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Περίληψη

Σ
κοπός της παρούσας διπλωματικής εργασίας είναι η μελέτη του αντικειμένου

της χαρτογράφησης πλημμυρών με τη χρήση εικόνων που λαμβάνονται από δο-

ρυφόρους και αλγόριθμους μηχανικής μάθησης. Από την έναρξη του προγράμματος

Κοπέρνικος του Ευρωπαϊκού Οργανισμού Διαστήματος (ESA) και των δορυφόρων

Sentinel, ένας τεράστιος αριθμός ελεύθερα διαθέσιμων εικόνων λαμβάνεται καθημε-

ρινά, επεκτείνοντας τις πιθανές εφαρμογές. Με την εκτόξευση των Sentinel 1 και

Sentinel 2 οι οποίοι εποπτεύουν τον πλανήτη Γη με πρωτοφανή συχνότητα και χωρική

ανάλυση, οι επιστήμονες και οι μηχανικοί μπορούν πλέον να αναπτύξουν εργαλεία για

να κατανοήσουν τις διαδικασίες της Γης και να λάβουν πιο τεκμηριωμένες αποφάσεις.

Μία από αυτές τις γήινες διαδικασίες είναι οι πλημμύρες, μια από τις πιο καταστροφικές

φυσικές καταστροφές που επηρεάζουν πολλούς ανθρώπους κάθε χρόνο, προκαλώντας

θανάτους, ζημιές και απώλειες περιουσιών. Προκειμένου να μετριαστούν οι επιπτώσεις

των πλημμυρών απαιτείται λήψη κρίσιμων αποφάσεων η οποία μπορεί να υποστηριχθεί

από την χρήση δορυφορικών εικόνων και μεθόδων μηχανικής μάθησης. Η παρούσα

μελέτη εξετάζει την απόδοση τριών διαφορετικών μεθόδων μηχανικής εκμάθησης στον

εντοπισμό πλημμυρισμένων εκτάσεων σε επίπεδο εικονοστοιχείου. Ειδικότερα, εξε-

τάζεται η μέθοδος βαθιάς μάθησης βασισμένη στην αρχιτεκτονική UNET, η μάθηση

μέσω της τεχνικής μεταφοράς γνώσης καθώς και μία παραδοσιακή μέθοδος βασισμένη

στα δέντρα αποφάσεων. Τα πειράματα περιλαμβάνουν εκπαίδευση μοντέλων είτε μέσω

αυστηρής είτε μέσω ασθενούς (weakly) επίβλεψης καθώς και πολυτροπικούς χώρους

χαρακτηριστηκών (multimodal feature space). Τέλος οι τεχνικές μηχανικής μάθησης

συγκρίνονται ως προς την απόδοση με μία τεχνική βασιζόμενη στην τμηματοποίηση του

ιστογράμματος της εικόνας, η επονομαζόμενη ώς μοντέλο βάσης (baseline model).

Λέξεις-κλειδιά: δορυφορική τηλεπισκόπηση, χαρτογράφηση πλημμυρών, αντιμε-
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τώπιση καταστροφών, δορυφορικές εικόνες, εποπτευόμενη σημασιολογική κατάτμηση.



Abstract

T he aim of this thesis is to study the subject of flood mapping utilizing images

captured from satellites and machine learning algorithms. Since the rise of

ESA’s Copernicus program and the consecutive Sentinel satellites a vast number of

freely available images are captured every day expanding the potential applications.

With the launch of Sentinel 1 and Sentinel 2 sensing the planet Earth in an unprece-

dented frequency and spatial resolution, scientists and engineers can now develop

tools in order to understand the processes of the Earth and make more informed

decisions. Floods are one of the most devastating natural disaster affecting many

people each year, causing a lot of deaths, infrastructure damages and loss of prop-

erties. In order to mitigate the effects of floods on people. critical decision making

is needed, which can be assisted by satellite images and machine learning methods.

This study examines the performance of three different machine learning methods

in identifying pixels in satellite images containing flooded areas. More specifically,

the three tested methods are based on deep learning architecture, transfer learning

and traditional swallow learning pixel based semantic segmentation, consequently.

In particular, the deep learning method based on the UNET architecture, transfer

learning using as backbone the VGG16 network and a traditional method based on

decision trees. Experiments involve training models either through strict or through

weak supervision as well as multimodal feature spaces, combining sentinel 1 and

sentinel 2. Finally, the machine learning techniques are compared in terms of per-

formance with a technique based on the segmentation of the histogram of the image,

called as baseline model.

Keywords: remote sensing, flood mapping, disaster response, satellite images,

supervised semantic segmentation.
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Chapter 1

Introduction

The identification of permanent and temporal water segments in a flooded area has

mainly relied on change detection methods utilizing multitemporal imageries. The

problem that still remains unsolved is the ability to identify and distinguish water

type in flood events using only a single post-disaster remote sensing image. Due

to the high availability of satellite images, in the last decade, a lot of research has

been made in flood mapping. In general the problem of distinguishing water from

non water elements is mainly based on histogram thresholding approaches which

are highly affected by the geography, time and atmospheric conditions at the time

the images were captured. Therefore, the generalization ability in threshold based

methods is greatly limited. One of the most challenging tasks in flood disasters is to

distinguish permanent water from temporal water. The identification of temporary

water relies on multi-temporal change detection methods which require at least one

pre-event image, which is a significant limitation [1].

Rapid response to natural hazards is crucial in mitigation actions for life and

property losses. Emergency response teams require timely and accurate data in

order to form critical decisions. Satellite imagery offers a significant amount of

information for regions affected by a disaster in terms of rapid mapping. Currently,

much of the flood analysis is manual or semi-automated, and carried out by experts

from a range of organizations [4].

Some interesting facts about floods on a global scale can be summarized in the
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1.1 : Problem Description

following list [6].

• Floods cause more than 40$ billion per year in damages worldwide.

• 40% of the world’s population lives close to coasts.

• Flooding events are on the rise due to climate change, increasing sea levels and

extreme weather events.

• Flood level estimation needs to be done remotely as physical access to flooded

areas is limited.

• Deploying instruments in potential flood zones can be dangerous.

1.1 Problem Description

Flooding alone accounted for 47% of all weather-related disasters during the

decade 1995-2015, affecting 2.3 billion people, the majority of whom (95%) live in

Asia. Since 1995, floods have accounted for 47% of all weather-related disasters

(Figure 1.1), affecting 2.3 billion people. The number of floods per year rose to

an average of 171 in the period 2005-2014, compared to the annual average of 121

incidents during the last decade [7].

Figure 1.1: Weather-related disasters

The nature of disastrous floods has also changed in recent years, with flash floods,

acute riverine and coastal flooding increasingly frequent. In addition, urbanization

has significantly increased flood run-offs, while recurrent flooding of agricultural

land, particularly in Asia, has taken a heavy toll in terms of lost production, food

shortages and rural under-nutrition.
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Chapter 1 : Introduction

Many authors and researchers over the years have proposed various types of

classification of flood types. In the following section the most prominent and most

comprehensive list of six flood types is illustrated [8].

• Flash floods are one of the most often occurring in urban areas and one of the

most catastrophic for human lifes and infrastructures and properties. They are

caused by heavy rainfall or rapid snow thaw. This type of flood can occur with

little to no notice and even though the relatively small area they cover can drift

large objects like cars and trees.

• Coastal floods are caused exclusively by strong winds directed towards the coast

during high tide. Coastal areas within lower elevation are the most affected.

The following picture illustrates such an example where coastal settlements are

devastated by this type of flood.

• River floods. The distinct characteristic of river floods is the gradual riverbank

overflow caused by extensive rainfall over a period of time. The riparian areas

covered by this type of flood depend on the size of the river and the amount of

excessive rainfall. Floods of this type mainly because of their slow evolution rarely

result in loss of human lives but can cause immense economic losses.

• Urban floods occur when the drainage system of a city fails to handle the ex-

cessive water coming from heavy rain. Additionally, the lack of natural drainage

in urban areas due to impermeable materials can also contribute to urban floods.

Although water levels can be just a few centimeters higher from the ground, this

type of flood can cause major damages in the structures.

• Pluvial flooding is very similar to urban flooding but it occurs mainly in rural

areas affecting mostly agricultural activities and properties. This type of floods

form in flat areas where the terrain can’t absorb the excessive water from rain,

causing puddles and ponds.

• Dam and dyke breach floods are caused by structural failures due to extreme

events and insufficient management.

To mitigate the impact of floods on human lives and properties, both preventive

and emergency measures are required (European Union, 2007). Preventive measures

include policy measures in order to reduce the possibility of a flood event while

- 3 -



1.1 : Problem Description

emergency require operations carried out before, during and after the flood event.

Both of them can be determined by maps that indicate potential hazards, the extent

of the flood and areas that are in danger. There are three main flood maps used for

dealing with such measures focusing on the spatial variability of floods, namely flood

susceptibility, flood inundation, and flood hazard maps [9]. The following images

and paragraphs illustrate an example of these kinds of maps [8] [9].

Flood susceptibility maps (Figure 1.2) determine the tendency of flooding in

a certain area based on its physical characteristics. Particularly, flood susceptibility

mapping considers the topographical, geographical and meteorological features and

the correlation between the spatial distribution of past flood events. This is done

with multivariate analysis and multi-criteria decision analysis and the product is a

qualitative map.

Figure 1.2: Flood Susceptibility Map

Flood inundation maps (Figure 1.3) determine the extent of a flood during

or after the event. This type of maps generally include two thematic classes namely

flooded and non-flooded areas. It is used for post-flood evacuation, urban planning

and damage assessment. Remotely sensed images are fed into a statistical model,

mostly based on a threshold value, in order to define the pixels including flooded

areas.

