝑖𝑛)

+ 2) + 2 ∙ 𝑝𝑛𝐸 ∙ (𝑀 + 2) + 𝑝𝑛𝑃 ∙ (𝐷 + 𝑁))𝜆) 𝑝𝑛𝐸} 𝑝𝑛𝑃 

Respectively, the cumulative effort for CIBI-DP design combination is given by the 
general equation (7-9) as derive by the equation (5-2) where pnD=(1-pnE-pnP). 

𝑐 (
𝐶𝐼𝐵𝐼_𝐷𝑃, N,M, D, [p𝑛𝐸(𝑚𝑖𝑛), … , p𝑛𝐸(𝑚𝑎𝑥)], [p𝑛𝑃(𝑚𝑖𝑛), … , p𝑛𝑃(𝑚𝑎𝑥)],

[(1 − p𝑛𝐸(𝑚𝑖𝑛) − p𝑛𝑃(𝑚𝑖𝑛)), … , (1 − p𝑛𝐸(𝑚𝑎𝑥) − p𝑛𝑃(𝑚𝑎𝑥))], 𝜆
) = 

= ∫ {∫ (
3

2
∙ 𝑝𝑛𝑃 ∙ ((1 − 𝑝𝑛𝐸 − 𝑝𝑛𝑃) + 𝑝𝑛𝐸) ∙ 𝜆

2 + ((1 − 𝑝𝑛𝐸 − 𝑝𝑛𝑃) + 𝑝𝑛𝐸 + 4
𝑝𝑛𝐸(𝑚𝑎𝑥)

𝑝𝑛𝐸(𝑚𝑖𝑛)

𝑝𝑛𝑃(𝑚𝑎𝑥)

𝑝𝑛𝑃(𝑚𝑖𝑛)

∙ 𝑝𝑛𝑃  + 2 ∙ 𝐷 ∙ 𝑝𝑛𝑃 +𝑀 ∙ (1 − 𝑝𝑛𝐸 − 𝑝𝑛𝑃) + 𝑀 ∙ 𝑝𝑛𝐸 + 2 ∙ 𝑁 ∙ 𝑝𝑛𝑃)𝜆) 𝑝𝑛𝐸} 𝑝𝑛𝑃 

(7-9) 

For demonstration purposes, the above equations are applied and computed for the 
interval of scenarios probabilities pnE=[0.0, …, 0.4] and pnP=[0.0, …, 0.3]. The pnD factor 
depends on the values of the rest probability factors as previously discussed. Thus, the 
equation (7-8) returns the equation (7-10). 

𝑐 (
𝐶𝑉𝑃_𝐷𝑃, N,M, D, [0.0,… ,0.4], [0.0,… 0.3],

[(1 − p𝑛𝐸(𝑚𝑖𝑛) − p𝑛𝑃(𝑚𝑖𝑛)), … , (1 − p𝑛𝐸(𝑚𝑎𝑥) − p𝑛𝑃(𝑚𝑎𝑥))], 𝜆
) = 

= 𝜆 (
9𝐷
500

 + 
9𝑁
500

 + 
51𝑀
250

 + 
213
500

) +
27𝜆2

1250
 

(7-10) 

Respectively, the equation (7-9) returns the equation (7-11). 

𝑐 (
𝐶𝐼𝐵𝐼_𝐷𝑃,N,M,D, [0.0, … ,0.4], [0.0,… 0.3],

[(1 − p𝑛𝐸(𝑚𝑖𝑛) − p𝑛𝑃(𝑚𝑖𝑛)), … , (1 − p𝑛𝐸(𝑚𝑎𝑥) − p𝑛𝑃(𝑚𝑎𝑥))], 𝜆
) = 

= 𝜆 (
9𝐷
250

 + 
9𝑁
250

 + 
51𝑀
500

 + 
87
500

) +
27𝜆2

1250
 

(7-11) 

The difference of the equations (7-10) and (7-11) is given by the equation (7-12) 

𝑐 (
𝐶𝑉𝑃_𝐷𝑃 − 𝐶𝐼𝐵𝐼_𝐷𝑃, N,M, D, [0.0,… ,0.4], [0.0, … 0.3],

[(1 − p𝑛𝐸(𝑚𝑖𝑛) − p𝑛𝑃(𝑚𝑖𝑛)), … , (1 − p𝑛𝐸(𝑚𝑎𝑥) − p𝑛𝑃(𝑚𝑎𝑥))], 𝜆
) = 

= 𝜆
51𝑀 − 9𝐷 − 9𝑁 + 126

500
 

(7-12) 

The equation (7-12) is a general equation that indicates the most beneficial design 
alternative for the specific intervals of probability factors {pnE=[0.0, …, 0.4] and pnP=[0.0, 
…, 0.3]}. The sign of this equation depends on the values of the design attributes (i.e., N,M, 
and D). For example, by setting N=10, M=20, and D=5 , the sign of equation (7-12) is 
positive and, thus the CIBI-DP design alternative is preferable. In the case of  N=40, M=5, 
and D=10 , the sign of equation (7-12) is negative and, thus the CVP-DP design alternative 
is preferable. Thus, even in the case of decisions under uncertainty (referred to intervals of 
scenarios probabilities) the derived models remain sensitive and informative regarding all 
their parameters (design attributes).  

7.2.3 Additional Decision-Criteria to Decision-Making Process 

The introduced modeling method implies that the selection of the most beneficial or 
maintainable design combination is based on a single and dominant criterion; the design 
alternative with the lowest required effort. Nevertheless, the decision-making process can 
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be further enhanced by introducing additional criteria such as worst or optimum scenario 
outcomes.  

For instance, referring to CIBI vs. CVP general problem, consider a set of design 
attributes N and M for which equations (7-6) referred to the limited interval pnE=[0.0, …, 
0.5] suggests CVP design combination. In addition, suppose that equations (7-7) for the 
whole pnE range [0.0, …, 1.0] suggest CIBI design combination as the most beneficial. 
Under this perspective, the limited interval pnE=[0.0, …, 0.5] reflects an optimum or more 
desirable situation with limited uncertainty degree. Respectively, the wider range pnE=[0.0, 
…, 1.0], reflects the worst possible or less desirable situation with higher uncertainty 
degree. Under these circumstances, the decision-making process can be supported by the 
criterion of minimizing the required effort for the worst against optimum possible 
situation. If, for example, our decision-criterion is the selection of the most beneficial design 
alternative in the worst case of high uncertainty degree, then the CIBI design combination 
is the most appropriate option. Accordingly, if our decision-criterion is the selection of the 
most beneficial design alternative in the optimum case of limited uncertainty degree, then 
the CVP design combination is the most appropriate option. 

Hence, the combination of different decision-criteria, supported by transformed 
formal models for arbitrary intervals of probabilities factors, provides a robust and formal 
background able to support decision-making among design alternatives considering 
several comparison perspectives. 

7.3 Horizon Analysis 

7.3.1 Separating Maintenance Process to Sub-Periods 

In practice, attempting to estimate the change-trends of the maintenance process is not 
always straightforward and uniform. In some cases, the scenarios’ probabilities may have 
different values for different periods of the software life cycle. In such cases, the analysis 
can be separated in distinct sub-periods, a technique usually called horizon analysis or 
multi-period analysis. This technique helps forecasting the realized effort over various 
maintaining periods or horizons where each period has different scenarios’ probabilities. 
Under this perspective, even the code’s development stage can be viewed as a preliminary 
maintenance period. 

For instance, referring to the general problem of part-whole aggregation, the required 
development effort can be analyzed in two separate periods. Usually, the CP elements are 
implemented first, followed by the implementation of different operations through the 
inheritance-based implementation (IBI) or Visitor design pattern (VP) structure according 
to the selected design alternative. Thus, focusing on the specific instance of Interpreter with 
initial design attributes N=40, M=10, and pnE=0.5 (during maintenance), the development 
period can be separated into two phases or sub-periods, one for elements’ development, 

where N=0, M=1, pnE=1, pnP=0, and λ=40, and secondly for operations’ development, 

where N=40, M=1, pnE=0, pnP=1, and λ=9. Consequently, after the end of the 

development period and entering the maintenance period, the design attributes are equal 
to the initial attributes N=40, M=10 of the maintenance process, as presented in Table 7-1. 
From this point and on, the maintenance horizon can also be separated in sub-periods with 
different scenarios’ probabilities. For example, supposing that the scenarios’ probabilities 
for the next 50 applied scenarios are estimated to pnE=0.5 and pnP=0.5. Thus, for the first 

maintenance period, N=40, M=10, pnE=0.5, pnP=0.5, and λ=50. Hence, after the end of 

the first maintenance period, the design attributes are equal to N=40+pne*50=65 and 
M=10+pnP*50=35. Now, suppose that the scenarios’ probabilities for the next 50 applied 
scenarios are estimated to pnE=0.9 and pnP=0.1. Thus, for the second maintenance period, 

N=65, M=35, pnE=0.9, pnP=0.1, and λ=50. As a result, horizon analysis can provide 

forecasts of the total required effort, including almost all the software life cycle. Of course, 
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the horizon analysis can be limited or expanded to as many periods as required according 
to the interest of the software engineer or quality manager. The total required effort is equal 
to the sum of the required effort of each sub-period. 

Table 7-1: Horizon Analysis Data referred to the Interpreter Specific Instance of CVP vs. 
CIBI General Problem 

 
Initial design 

attributes 
Scenarios’ 

probabilities 
Scenarios 

applications 
Sub-period (horizon) N M pnE pnP λ 
Development of elements (types or methods or classes) 0 1i 1.0 0.0 40 
Development of operations (types or methods or classes) 40 1 0.0 1.0 9 
Early maintenance 40ii 10ii 0.5iii 0.5 50 
Later maintenance 65 35 0.9 iii 0.1 50 
End of maintenance (software life cycle) 110 40 - - - 

i As a starting state referred to development period, the initial design attribute of operations’ variable (M) starts from value 
one; otherwise, the Formal Model equations return zero effort  

ii Initial design attributes, referred to the maintenance period, based on the scope of the Interpreter example: N=40, M=10 

iii Estimations of scenarios probabilities during maintenance: pnE=0.5 (early period) and pnE=0.9 (later period) 

7.3.2 Example of Decision-Making Supported by Horizon Analysis 

The generated formal model equations can be applied for each sub-period in Table 7-1, 
where the returned effort per design alternative is progressively added to the returned effort 
of the previous sub-period. The results can be graphically presented in a unified plot, as 
demonstrated in Figure 7-1. The graph in Figure 7-1 provides excellent insight about the 
required effort per design alternative for different periods (horizons) of the software life 
cycle. Looking at the graph in Figure 7-1, it seems that from a long-term perspective, there 
is no significant difference between the total efforts of CVP and CIBI design alternatives. If 
the decision is based on a short-term perspective, you should choose the CVP design 
combination. However, if the selection criterion is focused only on a long-term aspect, 
which in the case of the interpreter is a more realistic orientation, then the CIBI design 
combination seems to have better perspectives. But be aware, in this case, the management 
should suffer the extra wasted effort until the time where the CIBI combination becomes 
the most maintainable option.  
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In such cases, where the preferable design options are interchanged across different 
periods, the management should consider other investment-oriented criteria such us time-
value or present-value of money and opportunity cost or cost of capital. More specifically, 
in Figure 7-1 example, the extra wasted effort of CIBI implies that extra salaries and 
expenditures should be invested in a short to mid-term horizon. Even if CIBI combination 
is more maintainable (requires less effort) from a long-term perspective, the cost of the 
short to mid-term (extra or wasted) used capital may exceed the long-term benefit. For 
instance, referred to the beginning of the later maintenance period in Figure 7-1, the CIBI 
combination requires approximately 35% more effort (or expenditures or invested capital, 
respectively) than CVP combination. If during that particular period the cost of capital (e.g., 
borrowing interest rate, or possible rate of return of the opportunity to invest in another 
more profitable asset) to finance the project is too high, then it may be better for 
management to select CVP combination, keeping the short to mid-term capital 
requirements in low levels and hoping that in a long-term perspective financing conditions 
would be improved.  

Hence, horizon analysis opens a whole spectrum of different aspects and criteria such 
as investing, economics, and financing, regarding the evaluation and selection among 
design alternatives for various sub-periods of software lifecycle. 

7.4 Alternate Computer-Aided Implementation of Formal Models 

The derived formal models can be alternatively implemented through computer-aided 
simulations. Even though such implementations are limited only to a single general 
problem, it can provide further insight regarding each factor’s contribution. In addition, 
through such simulation techniques, the exploration of the dynamic behavior and 
evolution patterns of the formal models and their components can be conducted. 
Furthermore, results from different simulation settings can be stored and compared for 

 
Figure 7-1: Graph of total effort per design alternative (CVP vs. CIBI) for different 

horizons (sub-periods) of the software lifecycle, including preliminary development 
stage, referred to the example of Interpreter requirements with initial design attributes 

during maintenance N=40 and M=10 
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further analysis and interpretation such as sensitivity analysis. In addition, a simulation 
can be run in live mode, meaning that the user can change the parameter’s values in real-
time while numerical and graphical outcomes are simultaneously updated. Since the 
derived formal models is based on separate integration levels, visual simulation tools like 
VENSIM®, supporting change rates, and integrated variables (named ‘levels’), are very 
convenient. Moreover, VENSIM® tool is offered as a mean for conducting both continuous 
and discrete (event-driven) simulations. 

7.4.1 Discrete Implementation of Models 

The quantitative analysis of the CIBI vs. CVP general problem, presented in chapter 3, 
implies the discrete application of major maintenance scenarios (i.e., new element and 
operation) upon design alternatives based on their individual probabilities (i.e., pnE, pnP). 
Next, for each implemented scenario the required effort is computed through the 
fundamental SMC metrices in terms of number of required (method and class) 
interventions. 

A computer-aided implementation of the discrete application of individual 
maintenance scenarios based on SMC metrics, referred to CIBI vs. CVP general problem, 
is presented in Figure 7-2. Each integrated value is presented as “Levels” inside rectangles, 
where related change rates are presented as double-lined arrows. In addition, the 
interrelations between variables are indicated through simple arrows. The design of the 
model provides an understanding of separate integration levels and the implication of SMC 
metrics. Notice that the integration of the factors N, M, and total CIBI/CVP effort is discrete 
(event-driven) as analyzed by the introduced quantitative analysis in chapter 3. 

 

 

By setting initial values in the constant variables N, M, and pnE, the implementation in 
Figure 7-2 can simulate and compute all the intermediate and final outcomes for the 
specific instance of the CVP vs CIBI general problem. The integration of the N, M, and 
CIBI/CVP total effort values, presented as “Levels” inside rectangles, are calculated through 
discrete integration in terms of number of scenario applications. Thus, the number of 
scenario applications has been defined as model’s time or integration parameter. Notice 
that the probability factor pnE (pnP=1- pnE) affects the event trigger variable which in turn 
directly and simultaneously affects both integration levels concerning design attribute 
values N and M and total CVP and CIBI effort values. The code implementation of the 
model in Figure 7-2 as generated by VENSIM tool is presented in Listing 7-1. 

 
Figure 7-2: Computer-Aided implementation of the discrete Formal Model for the 

general decision problem CIBI vs CVP, using VENSIM® tool. 
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Listing 7-1: Code documentation of CVP vs CIBI general problem in VENSIM implementation 

 

Referring to Listing 7-1, the model has been set to integrate its variables in the time 
interval of 0 to 200 with a step equal to 1 reflecting by this way the discrete application of 
maintenance scenarios. The event random generator defines the ‘Event trigger’ variable 
based on scenarios probabilities, thus synchronizing the discrete event driven application 
of maintenance scenarios. The ‘Event trigger’ variable simultaneously and uniformly 
affects both levels of integration and both design alternatives. The randomly generated 
sequence of events (based on scenario probability) is applied for both design alternatives, 
thus providing the ideal comparison conditions among design alternatives. It is important 
that because of the random nature of the generated sequence of events, different 
simulations provide different effort estimations, thus the model’s outcomes are not 
deterministic. In practice, this implementation is a non-deterministic simulation model of 
the formal models in equations (3-19), (3-20), and (3-21) incorporating a single stochastic 
or random factor related to different sequences of events. 

7.4.2 Continuous Implementation of Formal Models 

An alternate computer-aided implementation of the derived formal models in subsections 
4.3 and 4.4, referred to CIBI vs. CVP general problem, is presented in Figure 7-3. Each 
integrated value is presented as “Levels” inside rectangles, where related change rates are 
presented as double-lined arrows. In addition, the interrelations between variables are 
indicated through simple arrows. The design of the model provides an understanding of 
separate integration levels and the implication of SMC metrics. Notice that integration of 
the factors N, M, and total CIBI/CVP effort is continuous as proposed by the introduced 
modeling method in chapter 4. 

115. ====== Definition of model’s time representation or integration parameter 

116. INITIAL TIME  = 0  Units: Day  The initial time for the simulation, 1 day is equal to 1 scenario application 

117. TIME STEP  = 1  Units: Day [1,*] The time step for the simulation 

118. SAVEPER  = TIME STEP Units: Day [1,*] The frequency with which output is stored 

119. FINAL TIME  = 200  Units: Day  The final time for the simulation 

120. ====== Definition of model’s constant parameters or initial values 

121. "Initial number of Elements (N)"=  15 Units: Element [1,200] 

122. "Initial number of Operations (M)"=  14 Units: Operation [1,150] 

123. New Element's Event Probability p_nE=  0.7 Units:  probability [0,1] 

124. ====== Discrete / Random event generator  

125. Random value generator= RANDOM UNIFORM(0, 1 , 0) Units: probability 

126. Event trigger= IF THEN ELSE( Random value generator<New Element's Event Probability p_nE, 11 , 21 ) Units: probability 

127. ====== First level of integration concerning Design attribute values 

128. New Element dist= IF THEN ELSE(Event trigger<20, 1, 0) Units: Element 

129. New Operation dist= IF THEN ELSE(Event trigger>20, 1, 0) Units: Operation 

130. Elements' change rate= New Element dist  Units: Element/Day 

131. Operations' change rate= New Operation dist  Units: Operation/Day 

132. "Current Composition's Elements (N)"= INTEG (Elements' change rate, "Initial number of Elements (N)") Units: Element 

133. "Current Operations over Compostion's Elements (M)"= INTEG (Operations' change rate, "Initial number of Operations (M)") 

 Units: Operation 

134. ====== Definition of SMC metrics 

135. New Element on CVP Effort SMC= "Current Operations over Compostion's Elements (M)" + "Current Operations over Compostion's 

Elements (M)"       Units: intervention 

136. New Operation on CVP Effort SMC="Current Composition's Elements (N)" + 1  Units: intervention 

137. New Element on CIBI Effort SMC= "Current Operations over Compostion's Elements (M)" + 1 Units: intervention 

138. New Operation on CIBI Effort SMC= "Current Composition's Elements (N)" + "Current Composition's Elements (N)" Units: intervention 

139. ====== Second level of integration concerning Total effort values per design alternative 

140. New Effort CVP= IF THEN ELSE(Event trigger<20, New Element on CVP Effort SMC, New Operation on CVP Effort SMC)  

 Units: intervention 

141. New Effort CIBI= IF THEN ELSE(Event trigger<20, New Element on CIBI Effort SMC, New Operation on CIBI Effort SMC) 

 Units: intervention 

142. New Event's effort OR Total effort change rate =  New Effort CVP Units: interventions/Day 

143. "-New Event's effort OR Total effort change rate" = New Effort CIBI Units: interventions/Day 

144. Total CVP effort= INTEG (New Event's effort OR Total effort change rate, 0) Units: intervention 

145. Total CIBI effort= INTEG ("-New Event's effort OR Total effort change rate", 0) Units: intervention 

146. ====== Computation of total effort difference among design alternatives 

147. "FM CVP-CIBI Total effort difference" = Total CVP effort - Total CIBI effort  Units: intervention 
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By setting initial values in the constant variables N, M, and pnE, the implementation in 
Figure 7-3 can simulate and compute all the intermediate and final outcomes for the 
specific instance of the CVP vs CIBI general problem. The integration of the N, M, and 
CIBI/CVP total effort values, presented as “Levels” inside rectangles, are calculated through 
continuous integration in terms of number of scenario applications. Thus, the number of 
scenario applications has been defined as model’s time or integration parameter. Notice, 
that the probability factors pnE and pnP are directly and simultaneously affect both 
integration levels concerning design attribute values N and M and total CVP and CIBI effort 
values. The code implementation of the model in Figure 7-3 as generated by VENSIM tool 
is presented in Listing 7-2. 

Listing 7-2: Code documentation of CVP vs CIBI Formal Models in VENSIM implementation 

 

 
Figure 7-3: Computer-Aided implementation of the continuous Formal Model for the 

general decision problem CIBI vs CVP, using VENSIM® tool. 

148. ====== Definition of model’s time representation or integration parameter 

149. INITIAL TIME  = 0  Units: Day  The initial time for the simulation, 1 day is equal to 1 scenario application 

150. TIME STEP  = 1  Units: Day [1,*] The time step for the simulation 

151. SAVEPER  = TIME STEP Units: Day [1,*] The frequency with which output is stored 

152. FINAL TIME  = 200  Units: Day  The final time for the simulation 

153. ====== Definition of model’s constant parameters or initial values 

154. "Initial number of Elements (N)"=  15 Units: Element [1,200] 

155. "Initial number of Operations (M)"=  14 Units: Operation [1,150] 

156. “New Element Probability (p_nE)”=  0.7 Units: probability [0,1] 

157. “New Operation Probability (p_nP)” = 1 – “New Element Probability (p_nE)” Units: probability [0,1] 

158. ====== First level of integration concerning Design attribute values 

159. Elements' change rate= 1 * “New Element Probability (p_nE)” Units: Element/Day 

160. Operations' change rate=  1 * “New Operation Probability (p_nP)” Units: Operation/Day 

161. "Current Composition's Elements (N)"= INTEG (Elements' change rate, "Initial number of Elements (N)") Units: Element 

162. "Current Operations over Compostion's Elements (M)"= INTEG (Operations' change rate, "Initial number of Operations (M)") 

 Units: Operation 

163. ====== Definition of SMC metrics 

164. New Element on CVP Effort SMC= "Current Operations over Compostion's Elements (M)" + "Current Operations over Compostion's 

Elements (M)" Units: intervention 

165. New Operation on CVP Effort SMC="Current Composition's Elements (N)" + 1  Units: intervention 

166. New Element on CIBI Effort SMC= "Current Operations over Compostion's Elements (M)" + 1 Units: intervention 

167. New Operation on CIBI Effort SMC= "Current Composition's Elements (N)" + "Current Composition's Elements (N)" Units: intervention 

168. ====== Second level of integration concerning Total effort values per design alternative 

169. New Event's effort OR Total effort change rate =  ("New Element probability (p_nE)" * New Element on CVP Effort SMC) + 

 ("New Operation probability (p_nP)" * New Operation on CVP Effort SMC)  Units: interventions/Day 

170. "-New Event's effort OR Total effort change rate" = ("New Element probability (p_nE)" * New Element on CIBI Effort SMC) + 

 ("New Operation probability (p_nP)" * New Operation on CIBI Effort SMC)  Units: interventions/Day 

171. Total CVP effort= INTEG (New Event's effort OR Total effort change rate, 0) Units: intervention 

172. Total CIBI effort= INTEG ("-New Event's effort OR Total effort change rate", 0) Units: intervention 

173. ====== Computation of total effort difference among design alternatives 

174. "FM CVP-CIBI Total effort difference" = Total CVP effort - Total CIBI effort  Units: intervention 
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Referring to Listing 7-2, the model has been set to integrate its variables in the time 
interval of 0 to 200 with a step equal to 1. It is important that due to continuous integration 
based on deterministic values, different simulations provide identical effort estimations, 
thus the model’s outcomes are deterministic. In practice, this implementation is a 
deterministic simulation model of the formal models in equations (4-11), (4-12), and 
(4-13) without the incorporation of any stochastic or random factor. 

7.4.3 Discrete Implementation of Simulation Model 

An alternate computer-aided implementation of the event-driven simulation model in 
chapter 6, referred to CIBI vs. CVP general problem, is presented in Figure 7-4. Again, each 
integrated value is presented as “Levels” inside rectangles, where related change rates are 
presented as double-lined arrows. In addition, the interrelations between variables are 
indicated through simple arrows. The design of the model provides an understanding of 
separate integration levels and the implication of SMC metrics. Notice that integration of 
the factors N, M, and total CIBI/CVP effort is discrete or event-driven as proposed by the 
introduced simulation model chapter 6. 

 

By setting initial values in the constant variables N, M, pnE, and Brownian motion 
factor, the implementation in Figure 7-4 can simulate and compute all the intermediate 
and final outcomes for the specific instance of the CVP vs CIBI general problem. The 
integration of the N, M, and CIBI/CVP total effort values, presented as “Levels” inside 
rectangles, are calculated through discrete integration in terms of number of scenario 
applications. Thus, the number of scenario applications has been defined as model’s time 
or integration parameter. Notice that the probability factor pnE (pnP=1- pnE) affects the 
event trigger variable which in turn directly and simultaneously affects both integration 
levels concerning design attribute values N and M and total CVP and CIBI effort values. In 
particular, the model in Figure 7-4 represents the 7th fully stochastic simulation state in 
Table 6-4. The Brownian motion factor defines the uncertainty level or else the impact on 
Brownian motion level which shifts the values of scenario probability (pnE) during 
maintenance process. Thus, the event random generator takes under considerations the 
uncertainty regarding the initial estimation of scenarios’ probabilities. Furthermore, the 
effort change rates in the second integration level are affected by the overall stochastic 
factor which in turn is affected by the aging level and the randomly generated values of 
average scenario’s size and developers experience level. In addition, the model incorporates 
alternate maintenance scenarios such as edit or remove existing elements or operations. 
For that purpose, the intermediate variables of SMC metrics have been enhanced for each 
alternate scenario as defined in Table 6-4, while the change rates of the design attributes 
are increased, or remain unchanged, or decreased accordingly. The code implementation 
of the model in Figure 7-4 as generated by VENSIM tool is presented in Listing 7-3. 

 
Figure 7-4: Computer-Aided implementation of the event-driven Simulation Model 

for the general decision problem CIBI vs CVP, using VENSIM® tool. 
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Listing 7-3: Code documentation of Simulation Model for CVP vs CIBI general problem in 
VENSIM implementation 

 
Referring to Listing 7-3, the model has been set to integrate its variables in the time 

interval of 0 to 200 with a step equal to 1 reflecting by this way the discrete application of 
maintenance scenarios. The event random generator defines the ‘Event trigger’ variable 
based on scenarios probabilities and Brownian motion factor, thus synchronizing the 

175. ====== Definition of model’s time representation or integration parameter 
176. INITIAL TIME  = 0  Units: Day  The initial time for the simulation, 1 day is equal to 1 scenario application 
177. TIME STEP  = 1  Units: Day [1,*] The time step for the simulation 
178. SAVEPER  = TIME STEP Units: Day [1,*] The frequency with which output is stored 
179. FINAL TIME  = 200  Units: Day  The final time for the simulation 
180. ====== Definition of model’s constant parameters or initial values 
181. "Initial Elements (N)"=  15  Units: Element [1,200] 
182. "Initial Operations (M)"=  14  Units: Operation [1,150] 
183. New Element's Event Probability p_nE=  0.7 Units:  probability [0,1] 
184. Brownian Motion Factor= 1  Units: **undefined** 
185. ====== Event-driven or Random event generator  
186. Random value generator= RANDOM UNIFORM(0, 1 , 11)   Units: probability 
187. Brownian motion change= IF THEN ELSE (Random value generator<0.5, -1, 1)  Units: **undefined** 
188. Brownian motion= INTEG (Brownian motion change, 0)   Units: **undefined** 
189. Step change rate= 1      Units: Scenario application/Day 
190. "Event/Step Counter"= INTEG (Step change rate, 0)   Units: **undefined** 
191. Shifted Element's Event Probability p_nE= New Element's Event Probability p_nE + Brownian Motion Factor *   

 (Brownian motion / (10 * SQRT("Event/Step Counter" + 1) ) )  Units: probability 
192. Event trigger= IF THEN ELSE( Random value generator < Shifted Element's Event Probability p_nE * 0.55, 11 ,   

 IF THEN ELSE( Random value generator < Shifted Element's Event Probability p_nE * 0.95, 12 ,   
 IF THEN ELSE( Random value generator < Shifted Element's Event Probability p_nE * 1.00, 13 ,   
 IF THEN ELSE( Random value generator < Shifted Element's Event Probability p_nE +     
  (1- Shifted Element's Event Probability p nE) * 0.55, 21 ,     
 IF THEN ELSE( Random value generator < Shifted Element's Event Probability p_nE +    
  (1- Shifted Element's Event Probability p_nE) * 0.95, 22 , 23 ))))) Units: **undefined** 

193. ====== First level of integration concerning Design attribute values 
194. Event New Element= IF THEN ELSE(Event trigger=11, 1, 0)   Units: Element 
195. Event Remove Element= IF THEN ELSE(Event trigger=13, -1, 0)  Units: Element 
196. Event Remove Operation= IF THEN ELSE(Event trigger=23, -1, 0)  Units: Operation 
197. Event New Operation= IF THEN ELSE(Event trigger=21, 1, 0)  Units: Operation 
198. change rate of N= Event New Element + Event Remove Element   Units: Element 
199. change rate of M= Event New Operation + Event Remove Operation  Units: Operation 
200. Current Elements N= INTEG (change rate of N, Initial Elements N)  Units: Element 
201. Current Operations M= INTEG (change rate of M, Initial Operations M)   Units: Operation 
202. ====== Definition of SMC metrics for all possible maintenance scenario types per design alternative 
203. New Element for CVP Effort SMC= Current Operations M + Current Operations M Units: Intervention 
204. New Operation for CVP Effort SMC= Current Elements N + 1  Units: Intervention 
205. New Element for CIBI Effort SMC= Current Operations M + 1   Units: Intervention 
206. New Operation for CIBI Effort SMC= Current Elements N + Current Elements N Units: Intervention 
207. Edit Element for CVP SMC= Current Operations M + Current Operations M Units: Intervention 
208. Edit Operation for CVP SMC= Current Elements N + 1   Units: Intervention 
209. Edit Element for CIBI SMC= Current Operations M + 1   Units: Intervention 
210. Edit Operation for CIBI SMC= Current Elements N + Current Elements N Units: Intervention 
211. Remove Element for CVP SMC= Current Operations M + 1   Units: Intervention 
212. Remove Operation for CVP SMC= 1 + 0 * Current Elements N   Units: Intervention 
213. Remove Element for CIBI SMC= 1 + 0 * Current Operations M  Units: Intervention 
214. Remove Operation for CIBI SMC= Current Elements N + 1   Units: Intervention 
215. ====== Definition of stochastic factor for effort estimations 
216. Aging change rate= 1/ FINAL TIME  Units: **undefined** 
217. Current Aging Level= INTEG (Aging change rate, 1) Units: **undefined** 
218. Current Developer's Experience level= RANDOM NORMAL(0.1, 2, 1.5, 0.33, 100)  Units: **undefined** 
219. Average Segment OR Scenario size= RANDOM NORMAL(0, 2, 1, 0.33, 200) Units: **undefined** 
220. SM stochastic Factor= (Average Segment OR Scenario size * Current Aging Level) / Current Developer's Experience level 
221. ====== Second level of integration concerning Total effort values per design alternative 
222. New Event Effort for CVP= IF THEN ELSE(Event trigger=11, New Element for CVP Effort SMC,    

 IF THEN ELSE(Event trigger=12, Edit Element for CVP SMC,      
 IF THEN ELSE(Event trigger=13, Remove Element for CVP SMC,      
 IF THEN ELSE(Event trigger=21, New Operation for CVP Effort SMC,      
 IF THEN ELSE(Event trigger=22, Edit Operation for CVP SMC, Remove Operation for CVP SMC))))) Units: Intervention 

223. New Event Effort for CIBI= IF THEN ELSE(Event trigger=11, New Element for CIBI Effort SMC,    
 IF THEN ELSE(Event trigger=12, Edit Element for CIBI SMC,      
 IF THEN ELSE(Event trigger=13, Remove Element for CIBI SMC,      
 IF THEN ELSE(Event trigger=21, New Operation for CIBI Effort SMC,     
 IF THEN ELSE(Event trigger=22, Edit Operation for CIBI SMC, Remove Operation for CIBI SMC)))))   Units: Intervention 

224. Total CVP Effort change rate= SM stochastic Factor * New Event Effort for CVP Units: Intervention 
225. Total CIBI Effort change rate= SM stochastic Factor * New Event Effort for CIBI Units: Intervention 
226. SM Total Effort for CVP= INTEG ( Total CVP Effort change rate, 0)  Units: Intervention 
227. SM Total Effort for CIBI= INTEG ( Total CIBI Effort change rate, 0)  Units: Intervention 
228. ====== Computation of total effort difference among design alternatives 
229. "SM CVP-CIBI Total Effort Difference"= SM Total Effort for CVP - SM Total Effort for CIBI  Units: Intervention 
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discrete event driven application of maintenance scenarios. The ‘Event trigger’ variable 
simultaneously and uniformly affects both levels of integration and both design 
alternatives. The randomly generated sequence of events (based on the shifted scenario 
probability) is applied for both design alternatives. Furthermore, the randomly generated 
sequence of values of the stochastic factor is applied for both design alternatives (in the 
second integration level), thus providing the ideal comparison conditions among design 
alternatives. It is important that because of the random nature of the generated sequence 
of events and stochastic factor, different simulations provide different effort estimations, 
thus the model’s outcomes are not deterministic. In practice, this implementation is a non-
deterministic representation of the simulation model in chapter 6 incorporating several 
stochastic or random factors such as different sequences of events, shifted probabilities, 
alternate maintenance scenarios, average scenario’s size, and developers experience level. 

7.4.4 Comparison of Implementations’ Outcomes 

In this subsection, a comparison of the outcomes of all previous implementations in 
VENSIM tool is presented. More specifically, the Discrete Formal Model in subsection 
7.4.1 as DFM, the continuous Formal Model in subsection 7.4.2 as FM, and the event-
driven simulation model in subsection 7.4.3 as SM have been merged in one single model. 
The random value generators of DFM and SM have been synchronized, thus providing 
identical sequences of applied scenarios through the ‘event trigger’ variable for both event-
driven models. The number of scenario applications has been defined as model’s time or 
integration parameter with typical time interval between 0 and 200. All initial constant 
parameters (N, M, pnE) are commonly defined in all models and referred to the indicative 
example of GUI implementation (N=15, M=14, pnE=0.7) in Table 1-1 and Table 3-4. The 
Brownian motion factor has been set to 1.00 reflecting the high uncertainty level of the 7th 
fully stochastic simulation state in Table 6-4. The analysis concentrates on the values of 
total effort outcomes, change rates, and intermediate variables for all models’ 
implementations. Keep in mind that DFM and SM are non-deterministic models, thus 
their results are only an instance of a specific simulation. 

The difference of the total effort among CVP and CIBI design alternatives is presented 
in Figure 7-5.  FM outcome demonstrates a steady trend because of the continuous 
integration and its formal and deterministic behavior. DFM and SM outcomes 
demonstrate fluctuate trends because of the discrete and event-driven integration and their 
stochastic and non-deterministic behavior. However, DFM fluctuations follows the SM 
trend since DFM incorporates only one stochastic factor related to different sequences of 
applied scenarios. In contrast, SM fluctuations significantly deviates from the SM and DFM 
trends since SM demonstrates highly stochastic behavior by incorporating several 
stochastic factors related to different sequences of applied scenarios, shifted scenarios’ 
probabilities, alternate maintenance scenarios, average scenario’s size, and developers 
experience level. In the simulation instance presented in Figure 7-5, the SM outcome 
confirms the design decision based on FM and DFM outcomes. However, in the case of a 
different simulation instance the SM outcome may reject the design decision based on FM 
and DFM outcomes, thus indicating a wrong design decision of FM as analyzed in 
subsection 6.5. To measure the error rate of a possible wrong decision, several repeated or 
Monte Carlo simulations are required per sample insurance. Even though VENSIM tool 
provides capabilities for comparison of results among different simulations, the conduction 
of massive, repeated simulations is out of the scope of this tool. 
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The total effort of CVP and CIBI design alternatives is presented in Figure 7-6.  Again, 
FM outcome demonstrates a steady trend because of the continuous integration and its 
formal and deterministic behavior. DFM and SM outcomes demonstrate fluctuate trends 
because of the discrete and event-driven integration and their stochastic and non-
deterministic behavior. Once again, DFM fluctuations follows the SM trend since DFM 
incorporates only one stochastic factor related to different sequences of applied scenarios. 
In contrast, SM fluctuations significantly deviates from the SM and DFM trends since SM 
demonstrates highly stochastic behavior by incorporating several stochastic factors related 
to different sequences of applied scenarios, shifted scenarios’ probabilities, alternate 
maintenance scenarios, average scenario’s size, and developers experience level. In general, 
SM returns reduced values due to the incorporation of the alternate maintenance scenarios 
which decelerate the maintenance process, and thus reduce the overall required effort. 

 

The stochastic factor of the SM and its components (average scenario size, code aging 
level, and developers experience level) are presented in Figure 7-7.  The fluctuations of the 
stochastic factor reflect the highly uncertain nature of the SM total effort outcomes. As 
expected, the most uncertain factors that affect the overall stochastic factor are the average 
scenario size and developers experience level. 

 
Figure 7-5: Difference of total effort among CVP and CIBI design alternatives for 
DFM, FM, and SM models, for the GUI implementation (N=15, M=14, pnE=0.7) 

 

Figure 7-6: Total effort of CVP (left) and CIBI (right) design alternatives for DFM, 
FM, and SM models, for the GUI implementation (N=15, M=14, pnE=0.7) 
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The change rates of the total effort of CVP and CIBI design alternatives is presented in 
Figure 7-8.  Again, FM change rate demonstrates a steady trend because of the continuous 
integration and its formal and deterministic behavior. DFM and SM change rates 
demonstrate fluctuate trends because of the discrete and event-driven integration and their 
stochastic and non-deterministic behavior. Once again, DFM fluctuations follows the SM 
trend since DFM incorporates only one stochastic factor related to different sequences of 
applied scenarios. In contrast, SM fluctuations deviates from the SM and DFM trends since 
SM demonstrates highly stochastic behavior by incorporating several stochastic factors 
related to different sequences of applied scenarios, shifted scenarios’ probabilities, alternate 
maintenance scenarios, average scenario’s size, and developers experience level. On 
average, SM returns reduced change rate values due to the incorporation of the alternate 
maintenance scenarios which decelerate the maintenance process, and thus reduce the 
required effort per scenario application.  

 

From a different perspective, the change rates of the total effort of the simulation model 
(SM) in Figure 7-8 represent the sequence of required effort per scenario application or else 

 
Figure 7-7: Analysis of Stochastic Factor components of SM model, for the GUI 

implementation (N=15, M=14, pnE=0.7) 

 

Figure 7-8: Effort change rate of CVP (left) and CIBI (right) design alternatives for 
DFM, FM, and SM models, for the GUI implementation (N=15, M=14, pnE=0.7) 
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the time series of required effort values during maintenance process. These time series are 
characterized by highly fluctuations or noise and their statistical parameters (i.e., mean, 
standard deviation, kurtosis, skewness) reflect the statistical characteristics of the required 
effort values per scenario application. The manipulation of those statistical parameters to 
approximate the empirical observations from field studies and time series analysis (G. 
Antoniol et al., 2001; Raja et al., 2009; Shariat Yazdi et al., 2016) offers a reliable mean for 
calibrating the model’s outcomes to imitate the actual maintenance process, as analyzed in 
subsection 6.4.9. 

The design attributes of elements (N) and operations (M) are presented in Figure 7-9.  
Again, FM outcome demonstrates a steady trend because of the continuous integration and 
its formal and deterministic behavior. DFM and SM outcomes demonstrate fluctuate 
trends because of the discrete and event-driven integration and their stochastic and non-
deterministic behavior. Once again, DFM fluctuations follows the SM trend since DFM 
incorporates only one stochastic factor related to different sequences of applied scenarios. 
In contrast, SM fluctuations significantly deviates from the SM and DFM trends since SM 
demonstrates highly stochastic behavior by incorporating several stochastic factors related 
to different sequences of applied scenarios, shifted scenarios’ probabilities, and alternate 
maintenance scenarios. In general, SM returns reduced values due to the incorporation of 
the alternate maintenance scenarios (edit and remove) which decelerate the maintenance 
process, and thus reduce the increment rate of the design attributes. 

 

The scenario probability (pnE) and shifting scenario probability of the simulation 
model (SM) are presented in Figure 7-10.  The Brownian motion level and factor cause the 
shifting of scenario probability value during maintenance process. This situation reflects 
the real circumstances of actual maintenance process and the difficulty to predict in 
advance the exact value of scenario probability. The shifting value of scenario probability 
reflects the highly uncertain nature of the SM. 

 

Figure 7-9: Design attributes of Elements N (left) and Operations M (right) for DFM, 
FM, and SM models, for the GUI implementation (N=15, M=14, pnE=0.7) 
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7.5 Seeing Software Design as Investment 

Designing high-quality software that satisfies user’s requirements is of primary interest 
among competing businesses in the software market. Most of the novel and widely used 
software systems in the market are the result of costly projects supported by different 
experts’ teams for long periods until their retirement. Under this perspective, a software 
system can be perceived by the company’s management as a new product in the context of 
an investment plan. Furthermore, during the design stage of software (product), each 
design alternative is also an investment alternative with different pros and cons. The 
evaluation and selection among these alternatives can be made based on different quality 
criteria such as maintainability, which heavily influences the degree of success and future 
maintenance cost of the system (product). Thus, more maintainable software is related to 
lower maintenance costs, which increases the product’s useful life and profitability. Each 
time that a software engineer selects a specific design alternative (investment), he misses 
the opportunity to use a different – possibly better or more maintainable - design 
alternative (investment). 

7.5.1 Cost of Missed Opportunities 

The introduced modeling method of this thesis provides reliable formal models that can 
help software engineers to evaluate different design alternatives (investments) in a formal 
way regarding their maintainability perspective. The decision-making is based on the 
minimum estimated (required maintenance) effort among compered design alternatives. 
For example, selecting CIBI instead of CVP design alternative means that CVP corresponds 
to either the missed opportunity (maintenance) cost of the taken decision or the best 
(second most maintainable) available alternative or the next lowest cost that a designer 
could have achieved if he had selected CVP instead of CIBI. The difference between CVP 
and CIBI predictions can be interpreted as the (positive) net maintenance cost, reflecting 
the gained (or avoided wasted) maintenance effort as a consequence of the decision-
making process supported by the introduced modeling method. 

7.5.2 Accounting Perspective 

The introduced modeling method and possibly generated formal models help in designing 
software based on formal quality principles regarding its maintainability degree, hence 
delaying its expected obsolescence and increasing its useful life. From an accounting 
perspective, this is defiantly a desirable outcome when the software is intended to be used 
by a company for internal use. In this case, the development cost is capitalized and 

 

Figure 7-10: New element scenario probability (pnE) and shifted scenario probability 
of SM model, for the GUI implementation (N=15, M=14, pnE=0.7) 
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amortized for a longer period with a decreased annual amortization cost, thus improving 
software usefulness and the company’s profitability. However, software that is developed 
for sale or lease to others is capitalized and amortized (only) after it has reached 
technological feasibility (K. R. Subramanyam, 2013). Before that stage of development, the 
software is considered to be Research & Development and it is expensed accordingly. 
Nevertheless, formal quality principles such as generated formal models can help with 
accelerating the achievement of software’s technological feasibility. Only the one-time cost 
associated with the initial formal model generation stage (for significant designing 
problems) is conceived as Research & Development expenses. 

7.6 Conclusions 

The introduced modeling theory and derived formal modes provide a reliable tool for 
supporting decision-making among design alternatives in respect to their maintainability 
for significant problems as discussed in previous chapters. Given that the derived formal 
modes are easily applied and reusable for several instances of each general problem, this 
chapter discusses major alternate perspectives and possible ways for applying these formal 
models through other techniques taking advantages of their versatility and mathematical 
formality.  

The representation of design alternatives based on key maintenance scenarios and 
design attributes through alternate computer-aided simulations extends the analysis of 
each general and significant problem. Such simulation software and tools help to reveal 
and explore several aspects concerning the impact of maintenance process on each design 
alternative. Comparative and intermediate results and real-time sensitivity analysis among 
different simulation settings and parameters provide further insight about factors’ 
contribution and cause-effect relationships of the problem under study. 

The mathematical reformation of the formal models provides a great mean for 
supporting design decisions under partial or full uncertainty, allowing decision-making 
when scenarios’ probabilities are difficult or even impossible to be estimated in a precise 
manner. Furthermore, the horizon analysis technique allows the application of the derived 
formal models across long development and maintenance periods, separated in distinct 
subperiods with different assumptions and parameters. Both techniques highlight and 
extend the practicability and the usability of the introduced theory and derived formal 
modes to even more practical, complicated, and realistic conditions. 

Each of the alternate application perspectives discussed in this chapter can be further 
investigated based on the same or similar principles and techniques concerning similar or 
other significant design problems in the field of software architecture and engineering. 
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8 Conclusions and Future Work 

8.1 Contribution of Dissertation 

Software architecture design includes several critical decisions with significant impact on 
the pursued quality attribute of maintainability. Such early design decisions heavily affect 
related time/effort/cost of software maintenance, updates, and modifications since future 
maintenance activities should adapt to the initially selected architecture.  

The introduced approach in this thesis suggests a documented modeling method that 
generates probabilistic comparison models that estimate the maintainability degree of 
design alternatives through effort predictions in a formal and deterministic way. The 
theoretical foundation of the proposed modeling method and the results of relevant works 
provide strong evidence that the derived formal models return proportional and reliable 
effort estimations mainly for comparison purposes among design alternatives. By using the 
proposed modeling model, specific characteristics of given design problems are considered 
allowing selection of proper design pattern combinations at an early stage of the design 
process, before code development. Software quality metrics can be derived directly from 
design descriptions of well-known object-oriented design pattern combinations. This 
approach resolves conflicting pro and cons among design alternatives with regards to their 
maintainability degree. At the same time, it limits the ambiguity imposed by the stochastic 
nature of the actual maintenance process by relying on a limited set of problem’s 
parameters such as design attributes and probabilities of major maintenance scenarios. 

The analysis of the derive formal comparison models, concerning the general design 
problem of recursive hierarchies of part-whole aggregations, indicates that different design 
pattern combinations have a significant effect on software quality properties like 
maintainability. Furthermore, the progressive and probabilistic analysis verify the same 
significant effect on future modifications during software maintenance. Also, it is indicated 
that probability analysis over maintenance scenarios has a decisive role on maintenance 
cost/effort assessment. Models sensitive to design attributes and scenarios probabilities 
are particularly informative regarding the maintainability degree of each design alternative. 
In addition, seeing software evolution under the view of differential analysis by integrating 
change rates of problem’s design attributes is an innovation in the pursuing of realistic 
comparison models. 

Evaluation results using extended design problems such as Observer vs. Mediator 
indicate that the proposed method can be also applied during the high-level architecture 
design, to handle communication, interfacing, and coordination issues among sub-
modules and components of new or even legacy code. These examples of alternate design 
problems prove the usability and applicability of the proposed modeling method in a wide 
spectrum of common, difficult, and frequently tackled design problems in the field of 
software architecture. The application of the proposed approach reveals the usability and 
extensibility of the suggested method considering different metrics, design 
implementations, and quality characteristics. Furthermore, the introduced models can be 
easily implemented in software allowing the assessment of the average beneficial 
contribution of the method in terms of rate of avoided wasted effort by evaluating the entire 
design space of each general problem under analysis.  

The results of the extensive statistical validation indicate that the evaluated formal 
models provide reliable estimations of the expected effort, especially for comparison 
purposes.  The reliability of the evaluated probabilistic models increases in a mid-to-long 
term perspective, and thus, as the maintenance process evolves and decisions' benefits 
become more significant, the models' decision ability to conclude in the most beneficial 
design alternative in terms of maintainability is increased. Simulation evidence suggests 
that simplified modeling approaches such as the introduced modeling method are 
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particularly reliable able to approximate dynamic system's behavior mostly because of 
mid-to-long-term statistical convergence. As the maintenance process evolves, and despite 
the various stochastic and random factors affecting it, the average long-term effect of these 
factors would be eventually negligible, and thus the predictions of the required effort are 
increasingly driven by the standard and recurring structural behavior of the used design 
patterns. Furthermore, decisions concerning design alternatives exhibit very limited 
selection-risk even under high uncertainty levels regarding the initial estimation of 
problem’s parameters. Thus, the introduced modeling approach and derived formal 
comparison models manage to eliminate transitory and biased factors to enhance mid-to-
long-term decision ability, avoiding significant amounts of wasted maintenance effort and 
relevant costs. 

Methods that yield such reliable, formal, general, and reusable models reduce the long-
term uncertainty of design decisions and help developers and engineers to elevate the 
quality of their decision-making, optimize the design process, and develop more 
maintainable software. Predicting future levels of maintenance effort is very important for 
comparison purposes and early structural analysis can significantly improve such 
assessments, practically reversing the (cone of) uncertainty levels in software project 
management. This thesis suggests that even if such early and critical design decisions is 
not the primary concern in software industry, developers, designers, and project/quality 
manager should turn their attention on them since the cumulative benefits (avoided wasted 
effort) from the repeating use of formal models significantly overcomes their initial 
derivation cost. It is expected that the emphasis in maintainability assessment will be 
shifted from static analysis of code to dynamic analysis of software design structure for 
future change flows. The proposed approach in this thesis introduces a new perception of 
software evolution during maintenance, while promotes early decision-making culture in 
software quality control management. 

Finally, this thesis introduces a new conception about the statistical evaluation of 
formal comparison models and relevant theories regarding their reliability to support 
design decisions. It relies on massive and homogeneous validation data, sensitive to several 
design attributes, generated by widely stochastic simulation models which have been 
thoroughly calibrated to replicate the underlying activities and variability of actual software 
evolution during maintenance process. Researchers are encouraged and hopefully inspired 
to possibly apply the introduced concepts in similar or different context. 

8.2 Future Work 

This thesis targets on stimulating and motivating research community toward the 
evaluation of other general, significant, and frequently tackled design problems in software 
architecture domain for which proper selection among object-oriented design alternatives 
could be modeled through the provided theoretical framework and statistically validated 
by simulated observations. Towards this perspective, future research efforts can engage 
different or alternate design patterns and aspects under different measurement methods 
and units, or even for different software quality characteristics. Furthermore, the proposed 
approach can be combined and analyzed in conjunction with other methods on case studies  
to determine the relationship between deterministic effort measurements and external 
quality factors such as reusability, maintainability, testability, and adaptability. In addition, 
the proposed mathematical approach can be used for evaluating and comparing similar or 
different design patterns especially in the field of Pattern Languages of Programs.  

An interesting research perspective could be the mathematical analysis of the derived 
formal comparison models. A such analysis could reveal possible similarities, differences, 
conflicts, requirements, limitations, and patterns regarding the evolution and structural 
behavior of the used design patterns, thus providing further insight about the maintenance 
perspective of each design alternative under comparison, or even about the nature the 
addressed general problem itself.  



 

UNIVERSITY OF 
PELOPONNESE 

“Model-driven Software Architectural Design based on Software 
Evolution Modeling and Simulation and Design Pattern Analysis 
for Design Space Exploration Towards Maintainability” 

 

PhD Thesis  194 

At the same time, this thesis is a starting point for further research in the domain of 
software evolution throughout simulation models which could engage other stochastic 
factors in different frequency distributions and intervals under other measurement 
methods and units. Furthermore, further research efforts towards a refined calibration of 
the introduced simulation model through more informative datasets of real-world 
observations are encouraged. These research perspectives could be assisted by using 
general or targeted purpose simulation languages and tools. In addition, machine learning 
or artificial intelligence techniques may be used to assist simulation model reaching even 
more realistic results. Moreover, the simulation of alternate design problems can be 
assisted by integrating the proposed simulation model in this thesis to perform jointly as a 
synthesized simulation or co-simulation. In such cases, existing base models might serve 
as lumped components of a broader simulation model forming a hierarchical structure.  

These research perspectives highlight the possible usability of the proposed theoretical 
framework and the introduced evaluation method through simulations in a wide spectrum 
of general and difficult designing problems in the fields of design optimization and software 
architectural design. 
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Appendix A: Mat Lab Modeling Framework 

%% CODE A.1 ==MODELING FRAMEWORK (DYNAMIC DIFFERENTIAL ANALYSIS AND FORMAL MODEL GENERATION)==== 

% Data describing (general) comparison problem (CIBI vs CVP) and fundamental (SMC) metric analysis 

% In this section, different or alternate problems should be described 

D = {'CVP','CIBI'}; % tags of Design combinations under comparison 

L_tags = {'N','M'}; % tags of design attributes: N initial elements, M initial operations 
A = {'Method aspect', 'Class aspect'}; % tags of Structural aspects 

S = {'nE', 'nP'}; % tags of Types of maintenance scenarios: nE new composition element, nP new operation 

F = [1 0; 0 1]; % N:+1 and M:+0 for nE, N:+0 and M:+1 for nP (change rates of affected design attributes for each scenario 

type |S|x|L|) 

% SMC metric factors on design attributes L, for each design combination D, scenario S, and aspect A are stated in K array 

K = zeros([size(D,2) size(S,2) size(A,2) size(L_tags,2)+1]); % creates empty matrix with dimensions: 
|D|x|S|x|A|x|L|+1 

%             method  class (structural aspects) 

% D S            N M  -  N M - 

K(1,1,:,:) = [0 1 2 ; 0 1 2]; % on CVP  for a nE : totally 0N+1M+0 method + 0N+1M+0 class interventions = 2(M+2) 

K(1,2,:,:) = [1 0 0 ; 0 0 1]; % on CVP  for a nP : totally 1N+0M+0 method + 0N+0M+1 class interventions = N+1 

K(2,1,:,:) = [0 1 0 ; 0 0 1]; % on CIBI for a nE : totally 0N+1M+0 method + 0N+0M+1 class interventions = M+1 
K(2,2,:,:) = [1 0 1 ; 1 0 1]; % on CIBI for a nP : totally 1N+0M+0 method + 1N+0M+0 class interventions = 2(N+1) 

 

%%====DIFFERENTIAL ANALYSIS CODE================================================== 

% Differential analysis is implemented progressively by using symbolic expressions 

% Design attributes |L|, individual scenarios probabilities |P|, and number of scenario applications t or λ, are passed as 

parameters to the derived equations 
syms t; % creates (single) symbolic variable/parameter for time or the number of scenario applications (λ=t) 

L_sym = sym (L_tags); % creates (many) symbolic variables/parameters for all design attributes |L| 

% creates (many) symbolic variables/parameters for all individual scenarios probabilities |P| 

% symbolic parameters are prefixed/named with p_ index for consistency 

for i=[1:size(S,2)] 

    P_sym(i) = sym (strcat('p_', S{i})); 
end 

 

% First level of integration for each design attribute of L set 

for i=[1:size(L,2)] 

    l(i)= 0*t; % sets initial value as symbolic expression 
    for j= [1:size(S,2)] 

        l(i) = l(i) + P_sym(j)*F(j,i); 

    end 

    l(i) = int (l(i), t) + L_sym(i); % differential equation with initial condition l(0)=L(i) returns C = L(i) 

end 

 
% Second level of integration for each design combination of D set 

for i=[1:size(D,2)] 

    for j=[1:size(S,2)] 

        for q=[1:size(A,2)] 

            for g=[1:size(L,2)] 

                cost_L(g) = K(i,j,q,g)*l(g); % distinct products of current design attributes l(g) 
            end 

            cost_AL(q) = sum(cost_L(:)) + K(i,j,q,size(L,2)+1); % sub-cost for all design attributes L(g) 

        end 

        cost_SAL(j) = sum(P_sym(j) * cost_AL(:)); % sub-cost for all structural aspects A(q) [and all attributes L(g)] 

    end 

    % differential equation with initial condition cost_DSAL(0)=0 returns C=0 
% total-cost for all scenario's types S(j) and [all structural aspects A(q) and design attributes L(g)] 

    cost_DSAL(i) = int (sum(cost_SAL(:)),t);  

end 

 

% Converts symbolic expressions to an array of anonymous function handles 

for i=[1:size(D,2)] 
    FM_cost_D{i} = matlabFunction(cost_DSAL(i)); % function of total-cost for each design combination D 

end 

% Converts symbolic expressions to a symbolic function returning multiple results for each design combination |D| 

FM_cost_D_f(L_sym, P_sym, t)=cost_DSAL;  

 

%% ========================================================================= 
% Equations of total progressive cost for each design combination (use these equations for further analysis) 

% cost_DSAL(i) is a symbolic expression  

% FM_cost_D_f is a symbolic function returning an array of computations for all D combinations (parameters are normally 

arranged as L_sym, P_sym, t) – RECOMMENTED for direct use 

% FM_cost_D{i} is an anonymous function handle for direct computations for each D combination (attention, parameters are 

arbitrary arranged) 
%% ======================================================================== 
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%% CODE A.2 ======= PLOTTING RESULTS IN A SINGLE GRAPH (PRESENTATION EXAMPLE)================= 

% Data (design attributes) derived from specifications of a specific system (instance of general problem) 

% In this section, the design attributes of a specific system are placed (multiple attributes can be declared as arrays) 

L = [40 10]; % initial values of design attributes N and M 

P = [0.5 0.5]; % individual probabilities of each scenario type |S| 
 

%%====PLOTTING CODE =========================================================== 

lt = 5:5:100; % declares the array of the interval of interest 

merged_parameters_values = {}; % merges L(i) and P(i) values of parameters in a single array of cells 

for i=[1:size(L_tags,2)] 

    merged_parameters_values{i} = L(i); 
end 

for i=[1:size(P,2)] 

    merged_parameters_values{size(L_tags,2)+i} = P(i); 

end 

% merged_parameters_values are aligned according to FM_cost_D_f symbolic function's declaration 

% Uses the FM_cost_D_f symbolic function (returning an array of computations for all D) and computes total effort/cost for 
λ=[5:5:100] 

for i=[1:20] 

    G_lines(i,:) = FM_cost_D_f(merged_parameters_values{:}, i*5); 

end 

% adds different lines for each design combination D  
plot (lt, G_lines, 'MarkerSize',4,'Marker','square'); 

grid on; 

title('Total progressive effort predictions per design combination'); 

xlabel('Number of scenario applications (λ)'); 

ylabel('Total progressive effort'); 

legend(D(:), 'Location', 'northwest'); 
hold off; 

savefig('CIBIvsCVP_FigureFile'); 

%========================================================================= 
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%% CODE B.1 ===MODELING FRAMEWORK (DYNAMIC DIFFERENTIAL ANALYSIS AND FORMAL MODEL GENERATION)=== 

% Data describing (general, extended) comparison problem CIBI_DP vs CVP_DP and fundamental (SMC) metric analysis 

% In this section, different or alternate problems should be described 

D = { 'CVP-DP','CIBI-DP' }; % tags of Design comb. under comparison 

L_tags = {'N','M', 'D'}; % tags of design attributes: N initial elements, M initial operations, and V initial decorators  
A = {'Method aspect', 'Class aspect'}; % tags of Structural aspects 

S = {'nE', 'nP','nD'}; % Types of maintenance scenarios: nE new composition element, nP new operation, nDE new decorator 

element, nDP new decorator operation 

F = [1 0 0 ; 0 1 0; 0 0 1]; % N:+1 M:+0 D:+0 for nE, N:+0 and M:+1 D:+0 for nP, N:+0 M:+0 D:+1 for nD (change rates 

of affected design attributes for each scenario type |S|x|L|) 

% SMC metric factors on design attributes L, for each design combination D, scenario S, and aspect A are stated in K array 
K = zeros([size(D,2) size(S,2) size(A,2) size(L_tags,2)+1]);%creates empty matrix dimensions: |D|x|S|x|A|x|L|+1 

%                 method         class        (structural aspects) 

% D S           N M D -  N M D - 

K(1,1,:,:) = [0 1 0 2; 0 1 0 2]; %CVP-DP for nE: 0N+1M+0D+2 method + 0N+1M+0D+2 class = 2(M+2) 

K(1,2,:,:) = [1 0 1 0; 0 0 0 1]; %CVP-DP for nP: 1N+0M+1D+0 method + 0N+0M+1D+1 class = N+D+1 

K(1,3,:,:) = [0 1 0 2; 0 1 0 2]; %CVP-DP for nD: 0N+1M+0D+2 method + 0N+1M+0D+2 class = 2(M+2) 
 

K(2,1,:,:) = [0 1 0 0; 0 0 0 1]; %CIBI-DP for nE: 0N+1M+0D+0 method + 0N+0M+0D+1 class = M+1 

K(2,2,:,:) = [1 0 1 2; 1 0 1 2]; %CIBI-DP for nP: 1N+0M+1D+2 method + 1N+0M+1D+2 class = 2(N+1)+2(D+1) 

K(2,3,:,:) = [0 1 0 0; 0 0 0 1]; %CIBI-DP for nD: 0N+1M+0D+0 method + 0N+0M+0V+1 class = M+1 

%% ========================================================================= 
% Differential analysis and formal model generation code has been parameterized based on set matrices and thus, it is common 

and reusable for any set of parameters 

 

%% CODE B.2 ====== PLOTTING RESULTS IN A SINGLE GRAPH (PRESENTATION EXTENDED EXAMPLE)========== 

% Data (design attributes) derived from specifications of a specific system (instance of general extended problem) 

% In this section, the design attributes of a specific system are placed (multiple attributes can be declared as arrays) 
L = [40 10 30]; % initial values of design attributes N, M, and D 

P = [0.25 0.25 0.5]; % individual probabilities of each scenario type |S| 

%%========================================================================= 

% Plotting code has been parameterized based on set matrices and thus, it is common and reusable for any set of parameters 
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%% CODE C.1 ===MODELING FRAMEWORK (DYNAMIC DIFFERENTIAL ANALYSIS AND FORMAL MODEL GENERATION)=== 

% Data describing (general, extended) comparison problem CIBI_MP vs CVP_MP vs CIBI_OP vs CVP_OP and fundamental (SMC) 

metric analysis 

% In this section, different or alternate problems should be described 

D = { 'CIBI and MP','CVP and MP','CIBI and OP', 'CVP and OP' }; % tags of Design comb. under comparison 
L_tags = {'N','M', 'C'}; % tags of design attributes: N initial elements, M initial operations, C initial mediators or observers 

A = {'Method aspect', 'Class aspect'}; % tags of Structural aspects 

S = {'nE', 'nP','nM'}; % Types of maintenance scenarios: nE new composition element, nP new operation, nM new mediator 

or observer 

F = [1 0 0 ; 0 1 0; 0 0 1]; % N:+1 M:+0 C:+0 for nE, N:+0 M:+1 C:+0 for nP, N:+0 M:+0 C:+1 for nM (change rates of 

affected design attributes for each scenario type |S|x|L|) 
% SMC metric factors on design attributes L, for each design combination D, scenario S, and aspect A are stated in K array 

K = zeros([size(D,2) size(S,2) size(A,2) size(L_tags,2)+1]);%creates empty matrix dimensions: |D|x|S|x|A|x|L|+1 

%                 method      class        (structural aspects) 

% D S           N M C -   N M C - 

K(1,1,:,:) = [0 1 1 1; 0 0 1 2]; %CIBI-MP for nE: 0N+1M+1C+1 method + 0N+0M+1C+1 class = M+2C+3 

K(1,2,:,:) = [1 0 0 1; 1 0 0 1]; %CIBI_MP for nP: 1N+0M+0C+1 method + 1N+0M+0C+1 class = 2(N+1) 
K(1,3,:,:) = [0 0 0 2; 0 0 0 1]; %CIBI_MP for nM: 0N+0M+0C+2 method + 0N+0M+0C+1 class = 3 

 

K(2,1,:,:) = [0 1 1 3; 0 1 1 3]; %CIBI_MP for nE: 0N+1M+1C+3 method + 0N+1M+1C+3 class = 2M+2C+6 

K(2,2,:,:) = [1 0 0 0; 0 0 0 1]; %CIBI_MP for nP: 1N+0M+0C+0 method + 0N+0M+0C+1 class = N+1 

K(2,3,:,:) = [0 0 0 2; 0 0 0 1]; %CIBI_MP for nM: 0N+0M+0C+2 method + 0N+0M+0C+1 class = 3 
 

K(3,1,:,:) = [0 1 0 2; 0 0 0 2]; %CVP_OP for nE  : 0N+1M+0C+2 method + 0N+0M+0C+2 class = M+4 

K(3,2,:,:) = [1 0 0 1; 1 0 0 1]; %CVP_OP for nP  : 1N+0M+0C+1 method + 1N+0M+0C+1 class = 2(N+1) 

K(3,3,:,:) = [0 0 0 3; 0 0 0 2]; %CVP_OP for nM : 0N+0M+0C+3 method + 0N+0M+0C+2 class = 5 

 

K(4,1,:,:) = [0 1 0 4; 0 1 0 3]; %CVP_OP for nE  : 0N+1M+0C+4 method + 0N+1M+0C+3 class = 2M+7 
K(4,2,:,:) = [1 0 0 0; 0 0 0 1]; %CVP_OP for nP  : 1N+0M+0C+0 method + 0N+0M+0C+1 class = N+1 

K(4,3,:,:) = [0 0 0 3; 0 0 0 2]; %CVP_OP for nM : 0N+0M+0C+3 method + 0N+0M+0C+2 class = 5 

%% ========================================================================= 

% Differential analysis and formal model generation code has been parameterized based on set matrices and thus, it is common 

and reusable for any set of parameters 

 
%% CODE C.2 ====== PLOTTING RESULTS IN A SINGLE GRAPH (PRESENTATION EXTENDED EXAMPLE)========== 

% Data (design attributes) derived from specifications of a specific system (instance of general extended problem) 

% In this section, the design attributes of a specific system are placed (multiple attributes can be declared as arrays) 

L = [15 14 10]; % initial values of design attributes N, M, and C 

P = [0.1 0.2 0.7]; % individual probabilities of each scenario type |S| 

%%========================================================================= 
% Plotting code has been parameterized based on set matrices and thus, it is common and reusable for any set of parameters 
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Appendix B: Sample Data of General Problem 

Parameters of Sample Instances of the CVP vs. CIBI General Problem 

n. N M pnE exP n. N M pnE exP n. N M pnE exP 
1.  161 60 0,67 1,84 335.  192 124 0,52 0,46 669.  161 116 0,91 2,00 
2.  56 90 0,32 0,26 336.  104 17 0,32 1,99 670.  198 57 0,23 1,35 
3.  162 119 0,35 1,08 337.  163 60 0,48 0,85 671.  21 72 0,15 0,42 
4.  56 123 0,09 0,99 338.  137 23 0,64 0,77 672.  65 70 0,55 0,29 
5.  103 94 0,89 0,24 339.  96 123 0,85 1,07 673.  88 49 0,47 0,87 
6.  101 12 0,90 0,65 340.  155 100 0,65 0,55 674.  67 30 0,32 1,30 
7.  31 7 0,15 0,26 341.  135 15 0,58 1,04 675.  144 24 0,35 0,32 
8.  134 112 0,15 1,20 342.  33 47 0,94 1,49 676.  40 47 0,35 1,51 
9.  104 38 0,08 1,69 343.  179 35 0,92 0,53 677.  41 76 0,10 1,40 
10.  81 6 0,70 1,76 344.  144 111 0,25 1,52 678.  131 44 0,71 0,71 
11.  90 58 0,72 1,80 345.  175 48 0,72 0,63 679.  99 42 0,11 1,59 
12.  29 102 0,34 1,51 346.  127 31 0,77 1,43 680.  47 46 0,57 1,75 
13.  130 146 0,06 1,21 347.  185 82 0,29 1,22 681.  52 92 0,33 0,85 
14.  188 133 0,14 0,24 348.  199 127 0,58 1,36 682.  148 33 0,27 0,64 
15.  79 51 0,17 1,67 349.  32 35 0,61 0,59 683.  130 14 0,38 1,77 
16.  155 91 0,22 0,32 350.  23 100 0,39 0,47 684.  86 18 0,08 0,45 
17.  21 5 0,26 1,66 351.  169 89 0,32 1,93 685.  47 114 0,76 1,83 
18.  139 132 0,93 1,73 352.  143 148 0,55 1,47 686.  127 60 0,77 1,89 
19.  89 126 0,30 1,86 353.  41 63 0,11 1,47 687.  26 8 0,63 1,06 
20.  156 138 0,68 1,94 354.  101 146 0,83 0,43 688.  131 44 0,61 1,60 
21.  70 99 0,57 1,44 355.  145 43 0,69 0,41 689.  60 84 0,86 1,47 
22.  160 13 0,90 0,53 356.  175 49 0,30 1,95 690.  176 112 0,50 0,42 
23.  142 69 0,09 0,90 357.  169 84 0,53 0,41 691.  122 105 0,19 1,51 
24.  46 89 0,63 1,33 358.  94 33 0,76 0,72 692.  78 68 0,31 1,82 
25.  156 55 0,30 1,98 359.  91 39 0,78 0,75 693.  113 148 0,12 0,90 
26.  137 78 0,74 1,61 360.  46 113 0,09 1,50 694.  31 30 0,14 0,98 
27.  106 82 0,18 1,13 361.  65 82 0,88 0,72 695.  26 97 0,69 0,35 
28.  108 39 0,23 1,61 362.  51 95 0,14 0,31 696.  190 35 0,77 0,42 
29.  141 24 0,94 0,86 363.  142 125 0,07 1,04 697.  181 134 0,79 0,93 
30.  102 35 0,12 1,90 364.  70 70 0,78 1,52 698.  78 76 0,76 1,80 
31.  26 33 0,85 1,74 365.  77 33 0,26 1,00 699.  101 11 0,47 0,36 
32.  154 99 0,46 0,68 366.  135 144 0,15 1,59 700.  86 136 0,33 0,29 
33.  22 68 0,85 1,68 367.  193 149 0,65 0,47 701.  167 39 0,82 1,38 
34.  130 58 0,50 0,70 368.  88 91 0,55 0,23 702.  175 147 0,91 0,55 
35.  155 9 0,35 0,36 369.  113 131 0,73 0,30 703.  41 119 0,73 1,19 
36.  182 111 0,48 1,97 370.  141 147 0,66 1,86 704.  69 74 0,35 1,89 
37.  196 41 0,87 1,95 371.  181 56 0,25 1,95 705.  172 117 0,94 0,48 
38.  166 103 0,46 1,40 372.  143 54 0,84 0,84 706.  194 96 0,07 1,07 
39.  66 139 0,40 1,83 373.  64 101 0,91 0,33 707.  144 47 0,30 1,46 
40.  139 134 0,61 1,58 374.  76 13 0,28 1,16 708.  137 29 0,33 1,05 
41.  48 89 0,20 1,60 375.  24 27 0,15 0,32 709.  189 15 0,12 1,65 
42.  129 114 0,37 1,25 376.  108 59 0,83 1,99 710.  118 127 0,09 0,42 
43.  182 119 0,62 1,89 377.  137 139 0,81 0,71 711.  80 125 0,42 0,26 
44.  92 29 0,75 0,92 378.  79 117 0,23 1,15 712.  85 38 0,50 1,24 
45.  166 51 0,10 0,69 379.  166 101 0,90 1,21 713.  99 69 0,88 0,51 
46.  121 133 0,89 0,86 380.  45 98 0,51 1,18 714.  161 29 0,73 0,29 
47.  154 108 0,90 1,97 381.  144 19 0,58 0,62 715.  193 47 0,79 0,52 
48.  35 133 0,61 0,52 382.  108 54 0,17 0,45 716.  150 114 0,82 0,22 
49.  66 90 0,64 1,15 383.  193 92 0,50 0,77 717.  182 96 0,41 1,89 
50.  43 76 0,28 0,99 384.  145 15 0,87 1,29 718.  40 28 0,69 1,06 
51.  39 138 0,35 0,74 385.  118 142 0,41 1,01 719.  199 98 0,61 1,81 
52.  157 118 0,50 1,59 386.  172 92 0,33 1,20 720.  31 136 0,47 1,85 
53.  160 139 0,92 1,22 387.  51 123 0,41 1,95 721.  33 112 0,82 1,14 
54.  30 150 0,29 0,44 388.  189 72 0,39 0,46 722.  46 115 0,60 1,51 
55.  21 130 0,07 0,83 389.  155 11 0,56 1,29 723.  95 18 0,47 1,67 
56.  162 126 0,64 1,58 390.  135 102 0,07 1,38 724.  132 66 0,57 0,55 
57.  60 137 0,46 1,45 391.  92 125 0,46 0,89 725.  185 56 0,16 1,91 
58.  67 140 0,66 0,58 392.  174 103 0,18 0,77 726.  169 30 0,70 1,76 
59.  186 16 0,17 0,55 393.  191 19 0,43 1,06 727.  176 75 0,43 0,50 
60.  64 142 0,78 1,80 394.  46 35 0,62 1,13 728.  70 120 0,91 1,30 
61.  176 20 0,09 1,85 395.  56 84 0,68 0,57 729.  85 76 0,83 1,33 
62.  62 112 0,30 1,34 396.  26 131 0,73 0,93 730.  101 131 0,16 1,62 
63.  79 139 0,37 1,72 397.  84 23 0,09 1,04 731.  98 22 0,16 0,86 
64.  87 124 0,71 1,39 398.  135 63 0,17 0,62 732.  154 79 0,82 1,09 
65.  45 123 0,36 0,80 399.  102 53 0,06 0,47 733.  109 15 0,92 1,50 
66.  125 119 0,50 0,66 400.  68 140 0,74 1,87 734.  150 73 0,62 1,61 
67.  58 39 0,44 1,08 401.  121 55 0,40 0,45 735.  101 89 0,26 0,96 
68.  63 128 0,77 1,89 402.  85 6 0,09 1,79 736.  194 75 0,20 0,91 
69.  103 118 0,47 0,55 403.  99 142 0,12 1,86 737.  66 93 0,09 0,74 
70.  81 78 0,81 0,50 404.  108 54 0,41 1,09 738.  162 106 0,29 1,11 
71.  147 66 0,77 1,92 405.  51 37 0,14 1,66 739.  93 74 0,24 0,31 
72.  195 90 0,77 1,49 406.  107 42 0,70 1,69 740.  159 89 0,17 1,88 
73.  179 21 0,92 1,20 407.  154 36 0,68 0,79 741.  139 58 0,79 0,97 
74.  119 13 0,75 0,83 408.  164 54 0,11 1,88 742.  174 118 0,17 0,77 
75.  161 37 0,63 1,40 409.  123 109 0,41 0,55 743.  120 35 0,83 0,61 
76.  175 92 0,95 1,18 410.  57 43 0,36 1,05 744.  27 29 0,19 1,23 



 

UNIVERSITY OF 
PELOPONNESE 

“Model-driven Software Architectural Design based on Software 
Evolution Modeling and Simulation and Design Pattern Analysis 
for Design Space Exploration Towards Maintainability” 

 