Flood hazard maps (Figure 1.4) measure the water depth and extent across

a flooded area. Flood hazard maps are carried out by numerical models, which

simulate flood events by discretizing the governing equations and the computational

domain. They are particularly useful for exceptional events such as tsunamis and

dam breaks. However, they are computationally demanding and thus less used than
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Figure 1.3: Flood Inundation Map

the other models.

Figure 1.4: Flood Hazard Map

The current study is focused on inundation maps utilizing remote sensing satellite

images.

1.2 Thesis Objectives and Contributions

The rest of the master thesis is organized as follows. In Chapter 2, the literature

review that took place is listed with the most prominent publications in the field

of flood mapping, while also the basic principles of satellite remote sensing are

demonstrated and explained. In Chapter 3, the used dataset is defined and further

explained along with the theoretic basis of the three exploited machine learning

architectures namely U-NET, Random Forest and Transfer Learning, along with the

baseline model. In Chapter 4, the experimental results are demonstrated starting

with the necessary preprocessing steps applied on the initial dataset. Finally in

Chapter 5 the conclusion of the study are critically discussed giving insights for

future experimentation.
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1.2 : Thesis Objectives and Contributions

The main objectives of this master thesis can be summarized as follows:

1. Test three different machine learning, namely U-NET, Random Forest and Trans-

fer Learning, approaches on their efficiency to detect and distinct flooded pixels

from satellite images.

2. Compare machine learning approaches against a baseline model based on his-

togram segmentation.

3. Examine and compare the effectiveness of optical versus radar images on flood

mapping.

4. Examine the performance of models trained on weakly labeled images and semi-

supervised environment.

5. Examine and compare multi modal feature spaces against single or uni modal

feature spaces, combining sentinel-1 and sentinel-2.
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Chapter 2

Background on Remote Sensing

and Flood Mapping

2.1 Literature Review

Many papers have been published in the domain of flood mapping using satellite

images, but in this thesis we are concentrating on studies utilizing machine learning

techniques, mostly based on deep learning architectures. In the following section

five summaries of research papers from the international literature are presented.

2.1.1 Flood Detection in Time Series of Optical and SAR

Images C. Rambour, et al.

In this study it is recognized a research gap in the application of deep learning archi-

tectures on SAR images mainly due to the lack of labeled data. To tackle this issue

they introduce a new dataset named SEN12-FLOOD composed of co-registered opti-

cal Sentinel 2 and SAR Sentinel 1 images in the form of time series. The study areas

correspond to African, Iranian and Australian city centers with or without a flood

event, occurring during the sensing period. Each image has a binary label specifying

whether a flood event is visible or not. The labels have been provided by the Me-

diaEval 2019 dataset and were obtained from Copernicus Emergency Management

Service. The Sentinel 1 images were acquired in Interferometric Wide Swath (IW)
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2.1 : Literature Review

mode at polarization VV and VH and delivered in a spatial resolution of 10x10

meters. Initial products were processed before the analysis, including radiometric

calibration and terrain corrections.

The dataset is composed of 412 time series with 4 to 20 optical images and 10 to

58 SAR im- ages in each sequence. The period of acquisition goes from December

2018 to May 2019, while a flood event is occuring in 40% of the optical Sentinel

2 images and in 47% of the SAR Sentinel 1 images. The network that was used

is the ResNet-50 which is designed to process only RGB images thus, the first

convolutional layer had to be modified to take into account the correct number of

bands for multispectral and sar images. One of the experiments was to consider

only the spatial and spectral features of the dataset with the optical images to

illustrate the most promising results. In order to take into account the temporal

dimension, the authors proposed to feed the extracted features from ResNet into a

Gated Recurrent Unit (GRU). For multimodal classification the features from SAR

and RGB ResNets are concatenated and fed to the GRU layer. The output of this

process is a sequence of binary labels indicating whether there is flood or not for

every time frame. The architecture can be seen in the following figure.

Figure 2.1: The proposed architecture.

The major findings is that deep learning techniques perform well in this type

of task given both optical and SAR images. Furthermore, the implementation of

GRUs in order to capture the temporal variations is a key parameter in modeling

- 8 -



Chapter 2 : Background on Remote Sensing and Flood Mapping

flood events, leading in a significant error reduction, using both modalities in a

complementary way. The behavior of the flood may differ greatly from one area to

another, while open water areas appear clearly in SAR images, flooded vegetation or

soaked ground areas are harder to discriminate from dry areas. More specifically, It

appears that on open water areas the detection using sar data is close or even better

than with optical images, whereas when the area is occluded by vegetation, optical

images offer better results. The accuracy achieved by the proposed architecture can

be seen in the table below, where in the first row is illustrated the flood detection

task on each image while in the second row accuracy is given by a recurrent network

on the sequence of image features.

Figure 2.2: Accuracies achieved

Finally the authors are mentioning that future efforts should be given in designing

a network, like attentional models, which will be able to learn specific behaviors of

the input data given that depending on the type of land cover different results are

achieved using optical or sar images.

2.1.2 Sen1Floods11:a georeferenced dataset to train and test

deep learning flood algorithms for Sentinel-1 D. Bonafilia,

et al.

The Sen1Flood11 dataset is introduced which includes Sentinel 1 and Sentinel 2

imagery along with the ground truth labels for permanent and flooded water. The

dataset consists of 4,831 of 512x512 patches of images covering in total an area

equivalent of 120,406 Km2 spanning all 14 biomes and 6 continents of the world
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2.1 : Literature Review

across 11 distinct flood events.

Results of fully convolutional neural networks on classifying permanent, flood and

total surface water on four subsets of the Sen1Floods11 dataset. More specifically

the dataset is consisted of i) 446 hand labeled patches of surface water from flood

events, ii) 814 patches of permanent water from JRC used as ground truth labels,

iii) 4,385 patches of surface flood water from Sentinel-2 images, iv) 4,385 patches of

of surface flood water classified from Sentinel 1 images. The results are compared

to a common approach of thresholding radar backscatter to segment water surfaces.

The contribution of this study can be manifold with the dataset serving a bench-

mark for future studies and the examination of four research questions dealing with

the improvement of flood detection and the operationalization of CNNs for global

flood mapping. The research questions are:

1. Do we need hand-labeled training data to train CNNs to detect flood water or

can we use weakly supervised training data derived from re- mote sensing water

detection algorithms?

2. Which imagery sources and algorithms provide the best labels for weakly super-

vised training?

3. What is the impact on model performance when a CNN is trained on permanent

water data only as compared to training data that included flood events?

4. Do CNNs identify flood and/or permanent water in radar data more accurately

than conventional remote sensing methods such as backscatter thresholding?

2.1.2.1 Sampling Permanent Water Data

The permanent water raster images came from the Surface Water Dataset released by

the European Commission’s Joint Research Center. This dataset includes monthly

observations of surface water at 30 meter spatial resolution using Landsat acquisi-

tions. From this dataset was extracted only the water, non-water samples from the

transition layer which identifies as permanent water the pixels that were observed to

have water presence at both the beginning (1984) and the end (2018) of the study

period. The non-water label was adopted for pixels that were never observed as
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water.

2.1.2.2 Sampling Flood Event Data

The flood events that the SEN1floods11 dataset contains were identified from a

global database of flood events from the Dartmouth Flood Observatory. The events

were selected using the criterion of Sentinel-1 and Sentinel - 2 imagery acquired on

the same day or within 2 days difference. In total, 5 events had coincident imagery, 4

had imagery within 1 day difference and 2 had imagery with 2 days time difference.

Figure 2.3: Locations from where flood event data was sampled

2.1.2.3 Data Pre-processing

Reference flood maps were created from Sentinel - 1 and Sentinel - 2 respectively.

Reference Sentinel 1 flood maps were derived from VH band dividing the images into

1 Km x 1Km high variance grids and for each of them the histogram was extracted.

In a later stage the OTSU thresholding algorithm was utilized on the histogram re-

sulting in a binary flood map. Reference Sentinel 2 flood maps were created utilizing

the Normalized Difference Vegetation Index (NDVI) and the Modified Normalized

Difference Water Index (MNDWI). A photointerper expert defined a threshold of

0.2 and 0.3 for NDVI and MNDWI respectively. Regarding the clouds and cloud

shadows the first were identified by a threshold on the blue band reflectance and the

latter were removed exploiting information about the potential cloud heights, the

solar azimuth angle and solar zenith angle.

For each flood event a subset of the image was selected in order to sample regions

predominantly affected by the flood. The resulting images were further divided into
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512 x 512 pixel non overlapping patches. The patches covered with clouds were

removed and the area of Sentinel 2 water was calculated for each patch. A stratified

sample of 336 patches were selected for hand labeling, while the rest 4.385 patches

were exported for training, validation and testing.

The aforementioned hand labeling took place within Google Earth Engine uti-

lizing a custom GUI for trained remote sensing analysts to label the water areas.

Those analysts had access to Sentinel -1 VH band, two false color composites from

Sentinel 2 and the reference water classification from Sentinel 2.

2.1.2.4 Training, Validation, and Testing Data

All of the hand labeled chips of Bolivia were held out in order to evaluate the

performance of the trained models on flood events never seen before. Consequently

Sentinel 2 reference maps for Bolivia were also withheld from training and validation

sets, but Sentinel 1 based flood maps for weakly supervised training data for Bolivia

were included. Apart from the Bolivia data special treatment the hand labeled data

were splitted into training, validation, testing with a random 60-20-20 split while

the non-hand labeled Sentinel 1 and Sentinel 2 data were used specifically for weakly

supervised training.

2.1.2.5 Convolutional Neural Network Models

Having defined all of the training sets four models were built based on Fully Convo-

lutional Neural Networks (FCNN). More specifically, one model was built based on

weakly supervised training data using Sentinel 1 based flood classification as labels,

one model based on weakly supervised Sentinel 2 flood maps, one model trained

using hand-labeled flood classification maps. Lastly the fourth model trained on

the JRC permanent water dataset which is produced from Landsat 8 data. In total

four fully connected neural networks were trained and tested on each of the training

datasets described before and compared to a backscatter thresholding algorithm.