PhD Thesis  200 

n. N M pnE exP n. N M pnE exP n. N M pnE exP 
77.  46 134 0,10 1,19 411.  47 135 0,28 0,95 745.  46 100 0,45 1,03 
78.  146 134 0,29 1,65 412.  78 131 0,72 0,57 746.  131 120 0,55 1,01 
79.  113 132 0,82 0,30 413.  110 70 0,45 1,36 747.  197 15 0,24 1,63 
80.  70 105 0,63 1,02 414.  106 141 0,22 0,51 748.  95 49 0,93 1,95 
81.  63 35 0,10 1,17 415.  166 21 0,64 1,97 749.  186 79 0,43 1,20 
82.  96 130 0,54 1,73 416.  137 42 0,83 0,20 750.  156 142 0,13 0,64 
83.  186 38 0,55 0,76 417.  128 42 0,06 1,94 751.  182 128 0,43 0,59 
84.  41 31 0,13 0,62 418.  82 14 0,14 0,49 752.  186 66 0,36 0,79 
85.  60 110 0,77 0,86 419.  169 93 0,64 0,44 753.  193 41 0,54 1,33 
86.  103 58 0,75 1,34 420.  59 50 0,78 0,82 754.  121 21 0,89 0,65 
87.  26 54 0,66 0,38 421.  155 99 0,37 1,09 755.  104 61 0,26 0,44 
88.  181 103 0,07 1,97 422.  122 140 0,90 0,69 756.  154 86 0,34 0,62 
89.  153 20 0,10 1,07 423.  105 111 0,58 0,46 757.  183 110 0,41 1,10 
90.  161 65 0,25 1,92 424.  138 99 0,73 1,79 758.  28 115 0,94 0,52 
91.  155 147 0,07 1,23 425.  98 19 0,62 1,22 759.  146 118 0,60 1,41 
92.  102 98 0,47 0,63 426.  149 53 0,49 1,53 760.  123 149 0,20 1,07 
93.  152 39 0,25 0,96 427.  185 80 0,85 0,50 761.  95 55 0,77 1,08 
94.  83 66 0,08 1,97 428.  94 49 0,93 1,10 762.  32 93 0,31 0,40 
95.  87 41 0,53 0,90 429.  145 148 0,69 1,00 763.  86 46 0,73 1,58 
96.  141 46 0,67 0,31 430.  147 109 0,72 0,92 764.  187 40 0,32 0,85 
97.  111 105 0,77 0,59 431.  167 72 0,05 1,90 765.  75 109 0,56 1,58 
98.  189 48 0,43 0,95 432.  137 58 0,37 0,27 766.  102 50 0,43 0,25 
99.  197 57 0,66 0,36 433.  61 68 0,58 0,54 767.  199 28 0,06 1,73 
100.  117 133 0,45 0,25 434.  122 55 0,95 0,43 768.  132 75 0,27 0,64 
101.  191 74 0,77 1,21 435.  190 123 0,35 1,22 769.  41 75 0,73 1,83 
102.  140 136 0,35 0,74 436.  81 123 0,91 0,62 770.  37 69 0,44 1,90 
103.  29 31 0,79 1,45 437.  144 113 0,61 1,00 771.  164 111 0,46 0,84 
104.  73 90 0,70 0,51 438.  75 55 0,62 0,62 772.  131 129 0,16 0,48 
105.  151 15 0,51 0,58 439.  125 60 0,09 1,49 773.  61 88 0,89 1,96 
106.  169 112 0,15 1,10 440.  73 80 0,26 1,34 774.  25 58 0,80 0,98 
107.  43 69 0,11 1,52 441.  76 117 0,61 1,38 775.  135 64 0,06 0,71 
108.  166 31 0,07 1,57 442.  109 41 0,73 0,35 776.  93 125 0,69 1,20 
109.  33 86 0,65 1,72 443.  173 80 0,15 1,20 777.  93 122 0,36 1,78 
110.  32 89 0,18 1,54 444.  29 73 0,38 0,51 778.  187 53 0,87 1,01 
111.  153 137 0,94 0,58 445.  145 149 0,78 1,12 779.  140 126 0,07 1,57 
112.  66 69 0,33 1,76 446.  34 56 0,45 0,93 780.  177 11 0,77 1,27 
113.  57 145 0,75 1,59 447.  89 133 0,28 1,17 781.  41 82 0,39 0,52 
114.  147 85 0,26 0,25 448.  53 115 0,13 1,81 782.  69 61 0,32 0,60 
115.  192 119 0,65 0,41 449.  138 98 0,58 1,18 783.  124 14 0,05 0,83 
116.  154 63 0,72 1,17 450.  41 8 0,36 1,74 784.  147 91 0,40 1,20 
117.  93 106 0,88 1,22 451.  164 98 0,68 0,49 785.  157 57 0,06 1,86 
118.  141 63 0,93 1,60 452.  156 137 0,25 1,41 786.  82 147 0,75 1,12 
119.  161 59 0,49 0,55 453.  41 30 0,44 0,55 787.  76 148 0,64 0,85 
120.  184 10 0,69 0,80 454.  112 33 0,30 1,46 788.  35 33 0,32 1,62 
121.  196 123 0,67 1,68 455.  73 28 0,70 0,46 789.  75 104 0,10 0,88 
122.  146 77 0,30 0,55 456.  63 125 0,15 1,40 790.  54 19 0,93 0,92 
123.  90 71 0,40 0,25 457.  176 16 0,44 1,50 791.  113 40 0,32 1,97 
124.  31 126 0,44 1,45 458.  25 80 0,75 0,29 792.  165 108 0,20 1,56 
125.  130 133 0,94 1,51 459.  88 129 0,79 0,80 793.  128 144 0,90 1,62 
126.  148 139 0,05 0,68 460.  183 70 0,67 0,37 794.  129 107 0,48 1,11 
127.  126 43 0,94 0,45 461.  116 25 0,30 1,20 795.  132 23 0,76 1,58 
128.  192 14 0,08 0,51 462.  157 129 0,39 0,28 796.  113 123 0,55 0,89 
129.  114 43 0,35 1,96 463.  130 82 0,21 1,64 797.  49 82 0,67 1,12 
130.  48 69 0,50 1,07 464.  174 138 0,48 1,51 798.  75 111 0,35 1,32 
131.  179 109 0,64 1,06 465.  193 107 0,32 0,31 799.  37 149 0,20 1,58 
132.  87 93 0,17 0,31 466.  88 33 0,84 0,42 800.  63 66 0,49 0,60 
133.  53 7 0,33 0,34 467.  190 102 0,57 1,10 801.  163 31 0,38 1,93 
134.  132 115 0,79 0,45 468.  197 39 0,13 0,81 802.  142 45 0,75 1,14 
135.  149 123 0,72 1,73 469.  70 11 0,89 1,14 803.  183 122 0,44 0,81 
136.  132 63 0,29 1,32 470.  174 103 0,93 0,74 804.  138 139 0,14 1,71 
137.  184 21 0,30 1,85 471.  99 28 0,45 0,38 805.  45 147 0,70 1,25 
138.  179 72 0,27 0,83 472.  173 59 0,39 0,24 806.  66 107 0,19 0,37 
139.  88 35 0,18 1,28 473.  183 121 0,80 0,50 807.  136 125 0,37 1,68 
140.  76 126 0,25 1,06 474.  59 116 0,15 0,96 808.  92 129 0,16 1,12 
141.  82 67 0,61 0,24 475.  159 49 0,56 1,50 809.  159 14 0,46 0,26 
142.  65 57 0,33 1,27 476.  105 47 0,65 1,97 810.  130 59 0,84 1,79 
143.  195 64 0,90 1,42 477.  182 82 0,16 0,92 811.  184 22 0,22 1,65 
144.  67 94 0,37 0,45 478.  34 62 0,18 0,29 812.  107 73 0,28 1,90 
145.  38 124 0,78 0,90 479.  74 7 0,78 1,91 813.  99 19 0,18 0,21 
146.  109 141 0,32 0,80 480.  36 129 0,10 1,43 814.  166 25 0,70 1,63 
147.  146 130 0,83 0,21 481.  52 7 0,75 0,94 815.  85 90 0,39 0,67 
148.  36 16 0,11 0,33 482.  104 119 0,94 1,68 816.  132 13 0,79 1,79 
149.  90 116 0,28 0,23 483.  78 83 0,69 1,83 817.  175 12 0,31 0,82 
150.  33 120 0,59 1,32 484.  177 20 0,90 1,62 818.  75 79 0,19 0,38 
151.  119 29 0,31 1,93 485.  150 104 0,58 1,81 819.  68 114 0,62 0,96 
152.  136 88 0,54 1,68 486.  37 131 0,74 0,49 820.  188 107 0,55 1,33 
153.  117 139 0,64 0,68 487.  95 28 0,90 1,09 821.  99 130 0,07 0,80 
154.  99 53 0,14 1,15 488.  142 116 0,78 0,37 822.  184 44 0,15 1,85 
155.  137 20 0,13 0,32 489.  149 103 0,87 1,25 823.  42 32 0,67 1,19 
156.  45 57 0,73 0,30 490.  94 148 0,34 0,91 824.  47 26 0,83 0,67 
157.  61 72 0,95 0,32 491.  175 58 0,56 0,77 825.  108 89 0,81 0,65 
158.  105 72 0,63 0,97 492.  191 47 0,92 0,75 826.  136 132 0,71 1,48 
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159.  104 82 0,44 1,76 493.  127 150 0,73 0,47 827.  115 140 0,15 0,78 
160.  92 91 0,87 1,97 494.  79 80 0,60 1,91 828.  158 75 0,94 1,78 
161.  99 31 0,06 1,40 495.  195 126 0,72 1,25 829.  78 147 0,47 1,91 
162.  197 138 0,17 1,81 496.  44 105 0,42 0,98 830.  39 36 0,44 0,81 
163.  114 118 0,17 0,45 497.  189 40 0,09 0,80 831.  188 142 0,28 1,40 
164.  92 11 0,47 0,70 498.  113 51 0,90 1,81 832.  115 33 0,14 0,34 
165.  169 147 0,39 1,90 499.  165 92 0,79 0,99 833.  169 27 0,86 1,91 
166.  26 37 0,95 1,71 500.  124 7 0,22 0,86 834.  105 116 0,36 1,37 
167.  78 92 0,23 0,69 501.  85 140 0,86 0,90 835.  62 92 0,48 1,09 
168.  145 39 0,29 1,72 502.  109 110 0,57 1,87 836.  112 35 0,86 1,84 
169.  97 16 0,35 1,70 503.  45 64 0,11 0,55 837.  91 62 0,84 1,83 
170.  103 46 0,89 1,54 504.  105 22 0,47 0,38 838.  73 128 0,76 0,92 
171.  58 36 0,94 1,18 505.  49 73 0,85 0,87 839.  63 69 0,10 0,81 
172.  30 63 0,90 0,92 506.  175 97 0,78 1,47 840.  178 54 0,29 0,71 
173.  51 136 0,90 0,53 507.  169 92 0,38 0,60 841.  46 118 0,25 1,92 
174.  77 143 0,05 1,65 508.  167 91 0,49 0,41 842.  41 127 0,36 0,33 
175.  129 40 0,26 0,55 509.  179 143 0,79 1,25 843.  92 115 0,68 1,00 
176.  177 37 0,26 1,60 510.  141 72 0,30 0,26 844.  196 57 0,30 1,54 
177.  34 124 0,45 1,52 511.  52 106 0,21 1,07 845.  98 71 0,07 1,94 
178.  196 98 0,90 0,95 512.  27 89 0,07 0,82 846.  33 42 0,74 0,37 
179.  122 112 0,50 0,46 513.  146 50 0,18 1,86 847.  170 74 0,23 1,13 
180.  94 67 0,24 0,68 514.  60 97 0,85 0,56 848.  65 66 0,42 0,29 
181.  33 42 0,46 0,88 515.  127 68 0,12 0,69 849.  134 87 0,73 0,89 
182.  165 142 0,40 1,56 516.  134 109 0,91 0,34 850.  77 85 0,12 1,39 
183.  26 45 0,19 1,41 517.  87 9 0,85 0,68 851.  131 28 0,07 1,02 
184.  82 11 0,10 1,75 518.  132 83 0,06 1,35 852.  142 73 0,53 0,93 
185.  118 92 0,81 0,24 519.  122 99 0,47 1,09 853.  86 73 0,21 1,63 
186.  183 83 0,45 1,27 520.  177 9 0,73 0,94 854.  62 65 0,29 1,80 
187.  36 20 0,80 0,40 521.  58 78 0,14 1,58 855.  50 18 0,62 1,08 
188.  122 150 0,76 1,41 522.  130 128 0,79 0,27 856.  48 146 0,47 1,31 
189.  146 58 0,48 1,55 523.  131 29 0,45 0,58 857.  183 113 0,55 1,84 
190.  115 52 0,64 1,56 524.  98 22 0,13 0,34 858.  105 89 0,56 1,95 
191.  59 120 0,16 0,69 525.  162 64 0,31 1,93 859.  110 80 0,91 1,49 
192.  90 97 0,94 1,32 526.  109 36 0,26 0,25 860.  191 15 0,35 0,31 
193.  144 115 0,86 1,06 527.  124 117 0,81 0,54 861.  68 43 0,77 0,31 
194.  193 83 0,89 0,88 528.  186 43 0,33 1,70 862.  82 52 0,71 1,18 
195.  66 110 0,57 1,08 529.  97 150 0,11 1,12 863.  193 52 0,85 1,64 
196.  40 15 0,22 0,70 530.  27 66 0,71 1,24 864.  64 99 0,09 0,46 
197.  131 65 0,90 1,23 531.  27 36 0,88 1,30 865.  120 72 0,92 1,51 
198.  30 32 0,72 0,72 532.  68 66 0,36 1,06 866.  170 59 0,24 0,75 
199.  83 110 0,68 0,54 533.  69 14 0,81 1,64 867.  112 48 0,46 0,52 
200.  120 6 0,54 1,82 534.  123 20 0,24 0,60 868.  87 82 0,59 1,10 
201.  181 141 0,56 1,63 535.  133 79 0,30 1,64 869.  113 55 0,76 0,91 
202.  125 106 0,67 1,89 536.  131 83 0,22 1,65 870.  162 114 0,66 1,32 
203.  105 95 0,42 0,89 537.  163 66 0,59 1,48 871.  179 91 0,66 0,32 
204.  161 124 0,92 0,83 538.  62 32 0,34 1,77 872.  178 139 0,30 1,07 
205.  170 84 0,56 0,42 539.  105 53 0,15 1,53 873.  121 139 0,91 1,42 
206.  20 109 0,86 1,84 540.  147 14 0,73 1,49 874.  137 28 0,26 0,23 
207.  174 14 0,38 0,21 541.  176 149 0,11 0,31 875.  22 17 0,68 1,73 
208.  72 70 0,63 1,13 542.  162 19 0,35 1,90 876.  32 115 0,46 1,62 
209.  58 60 0,63 1,49 543.  24 21 0,50 0,60 877.  191 148 0,18 1,29 
210.  102 56 0,21 0,96 544.  47 116 0,81 1,58 878.  63 48 0,08 0,26 
211.  165 107 0,21 1,64 545.  153 89 0,84 1,56 879.  151 79 0,54 0,75 
212.  140 131 0,84 0,79 546.  106 97 0,61 0,25 880.  159 46 0,40 0,86 
213.  46 106 0,21 0,43 547.  52 87 0,25 2,00 881.  159 117 0,06 1,66 
214.  137 68 0,25 0,93 548.  117 114 0,60 1,01 882.  108 141 0,91 1,30 
215.  116 55 0,47 1,51 549.  174 70 0,06 0,56 883.  192 93 0,24 0,76 
216.  61 117 0,15 1,96 550.  36 52 0,52 0,60 884.  115 111 0,44 1,19 
217.  31 124 0,08 0,95 551.  70 76 0,82 1,72 885.  159 62 0,21 0,81 
218.  119 34 0,06 0,37 552.  45 118 0,26 1,20 886.  22 105 0,39 1,30 
219.  35 46 0,28 0,65 553.  147 5 0,45 1,56 887.  58 147 0,67 1,91 
220.  53 93 0,56 0,73 554.  26 50 0,48 0,60 888.  189 110 0,31 0,49 
221.  143 18 0,81 0,71 555.  61 116 0,45 0,41 889.  191 66 0,89 0,99 
222.  106 85 0,83 1,27 556.  109 73 0,66 1,59 890.  55 19 0,71 0,52 
223.  34 46 0,06 1,04 557.  125 130 0,78 0,71 891.  61 101 0,59 1,11 
224.  171 126 0,91 1,45 558.  144 123 0,41 0,81 892.  190 26 0,24 1,04 
225.  66 12 0,71 1,14 559.  83 17 0,43 1,58 893.  106 112 0,47 1,44 
226.  178 42 0,74 1,15 560.  80 40 0,45 0,82 894.  178 141 0,38 1,09 
227.  97 80 0,09 0,62 561.  146 91 0,33 1,20 895.  116 79 0,53 0,35 
228.  118 79 0,43 1,32 562.  91 91 0,69 0,53 896.  130 14 0,11 1,96 
229.  174 146 0,49 0,25 563.  112 75 0,87 0,87 897.  166 10 0,18 0,54 
230.  151 73 0,59 1,06 564.  115 102 0,25 0,29 898.  148 147 0,11 0,88 
231.  181 118 0,46 0,32 565.  33 134 0,07 0,60 899.  167 75 0,52 1,62 
232.  161 20 0,34 1,84 566.  80 89 0,71 1,33 900.  114 139 0,92 1,73 
233.  105 137 0,60 0,83 567.  65 39 0,43 1,91 901.  89 9 0,49 1,31 
234.  184 16 0,82 1,93 568.  193 77 0,60 1,72 902.  88 143 0,83 1,82 
235.  72 149 0,86 1,47 569.  98 55 0,18 0,90 903.  26 54 0,87 0,70 
236.  58 129 0,16 1,06 570.  87 135 0,94 1,69 904.  85 18 0,19 0,32 
237.  195 64 0,90 1,46 571.  102 84 0,36 1,50 905.  112 123 0,86 1,10 
238.  188 46 0,69 0,57 572.  131 57 0,57 1,77 906.  141 59 0,43 0,98 
239.  28 112 0,57 0,58 573.  84 109 0,12 0,93 907.  168 88 0,44 1,88 
240.  48 64 0,34 0,28 574.  181 64 0,75 0,78 908.  199 96 0,32 1,12 
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241.  115 111 0,39 1,98 575.  81 141 0,08 1,32 909.  147 21 0,23 1,00 
242.  90 7 0,28 0,27 576.  134 97 0,95 0,80 910.  148 49 0,68 0,73 
243.  172 139 0,07 0,69 577.  134 65 0,87 1,71 911.  106 82 0,31 0,47 
244.  109 78 0,59 0,44 578.  165 91 0,42 0,20 912.  159 132 0,14 1,94 
245.  148 56 0,36 1,04 579.  95 10 0,67 1,54 913.  80 85 0,21 1,97 
246.  167 91 0,43 1,37 580.  27 52 0,72 1,74 914.  79 71 0,57 0,96 
247.  157 67 0,69 0,20 581.  91 14 0,56 1,52 915.  172 136 0,62 1,68 
248.  106 134 0,83 1,34 582.  174 128 0,14 1,48 916.  77 51 0,18 0,23 
249.  191 29 0,09 0,40 583.  49 84 0,37 1,08 917.  121 38 0,94 1,00 
250.  166 76 0,25 0,75 584.  24 108 0,68 1,96 918.  161 95 0,15 1,06 
251.  89 115 0,74 0,51 585.  165 53 0,31 1,01 919.  149 36 0,58 0,50 
252.  94 35 0,79 1,01 586.  100 124 0,40 1,34 920.  24 40 0,60 0,89 
253.  108 98 0,84 1,17 587.  156 62 0,23 1,13 921.  114 51 0,15 1,27 
254.  189 10 0,86 1,89 588.  134 37 0,58 1,07 922.  100 65 0,28 0,57 
255.  177 118 0,69 1,37 589.  192 71 0,47 1,28 923.  185 126 0,36 0,43 
256.  148 19 0,16 0,25 590.  200 139 0,86 1,85 924.  92 59 0,62 1,61 
257.  103 37 0,18 1,79 591.  97 29 0,67 1,46 925.  63 31 0,29 1,25 
258.  198 42 0,59 0,85 592.  45 99 0,20 1,79 926.  60 143 0,08 0,49 
259.  111 57 0,62 0,56 593.  177 8 0,14 0,59 927.  92 56 0,33 1,97 
260.  45 94 0,34 1,50 594.  188 111 0,26 0,71 928.  44 57 0,17 0,82 
261.  41 98 0,20 0,81 595.  187 30 0,50 1,40 929.  108 137 0,72 1,76 
262.  163 39 0,07 1,55 596.  137 29 0,57 0,88 930.  162 64 0,16 1,35 
263.  117 122 0,10 1,64 597.  174 113 0,25 1,54 931.  180 121 0,19 1,84 
264.  108 9 0,69 1,72 598.  61 144 0,84 0,38 932.  144 100 0,60 1,45 
265.  47 57 0,86 0,69 599.  66 102 0,65 1,69 933.  77 109 0,17 1,48 
266.  120 14 0,28 0,53 600.  151 101 0,82 1,48 934.  183 149 0,88 0,21 
267.  27 9 0,95 0,24 601.  25 142 0,65 1,36 935.  96 82 0,51 0,33 
268.  172 26 0,16 1,21 602.  132 142 0,45 1,26 936.  95 130 0,43 0,73 
269.  185 56 0,14 0,33 603.  169 100 0,89 1,75 937.  144 85 0,93 0,86 
270.  170 46 0,12 1,04 604.  169 129 0,48 1,76 938.  119 121 0,87 1,03 
271.  21 43 0,66 1,83 605.  42 56 0,29 1,35 939.  62 18 0,88 0,90 
272.  141 137 0,91 0,33 606.  169 117 0,71 1,37 940.  49 95 0,59 1,77 
273.  197 77 0,71 1,72 607.  82 70 0,39 0,23 941.  166 49 0,79 1,19 
274.  145 86 0,24 1,17 608.  146 19 0,14 0,94 942.  33 112 0,26 0,30 
275.  67 117 0,36 1,96 609.  67 88 0,95 1,75 943.  137 104 0,25 0,87 
276.  164 27 0,41 1,37 610.  193 132 0,34 1,05 944.  94 34 0,37 1,09 
277.  96 76 0,75 0,85 611.  141 141 0,43 0,30 945.  147 110 0,19 1,69 
278.  74 114 0,09 1,06 612.  132 39 0,37 1,47 946.  131 18 0,18 0,56 
279.  62 138 0,25 0,40 613.  125 8 0,84 1,98 947.  187 19 0,81 1,22 
280.  186 112 0,87 1,69 614.  177 101 0,24 1,79 948.  46 62 0,77 1,81 
281.  110 144 0,22 1,20 615.  120 97 0,95 1,91 949.  196 68 0,29 0,40 
282.  33 44 0,25 1,30 616.  136 30 0,59 0,70 950.  146 95 0,85 1,57 
283.  20 139 0,92 0,73 617.  81 44 0,35 0,30 951.  154 144 0,85 0,52 
284.  162 90 0,55 0,76 618.  124 77 0,21 1,31 952.  103 41 0,82 1,61 
285.  167 115 0,65 1,21 619.  135 116 0,13 0,83 953.  47 30 0,73 1,51 
286.  153 39 0,80 1,79 620.  22 33 0,66 1,75 954.  38 42 0,85 1,89 
287.  197 129 0,08 0,62 621.  110 47 0,16 1,44 955.  58 33 0,89 1,78 
288.  173 46 0,13 1,95 622.  171 51 0,87 1,81 956.  200 128 0,42 1,64 
289.  37 121 0,18 1,78 623.  118 30 0,45 0,32 957.  197 27 0,93 0,49 
290.  143 54 0,65 1,92 624.  121 117 0,11 1,42 958.  95 25 0,94 0,51 
291.  45 105 0,10 0,33 625.  156 122 0,53 0,30 959.  56 85 0,24 0,60 
292.  155 65 0,35 1,72 626.  98 100 0,19 0,49 960.  117 17 0,37 0,23 
293.  97 72 0,84 1,82 627.  166 98 0,61 0,33 961.  40 68 0,14 1,78 
294.  149 126 0,50 1,22 628.  160 44 0,12 0,44 962.  102 133 0,17 1,86 
295.  143 122 0,24 1,97 629.  50 124 0,12 0,55 963.  30 77 0,64 0,92 
296.  89 9 0,52 0,98 630.  59 117 0,60 1,42 964.  59 45 0,71 0,53 
297.  177 142 0,94 0,38 631.  130 147 0,57 0,85 965.  32 131 0,68 1,19 
298.  190 81 0,70 0,45 632.  114 113 0,91 1,19 966.  140 84 0,32 1,94 
299.  60 21 0,91 0,94 633.  69 137 0,92 1,86 967.  111 44 0,10 0,92 
300.  74 15 0,52 1,47 634.  93 43 0,68 0,91 968.  103 58 0,82 0,50 
301.  147 56 0,42 1,79 635.  172 62 0,84 1,49 969.  58 69 0,59 1,21 
302.  105 113 0,44 1,42 636.  55 36 0,27 1,02 970.  38 82 0,26 0,85 
303.  154 47 0,43 1,78 637.  59 29 0,86 1,42 971.  85 122 0,23 0,57 
304.  151 105 0,92 1,84 638.  41 85 0,53 0,61 972.  150 53 0,50 0,27 
305.  30 133 0,44 0,53 639.  35 147 0,54 1,37 973.  100 114 0,55 1,68 
306.  140 76 0,64 1,32 640.  103 27 0,05 0,74 974.  92 57 0,52 1,81 
307.  37 46 0,42 0,83 641.  120 94 0,21 1,61 975.  36 37 0,65 0,46 
308.  34 75 0,10 1,88 642.  119 101 0,08 0,47 976.  170 91 0,93 1,52 
309.  33 146 0,16 1,48 643.  97 38 0,07 0,94 977.  180 65 0,94 1,61 
310.  151 51 0,78 0,80 644.  181 101 0,25 0,78 978.  79 100 0,63 0,73 
311.  48 76 0,77 0,44 645.  128 113 0,25 1,29 979.  42 136 0,22 0,57 
312.  171 101 0,85 0,72 646.  113 54 0,82 0,34 980.  151 83 0,72 0,60 
313.  72 13 0,48 0,81 647.  101 134 0,80 1,71 981.  149 69 0,88 0,81 
314.  164 10 0,42 0,58 648.  176 96 0,23 1,10 982.  169 8 0,19 1,62 
315.  79 32 0,36 1,25 649.  140 19 0,70 0,54 983.  95 14 0,68 0,62 
316.  94 99 0,53 1,47 650.  90 47 0,42 1,60 984.  43 38 0,76 1,57 
317.  45 26 0,47 1,86 651.  181 12 0,34 1,03 985.  23 46 0,14 1,76 
318.  46 41 0,63 1,68 652.  55 128 0,25 1,31 986.  55 131 0,61 1,16 
319.  133 110 0,57 0,60 653.  170 145 0,87 0,33 987.  167 113 0,15 0,65 
320.  182 9 0,25 1,18 654.  161 117 0,72 0,43 988.  147 53 0,18 0,26 
321.  38 106 0,49 1,17 655.  150 7 0,40 1,07 989.  119 32 0,10 1,58 
322.  81 120 0,29 1,20 656.  124 60 0,09 0,93 990.  173 127 0,27 0,99 
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323.  70 26 0,61 0,44 657.  49 100 0,32 0,70 991.  21 62 0,61 1,22 
324.  56 36 0,77 1,80 658.  179 38 0,71 1,26 992.  176 71 0,67 1,14 
325.  163 94 0,56 1,24 659.  50 109 0,82 0,60 993.  165 24 0,06 0,61 
326.  92 63 0,78 0,22 660.  49 35 0,68 0,50 994.  136 147 0,34 0,43 
327.  104 56 0,78 1,63 661.  30 13 0,69 1,63 995.  160 141 0,85 1,22 
328.  179 53 0,73 1,76 662.  151 144 0,07 1,51 996.  189 119 0,36 1,77 
329.  128 32 0,54 1,67 663.  28 10 0,65 1,48 997.  188 16 0,42 0,95 
330.  151 67 0,70 0,48 664.  132 139 0,91 0,82 998.  194 104 0,38 0,32 
331.  59 76 0,80 1,09 665.  98 35 0,19 0,53 999.  87 27 0,06 0,60 
332.  99 46 0,75 0,79 666.  49 97 0,78 0,60 1000.  84 87 0,20 0,60 
333.  106 89 0,39 1,39 667.  134 136 0,88 1,00 1001.  --- --- --- --- 
334.  174 32 0,46 1,22 668.  27 110 0,84 0,30 1002.  --- --- --- --- 



 

UNIVERSITY OF 
PELOPONNESE 

“Model-driven Software Architectural Design based on Software 
Evolution Modeling and Simulation and Design Pattern Analysis 
for Design Space Exploration Towards Maintainability” 

 

PhD Thesis  204 

Appendix C: Variability of Sample Instances 

This appendix presents the statistical parameters of the frequency distributions generated 
by single and repeated (Monte Carlo) simulations per sample instance of the CVP vs CIBI 
general design problem. The parameters of each sample instance have been pooled by the 
randomly generated sample in Appendix B. The conducted simulations are referred to 7th 
fully stochastic simulation state in Table 6-4. The focus is on the variability of the 
simulations per sample insurance as expressed by the dimensionless parameter of 
coefficient of variation (CV). In general, a normal distribution has skewness 0 and kurtosis 
3. Negative skewness represents left skewed distributions and positive skewness 
represents right skewed distributions. An overall (graphical) assessment of the statistical 
parameters of the ΣλYi

repeated and Yi variables concerning all the sample instances (i:[1, …, 
1000]) is presented in subsection 6.4.9.4. 

 

Frequency distributions of the total effort assessments (ΣλYi
repeated) per sample instance 

In the flowing table, each row of the table represents the corresponding sample instance in 
Appendix B. In each row of the table (for each sample instance i), several statistical 
parameters of the frequency distribution of the total effort assessments ΣλYi (per design 
alternative) for several repeated (Monte Carlo) simulations are presented. Parameter μ 
represents the mean value, σ is the standard deviation, CV=σ/μ is the coefficient of 
variation, ‘skew’ is the skewness, and ‘kurt’ is the kurtosis of each frequency distribution. 
Since the total effort outcome (ΣλYi) is the sum of several (λ=200) intermediate effort 
assessments (Yi) per applied scenario, its frequency distribution follows (or resembles) a 
normal distribution pattern for all the sample instances. Thus, its skewness for all sample 
instances lies around 0 [-1.09, …, 1.26] and the kurtosis around 3 [1.90, …, 6.06], as 
discussed in subsection 6.4.9.3. However, the CV parameter considerably variates per 
sample instance between 0.03 and 0.51, while ≈60% of instances have a CV less than 0.10, 
≈90% of instances have a CV less than 0.20, and ≈3% of instances have a CV more than 
0.30. 

Statistical Parameters of Total Effort of Repeated (Monte Carlo) Simulations per Sample 
Instance 