The backscatter thresholding model used Otsu thresholding on the VH band.In or-

der to assess the transferability of the proposed architecture on permanent water
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detection to flood water detection an evaluation of each model to identify permanent

water, flood water, and total surface water took place.

2.1.2.6 Accuracy Assessment

All models were trained on PyTorch and for the prediction of water in each pixel

used a fully convolutional network with a Resnet50 backbone. No extensive hy-

perparameter tuning took place but data augmentation with random image crops,

horizontal and vertical flips was applied. Intersection over union was the evaluation

metric with the final results being illustrated on the following tables.

Dataset PW FW AW

Sentinel-1 Weak .2872 .2422 .0392

Sentinel-2 Weak .3818 .3389 .4084

Hand-Labeled .2570 .2421 .3125

Permanent Water .3391 .1693 .2452

Otsu Threshold-VH .4571 .2850 .3591

Performance on the hand-labeled test set of 10 flood events (all besides Bolivia)

of models trained on each dataset in terms of Mean IOU for the water class. Results

shown on permanent water (.PW), flooded water (FW) and all water (AW)

Dataset PW FW AW

Sentinel-1 Weak .2506 .3296 .3871

Sentinel-2 Weak .1946 .2738 .3160

Hand-Labeled .2300 .2905 .3524

Permanent Water .2881 .2684 .3422

Otsu Threshold-VH .2859 .3239 .3862

Table 2: Performance on the hand-labeled test set of the flood event in Bolivia

of models trained on each dataset in terms of Mean IOU for water class. Results

shown on permanent water (PW), flooded water (FW) and all water (AW)
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2.1.2.7 Discussion and Conclusion

Hand-labeled training data is not necessary to train FCNNs to detect flood water.

Sentinel-2 provides better automatic labels for Sentinel-1 based flood detection.

FCNNs trained on flood water perform better than those trained on permanent

water alone. FCNNs outperform thresholding algorithms to identify flooded but

not permanent water.

The writers claim that accuracy gains could be achieved by different data aug-

mentation schemes and extended hyperparameter tuning. Fully connected convolu-

tional neural networks could be compared by other machine learning algorithms and

improved thresholding methods could be tested. The validation dataset does not

include any urban flood event mainly because Sentinel 1 algorithms are not optimal

for mapping floods in urban areas. The writers encourage others to expand the

dataset to include urban flood events and radar information such as interferometry

and change in coherence which has shown to have promising results in mapping

urban floods.

2.1.3 Urban flood mapping with an active self-learning con-

volutional neural network based on TerraSAR-X in-

tensity and interferometric coherence, Yu Li, et al.

In this study the roles of SAR intensity and interferometric coherence are being

assessed in urban flood detection, using multi-temporal TerraSAR-X data. The

demonstrated method in this paper is based mainly in an active self-learning con-

volutional neural network framework, which is independent of the effect of limited

annotated data. The study area is located in the city of Houston in the US state

of Texas. Houston was affected by floods associated with heavy rainfall that ac-

companied Hurricane Harvey in August 2017. The city represents a typical urban

landscape that is mainly covered by dense housing and apartments, as well as com-

mercial and industrial areas with schools, warehouses, stadiums, parks and parking

lots.
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The main idea of this study relies on the properties of SAR images in urban

environments. The backscatter of synthetic aperture radar in urban areas consists

of specular reflection, surface backscatter, as well as single, double and triple light

reflections (bounces). Due to the different backscatter mechanisms, flooded urban

areas may appear differently in SAR-intensity images. In general, flooded water can

appear in either a darker or a lighter color tone, depending on the difference of the

backscattered energy between flooded and non-flooded surfaces. Figure 2.4 illus-

trates the intensity and coherence variation for different types of covered surfaces

under flooded or non-flooded conditions in TerraSAR-X data and related visual ref-

erence data. Flood mapping in complex urban areas based on SAR intensity alone

is a major challenge. The interferometric coherence, which indicates the correlation

of two complex observations (amplitude and phase information), provides additional

information for urban flood mapping as an urban settlement can generally be con-

sidered as a fixed target characterized by high coherence. Cohesion variation makes

flooded built-up areas distinguishable from non-flooded ones.

Figure 2.4: Intensity and coherence variation for different types of covered surfaces under
flooded or non-flooded conditions in TerraSAR-X data and related visual reference data.

Concerning the above figure 2.4 the non-flood visual data retrieved from Google

Earth and the flood optical data is sourced from NOAA (National Oceanic and

Atmospheric Administration): (a) meadow (b) roads (c) low floodplain buildings (
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d) buildings with a high level of flood water.

The proposed framework aims to process both labeled and unlabeled specimens

through the integration of active learning and self-learning at the perceptual level

under the model of deep CNN time synthesis. More specifically, the proposed frame-

work operates repeatedly based on 2 steps: a) training and retraining of CNN time

synthesis b) informational updating of unlabeled samples by placing pseudo-labels

on the training data.

First, a deep CNN model, called a ”student,” is trained with the training samples

bearing the original labels. At the same time, the creation of a ”teacher” model is

achieved by synthesizing the parameters of the ”student” model during the training

steps.

Unlabeled data samples, which contain information, are then checked or selected

following disagreements between the ”student” and ”teacher” models. Assuming

that the adjacent spatial samples belong to the same class, the selected samples are

filtered and self-labeled via a multi-scale spatial constraint. Additionally, consis-

tency regularization is introduced to compress errors in pseudo-labels.

Figure 2.5: The structure of the CNN temporal composition model.

In the present study, four data sets were taken: TerraSAR-X HH-polarized

Stripmap: 1 image before the flood event (August 10, 2017), 1 image shortly af-

ter the flood (September 1, 2017) and 2 images well after the flood ( October 26,

17 and 28 November 2017). The spatial resolution (m) of TerraSAR-X images is

1.2 x 3.3 (range x azimuth). Additionally all experimental results were extracted

based on very high spatial optical data of approximately 35 cm, taken on 30 and
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Figure 2.6: The context of active self-learning.

31 August 2017 using a Trimble Digital Sensor (DSS) gas system provided by the

NOAA Remote Sensing Department.

The raw TerraSAR-X data were calibrated and transformed into decibels (dB)

and a 5x5 Lee Sigma filter was applied to each image to reduce speckle noise. All

intensity and coherence data were co-registered and geocoded in the WGS1984 UTM

15N zone with a pixel distance of 1.25 m and a size of 4,800 x 6,400 pixels. The

pre-processed images were splitted into non-overlapping patches 32 x 32 each. The

patches were classified into 3 classes: Open flooded areas absence of buildings- (FO

class) Flooded areas with buildings (FB class) Non-flooded areas (NF class) A total

of 30,000 image patches were created a) 1,130 class FO b) 2,500 class FB c) 26,370

class NF.

The main conclusions of this study can be summarized as follows: Multi-temporal

intensity plays the most important role in urban flood mapping and makes it possible

to outline the exact pattern of distribution of flooded areas. Adding multi-temporal

coherence to the multi-temporal intensity can significantly improve classification

accuracy, as it makes flooded areas indistinguishable from non-flooded areas. The

proposed methodology framework is generalized and could be used in other classifi-

cation applications with different types of remote sensing data and not necessarily

SAR data.
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2.1.4 Fully Convolutional Neural Network for Rapid Flood

Segmentation in Synthetic Aperture Radar Imagery,

Nemni E, et al.

The main scope of this research is to design a Convolutional Neural Network (CNN)

based method which can distinguish the flooded pixels in Sentinel -1 SAR imagery

without the need for optical data and requiring minimal data preprocessing. The

methodology does not require any additional pre-processing apart from orthorecti-

fication using a digital elevation model (DEM).

A variety of CNN architectures are tested while the training datasets are gen-

erated using a combination of a classical histogram based method in combination

with manual cleaning and visual inspection.

The current study focuses on the general water/flood detection by implement-

ing a method with high generalization capacity across different eco-systems and

countries, with most of them covering urban land. In addition, a simple linear base-

line model is deployed against which compare the more complex machine learning

approaches.

Figure 2.7: Methodological framework. Overview of our general workflow

This study is based on the UNOSAT Flood dataset which has been created using

Copernicus Sentinel-1 satellite imagery in Interferometric Wide Swath and Ground

Range Detected resolution at 10 meters, along with the corresponding ground truth
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flood vectors stored in shapefiles. More specifically, the dataset is composed of VV

polarized SAR imagery with their corresponding flood extent boundaries. These

boundaries were created in the context of preexisting UNOSAT analyses using a

histogram based approach followed by an extensive manual cleaning and noise re-

duction. These ground truth flood maps were used for training and validating the

proposed machine learning architectures.

Figure 2.8: Location, event date and image size for each analysis in the UNOSAT Flood
Dataset.

Since feeding a neural network with the entire satellite image is computationally

impossible, the images were splitted into smaller tiles of size 256x256 pixels, along

with their corresponding labels. Even though different tile sizes were tested the

best performance was observed with tiles sized 256x256 pixels. The initial dataset

is reported to be highly imbalanced with the water pixels accounting for the 6%,

which can have significant deterioration in the model performance. In mitigating this

problem the authors excluded all the tiles that contained only background pixels. A

ratio of 50:50 between classes in the pixel level was not possible, however with the

aforementioned under sampling the ratio was increased from 6% to 16% while also

speeding up the training process.

The performance of the well used U-Net model, and an alternative model, named

XNet is assessed.
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2.1.4.1 U-NET

A U-NET architecture consists of two major parts namely an encoder and a decoder.

The encoder consists of a stack of the convolutional layers followed by rectified linear

unit (ReLU) activation functions and max-pooling layers for downsampling. The

decoder consists of convolutional and upsampling layers. U-NET is a Fully Convo-

lutional Neural Network whilst it doesn’t contain any dense layers and therefore can

accept image patches of any size.