inst. Distribution of CVP total effort (λ=200) Distribution of CIBI total effort (λ=200) 
n. μ σ CV skew kurt μ σ CV skew kurt 
1.  32361 2275 0,07 -0,07 2,97 34659 6280 0,18 -0,06 2,66 
2.  25635 3623 0,14 -0,46 3,01 27037 1655 0,06 -0,29 2,67 
3.  42955 3308 0,08 -0,05 3,00 55596 4024 0,07 -0,41 2,89 
4.  17914 4713 0,26 0,39 2,27 25048 2079 0,08 0,23 2,58 
5.  37234 1422 0,04 0,92 3,87 22943 3424 0,15 0,36 2,27 
6.  9004 2695 0,30 0,33 2,40 9193 4433 0,48 0,49 2,61 
7.  9404 1756 0,19 0,04 2,51 14275 1254 0,09 0,19 2,87 
8.  32613 3953 0,12 0,07 2,54 51115 2397 0,05 0,43 3,37 
9.  21800 1549 0,07 0,46 2,74 40026 1666 0,04 -0,26 3,32 
10.  12591 2793 0,22 -0,31 2,63 16638 4394 0,26 -0,09 2,72 
11.  27277 1371 0,05 -0,31 3,27 24459 3561 0,15 0,03 2,64 
12.  23992 3958 0,16 -0,16 2,65 20953 1966 0,09 -0,28 2,80 
13.  29405 3849 0,13 0,69 2,60 50824 1785 0,04 0,01 2,74 
14.  41375 3528 0,09 0,04 2,07 70142 3383 0,05 -0,38 3,13 
15.  20200 2225 0,11 0,04 2,35 31465 1460 0,05 0,73 3,44 
16.  35972 2440 0,07 0,41 2,77 55764 3151 0,06 -0,64 3,81 
17.  9453 1426 0,15 -0,10 2,33 12153 1230 0,10 0,11 3,35 
18.  51209 1639 0,03 0,35 2,67 29554 3663 0,12 0,62 3,07 
19.  33606 4164 0,12 -0,41 3,06 37773 1626 0,04 -0,09 2,50 
20.  52616 2543 0,05 -0,13 3,78 43784 4167 0,10 -0,07 3,00 
21.  34982 2483 0,07 -0,53 3,01 29929 1974 0,07 0,00 3,46 
22.  10933 3793 0,35 0,40 2,41 12354 6255 0,51 0,35 2,32 
23.  29734 2161 0,07 0,16 2,64 53387 2583 0,05 -0,36 3,58 
24.  32478 2204 0,07 0,38 2,74 24561 1728 0,07 -0,19 2,64 
25.  33986 1712 0,05 -0,04 2,45 51640 3939 0,08 -0,18 2,86 
26.  35445 2093 0,06 -0,06 2,76 31470 5727 0,18 -0,15 2,63 
27.  27338 3245 0,12 -0,24 2,30 41147 1745 0,04 0,27 2,73 
28.  24733 1556 0,06 -0,38 2,93 39601 2501 0,06 -0,66 3,32 
29.  12718 2838 0,22 0,54 2,35 10632 5040 0,47 0,70 2,59 
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30.  21953 1598 0,07 -0,05 2,43 38655 1891 0,05 -0,46 3,03 
31.  15288 1338 0,09 -0,14 2,63 10545 2155 0,20 -0,01 2,13 
32.  41150 2301 0,06 0,18 2,70 48720 3743 0,08 -0,27 3,41 
33.  27034 1431 0,05 0,10 2,39 16393 1713 0,10 0,01 2,99 
34.  31353 1592 0,05 -0,37 4,00 38949 3364 0,09 -0,12 2,57 
35.  27633 2030 0,07 -0,18 3,09 47384 5386 0,11 -0,06 2,14 
36.  46412 2127 0,05 -0,14 3,03 54402 5187 0,10 0,13 2,53 
37.  22366 3526 0,16 0,13 2,64 21021 7112 0,34 0,28 2,62 
38.  43294 2163 0,05 -0,12 2,95 52005 4353 0,08 -0,66 4,28 
39.  36763 4633 0,13 -0,22 3,38 33430 1865 0,06 0,04 2,90 
40.  48923 2648 0,05 0,09 2,19 43135 4315 0,10 -0,04 2,51 
41.  18439 4099 0,22 0,08 2,62 22901 1931 0,08 0,26 2,53 
42.  38863 3352 0,09 0,10 2,37 46329 2651 0,06 -0,08 2,51 
43.  49004 1988 0,04 0,26 4,13 48099 5874 0,12 0,12 2,98 
44.  18491 1961 0,11 -0,21 3,00 18924 3900 0,21 -0,11 2,86 
45.  33370 1622 0,05 0,44 2,94 61000 3507 0,06 -0,38 3,14 
46.  51410 2089 0,04 0,33 3,28 30720 3252 0,11 0,56 3,12 
47.  43046 1662 0,04 0,38 3,29 27088 4506 0,17 0,51 3,14 
48.  41513 4074 0,10 -0,03 2,78 28116 1461 0,05 0,03 2,86 
49.  34209 1959 0,06 0,14 2,98 27476 2310 0,08 -0,22 2,69 
50.  21054 3254 0,15 -0,24 2,72 22556 1553 0,07 -0,59 3,17 
51.  30920 5155 0,17 -0,14 2,57 26262 2211 0,08 -0,49 2,97 
52.  45649 2652 0,06 -0,19 2,97 49084 4029 0,08 0,14 2,42 
53.  54263 1949 0,04 -0,19 2,99 31418 4120 0,13 0,55 2,26 
54.  27243 6452 0,24 0,21 2,42 22711 3109 0,14 -0,04 2,54 
55.  11152 5094 0,46 0,92 4,58 12269 2923 0,24 0,85 4,37 
56.  49186 2342 0,05 0,05 3,13 45330 4372 0,10 0,07 2,77 
57.  37124 4304 0,12 0,15 2,35 31934 1615 0,05 -0,13 2,94 
58.  46847 3761 0,08 0,02 2,56 33666 1575 0,05 0,28 2,75 
59.  34474 1858 0,05 0,03 2,96 63657 5232 0,08 -0,19 2,27 
60.  50735 3276 0,06 -0,17 2,84 31495 2093 0,07 0,18 2,89 
61.  33502 1335 0,04 -0,19 2,75 64136 3859 0,06 -0,19 2,57 
62.  27902 4005 0,14 -0,42 3,22 29819 1461 0,05 0,06 3,75 
63.  35418 4857 0,14 -0,01 3,10 35738 1514 0,04 0,33 2,63 
64.  45714 2366 0,05 -0,32 2,90 32589 2635 0,08 -0,28 3,11 
65.  29790 4765 0,16 0,20 2,78 26557 1885 0,07 -0,17 2,34 
66.  42815 2618 0,06 -0,11 2,75 43437 3223 0,07 -0,06 2,75 
67.  20495 1377 0,07 -0,09 3,10 23288 1816 0,08 -0,60 3,87 
68.  46455 2514 0,05 0,10 2,32 29568 2156 0,07 -0,15 3,13 
69.  39887 3373 0,08 -0,11 4,08 39734 2434 0,06 -0,06 2,81 
70.  32338 1668 0,05 0,22 2,69 22953 3301 0,14 -0,25 3,09 
71.  31367 2031 0,06 0,10 2,88 28126 5091 0,18 -0,30 2,92 
72.  40867 2175 0,05 -0,23 2,76 35490 6581 0,19 -0,06 2,53 
73.  13244 3724 0,28 0,67 2,69 12740 6442 0,51 0,80 3,00 
74.  15260 2940 0,19 0,02 2,68 19553 5529 0,28 0,28 2,82 
75.  27549 2746 0,10 0,01 2,32 35037 6444 0,18 0,07 2,66 
76.  37476 2226 0,06 0,18 2,10 23063 5270 0,23 0,63 2,31 
77.  15595 4839 0,31 0,59 2,97 21056 2258 0,11 0,41 3,21 
78.  41184 3733 0,09 0,43 3,53 53489 2420 0,05 0,09 2,48 
79.  50475 2422 0,05 0,07 3,06 33119 3474 0,10 -0,01 2,65 
80.  37363 2462 0,07 0,04 3,63 29708 2151 0,07 -0,05 2,86 
81.  15053 2166 0,14 0,44 2,36 25374 1321 0,05 0,43 3,24 
82.  43752 3205 0,07 -0,39 3,41 38030 2393 0,06 0,24 2,34 
83.  31551 2603 0,08 -0,13 3,03 43987 6739 0,15 -0,22 2,99 
84.  11813 2168 0,18 0,15 2,33 17876 1302 0,07 0,28 2,78 
85.  40807 2256 0,06 0,20 2,86 27135 2196 0,08 -0,50 3,27 
86.  27619 1556 0,06 0,02 2,77 24641 4243 0,17 0,22 2,97 
87.  22622 1391 0,06 -0,37 3,25 17381 1480 0,09 -0,15 3,19 
88.  37074 2374 0,06 0,18 2,20 67728 3195 0,05 -0,18 3,06 
89.  29476 1343 0,05 0,43 2,90 56240 3442 0,06 0,07 2,82 
90.  35135 1855 0,05 0,01 2,71 55513 4263 0,08 -0,09 2,80 
91.  34540 3824 0,11 0,33 2,31 59684 2249 0,04 0,16 2,90 
92.  35672 2655 0,07 0,67 6,39 37734 2503 0,07 -0,13 2,92 
93.  31227 1544 0,05 -0,32 2,50 51782 4373 0,08 -0,16 3,13 
94.  18885 2394 0,13 0,46 2,69 32812 1477 0,05 0,75 3,78 
95.  23736 1449 0,06 0,31 3,11 27774 2933 0,11 -0,48 3,66 
96.  27770 2163 0,08 -0,66 4,24 30743 5277 0,17 -0,52 3,75 
97.  41751 1883 0,05 0,14 2,72 31106 4068 0,13 -0,22 2,69 
98.  36028 2034 0,06 0,21 2,61 53293 6028 0,11 -0,06 2,60 
99.  33925 2385 0,07 0,01 3,25 39204 6030 0,15 0,10 2,86 
100.  43452 3650 0,08 -0,29 2,62 43135 2630 0,06 0,16 2,73 
101.  35769 2506 0,07 0,07 2,59 33612 6886 0,20 0,17 2,55 
102.  42749 3596 0,08 -0,10 2,66 51484 2557 0,05 -0,29 3,26 
103.  15930 1488 0,09 0,30 2,98 12288 2174 0,18 0,00 3,07 
104.  34590 1757 0,05 0,30 2,88 26978 3049 0,11 -0,05 2,77 
105.  24756 2687 0,11 -1,04 5,80 38000 5736 0,15 -0,70 3,93 
106.  37715 3249 0,09 0,10 2,34 63179 3099 0,05 0,01 2,99 
107.  13648 3529 0,26 0,28 2,28 19439 1916 0,10 0,32 2,30 
108.  32136 1343 0,04 0,11 3,59 61578 3179 0,05 -0,32 3,31 
109.  31157 2141 0,07 0,12 3,32 22233 1327 0,06 -0,53 3,80 
110.  16040 4119 0,26 0,19 2,19 17918 2168 0,12 -0,15 2,79 
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111.  53126 1771 0,03 0,36 3,64 30429 3950 0,13 0,79 3,53 
112.  23904 2912 0,12 -0,07 3,13 28287 1569 0,06 -0,02 3,00 
113.  50782 3345 0,07 -0,36 3,10 31891 1631 0,05 0,34 3,23 
114.  34631 2231 0,06 -0,26 3,05 52112 2896 0,06 -0,29 3,32 
115.  49593 1959 0,04 0,16 2,59 48284 5806 0,12 0,07 3,22 
116.  32191 2557 0,08 -0,18 2,66 31941 6446 0,20 -0,17 2,81 
117.  41067 1782 0,04 0,47 3,09 25387 3482 0,14 0,42 2,74 
118.  27265 2291 0,08 0,53 2,58 18542 5480 0,30 0,72 2,63 
119.  34437 1841 0,05 0,03 2,92 44430 5124 0,12 -0,15 3,02 
120.  20315 4290 0,21 -0,31 2,84 30398 8134 0,27 -0,07 2,96 
121.  50915 1879 0,04 0,21 3,30 47962 6017 0,13 0,01 2,35 
122.  34824 1879 0,05 -0,10 2,88 49960 3515 0,07 0,34 2,65 
123.  28647 2146 0,07 0,09 2,77 33759 1895 0,06 0,08 3,11 
124.  32857 4698 0,14 -0,48 3,47 25013 1938 0,08 -0,61 4,18 
125.  51778 2030 0,04 0,19 2,78 29799 3653 0,12 0,46 2,78 
126.  32220 3447 0,11 0,65 2,80 57029 2020 0,04 0,08 2,39 
127.  19516 2076 0,11 0,47 2,44 13667 4328 0,32 0,86 3,07 
128.  36126 1534 0,04 -0,19 2,69 69668 4640 0,07 -0,22 2,14 
129.  26850 1334 0,05 0,02 3,08 38443 2901 0,08 -0,32 2,62 
130.  26091 2225 0,09 0,11 2,87 23829 1522 0,06 -0,19 2,94 
131.  46534 2015 0,04 0,15 2,38 45589 6012 0,13 -0,35 2,97 
132.  23949 3701 0,15 0,32 2,73 35098 1558 0,04 0,18 2,56 
133.  14341 1127 0,08 -0,19 2,92 20840 1619 0,08 -0,48 2,72 
134.  45343 1684 0,04 0,04 2,73 32873 4976 0,15 -0,02 2,77 
135.  48574 2040 0,04 -0,07 2,91 39189 4656 0,12 0,14 2,44 
136.  31188 1904 0,06 -0,32 3,08 45765 3115 0,07 -0,12 3,24 
137.  33499 2292 0,07 -0,41 3,36 58455 5928 0,10 -0,39 3,32 
138.  38320 2104 0,05 0,29 3,26 59987 5163 0,09 -0,47 2,59 
139.  21014 1822 0,09 -0,27 2,65 33532 1495 0,04 -0,25 2,96 
140.  28708 5278 0,18 -0,18 2,77 33645 1977 0,06 0,04 2,92 
141.  29392 1561 0,05 0,44 3,50 28040 2863 0,10 -0,30 2,72 
142.  22450 2259 0,10 0,00 3,17 27348 1454 0,05 -0,04 2,95 
143.  29545 2806 0,09 0,59 2,89 23065 6538 0,28 0,71 3,37 
144.  28083 3658 0,13 -0,18 2,87 30103 1443 0,05 0,40 3,74 
145.  44089 2953 0,07 -0,19 2,57 26921 1664 0,06 0,23 2,28 
146.  38518 4373 0,11 0,07 2,77 43963 1963 0,04 0,19 2,82 
147.  51180 2066 0,04 -0,02 2,32 34821 4532 0,13 0,17 2,07 
148.  10225 1924 0,19 0,34 2,39 15937 1308 0,08 0,32 2,57 
149.  30808 4014 0,13 -0,43 3,37 37462 1711 0,05 -0,10 2,45 
150.  37505 3580 0,10 -0,09 2,77 26105 1431 0,05 -0,10 4,71 
151.  25702 1433 0,06 0,35 2,76 39839 3245 0,08 -0,06 3,20 
152.  37759 1659 0,04 0,03 2,94 40890 3898 0,10 -0,32 2,95 
153.  49704 2758 0,06 -0,25 2,99 40178 3265 0,08 -0,19 2,61 
154.  22699 2081 0,09 0,31 2,44 38012 1680 0,04 0,13 3,31 
155.  27231 1182 0,04 -0,08 2,99 50379 2736 0,05 0,00 3,21 
156.  24538 1454 0,06 -0,04 2,72 18903 2321 0,12 -0,21 2,49 
157.  28814 1181 0,04 0,17 2,38 16390 2335 0,14 0,83 2,94 
158.  32141 1406 0,04 0,51 3,95 31179 3745 0,12 0,02 2,88 
159.  32256 2300 0,07 -0,65 4,04 36677 2530 0,07 -0,08 2,91 
160.  36196 1680 0,05 0,50 3,54 23165 3604 0,16 0,51 2,68 
161.  20235 1406 0,07 0,67 3,21 38146 1605 0,04 -0,10 3,46 
162.  44185 3849 0,09 0,04 2,40 72040 3448 0,05 -0,32 2,95 
163.  30046 4280 0,14 0,21 2,45 44795 1781 0,04 0,04 2,63 
164.  19179 1553 0,08 -0,51 3,60 28096 3370 0,12 -0,09 3,37 
165.  49555 3790 0,08 -0,09 2,59 58174 4184 0,07 -0,16 2,25 
166.  15766 1112 0,07 0,43 2,44 9431 1783 0,19 0,46 1,99 
167.  25475 3447 0,14 0,09 2,91 33043 1654 0,05 0,35 3,19 
168.  30457 1348 0,04 0,08 3,00 48354 4126 0,09 -0,38 3,29 
169.  21455 1376 0,06 0,55 5,59 32997 3017 0,09 -0,26 3,23 
170.  21404 2232 0,10 0,24 2,92 16264 4675 0,29 0,45 2,79 
171.  15957 1823 0,11 0,67 2,89 10451 2983 0,29 0,74 2,66 
172.  25277 1251 0,05 0,30 2,84 15127 2075 0,14 0,23 2,16 
173.  50934 2230 0,04 -0,20 2,81 28238 1813 0,06 -0,16 2,27 
174.  19311 4229 0,22 0,91 3,51 31368 1981 0,06 0,70 3,54 
175.  28141 1403 0,05 0,48 3,13 45182 3093 0,07 0,04 2,84 
176.  34871 1525 0,04 0,35 2,85 58583 4050 0,07 -0,32 2,85 
177.  33356 3844 0,12 -0,41 2,84 25611 1709 0,07 -0,43 3,94 
178.  40746 2288 0,06 0,15 2,12 28634 6641 0,23 0,22 2,01 
179.  41377 2503 0,06 -0,31 2,18 41948 2801 0,07 0,12 2,44 
180.  25417 2789 0,11 -0,06 2,38 36227 1599 0,04 -0,15 2,78 
181.  18328 1824 0,10 -0,25 2,90 18258 1184 0,06 -0,12 2,76 
182.  47978 3105 0,06 -0,27 3,72 56555 4207 0,07 0,10 2,15 
183.  12414 3002 0,24 -0,18 2,75 14664 1775 0,12 -0,40 2,66 
184.  17399 1280 0,07 0,62 4,49 31545 1365 0,04 -0,22 2,42 
185.  38127 1795 0,05 -0,24 2,39 27953 3801 0,14 0,04 2,73 
186.  41291 1985 0,05 0,19 2,85 53689 5444 0,10 -0,37 3,20 
187.  12978 1679 0,13 -0,35 2,84 11439 2744 0,24 -0,22 2,42 
188.  54952 3150 0,06 0,05 3,11 38233 3429 0,09 0,10 3,14 
189.  33210 1247 0,04 -0,13 2,99 42762 3803 0,09 -0,26 2,95 
190.  27929 1869 0,07 -0,37 3,53 29488 4677 0,16 -0,28 3,95 
191.  22021 5270 0,24 -0,01 2,51 27164 2192 0,08 0,01 2,18 
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192.  38027 1464 0,04 -0,03 2,67 21629 2904 0,13 0,64 2,70 
193.  45504 1719 0,04 -0,18 2,25 29755 4705 0,16 0,28 2,43 
194.  35747 2478 0,07 0,27 2,34 25907 6675 0,26 0,53 2,82 
195.  37646 3203 0,09 -0,24 2,92 30354 1782 0,06 0,11 2,54 
196.  12380 1769 0,14 -0,09 2,91 17953 1179 0,07 0,33 3,71 
197.  28002 2057 0,07 0,29 2,48 19513 4629 0,24 0,36 2,56 
198.  16934 1198 0,07 0,03 4,04 14437 1858 0,13 -0,56 4,30 
199.  40609 2245 0,06 0,12 3,53 31257 2713 0,09 -0,42 2,90 
200.  18837 2637 0,14 -0,55 3,11 28688 4909 0,17 -0,29 2,55 
201.  53020 2789 0,05 -0,09 3,64 53086 4631 0,09 -0,05 2,93 
202.  42274 2001 0,05 0,31 2,68 36969 4005 0,11 0,02 2,26 
203.  34279 2817 0,08 -0,43 3,28 38678 2174 0,06 -0,34 2,71 
204.  48784 1890 0,04 0,29 2,54 29656 4234 0,14 0,28 2,41 
205.  40068 1827 0,05 -0,03 2,34 45826 5408 0,12 -0,31 3,55 
206.  40146 2162 0,05 0,11 2,40 22555 1195 0,05 0,36 3,49 
207.  29838 2230 0,07 -0,65 3,97 50063 5546 0,11 -0,47 3,58 
208.  29387 1531 0,05 0,10 2,96 26202 2608 0,10 -0,25 2,72 
209.  25993 1383 0,05 0,08 3,50 22655 2479 0,11 -0,36 3,37 
210.  25106 2302 0,09 -0,25 3,04 38749 1980 0,05 0,07 3,67 
211.  38675 3080 0,08 -0,44 2,60 59234 3017 0,05 0,28 2,84 
212.  50923 2157 0,04 -0,26 2,91 34516 4821 0,14 0,20 2,71 
213.  20576 4861 0,24 -0,06 2,24 23459 2307 0,10 0,00 2,68 
214.  31900 2014 0,06 -0,04 3,48 49123 2747 0,06 -0,28 2,76 
215.  29251 1439 0,05 0,03 2,23 36305 3353 0,09 0,03 2,61 
216.  21042 5076 0,24 0,15 2,01 27514 2049 0,07 0,12 2,27 
217.  12734 4825 0,38 0,50 2,18 15776 2557 0,16 0,34 2,04 
218.  23876 1347 0,06 0,43 2,22 45187 1825 0,04 -0,30 2,84 
219.  16198 2377 0,15 -0,36 2,83 18537 1394 0,08 -0,31 2,94 
220.  32144 2399 0,07 -0,20 2,37 26594 1698 0,06 -0,06 3,09 
221.  15804 3684 0,23 0,01 2,48 18549 6832 0,37 0,20 2,51 
222.  35161 1619 0,05 0,32 3,38 25168 3848 0,15 -0,17 2,65 
223.  9596 2589 0,27 0,87 3,11 14984 1516 0,10 0,65 3,01 
224.  50034 1940 0,04 0,30 2,85 31205 5430 0,17 0,79 3,91 
225.  13454 2251 0,17 -0,39 3,00 15510 3460 0,22 -0,32 2,98 
226.  26754 2757 0,10 -0,12 2,38 29893 5915 0,20 -0,15 2,93 
227.  22325 3080 0,14 0,70 2,50 38087 1575 0,04 -0,03 2,97 
228.  33612 2298 0,07 0,38 3,08 40293 2915 0,07 0,12 2,61 
229.  52631 3121 0,06 -0,34 2,84 55696 4762 0,09 -0,25 2,56 
230.  36116 1590 0,04 -0,32 2,82 39744 4588 0,12 -0,12 3,45 
231.  47100 2391 0,05 -0,15 3,02 56172 4738 0,08 -0,25 3,59 
232.  29916 1701 0,06 -0,44 2,69 49807 4459 0,09 -0,27 2,59 
233.  47348 3406 0,07 -0,24 2,92 39381 2840 0,07 -0,06 2,59 
234.  15787 3884 0,25 -0,21 2,67 19672 7178 0,36 -0,04 2,85 
235.  54687 2854 0,05 -0,30 3,10 31803 2126 0,07 -0,14 2,53 
236.  22274 4735 0,21 0,04 2,50 27231 2020 0,07 -0,02 2,66 
237.  29088 3317 0,11 0,39 2,30 22211 7272 0,33 0,43 2,22 
238.  30202 2723 0,09 0,05 2,34 35611 6781 0,19 0,27 2,69 
239.  35073 3217 0,09 -0,09 2,85 24633 1162 0,05 -0,25 3,14 
240.  21819 2681 0,12 -0,05 2,78 23474 1213 0,05 0,15 2,79 
241.  37920 3348 0,09 -0,43 3,23 42797 2595 0,06 -0,25 3,23 
242.  19391 998 0,05 -0,14 2,42 31854 2482 0,08 -0,44 3,22 
243.  37038 3571 0,10 1,26 5,66 65584 2572 0,04 -0,06 2,75 
244.  33656 1613 0,05 -0,13 3,15 34197 3739 0,11 0,01 2,65 
245.  32870 1454 0,04 0,18 3,27 47812 4093 0,09 -0,25 3,44 
246.  41239 1862 0,05 0,20 2,71 52257 4484 0,09 -0,71 3,69 
247.  33557 2302 0,07 -0,47 2,77 33925 5751 0,17 -0,50 2,97 
248.  50693 2505 0,05 0,21 3,13 32538 3191 0,10 0,20 2,69 
249.  36327 1365 0,04 0,19 2,56 69827 3996 0,06 -0,59 3,27 
250.  36717 1947 0,05 0,03 2,68 57323 3664 0,06 -0,17 2,81 
251.  43159 2544 0,06 0,03 3,40 30903 3216 0,10 -0,20 2,62 
252.  19989 2058 0,10 -0,12 2,98 18956 4241 0,22 0,05 2,75 
253.  39428 1613 0,04 0,41 3,15 26553 3193 0,12 0,17 3,22 
254.  12535 4427 0,35 -0,03 2,35 16615 7739 0,47 0,01 2,33 
255.  48652 1986 0,04 -0,13 3,32 42890 5718 0,13 0,07 2,59 
256.  28852 1425 0,05 -0,26 3,13 52484 3815 0,07 -0,19 2,91 
257.  23031 1758 0,08 0,24 3,06 38490 2083 0,05 -0,21 2,59 
258.  32754 3185 0,10 -0,52 3,74 44246 8146 0,18 -0,28 3,56 
259.  29307 1598 0,05 0,39 3,95 30500 4163 0,14 0,11 2,62 
260.  25623 3564 0,14 -0,20 2,57 24757 1599 0,06 -0,49 3,78 
261.  18673 4291 0,23 0,20 2,75 21049 2070 0,10 0,13 2,42 
262.  31876 1509 0,05 0,14 2,90 60112 3330 0,06 0,11 2,39 
263.  28031 3687 0,13 0,68 3,76 45755 1769 0,04 0,25 3,28 
264.  15209 3016 0,20 -0,40 3,06 20442 5048 0,25 -0,28 2,87 
265.  23917 1300 0,05 0,15 3,00 15405 2362 0,15 0,22 2,76 
266.  24119 1411 0,06 0,03 4,16 40097 3299 0,08 -0,26 3,02 
267.  5239 1530 0,29 0,83 2,90 4020 1989 0,49 0,90 2,80 
268.  33173 1386 0,04 0,59 3,40 61364 4372 0,07 -0,61 3,92 
269.  36974 1324 0,04 -0,04 2,97 66154 4461 0,07 -0,10 3,03 
270.  33899 1428 0,04 -0,14 2,93 62375 3203 0,05 -0,09 2,66 
271.  19563 1198 0,06 0,49 3,40 15031 1340 0,09 -0,38 2,94 
272.  53392 2012 0,04 -0,03 2,57 31807 4178 0,13 1,03 5,02 
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273.  38540 2712 0,07 0,22 3,52 39029 6613 0,17 -0,03 3,23 
274.  34543 2982 0,09 0,00 2,42 52718 3124 0,06 -0,47 2,97 
275.  31848 4327 0,14 -0,28 2,58 31438 1576 0,05 0,46 3,56 
276.  30049 1948 0,06 -0,19 2,45 46667 5050 0,11 -0,11 2,76 
277.  32657 1650 0,05 0,41 3,03 26074 3693 0,14 0,00 2,87 
278.  20532 4486 0,22 0,28 2,27 30767 1831 0,06 0,54 3,24 
279.  28077 5064 0,18 -0,31 2,83 30462 2121 0,07 -0,38 2,61 
280.  45853 2040 0,04 0,04 3,15 31231 5309 0,17 0,22 2,46 
281.  34567 4907 0,14 0,45 2,96 44880 1876 0,04 -0,14 2,98 
282.  15420 2837 0,18 -0,14 2,39 17597 1530 0,09 -0,18 2,71 
283.  51866 2615 0,05 -0,35 2,62 27027 1198 0,04 0,69 3,60 
284.  40670 1977 0,05 -0,14 2,72 45077 4705 0,10 0,07 2,33 
285.  47102 2180 0,05 -0,28 2,98 44529 5900 0,13 -0,14 3,80 
286.  22265 2601 0,12 -0,13 2,88 21756 5574 0,26 0,03 2,71 
287.  40959 3018 0,07 0,67 3,12 73848 3515 0,05 0,10 2,61 
288.  34471 1485 0,04 0,09 2,75 63058 4091 0,06 -0,27 2,37 
289.  18221 6073 0,33 0,19 2,68 20071 3050 0,15 0,07 2,79 
290.  30000 2050 0,07 -0,95 4,05 33140 5555 0,17 -0,48 3,31 
291.  15609 4141 0,27 0,34 2,91 20855 2141 0,10 0,38 3,00 
292.  34748 1809 0,05 0,02 2,42 50706 4470 0,09 -0,40 3,00 
293.  30382 1672 0,06 -0,10 3,00 21826 3743 0,17 0,05 3,02 
294.  46500 2918 0,06 0,30 2,58 48747 4022 0,08 -0,04 2,49 
295.  37544 3554 0,09 0,01 2,67 53602 2753 0,05 -0,13 3,02 
296.  17976 1488 0,08 0,00 3,23 25533 2898 0,11 0,07 2,15 
297.  55686 2084 0,04 0,26 3,24 32751 4954 0,15 0,67 2,86 
298.  39255 2440 0,06 -0,16 2,60 39441 6850 0,17 -0,16 2,60 
299.  10978 1950 0,18 0,33 2,38 8407 2959 0,35 0,47 2,67 
300.  17420 1326 0,08 -0,20 2,82 22950 3028 0,13 -0,15 2,96 
301.  32925 1565 0,05 0,05 2,62 44895 4286 0,10 0,02 2,48 
302.  38221 2865 0,07 -0,14 2,78 39951 2306 0,06 -0,98 5,79 
303.  31813 1679 0,05 -0,07 2,57 45144 4714 0,10 0,21 2,34 
304.  41978 1849 0,04 0,17 2,56 25890 4436 0,17 0,62 2,74 
305.  34785 4637 0,13 -0,42 2,96 25737 2193 0,09 -0,21 3,06 
306.  35705 1853 0,05 0,15 2,84 36058 4725 0,13 -0,30 3,00 
307.  19223 1818 0,09 0,02 2,76 19345 1229 0,06 -0,38 3,12 
308.  12103 3675 0,30 0,62 3,31 16297 2032 0,12 0,31 2,62 
309.  18758 5650 0,30 0,05 2,40 19418 2834 0,15 -0,05 2,10 
310.  27234 2928 0,11 0,11 2,73 26568 6454 0,24 0,28 2,91 
311.  30445 1661 0,05 -0,42 3,71 20809 2211 0,11 0,02 2,40 
312.  42307 2129 0,05 0,42 2,96 30897 6997 0,23 0,64 3,26 
313.  17205 1281 0,07 -0,13 2,90 23438 2641 0,11 -0,39 3,08 
314.  27664 2352 0,09 -0,31 2,38 46146 5443 0,12 -0,09 2,34 
315.  21113 1380 0,07 -0,31 4,26 29091 1925 0,07 0,06 3,62 
316.  36454 2721 0,07 -0,06 2,92 34812 2462 0,07 -0,31 2,58 
317.  16995 1196 0,07 0,83 4,14 19500 1785 0,09 -0,22 2,56 
318.  20661 1238 0,06 0,03 2,98 18701 1888 0,10 -0,66 3,36 
319.  42966 2225 0,05 -0,17 2,85 41480 3893 0,09 -0,42 3,27 
320.  32609 2064 0,06 -0,40 3,14 59322 5534 0,09 -0,47 3,27 
321.  31524 3128 0,10 -0,24 2,67 25085 1365 0,05 0,07 3,28 
322.  31336 4394 0,14 -0,19 2,64 35276 1837 0,05 0,32 3,50 
323.  18926 1587 0,08 -0,16 2,97 21224 3177 0,15 -0,29 3,56 
324.  18665 1621 0,09 -0,26 3,02 15838 3220 0,20 0,17 3,23 
325.  41576 1798 0,04 -0,19 2,96 45466 5111 0,11 -0,39 2,63 
326.  28233 1718 0,06 0,13 2,70 22191 3621 0,16 -0,25 2,71 
327.  26583 1900 0,07 -0,22 2,49 22091 4253 0,19 0,06 2,42 
328.  30860 2772 0,09 0,13 2,38 33237 6643 0,20 0,09 2,52 
329.  25665 1763 0,07 0,07 2,41 34611 4311 0,12 -0,19 2,32 
330.  33051 2057 0,06 0,17 2,82 32805 5355 0,16 0,12 2,38 
331.  30718 1340 0,04 -0,09 2,58 21145 2824 0,13 0,18 2,79 
332.  23912 1818 0,08 -0,66 3,81 22149 3975 0,18 -0,31 3,19 
333.  33256 2387 0,07 -0,43 3,08 39089 2320 0,06 -0,03 2,54 
334.  31515 2091 0,07 -0,21 3,01 47766 5652 0,12 -0,33 3,37 
335.  50726 2638 0,05 0,23 2,65 55901 4960 0,09 -0,31 2,93 
336.  22149 1357 0,06 -0,20 3,64 34931 3318 0,09 -0,21 3,69 
337.  34845 1723 0,05 -0,08 3,41 45622 5143 0,11 -0,07 2,61 
338.  22242 2489 0,11 -0,10 2,55 29149 5246 0,18 0,13 2,69 
339.  47593 2266 0,05 -0,27 3,56 29572 3304 0,11 0,44 3,13 
340.  42441 1836 0,04 0,33 2,55 39954 5014 0,13 -0,23 2,52 
341.  21155 2462 0,12 -0,38 2,99 30116 4868 0,16 -0,15 2,90 
342.  19513 1190 0,06 0,58 3,26 11560 2000 0,17 0,76 3,07 
343.  17330 3173 0,18 0,95 3,53 13720 6091 0,44 0,94 3,13 
344.  37341 3298 0,09 -0,29 3,07 52405 2758 0,05 -0,48 3,93 
345.  29206 2940 0,10 -0,43 3,52 32278 6500 0,20 -0,29 3,58 
346.  19833 2984 0,15 0,14 3,02 20859 6215 0,30 0,46 2,85 
347.  40520 1742 0,04 -0,03 2,79 62322 4452 0,07 -0,06 2,66 
348.  51904 2399 0,05 0,16 3,53 52765 6287 0,12 -0,26 3,25 
349.  17993 1227 0,07 0,05 2,38 16750 1438 0,09 -0,08 2,91 
350.  24897 4209 0,17 -0,17 3,46 20044 1878 0,09 -1,07 4,46 
351.  39420 2285 0,06 0,00 2,68 56626 3757 0,07 0,15 3,27 
352.  52214 2932 0,06 0,26 2,96 47964 3198 0,07 -0,29 3,37 
353.  13390 3291 0,25 0,24 2,13 18760 1759 0,09 0,44 2,71 
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354.  54432 2683 0,05 -0,12 2,42 33586 2872 0,09 -0,10 2,79 
355.  26647 2311 0,09 -0,26 3,25 29696 5716 0,19 0,12 3,19 
356.  35569 1499 0,04 0,29 2,96 56928 4370 0,08 -0,19 3,35 
357.  40034 1837 0,05 0,01 2,59 46901 5847 0,12 -0,61 3,42 
358.  19633 2080 0,11 -0,42 3,27 19440 4267 0,22 -0,16 3,08 
359.  20696 2220 0,11 0,28 3,30 18313 4307 0,24 0,05 2,68 
360.  14962 4220 0,28 0,62 2,92 20946 2227 0,11 0,40 2,23 
361.  32979 1613 0,05 0,12 2,86 20252 2730 0,13 -0,06 2,12 
362.  18075 3777 0,21 0,14 2,34 23523 1833 0,08 0,22 2,49 
363.  30759 3025 0,10 0,35 2,47 54573 2043 0,04 -0,36 2,98 
364.  29671 1350 0,05 -0,32 2,68 22185 2832 0,13 0,41 2,92 
365.  19997 1503 0,08 -0,49 2,83 29650 1688 0,06 0,05 3,30 
366.  33628 4293 0,13 0,09 2,37 52987 2062 0,04 -0,32 2,40 
367.  57364 2565 0,04 0,20 2,60 50978 5339 0,10 -0,30 3,02 
368.  34732 2352 0,07 0,10 2,88 32979 2531 0,08 -0,44 3,86 
369.  48939 2542 0,05 -0,02 2,83 35649 3600 0,10 0,04 2,88 
370.  54076 2758 0,05 -0,14 3,03 44148 4036 0,09 0,08 3,63 
371.  36936 1636 0,04 0,01 3,72 60799 4455 0,07 0,00 2,31 
372.  25841 2380 0,09 0,29 2,82 20972 5291 0,25 0,41 2,95 
373.  39117 1665 0,04 0,50 3,60 22166 2406 0,11 0,45 2,70 
374.  18160 1283 0,07 -0,18 2,70 28015 1985 0,07 0,00 2,61 
375.  9541 2369 0,25 -0,03 2,10 12567 1611 0,13 0,02 2,31 
376.  26758 2139 0,08 0,37 3,08 20576 4947 0,24 0,03 2,07 
377.  52930 2441 0,05 -0,66 3,79 36077 3948 0,11 0,12 3,38 
378.  27469 4537 0,17 -0,21 2,28 34159 1826 0,05 0,03 2,91 
379.  41186 1657 0,04 0,68 3,66 27553 5284 0,19 0,47 2,48 
380.  31053 2610 0,08 -0,27 3,12 25795 1172 0,05 0,09 2,60 
381.  23806 2539 0,11 -0,36 2,74 34018 5530 0,16 -0,05 2,87 
382.  24976 2271 0,09 0,00 2,89 40957 1924 0,05 0,05 3,55 
383.  43942 1749 0,04 -0,04 2,52 53729 5568 0,10 -0,06 4,40 
384.  12689 3440 0,27 -0,22 2,12 14357 5811 0,40 -0,14 2,20 
385.  43420 3884 0,09 -0,13 2,59 45221 2383 0,05 0,42 3,25 
386.  40323 2241 0,06 -0,14 3,76 57876 4178 0,07 0,20 3,08 
387.  33431 4230 0,13 -0,55 3,07 29116 1836 0,06 -0,15 2,62 
388.  40270 1925 0,05 0,35 3,48 57389 5198 0,09 -0,28 3,57 
389.  23179 2981 0,13 0,13 3,21 35393 5864 0,17 0,16 3,09 
390.  29044 3124 0,11 0,62 2,55 51901 2039 0,04 -0,27 3,24 
391.  39211 3878 0,10 -0,09 2,82 37997 1769 0,05 0,22 3,22 
392.  38704 2915 0,08 -0,14 2,74 62828 3962 0,06 -0,20 2,47 
393.  31508 2667 0,08 -0,16 2,45 51693 6157 0,12 0,04 2,58 
394.  19179 1344 0,07 -0,10 2,41 18366 1962 0,11 0,02 3,33 
395.  32326 1737 0,05 0,43 3,27 24752 2091 0,08 -0,31 2,96 
396.  44369 3128 0,07 -0,16 3,47 27075 1230 0,05 0,47 3,68 
397.  18323 1608 0,09 0,35 2,72 32389 1436 0,04 0,21 2,91 
398.  29996 2059 0,07 0,29 3,35 49361 2984 0,06 -0,07 3,20 
399.  21878 2033 0,09 0,75 2,98 39401 1593 0,04 0,10 2,43 
400.  49681 3076 0,06 -0,11 2,20 32633 2045 0,06 0,48 3,97 
401.  29988 1649 0,06 0,13 2,95 39759 3509 0,09 -0,45 2,67 
402.  17583 937 0,05 0,27 2,68 32312 1496 0,05 -0,37 2,79 
403.  26248 4650 0,18 0,37 2,48 40269 1885 0,05 0,34 3,15 
404.  28398 1610 0,06 -0,21 2,53 36779 2842 0,08 -0,26 2,96 
405.  14553 2206 0,15 -0,02 2,53 21883 1154 0,05 -0,25 2,48 
406.  24307 2139 0,09 -0,27 3,46 25080 4485 0,18 -0,43 3,48 
407.  25353 2554 0,10 -0,08 2,23 29960 6188 0,21 -0,14 2,42 
408.  33072 1754 0,05 0,44 3,30 60234 3590 0,06 -0,31 3,56 
409.  38320 2886 0,08 -0,24 2,52 44106 3077 0,07 -0,24 3,28 
410.  20544 1594 0,08 -0,35 3,18 24370 1496 0,06 -0,25 3,05 
411.  28190 5296 0,19 0,14 2,79 26760 2063 0,08 -0,03 2,94 
412.  46916 2993 0,06 0,22 3,09 32798 2232 0,07 -0,01 2,80 
413.  31412 1872 0,06 0,31 2,73 37116 3238 0,09 -0,20 2,74 
414.  33489 4493 0,13 0,04 3,25 43348 1948 0,04 0,53 3,70 
415.  23696 2737 0,12 -0,04 3,84 33147 5974 0,18 -0,03 3,85 
416.  22390 3004 0,13 0,00 2,51 20191 6080 0,30 0,03 2,29 
417.  25732 1832 0,07 0,96 4,98 48319 2027 0,04 -0,28 3,04 
418.  17974 1321 0,07 -0,21 2,82 31115 1534 0,05 -0,06 3,50 
419.  41911 1968 0,05 0,59 3,53 41756 5310 0,13 -0,07 2,28 
420.  23017 1311 0,06 0,05 2,70 17865 2868 0,16 -0,07 2,33 
421.  39661 2563 0,06 -0,05 3,06 52662 3661 0,07 -0,58 3,41 
422.  53741 2020 0,04 0,12 2,67 31140 3461 0,11 0,60 3,12 
423.  40990 2458 0,06 0,29 3,83 36963 2742 0,07 -0,20 2,78 
424.  41372 1702 0,04 0,08 3,04 35258 4818 0,14 -0,13 2,87 
425.  19282 1828 0,09 -0,42 2,51 24577 3941 0,16 -0,29 2,30 
426.  31823 1981 0,06 0,50 3,63 41443 4672 0,11 0,44 3,73 
427.  35408 2112 0,06 -0,50 3,48 27194 5205 0,19 -0,27 2,58 
428.  21288 2024 0,10 0,56 2,41 14385 4071 0,28 0,76 2,92 
429.  54847 3032 0,06 0,19 2,48 43081 4215 0,10 -0,07 2,40 
430.  44552 1969 0,04 0,15 2,22 37359 4604 0,12 -0,06 2,70 
431.  33416 1950 0,06 0,62 4,22 62581 2777 0,04 -0,15 3,06 
432.  31739 1685 0,05 0,16 2,71 44881 3888 0,09 -0,21 2,72 
433.  27772 1593 0,06 -0,17 3,29 24923 2222 0,09 -0,16 3,82 
434.  23412 1943 0,08 0,61 2,49 15000 3929 0,26 0,64 2,47 
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435.  47435 2928 0,06 -0,31 3,26 62925 4781 0,08 0,22 2,42 
436.  47069 1737 0,04 0,20 2,93 26817 2487 0,09 0,27 2,05 
437.  44690 2499 0,06 -0,18 3,07 42416 3891 0,09 -0,03 3,40 
438.  26231 1526 0,06 0,12 3,12 25024 2771 0,11 -0,29 2,67 
439.  26541 1882 0,07 0,09 2,40 47548 2177 0,05 -0,11 2,86 
440.  24321 3378 0,14 -0,25 2,56 30917 1676 0,05 -0,18 2,95 
441.  40501 3166 0,08 -0,34 2,81 32372 1948 0,06 -0,29 3,00 
442.  23256 2204 0,09 -0,24 2,81 23347 4998 0,21 -0,20 2,82 
443.  36598 1823 0,05 0,05 2,93 63120 3487 0,06 -0,16 2,80 
444.  21617 2850 0,13 0,12 3,57 19527 1361 0,07 0,05 3,19 
445.  56265 2473 0,04 -0,27 3,67 39965 4161 0,10 0,15 3,14 
446.  20817 2244 0,11 -0,37 3,07 19634 1311 0,07 0,29 2,86 
447.  34459 4360 0,13 0,02 2,85 38477 1828 0,05 0,22 2,73 
448.  18389 4436 0,24 0,20 2,30 24254 2007 0,08 -0,04 2,39 
449.  40581 2145 0,05 0,94 6,21 40570 4316 0,11 -0,40 3,05 
450.  13125 1165 0,09 -0,14 2,74 17859 1332 0,07 0,06 2,84 
451.  42809 1797 0,04 -0,07 3,35 41279 5294 0,13 -0,44 3,19 
452.  40893 4326 0,11 0,10 2,52 58190 2898 0,05 -0,07 2,33 
453.  17487 1450 0,08 -0,04 3,11 19253 1354 0,07 -0,06 2,80 
454.  25160 1340 0,05 0,27 2,54 38592 2869 0,07 0,20 3,64 
455.  17906 1718 0,10 -0,01 3,88 18166 3611 0,20 -0,20 2,71 
456.  21742 4815 0,22 0,58 4,12 28157 1934 0,07 0,28 2,94 
457.  29088 2685 0,09 -0,15 2,75 47476 6317 0,13 -0,01 2,64 
458.  30402 1716 0,06 -0,56 4,48 19607 1317 0,07 -0,25 2,76 
459.  48193 2417 0,05 -0,32 3,45 31365 2839 0,09 -0,28 2,89 
460.  36245 2136 0,06 -0,07 2,54 38815 6022 0,16 0,07 3,10 
461.  24783 1225 0,05 0,65 3,66 39301 2978 0,08 0,06 2,36 
462.  44670 3620 0,08 0,02 2,49 54358 3370 0,06 0,16 2,66 
463.  31400 2542 0,08 -0,35 2,60 48312 2159 0,04 -0,29 3,06 
464.  50486 2388 0,05 0,12 4,21 55322 4155 0,08 -0,37 3,65 
465.  44929 2206 0,05 0,17 3,02 63787 5313 0,08 -0,10 3,91 
466.  17460 2086 0,12 -0,07 2,55 14810 4024 0,27 -0,10 2,28 
467.  45219 1945 0,04 -0,51 4,19 49796 6399 0,13 -0,17 3,06 
468.  38028 1773 0,05 0,14 2,22 70083 5565 0,08 -0,32 3,13 
469.  8448 2665 0,32 0,40 2,29 8366 4071 0,49 0,42 2,31 
470.  41673 2087 0,05 0,40 2,55 26147 5247 0,20 0,64 2,77 
471.  23055 1406 0,06 0,30 2,77 31953 3228 0,10 -0,46 2,75 
472.  36534 1414 0,04 -0,03 3,79 53030 4479 0,08 -0,09 2,94 
473.  49282 1864 0,04 0,14 3,06 37997 6441 0,17 -0,25 2,55 
474.  20485 4370 0,21 -0,01 2,46 26761 1862 0,07 -0,14 2,25 
475.  31436 2011 0,06 -0,37 3,08 39728 5455 0,14 -0,03 2,97 
476.  26163 1686 0,06 0,00 3,42 27692 3924 0,14 -0,48 3,39 
477.  38031 2142 0,06 0,23 2,98 65856 3340 0,05 -0,41 2,79 
478.  14781 3056 0,21 0,09 2,76 17762 1592 0,09 -0,08 3,20 
479.  10495 2670 0,25 -0,25 2,48 12707 4038 0,32 -0,19 2,37 
480.  14471 4653 0,32 0,27 1,90 17964 2401 0,13 0,12 1,97 
481.  10345 2150 0,21 -0,27 2,15 11834 3137 0,27 -0,21 2,35 
482.  46041 1509 0,03 0,06 2,79 26221 3057 0,12 0,73 3,51 
483.  33371 1722 0,05 -0,64 4,36 26539 2618 0,10 0,14 2,88 
484.  13630 3523 0,26 0,20 2,24 14165 6245 0,44 0,23 2,40 
485.  42605 2221 0,05 0,05 2,79 43473 4229 0,10 0,03 3,29 
486.  45835 2816 0,06 -0,68 4,90 28165 1616 0,06 0,14 2,85 
487.  14545 2537 0,17 0,37 2,28 11791 4511 0,38 0,38 2,06 
488.  46257 1923 0,04 -0,03 2,50 35828 4852 0,14 -0,18 2,86 
489.  41570 1736 0,04 -0,21 2,54 27692 5138 0,19 0,13 2,08 
490.  39436 4053 0,10 -0,05 2,79 40867 1845 0,05 0,48 3,29 
491.  34810 2221 0,06 0,01 3,47 44111 6184 0,14 0,14 3,70 
492.  22449 3190 0,14 0,54 2,86 17938 6822 0,38 0,72 3,32 
493.  54843 2971 0,05 -0,17 2,56 40100 3621 0,09 0,21 2,72 
494.  32016 1846 0,06 -0,03 2,99 28633 2821 0,10 -0,35 3,15 
495.  51971 2080 0,04 0,18 2,98 43972 6121 0,14 -0,24 2,32 
496.  29309 3648 0,12 -0,12 2,60 25673 1508 0,06 -0,31 2,77 
497.  36524 1429 0,04 0,65 3,84 68804 4216 0,06 -0,05 3,09 
498.  22920 2187 0,10 0,42 2,94 16641 4367 0,26 0,21 2,16 
499.  39464 1938 0,05 0,15 2,65 31137 6009 0,19 -0,01 2,59 
500.  24465 1022 0,04 -0,41 3,62 43159 3215 0,07 -0,78 3,24 