Figure 2.9: A U-Net architecture using 3x3 convolutional layers and ReLU activation
functions.

2.1.4.2 XNET

The X-NET architecture is almost identical to U-NET, however, instead of follow-

ing the encoder-decoder structure this architecture consists of a symmetric encoder-

decoder-encoder-decoder structure. XNet is designed to be sensitive to boundary

level detail, particularly around small structures, while still achieving strong perfor-

mance on large scale structures.

2.1.4.3 Transfer Learning

In the context of transfer learning, the authors are testing the performance of a U-

net architecture in which the encoding/downsampling stage is replaced by a ResNet

model, which has been previously trained on the imageNet dataset. The classifi-

cation, dense and flattening layers from ResNet were removed and only the con-
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Figure 2.10: XNet architecture using 3x3 convolutional layers and ReLU activation
functions.

volutional layers remained. By making this alteration the ResNet architecture is

responsible only for feature encoding similar to the encoding layers of the U-net

architecture. The encoding stage can potentially contain useful information for high

feature extraction such as edges and general shape recognition.

2.1.4.4 Comparison Algorithms

All the aforementioned proposed algorithms are compared against a baseline model

which is based on a semi automatic classification based on histogram thresholding.

The performance assessment is based on the minimization of the mean squared-

error between the labels and the output of the model. Against the baseline model

are tested a number of different neural network architectures with different hyper-

parameter values and compared their performance in terms of mean squared-error

and the time needed in train and test phase. Input tiles (patches) are normalized

prior to training step by mean subtraction and min/max scaling. Both XNet and

U-Net architectures are implemented using Keras with Tensorflow backend, while

the transfer learning approach was achieved by training a U-Net architecture with a

ResNet-34 backbone performed within fastai python library. Furthermore, all deep

learning models were trained using early stopping and adam optimization with a

binary cross-entropy loss function.
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2.1.4.5 Neural Network Hyper-Parameter Tuning

Hyper-parameter tuning was carried out by manually altering the relevant parame-

ters such as batch size, number of complete passes, the use of weighted loss function,

filter depth and the training epochs. Performance was measured using the precision,

recall, CSI and F1 statistics. For the case of XNet and U-Net models the learning

rate was set to 105 and varied by an order of magnitude with no immediate effect on

performance. For the U-Net-Resnet transfer learning approach the fastai ‘learning

rate finder’ tool was utilized in choosing the learning rate for each training phase.

Additionally different ResNet depths were tested although no significant difference

was observed. The XNet and UNet models were fixed to use a kernel size of 3x3

with a stride of 1.

2.1.4.6 Experimental Results

The experimental results are demonstrated using plots and tables comparing the

different methodologies on an unseen test set after hyper-parameter tuning. The test

set is made of 5813 image patches across the different locations. The following figure

2.11 plots the best performing model for each of the three different architectures.

Figure 2.11: Precision-recall curves of the best XNet, U-Net and U-Net+ResNet models
after hyper-parameter tuning.

While the models do not significantly differ in performance, the results presented

in Figure 9 show that when using the U-Net+ResNet model, the choice of probability
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threshold can have a more significant effect on precision/recall statistics than in the

case of the XNet and U-Net architectures. Example outputs of the best performing

U-Net+ResNet architecture can be seen in Figure 2.12, where can be seen the neural

network’s ability to detect the flood area with little difference in comparison to the

labeled data. The baseline (third column in Figure 2.12) was generated using the

automatic threshold based method.

Table 2.1: Overall quantitative comparison.

Model Accuracy Precision Recall Critical Success Index F1/Dice

Baseline 91% 62% 84% 0.55 0.71

XNet 97% 91% 91% 0.81 0.91

U-Net 97% 91% 92% 0.83 0.91

U-Net+ResNet 97% 91% 92% 0.77 0.92

Figure 2.12: From left to right: raw SAR tiles displayed followed by tiles of different
analyses corresponding to classical histogram based, baseline and neural network predic-
tions.
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2.1.4.7 Sagaing Region—18 July 2019

The authors of this study tested the U-Net-ResNet model on a complete unseen

location, in order to further explore the generalizability of the trained mode. The

new location is the Sagaing Region, Myanmar and the flood that took place on 18

july 2019. The image was acquired from Copernicus open access hub and results

compared to the UNOSAT’s analysis. The tests were performed to determine results

on both overall water extent detection as well as only on the flooded areas. In order

to subtract the permanent water from the model’s predictions the Global Surface

Water Dataset was used. The output of the model can be seen on the following

figure 2.13.

Figure 2.13: (a) shows the classically generated label in yellow. (b) shows the machine
learning prediction in yellow. Neither the label nor the prediction include any permanent
water.

In this certain experiment the authors try to eliminate the border artifacts be-

tween classes on segmented images. They mitigate this issue by tiling the image

with a stride less than the tile dimensions thereby ensuring overlap between con-

secutive patches. Furthermore the tiles are clipped to remove the exterior and in

the overlapping regions the average value is taken into account. The results of this

experiment are illustrated in the Table 2.2 where it is noticed that performance on

flood only regions is slightly lower than the previously presented experiments. An-

other important note is that the model performance well on detecting no flooded

areas, given that most of the image is covered by this class (background).
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Table 2.2: Quantitative comparison over Sagaing Region, Maynmar-18 July 2019.

Model Class Accuracy Precision Recall CS Index F1/Dice

U-Net+ResNet Water 99% 93% 97% 0.90 0.95

U-Net+ResNet Flood 99% 82% 97% 0.90 0.89

2.1.4.8 Conclusions

Many organizations dealing with issues relevant with flood mapping and disaster

management are currently spending many hours using a variety of manual and semi-

manual image processing techniques producing highly detailed maps of flood extent

boundaries. The current study illustrates a machine learning based approach with

a goal to automate and increase the speed required to map floods, while achieving

significant accuracy metrics across a broad range of environmental conditions and

topography. Utilizing SAR imagery and convolutional neural networks significant

performances are reported outperforming previous studies of SAR flood segmenta-

tion as well as methods based on optical satellite images. In addition the current

reported approach does not require extensive pre-processing before the image is fed

onto the network hence spending less time on that stage. The authors as a future

research on the topic suggest to train a model on data supplemented by ground

truth data generated by field surveys, which could lead into high thematic accuracy

2.1.5 OmbriaNet - Supervised flood mapping via convolu-

tional neural networks using multitemporal Sentinel-1

and Sentinel-2 data fusion (Georgios I. Drakonakis, et

al.

This study proposes a new deep neural network architecture that is able to detect

and distinguish permanent from flooded water by exploiting the temporal differences

among these types of water (permanent and flooded), while using multimodal data

by different sensors. In order to validate the proposed architecture a new dataset was

initiated named OMBRIA which consists of a total 3.376 images, SAR from Sentinel

1 and multispectral optical from Sentinel 2, accompanied with ground truth binary
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images exported by the Emergency Management Service of ESA. The aforemen-

tioned data covers 23 flood events spanning around the world, from 2017 to 2021.

The main source for labeled datasets is the Emergency Management Service of the

Copernicus program (CEMS) which provides mapping data packages and products

for natural disasters like floods and earthquakes. From CEMS, 20 flood events were

selected ranging from 2017 to 2020 Table 2.3. These data are offered as vector files

so they had to be converted into raster images in order to be used as ground truth.

Sentinel-1 images in Level-1 Ground Range Detected (GRD) and with VV polariza-

tion were used. The pixel values represent the detected amplitude, while the phase

information is lost. In order to reduce the speckle effect, a morphological filter with

a median value structure of size 30 x 30 m was applied. The Sentinel-2 bands used

are band 3 (green-0.560 µm), band 8 (near-infrared-NIR-0.842 µm) and band 11

(short-wave infrared-SWIR-1.610 µm). Bands 3 and 8 have a spatial resolution of

10 m while band 11 has a spatial resolution of 20 m. For this application Sentinel

2 Level-2A was selected, which is an atmospherically corrected surface reflectance

product.

The images from each flood event were separated into non-overlapping tiles of

size 256 x 256 pixels. In total, 844 image tiles were obtained for each time stamp,

i.e. before and after the event, and for each type of satellite data, i.e. Sentinel-1 and

Sentinel -2, figure 2.14. Since the flood events are mainly caused by rainfalls the

probability that the area is covered with clouds is very high. Given that, Sentinel

2 images with cloud cover had also to be included. The coordinate system that

Sentinel images are offered is the World Geodetic System 1984 (EPSG: 4326) while

the coordinate system of CEMS is the cartographic projection UTM (Universal

Transverse Mercator). This means that the images had to be reprojected in a

common cartographic system and co-register them with the flood data.

The proposed architecture is based on U-Net with further developments and

alterations in order to exploit multimodal and multitemporal data. The limitation of

traditional U-Net is that makes the network incapable of distinguishing permanent

(lakes, rivers etc) from flooded water. To overcome this inability of U-Net they

introduce a new model called OmbriaNet. The core of this new model is that there
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Table 2.3: Flood events used in OMBRIA data as Emergency Management Service Rapid
Mapping Activations.

EMS ID Country Date 1 Date 2 UTM Zone

271 Greece 01/05/2017 28/02/2018 34 N

273 Albania 01/05/2017 11/03/2018 34 N

275 Croatia 01/05/2017 22/03/2018 33 N

279 Spain 01/05/2017 15/04/2018 30 N

324 France 01/05/2018 10/16/2018 31 N

342 Australia 15/04/2018 13/02/2019 54 S

388 Spain 01/05/2019 14/09/2019 30 N

416 France 01/05/2019 15/12/2019 30 N

417 Portugal 01/05/2019 12/23/2019 29 N

419 Iran 01/05/2019 13/01/2020 41 N

422 Spain 01/05/2019 26/01/2020 31 N

424 Madagascar 01/05/2019 29/01/2020 39 S

429 Ireland 01/05/2019 23/02/2020 29 N

441 Finland 01/05/2019 04/06/2020 34 N

465 Greece 01/05/2020 20/09/2020 31 N

466 Niger 01/05/2020 27/09/2020 32 N

468 Italy 01/05/2020 10/10/2020 32 N

470 Togo 01/05/2020 17/10/2020 31 N

482 Honduras 01/05/2020 11/22/2020 17 N

492 France 01/05/2020 02/01/2021 30 N

501 Albania 01/05/2020 15/02/2021 35 N

507 Timor 01/05/2020 06/04/2021 51 S

514 Guyana 01/05/2020 06/06/2021 21 S

are three sources of water with the first accounting for water bodies such as oceans

and rivers, the second accounting for temporal streams of water and the third one

being the flood water. Additionally, temporal streams and flood water present

a periodicity which can be captured if the Deep Learning model is fed with the

same area of interest in two different chronological moments, pre-event and after

the event. In the present study the problem is formulated as pixel based semantic

segmentation. Each pixel of the image can be classified as “water” or “non-water”

which in a computer language the value 1 means water (or flood) and the value 0

means non-water. More specifically, the proposed architectures are listed below.

1. U-Net Basic Architecture: The modern and well-known image segmentation neu-
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Figure 2.14: Map of Emergency Management Service Activations for flood events.

ral network called U-Net is used as the basic model. Two more prototype deep

learning architectures, multimodal and multitemporal, are developed, which are

specifically designed for separating flooded areas from the rest, as a change de-

tection problem. In the present study, modifications are applied to the basic

U-Net to perform inundation mapping, which serves as a baseline evaluation for

the experiments. Ultimately U-Net proves to be incapable of separating flooded

areas from areas that have a permanent presence of water such as lakes, rivers

and oceans.

2. Bitemporal OmbriaNet: Generating feature maps from multitemporal images

improves change detection accuracy as the network detects modifications based

on existing temporal information. The bitemporal OmbriaNet accepts as input

two images of the same geographic area taken at different times, before and after

the flood event. Figure 2.16 illustrates this particular network.

3. Multimodal OmbriaNet: Multimodal OmbriaNet is an improved version of bitem-

poral OmbriaNet taking advantage of multimodal information. This network

accepts as input four images, two Sentinel-1 images and two Sentinel-2 images,

which were taken before and after the flood event and depict the same area. This

architecture is demonstrated in figure 2.17.

The data were pre-processed on the Google Earth Engine platform, which is a

cloud based and widely used for geospatial science data. Sentinel-1 and Sentinel-

2 datasets were accessed through the aforementioned platform, for two different

timestamps. The first timestamp spans from 1st May to 31st May of the same

year before the flood event. The cloud cover was set to range between 10%-30%
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and the values of the final image was the average for all available images from the

aforementioned time range. The second timestamp starts on the date the flood

event occurred and spans 15 days after the event. The same cloud cover threshold

as before is applied, but now the first available pixels are selected as input without an

intensity averaging procedure. A data augmentation practice is adopted, where for

each patch of input image a left-right flip, horizontal-vertical flip, shearing and also

random rotations are applied. In this way, the size of the data set was increased by

a factor of 2 leading to a more balanced dataset. Lastly, the data were splitted into

80% for training, 10% for validation while the remaining 10% was used for testing.

All pre-processing steps are illustrated in flowchart form in figure 2.18. Figure 2.19

shows results for a selected image sample from a flood event in France.

Figure 2.15: Samples of the OMBRIA data. From left to right: Sentinel-1 before the
flood event, Sentinel-1 after the flood event, Sentinel-2 before the event, Sentinel-2 after
the event, Ground truth where white color indicates flood.

2.1.5.1 Conclusions

In conclusion the proposed architecture for flood mapping from satellite images is

named as OmbriaNet. This architecture is capable of exploiting features from mul-

timodal and multi temporal satellite images for pixel based semantic segmentation

under real situations. Modern cloud platforms such as Google Earth Engine proved

to be useful in generating data for satellite remote sensing applications while Coper-
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Figure 2.16: The architecture of the bitemporal OmbriaNet.

Figure 2.17: The architecture of the multimodal OmbriaNet.

Figure 2.18: Flowchart of the pre-processing of the data in the Google Earth Engine
platform.
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Figure 2.19: Comparisons for a selected image sample from the ID492 flood event in
France. The numerical measure Intersection over Union (IoU) is given.

nicus Services provide critical ground truth annotated data of high quality. As future

endeavors the authors plan to expand the number of samples, include more spectral

bands and also to experiment with the very high resolution images captured from

Unmanned Aerial Vehicles.

2.2 Literature Review - Conclusions

Most of the studies related to flood mapping pursue to solve the problem with

binary pixel-based supervised semantic segmentation approaches or less often as

instance based where images are classified depending on whether or not they contain

flood or not. From literature it is apparent that most of the studies use SAR images

due to their nature to penetrate clouds making them more appropriate for studying

floods since floods are mainly caused by heavy rainfalls. Some studies use sar or

optical bands in a single modal feature spaces and others use both of them as multi-

modal.

In the concept of choosing the appropriate spectral bands for flood identification

the VH band is the most informative and highly correlated with the target value

while the near infrared and the short wave infrared optical bands have also been

extensively used, with great results. As far as synthetic spectral indices the most

prominent are the NDVI and NDWI/MNDWI.

In terms of choosing machine learning models the fully convolutional neural net-

works and especially UNET architecture seem to be very popular and also very

robust in different environmental conditions, leading to high generalization. The
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shallow machine learning methods are still producing great results, more explain-

able and challenge the performance of deep learning methods. On the other hand

old methods based on histogram thresholding require human intervention since the

optimal or a global threshold value is not easy to be found-calculated. In the same

concept as baseline model the simple histogram segmentation using automatic algo-

rithms like Otsu thresholding on VH band or NDWI index is the most prominent.

Lastly, from literature review it became evident that the most challenging issue is

to separate permanent water from flooded water, without using pre-event images.

2.3 Satellite Remote Sensing

Remote sensing (RS) can be defined as the technology used to acquire physical

data about an object by detecting energy reflected or emitted by that object when

the distance between the object and the sensor is much greater than any linear

dimension of the sensor. Earth observation satellites are equipped with instruments

operating in wavelengths extending from the visible to microwave range.

Satellite remote sensing data can be described with the following four different

types of resolution [10]:

• Spatial resolution. It is the size of a pixel projected in the ground. It indicates

the size of the smallest object from which a sensor can retrieve information. High

spatial resolution translates into a higher amount of information.

• Spectral resolution. It is the number of spectral bands and also the range of

wavelengths each band is sensitive to radiance. Today’s technology offers hyper-

spectral sensors with hundreds of spectral bands.

• Temporal resolution. Refers to the frequency of revisit above a specific geo-

graphic area. For example Sentinel 3 scans the same area of the earth every 6

days approximately.

• Radiometric resolution. Corresponds to the sensitivity to the magnitude of

the electromagnetic energy of the sensor. Most of the sensors store the radiance

in a 16 bit color depth.

The scientific field of Earth Observation (EO) uses remote sensing techniques
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and methods to gather information about Earth’s physical, chemical and biological

systems. The data are gathered from satellites carrying imaging devices which can

be grouped in two types depending on the source of energy. Passive remote sensing

utilizes the natural source of energy from the sun, while active remote sensing ex-

ploits controlled energy sources that beam at a specific section of the electromagnetic

section [11].

In the study of flood mapping traditional approaches exploit the capacity of

water to absorb the light at certain wavelengths formulating this behavior in spec-

tral indices like the Normalized Difference Water Index (NDWI) and its improved

version modified NDWI. These indices are suitable in separating water areas from

background information irrespectively of the landscape.

Concerning classification algorithms, since early 2015 the advent of deep learning

architectures [12] in conjunction with the massive stream of freely available satellite

images lead to superior accuracies than the older traditional machine learning meth-

ods like Support Vector Machines and Random Forests. Although most of current

work is focused on land classification applications, there is an increased interest in

water oriented applications, such as water detection.

2.3.1 Active Remote Sensing

SAR images are sensitive to the geometrical attributes of the backscattering ele-

ments. Smooth surfaces such as roads and water bodies tend to backscatter most

of the transmitted electromagnetic wave away from the direction of the sensor, re-

sulting in dark pixels in the image. The polarization of the wave is also affected

by the presence of water or other similar plane surfaces. SAR sensors due to their

ability to penetrate clouds and being independent of weather conditions play an

important role for flood detection projects. More specifically sensors like the one

onboard Sentinel 1 have been used to map inundation by exploiting the relatively

lower backscattered values of water from other ground features. Water is identi-

fied by applying a threshold value on a single image, the difference in backscatter

values between two images, or using the variance of backscatter in a time series of
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images. Some case studies have approximated the flood damage caused by flood

using the loss of interferometric signal coherence between two time periods The de-

tection of water bodies in SAR imagery is largely dependent on the fact that water

bodies appear as smooth surfaces with a well defined intensity of backscatter. Even

though water surfaces are well distinct from the background, a universal threshold

for backscatter intensity does not exist, because of the effects of topography and

shadows. For instance the backscattered signal can be significantly affected by the

buildings which causes the effect of double-bounce scattering. Other urban elements

like bridges and cars behave like dihedral reflectors, which reflect much of the inci-

dent radiation back to the receiver. As a result urban areas appear to be bright in

SAR imagery. Therefore, the detection of floods in urban areas is a challenging task

since they are not visible either due to the aforementioned dihedral phenomenon or

due to the low spatial resolution [13].