501.  52362 2409 0,05 -0,17 2,77 30747 2738 0,09 0,54 3,48 
502.  40757 2248 0,06 0,01 3,01 37958 3260 0,09 -0,04 3,01 
503.  13399 3198 0,24 0,13 1,94 19735 1659 0,08 0,08 2,23 
504.  22762 1263 0,06 0,18 2,91 31798 3056 0,10 0,34 2,78 
505.  29441 1763 0,06 1,02 5,39 18844 2312 0,12 0,11 2,54 
506.  42130 2128 0,05 0,14 2,28 35349 6695 0,19 -0,06 2,48 
507.  40594 2224 0,05 -0,01 2,55 54419 4276 0,08 -0,38 2,77 
508.  40956 1857 0,05 0,37 2,70 48462 3971 0,08 -0,28 3,33 
509.  55852 2292 0,04 0,13 2,60 40160 5452 0,14 -0,05 2,77 
510.  33653 1905 0,06 0,18 3,56 48893 3175 0,06 -0,13 2,87 
511.  22684 4278 0,19 -0,44 2,62 25568 1912 0,07 -0,41 2,77 
512.  9633 3824 0,40 0,62 2,14 13139 2227 0,17 0,47 2,13 
513.  30683 1646 0,05 -0,27 2,84 52163 3210 0,06 -0,15 2,44 
514.  37420 1621 0,04 0,24 2,64 23041 2484 0,11 0,14 2,55 
515.  27613 2451 0,09 0,36 2,87 47833 2292 0,05 0,07 2,46 
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516.  43277 1890 0,04 0,44 3,42 26243 4073 0,16 0,43 2,36 
517.  9535 3158 0,33 0,10 3,27 10983 5096 0,46 0,33 3,48 
518.  27717 2403 0,09 0,87 3,08 50859 1899 0,04 -0,19 3,53 
519.  38091 2317 0,06 0,15 2,91 41580 3373 0,08 -0,30 2,72 
520.  18466 4047 0,22 -0,25 2,54 27198 7358 0,27 -0,20 2,50 
521.  17707 3485 0,20 0,49 3,56 25302 1701 0,07 0,21 2,54 
522.  49519 2121 0,04 0,15 3,12 34935 4491 0,13 0,25 2,53 
523.  26394 1714 0,06 -0,63 3,66 38230 4433 0,12 -0,23 3,05 
524.  20599 1238 0,06 0,19 2,51 36717 2314 0,06 -0,95 3,85 
525.  35375 1753 0,05 -0,08 2,48 53499 3947 0,07 -0,20 2,66 
526.  24873 1561 0,06 -0,10 2,18 39055 2772 0,07 -0,01 2,41 
527.  45702 1915 0,04 0,52 4,22 32438 4130 0,13 0,10 2,74 
528.  36065 1669 0,05 0,08 2,87 58666 5448 0,09 -0,17 2,39 
529.  26043 5036 0,19 0,48 2,42 39610 1943 0,05 0,10 2,55 
530.  26203 1529 0,06 -0,09 3,24 18417 1569 0,09 -0,59 3,35 
531.  16173 1300 0,08 -0,22 2,47 10730 2045 0,19 -0,10 2,22 
532.  24530 2313 0,09 -0,56 3,88 28613 1628 0,06 0,08 3,26 
533.  11723 2146 0,18 -0,18 2,66 12455 3556 0,29 0,07 3,11 
534.  25220 1248 0,05 0,06 3,14 42599 3589 0,08 -0,39 3,00 
535.  33487 2254 0,07 0,17 2,88 47323 3139 0,07 -0,34 3,28 
536.  31631 2912 0,09 -0,33 2,34 48717 2582 0,05 -0,39 4,37 
537.  35248 1875 0,05 0,61 3,11 41265 5597 0,14 -0,14 3,02 
538.  18734 1558 0,08 -0,07 2,61 24930 1814 0,07 -0,09 3,08 
539.  23840 2302 0,10 0,26 2,60 39884 1807 0,05 -0,08 2,99 
540.  17004 3580 0,21 -0,08 3,10 22633 6278 0,28 0,03 2,99 
541.  39631 4370 0,11 0,30 2,03 66917 2703 0,04 -0,08 3,06 
542.  29655 1783 0,06 -0,31 3,35 49501 4576 0,09 -0,25 2,76 
543.  14216 1233 0,09 0,35 2,67 14232 1368 0,10 -0,19 3,21 
544.  42885 2301 0,05 -0,24 4,07 25761 2017 0,08 0,13 2,82 
545.  37838 1985 0,05 0,13 2,21 27966 5839 0,21 0,28 2,26 
546.  37907 1979 0,05 0,18 3,39 34898 3587 0,10 -0,23 3,05 
547.  21949 3372 0,15 -0,11 2,53 24992 1521 0,06 0,41 2,91 
548.  42661 2221 0,05 -0,19 3,00 38353 3076 0,08 -0,32 2,69 
549.  34740 1942 0,06 0,34 2,49 65375 2795 0,04 -0,22 2,75 
550.  21438 1714 0,08 -0,34 2,77 19548 1369 0,07 0,22 2,32 
551.  30848 1516 0,05 0,22 2,61 21496 3172 0,15 -0,02 2,44 
552.  24706 5023 0,20 0,21 2,66 25058 2124 0,08 0,01 2,43 
553.  24064 2647 0,11 -0,16 2,90 39898 5736 0,14 0,08 2,66 
554.  19726 2027 0,10 -0,11 3,08 17647 1202 0,07 0,24 3,02 
555.  34475 3813 0,11 -0,27 2,77 30650 1428 0,05 0,14 3,19 
556.  32407 1767 0,05 0,27 2,65 30127 4156 0,14 -0,21 2,43 
557.  49648 2031 0,04 -0,02 3,51 35042 3856 0,11 -0,36 2,80 
558.  43589 2920 0,07 -0,27 3,65 49351 3199 0,06 0,12 3,12 
559.  19463 1227 0,06 0,16 2,57 27223 2704 0,10 -0,22 3,43 
560.  22944 1221 0,05 0,28 3,27 27826 2719 0,10 0,10 3,16 
561.  36985 2309 0,06 0,10 2,32 51039 2968 0,06 -0,32 3,47 
562.  35837 1845 0,05 -0,50 3,80 29476 3284 0,11 -0,19 2,67 
563.  31668 1899 0,06 -0,18 2,56 22461 4327 0,19 0,08 2,66 
564.  31890 3203 0,10 -0,07 2,67 44055 2151 0,05 0,44 3,21 
565.  12547 5034 0,40 0,86 2,99 16098 2599 0,16 0,73 2,92 
566.  35462 1747 0,05 0,04 3,12 27132 2391 0,09 -0,15 2,68 
567.  21091 1548 0,07 -0,03 3,55 25044 1952 0,08 0,00 3,45 
568.  40263 2018 0,05 -0,10 2,47 46872 6020 0,13 0,27 2,80 
569.  23661 2153 0,09 -0,08 2,45 37624 1562 0,04 0,09 2,88 
570.  51757 2003 0,04 -0,28 3,09 28279 2493 0,09 0,82 3,08 
571.  31233 2233 0,07 0,16 3,06 38182 2184 0,06 -0,23 2,63 
572.  30945 1647 0,05 0,16 3,01 35760 4378 0,12 0,04 2,79 
573.  22999 4011 0,17 0,42 2,33 34488 1715 0,05 0,44 3,19 
574.  33097 2587 0,08 -0,56 3,65 32697 7037 0,22 -0,30 2,59 
575.  21882 4588 0,21 0,50 2,65 33482 1788 0,05 0,57 2,83 
576.  38709 1400 0,04 0,38 3,00 22506 3427 0,15 0,69 2,54 
577.  28627 2222 0,08 -0,08 2,09 20809 5037 0,24 0,04 1,95 
578.  40406 1970 0,05 -0,15 2,31 52236 4827 0,09 -0,19 2,55 
579.  15057 2655 0,18 -0,63 2,95 19721 4571 0,23 -0,36 2,50 
580.  22267 1272 0,06 0,15 2,59 16220 1862 0,11 -0,55 3,50 
581.  18134 1835 0,10 -0,80 4,09 24842 3965 0,16 -0,39 3,31 
582.  39236 3414 0,09 0,29 3,18 65049 3182 0,05 0,11 3,29 
583.  25605 3413 0,13 -0,49 3,29 25155 1317 0,05 -0,09 2,80 
584.  36554 2822 0,08 -0,24 2,90 23653 1330 0,06 0,50 3,20 
585.  34690 1687 0,05 0,13 2,99 53819 4541 0,08 -0,52 3,69 
586.  38021 3814 0,10 0,12 3,29 40250 1960 0,05 -0,01 3,09 
587.  33683 2062 0,06 -0,15 2,42 54779 3175 0,06 -0,35 2,73 
588.  26556 1966 0,07 0,10 2,23 33497 4747 0,14 0,04 2,22 
589.  40056 1956 0,05 0,01 2,82 54212 4902 0,09 -0,41 3,35 
590.  54939 1900 0,03 -0,17 2,76 37713 6200 0,16 0,03 2,31 
591.  20298 2118 0,10 -0,58 3,44 22856 4298 0,19 -0,63 3,18 
592.  19398 4346 0,22 -0,01 3,03 22596 2061 0,09 -0,34 2,87 
593.  32986 1413 0,04 0,01 2,52 62739 4127 0,07 -0,41 2,72 
594.  43512 2965 0,07 0,63 4,43 65049 4581 0,07 -0,14 4,24 
595.  30842 3070 0,10 -0,13 2,53 46144 7555 0,16 0,33 3,01 
596.  25025 2155 0,09 -0,18 2,64 33570 5347 0,16 -0,03 2,65 
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597.  41791 2621 0,06 0,27 3,11 61798 3559 0,06 -0,39 3,11 
598.  52413 2858 0,05 -0,15 2,81 30661 1772 0,06 -0,16 2,77 
599.  37568 2614 0,07 -0,92 4,68 28536 2073 0,07 -0,12 2,33 
600.  41878 1788 0,04 0,09 2,91 30806 4304 0,14 -0,13 3,02 
601.  44597 4356 0,10 -0,42 2,95 28222 1420 0,05 -0,59 3,72 
602.  45826 3557 0,08 -0,30 2,44 48546 2544 0,05 -0,51 2,82 
603.  40910 1819 0,04 0,54 4,15 27299 6159 0,23 0,85 3,31 
604.  48064 2596 0,05 0,16 2,77 53624 4362 0,08 -0,11 3,28 
605.  18301 2865 0,16 -0,10 2,52 20910 1285 0,06 0,40 2,81 
606.  47660 2085 0,04 0,33 3,04 40571 5826 0,14 -0,58 3,21 
607.  27692 2152 0,08 -0,92 5,97 31924 2060 0,06 -0,27 2,82 
608.  28492 1154 0,04 -0,42 3,65 52521 3355 0,06 -0,43 3,34 
609.  34747 1394 0,04 0,26 2,86 19809 2439 0,12 0,34 2,12 
610.  48177 3137 0,07 -0,43 3,59 65697 3893 0,06 -0,29 4,28 
611.  46832 3679 0,08 0,15 2,57 49928 3214 0,06 0,37 2,86 
612.  28608 1404 0,05 0,25 3,11 42548 3229 0,08 0,25 3,34 
613.  10659 3435 0,32 -0,12 2,79 13642 5578 0,41 -0,06 2,91 
614.  40292 2871 0,07 0,12 2,65 62574 4381 0,07 -0,32 3,02 
615.  38677 1260 0,03 0,40 3,17 23008 3454 0,15 0,50 2,27 
616.  24886 2498 0,10 -0,13 2,80 32128 5282 0,16 -0,17 3,05 
617.  23050 1384 0,06 0,15 3,09 30322 2046 0,07 -0,02 2,92 
618.  30581 2232 0,07 -0,06 2,44 45930 2399 0,05 -0,22 2,96 
619.  31604 3556 0,11 0,22 2,34 51850 1912 0,04 0,08 3,50 
620.  16913 1266 0,07 -0,07 2,54 13925 1785 0,13 -0,57 2,95 
621.  24469 1827 0,07 -0,03 2,63 41425 2355 0,06 -0,18 2,33 
622.  24907 3000 0,12 0,21 2,35 20749 6405 0,31 0,16 2,04 
623.  25114 1540 0,06 -0,78 5,28 35104 4110 0,12 -0,42 3,17 
624.  29977 3601 0,12 0,01 2,29 47091 1847 0,04 0,21 2,53 
625.  46782 2565 0,05 0,11 2,89 48993 4082 0,08 0,11 2,79 
626.  27803 3273 0,12 -0,28 2,85 39279 1785 0,05 0,08 2,49 
627.  43122 2131 0,05 0,01 3,03 44155 5104 0,12 0,08 2,51 
628.  32100 1482 0,05 0,44 3,17 58361 4199 0,07 -0,49 2,97 
629.  17506 4850 0,28 0,82 3,61 23088 2335 0,10 0,74 3,62 
630.  39059 3437 0,09 -0,64 3,54 30046 1729 0,06 -0,02 3,26 
631.  50739 3271 0,06 -0,64 4,07 45035 2825 0,06 -0,12 2,56 
632.  44140 1536 0,03 -0,01 2,81 25800 3224 0,12 0,77 3,35 
633.  52040 2138 0,04 0,44 3,53 28371 1913 0,07 0,43 2,95 
634.  23722 1373 0,06 0,04 2,50 24083 3079 0,13 -0,17 2,63 
635.  30118 2770 0,09 -0,08 2,87 26112 6755 0,26 0,18 2,86 
636.  17686 1698 0,10 -0,04 2,80 23344 1281 0,05 -0,09 3,24 
637.  15020 2100 0,14 0,05 2,38 12070 3609 0,30 0,17 2,35 
638.  29294 2449 0,08 -0,45 4,41 23780 1372 0,06 0,13 2,80 
639.  41303 4769 0,12 -0,37 2,86 29046 1734 0,06 -0,58 3,47 
640.  21093 1481 0,07 0,32 2,39 39603 1694 0,04 -0,27 3,48 
641.  30962 2935 0,09 -0,26 3,13 45959 2202 0,05 -0,62 3,41 
642.  26198 2932 0,11 0,87 4,24 46124 1660 0,04 -0,34 2,92 
643.  20596 1909 0,09 0,46 2,84 37132 1483 0,04 0,22 2,96 
644.  41448 2768 0,07 -0,04 3,37 63318 4057 0,06 -0,40 4,61 
645.  35213 3318 0,09 -0,16 3,11 48513 2194 0,05 -0,62 4,99 
646.  25453 2032 0,08 0,23 2,73 21087 4854 0,23 0,28 3,46 
647.  50008 2047 0,04 0,01 2,79 33573 3181 0,09 -0,17 2,82 
648.  39632 3002 0,08 -0,11 2,14 61913 3757 0,06 -0,34 3,39 
649.  19685 3144 0,16 -0,52 3,90 25459 6224 0,24 -0,08 3,92 
650.  25227 1460 0,06 0,28 2,60 31829 2388 0,08 -0,39 2,75 
651.  31183 2332 0,07 -0,91 3,99 54228 5553 0,10 -0,47 2,88 
652.  25972 4944 0,19 -0,06 2,87 27757 2058 0,07 0,03 2,63 
653.  56331 2321 0,04 -0,21 2,74 36276 5236 0,14 0,46 2,67 
654.  47580 1943 0,04 0,23 3,35 39957 4940 0,12 -0,18 3,06 
655.  25717 2080 0,08 -0,41 3,33 42914 4775 0,11 -0,10 2,91 
656.  26482 2103 0,08 0,12 2,65 46962 1975 0,04 0,01 2,54 
657.  25023 4264 0,17 -0,49 2,83 25415 1794 0,07 -0,32 3,39 
658.  26955 3110 0,12 0,00 2,54 32444 6959 0,21 0,08 2,77 
659.  40621 1843 0,05 -0,13 3,17 25211 1814 0,07 -0,02 2,68 
660.  18788 1320 0,07 -0,17 3,81 17135 2491 0,15 -0,47 3,08 
661.  11653 1572 0,13 0,11 3,42 11721 2373 0,20 0,10 3,82 
662.  32961 3724 0,11 0,82 2,97 58042 2155 0,04 -0,11 2,75 
663.  11506 1403 0,12 -0,75 4,37 12206 1962 0,16 -0,60 4,24 
664.  53664 1912 0,04 0,14 2,72 31435 3628 0,12 0,48 2,62 
665.  22347 1761 0,08 0,10 3,60 36424 1991 0,05 -0,25 3,19 
666.  36019 1807 0,05 -0,21 2,50 24107 1855 0,08 -0,07 2,61 
667.  52696 1946 0,04 -0,11 3,18 32500 3498 0,11 0,19 2,64 
668.  40679 2578 0,06 -0,34 2,83 23373 1377 0,06 -0,22 2,32 
669.  46026 1730 0,04 0,31 3,31 28206 4763 0,17 0,77 2,90 
670.  39284 1712 0,04 0,37 2,94 67667 5541 0,08 -0,10 2,89 
671.  11270 3418 0,30 0,25 2,30 12703 2084 0,16 0,16 2,32 
672.  28237 1734 0,06 -0,07 2,37 26153 1908 0,07 0,08 2,51 
673.  25581 1467 0,06 0,46 3,27 30441 2735 0,09 0,07 1,99 
674.  19382 1479 0,08 -0,05 2,90 26345 1656 0,06 0,08 2,60 
675.  28084 1594 0,06 0,05 3,67 45152 4274 0,09 -0,32 3,14 
676.  18548 2083 0,11 -0,21 2,58 20261 1168 0,06 -0,05 2,72 
677.  12626 2946 0,23 0,50 2,60 18498 1629 0,09 0,25 2,39 
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678.  25490 2135 0,08 -0,43 3,08 26216 4939 0,19 -0,23 2,93 
679.  21918 2240 0,10 0,59 2,81 38326 1427 0,04 -0,27 2,80 
680.  21819 1242 0,06 -0,01 3,26 20653 1613 0,08 -0,26 3,47 
681.  25660 3688 0,14 -0,28 3,41 26286 1548 0,06 0,32 3,54 
682.  30087 1320 0,04 0,32 3,87 49737 3562 0,07 0,61 3,45 
683.  24540 2010 0,08 -1,21 6,34 39191 4674 0,12 -1,09 6,06 
684.  18139 1361 0,08 0,51 3,42 33204 1462 0,04 0,08 2,51 
685.  41136 2804 0,07 -0,25 5,17 26563 1819 0,07 -0,08 2,90 
686.  29116 2048 0,07 0,12 2,32 25817 5112 0,20 0,01 2,50 
687.  11096 1275 0,11 -0,71 3,91 12078 1663 0,14 -0,52 3,71 
688.  27724 1986 0,07 -0,20 3,31 32903 4383 0,13 -0,10 2,54 
689.  33316 1367 0,04 -0,09 3,24 20901 2655 0,13 0,09 2,38 
690.  46055 2468 0,05 -0,06 2,96 51898 4905 0,09 0,05 2,67 
691.  30748 3566 0,12 -0,12 2,45 46908 2265 0,05 -0,07 2,79 
692.  25283 2533 0,10 -0,29 2,66 31585 1732 0,05 0,04 3,32 
693.  28463 4284 0,15 0,47 2,47 45043 1554 0,03 -0,08 2,44 
694.  10306 2500 0,24 -0,06 2,10 14562 1452 0,10 0,01 2,61 
695.  33948 2789 0,08 -0,25 2,47 22353 1468 0,07 0,00 2,52 
696.  23957 3770 0,16 -0,29 2,64 27031 7872 0,29 0,01 2,71 
697.  53230 1906 0,04 0,31 3,31 39807 5743 0,14 -0,39 2,71 
698.  31376 1483 0,05 0,18 3,29 23226 3246 0,14 -0,27 2,84 
699.  20239 1523 0,08 -0,30 3,00 30142 3289 0,11 -0,16 3,10 
700.  34931 4575 0,13 -0,01 2,90 37877 1442 0,04 -0,03 2,74 
701.  22493 3496 0,16 0,13 2,45 22109 7201 0,33 0,27 2,71 
702.  57428 2313 0,04 0,38 3,10 34146 5117 0,15 0,92 3,81 
703.  41917 2663 0,06 0,31 3,29 27025 1638 0,06 -0,45 3,04 
704.  25489 2651 0,10 -0,14 3,31 29013 1467 0,05 0,44 3,27 
705.  46827 2111 0,05 0,56 3,42 28646 5539 0,19 1,00 3,54 
706.  39012 2421 0,06 0,34 3,14 72356 3752 0,05 0,02 2,77 
707.  31175 1442 0,05 0,43 3,14 48132 3739 0,08 -0,20 2,91 
708.  27983 1493 0,05 -0,02 3,47 44206 3296 0,07 -0,23 2,88 
709.  35420 1520 0,04 -0,24 3,04 67477 4694 0,07 -0,47 2,71 
710.  27744 3934 0,14 0,69 2,90 45960 1753 0,04 0,06 2,59 
711.  37124 4131 0,11 -0,15 2,96 35672 1829 0,05 0,05 3,00 
712.  23158 1366 0,06 0,44 3,75 27091 3157 0,12 -0,81 4,16 
713.  28911 1820 0,06 0,42 2,48 19365 3899 0,20 0,24 2,20 
714.  22518 3155 0,14 -0,09 2,58 27193 6362 0,23 0,20 2,94 
715.  27066 3174 0,12 -0,23 2,56 27663 7236 0,26 0,02 2,45 
716.  45957 1865 0,04 0,33 3,12 32706 4429 0,14 0,03 2,78 
717.  43371 1730 0,04 -0,33 3,44 56557 4419 0,08 0,04 2,71 
718.  16531 1256 0,08 0,68 4,90 15193 2167 0,14 -0,13 2,63 
719.  45417 2163 0,05 -0,01 2,75 49221 6397 0,13 -0,30 2,53 
720.  35853 5619 0,16 -0,24 3,06 26236 2058 0,08 -0,51 3,46 
721.  40858 2464 0,06 0,17 2,80 24441 1450 0,06 0,29 3,28 
722.  36557 3286 0,09 -0,32 2,91 27606 1313 0,05 0,46 3,88 
723.  20393 1492 0,07 -0,49 2,91 28569 3373 0,12 -0,18 2,93 
724.  32963 1571 0,05 0,39 3,62 36788 4399 0,12 0,00 2,72 
725.  37217 1601 0,04 0,06 2,44 65856 4273 0,06 -0,63 4,00 
726.  24714 3103 0,13 -0,19 3,02 31294 6501 0,21 -0,08 2,76 
727.  39209 1697 0,04 0,23 2,45 52239 5094 0,10 -0,02 2,78 
728.  45985 1779 0,04 0,49 3,70 26231 2341 0,09 0,38 2,37 
729.  31385 1674 0,05 0,51 2,91 21724 3474 0,16 0,26 3,11 
730.  27743 4907 0,18 0,90 3,30 40688 1813 0,04 0,31 2,92 
731.  21257 1324 0,06 -0,12 2,89 36283 1962 0,05 -0,42 2,61 
732.  34868 2161 0,06 0,17 2,60 27018 5444 0,20 0,00 2,52 
733.  9843 2831 0,29 0,55 2,53 9270 4617 0,50 0,68 2,67 
734.  35739 1755 0,05 0,42 3,22 38422 4866 0,13 -0,08 2,32 
735.  28805 3277 0,11 -0,41 2,98 39124 1775 0,05 -0,06 2,99 
736.  40346 1832 0,05 -0,03 3,08 67996 4222 0,06 0,01 2,63 
737.  17326 3608 0,21 0,83 3,68 27254 1549 0,06 0,70 3,45 
738.  39287 2930 0,07 -0,21 2,79 57076 3574 0,06 -0,36 3,41 
739.  26365 2917 0,11 -0,17 2,89 36292 1838 0,05 -0,53 2,63 
740.  35064 2566 0,07 0,26 3,16 58248 2784 0,05 -0,44 3,53 
741.  28680 1990 0,07 -0,49 3,02 26148 5458 0,21 0,08 2,83 
742.  39113 3327 0,09 0,20 2,19 64412 3390 0,05 -0,16 3,00 
743.  19257 2376 0,12 0,16 2,74 17504 4709 0,27 0,32 3,01 
744.  11231 2247 0,20 -0,78 3,01 14498 1520 0,10 -0,53 2,94 
745.  30210 3549 0,12 -0,45 2,55 26111 1634 0,06 0,29 3,21 
746.  44096 2526 0,06 0,23 3,37 43276 3658 0,08 -0,16 3,70 
747.  34951 2248 0,06 -0,27 2,98 63369 6036 0,10 -0,10 2,97 
748.  21479 1906 0,09 0,50 2,58 14247 3943 0,28 0,67 2,50 
749.  40597 1917 0,05 0,09 2,46 55373 5902 0,11 -0,42 4,12 
750.  36533 4152 0,11 0,11 2,40 59612 2599 0,04 0,20 3,52 
751.  48809 2806 0,06 -0,31 2,66 58203 5015 0,09 -0,24 2,69 
752.  38775 1678 0,04 -0,02 2,73 57742 5136 0,09 -0,25 2,40 
753.  32887 2509 0,08 -0,20 2,61 45861 6771 0,15 -0,09 2,66 
754.  12547 3096 0,25 0,55 2,80 11393 5229 0,46 0,62 2,88 
755.  26778 2119 0,08 -0,19 2,85 38768 2168 0,06 -0,16 3,05 
756.  38165 2004 0,05 -0,26 2,86 51717 3472 0,07 -0,34 2,64 
757.  45038 2532 0,06 -0,03 2,92 58109 4607 0,08 -0,19 2,80 
758.  43711 2030 0,05 -0,06 3,31 23342 1540 0,07 0,55 2,95 
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759.  46337 2385 0,05 -0,25 2,89 43927 4090 0,09 -0,11 3,00 
760.  34938 4341 0,12 -0,17 2,89 48327 1833 0,04 -0,14 2,95 
761.  25904 1934 0,07 -0,09 2,80 21470 4166 0,19 -0,13 2,42 
762.  21441 3650 0,17 -0,25 2,99 20472 1785 0,09 -0,32 2,98 
763.  23500 1695 0,07 0,06 3,45 21840 3743 0,17 -0,15 2,98 
764.  35782 1692 0,05 -0,42 3,64 58738 5291 0,09 -0,11 2,80 
765.  37482 3013 0,08 -0,35 2,96 32049 2003 0,06 -0,14 2,54 
766.  26969 1503 0,06 -0,17 2,97 34221 2957 0,09 -0,08 2,61 
767.  37711 1420 0,04 -0,17 2,55 73519 3873 0,05 -0,11 2,24 
768.  32201 2337 0,07 -0,06 2,72 47164 2830 0,06 0,04 3,20 
769.  29561 1665 0,06 0,10 2,90 20792 1720 0,08 -0,15 2,87 
770.  23192 2174 0,09 -0,18 3,03 21324 1202 0,06 0,07 2,69 
771.  44657 2472 0,06 -0,55 3,38 51724 4703 0,09 -0,28 3,33 
772.  33536 4300 0,13 -0,22 2,33 50579 2381 0,05 0,00 2,84 
773.  34739 1544 0,04 0,39 3,02 20954 2701 0,13 0,11 2,64 
774.  23740 1403 0,06 0,06 2,77 15741 1899 0,12 0,20 2,58 
775.  27878 2236 0,08 1,22 5,67 51506 2188 0,04 -0,44 2,71 
776.  45244 2879 0,06 -0,07 2,21 34137 3037 0,09 0,09 2,74 
777.  35491 4044 0,11 -0,07 2,50 38491 1816 0,05 0,32 2,98 
778.  26171 2794 0,11 0,00 2,37 22126 6307 0,29 0,33 2,45 
779.  30831 3214 0,10 0,66 2,91 54111 1634 0,03 0,14 3,23 
780.  16396 4630 0,28 -0,13 2,57 23045 8505 0,37 0,01 2,43 
781.  24880 3350 0,13 -0,07 2,39 23185 1507 0,06 0,09 2,97 
782.  23248 2244 0,10 -0,48 3,17 28683 1444 0,05 -0,09 3,06 
783.  24343 1029 0,04 -0,06 2,78 46985 2058 0,04 -0,02 2,52 
784.  38402 2044 0,05 0,10 2,58 48618 4129 0,08 0,35 2,58 
785.  31276 1637 0,05 0,42 2,77 59523 3254 0,05 -0,23 3,13 
786.  52032 3379 0,06 -0,08 2,54 34880 2496 0,07 0,28 3,01 
787.  49554 3817 0,08 -0,42 2,84 35764 1799 0,05 0,34 3,02 
788.  15434 1702 0,11 -0,17 2,72 18058 1220 0,07 -0,09 2,90 
789.  20295 3819 0,19 0,31 2,38 30959 1613 0,05 0,47 2,84 
790.  10223 1812 0,18 0,24 2,59 7830 2696 0,34 0,44 2,57 
791.  26292 1362 0,05 -0,02 2,57 38997 2846 0,07 -0,41 3,18 
792.  38721 2943 0,08 -0,31 2,39 59944 3642 0,06 -0,06 3,18 
793.  55698 2007 0,04 -0,35 3,51 32615 3639 0,11 0,40 2,25 
794.  40020 2796 0,07 -1,05 5,35 43843 3268 0,07 -0,07 2,36 
795.  18401 2769 0,15 -0,22 2,92 21364 5068 0,24 -0,35 2,88 
796.  43443 3352 0,08 -0,01 2,71 40196 3094 0,08 0,08 3,38 
797.  31517 1614 0,05 0,16 3,94 22999 1949 0,08 -0,55 3,56 
798.  31679 4086 0,13 -0,17 2,54 33591 1557 0,05 0,43 3,47 
799.  22335 6102 0,27 0,15 2,62 22136 3015 0,14 -0,16 2,65 
800.  26508 1906 0,07 -0,10 3,16 26425 1923 0,07 -0,28 2,41 
801.  31027 1759 0,06 -0,10 2,70 48438 4864 0,10 0,08 3,12 
802.  25885 2464 0,10 -0,09 3,01 26837 5932 0,22 0,34 3,19 
803.  47845 2579 0,05 -0,11 2,41 56877 4637 0,08 0,38 3,23 
804.  33630 4339 0,13 0,52 3,47 53053 2338 0,04 0,36 3,40 
805.  48731 4259 0,09 -0,23 2,60 31256 1569 0,05 0,28 2,95 
806.  22006 4910 0,22 0,25 2,46 29014 1814 0,06 -0,01 2,68 
807.  41232 3208 0,08 -0,14 2,80 49392 2701 0,05 0,26 2,73 
808.  27209 4214 0,15 0,17 3,12 37956 1565 0,04 -0,07 3,17 
809.  26274 2492 0,09 -0,56 3,37 42027 5519 0,13 -0,39 2,77 
810.  27510 2327 0,08 0,52 3,32 22286 5474 0,25 0,32 3,08 
811.  33989 1722 0,05 -0,43 3,44 60854 5076 0,08 -0,27 3,24 
812.  28581 2299 0,08 -0,37 3,13 39943 2002 0,05 -0,28 3,25 
813.  21519 1249 0,06 0,28 3,53 36766 1918 0,05 0,35 3,01 
814.  22938 3118 0,14 -0,75 3,86 29336 6627 0,23 -0,45 3,56 
815.  30622 2745 0,09 0,01 2,97 34014 1899 0,06 -0,48 3,46 
816.  14192 3314 0,23 0,04 2,53 17692 5588 0,32 0,16 2,68 
817.  30556 2088 0,07 -0,14 2,72 53277 6267 0,12 -0,07 2,45 
818.  22204 3466 0,16 -0,33 2,55 31230 1601 0,05 0,06 2,36 
819.  39609 2801 0,07 0,35 2,95 30739 1823 0,06 -0,33 3,70 
820.  46394 2203 0,05 0,43 4,13 52032 6235 0,12 -0,15 2,85 
821.  24022 4653 0,19 0,99 3,70 39600 1642 0,04 0,71 3,73 
822.  36085 1419 0,04 0,35 2,98 66042 4706 0,07 -0,58 2,74 
823.  17651 1090 0,06 -0,28 3,94 16131 2110 0,13 -0,29 3,03 
824.  13968 1900 0,14 -0,01 2,46 11274 3032 0,27 0,08 2,44 
825.  36493 1727 0,05 0,32 2,65 26481 4237 0,16 -0,06 2,58 
826.  50069 2271 0,05 -0,65 4,53 38804 4180 0,11 -0,37 2,91 
827.  31228 5133 0,16 0,15 2,58 45727 1970 0,04 0,09 3,06 
828.  31593 2159 0,07 0,98 3,96 20723 4895 0,24 0,58 2,55 
829.  41582 3697 0,09 0,24 2,90 36891 1663 0,05 0,36 2,92 
830.  17733 1561 0,09 0,02 3,11 19014 1401 0,07 -0,11 2,60 
831.  47577 4048 0,09 0,31 2,51 65846 4226 0,06 -0,03 2,22 
832.  24265 1507 0,06 0,47 3,13 43265 2173 0,05 0,35 3,08 
833.  17544 3559 0,20 0,10 2,30 18063 6970 0,39 0,36 2,58 
834.  35941 3450 0,10 -0,13 2,95 41019 2244 0,05 -0,23 2,65 
835.  31359 2553 0,08 0,21 2,64 28999 1666 0,06 0,27 4,31 
836.  18391 2147 0,12 0,22 3,25 15768 4123 0,26 0,15 2,87 
837.  27222 1737 0,06 0,32 3,09 19929 3567 0,18 0,03 2,56 
838.  46913 2742 0,06 -0,11 2,32 31019 2215 0,07 0,22 2,44 
839.  16776 2947 0,18 0,70 3,28 26220 1334 0,05 0,34 2,52 
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840.  36701 1408 0,04 -0,17 2,60 58659 4988 0,09 -0,25 2,49 
841.  23990 4464 0,19 -0,17 2,91 24784 1879 0,08 -0,31 2,96 
842.  30107 4977 0,17 -0,03 2,96 26061 2045 0,08 -0,15 2,85 
843.  42604 2361 0,06 0,26 2,74 32483 2698 0,08 -0,17 3,45 
844.  39083 1790 0,05 0,91 5,26 63278 5330 0,08 -0,48 3,26 
845.  22295 2631 0,12 0,48 2,47 38342 1627 0,04 -0,30 4,15 
846.  19816 1272 0,06 -0,04 3,25 15266 2187 0,14 -0,01 3,16 
847.  36951 2010 0,05 0,48 5,47 59290 4062 0,07 -0,11 2,62 
848.  25591 1838 0,07 -0,44 4,05 27552 1419 0,05 -0,09 2,85 
849.  37362 1728 0,05 -0,19 2,89 32008 5247 0,16 -0,05 3,03 
850.  20349 3580 0,18 0,41 2,38 31414 1470 0,05 0,19 2,66 
851.  26120 1348 0,05 0,60 3,39 49594 2222 0,04 0,03 3,27 
852.  35530 1686 0,05 -0,10 2,72 41536 4546 0,11 -0,07 2,78 
853.  24017 2637 0,11 -0,31 2,51 34262 1448 0,04 -0,37 3,78 
854.  22487 2673 0,12 0,17 2,38 27079 1485 0,05 0,18 3,01 
855.  15294 1267 0,08 0,00 2,66 16962 2149 0,13 -0,21 2,12 
856.  39212 4637 0,12 0,00 2,67 30448 1678 0,06 0,02 2,85 
857.  47474 2278 0,05 0,19 2,75 51784 5999 0,12 -0,34 2,98 
858.  35634 1936 0,05 -0,36 2,57 35372 2863 0,08 -0,26 2,12 
859.  32808 1466 0,04 0,33 2,45 20653 3602 0,17 0,44 2,37 
860.  32432 2225 0,07 -0,35 2,94 55796 5739 0,10 -0,13 2,28 
861.  21307 1668 0,08 -0,54 3,38 18008 3325 0,18 -0,29 2,99 
862.  24982 1498 0,06 0,64 3,28 22120 3471 0,16 -0,25 2,70 
863.  26559 3355 0,13 0,07 2,47 23918 7632 0,32 0,23 2,48 
864.  17733 3770 0,21 0,52 2,64 27011 1652 0,06 0,35 2,83 
865.  29623 1805 0,06 0,35 2,52 18951 4296 0,23 0,77 3,07 
866.  35785 1696 0,05 -0,01 2,75 58214 4275 0,07 -0,20 2,60 
867.  27939 1418 0,05 0,26 2,90 35471 3067 0,09 -0,76 3,66 
868.  33556 1899 0,06 -0,17 2,80 30195 2879 0,10 -0,36 3,90 
869.  27349 2015 0,07 0,18 2,92 25110 4741 0,19 -0,09 2,61 
870.  46387 2305 0,05 -0,22 3,69 42629 4670 0,11 -0,23 2,49 
871.  41704 2158 0,05 -0,28 3,14 41889 6504 0,16 -0,02 2,96 
872.  46316 3245 0,07 -0,08 3,46 62592 3724 0,06 -0,10 2,70 
873.  53664 2063 0,04 0,24 2,80 30843 3458 0,11 0,43 2,28 
874.  28016 1321 0,05 0,00 3,28 46756 3748 0,08 -0,33 3,52 
875.  12704 1210 0,10 -0,21 2,55 12031 1738 0,14 -0,48 3,37 
876.  31324 4020 0,13 0,07 3,17 24385 1848 0,08 -0,43 3,05 
877.  44347 3743 0,08 0,52 3,07 70409 3427 0,05 -0,29 2,80 
878.  15104 2254 0,15 0,63 2,69 25471 1049 0,04 0,19 3,00 
879.  37531 1608 0,04 0,01 2,49 42676 4118 0,10 -0,01 2,88 
880.  32538 1822 0,06 -0,02 3,46 47711 4715 0,10 -0,12 3,20 
881.  33137 2980 0,09 0,68 2,93 60413 2212 0,04 -0,26 2,70 
882.  54121 2192 0,04 -0,18 2,99 30535 3014 0,10 0,48 2,52 
883.  42318 2148 0,05 0,11 3,80 66931 4848 0,07 -0,04 2,99 
884.  39418 3092 0,08 -0,18 3,02 41921 3038 0,07 0,05 4,14 
885.  34112 1879 0,06 0,02 3,36 56869 3936 0,07 -0,28 2,20 
886.  25479 4714 0,19 -0,36 2,76 20178 2313 0,11 -0,44 2,97 
887.  47889 3948 0,08 -0,34 3,13 33355 1669 0,05 -0,13 2,94 
888.  44265 2507 0,06 -0,12 3,32 63463 4477 0,07 -0,66 2,89 
889.  29988 3212 0,11 0,52 2,96 22929 7136 0,31 0,58 2,48 
890.  14424 2250 0,16 -0,49 3,29 14982 3721 0,25 -0,40 2,98 
891.  35178 2291 0,07 -0,35 3,31 28884 1616 0,06 -0,44 2,83 
892.  35251 1820 0,05 0,17 3,20 62641 5424 0,09 -0,03 2,67 
893.  38691 2947 0,08 -0,17 2,84 39769 2066 0,05 -0,17 2,67 
894.  49180 3465 0,07 -0,14 2,29 59690 4324 0,07 -0,47 3,26 
895.  34159 1812 0,05 -0,69 3,74 36846 3480 0,09 -0,13 2,48 
896.  25690 1082 0,04 0,14 2,54 48190 2824 0,06 -0,47 2,80 
897.  31017 1354 0,04 -0,37 3,08 57484 3535 0,06 -0,17 3,24 
898.  34468 4479 0,13 0,31 2,39 57165 2215 0,04 -0,30 2,92 
899.  38089 1899 0,05 -0,64 3,50 46332 5395 0,12 -0,05 2,93 
900.  53417 1968 0,04 0,09 2,72 30243 3211 0,11 0,71 2,95 
901.  18041 1633 0,09 -0,44 3,54 26158 3534 0,14 -0,04 3,06 
902.  53181 2782 0,05 -0,36 3,02 33254 2645 0,08 -0,15 2,52 
903.  22304 1187 0,05 0,07 2,36 14134 2159 0,15 0,22 2,49 
904.  19255 1312 0,07 0,09 2,63 32216 1868 0,06 -0,63 4,07 
905.  47358 1976 0,04 0,05 2,67 30110 3753 0,12 0,51 3,46 
906.  32740 1471 0,04 0,03 2,56 44156 4376 0,10 0,00 2,32 
907.  40415 1787 0,04 -0,14 2,91 51451 4587 0,09 -0,11 2,62 
908.  44473 2125 0,05 -0,07 3,05 65960 5045 0,08 -0,09 2,64 
909.  28934 1355 0,05 0,14 3,59 50220 3883 0,08 0,19 2,49 
910.  28421 2291 0,08 -0,33 2,93 31124 5574 0,18 -0,11 2,98 
911.  30775 2248 0,07 0,16 3,31 39692 2462 0,06 -0,38 3,15 
912.  37065 4244 0,11 0,08 2,22 59525 2879 0,05 -0,48 3,98 
913.  23711 3364 0,14 0,08 2,26 32887 1422 0,04 -0,10 2,70 
914.  30030 1654 0,06 0,18 2,98 28038 2570 0,09 0,24 2,94 
915.  52075 2811 0,05 0,44 2,43 49109 4377 0,09 -0,40 2,96 
916.  19869 2303 0,12 0,06 2,89 30666 1389 0,05 0,50 2,99 
917.  17970 2451 0,14 0,45 2,30 13246 4602 0,35 0,59 2,57 
918.  35469 2462 0,07 0,02 2,97 59986 3264 0,05 0,03 2,54 
919.  27382 2388 0,09 -0,44 3,78 35070 5560 0,16 -0,62 4,47 
920.  18728 1293 0,07 -0,18 4,64 15644 1610 0,10 -0,77 3,77 
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921.  25374 1913 0,08 0,14 3,23 43040 1986 0,05 0,14 3,41 
922.  27213 2452 0,09 -0,14 3,06 37524 2347 0,06 -0,12 3,23 
923.  46712 2588 0,06 -0,16 4,47 62419 4072 0,07 -0,70 3,77 
924.  28118 1570 0,06 -0,13 2,89 27941 3481 0,12 -0,30 2,84 
925.  18631 1625 0,09 -0,24 3,34 25338 1504 0,06 -0,29 3,17 
926.  18094 4769 0,26 0,80 3,44 26125 2043 0,08 0,34 2,55 
927.  25795 1850 0,07 -0,22 2,85 34568 1821 0,05 0,05 2,59 
928.  15319 3017 0,20 -0,03 2,52 20456 1535 0,08 -0,11 2,57 
929.  50468 2771 0,05 -0,12 2,86 37100 3236 0,09 -0,03 3,40 
930.  33818 1805 0,05 -0,21 2,39 58578 2957 0,05 0,01 2,72 
931.  40731 3531 0,09 0,28 2,62 65772 3257 0,05 -0,64 3,83 
932.  41676 1915 0,05 -0,36 2,77 40915 4032 0,10 0,11 2,70 
933.  23236 4122 0,18 0,48 3,23 32646 1538 0,05 0,01 2,73 
934.  58136 2025 0,03 0,30 3,01 37038 5669 0,15 0,27 2,21 
935.  33052 1812 0,05 0,04 2,53 33715 2658 0,08 -0,26 2,49 
936.  39454 3822 0,10 -0,08 2,39 39385 2100 0,05 0,46 3,96 
937.  34727 1814 0,05 0,50 3,46 21760 4544 0,21 0,54 2,58 
938.  47322 2029 0,04 0,39 3,40 30188 4105 0,14 0,15 2,13 
939.  11148 2481 0,22 0,09 2,13 9761 3925 0,40 0,19 1,96 
940.  33313 2654 0,08 -0,18 3,40 25974 1439 0,06 0,30 3,83 
941.  26937 2978 0,11 0,23 2,73 26294 6577 0,25 0,16 2,25 
942.  21236 5153 0,24 -0,08 2,51 20620 2493 0,12 -0,13 2,74 
943.  34942 2903 0,08 0,12 2,39 50703 2634 0,05 -0,07 2,80 
944.  23114 1098 0,05 0,20 2,37 32960 2469 0,07 -0,50 3,43 
945.  35022 3302 0,09 0,07 3,03 54539 2510 0,05 -0,54 3,74 
946.  26025 1225 0,05 0,40 2,75 46607 2930 0,06 0,10 2,24 
947.  18049 4382 0,24 -0,25 2,28 22643 8222 0,36 -0,17 2,18 
948.  25890 1195 0,05 0,22 2,43 18913 2189 0,12 -0,05 2,65 
949.  40297 1687 0,04 0,44 3,65 62856 5615 0,09 -0,44 3,00 
950.  39468 1821 0,05 0,12 2,91 27905 5129 0,18 0,07 2,15 
951.  55630 2209 0,04 0,19 2,82 35942 4609 0,13 0,19 2,22 
952.  21522 2265 0,11 -0,20 2,42 19133 4753 0,25 -0,08 2,25 
953.  16889 1720 0,10 -0,23 3,71 15087 2971 0,20 -0,25 2,75 
954.  18925 1380 0,07 -0,20 2,47 13243 2625 0,20 -0,01 2,46 
955.  15607 1895 0,12 0,40 2,58 11199 3293 0,29 0,51 2,49 
956.  50730 2767 0,05 -0,22 3,01 63624 5303 0,08 -0,20 3,46 
957.  15608 3858 0,25 0,51 2,52 14720 7239 0,49 0,51 2,38 
958.  12868 2528 0,20 0,48 2,27 10124 4251 0,42 0,69 2,64 
959.  21557 3682 0,17 -0,18 2,45 25882 1588 0,06 -0,21 2,88 
960.  23808 1376 0,06 0,00 2,66 36978 2830 0,08 -0,28 2,90 
961.  13935 3226 0,23 0,17 2,09 18873 1821 0,10 0,08 2,17 
962.  28842 4662 0,16 0,10 2,39 41240 1887 0,05 0,31 2,58 
963.  28139 2490 0,09 -0,40 3,66 20795 1334 0,06 0,17 2,52 
964.  22349 1346 0,06 0,17 2,55 19739 2747 0,14 -0,05 2,28 
965.  43514 3646 0,08 -0,42 3,18 27501 1339 0,05 -0,04 3,42 
966.  35449 2540 0,07 0,54 4,20 48691 3355 0,07 0,05 3,35 
967.  23618 1970 0,08 0,32 2,09 42217 1892 0,04 -0,45 3,49 
968.  26228 1877 0,07 0,18 2,64 21147 4397 0,21 0,18 2,72 
969.  27957 1965 0,07 -0,31 2,84 24713 1735 0,07 -0,15 2,74 
970.  19702 3699 0,19 -0,17 2,54 21031 1826 0,09 -0,45 2,68 
971.  28733 5121 0,18 0,01 2,51 36168 1801 0,05 0,13 2,71 
972.  32370 1596 0,05 -0,36 2,44 42657 4143 0,10 -0,23 3,21 
973.  40424 2640 0,07 -0,18 2,94 37457 2576 0,07 0,07 3,30 
974.  27688 1605 0,06 -0,14 3,13 31168 3078 0,10 0,02 3,21 
975.  18825 1201 0,06 -0,31 3,24 16970 1756 0,10 -0,30 2,81 
976.  37171 2290 0,06 1,03 4,46 23472 5065 0,22 0,63 2,79 
977.  27809 2250 0,08 0,73 2,85 18320 5127 0,28 0,88 3,22 
978.  37523 2483 0,07 -0,39 3,58 30657 2280 0,07 -0,14 3,70 
979.  24022 5669 0,24 0,36 3,30 24158 2741 0,11 0,37 3,35 
980.  37049 1859 0,05 0,20 2,95 33503 5362 0,16 0,20 2,51 
981.  30323 2143 0,07 0,07 2,67 21763 5218 0,24 0,34 2,64 
982.  31313 1442 0,05 -0,02 2,54 58025 4349 0,07 0,11 2,48 
983.  16064 2380 0,15 -0,32 3,36 20300 4216 0,21 -0,46 3,34 
984.  18754 1473 0,08 0,06 2,61 14732 2710 0,18 0,02 2,64 
985.  10806 3018 0,28 -0,05 2,82 12936 1901 0,15 0,26 3,47 
986.  42723 3918 0,09 -0,13 2,34 30991 1454 0,05 -0,33 4,05 
987.  37441 3070 0,08 0,48 2,95 61551 2895 0,05 -0,35 3,10 
988.  31216 1841 0,06 0,03 3,14 52573 3641 0,07 -0,55 3,38 
989.  24478 1491 0,06 0,31 2,90 44738 2101 0,05 -0,42 3,06 
990.  43847 3282 0,07 -0,11 2,80 61090 4099 0,07 0,10 3,35 
991.  23630 2091 0,09 -0,31 4,44 17778 1145 0,06 0,02 2,98 
992.  36270 2010 0,06 -0,61 3,62 38124 6017 0,16 -0,21 2,92 
993.  31723 1285 0,04 0,31 3,16 61711 3393 0,05 -0,28 3,17 
994.  43333 4021 0,09 0,15 2,89 51142 2539 0,05 -0,09 3,43 
995.  54510 2260 0,04 0,05 2,39 36027 4613 0,13 -0,06 2,31 
996.  46740 2366 0,05 0,18 2,98 61996 4563 0,07 -0,13 2,73 
997.  30407 2901 0,10 -0,02 2,51 50067 6958 0,14 0,27 3,00 
998.  45818 2295 0,05 -0,30 3,31 61136 5160 0,08 0,15 2,54 
999.  18382 1433 0,08 0,46 2,63 33888 1409 0,04 0,17 2,56 