SAR imagery is widely used for flood mapping due to its weather independent

imaging capabilities. Radar systems with long wavelengths, like L and P bands,

can penetrate the canopy and provide information about the inundation state be-

neath vegetation. Unlike optical sensors, which detect geochemical properties of

earth’s elements, radar data characterize the geophysical features from the different

backscattering mechanisms in various land types, which potentially allows classify-

ing different states of the ground (flooded urban areas etc). In urban environments

the buildings, cars or bridges and other elements of urban equipment may behave

like dihedral reflectors, which reflect most of the radiation back to the receiver. As

a result urban areas on radar imagery appear brighter than expected. Therefore,

detecting flooded areas in urban environments is not an easy task since the dihedral

angle phenomenon is present [13]. An example of this phenomenon is illustrated in

the following Figure 2.20.

2.3.2 Passive Remote Sensing

Passive remotely sensed data is well known as optical imagery with the basic char-

acteristics being acquired only during the day as it depends on the reflections of

the sunlight from objects on the earth surface. Another peculiarity is that clouds
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Figure 2.20: SAR scattering mechanisms on flooded and non flooded areas.

can create serious obstructions of the reflected light to reach the sensor. Data from

these satellites is both free and commercial where the cost is significantly high but

the spatial resolution is also higher than the free ones. Through the years optical

images have been used in the development of algorithms for land use - land cover

change, crop mapping, disaster monitor etc [10].

One of the most studied optical sensors for inundation mapping is MODIS (Mod-

erate Resolution Imaging Spectrometer). The products of this satellite are charac-

terized by the moderate spatial resolution of 250 meters and the high temporal

resolution of 1 to 2 days. The highly absorptive capabilities of water in short wave

infrared (SWIR band) relative to other objects or the use of the near infrared (NIR

band) have been used to map inundated areas at a daily step. Similar approaches

have been tested with medium resolution (30 to 10 meters) sensors such as Landsat

and Sentinel 2 using band thresholding or calculating normalized indexes like NDWI.

Both Landsat and Sentinel 2 suffer from misclassifications (false positives) of water

and cloud shadows, since both of them have low reflectance values in the SWIR and

NIR part of the spectrum. Cloud shadows have a similar spectral signature of floods

so before any analysis is crucial to mask out these pixels [1].

Spectral indices are images which result from mathematical operations between

individual spectral bands of the same image or temporal different images. These

mathematical operations can be simple as subtractions or complex like rations. Ra-

tions between spectral bands are based on the spectral properties of the ground

materials such as absorption and reflection at different wavelengths. Absorption

depends on the molecular structure of the surface under observation while reflection
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depends on the geometry of the surface - target [14].

Figure 2.21: Spectral Signatures

Spectral indices are mainly based on the fact that different parts of the spectrum

reflect differently on different materials. An example is illustrated in the Figure 2.21.

In remote sensing, the most well-known indicators are the vegetation indicators.

Since the 1960s, they have been applied to monitor biomass and other biophysical

parameters of vegetation at both global and local scales [14].

Vegetation indices are based on the interaction of electromagnetic radiation with

plant leaves. The leaves contain special pigments such as chlorophylls, carotenes and

xanthophylls. These pigments are contained in plant cell organelles called chloro-

plasts. Chlorophylls are used to absorb light energy to carry out the function of

photosynthesis. During photosynthesis, plants using energy (from specific wave-

lengths of electromagnetic radiation), produce the components necessary for their

nutrition such as carbon dioxide and water. These indices are formed by combi-

nations of spectral channels in such a way as to give a value which expresses the

amount of healthy vegetation in a pixel. High values of vegetation indices indicate

a high ground cover of healthy vegetation. The simplest form of these indices is

the ratio between two spectral channels. The result of this ratio is a new black and

white image where each pixel represents the division of the pixel brightness of the

two original images. Thus, the areas covered by vegetation are rendered with lighter

shades of gray to white, due to the high reflectance it presents in the near infrared

and the corresponding low in the visible, while the water masses appear in black
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[14].

Normalized Difference Vegetation Index (NDVI)

The Normalized Difference Vegetation Index (NDVI) was created with the aim of

separating vegetation from soil brightness using Landsat MSS satellite data. Among

the advantages of the index is the minimization of topographical effects. It is also

almost invariant to different conditions because of the normalized values. The range

of values is from -1 to +1 with 0 expressing the absence of vegetation while negative

values describe land covers such as water, man-made structures, etc. More specifi-

cally, values close to zero (-0.1 to 0.1) generally correspond to barren areas of rock,

sand, or snow. Low, positive values represent shrub and grassland (approximately

0.2 to 0.4), while high values indicate temperate and tropical rainforests (values

approaching 1). The disadvantages of the index are that it shows saturation at very

high concentrations of vegetation and overestimation at low vegetation concentra-

tions due to soil reflectivity. Finally, atmospheric conditions, such as thin clouds,

can potentially affect NDVI values [15]. The formula for retrieving NDVI values is

the following:

NDV I = (NIR−RED)/(NIR + RED) (2.1)

Normalized Difference Water Index (NDWI)

Another important class of spectral indices are the water indices for the study

of water bodies as well as droughts. In the current study we are going to focus on

the most broadly used ones, namely NDWI and modified NDWI. The first one is

used to monitor changes related to water bodies. As water bodies strongly absorb

light in the visible to infrared electromagnetic spectrum, NDWI uses green and

near infrared bands to highlight water bodies. It is sensitive to built-up land and

can result in overestimation of water bodies. Index values greater than 0.5 usually

correspond to water bodies, while vegetation usually corresponds to much smaller

values and built-up areas to values between zero and 0.2. This index can be used

as a complementary to NDVI since it is sensitive to changes in water content of
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vegetation canopies [16]. The NDWI results from the following equation:

NDWI = (NIR–SWIR)/(NIR + SWIR) (2.2)

The Modified Normalized Difference Water Index (MNDWI) uses green and

SWIR bands for the enhancement of open water features. It also diminishes built-up

area features that are often correlated with open water in other indices. The modi-

fied NDWI (MNDWI) can enhance open water features while efficiently suppressing

and even removing built-up land noise as well as vegetation and soil noise. The en-

hanced water information using the NDWI is often mixed with built-up land noise

and the area of extracted water is thus overestimated. Accordingly, the MNDWI

is more suitable for enhancing and extracting water information for a water region

with a background dominated by built-up land areas [17]. The MNDWI results from

the following equation:

MNDWI = (Green− SWIR)/(Green + SWIR) (2.3)

2.3.3 Sentinel 2

Sentinel 2 is a European Copernicus program consisting of two polar-orbiting satel-

lites with a wide swath width of 290 Km and high revisit time of 5 days at the

equator. Each satellite carries an optical instrument payload with 13 spectral bands.

The Sentinel 2 program provides continuity of SPOT and LANDSAT optical im-

ages archive, contributing to applications such as land management, agriculture and

forestry, disaster control, humanitarian relief operations, risk mapping and border

security [18].

The following table 2.4 illustrates the main technical characteristics of Sentinel

2 spectral bands.

Sentinel 2 products are served to the users as granules of fixed sizes as a minimum

indivisible partition containing all 13 spectral bands. Granules are also called tiles

with a spatial coverage of 100 x 100 km2 projected in UTM /WGS84 cartographic

projection. Sentinel 2 products are offered in two levels of processing, namely Level
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Table 2.4: Sentinel 2 Spectral Bands

Band Name Spatial Resolution

2 Blue 10 m

3 Green 10 m

4 Red 10 m

8 NIR 10 m

5 Vegetation Red Edge 20 m

6 Vegetation Red Edge 20 m

7 Vegetation Red Edge 20 m

8a Vegetation Red Edge 20 m

11 SWIR 20 m

12 SWIR 20 m

1 Coastal aerosol 60 m

9 Water vapour 60 m

10 SWIR - Cirrus 60 m

1C and Level 2A. The main difference is that the latter is corrected from atmo-

spheric effects and it is recommended to be used by non expert users. The Level

2A products are not offered systematically and in many cases the user should first

download the Level 1C products and then convert them into Level 2A using the

dedicated software named Sen2Cor. Level-1C product provides orthorectified Top-

Of-Atmosphere (TOA) reflectance, with sub-pixel multispectral registration. Cloud

and land/water masks are included in the product. Level-2A product provides

orthorectified Bottom-Of-Atmosphere (BOA) reflectance, with sub-pixel multispec-

tral registration. A Scene Classification map (cloud, cloud shadows, vegetation,

soils/deserts, water, snow, etc.) is included in the product [18].

2.3.4 Sentinel 1

A single Sentinel-1 satellite is able to map the entire world once every 12 days. The

two-satellite constellation offers a 6 day exact repeat cycle. The constellation have

a repeat frequency (ascending/descending) of 3 days at the equator, less than 1 day

at the Arctic. The trajectory of the constellation is in a near-polar, sun-synchronous

orbit with a 12 day repeat cycle and 175 orbits per cycle for a single satellite. Both

Sentinel-1A and Sentinel-1B share the same orbit plane with a 180° orbital phasing
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difference, with both satellites operating, the repeat cycle is six days. The Sentinel-1

mission comprises a constellation of two polar-orbiting satellites, operating day and

night performing C-band synthetic aperture radar imaging, enabling them to acquire

imagery regardless of the weather. The Sentinel-1 mission comprises a constellation

of two polar-orbiting satellites, operating day and night performing C-band synthetic

aperture radar imaging, enabling them to acquire imagery regardless of the weather

[19].

Sentinel data products follow an open access policy to all users including the

general public with data being delivered within 24 hours of reception. All prod-

ucts are distributed in one of the four types namely SLC, GRD, OCN and RAW

along with different sensor modes. For the current study level 1 GRD products

were selected which contain only intensity and the amplitude of the backscattered

wavelength while the phase value is emitted.

2.3.5 Ground Truth - Data Sources

This subsection tries to demonstrate current operational web services that offer

maps, raw data and background knowledge on flood mapping using remorse sensing

technologies. More specifically, four services are described namely, CEMS, UNOSAT

Flood Portal, Global Flood Database, JRC surface water dataset.

Copernicus Emergency Management Service CEMS

CEMS is implemented by the European Commision as part of the Copernicus

Programme and it has two main divisions accounting for “On Demand Mapping”

and “Early Warning & Monitoring”. The first one provides on-demand informa-

tion for emergency situations that are caused from natural or man-made disasters,

while the later offers information on observational and forecast level about floods,

droughts and forest fires. The Copernicus Emergency Management Service (Coper-

nicus EMS) provides all actors involved in the management of natural disasters,

man-made emergency situations, and humanitarian crises with timely and accu-

rate geo-spatial information derived from satellite remote sensing and completed by

available in situ or open data sources [20].
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UNOSAT Flood Portal

satellite-derived flood data in GIS vector format. The portal includes data for

selected flood events occurring since 2007, for which UNOSAT did satellite image

analysis. You can find and freely load the flood data into online maps, ArcGIS and

other GIS systems, such as Google Earth, to combine with your own data or do

additional analysis for example in support of disaster risk reduction [4].

Global Flood Database

A research project funded by Google Earth Outreach in a collaboration of various

universities, institutes and companies while the main partners were Clod to Street

and The Flood Observatory (DFO). The flood maps in this database were created

using MODIS optical satellite images which offers two images on a daily basis for

the entire earth, since 2022 with the launch of the second twin payload named

Aqua. The used spectral bands are the Band 1 and Band 2 served in 250 m spatial

resolution but also the SWIR Band pansharpened to 250 m resolution. The flood

maps hosted on this database illustrate selected major flood events recorded by the

DFO Flood Observatory since the launch of MODIS satellites. The user is able to

draw a polygon on a map in order to select the area of interest while also the date

of the event can be selected. The user can see basic descriptive statistics concerning

the selected flood event and can also download raster images demonstrating the

flood extent and the permanent water in the area [1].

Joint Research Center Data Catalog

The European Commission’s Joint Research Center initiated the development of

a water database within the framework of the Copernicus Programme. The database

covers the temporal distribution of water surfaces at a global scale for almost the

entire last 4 decades, providing significant statistics on the extent and change of

water bodies. The observations produced from Landsat imagery, supporting appli-

cations like water resources management, climate modeling and vital information

for decision making [21].
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Dataset and Methodology

3.1 Dataset

The dataset used is named as Sen1Floods11 and it is comprised with Sentinel

1 & 2 images with the corresponding ground truth masks. It is publicly available

for downloading (approximately 14 GB in size) and accompanies the publication

”D. Bonafilia, et al., ”Sen1Floods11: a georeferenced dataset to train and test deep

learning flood algorithms for Sentinel-1,”. The dataset provides global coverage of

4,831 image tiles of 512 x 512 pixels across 11 distinct flood events, covering 120,406

sq km. In terms of organization the dataset is comprised by two main folders covering

flood events and permanent water image patches, respectively.

In this study we are only interested in using images included on the flood events

folder and excluding the permanent water images. The flood events folder is further

splitted into 2 subfolders named as Hand Labeled and Weakly Labeled. The first

one includes image patches which have been annotated accurately by photointerpre-

tation while the latter one contains images annotated automatically by thresholding

procedures without human intervention, thus low accuracy. The hand labeled folder

contains image patches from sentinel 1 and sentinel 2 satellites along with their re-

spective label patches, while the weakly labeled folder contains image tiles created

by sentinel-1 only. A critical distinction between image tiles is that the ones created

by optical sentinel-2 bands comprises of three thematic classes accounting for flood,
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Table 3.1: Sen1Foolds11

”ID” Country S2 Date S1 Date Days Apart

1 Bolivia 2/15/18 2/15/18 0

2 Ghana 9/19/18 9/18/18 1

3 India 8/12/16 8/12/16 0

4 Mekong 8/4/18 8/5/18 1

5 Nigeria 9/20/18 9/21/18 1

6 Pakistan 6/28/17 6/28/17 0

7 Paraguay 10/31/18 10/31/18 0

8 Somalia 5/5/18 5/7/18 2

9 Spain 9/18/19 9/18/19 0

10 Sri Lanka 5/28/17 5/30/17 2

11 USA 5/22/19 5/22/19 0

non-flood and clouds, while image tiles from sar sentinel-1 accounts only for flood,

non-flood.

Each tile follows the naming scheme EVENT CHIPID LAYER.tif (e.g. Bo-

livia 103757 S2Hand.tif). Tile IDs are unique, and not shared between events.

Events are named by country and further information on each event (including dates)

can be found in the event metadata below. Each layer has a separate GeoTIFF, and

can contain multiple bands in a stacked GeoTIFF. All images are projected to WGS

84 (EPSG:4326) at 10 m ground resolution. It should also be noted that weakly

labeled patches don’t overlap with the hand labeled patches.

As can be seen from Table 3.1 the different acquisitions from Sentinel 2 and

Sentinel 1 are not many days apart with the maximum being 2 days. In a post flood

flood two days difference are considered.

In the figure 3.1 are pointed out the locations of the extracted flood events,

showing the geographic disparity among the dataset, covering every continent apart

from Australia.

3.1.1 Hand Labeled

The Hand Labeled subfolder contains one folder S1Hand which consists of Sentinel

1 image patches with two polarization bands (VH & VV) and another one called
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Figure 3.1: Spatial Distribution of Dataset, [1]

Table 3.2: Hand Labeled

LabelHand S1OtsuLabelHand S1Hand S2Hand

Bolivia 15 15 15 15

Ghana 53 53 53 53

India 68 68 68 68

Mekong 30 30 30 30

Nigeria 18 18 18 18

Pakistan 28 28 28 28

Paraguay 67 67 67 67

Somalia 26 26 26 26

Spain 30 30 30 30

Sri-Lanka 42 42 42 42

USA 69 69 69 69

SUM 446 446 446 446

S2Hand which includes Sentinel 2 image patches with 13 spectral bands. It should

be noticed that in order to achieve homogeneity among spectral bands an upsample

method has been applied, so every bands has 10 meter spatial resolution. The size

of the patches is 512x512 within the coordinate system EPSG:4326 - WGS 84 -

Geographic. The rest folders are the corresponding ground truth mask, each one

being created with a different method. Numerical information is plotted in Table

3.2 where the total number per area is illustrated. As can be seen the number of

patches per country is not equal but remains balanced.
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Table 3.3: Weakly Labeled

S1OtsuLabelWeak S2IndexLabelWeak S1Weak

Bolivia 224 224 224

Colombia 534 534 534

Ghana 181 181 181

India 467 467 467

Mekong 1353 1353 1353

Nigeria 109 109 109

Pakistan 249 249 249

Paraguay 316 316 316

Somalia 129 129 129

Spain 146 146 146

Sri-Lanka 190 190 190

USA 486 486 486

SUM 4384 4384 4384

3.1.2 Weakly Labeled

The folder with the weakly labeled images is almost similar with the aforementioned

hand labeled, with the only distinction of not including sentinel 2 images. Apart

from that the total number of patches is significantly higher but also an additional

country is included named Colombia. For the current study it was not computa-

tionally possible to manage all these images, thus a method to eliminate most of the

patches is described in the following chapter 4.

3.2 Methodology

Experiments were splited into four parts, with each one based on a different

semantic segmentation scheme. The first one is based on a Fully Convolutional

Neural Network called U-NET, the second approach is based on a Random Forest

and a set of hand crafted features while the third one is based on the concept of

Transfer Learning using as a backbone the VGG16 model. Lastly, a baseline model

based on a histogram thresholding approach was designed.
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3.2.1 U-Net

U-Net is a convolutional neural network that was developed for biomedical image

segmentation. The network is based on the fully convolutional network and its

architecture was modified and extended to work with fewer training images and

to yield more precise segmentations. The network consists of a contracting path

(convolution) and an expansive path (deconvolution), which gives it the u-shaped

architecture. The contracting path is a typical convolutional network that consists of

repeated application of convolutions, each followed by a rectified linear unit (ReLU)

and a max pooling operation. During the contraction, the spatial information is re-

duced while feature information is increased. The expansive pathway combines the

feature and spatial information through a sequence of up-convolutions and concate-

nations with high-resolution features from the contracting path. The basic concept

of U-NET is illustrated in the Figure 3.2.

The contracting module consists of a series of convolutional layers for feature

extraction, along with max-pooling layers which downsample the input. The de-

coder is applied after feature extraction and performs upsampling to generate a

segmentation mask of equal dimension to the input. The expansive also consists of

further convolutional layers which allows for additional feature extraction and thus

produces a dense feature map [2].

Figure 3.2: The Architecture of UNET, [2]
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3.2.2 Transfer Learning

A CNN can be divided into two main parts, as can be seen in Figure 3.3, accounting

for feature learning and classification respectively. Transfer learning is a machine

learning approach where a pre-trained deep learning model is used as a starting

point. Pre-trained models on different datasets are leveraging previously learnt

features, which often helps with the generalizability, speeds up the training and

developing time [3].

Figure 3.3: The two main parts of a CNN architecture [3].

Deep neural networks extract relevant information in a hierarchical approach

where the first layers detect high-level features such as corners and edges while the

later layers detect domain specific features. Due to this trait, deep neural networks

are highly suited for transfer learning. A common approach is to alter the archi-

tecture of the model such that part of it inherits the design of another pre-trained

model and then the weights from the pre-trained model are then imported into

the selected architecture. This method can also help in model performance and in

training speed [4].