1000.  24691 3583 0,15 0,09 2,65 34303 1364 0,04 0,90 5,02 
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Frequency distributions of the intermediate effort assessments (Yi) per sample instance 

In the flowing table, each row of the table represents the corresponding sample instance in 
Appendix B. In each row of the table (for each sample instance i), several statistical 
parameters of the frequency distribution of the intermediate effort assessments Yi (per 
design alternative) of several applied scenarios (λ=200) for a single (indicative) simulation 
are presented. Parameter μ represents the mean value, σ is the standard deviation, CV=σ/μ 
is the coefficient of variation, ‘skew’ is the skewness, and ‘kurt’ is the kurtosis of each 
frequency distribution. Since the intermediate effort outcome (Yi) is a heavily stochastic 
variable expressing the required effort per applied scenario, all the parameters of its 
frequency distribution variate significantly among different sample instances. CV lies 
between 0.43 and 2.88, skewness between 0.16 and 11.43, and kurtosis between 2.31 and 
149.62, as discussed in subsection 6.4.9.4. 

Statistical Parameters of Intermediate Effort of Repeated Applied Scenarios (of a Single 
Simulation) per Sample Instance 

inst. Distribution of CVP intermediate effort Distribution of CIBI intermediate effort 
n. μ σ CV skew kurt μ σ CV skew kurt 

1.  153,69 94,57 0,62 1,24 5,01 177,59 210,43 1,18 2,00 6,63 
2.  112,58 115,54 1,03 2,55 9,79 138,48 68,24 0,49 0,67 2,88 
3.  208,13 141,72 0,68 2,02 10,97 309,35 195,72 0,63 1,09 3,81 
4.  117,76 135,20 1,15 2,91 13,89 139,15 86,68 0,62 1,84 8,11 
5.  183,75 106,94 0,58 1,13 4,85 102,54 60,60 0,59 1,03 4,38 
6.  59,03 54,34 0,92 3,04 19,01 69,08 116,24 1,68 3,42 19,32 
7.  46,32 40,24 0,87 3,38 19,68 75,73 46,24 0,61 1,10 5,33 
8.  161,29 109,67 0,68 1,92 8,29 260,51 127,16 0,49 0,93 3,86 
9.  106,92 56,40 0,53 1,07 5,46 208,65 103,53 0,50 1,55 6,69 
10.  84,64 74,97 0,89 2,79 17,38 116,01 156,30 1,35 3,07 18,07 
11.  140,12 85,41 0,61 2,88 20,70 122,35 119,05 0,97 2,06 7,61 
12.  161,19 195,08 1,21 4,87 43,01 121,73 92,85 0,76 4,76 43,70 
13.  130,25 72,68 0,56 1,22 6,98 257,04 131,88 0,51 1,68 9,03 
14.  195,20 112,98 0,58 2,08 11,44 357,50 160,68 0,45 0,81 3,48 
15.  103,17 79,12 0,77 2,04 7,99 154,52 81,81 0,53 0,99 4,40 
16.  172,40 112,26 0,65 1,81 7,70 288,63 177,97 0,62 2,11 10,34 
17.  48,30 55,15 1,14 2,79 11,37 59,17 35,95 0,61 1,09 4,65 
18.  258,87 135,95 0,53 1,19 4,99 152,94 93,84 0,61 1,81 8,09 
19.  171,48 165,24 0,96 1,87 6,63 178,12 109,96 0,62 1,35 6,03 
20.  269,02 143,04 0,53 0,87 4,16 199,94 127,48 0,64 1,52 5,85 
21.  168,06 134,14 0,80 1,95 8,60 158,07 103,02 0,65 1,56 7,54 
22.  48,59 71,34 1,47 3,42 14,68 58,18 149,67 2,57 3,61 15,37 
23.  133,45 78,70 0,59 1,36 8,75 258,66 122,96 0,48 0,72 3,21 
24.  159,40 135,75 0,85 1,99 10,12 122,75 73,55 0,60 1,51 7,55 
25.  173,37 112,54 0,65 2,08 11,84 214,56 202,00 0,94 2,00 9,38 
26.  181,19 94,61 0,52 1,04 4,13 207,82 176,06 0,85 1,45 5,52 
27.  126,51 85,54 0,68 2,25 11,76 207,00 107,47 0,52 0,82 3,70 
28.  137,28 107,02 0,78 2,99 18,00 205,43 139,49 0,68 0,88 4,18 
29.  50,35 36,96 0,73 3,61 20,81 31,78 62,96 1,98 7,58 61,75 
30.  110,77 64,82 0,59 1,30 6,89 205,68 117,58 0,57 1,23 6,40 
31.  69,52 39,59 0,57 1,79 8,49 48,01 65,67 1,37 4,64 29,16 
32.  191,03 110,15 0,58 0,95 5,02 234,69 189,95 0,81 1,37 5,00 
33.  137,44 157,67 1,15 7,38 81,79 82,95 81,10 0,98 6,53 69,03 
34.  153,07 87,43 0,57 0,97 4,77 184,70 181,37 0,98 1,75 6,70 
35.  128,59 89,18 0,69 1,05 4,53 221,27 197,81 0,89 0,98 3,84 
36.  219,47 108,83 0,50 0,49 3,34 245,95 186,60 0,76 1,28 3,99 
37.  161,47 105,74 0,65 1,67 7,45 199,33 243,43 1,22 1,98 7,32 
38.  214,18 138,73 0,65 1,34 5,34 267,07 193,47 0,72 1,13 4,83 
39.  212,45 216,70 1,02 1,93 8,03 169,16 104,37 0,62 1,14 5,83 
40.  225,20 141,72 0,63 1,62 7,40 212,13 143,92 0,68 1,07 4,05 
41.  66,96 67,67 1,01 3,72 19,80 106,82 56,89 0,53 1,63 7,18 
42.  211,49 149,42 0,71 2,68 15,49 242,79 216,10 0,89 5,21 48,94 
43.  248,17 149,21 0,60 1,47 6,56 211,74 183,44 0,87 2,30 10,38 
44.  92,35 55,50 0,60 1,14 5,02 99,88 106,41 1,07 1,75 6,07 
45.  165,18 92,71 0,56 1,32 6,97 296,19 163,93 0,55 0,77 3,49 
46.  247,98 137,30 0,55 1,79 8,36 141,96 106,91 0,75 2,60 13,11 
47.  238,15 143,28 0,60 2,24 10,83 129,57 91,29 0,70 1,75 7,20 
48.  222,81 185,14 0,83 3,12 24,38 133,89 89,72 0,67 3,05 24,63 
49.  167,32 105,00 0,63 1,31 5,59 124,97 92,65 0,74 2,18 9,69 
50.  110,80 109,05 0,98 2,18 8,92 112,33 60,84 0,54 1,22 6,55 
51.  154,15 188,44 1,22 2,25 9,52 126,35 86,42 0,68 1,78 8,47 
52.  225,62 135,67 0,60 1,37 5,84 272,03 195,62 0,72 1,27 5,05 
53.  251,50 122,38 0,49 0,65 3,60 169,21 137,81 0,81 2,46 10,36 
54.  93,18 155,79 1,67 2,72 10,06 91,68 69,95 0,76 2,09 8,23 
55.  25,47 36,08 1,42 7,19 62,07 41,37 24,51 0,59 2,04 10,66 
56.  243,13 154,08 0,63 1,27 5,57 258,54 198,83 0,77 1,31 4,40 
57.  189,65 163,35 0,86 1,83 7,49 166,54 103,16 0,62 1,15 4,52 
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inst. Distribution of CVP intermediate effort Distribution of CIBI intermediate effort 
n. μ σ CV skew kurt μ σ CV skew kurt 

58.  249,03 206,57 0,83 1,52 6,28 171,54 100,64 0,59 1,12 5,19 
59.  167,86 103,03 0,61 0,83 4,69 315,34 203,73 0,65 1,00 4,96 
60.  250,18 172,23 0,69 2,20 11,94 155,88 91,38 0,59 1,76 8,32 
61.  152,91 94,16 0,62 0,76 4,48 293,79 188,58 0,64 0,88 4,55 
62.  157,18 269,86 1,72 8,32 92,35 152,28 136,33 0,90 6,85 72,97 
63.  169,75 172,36 1,02 2,80 13,36 181,96 109,07 0,60 2,45 15,80 
64.  206,48 124,82 0,60 0,69 3,29 157,65 125,56 0,80 3,87 26,07 
65.  121,54 139,31 1,15 2,44 10,24 119,90 71,57 0,60 1,51 6,43 
66.  218,91 129,56 0,59 1,18 4,43 224,12 168,12 0,75 1,79 7,79 
67.  99,50 77,87 0,78 1,90 7,73 125,79 77,56 0,62 0,94 4,00 
68.  238,13 151,11 0,63 0,75 4,08 150,47 107,24 0,71 3,68 29,14 
69.  181,08 141,37 0,78 1,40 4,90 210,28 156,41 0,74 2,59 14,40 
70.  164,87 107,69 0,65 2,66 16,06 116,25 130,43 1,12 4,59 33,52 
71.  159,83 93,12 0,58 1,74 8,02 125,69 128,72 1,02 2,68 11,94 
72.  198,27 100,33 0,51 0,67 3,04 144,48 151,04 1,05 2,99 13,09 
73.  63,88 50,63 0,79 2,97 14,90 54,57 106,53 1,95 4,18 21,05 
74.  92,77 69,85 0,75 1,51 5,74 116,16 157,45 1,36 1,90 6,12 
75.  123,54 96,17 0,78 2,51 13,26 147,11 198,69 1,35 2,93 14,85 
76.  189,36 105,47 0,56 2,08 9,60 101,45 63,25 0,62 1,80 7,50 
77.  74,22 104,37 1,41 4,31 24,15 103,13 53,56 0,52 2,01 9,80 
78.  199,03 142,97 0,72 1,19 4,38 251,17 173,32 0,69 2,02 10,07 
79.  265,27 163,68 0,62 1,14 4,80 181,00 145,73 0,81 2,32 10,92 
80.  202,63 127,59 0,63 1,15 4,57 155,91 103,07 0,66 1,73 6,98 
81.  77,47 51,38 0,66 2,02 10,15 128,07 63,43 0,50 0,54 3,26 
82.  239,26 153,29 0,64 1,02 4,21 176,84 116,14 0,66 2,11 10,44 
83.  184,78 109,60 0,59 0,78 4,60 299,84 223,58 0,75 1,14 5,23 
84.  56,56 54,91 0,97 2,98 13,84 90,04 53,80 0,60 1,50 7,28 
85.  200,89 114,43 0,57 1,20 5,55 120,27 75,45 0,63 1,68 7,13 
86.  131,96 74,86 0,57 1,54 7,20 114,57 137,19 1,20 3,36 16,47 
87.  111,44 72,02 0,65 1,40 5,83 94,68 78,36 0,83 2,06 9,05 
88.  189,14 123,87 0,65 2,39 13,35 330,43 180,94 0,55 1,52 9,75 
89.  146,18 75,79 0,52 0,33 3,17 287,22 153,16 0,53 0,36 3,05 
90.  183,41 110,87 0,60 1,01 4,33 297,17 186,36 0,63 1,00 3,95 
91.  143,09 77,87 0,54 0,84 4,86 292,16 146,89 0,50 1,14 5,28 
92.  169,00 113,11 0,67 1,05 3,91 164,79 110,26 0,67 1,09 4,35 
93.  158,92 94,36 0,59 1,57 7,05 258,57 178,64 0,69 1,29 5,65 
94.  81,45 45,92 0,56 1,84 10,40 160,56 87,84 0,55 2,29 12,03 
95.  115,71 66,97 0,58 0,96 4,34 164,85 122,83 0,75 1,15 4,61 
96.  134,80 86,71 0,64 1,36 5,23 164,35 185,01 1,13 2,00 7,01 
97.  215,55 111,22 0,52 1,32 5,42 115,22 57,69 0,50 1,05 4,66 
98.  176,98 95,28 0,54 0,74 3,46 246,93 202,81 0,82 0,99 3,24 
99.  168,04 101,07 0,60 1,17 4,75 189,47 212,00 1,12 1,76 5,95 
100.  221,29 179,78 0,81 2,25 9,89 240,54 161,49 0,67 1,28 5,27 
101.  178,08 100,86 0,57 1,25 5,82 203,74 217,03 1,07 1,99 7,59 
102.  228,22 163,89 0,72 1,38 4,70 232,66 139,45 0,60 1,26 6,16 
103.  84,97 49,71 0,59 1,02 4,14 65,90 65,24 0,99 3,30 18,73 
104.  174,90 109,46 0,63 1,16 4,99 155,54 138,98 0,89 4,59 34,64 
105.  109,64 89,48 0,82 1,21 4,30 165,22 197,93 1,20 1,38 4,19 
106.  175,30 104,96 0,60 1,27 6,35 328,45 193,25 0,59 1,85 8,64 
107.  60,54 66,76 1,10 4,22 23,68 93,27 47,41 0,51 1,02 4,46 
108.  165,55 82,58 0,50 0,78 4,31 324,68 166,85 0,51 0,83 4,15 
109.  146,28 101,05 0,69 1,12 4,09 115,09 78,32 0,68 2,40 16,04 
110.  114,00 117,06 1,03 2,02 7,66 111,01 74,24 0,67 2,24 11,45 
111.  271,02 160,11 0,59 1,41 6,22 185,06 171,83 0,93 4,37 33,91 
112.  120,76 98,41 0,81 1,66 6,04 134,06 81,46 0,61 1,05 4,75 
113.  283,53 162,59 0,57 1,38 6,37 146,93 86,38 0,59 1,74 8,27 
114.  171,25 105,10 0,61 1,57 6,62 261,54 155,81 0,60 0,72 3,22 
115.  246,74 144,44 0,59 0,97 4,33 245,19 223,51 0,91 2,26 9,70 
116.  145,11 78,40 0,54 1,27 6,21 119,08 149,08 1,25 3,39 15,78 
117.  206,60 109,14 0,53 1,31 5,90 129,37 120,59 0,93 3,36 17,56 
118.  122,36 61,53 0,50 1,54 8,69 60,60 32,72 0,54 1,18 7,50 
119.  164,38 92,90 0,57 0,86 3,93 232,04 200,85 0,87 1,23 4,41 
120.  102,17 119,53 1,17 1,71 5,70 167,35 252,13 1,51 1,76 5,55 
121.  263,32 142,62 0,54 1,01 4,00 226,07 193,47 0,86 1,64 5,41 
122.  174,25 121,68 0,70 1,43 5,22 237,70 173,62 0,73 1,99 9,74 
123.  142,13 86,53 0,61 1,54 6,63 172,13 117,75 0,68 1,22 4,81 
124.  195,45 167,61 0,86 2,26 13,84 137,22 83,72 0,61 1,87 11,31 
125.  257,00 140,56 0,55 0,91 3,67 169,55 151,23 0,89 4,37 29,71 
126.  161,93 135,99 0,84 3,67 22,63 289,73 174,02 0,60 2,93 22,23 
127.  89,01 44,21 0,50 0,87 3,96 53,43 65,46 1,23 4,99 30,66 
128.  169,74 127,59 0,75 2,31 13,46 309,29 265,02 0,86 2,27 12,56 
129.  122,26 75,43 0,62 1,01 4,62 184,00 138,81 0,75 1,41 5,96 
130.  127,74 120,64 0,94 1,77 6,30 124,02 80,66 0,65 1,57 6,74 
131.  227,25 141,18 0,62 1,44 6,64 209,80 257,32 1,23 3,32 16,72 
132.  127,26 111,78 0,88 2,40 9,71 173,35 88,69 0,51 1,05 4,91 
133.  75,40 50,97 0,68 1,53 6,17 108,10 87,21 0,81 1,73 8,30 
134.  221,33 106,21 0,48 0,98 3,74 122,34 75,83 0,62 1,79 7,96 
135.  234,71 132,74 0,57 0,95 3,94 219,68 189,83 0,86 2,06 8,81 
136.  159,50 110,54 0,69 2,44 13,22 209,58 191,94 0,92 2,90 16,69 
137.  173,60 100,13 0,58 1,01 4,97 339,85 202,52 0,60 1,01 4,90 
138.  203,23 105,67 0,52 1,08 5,50 329,02 217,92 0,66 1,13 5,43 
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inst. Distribution of CVP intermediate effort Distribution of CIBI intermediate effort 
n. μ σ CV skew kurt μ σ CV skew kurt 

139.  95,18 57,09 0,60 1,82 11,37 154,79 99,05 0,64 2,60 19,80 
140.  135,77 122,93 0,91 2,09 8,05 173,69 125,03 0,72 5,96 60,52 
141.  143,70 85,08 0,59 1,69 9,05 115,76 101,01 0,87 2,14 9,47 
142.  119,39 79,32 0,66 1,09 4,14 126,11 86,34 0,68 1,59 6,97 
143.  176,16 103,23 0,59 1,25 5,06 185,12 200,62 1,08 1,62 4,90 
144.  138,96 122,60 0,88 1,47 4,25 144,37 77,82 0,54 1,11 5,57 
145.  244,53 145,64 0,60 2,61 20,09 129,11 73,46 0,57 2,41 18,82 
146.  198,05 196,67 0,99 4,33 33,93 218,00 142,34 0,65 1,81 8,25 
147.  248,57 131,04 0,53 1,33 6,59 163,99 145,34 0,89 2,67 11,79 
148.  50,64 45,52 0,90 2,22 8,20 72,27 40,40 0,56 1,22 5,00 
149.  168,21 135,76 0,81 1,95 8,55 187,29 101,23 0,54 0,72 3,69 
150.  184,08 201,36 1,09 2,32 11,82 129,97 91,06 0,70 2,27 13,14 
151.  117,09 73,51 0,63 0,82 3,62 194,21 146,72 0,76 1,18 4,29 
152.  170,85 102,75 0,60 1,01 4,56 217,86 158,22 0,73 1,16 4,19 
153.  241,32 173,92 0,72 3,13 21,11 202,09 136,54 0,68 1,62 6,59 
154.  106,19 67,03 0,63 1,68 7,19 180,50 103,29 0,57 1,39 7,05 
155.  145,19 80,20 0,55 0,73 3,60 240,62 157,49 0,65 0,87 3,81 
156.  117,84 104,65 0,89 3,41 20,52 89,53 77,50 0,87 2,27 9,79 
157.  139,17 73,77 0,53 1,41 6,80 79,64 55,49 0,70 2,02 8,64 
158.  164,48 98,69 0,60 1,55 7,03 170,37 145,96 0,86 2,36 12,88 
159.  157,27 100,02 0,64 1,57 7,80 185,56 131,48 0,71 1,84 8,47 
160.  183,30 89,85 0,49 1,37 7,16 107,18 64,66 0,60 1,70 8,74 
161.  95,87 52,17 0,54 1,91 14,54 186,21 87,62 0,47 0,47 3,24 
162.  228,62 138,77 0,61 1,21 4,64 350,86 193,47 0,55 1,33 5,31 
163.  171,28 140,03 0,82 1,86 6,11 227,99 113,24 0,50 2,07 11,45 
164.  81,51 65,30 0,80 1,45 5,33 107,11 138,03 1,29 1,94 6,56 
165.  249,80 170,49 0,68 1,89 9,10 296,15 189,32 0,64 1,27 5,25 
166.  78,68 43,27 0,55 1,69 8,48 50,54 63,03 1,25 5,45 43,37 
167.  136,42 116,58 0,85 3,53 23,46 161,86 89,34 0,55 1,02 4,50 
168.  150,97 95,96 0,64 1,61 7,17 236,18 161,34 0,68 1,52 7,11 
169.  106,94 66,44 0,62 1,16 5,33 172,51 102,46 0,59 0,68 3,35 
170.  105,64 58,10 0,55 1,13 4,34 78,15 98,11 1,26 2,92 11,45 
171.  76,10 48,44 0,64 2,24 11,84 54,19 89,25 1,65 4,91 30,78 
172.  125,03 78,72 0,63 3,74 30,84 65,87 49,73 0,76 4,19 29,79 
173.  259,56 198,49 0,76 4,77 43,58 145,95 106,16 0,73 4,03 32,59 
174.  110,74 101,01 0,91 2,82 12,83 160,12 90,28 0,56 1,46 9,26 
175.  141,30 77,45 0,55 0,59 3,40 214,19 146,68 0,68 0,97 4,08 
176.  165,39 99,71 0,60 0,95 4,33 293,59 196,65 0,67 0,97 3,93 
177.  143,94 161,11 1,12 2,94 18,12 119,44 79,68 0,67 2,21 14,03 
178.  188,20 101,69 0,54 1,38 6,34 109,93 103,92 0,95 3,30 17,03 
179.  210,76 127,76 0,61 1,12 4,94 199,23 144,47 0,73 1,65 6,79 
180.  151,49 105,37 0,70 1,80 6,80 189,11 135,06 0,71 2,11 10,51 
181.  72,92 65,32 0,90 3,57 20,99 101,36 53,97 0,53 1,02 4,94 
182.  227,47 130,89 0,58 0,99 4,57 299,78 194,71 0,65 1,21 5,27 
183.  82,13 84,14 1,02 2,28 9,70 82,25 51,29 0,62 1,30 5,24 
184.  88,26 57,51 0,65 1,53 7,22 163,88 112,85 0,69 1,60 7,97 
185.  181,42 116,42 0,64 2,91 18,99 154,07 145,93 0,95 2,15 8,42 
186.  199,78 111,37 0,56 1,16 6,17 323,99 226,31 0,70 0,95 3,92 
187.  62,77 40,42 0,64 1,45 5,69 43,35 52,41 1,21 4,46 30,11 
188.  268,95 169,50 0,63 1,15 4,30 196,52 133,95 0,68 1,86 9,24 
189.  167,00 109,17 0,65 2,49 14,52 203,87 197,83 0,97 3,36 24,98 
190.  138,30 92,47 0,67 2,48 13,75 142,28 172,10 1,21 2,50 10,63 
191.  126,58 140,82 1,11 2,04 6,62 143,77 80,13 0,56 1,13 4,84 
192.  190,28 110,27 0,58 2,22 13,52 146,13 128,60 0,88 2,01 6,99 
193.  223,69 124,70 0,56 0,99 4,46 179,87 196,48 1,09 3,20 15,90 
194.  195,11 119,49 0,61 1,73 8,29 198,26 247,04 1,25 2,82 13,06 
195.  198,56 135,14 0,68 1,05 4,27 153,16 137,06 0,89 4,64 36,43 
196.  70,82 58,03 0,82 2,15 9,00 90,37 73,08 0,81 4,18 34,55 
197.  135,59 71,03 0,52 0,89 3,49 111,16 136,25 1,23 2,63 9,57 
198.  85,20 66,00 0,77 2,06 8,91 77,72 56,53 0,73 1,31 4,41 
199.  215,22 131,15 0,61 1,66 8,60 156,34 115,04 0,74 1,97 8,35 
200.  104,94 74,81 0,71 1,08 5,33 170,52 161,27 0,95 1,21 4,98 
201.  258,06 148,99 0,58 1,14 5,25 265,92 240,45 0,90 2,42 11,50 
202.  197,95 127,77 0,65 2,64 14,77 224,47 159,52 0,71 1,32 5,24 
203.  165,75 131,28 0,79 1,64 5,87 212,69 126,45 0,59 1,17 4,53 
204.  231,71 114,34 0,49 0,87 4,65 146,87 119,83 0,82 3,83 24,61 
205.  206,69 122,89 0,59 1,16 5,26 251,86 214,52 0,85 1,43 5,22 
206.  223,04 160,30 0,72 3,90 29,86 114,01 81,53 0,72 3,65 27,72 
207.  152,62 92,04 0,60 0,25 2,59 271,31 198,82 0,73 0,37 2,35 
208.  140,99 101,35 0,72 1,53 5,59 154,02 95,86 0,62 0,86 3,58 
209.  133,64 74,44 0,56 0,93 4,09 125,93 106,91 0,85 2,01 7,43 
210.  123,60 73,33 0,59 1,56 6,72 217,93 128,20 0,59 1,54 7,27 
211.  198,60 149,71 0,75 2,69 15,62 310,86 245,82 0,79 4,25 34,06 
212.  258,95 131,93 0,51 0,76 3,54 151,41 109,50 0,72 2,35 12,98 
213.  92,20 110,65 1,20 3,21 15,66 114,57 61,50 0,54 1,28 5,52 
214.  150,81 94,74 0,63 1,29 5,91 247,98 150,40 0,61 0,93 3,84 
215.  149,05 99,07 0,66 1,47 6,39 167,97 165,18 0,98 1,88 7,27 
216.  141,87 147,82 1,04 2,02 7,45 135,37 79,54 0,59 0,97 4,07 
217.  44,63 53,99 1,21 5,20 34,86 70,95 41,22 0,58 2,85 19,12 
218.  118,98 67,62 0,57 0,69 3,58 210,97 129,16 0,61 0,96 3,95 
219.  81,29 81,27 1,00 1,92 6,33 86,21 45,87 0,53 0,59 3,01 
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220.  136,72 135,60 0,99 1,75 5,89 127,31 72,29 0,57 1,01 4,40 
221.  105,11 118,11 1,12 5,04 44,19 142,42 252,14 1,77 4,75 38,71 
222.  179,06 105,78 0,59 1,95 9,04 124,98 101,06 0,81 1,68 5,57 
223.  68,79 76,85 1,12 2,70 11,14 86,24 49,79 0,58 1,05 3,74 
224.  247,26 132,64 0,54 0,83 3,96 204,77 164,37 0,80 1,84 7,46 
225.  88,42 63,85 0,72 1,37 5,92 111,40 105,60 0,95 1,48 5,36 
226.  141,22 101,84 0,72 2,05 9,95 169,64 225,67 1,33 2,32 9,78 
227.  113,98 87,55 0,77 3,26 21,44 194,22 147,30 0,76 5,13 43,80 
228.  166,30 96,74 0,58 1,33 6,61 217,18 138,68 0,64 0,88 3,61 
229.  267,09 173,52 0,65 1,47 5,66 296,79 192,21 0,65 0,94 3,88 
230.  186,98 109,35 0,58 1,75 7,53 223,82 211,60 0,95 2,11 9,39 
231.  225,34 140,87 0,63 1,63 9,12 310,73 253,75 0,82 2,54 15,40 
232.  149,03 88,82 0,60 0,84 4,14 246,41 192,30 0,78 1,00 4,01 
233.  255,16 183,90 0,72 2,67 16,56 209,41 152,50 0,73 1,50 5,55 
234.  95,88 94,22 0,98 2,18 7,94 119,09 205,29 1,72 2,47 8,54 
235.  286,42 152,65 0,53 1,33 6,60 147,56 81,48 0,55 1,18 5,90 
236.  124,51 139,19 1,12 2,46 9,35 142,73 76,73 0,54 0,62 3,42 
237.  126,03 63,31 0,50 1,25 5,16 75,65 89,72 1,19 5,11 33,16 
238.  151,68 128,63 0,85 2,91 15,36 192,21 291,25 1,52 2,82 13,06 
239.  200,03 144,39 0,72 1,33 6,01 124,57 84,50 0,68 1,85 10,14 
240.  97,41 95,48 0,98 2,72 13,68 118,94 76,82 0,65 1,37 6,70 
241.  173,99 123,73 0,71 1,47 5,83 200,73 115,26 0,57 1,05 5,11 
242.  90,45 51,88 0,57 1,14 6,93 171,81 101,28 0,59 1,16 7,37 
243.  178,23 131,32 0,74 3,26 22,63 323,36 215,51 0,67 5,29 48,48 
244.  172,32 96,27 0,56 1,17 4,69 158,13 143,60 0,91 2,71 13,90 
245.  145,83 77,61 0,53 0,58 3,41 242,03 148,53 0,61 0,70 3,42 
246.  199,45 105,79 0,53 0,63 3,36 211,68 175,28 0,83 1,40 4,91 
247.  162,36 83,53 0,51 0,85 3,76 144,20 155,02 1,08 2,29 8,79 
248.  262,62 146,92 0,56 2,31 12,52 149,94 104,70 0,70 1,99 8,11 
249.  195,58 105,84 0,54 0,92 4,49 380,21 209,46 0,55 1,11 4,64 
250.  178,12 100,83 0,57 0,92 4,80 291,79 184,07 0,63 0,84 3,48 
251.  200,13 118,46 0,59 0,91 3,83 144,79 102,90 0,71 1,40 5,23 
252.  106,04 71,69 0,68 2,37 12,30 94,93 131,98 1,39 3,98 23,39 
253.  198,10 104,41 0,53 1,31 5,88 120,83 94,87 0,79 2,19 9,46 
254.  67,63 83,94 1,24 3,29 17,34 85,85 178,75 2,08 3,38 16,74 
255.  245,12 127,78 0,52 1,21 5,81 216,46 208,21 0,96 3,11 17,36 
256.  151,47 103,10 0,68 2,71 18,46 288,87 201,48 0,70 3,08 20,77 
257.  109,05 69,43 0,64 2,01 10,08 196,64 126,58 0,64 2,17 12,44 
258.  146,73 99,43 0,68 1,54 6,86 174,97 217,06 1,24 2,09 7,97 
259.  135,99 82,31 0,61 1,44 6,62 138,09 165,87 1,20 2,91 12,49 
260.  84,89 96,90 1,14 2,75 11,05 107,84 59,24 0,55 1,02 4,82 
261.  87,56 93,44 1,07 2,01 6,63 106,27 78,23 0,74 5,29 48,95 
262.  166,28 106,14 0,64 1,16 5,98 277,87 170,41 0,61 1,20 4,94 
263.  140,81 111,64 0,79 2,84 13,71 229,72 115,56 0,50 1,24 6,08 
264.  73,37 67,54 0,92 2,43 10,64 86,70 141,16 1,63 3,03 13,02 
265.  116,18 54,92 0,47 0,57 3,48 67,41 50,50 0,75 4,35 30,67 
266.  123,89 64,62 0,52 0,48 2,97 166,84 130,85 0,78 1,03 3,45 
267.  17,29 8,19 0,47 0,90 4,10 9,36 4,45 0,48 0,55 3,78 
268.  161,74 77,44 0,48 0,98 5,01 296,30 154,58 0,52 0,91 5,00 
269.  181,36 111,62 0,62 1,09 5,11 296,55 226,40 0,76 1,15 4,64 
270.  172,58 105,26 0,61 2,12 12,03 342,84 206,60 0,60 2,33 12,81 
271.  91,78 65,38 0,71 1,15 4,15 77,84 53,04 0,68 1,33 4,78 
272.  245,40 146,35 0,60 1,77 10,40 163,21 132,22 0,81 2,47 11,31 
273.  181,83 104,63 0,58 1,09 4,91 205,61 225,56 1,10 1,93 6,81 
274.  186,80 118,22 0,63 1,19 4,85 268,42 196,90 0,73 1,91 9,17 
275.  189,31 163,06 0,86 2,85 19,10 153,67 96,13 0,63 1,61 8,97 
276.  152,22 109,30 0,72 1,24 5,54 239,50 225,04 0,94 1,43 6,03 
277.  160,92 84,13 0,52 0,68 3,28 120,13 102,75 0,86 3,12 17,51 
278.  88,91 80,90 0,91 3,57 19,99 145,03 72,87 0,50 1,51 6,55 
279.  115,77 140,30 1,21 2,77 11,63 140,92 74,66 0,53 1,27 6,51 
280.  237,03 109,65 0,46 0,66 3,64 137,93 94,24 0,68 2,10 11,12 
281.  161,74 136,35 0,84 2,33 9,38 230,89 118,68 0,51 1,49 6,69 
282.  78,99 98,03 1,24 2,54 9,91 81,79 50,85 0,62 1,18 4,80 
283.  261,88 138,61 0,53 0,93 4,73 137,42 79,40 0,58 1,59 9,61 
284.  198,72 107,98 0,54 0,61 3,36 222,41 173,03 0,78 1,18 4,11 
285.  226,94 150,93 0,67 2,58 14,42 224,12 162,56 0,73 0,83 3,28 
286.  117,51 74,73 0,64 1,53 6,51 112,87 161,18 1,43 2,61 10,00 
287.  192,10 91,75 0,48 0,56 4,60 382,01 173,28 0,45 0,94 5,00 
288.  165,99 99,27 0,60 1,02 5,11 285,06 188,13 0,66 1,28 5,91 
289.  42,01 41,28 0,98 3,98 22,62 73,94 37,85 0,51 1,30 5,46 
290.  160,56 95,45 0,59 1,48 6,66 167,41 201,61 1,20 2,49 10,32 
291.  86,51 107,83 1,25 2,85 10,85 115,45 68,31 0,59 1,19 4,64 
292.  174,56 105,26 0,60 1,18 4,87 266,57 191,19 0,72 1,32 5,84 
293.  148,85 75,16 0,50 0,93 4,10 119,38 126,46 1,06 2,50 10,20 
294.  209,45 169,26 0,81 4,34 34,60 264,56 171,13 0,65 2,20 12,88 
295.  171,67 115,14 0,67 1,83 7,04 256,15 142,11 0,55 1,27 6,57 
296.  101,15 80,34 0,79 1,58 7,91 158,59 152,19 0,96 1,62 8,69 
297.  278,65 142,04 0,51 0,70 2,88 163,49 95,57 0,58 1,14 5,63 
298.  206,94 124,44 0,60 2,52 18,24 242,77 216,16 0,89 1,49 5,09 
299.  40,30 19,49 0,48 1,18 6,16 21,33 13,43 0,63 2,32 15,22 
300.  88,54 62,30 0,70 1,51 6,32 118,16 138,88 1,18 1,82 6,52 
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301.  162,32 105,03 0,65 1,12 4,74 210,62 184,26 0,87 1,43 5,43 
302.  201,18 132,84 0,66 1,24 5,62 193,00 124,59 0,65 1,48 6,67 
303.  157,26 90,88 0,58 0,72 3,37 230,16 201,59 0,88 1,07 3,55 
304.  211,55 116,53 0,55 0,88 3,47 111,96 69,06 0,62 1,24 6,44 
305.  175,84 182,93 1,04 1,71 6,41 121,58 81,80 0,67 1,62 6,85 
306.  174,07 102,28 0,59 1,33 6,48 196,65 186,85 0,95 1,71 6,22 
307.  97,63 86,10 0,88 1,48 4,75 93,50 58,30 0,62 1,09 4,09 
308.  61,71 82,38 1,33 3,43 16,43 82,27 48,70 0,59 1,33 4,89 
309.  104,03 154,86 1,49 2,65 9,62 105,47 70,57 0,67 1,65 6,52 
310.  140,05 81,04 0,58 1,11 4,56 150,24 172,44 1,15 1,96 6,76 
311.  158,80 81,52 0,51 1,47 6,86 97,37 76,08 0,78 2,29 9,41 
312.  219,95 131,82 0,60 2,91 20,46 156,27 148,18 0,95 2,72 12,10 
313.  82,34 61,74 0,75 1,42 5,15 100,26 115,72 1,15 2,17 8,28 
314.  151,59 93,40 0,62 0,88 4,21 253,87 210,12 0,83 0,75 3,29 
315.  104,54 68,67 0,66 1,83 7,99 149,25 133,94 0,90 2,24 10,60 
316.  182,94 105,17 0,57 1,12 4,30 158,98 96,78 0,61 0,85 3,30 
317.  81,80 60,18 0,74 1,66 6,14 95,07 72,01 0,76 0,86 3,05 
318.  103,28 66,10 0,64 1,32 5,39 89,22 79,21 0,89 2,87 14,77 
319.  227,36 120,84 0,53 0,94 4,36 207,18 161,44 0,78 1,94 8,14 
320.  171,10 92,79 0,54 0,41 3,14 296,05 206,15 0,70 0,53 2,71 
321.  188,19 151,99 0,81 2,03 11,51 123,71 80,17 0,65 1,52 8,33 
322.  169,03 187,91 1,11 3,50 22,89 194,58 244,93 1,26 10,61 135,43 
323.  91,63 67,56 0,74 1,88 8,82 105,67 131,49 1,24 2,82 13,96 
324.  101,61 64,57 0,64 2,16 10,77 98,31 94,88 0,97 2,31 9,68 
325.  191,94 109,35 0,57 1,32 6,42 228,47 169,24 0,74 1,33 4,98 
326.  129,61 83,20 0,64 3,97 34,32 77,27 79,16 1,02 4,07 22,72 
327.  143,81 78,40 0,55 0,82 3,69 116,44 109,27 0,94 2,17 7,73 
328.  161,05 89,90 0,56 0,92 4,29 192,94 193,68 1,00 1,25 3,50 
329.  117,96 85,80 0,73 1,67 7,90 166,57 177,67 1,07 1,95 8,23 
330.  162,60 81,54 0,50 1,07 4,86 160,78 175,81 1,09 2,13 7,84 
331.  162,07 104,67 0,65 2,42 16,19 95,73 69,66 0,73 3,53 26,69 
332.  120,61 87,70 0,73 2,50 12,76 121,41 173,31 1,43 3,33 17,39 
333.  147,81 99,98 0,68 1,31 5,11 200,39 123,54 0,62 1,12 4,66 
334.  161,64 90,66 0,56 0,95 4,58 258,47 188,02 0,73 1,03 4,73 
335.  268,80 213,79 0,80 5,40 52,62 264,59 200,22 0,76 1,38 5,41 
336.  102,33 64,32 0,63 0,94 4,28 162,83 127,39 0,78 1,18 4,92 
337.  164,54 96,05 0,58 0,99 4,39 208,93 197,15 0,94 1,48 5,12 
338.  110,68 89,44 0,81 1,39 4,77 157,94 201,87 1,28 1,55 4,61 
339.  233,76 109,05 0,47 0,86 4,36 145,79 126,36 0,87 3,51 21,16 
340.  206,89 108,53 0,52 0,77 3,50 185,62 161,79 0,87 2,08 7,72 
341.  99,90 78,56 0,79 1,33 4,57 138,08 171,88 1,24 1,62 4,96 
342.  102,47 57,25 0,56 1,39 5,95 59,36 47,66 0,80 3,33 22,31 
343.  70,58 31,19 0,44 1,05 4,93 37,22 24,91 0,67 4,78 43,99 
344.  189,84 145,08 0,76 2,01 9,08 266,80 174,99 0,66 1,26 5,60 
345.  120,12 91,83 0,76 2,93 14,85 101,57 186,31 1,83 4,24 23,17 
346.  91,06 63,30 0,70 1,88 7,90 83,78 130,53 1,56 3,16 13,46 
347.  210,52 136,63 0,65 3,19 25,71 300,35 211,86 0,71 0,99 3,74 
348.  266,08 144,55 0,54 0,95 4,21 255,61 232,32 0,91 1,92 7,93 
349.  92,24 71,91 0,78 1,54 5,83 83,16 55,94 0,67 1,14 4,28 
350.  109,98 146,61 1,33 2,95 14,31 95,02 70,53 0,74 2,25 11,37 
351.  210,92 132,28 0,63 2,91 20,25 261,73 198,60 0,76 1,03 3,43 
352.  250,11 173,22 0,69 1,40 5,41 214,57 147,27 0,69 1,25 4,76 
353.  63,10 82,06 1,30 4,58 30,18 88,54 54,61 0,62 2,22 11,24 
354.  256,90 146,84 0,57 0,90 3,62 162,36 108,33 0,67 2,27 13,78 
355.  128,18 101,90 0,79 4,03 30,62 139,04 236,66 1,70 5,03 40,26 
356.  172,76 108,90 0,63 1,43 6,19 278,36 231,26 0,83 1,59 6,36 
357.  200,98 120,69 0,60 1,30 5,17 202,40 187,16 0,92 1,62 5,42 
358.  96,58 68,81 0,71 1,95 7,84 95,40 139,12 1,46 2,93 12,17 
359.  106,49 79,72 0,75 4,10 33,10 103,24 114,11 1,11 1,80 5,57 
360.  53,83 41,85 0,78 3,72 23,17 96,77 47,87 0,49 0,87 3,95 
361.  164,15 77,44 0,47 1,23 6,01 80,98 41,87 0,52 0,78 5,27 
362.  110,15 130,46 1,18 2,30 7,84 124,05 67,66 0,55 0,87 3,37 
363.  136,49 77,55 0,57 1,30 6,19 263,61 126,39 0,48 1,15 5,50 
364.  146,85 72,68 0,49 0,49 2,47 94,07 82,30 0,87 2,81 12,76 
365.  107,89 65,42 0,61 1,42 5,90 141,43 104,10 0,74 1,21 5,03 
366.  208,24 155,85 0,75 2,04 7,89 263,11 154,53 0,59 2,20 13,27 
367.  282,37 155,44 0,55 0,73 3,47 234,97 194,98 0,83 1,76 6,43 
368.  161,92 107,20 0,66 1,36 5,40 152,57 103,64 0,68 1,32 5,23 
369.  221,38 134,11 0,61 1,05 3,73 181,80 119,73 0,66 1,33 6,40 
370.  271,79 173,24 0,64 1,37 5,64 207,47 151,04 0,73 1,71 7,00 
371.  189,20 100,76 0,53 1,26 5,79 282,30 197,88 0,70 1,17 5,77 
372.  127,18 71,71 0,56 1,26 4,77 111,87 142,08 1,27 2,58 9,26 
373.  207,89 129,94 0,63 2,11 11,22 124,58 105,15 0,84 3,14 17,03 
374.  99,69 62,51 0,63 0,99 3,95 141,47 116,40 0,82 1,82 7,09 
375.  50,08 59,01 1,18 3,25 16,50 62,20 39,99 0,64 1,31 5,51 
376.  142,14 96,25 0,68 3,99 32,37 108,09 123,78 1,15 3,27 17,68 
377.  281,65 184,02 0,65 2,03 9,66 183,36 148,36 0,81 1,87 7,06 
378.  140,52 139,76 0,99 2,20 8,32 173,50 90,62 0,52 1,45 7,58 
379.  230,67 120,28 0,52 1,24 6,07 162,82 134,10 0,82 2,25 9,82 
380.  159,83 118,76 0,74 1,61 6,83 130,42 77,48 0,59 2,00 11,06 
381.  143,56 100,39 0,70 1,08 4,02 235,75 213,23 0,90 1,02 3,70 
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382.  126,05 80,68 0,64 1,74 10,03 207,50 158,17 0,76 2,27 12,73 
383.  219,25 120,56 0,55 0,97 4,73 269,03 236,20 0,88 1,40 4,55 
384.  73,32 72,36 0,99 2,48 10,92 91,31 159,54 1,75 2,65 10,49 
385.  222,26 149,08 0,67 0,93 3,51 203,41 106,27 0,52 1,04 5,12 
386.  191,84 117,47 0,61 1,80 8,43 293,97 203,44 0,69 1,81 9,13 
387.  171,23 185,94 1,09 2,88 13,74 151,30 99,92 0,66 1,61 6,78 
388.  215,71 161,21 0,75 4,37 37,47 304,71 210,74 0,69 1,14 4,83 
389.  150,32 93,01 0,62 1,58 7,46 212,95 188,82 0,89 1,57 7,00 
390.  136,98 79,27 0,58 1,21 5,06 251,97 135,06 0,54 1,18 5,07 
391.  192,55 151,87 0,79 2,39 13,50 201,86 130,75 0,65 1,33 5,30 
392.  205,34 113,17 0,55 0,99 4,05 310,10 189,60 0,61 1,03 4,21 
393.  158,02 114,19 0,72 0,99 3,76 256,14 260,35 1,02 0,99 3,23 
394.  98,51 78,11 0,79 1,64 6,00 98,20 69,98 0,71 1,55 6,96 
395.  172,68 102,33 0,59 0,69 3,03 119,67 81,92 0,68 1,83 8,08 
396.  207,95 161,05 0,77 1,27 5,47 133,34 82,83 0,62 1,22 5,48 
397.  91,55 67,90 0,74 1,84 8,13 147,19 87,57 0,59 1,06 5,05 
398.  149,14 113,87 0,76 2,68 13,57 246,34 146,91 0,60 1,23 5,26 
399.  108,43 90,71 0,84 3,44 19,64 190,95 102,69 0,54 1,37 5,74 
400.  242,72 174,91 0,72 1,31 5,13 180,72 101,82 0,56 1,01 4,23 
401.  148,77 89,10 0,60 2,58 18,04 214,44 143,51 0,67 1,01 4,03 
402.  87,59 58,81 0,67 1,53 7,63 162,09 99,51 0,61 0,95 4,53 
403.  125,34 110,09 0,88 3,97 28,80 208,07 112,28 0,54 1,12 4,95 
404.  146,62 94,31 0,64 1,46 6,14 184,50 143,84 0,78 1,54 7,31 
405.  94,15 85,63 0,91 3,02 16,53 114,81 74,82 0,65 1,45 6,68 
406.  127,26 79,04 0,62 1,67 7,75 145,13 149,37 1,03 2,64 13,47 
407.  115,31 87,25 0,76 1,77 7,10 139,81 188,83 1,35 2,04 7,23 
408.  157,59 100,17 0,64 1,23 5,95 276,69 154,78 0,56 0,89 4,62 
409.  210,49 156,72 0,74 2,13 9,88 232,57 166,58 0,72 1,56 6,59 
410.  97,16 75,87 0,78 1,73 6,61 111,25 73,45 0,66 1,56 7,06 
411.  105,74 137,36 1,30 3,35 17,15 123,31 72,29 0,59 1,65 7,72 
412.  226,04 144,45 0,64 1,04 3,70 180,97 115,45 0,64 1,92 10,53 
413.  156,07 109,20 0,70 1,57 6,70 203,75 165,75 0,81 1,64 6,83 
414.  157,81 141,75 0,90 3,27 17,75 233,56 129,98 0,56 1,16 4,78 
415.  106,38 84,33 0,79 1,14 3,64 140,47 186,59 1,33 1,55 4,26 
416.  91,00 67,35 0,74 3,57 24,45 78,60 140,68 1,79 4,79 31,72 
417.  122,47 64,18 0,52 0,63 4,29 244,60 118,30 0,48 0,99 5,03 
418.  73,16 44,49 0,61 1,26 6,87 148,86 82,66 0,56 1,71 8,25 
419.  203,27 111,01 0,55 0,99 5,23 174,58 193,01 1,11 2,95 12,69 
420.  110,14 55,28 0,50 1,00 4,66 98,55 98,65 1,00 2,16 7,75 
421.  208,85 123,86 0,59 1,63 7,80 281,61 202,15 0,72 1,07 4,09 
422.  269,44 130,03 0,48 0,74 3,48 149,53 79,64 0,53 0,93 4,64 
423.  213,22 137,32 0,64 1,58 6,98 182,51 119,85 0,66 1,66 6,65 
424.  193,96 99,69 0,51 0,89 3,91 182,79 168,25 0,92 2,22 9,44 
425.  107,32 71,78 0,67 1,25 5,50 146,32 149,36 1,02 1,33 4,21 
426.  175,93 95,54 0,54 1,14 4,34 218,03 186,27 0,85 1,58 5,93 
427.  169,30 92,88 0,55 1,10 4,78 136,47 170,58 1,25 2,88 11,61 
428.  101,64 55,42 0,55 3,33 26,58 57,88 51,72 0,89 3,90 22,49 
429.  284,25 167,58 0,59 2,54 16,81 186,31 133,50 0,72 1,49 5,36 
430.  218,12 114,47 0,52 1,04 5,47 180,99 157,16 0,87 1,97 6,88 
431.  173,41 101,67 0,59 1,22 6,28 308,04 186,47 0,61 1,22 6,16 
432.  166,55 106,45 0,64 1,34 5,85 201,02 164,86 0,82 1,33 5,15 
433.  140,55 110,14 0,78 3,27 24,26 130,66 94,28 0,72 1,49 6,08 
434.  108,40 55,71 0,51 1,29 5,92 55,04 30,79 0,56 1,04 5,15 
435.  235,97 128,28 0,54 1,03 5,25 278,95 200,09 0,72 1,07 3,45 
436.  237,47 144,91 0,61 1,79 8,37 134,57 104,16 0,77 2,87 16,52 
437.  232,33 129,74 0,56 1,94 10,03 179,31 151,79 0,85 2,46 11,60 
438.  133,78 97,16 0,73 3,19 22,50 134,93 109,46 0,81 1,79 7,40 
439.  130,30 83,34 0,64 2,05 13,60 243,95 157,98 0,65 2,54 17,21 
440.  114,67 109,70 0,96 2,86 14,60 149,86 100,84 0,67 2,42 14,67 
441.  191,60 141,77 0,74 1,24 4,20 168,33 103,52 0,61 1,15 4,62 
442.  116,73 74,07 0,63 1,77 8,19 128,39 156,11 1,22 2,60 11,22 
443.  190,11 113,42 0,60 0,96 4,69 294,21 196,16 0,67 1,26 5,75 
444.  98,90 94,29 0,95 1,64 5,30 94,91 50,91 0,54 0,56 2,91 
445.  293,57 164,84 0,56 1,64 7,54 205,57 158,93 0,77 2,43 11,48 
446.  106,58 96,12 0,90 1,98 8,28 96,19 60,63 0,63 1,38 5,89 
447.  167,87 170,63 1,02 1,74 5,13 182,84 96,76 0,53 0,59 2,98 
448.  86,34 86,72 1,00 2,72 10,90 122,76 67,05 0,55 2,42 16,03 
449.  192,85 114,23 0,59 1,07 4,98 195,05 140,27 0,72 1,38 4,99 
450.  62,53 44,90 0,72 1,20 4,99 83,33 73,08 0,88 1,33 5,07 
451.  220,80 131,95 0,60 1,23 5,21 222,13 214,17 0,96 2,53 11,87 
452.  170,42 135,75 0,80 2,37 10,77 274,93 145,93 0,53 1,29 6,35 
453.  87,30 53,47 0,61 1,28 5,44 86,10 64,67 0,75 1,60 6,64 
454.  121,83 67,86 0,56 0,60 2,97 178,54 137,63 0,77 0,90 3,12 
455.  92,79 51,51 0,56 1,26 5,72 87,98 89,95 1,02 2,50 10,28 
456.  146,03 152,65 1,05 2,02 7,09 154,41 85,44 0,55 0,58 2,88 
457.  122,28 103,91 0,85 1,02 3,17 200,03 229,71 1,15 1,05 2,95 
458.  152,19 92,45 0,61 1,08 5,68 90,44 60,15 0,67 2,13 9,84 
459.  250,10 161,67 0,65 1,02 4,03 160,78 101,65 0,63 1,72 10,70 
460.  170,01 93,51 0,55 1,06 5,19 172,39 196,82 1,14 2,03 7,70 
461.  141,05 84,86 0,60 1,23 5,64 201,19 156,25 0,78 1,37 5,97 
462.  232,07 137,59 0,59 1,65 7,75 300,52 190,21 0,63 1,10 4,25 
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463.  161,94 112,43 0,69 2,04 11,90 229,54 147,32 0,64 1,26 5,41 
464.  241,86 135,88 0,56 0,92 4,09 266,10 191,94 0,72 1,45 5,36 
465.  230,19 124,49 0,54 1,17 4,48 326,62 209,54 0,64 0,96 4,05 
466.  101,87 99,08 0,97 7,42 81,83 102,02 111,29 1,09 1,88 6,42 
467.  222,29 120,16 0,54 1,02 4,65 245,80 211,21 0,86 1,65 6,33 
468.  191,36 101,19 0,53 1,25 7,11 380,56 199,07 0,52 1,37 7,44 
469.  33,65 33,90 1,01 3,93 22,11 28,56 66,67 2,33 5,22 32,35 
470.  218,39 124,06 0,57 1,18 4,89 172,01 194,93 1,13 2,94 13,10 
471.  113,73 64,69 0,57 1,40 6,27 139,30 139,10 1,00 1,62 5,44 
472.  184,40 101,88 0,55 1,07 4,90 284,16 191,50 0,67 0,82 3,44 
473.  237,93 129,53 0,54 1,89 11,48 175,63 182,41 1,04 2,86 12,79 
474.  81,04 70,14 0,87 4,37 35,08 133,66 70,38 0,53 1,55 7,08 
475.  145,79 95,29 0,65 2,68 18,22 171,24 218,69 1,28 2,79 15,49 
476.  153,19 146,09 0,95 6,61 66,56 157,88 139,60 0,88 1,82 7,06 
477.  193,58 110,23 0,57 1,81 10,00 333,27 190,15 0,57 0,86 3,95 
478.  78,45 81,39 1,04 2,06 7,05 89,50 51,43 0,57 0,95 3,61 
479.  63,86 47,75 0,75 1,34 5,25 74,21 99,19 1,34 2,24 7,85 
480.  91,22 118,85 1,30 2,35 8,31 98,52 63,17 0,64 1,43 5,86 
481.  45,93 38,69 0,84 1,56 5,76 56,24 82,59 1,47 2,17 7,22 
482.  224,84 119,08 0,53 1,33 6,41 136,45 88,41 0,65 2,01 9,94 
483.  164,48 97,25 0,59 1,28 5,70 118,60 102,73 0,87 2,36 9,93 
484.  65,37 76,95 1,18 3,33 15,07 75,07 165,25 2,20 3,49 15,31 
485.  232,73 142,38 0,61 2,11 10,06 206,02 177,76 0,86 1,96 7,49 
486.  243,16 147,78 0,61 1,01 4,12 139,06 87,20 0,63 1,48 8,47 
487.  67,58 39,69 0,59 2,04 11,26 50,11 75,44 1,51 4,52 27,22 
488.  239,50 181,23 0,76 4,44 33,99 188,22 165,89 0,88 2,25 9,20 
489.  219,53 122,72 0,56 1,65 7,33 175,44 170,76 0,97 2,42 10,31 
490.  176,62 155,91 0,88 1,91 6,98 209,59 123,79 0,59 2,19 12,62 
491.  150,81 85,29 0,57 1,38 6,50 158,23 167,00 1,06 1,80 5,80 
492.  107,40 62,86 0,59 1,90 9,76 83,62 126,82 1,52 3,81 19,57 
493.  253,65 155,33 0,61 1,27 5,14 204,19 144,29 0,71 1,85 9,14 
494.  148,19 100,36 0,68 1,27 4,86 144,20 96,35 0,67 1,06 3,85 
495.  244,78 131,49 0,54 1,27 6,28 148,01 104,74 0,71 2,09 8,26 
496.  100,74 109,75 1,09 2,03 6,76 119,01 67,67 0,57 1,02 4,39 
497.  192,38 111,66 0,58 1,95 11,92 381,88 212,65 0,56 2,38 14,10 
498.  109,17 69,37 0,64 3,36 18,90 68,44 101,70 1,49 6,74 58,70 
499.  200,25 104,53 0,52 0,99 4,95 166,20 138,51 0,83 2,05 7,85 
500.  122,39 78,82 0,64 0,71 3,71 215,84 169,33 0,78 0,80 3,43 
501.  268,41 155,43 0,58 2,28 13,08 137,62 91,68 0,67 2,08 11,39 
502.  216,03 192,27 0,89 3,87 28,01 210,57 134,73 0,64 1,58 7,72 
503.  66,81 57,94 0,87 2,76 12,56 102,80 48,46 0,47 0,89 3,64 
504.  113,26 69,73 0,62 1,41 5,94 143,18 136,33 0,95 1,80 7,29 
505.  146,62 82,36 0,56 1,14 4,80 82,68 49,23 0,60 1,09 5,27 
506.  208,20 121,23 0,58 1,41 7,32 225,87 180,95 0,80 0,96 3,11 
507.  208,34 123,46 0,59 1,74 8,50 293,89 189,85 0,65 1,18 5,62 
508.  211,19 130,91 0,62 1,34 5,68 251,72 242,68 0,96 2,41 10,67 
509.  283,58 147,36 0,52 1,25 5,40 208,56 168,56 0,81 1,74 6,14 
510.  171,35 106,48 0,62 1,39 5,51 257,56 173,40 0,67 1,52 6,72 
511.  144,35 147,38 1,02 1,84 6,29 146,13 88,33 0,60 1,05 4,01 
512.  25,85 12,70 0,49 0,91 5,14 50,91 23,70 0,47 1,32 5,71 
513.  138,48 79,28 0,57 1,20 6,23 275,94 154,06 0,56 1,41 6,67 
514.  183,96 109,32 0,59 0,79 3,42 129,42 79,56 0,61 1,31 5,45 
515.  121,09 70,10 0,58 1,91 10,57 235,16 120,76 0,51 1,40 7,14 
516.  207,85 100,74 0,48 0,93 4,03 107,85 62,52 0,58 0,89 4,60 
517.  54,12 41,40 0,77 2,11 9,24 53,89 87,98 1,63 3,09 12,92 
518.  138,55 90,60 0,65 1,44 6,27 253,35 158,00 0,62 1,78 8,12 
519.  185,33 120,30 0,65 0,89 3,54 180,67 134,35 0,74 1,88 7,72 
520.  106,33 106,02 1,00 1,75 6,27 169,33 230,56 1,36 1,73 5,69 
521.  71,45 89,07 1,25 5,75 45,35 114,83 62,73 0,55 1,79 8,54 
522.  255,24 135,28 0,53 1,01 4,10 146,24 83,81 0,57 1,09 5,59 
523.  135,65 84,58 0,62 1,33 6,07 193,31 167,63 0,87 1,72 7,87 
524.  100,71 57,37 0,57 2,06 13,84 190,41 96,43 0,51 0,65 3,54 
525.  184,00 112,67 0,61 1,67 8,27 275,73 199,18 0,72 1,47 8,37 
526.  118,92 67,94 0,57 0,71 3,87 198,00 125,25 0,63 0,95 4,06 
527.  237,47 140,76 0,59 2,77 19,88 154,35 116,95 0,76 2,19 8,62 
528.  174,28 85,98 0,49 0,49 2,90 278,22 200,95 0,72 0,59 2,62 
529.  98,20 55,55 0,57 0,64 3,61 196,59 103,80 0,53 0,87 3,87 
530.  140,90 125,56 0,89 3,31 24,87 102,48 66,95 0,65 2,29 15,70 
531.  78,62 42,11 0,54 0,94 4,41 42,50 23,97 0,56 1,13 5,46 
532.  108,21 100,26 0,93 2,19 8,35 140,54 76,90 0,55 1,98 12,60 
533.  41,82 46,83 1,12 4,73 34,71 41,90 97,94 2,34 5,19 36,60 
534.  122,80 84,59 0,69 2,54 18,45 189,27 179,34 0,95 2,64 17,52 
535.  157,68 100,87 0,64 1,38 5,31 208,63 164,25 0,79 1,49 5,65 
536.  139,52 104,19 0,75 3,08 18,67 242,81 124,63 0,51 0,56 2,94 
537.  191,48 112,07 0,59 1,13 4,67 218,08 199,86 0,92 1,62 5,62 
538.  96,24 66,32 0,69 2,05 8,69 124,45 81,42 0,65 0,89 3,87 
539.  113,50 78,13 0,69 1,77 8,01 197,30 105,70 0,54 0,91 3,79 
540.  88,86 80,43 0,91 1,64 6,11 125,66 175,02 1,39 1,84 6,11 
541.  210,19 129,76 0,62 2,07 12,16 330,92 177,27 0,54 0,83 3,85 
542.  153,43 89,35 0,58 0,72 3,14 211,31 194,67 0,92 1,00 3,14 
543.  79,37 70,01 0,88 1,44 4,81 73,84 53,09 0,72 1,45 6,24 
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544.  210,73 121,63 0,58 1,66 8,16 132,39 89,72 0,68 3,19 22,65 
545.  188,50 103,05 0,55 1,31 5,38 126,94 137,29 1,08 4,04 23,67 
546.  171,99 97,25 0,57 0,71 3,40 175,32 139,36 0,79 1,69 6,31 
547.  132,87 116,56 0,88 1,46 4,85 139,79 86,04 0,62 1,54 6,55 
548.  210,73 143,33 0,68 1,34 5,14 176,15 113,91 0,65 1,12 4,18 
549.  182,83 125,37 0,69 2,50 15,31 335,64 230,12 0,69 2,95 20,66 
550.  95,21 77,06 0,81 2,42 14,57 86,17 63,70 0,74 1,56 5,60 
551.  152,56 78,12 0,51 1,02 4,10 90,82 70,06 0,77 3,73 25,44 
552.  143,72 153,57 1,07 1,97 7,26 122,46 70,00 0,57 1,17 5,48 
553.  128,57 103,19 0,80 1,44 6,81 215,48 197,71 0,92 0,87 3,24 
554.  93,88 93,91 1,00 1,74 6,63 80,49 53,28 0,66 1,09 4,36 
555.  157,68 130,23 0,83 1,19 3,80 151,30 87,03 0,58 1,19 5,15 
556.  164,63 92,89 0,56 1,17 6,04 142,26 127,25 0,89 2,15 8,48 
557.  248,27 135,95 0,55 1,04 4,66 173,67 131,53 0,76 1,91 7,46 
558.  205,72 150,43 0,73 1,63 7,03 244,02 134,15 0,55 0,95 3,83 
559.  96,53 61,43 0,64 0,95 3,84 124,10 102,71 0,83 1,17 3,83 
560.  111,29 71,17 0,64 1,63 8,25 149,15 117,90 0,79 1,29 4,95 
561.  181,98 111,38 0,61 1,33 5,51 246,54 168,11 0,68 1,05 3,72 
562.  175,69 119,80 0,68 1,90 8,93 174,24 136,31 0,78 1,99 9,90 
563.  164,16 89,72 0,55 1,09 5,11 124,67 115,45 0,93 3,10 17,43 
564.  168,60 117,28 0,70 1,24 4,24 227,39 141,92 0,62 1,50 5,99 
565.  84,73 126,22 1,49 2,97 12,55 92,49 61,91 0,67 1,75 7,40 
566.  174,74 108,05 0,62 0,93 3,63 134,66 97,39 0,72 1,51 6,56 
567.  100,56 62,55 0,62 1,05 4,49 103,94 74,86 0,72 1,36 4,90 
568.  203,17 126,74 0,62 1,73 10,17 230,51 252,20 1,09 2,65 14,62 
569.  103,10 64,57 0,63 1,89 9,48 185,05 94,11 0,51 0,64 2,85 
570.  234,77 126,50 0,54 0,75 3,56 140,52 93,68 0,67 1,42 6,14 
571.  150,60 112,78 0,75 2,53 12,75 190,25 119,25 0,63 1,08 5,17 
572.  150,33 87,94 0,58 1,04 4,26 214,86 173,92 0,81 1,16 4,01 
573.  107,87 90,60 0,84 2,45 10,17 171,40 103,25 0,60 1,80 7,53 
574.  170,57 81,32 0,48 0,58 2,68 170,30 175,15 1,03 1,66 4,90 
575.  137,34 154,08 1,12 2,69 10,48 166,39 84,30 0,51 0,92 4,38 
576.  186,42 83,54 0,45 1,04 5,04 93,24 54,34 0,58 2,54 19,47 
577.  143,80 70,73 0,49 0,72 3,64 93,36 88,26 0,95 3,40 17,67 
578.  197,66 125,65 0,64 2,35 15,20 242,34 225,71 0,93 3,81 29,40 
579.  85,53 62,36 0,73 0,97 3,80 122,87 136,99 1,11 1,29 4,04 
580.  113,96 128,66 1,13 6,04 57,01 92,97 81,02 0,87 3,49 22,62 
581.  101,43 67,99 0,67 0,96 3,80 153,85 133,34 0,87 1,18 4,34 
582.  155,86 103,68 0,67 1,47 8,12 327,32 191,09 0,58 1,92 9,98 
583.  149,02 118,10 0,79 3,12 21,09 132,55 95,49 0,72 1,66 6,99 
584.  213,34 144,11 0,68 1,59 7,67 113,72 71,30 0,63 1,54 7,50 
585.  163,52 82,77 0,51 0,69 4,27 276,09 175,85 0,64 0,83 4,02 
586.  157,81 124,41 0,79 1,71 6,97 192,92 113,01 0,59 1,39 6,06 
587.  180,34 99,71 0,55 1,23 6,37 269,44 185,87 0,69 0,74 3,17 
588.  134,78 99,15 0,74 2,55 15,37 158,63 174,38 1,10 1,85 7,15 
589.  216,30 121,39 0,56 2,05 14,57 323,64 267,89 0,83 2,03 12,69 
590.  266,89 131,96 0,49 1,22 4,86 175,82 135,59 0,77 2,45 11,41 
591.  97,38 68,25 0,70 1,64 7,11 113,88 144,36 1,27 2,29 9,06 
592.  89,99 109,30 1,21 2,39 8,54 101,98 60,54 0,59 1,27 5,63 
593.  160,10 103,71 0,65 0,94 4,16 297,55 207,66 0,70 0,92 4,17 
594.  226,15 154,52 0,68 1,60 6,65 291,57 207,07 0,71 1,86 8,51 
595.  143,54 96,33 0,67 0,88 3,68 221,29 218,42 0,99 0,93 3,11 
596.  112,40 72,11 0,64 0,82 3,15 132,05 151,53 1,15 1,55 4,53 
597.  206,89 137,04 0,66 2,70 18,87 284,40 182,57 0,64 0,82 3,28 
598.  263,99 164,03 0,62 0,42 2,31 149,68 86,88 0,58 0,37 2,90 
599.  189,67 129,81 0,68 1,16 5,79 137,38 97,63 0,71 2,28 10,46 
600.  201,09 100,64 0,50 0,84 3,60 134,46 119,04 0,89 3,03 15,04 
601.  260,13 163,14 0,63 0,65 3,66 143,25 88,85 0,62 0,86 4,63 
602.  229,29 168,74 0,74 1,67 8,38 204,26 129,53 0,63 1,48 6,38 
603.  191,19 100,51 0,53 2,48 15,72 100,13 64,41 0,64 2,57 13,62 
604.  240,81 171,86 0,71 2,37 12,35 264,87 188,28 0,71 1,38 5,63 
605.  84,06 84,81 1,01 3,07 17,04 102,78 59,98 0,58 1,18 4,86 
606.  242,62 136,67 0,56 1,39 6,13 221,41 162,50 0,73 1,18 4,17 
607.  129,20 88,50 0,69 1,78 8,14 157,40 104,65 0,66 1,66 8,68 
608.  149,85 89,17 0,60 1,43 9,48 237,64 160,58 0,68 0,69 3,13 
609.  170,81 98,61 0,58 1,65 7,77 121,10 113,09 0,93 4,13 32,41 
610.  248,23 163,56 0,66 2,28 11,15 313,53 217,57 0,69 1,10 5,01 
611.  198,51 154,40 0,78 2,13 9,63 227,08 134,23 0,59 0,78 3,30 
612.  134,39 82,42 0,61 0,96 4,88 224,98 153,44 0,68 0,72 3,19 
613.  60,71 63,08 1,04 2,02 7,82 87,26 138,70 1,59 2,10 7,29 
614.  213,73 144,06 0,67 2,72 15,93 295,59 212,32 0,72 1,32 5,78 
615.  193,57 111,37 0,58 2,35 14,38 113,07 92,43 0,82 2,77 12,47 
616.  106,75 76,30 0,71 1,35 5,61 145,69 169,41 1,16 1,65 5,74 
617.  120,92 74,47 0,62 1,52 6,34 139,60 101,97 0,73 1,08 3,92 
618.  138,25 90,30 0,65 1,63 9,64 217,63 132,24 0,61 0,69 3,20 
619.  166,69 108,40 0,65 1,73 6,83 265,73 142,55 0,54 0,73 3,39 
620.  82,93 60,40 0,73 1,80 9,42 68,76 53,13 0,77 1,61 5,77 
621.  118,40 66,99 0,57 0,70 4,48 214,74 127,91 0,60 1,07 5,24 
622.  99,88 43,31 0,43 0,82 4,04 51,03 23,79 0,47 0,88 5,25 
623.  126,38 87,53 0,69 1,77 9,80 180,31 182,25 1,01 2,07 10,43 
624.  139,80 109,62 0,78 1,94 8,11 224,26 133,15 0,59 1,68 8,40 
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625.  223,92 133,52 0,60 2,03 10,24 268,56 199,74 0,74 2,01 10,55 
626.  112,52 79,29 0,70 1,88 8,37 187,52 110,64 0,59 1,79 7,88 
627.  214,00 123,01 0,57 0,88 3,85 242,82 182,67 0,75 1,10 3,52 
628.  152,70 86,46 0,57 0,91 4,47 249,62 188,76 0,76 1,02 4,23 
629.  55,07 53,39 0,97 4,61 29,96 99,81 51,14 0,51 0,73 3,81 
630.  204,69 147,98 0,72 1,16 4,18 146,85 88,63 0,60 0,79 3,57 
631.  259,14 195,49 0,75 2,02 8,88 230,58 167,32 0,73 1,99 10,31 
632.  217,22 117,10 0,54 1,88 10,82 110,71 67,78 0,61 1,83 10,27 
633.  240,96 126,20 0,52 0,64 2,84 144,25 88,39 0,61 1,79 9,72 
634.  116,84 62,78 0,54 0,98 4,03 112,64 111,57 0,99 1,68 5,22 
635.  160,80 102,41 0,64 1,69 7,04 141,09 194,01 1,38 3,15 14,25 
636.  71,25 54,64 0,77 2,23 10,67 108,29 63,55 0,59 1,08 4,80 
637.  69,81 37,20 0,53 0,88 3,51 48,71 56,14 1,15 3,31 15,36 
638.  151,68 111,26 0,73 1,40 6,50 112,50 70,62 0,63 1,52 6,20 
639.  192,04 190,64 0,99 2,20 10,33 152,16 95,00 0,62 1,57 7,73 
640.  104,42 66,21 0,63 2,29 14,18 191,24 111,07 0,58 2,94 23,34 
641.  152,98 105,84 0,69 1,77 7,83 237,11 134,43 0,57 1,16 4,79 
642.  117,58 57,88 0,49 0,49 3,79 229,04 106,72 0,47 0,65 3,28 
643.  102,52 69,18 0,67 2,14 10,34 185,50 97,68 0,53 1,33 5,91 
644.  191,09 124,10 0,65 1,27 6,13 310,62 216,96 0,70 1,42 6,71 
645.  170,41 111,14 0,65 1,59 6,49 227,65 144,78 0,64 0,95 4,00 
646.  127,94 60,60 0,47 0,97 4,37 103,39 114,19 1,10 2,72 11,52 
647.  250,68 145,94 0,58 1,74 9,53 150,04 96,35 0,64 1,50 6,34 
648.  192,10 109,04 0,57 1,37 6,79 295,60 175,98 0,60 0,69 3,24 
649.  106,86 83,60 0,78 1,68 6,92 143,81 187,17 1,30 1,93 6,79 
650.  120,49 68,07 0,56 1,13 4,62 127,99 103,70 0,81 1,44 5,63 
651.  155,24 135,97 0,88 2,44 14,69 270,04 291,60 1,08 2,23 12,39 
652.  150,10 157,09 1,05 2,18 8,53 140,93 84,75 0,60 1,28 4,57 
653.  288,88 151,14 0,52 1,00 4,39 162,15 120,91 0,75 2,71 14,49 
654.  238,85 142,76 0,60 1,46 6,81 185,29 169,58 0,92 2,42 9,87 
655.  118,33 97,42 0,82 1,34 5,69 185,75 212,19 1,14 1,46 5,31 
656.  135,66 84,01 0,62 1,65 7,82 228,69 137,59 0,60 1,59 8,87 
657.  107,14 117,87 1,10 1,91 6,03 116,24 62,85 0,54 0,89 3,38 
658.  145,87 99,89 0,68 1,84 9,33 181,90 220,13 1,21 2,21 9,58 
659.  199,76 141,59 0,71 1,25 4,67 137,86 93,26 0,68 1,46 5,98 
660.  95,83 54,51 0,57 0,89 3,96 96,56 80,60 0,83 1,33 4,01 
661.  64,11 46,31 0,72 1,14 4,53 74,73 74,14 0,99 1,54 5,24 
662.  147,00 80,76 0,55 1,50 10,70 298,51 149,68 0,50 2,07 13,37 
663.  59,29 47,59 0,80 2,49 15,77 80,71 86,59 1,07 3,48 26,07 
664.  268,33 136,93 0,51 1,61 8,49 144,50 97,58 0,68 2,46 13,12 
665.  100,89 57,90 0,57 2,71 20,95 188,71 90,99 0,48 0,49 3,26 
666.  180,64 125,47 0,69 1,86 8,89 120,14 76,55 0,64 1,56 6,31 
667.  264,63 117,91 0,45 0,58 3,25 132,84 78,62 0,59 2,37 19,58 
668.  203,92 163,71 0,80 2,18 11,86 127,32 90,75 0,71 1,82 8,47 
669.  232,61 130,59 0,56 0,98 4,18 166,87 182,96 1,10 4,32 27,47 
670.  196,58 110,79 0,56 0,98 4,59 310,95 235,90 0,76 1,12 4,42 
671.  67,55 105,84 1,57 3,17 13,24 69,13 51,11 0,74 2,05 8,36 
672.  157,45 109,74 0,70 1,47 5,33 135,00 107,73 0,80 2,80 15,22 
673.  118,18 78,12 0,66 1,79 8,06 144,23 93,58 0,65 1,18 5,37 
674.  98,46 61,70 0,63 2,49 17,11 139,12 93,74 0,67 0,92 3,63 
675.  137,66 72,84 0,53 0,51 3,12 238,59 140,78 0,59 0,52 2,88 
676.  84,97 91,01 1,07 3,15 16,12 101,34 64,48 0,64 1,16 4,32 
677.  63,72 76,24 1,20 6,15 54,16 94,63 53,08 0,56 1,58 9,02 
678.  134,33 71,31 0,53 1,20 4,58 140,57 161,12 1,15 1,96 6,41 
679.  96,99 49,57 0,51 0,33 3,18 194,51 94,63 0,49 0,55 3,17 
680.  105,35 59,93 0,57 0,99 3,92 101,44 86,10 0,85 1,98 8,82 
681.  108,82 110,99 1,02 4,15 32,42 133,78 82,37 0,62 1,62 8,18 
682.  152,11 81,48 0,54 0,99 5,15 255,91 153,54 0,60 0,55 3,55 
683.  110,90 70,23 0,63 0,54 2,86 174,05 155,21 0,89 0,81 2,74 
684.  100,02 58,37 0,58 1,44 5,27 159,86 90,84 0,57 0,93 3,96 
685.  208,95 119,19 0,57 1,38 7,58 114,60 63,20 0,55 1,01 6,11 
686.  141,69 84,17 0,59 1,00 4,03 127,17 125,80 0,99 2,36 9,95 
687.  56,45 44,72 0,79 1,34 4,41 66,40 64,93 0,98 2,05 8,65 
688.  133,45 75,56 0,57 0,90 3,84 154,15 165,42 1,07 1,66 5,28 
689.  157,81 106,99 0,68 1,75 8,01 111,61 87,18 0,78 2,85 16,28 
690.  228,89 144,91 0,63 1,71 7,73 283,22 197,65 0,70 1,10 4,49 
691.  117,73 75,97 0,65 1,94 11,68 218,56 108,06 0,49 0,75 3,86 
692.  113,62 75,36 0,66 1,82 8,92 171,71 125,91 0,73 2,40 15,24 
693.  138,48 116,00 0,84 2,89 13,07 221,81 126,23 0,57 3,56 29,80 
694.  44,78 53,87 1,20 3,62 17,22 63,50 38,04 0,60 2,81 20,36 
695.  187,45 131,16 0,70 1,80 9,12 111,57 67,53 0,61 1,60 7,69 
696.  124,20 84,69 0,68 1,09 4,01 153,27 190,60 1,24 1,54 4,41 
697.  269,92 133,77 0,50 0,62 3,54 193,07 160,25 0,83 2,78 13,60 
698.  143,88 79,84 0,55 1,18 5,47 79,62 55,94 0,70 2,07 10,05 
699.  90,78 60,89 0,67 1,42 7,24 139,08 132,86 0,96 1,66 6,93 
700.  150,71 169,17 1,12 2,76 11,75 184,28 91,35 0,50 1,12 4,42 
701.  98,65 73,74 0,75 3,25 19,18 81,82 150,00 1,83 4,79 29,33 
702.  279,34 142,69 0,51 1,36 7,18 140,95 85,99 0,61 1,10 6,21 
703.  213,31 170,28 0,80 1,12 4,04 133,15 77,66 0,58 1,05 4,10 
704.  137,77 93,75 0,68 1,22 4,31 142,45 96,20 0,68 1,82 8,19 
705.  229,40 115,31 0,50 1,26 6,09 165,90 149,14 0,90 2,58 12,24 
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706.  210,15 131,24 0,62 1,05 4,77 361,24 224,61 0,62 1,29 5,36 
707.  158,06 102,47 0,65 1,07 4,49 249,99 176,93 0,71 1,06 4,71 
708.  141,54 90,95 0,64 1,14 4,80 226,04 174,63 0,77 1,33 5,47 
709.  173,86 89,68 0,52 0,30 3,35 340,34 167,75 0,49 0,67 3,46 
710.  116,32 62,23 0,53 1,06 6,96 231,44 117,08 0,51 1,38 8,20 
711.  206,91 183,20 0,89 2,30 10,73 189,33 122,56 0,65 1,43 5,40 
712.  116,81 73,00 0,62 1,51 6,51 138,28 109,39 0,79 1,21 4,14 
713.  131,80 86,88 0,66 3,13 21,25 69,60 62,00 0,89 3,41 19,75 
714.  105,46 69,66 0,66 1,67 6,68 109,91 157,08 1,43 2,37 8,40 
715.  129,39 68,80 0,53 1,42 5,96 103,21 133,93 1,30 2,95 12,52 
716.  222,84 115,59 0,52 0,97 4,10 142,49 117,06 0,82 3,52 22,74 
717.  217,02 122,03 0,56 1,46 8,11 264,71 196,81 0,74 1,50 5,83 
718.  83,10 48,89 0,59 1,34 5,93 69,81 73,81 1,06 3,03 16,22 
719.  232,69 140,18 0,60 1,23 6,70 271,58 251,81 0,93 1,55 5,58 
720.  159,34 174,78 1,10 1,76 6,50 125,73 77,05 0,61 1,46 6,43 
721.  206,30 118,13 0,57 1,20 5,15 122,24 73,52 0,60 1,20 5,21 
722.  163,54 136,24 0,83 1,16 3,71 126,72 74,46 0,59 0,84 4,42 
723.  103,24 61,34 0,59 1,04 4,23 138,59 114,20 0,82 1,11 3,87 
724.  167,46 98,02 0,59 1,02 5,13 197,37 151,76 0,77 1,11 3,53 
725.  196,60 120,20 0,61 2,26 13,65 368,86 212,50 0,58 1,05 5,05 
726.  130,17 90,50 0,70 1,00 3,47 163,73 197,26 1,20 1,52 4,39 
727.  196,33 114,25 0,58 1,66 7,45 249,82 182,30 0,73 1,29 5,30 
728.  213,27 113,79 0,53 0,86 4,42 130,83 77,50 0,59 1,70 8,93 
729.  165,76 84,07 0,51 1,14 4,42 104,96 85,55 0,82 3,11 17,39 
730.  134,93 114,75 0,85 2,37 9,70 194,37 100,15 0,52 1,05 5,19 
731.  88,09 52,07 0,59 1,13 5,97 176,68 93,03 0,53 1,45 6,88 
732.  153,05 74,67 0,49 1,00 4,52 83,34 62,12 0,75 2,68 14,88 
733.  56,11 45,05 0,80 2,08 8,16 59,19 94,08 1,59 2,91 11,52 
734.  180,70 105,95 0,59 1,46 6,94 202,79 197,12 0,97 2,20 10,45 
735.  140,69 124,65 0,89 4,22 31,76 212,65 162,34 0,76 3,46 24,82 
736.  206,10 136,93 0,66 3,00 21,81 364,26 270,07 0,74 3,21 24,49 
737.  81,94 82,80 1,01 3,61 18,64 130,73 63,81 0,49 1,06 5,04 
738.  175,74 91,93 0,52 0,89 4,61 303,57 169,27 0,56 0,63 2,99 
739.  127,09 109,12 0,86 2,62 11,41 182,84 95,82 0,52 0,57 2,88 
740.  146,55 83,73 0,57 0,94 5,69 285,61 165,17 0,58 1,34 6,22 
741.  140,59 74,97 0,53 1,30 5,67 127,51 143,26 1,12 2,04 6,69 
742.  172,64 102,60 0,59 1,23 7,52 325,86 178,90 0,55 1,64 9,23 
743.  99,74 62,17 0,62 1,58 6,85 95,63 126,10 1,32 2,76 11,52 
744.  58,27 57,39 0,99 2,85 13,03 74,92 47,41 0,63 1,65 7,38 
745.  175,44 138,35 0,79 1,04 3,53 138,31 77,86 0,56 0,83 3,87 
746.  239,46 162,46 0,68 1,46 5,56 243,10 166,10 0,68 2,27 13,71 
747.  172,11 126,28 0,73 0,73 3,20 323,81 263,36 0,81 0,73 3,04 
748.  98,38 56,88 0,58 2,54 17,11 54,73 46,66 0,85 3,89 25,41 
749.  208,09 119,69 0,58 1,43 7,07 325,45 226,67 0,70 1,69 8,76 
750.  168,61 121,42 0,72 2,58 12,42 272,59 132,40 0,49 0,90 4,61 
751.  270,98 178,84 0,66 1,28 4,94 311,45 229,42 0,74 1,44 6,00 
752.  189,53 124,06 0,65 1,60 7,29 292,29 230,17 0,79 1,76 8,44 
753.  186,34 101,30 0,54 0,96 4,74 265,73 227,24 0,86 1,24 4,78 
754.  56,18 48,75 0,87 3,68 19,54 47,29 102,94 2,18 4,60 25,02 
755.  133,72 86,32 0,65 1,37 5,70 213,19 139,73 0,66 1,92 9,60 
756.  181,33 120,42 0,66 1,46 5,45 263,38 179,53 0,68 1,79 9,35 
757.  242,33 141,14 0,58 0,89 3,76 299,37 226,92 0,76 1,24 4,78 
758.  214,36 107,66 0,50 1,09 4,85 111,76 72,38 0,65 2,63 16,14 
759.  248,51 174,12 0,70 3,30 22,42 215,71 182,99 0,85 1,92 7,42 
760.  194,98 193,21 0,99 3,04 15,90 241,98 137,68 0,57 1,16 4,93 
761.  141,24 77,86 0,55 1,26 5,21 126,65 126,91 1,00 2,26 8,87 
762.  85,75 90,03 1,05 2,25 8,07 99,51 52,86 0,53 0,99 4,48 
763.  117,08 67,01 0,57 0,85 3,09 114,69 135,45 1,18 1,85 5,61 
764.  181,99 104,96 0,58 0,92 3,92 254,24 217,10 0,85 1,14 3,86 
765.  178,87 115,43 0,65 1,20 4,54 156,85 106,74 0,68 1,51 5,55 
766.  128,84 84,81 0,66 1,45 7,74 163,31 129,48 0,79 1,29 4,36 
767.  188,43 104,65 0,56 1,03 5,54 362,80 201,46 0,56 1,21 6,19 
768.  145,21 83,84 0,58 1,66 6,47 245,13 140,10 0,57 1,19 5,26 
769.  147,65 120,39 0,82 1,52 5,87 112,14 68,33 0,61 1,19 5,35 
770.  102,69 102,87 1,00 1,47 4,34 98,42 58,91 0,60 1,29 6,03 
771.  200,89 120,79 0,60 1,39 7,96 280,95 218,77 0,78 2,26 13,46 
772.  156,05 128,86 0,83 2,73 13,46 244,76 120,14 0,49 1,10 5,22 
773.  173,29 109,65 0,63 1,50 6,38 125,06 99,45 0,80 2,75 14,41 
774.  135,60 147,32 1,09 7,74 84,86 86,44 84,67 0,98 5,34 46,54 
775.  150,58 81,06 0,54 0,88 4,70 256,42 146,76 0,57 0,84 3,66 
776.  224,55 146,01 0,65 1,70 12,17 156,76 103,92 0,66 1,76 7,21 
777.  163,27 125,95 0,77 1,78 6,10 195,21 109,51 0,56 1,28 6,55 
778.  128,12 104,68 0,82 4,98 43,76 112,81 209,53 1,86 6,35 57,99 
779.  148,61 119,24 0,80 5,58 50,81 266,49 129,02 0,48 1,07 5,06 
780.  42,40 58,95 1,39 4,05 21,71 47,34 123,84 2,62 4,24 22,26 
781.  131,27 110,44 0,84 1,43 5,67 118,80 77,99 0,66 1,66 6,68 
782.  119,86 105,29 0,88 1,74 6,02 130,96 78,62 0,60 0,91 3,94 
783.  109,68 60,50 0,55 0,51 3,09 219,95 114,86 0,52 0,71 3,27 
784.  198,30 111,47 0,56 1,24 5,18 225,98 181,58 0,80 1,86 8,98 
785.  149,42 74,49 0,50 0,80 5,01 300,59 141,05 0,47 1,16 5,41 
786.  236,72 179,92 0,76 1,65 6,70 194,83 113,89 0,58 1,35 5,67 
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787.  270,41 212,39 0,79 3,00 21,98 166,98 111,90 0,67 2,53 16,86 
788.  82,82 65,09 0,79 2,81 15,10 105,95 65,70 0,62 1,38 5,93 
789.  84,05 54,58 0,65 2,04 10,01 154,53 79,60 0,52 1,38 6,53 
790.  54,29 38,10 0,70 1,97 7,70 43,25 65,37 1,51 3,56 16,07 
791.  128,38 76,61 0,60 1,66 9,64 222,44 160,78 0,72 1,74 9,30 
792.  214,36 209,80 0,98 5,94 54,74 313,09 181,76 0,58 1,18 5,21 
793.  277,49 130,71 0,47 0,81 3,76 142,99 96,66 0,68 5,01 49,29 
794.  195,78 138,97 0,71 1,44 5,32 225,93 136,43 0,60 1,52 8,29 
795.  92,01 55,10 0,60 1,42 6,00 104,00 126,35 1,21 2,05 7,08 
796.  241,83 190,93 0,79 5,54 54,43 189,76 137,53 0,72 2,28 12,48 
797.  161,73 133,33 0,82 4,59 42,41 104,89 83,86 0,80 3,31 21,04 
798.  127,35 111,07 0,87 1,72 5,82 159,72 87,04 0,54 1,41 5,88 
799.  183,87 181,06 0,98 1,40 4,80 136,57 80,22 0,59 1,01 4,54 
800.  120,29 77,89 0,65 1,35 6,49 124,45 106,82 0,86 4,05 31,68 
801.  154,10 103,66 0,67 1,20 4,56 247,49 223,38 0,90 1,11 3,92 
802.  121,48 111,40 0,92 6,66 68,01 132,94 223,78 1,68 7,30 77,88 
803.  250,92 147,66 0,59 1,35 6,25 286,67 215,54 0,75 1,48 5,64 
804.  139,22 100,96 0,73 5,85 61,34 270,87 128,39 0,47 0,77 3,75 
805.  236,22 166,16 0,70 0,82 3,37 159,39 95,07 0,60 1,44 7,05 
806.  139,73 114,70 0,82 1,53 5,23 150,69 95,78 0,64 1,49 6,91 
807.  196,75 137,92 0,70 1,64 7,10 245,12 147,93 0,60 1,38 5,64 
808.  152,35 168,14 1,10 3,48 22,12 190,29 118,55 0,62 3,21 23,60 
809.  120,87 82,97 0,69 0,57 2,77 200,74 180,71 0,90 0,70 2,61 
810.  133,30 77,89 0,58 1,66 7,01 103,78 140,01 1,35 3,43 16,19 
811.  176,42 110,57 0,63 2,43 16,68 306,82 205,06 0,67 0,80 4,07 
812.  113,58 69,13 0,61 1,72 9,55 199,89 107,64 0,54 0,90 4,48 
813.  114,68 74,11 0,65 1,29 5,29 177,14 132,59 0,75 1,47 6,03 
814.  148,02 89,80 0,61 1,00 4,99 220,21 195,88 0,89 1,20 4,82 
815.  175,29 137,61 0,79 3,13 23,17 142,21 90,71 0,64 1,58 8,20 
816.  37,33 43,45 1,16 4,28 24,35 36,36 90,18 2,48 4,86 27,87 
817.  151,07 94,24 0,62 1,95 12,43 263,95 206,32 0,78 1,75 10,01 
818.  119,11 96,13 0,81 2,05 8,34 153,02 83,40 0,55 1,02 5,62 
819.  194,57 141,36 0,73 1,79 7,21 157,24 101,56 0,65 1,02 4,04 
820.  234,07 146,27 0,62 1,24 4,79 289,83 232,67 0,80 1,61 6,05 
821.  99,73 57,42 0,58 1,30 7,15 190,52 93,64 0,49 0,87 4,47 
822.  180,00 93,29 0,52 0,41 3,07 326,59 191,11 0,59 0,57 2,95 
823.  93,16 69,20 0,74 2,40 12,50 81,08 86,72 1,07 2,93 14,45 
824.  80,86 49,66 0,61 1,46 5,97 74,26 82,59 1,11 2,87 14,58 
825.  200,44 112,47 0,56 1,81 10,25 143,84 123,81 0,86 2,54 11,22 
826.  245,73 142,64 0,58 1,12 5,82 181,03 115,52 0,64 1,44 5,64 
827.  184,24 159,97 0,87 2,87 15,10 246,55 135,41 0,55 1,90 11,42 
828.  152,50 80,33 0,53 1,17 5,62 99,23 113,26 1,14 4,75 33,87 
829.  220,26 228,76 1,04 2,98 15,16 202,47 132,93 0,66 1,93 8,14 
830.  84,10 64,36 0,77 2,33 11,03 89,54 60,80 0,68 1,05 3,61 
831.  251,03 186,46 0,74 2,34 14,74 363,28 332,20 0,91 3,83 27,62 
832.  107,43 55,11 0,51 0,80 4,25 210,12 102,94 0,49 0,69 3,57 
833.  106,25 90,36 0,85 3,22 20,80 116,81 195,54 1,67 3,56 20,92 
834.  200,09 133,30 0,67 1,43 6,18 192,13 123,11 0,64 1,43 5,99 
835.  161,87 121,48 0,75 1,22 4,39 139,51 88,16 0,63 1,68 8,07 
836.  91,93 55,09 0,60 1,68 8,88 80,89 114,82 1,42 3,23 15,30 
837.  130,36 76,35 0,59 2,23 11,83 84,93 106,11 1,25 6,09 54,04 
838.  236,26 144,13 0,61 1,01 4,84 150,94 104,36 0,69 1,63 7,18 
839.  122,89 119,65 0,97 1,74 5,45 131,95 64,42 0,49 0,54 2,94 
840.  185,73 106,43 0,57 0,72 3,84 293,16 213,22 0,73 0,92 3,83 
841.  118,14 161,75 1,37 4,24 28,64 124,30 80,00 0,64 2,85 19,34 
842.  112,11 120,21 1,07 2,17 7,90 122,76 67,94 0,55 0,82 3,71 
843.  214,60 139,98 0,65 1,42 5,96 184,97 144,38 0,78 2,02 8,75 
844.  196,83 113,80 0,58 0,87 4,06 290,94 228,02 0,78 1,09 4,10 
845.  98,24 55,36 0,56 1,03 5,59 183,69 99,98 0,54 1,50 7,50 
846.  89,56 49,93 0,56 1,12 5,02 68,17 62,48 0,92 2,65 11,37 
847.  178,74 107,74 0,60 1,80 9,74 318,51 225,55 0,71 1,77 9,25 
848.  120,95 86,74 0,72 1,18 4,01 148,38 100,82 0,68 1,83 8,02 
849.  171,19 96,08 0,56 1,29 5,28 97,77 71,18 0,73 2,01 8,81 
850.  80,35 48,93 0,61 2,55 18,07 158,54 77,51 0,49 1,34 5,72 
851.  116,83 63,59 0,54 0,53 3,15 238,79 118,79 0,50 0,78 3,29 
852.  182,55 103,13 0,56 0,99 4,09 219,09 182,29 0,83 1,47 5,26 
853.  135,99 131,42 0,97 2,83 15,55 163,43 112,60 0,69 2,19 11,48 
854.  120,67 125,53 1,04 2,39 9,64 134,00 78,20 0,58 1,35 7,54 
855.  73,73 44,97 0,61 0,85 3,25 83,30 77,31 0,93 1,61 5,52 
856.  138,13 163,08 1,18 2,76 12,80 132,40 74,89 0,57 1,92 9,80 
857.  261,99 210,16 0,80 4,16 27,85 276,41 263,63 0,95 3,07 17,62 
858.  159,12 118,78 0,75 3,58 23,50 201,12 134,53 0,67 0,83 3,30 
859.  163,66 99,31 0,61 1,75 7,27 130,13 127,93 0,98 2,25 9,10 
860.  155,82 116,93 0,75 1,39 5,31 275,08 255,04 0,93 1,24 4,58 
861.  101,38 58,46 0,58 1,78 9,63 82,68 82,05 0,99 2,65 13,72 
862.  137,93 81,70 0,59 1,18 4,46 122,80 105,13 0,86 2,06 8,40 
863.  165,79 262,02 1,58 11,43 149,62 187,62 540,67 2,88 11,13 143,39 
864.  72,37 48,82 0,67 2,61 15,63 129,47 61,08 0,47 0,73 3,14 
865.  151,10 76,56 0,51 0,59 3,39 100,18 107,07 1,07 3,42 17,94 
866.  166,46 96,25 0,58 0,78 4,39 300,27 176,88 0,59 0,51 3,01 
867.  128,84 81,63 0,63 1,19 6,02 183,02 140,47 0,77 1,11 4,30 
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inst. Distribution of CVP intermediate effort Distribution of CIBI intermediate effort 
n. μ σ CV skew kurt μ σ CV skew kurt 

868.  167,22 99,36 0,59 1,02 4,09 144,94 114,03 0,79 1,98 8,16 
869.  141,65 81,17 0,57 0,94 4,05 140,10 127,39 0,91 1,75 6,21 
870.  239,68 117,06 0,49 0,39 2,96 189,69 156,08 0,82 2,73 14,42 
871.  186,13 102,80 0,55 0,81 4,22 173,02 196,94 1,14 2,48 10,03 
872.  241,58 147,48 0,61 1,57 6,17 305,84 187,55 0,61 0,85 4,25 
873.  267,02 128,47 0,48 1,06 5,13 133,37 68,91 0,52 0,62 4,57 
874.  123,55 72,22 0,58 0,61 3,32 216,94 148,14 0,68 0,82 3,48 
875.  59,15 40,60 0,69 1,57 6,90 61,84 75,17 1,22 2,87 13,78 
876.  129,09 147,85 1,15 1,84 6,21 108,37 67,58 0,62 1,18 4,74 
877.  228,20 191,89 0,84 3,61 23,60 323,08 196,98 0,61 1,62 7,86 
878.  93,65 68,96 0,74 1,69 6,20 131,67 66,55 0,51 0,97 5,10 
879.  177,43 108,10 0,61 1,69 7,73 205,99 157,95 0,77 1,77 8,62 
880.  163,09 99,14 0,61 1,17 5,82 237,51 170,73 0,72 0,97 3,77 
881.  153,81 83,23 0,54 1,28 6,36 302,03 154,95 0,51 1,27 6,32 
882.  275,34 152,37 0,55 1,66 7,88 134,75 80,92 0,60 1,30 6,85 
883.  208,95 114,11 0,55 1,01 4,14 319,69 207,06 0,65 1,20 5,12 
884.  211,86 130,19 0,61 1,36 5,93 193,34 141,50 0,73 1,71 6,97 
885.  187,31 96,09 0,51 0,87 4,24 307,39 196,39 0,64 0,65 3,05 
886.  101,66 137,57 1,35 2,73 12,56 90,26 63,18 0,70 2,07 10,88 
887.  248,11 181,91 0,73 1,17 4,24 186,30 110,27 0,59 1,72 10,63 
888.  224,89 115,49 0,51 0,78 3,48 327,09 217,63 0,67 1,11 4,44 
889.  139,23 80,78 0,58 1,81 7,18 92,27 144,01 1,56 4,72 25,18 
890.  66,07 38,80 0,59 1,00 3,94 62,26 74,37 1,19 2,32 8,27 
891.  165,04 132,67 0,80 2,15 11,06 134,64 96,85 0,72 1,73 7,74 
892.  168,45 104,16 0,62 0,71 3,70 296,06 227,53 0,77 0,75 3,27 
893.  189,37 129,91 0,69 1,39 5,13 213,05 139,00 0,65 1,39 5,28 
894.  240,40 143,64 0,60 1,20 4,71 303,55 194,55 0,64 1,36 5,91 
895.  176,37 98,47 0,56 1,33 5,32 157,43 140,42 0,89 2,18 9,40 
896.  121,07 69,47 0,57 0,83 4,74 237,08 133,69 0,56 1,01 5,14 
897.  164,05 104,53 0,64 1,68 9,56 297,32 211,60 0,71 1,72 9,72 
898.  150,78 101,66 0,67 2,03 10,68 275,29 157,06 0,57 1,28 6,34 
899.  195,64 107,76 0,55 1,25 5,79 282,42 225,03 0,80 1,53 6,49 
900.  254,11 124,22 0,49 0,94 4,09 162,08 111,04 0,69 2,12 9,42 
901.  98,54 71,09 0,72 1,76 8,59 150,37 127,29 0,85 1,61 7,24 
902.  261,01 157,09 0,60 1,25 6,48 171,99 121,95 0,71 2,10 10,27 
903.  115,86 67,56 0,58 1,58 7,69 76,72 71,96 0,94 2,55 10,33 
904.  84,06 44,24 0,53 0,42 3,57 163,55 84,81 0,52 0,56 3,68 
905.  238,59 190,30 0,80 6,89 73,61 161,02 140,49 0,87 3,01 16,97 
906.  160,19 100,92 0,63 1,86 8,37 206,70 162,55 0,79 1,62 8,09 
907.  206,82 129,60 0,63 1,08 4,46 233,91 194,67 0,83 1,77 7,38 
908.  213,31 113,52 0,53 0,68 3,62 347,73 229,84 0,66 0,98 4,15 
909.  134,20 94,06 0,70 1,19 6,06 216,09 205,17 0,95 1,26 5,44 
910.  135,07 93,43 0,69 1,61 6,08 144,56 195,56 1,35 2,46 9,09 
911.  191,01 161,83 0,85 2,45 11,64 195,88 129,68 0,66 1,27 5,27 
912.  185,35 134,14 0,72 2,45 13,07 296,97 169,71 0,57 1,21 5,87 
913.  106,50 91,21 0,86 2,45 10,64 161,90 85,77 0,53 1,90 11,56 
914.  149,14 87,43 0,59 1,37 6,79 137,51 111,91 0,81 2,10 8,28 
915.  284,69 244,49 0,86 5,66 54,55 281,14 255,66 0,91 2,30 10,40 
916.  99,12 77,55 0,78 2,95 15,84 155,71 77,16 0,50 0,96 4,42 
917.  98,87 73,63 0,74 3,49 20,01 76,11 134,27 1,76 5,46 37,42 
918.  190,83 120,03 0,63 1,54 7,30 317,03 185,29 0,58 1,37 5,97 
919.  147,78 102,04 0,69 2,53 14,20 195,78 186,62 0,95 2,46 15,50 
920.  91,94 72,49 0,79 1,66 6,52 79,56 54,51 0,69 1,37 5,58 
921.  119,12 66,18 0,56 1,36 7,19 220,73 112,96 0,51 0,98 4,97 
922.  119,76 92,63 0,77 2,66 12,73 195,61 122,46 0,63 1,96 9,95 
923.  212,82 138,49 0,65 1,66 8,04 305,20 170,48 0,56 0,79 3,92 
924.  147,68 95,28 0,65 2,39 14,27 129,50 110,61 0,85 1,75 5,97 
925.  93,99 104,70 1,11 7,29 78,64 130,90 91,63 0,70 1,86 8,93 
926.  102,38 128,10 1,25 3,31 15,25 133,74 78,40 0,59 2,03 10,58 
927.  132,84 84,23 0,63 1,52 6,35 178,70 114,77 0,64 0,92 3,87 
928.  57,13 68,66 1,20 4,04 21,42 88,66 43,12 0,49 1,01 4,56 
929.  253,33 155,77 0,61 2,23 13,23 177,25 138,46 0,78 2,17 8,44 
930.  168,92 99,01 0,59 1,93 11,14 305,33 178,70 0,59 2,47 16,09 
931.  186,46 118,75 0,64 1,05 5,10 336,41 181,46 0,54 0,89 3,85 
932.  208,37 117,28 0,56 1,23 5,90 187,34 157,84 0,84 2,00 8,51 
933.  113,24 110,72 0,98 3,43 18,81 165,34 86,42 0,52 1,47 6,54 
934.  283,69 142,18 0,50 0,86 3,62 150,99 88,48 0,59 1,10 5,17 
935.  167,01 88,98 0,53 0,87 3,65 141,96 115,68 0,81 1,72 6,24 
936.  154,39 135,22 0,88 2,10 8,02 191,84 123,14 0,64 2,85 16,80 
937.  182,88 99,57 0,54 1,37 6,39 108,83 81,00 0,74 2,02 9,61 
938.  234,85 147,90 0,63 2,60 14,32 138,08 113,25 0,82 2,74 13,42 
939.  81,99 57,95 0,71 1,40 5,98 87,46 110,28 1,26 2,24 8,04 
940.  160,57 126,35 0,79 1,52 6,35 122,89 74,46 0,61 1,21 5,30 
941.  119,72 67,77 0,57 1,27 5,12 91,42 128,26 1,40 3,32 14,19 
942.  119,42 158,25 1,33 2,68 11,32 106,52 74,59 0,70 1,94 8,59 
943.  191,78 125,40 0,65 1,64 6,73 249,14 160,55 0,64 1,28 5,54 
944.  107,90 75,11 0,70 2,36 15,11 142,86 151,64 1,06 3,06 19,07 
945.  183,86 125,36 0,68 1,93 8,20 277,44 151,25 0,55 1,10 4,55 
946.  125,42 72,15 0,58 0,65 3,39 210,31 148,88 0,71 0,71 3,28 
947.  85,67 75,21 0,88 2,14 8,97 98,66 164,12 1,66 2,62 10,03 
948.  129,77 100,57 0,77 3,58 24,88 91,17 94,21 1,03 3,68 22,79 
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inst. Distribution of CVP intermediate effort Distribution of CIBI intermediate effort 
n. μ σ CV skew kurt μ σ CV skew kurt 

949.  192,41 107,03 0,56 0,70 3,73 334,88 217,85 0,65 0,81 3,69 
950.  201,15 105,37 0,52 1,31 5,59 140,84 150,12 1,07 3,10 14,31 
951.  293,46 168,80 0,58 2,67 18,08 158,99 104,43 0,66 2,52 13,68 
952.  104,03 95,54 0,92 5,79 53,25 92,17 198,33 2,15 6,60 59,29 
953.  86,74 62,01 0,71 1,62 7,09 96,90 69,59 0,72 1,37 5,31 
954.  100,12 68,78 0,69 1,63 7,24 82,83 76,49 0,92 2,22 8,98 
955.  73,23 38,48 0,53 2,29 14,10 43,10 39,54 0,92 4,67 33,25 
956.  248,48 164,47 0,66 1,99 9,31 326,56 196,95 0,60 0,77 3,79 
957.  58,08 57,81 1,00 6,33 53,53 41,54 113,79 2,74 8,31 75,96 
958.  82,16 59,53 0,72 1,74 8,01 87,07 125,05 1,44 2,66 11,29 
959.  101,94 122,67 1,20 2,73 10,46 125,00 67,67 0,54 1,33 5,73 
960.  121,28 80,60 0,66 2,08 12,04 182,41 167,72 0,92 2,03 11,74 
961.  83,13 112,42 1,35 4,79 35,17 104,44 65,82 0,63 2,21 12,24 
962.  167,58 155,82 0,93 2,57 11,52 210,72 116,45 0,55 0,92 3,49 
963.  143,00 123,83 0,87 1,90 8,89 102,16 64,68 0,63 1,57 7,22 
964.  107,01 67,76 0,63 1,23 5,34 101,61 89,42 0,88 1,89 6,93 
965.  244,82 157,27 0,64 1,58 7,29 130,23 80,45 0,62 1,38 6,47 
966.  158,97 103,37 0,65 1,89 9,54 243,21 173,99 0,72 2,67 17,87 
967.  123,34 85,77 0,70 1,93 8,92 200,00 134,73 0,67 2,74 18,95 
968.  130,55 63,62 0,49 1,12 5,24 86,96 90,45 1,04 3,84 22,45 
969.  122,10 89,00 0,73 1,59 6,43 110,71 70,54 0,64 1,22 5,07 
970.  76,58 80,38 1,05 2,27 8,10 94,42 52,32 0,55 1,01 4,38 
971.  141,04 141,13 1,00 3,13 15,62 200,95 128,26 0,64 1,77 7,75 
972.  146,19 85,41 0,58 0,67 3,87 198,67 187,92 0,95 1,32 4,45 
973.  192,67 140,46 0,73 1,85 9,29 189,13 113,34 0,60 1,48 5,96 
974.  119,65 73,27 0,61 0,98 4,49 145,13 132,40 0,91 1,82 6,81 
975.  97,36 64,33 0,66 1,96 10,19 81,53 91,68 1,12 3,17 17,28 
976.  169,78 96,10 0,57 1,98 10,29 83,38 51,16 0,61 1,56 8,72 
977.  144,71 77,97 0,54 1,21 4,70 112,72 145,99 1,30 3,08 12,85 
978.  193,17 118,49 0,61 1,36 5,24 154,27 103,46 0,67 1,14 4,28 
979.  85,34 158,30 1,85 4,84 33,89 101,71 80,22 0,79 3,56 23,42 
980.  184,18 101,60 0,55 1,17 5,81 167,95 169,68 1,01 1,91 6,26 
981.  155,18 89,94 0,58 1,37 5,11 112,51 155,78 1,38 3,38 14,95 
982.  168,46 96,19 0,57 1,34 7,14 309,38 180,22 0,58 1,64 8,61 
983.  80,66 60,36 0,75 2,21 11,27 105,98 135,65 1,28 2,32 10,20 
984.  95,48 60,36 0,63 1,96 11,26 70,73 65,50 0,93 2,33 8,96 
985.  56,64 75,97 1,34 3,23 14,18 68,76 46,01 0,67 1,58 6,23 
986.  207,28 173,41 0,84 1,79 8,62 154,98 91,81 0,59 1,37 6,98 
987.  205,20 144,52 0,70 1,60 6,03 286,69 185,88 0,65 2,08 11,98 
988.  140,95 78,91 0,56 1,01 6,02 245,38 165,11 0,67 1,22 5,83 
989.  108,94 50,16 0,46 0,26 3,25 219,27 95,25 0,43 0,46 3,27 
990.  222,87 134,77 0,60 1,07 4,95 279,41 176,57 0,63 0,88 3,52 
991.  111,88 83,26 0,74 1,11 4,38 80,56 53,96 0,67 1,29 5,73 
992.  193,07 143,36 0,74 5,28 51,91 191,53 181,42 0,95 1,29 3,81 
993.  149,62 72,30 0,48 0,16 3,02 299,29 135,23 0,45 0,42 3,00 
994.  217,27 150,08 0,69 1,35 5,21 242,71 150,59 0,62 1,20 5,32 
995.  254,63 128,77 0,51 1,11 4,81 197,79 150,35 0,76 1,66 6,10 
996.  211,90 142,59 0,67 2,02 10,44 275,30 181,89 0,66 1,17 5,60 
997.  165,94 111,69 0,67 1,02 4,17 257,64 244,95 0,95 1,11 3,75 
998.  215,86 146,46 0,68 2,16 12,81 322,78 233,89 0,72 1,32 4,90 
999.  100,04 66,54 0,67 2,79 19,83 181,40 130,06 0,72 3,06 22,64 

1000.  110,50 100,32 0,91 3,14 16,71 160,97 84,24 0,52 1,04 4,49 
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Appendix D: Graphs of Statistical Evaluation 

This appendix presents statistical evaluations of several indicative sample instances of the 
CVP vs CIBI design problem. The simulated effort assessments are graphically represented 
and referred to 7th fully stochastic simulation state in Table 6-4. The parameters of each 
sample instance have been pooled by the randomly generated sample in Appendix B. The 
interpretation of each subgraph is analyzed in subsection 6.5.5. The error rate (Er) in upper 
mid graph and the frequency distributions in the bottom graphs have been assessed based 
on repeated (Monte Carlo) simulations. The rest graphs are referred to indicative outcomes 
of a single (on-time) simulation. 

 

 
Figure 0-1: Sample instance N. 001 (N=161, M=60, pnE=0.67, pnP=0.33) 
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Figure 0-2: Sample instance N. 004 (N=56, M=123, pnE=0.09, pnP=0.91) 
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Figure 0-3: Sample instance N. 006 (N=101, M=12, pnE=0.90, pnP=0.10) 
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Figure 0-4: Sample instance N. 007 (N=31, M=7, pnE=0.15, pnP=0.85) 
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Figure 0-5: Sample instance N. 008 (N=134, M=112, pnE=0.15, pnP=0.85) 
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Figure 0-6: Sample instance N. 009 (N=104, M=38, pnE=0.08, pnP=0.92) 
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Figure 0-7: Sample instance N. 010 (N=81, M=6, pnE=0.70, pnP=0.30) 
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Figure 0-8: Sample instance N. 011 (N=90, M=58, pnE=0.72, pnP=0.28) 
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Figure 0-9: Sample instance N. 012 (N=29, M=102, pnE=0.34, pnP=0.66) 

 

 

 

 

 



 

UNIVERSITY OF 
PELOPONNESE 

“Model-driven Software Architectural Design based on Software 
Evolution Modeling and Simulation and Design Pattern Analysis 
for Design Space Exploration Towards Maintainability” 

 

PhD Thesis  240 

  

 
Figure 0-10: Sample instance N. 014 (N=188, M=133, pnE=0.14, pnP=0.86) 
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Figure 0-11: Sample instance N. 016 (N=155, M=91, pnE=0.22, pnP=0.78) 
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Figure 0-12: Sample instance N. 017 (N=21, M=5, pnE=0.26, pnP=0.74) 
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Figure 0-13: Sample instance N. 018 (N=139, M=132, pnE=0.93, pnP=0.07) 
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Figure 0-14: Sample instance N. 019 (N=89, M=126, pnE=0.30, pnP=0.70) 
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Figure 0-15: Sample instance N. 020 (N=156, M=138, pnE=0.68, pnP=0.32) 
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Figure 0-16: Sample instance N. 021 (N=70, M=99, pnE=0.57, pnP=0.43) 
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Figure 0-17: Sample instance N. 022 (N=160, M=13, pnE=0.90, pnP=0.10) 
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Figure 0-18: Sample instance N. 024 (N=46, M=89, pnE=0.63, pnP=0.37) 
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Figure 0-19: Sample instance N. 025 (N=156, M=55, pnE=0.30, pnP=0.70) 
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Figure 0-20: Sample instance N. 026 (N=137, M=78, pnE=0.74, pnP=0.26) 
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Figure 0-21: Sample instance N. 027 (N=106, M=82, pnE=0.18, pnP=0.82) 
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Figure 0-22: Sample instance N. 029 (N=141, M=24, pnE=0.94, pnP=0.06) 
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Figure 0-23: Sample instance N. 031 (N=26, M=33, pnE=0.85, pnP=0.15) 
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Figure 0-24: Sample instance N. 032 (N=154, M=99, pnE=0.46, pnP=0.54) 
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Figure 0-25: Sample instance N. 033 (N=22, M=68, pnE=0.85, pnP=0.15) 
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Figure 0-26: Sample instance N. 034 (N=130, M=58, pnE=0.50, pnP=0.50) 
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Figure 0-27: Sample instance N. 035 (N=155, M=9, pnE=0.35, pnP=0.65) 
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Figure 0-28: Sample instance N. 036 (N=182, M=111, pnE=0.48, pnP=0.52) 
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Figure 0-29: Sample instance N. 037 (N=196, M=41, pnE=0.87, pnP=0.13) 
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Figure 0-30: Sample instance N. 038 (N=166, M=103, pnE=0.46, pnP=0.54) 
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Figure 0-31: Sample instance N. 039 (N=66, M=139, pnE=0.40, pnP=0.60) 
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Figure 0-32: Sample instance N. 040 (N=139, M=134, pnE=0.61, pnP=0.39) 
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Figure 0-33: Sample instance N. 041 (N=48, M=89, pnE=0.20, pnP=0.80) 
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Figure 0-34: Sample instance N. 042 (N=129, M=114, pnE=0.37, pnP=0.63) 
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Figure 0-35: Sample instance N. 043 (N=182, M=119, pnE=0.62, pnP=0.38) 
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Figure 0-36: Sample instance N. 045 (N=166, M=51, pnE=0.10, pnP=0.90) 
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Figure 0-37: Sample instance N. 046 (N=121, M=133, pnE=0.89, pnP=0.11) 
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Figure 0-38: Sample instance N. 047 (N=154, M=108, pnE=0.90, pnP=0.10) 
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Figure 0-39: Sample instance N. 048 (N=35, M=133, pnE=0.61, pnP=0.39) 
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Figure 0-40: Sample instance N. 049 (N=66, M=90, pnE=0.64, pnP=0.36) 
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Figure 0-41: Sample instance N. 050 (N=43, M=76, pnE=0.28, pnP=0.72) 
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Figure 0-42: Sample instance N. 051 (N=39, M=138, pnE=0.35, pnP=0.65) 
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Figure 0-43: Sample instance N. 052 (N=157, M=118, pnE=0.50, pnP=0.50) 
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Figure 0-44: Sample instance N. 053 (N=160, M=139, pnE=0.92, pnP=0.08) 
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