Figure 3.4: The Concept of Transfer Learning, [4]
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In the current study the VGG16 architecture pretrained on the Imagenet pub-

licly available data is being used, while the Sen1Floods11 dataset is used for fine

tuning. The main concept of this approach is demonstrated in Figure 3.4. Lastly,

the classification part is handled by a random forest. VGG Net is the name of a

pre-trained convolutional neural network (CNN) invented by Simonyan and Zisser-

man from Visual Geometry Group (VGG) at University of Oxford in 2014. VGG

Net has learned to extract the features (feature extractor) that can distinguish the

objects and is used to classify unseen objects. VGG was invented with the purpose

of enhancing classification accuracy by increasing the depth of the CNNs. VGG

16 and VGG 19, having 16 and 19 weight layers, respectively, have been used for

object recognition. VGG Net takes input of 224×224 RGB images and passes them

through a stack of convolutional layers with the fixed filter size of 3×3 and the stride

of 1. There are five max pooling filters embedded between convolutional layers in

order to down-sample the input representation (image, hidden-layer output matrix,

etc.). The stack of convolutional layers are followed by 3 fully connected layers,

having 4096, 4096 and 1000 channels, respectively. The last layer is a soft-max layer

[3]. The Figure 3.5 shows the VGG16 network structure.

Figure 3.5: VGG Architecture

3.2.3 Random Forest

A random forest (RF) classifier is an ensemble classifier that produces multiple

decision trees, using a randomly selected subset of training samples and variables.

Random forests train a large number of strong decision trees and combine their

predictions through bagging. Two sources of ‘randomness’: Each tree is only allowed

to choose from a random subset of features to split on (leading to feature selection)

Each tree is only trained on a random subset of observations. In practice, RF
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tend to perform very well right out of the box and almost always gets good results

while are also simple with not many complicated parameters to tune [5]. A general

architecture is illustrated on Figure 3.6 bellow:

Figure 3.6: The Concept of Random Forest, [5]

For the current study a set of hand crafted features were utilized in order to train

a random forest classifier. These features were the previously mentioned spectral

indices NDVI and NDWI but also kernel based features like variance and median.

3.2.4 Baseline Model

As baseline model without training phase and feature construction we came up with

the idea of thresholding image histogram and then segmenting the image into classes.

To achieve this we incorporated the Otsu thresholding method along with certain

spectral bands.

The Otsu threshold method is an unsupervised classification method for single

band images. With this method, a threshold is automatically calculated which

divides the histogram of a greyscaled image into two categories according to the

tones of gray that each object in the image has. The goal is to find the value that

will separate each object from the rest of the image. The Otsu method involves

the selection of a threshold only by editing the histogram of a single band image,

without the need to know anything about the image a priori. [22].
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For the baseline model assessment two individual experiments were designed.

The first thresholds the hand labeled sar images with VH band, while the second

one threshold the NDWI index, which were described earlier in the text. It should be

noted that since the threshold method can only work with binary classifications, for

the optical images only the ones without clouds were used. Concretely less optical

images were used, accounting for 337 image patches instead of initial 577 patches.

3.3 Programming Environment

In data science domain the most prominent programming languages are Python

and R [23]. Python, however, is a general purpose programming language, while R is

generally limited to statistical computing. Furthermore, one of the major benefits of

using Python is the large number of libraries, in form of modules, that are available

for free. More specifically, A great combination on using Python is the web-based

interactive development environment, named as Jupyter Notebook, in which you can

present and execute code, including descriptive text and visualizations in a single

document [24]. A great web environment to use Jupyter notebooks is the Google

Colab which allows anybody to write and execute python code through the browser,

and is especially well suited for machine learning and data analysis. Google Colab

requires no previous setup while provides access free of charge computing resources

including GPU, even though resources are not unlimited. Notebooks are stored in

Google Drive or can be loaded from Github [25].

Given the aforementioned information for this study Python and Google Colab

were used. The most important python modules included keras for deep learning

machine learning approaches, scikit-learn for random forest algorithm and image

preprocessing while also numpy and pandas for general purpose data engineering.
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Chapter 4

Experimental Results

4.1 Data Pre-Processing

As mentioned in the previous chapter the number of images are too many to

be managed by a personal computer thus there was a need to eliminate a number

of images. In this chapter is described the process to achieve the aforementioned

elimination but also the evaluation metrics applied to measure the performance of

each machine learning model and the final results from each designed experiment.

4.1.0.1 Hand Labeled

After visually checking the dataset with manually loading image patches on a free

and open Geographic Information System software called QGIS, we noticed that

many images contain corroded pixels with no information or the number with flooded

pixels is significant lower than the background pixels. Additionally it was noticed

that a large number of sentinel 2 images are heavily or totally covered with clouds.

Bellow (Figure 4.2) is an illustration of a sentinel 2 image tile blocked with clouds,

the corresponding sentinel 1 tile and the respective ground truth.

The initial image tiles of 512x512 size were splited into patches of 128x128, so

from each itinial image 16 patches were created. The splitting process in a google

colab environment took 8 to 10 hours to complete.

Another critical issue was the imbalance between the number of flooded pixels
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Figure 4.1: From Left to right: A cloudy sentinel 2 image, a sentinel 1 image and a
labeled patch based on sentinel 1.

Figure 4.2: From Left to right: A partially cloudy sentinel 2 patch with background
noise and the corresponding ground truth based on sentinel 2.

and the background pixels. In order to overcome all these challenges and create a

coherent multimodal dataset, we eliminated patches completely covered with clouds,

with no flooded pixels or corroded pixels but also the patches with unbalanced

number of flooded pixels and background pixels. The remaining number of patches

per geographic area is illustrated in Table 4.1. with a total number of images of 577.

Table 4.1: Number of hand labeled patches per area after pre-processing.

Hand Labeled

1 Bolivia 24

2 Ghana 15

3 India 36

4 Mekong 52

5 Nigeria 33

6 Pakistan 101

7 Paraguay 138

8 Somalia 90

9 Spain 35

10 Sri-Lanka 19

11 USA 34

SUM 577
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4.1.0.2 Weakly Labeled

The initial total number of images were 4384. Each image was splitted into 16

patches of a size 128x128 pixels, resulting in 70144 patches in total. From these we

remove the patches having at least one cropped pixel labeled as (-1), patches were

the number of flooded pixels were more than 50% than the background pixels and

patches with with background pixels more than 50% of the flooded pixels, resulting

in a dataset comprised of 6835 patches. Since the number of patches were still very

high and not easy to handle, only the first 50 patches from each geographic area

were kept, resulting in 600 patches in total as shown in the Table 4.2.

Table 4.2: Number of weakly labeled patches per area after pre-processing.

Weakly Labeled Country

1 Bolivia 50

2 Colombia 50

3 Ghana 50

4 India 50

5 Mekong 50

6 Nigeria 50

7 Pakistan 50

8 Paraguay 50

9 Somalia 50

10 Spain 50

11 Sri-Lanka 50

12 USA 50

SUM 600

4.2 Evaluation Metrics

Two evaluation metrics were used to asses the performance of each model namely

Intersection over Union or Jaccard Index and the accuracy index.

4.2.0.1 Intersection over Union (IoU) (Jaccard index)

IoU is the most frequently used metric for image segmentation. It stands as the

ratio between the intersection and the union of two sets. In our formulation, it
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represents the prediction and the ground truth. It is formulated as the number of

true positives over the sum of true positives, false negatives and false positives. It is

computed in a per-class basis and averaged [26]. For the binary problem is written

as: Similarity of two sets U and V .

Jaccard(U,V) =

|U ∩ V |
|U ∪ V |

4.2.0.2 Accuracy

Accuracy is an evaluation metric that allows you to measure the total number of

predictions a model gets right. The formula for accuracy is the following:

Accuracy =

TP + TN

TP + TN + FP + FN

Accuracy will answer the question, what percent of the models predictions were

correct? Looking at True Positives and True Negatives.

4.2.0.3 Recall

Recall is the ratio tp / (tp + fn) where tp is the number of true positives and fn

the number of false negatives. The recall is intuitively the ability of the classifier to

find all the positive samples [27].

Recall =

TP

TP + FN

4.2.0.4 Precision

Precision is the ratio tp / (tp + fp) where tp is the number of true positives and fp

the number of false positives. The precision represents the ability of the classifier
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not to label as positive a sample that is negative [27].

Precision =

TP

TP + FP

4.2.0.5 F1 Score

The F1 score can be interpreted as a harmonic mean of the precision and recall [27].

The formula for the F1 score is:

F1 score =

2 ∗ Precision ∗Recall

Precision + Recall

4.3 Results

For every experiment the dataset was splitted into 70% for training and 30% for

testing, apart from baseline model for which the reported performance is accounts for

all available images. All reported performance numbers are the result of averaging

5 consecutive executions, apart from the baseline model.

Experiments were splitted into three main parts, with each one being based on a

different semantic segmentation scheme. The first one is a U-NET fully concolutional

neural network, the second one is based on a Random Forest architecture and a set of

hand crafted features, while the last one is based on the concept of transfer learning

using as backbone the a pretrained VGG16 on Imagenet for feature extraction and

a Random Forest for classification.

For all three approaches there are two sections namely single modal and multi

modal respectively. The first one makes use of raw spectral bands only from one

sensor which is either sentinel 1 bands (VV and VH) or sentinel 2 bands (Red, Green,

Blue, Near Infrared and Shortwave Infrared). The latter attempts to combine the

spectral bands in a single multimodal feature space. Apart from the raw spectral

bands synthetic features are also incorporated, as described in the Table 4.3.
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Table 4.3: The Feature Space as a list.

Name Discription Sensor

Blue Blue spectral band S2

Green Green spectral band S2

Red Red spectral band S2

NIR Near Infrared spectral band S2

SWIR Sort wave infrared spectral band S2

NDVI Normalized Difference Vegetation Index S2

MNDWI Modified Normilized Difference Water Indes S2

VV Vertical Transmition and Vertical Reception S1

VH Vertical Transmition and Horizontal Reception S1

VH/VV The ratio between VV and VH S1

Median Median filter with a kernel size of three, based on VH and NIR S1/S2

Variance Variance filter with a kernel size of three, based on VH and NIR S1/S2

Roberts The Roberts’ Cross edge map based on NIR and VH S1/S2

The features NDVI and MNDWI were explained extensively on section 2.3.2

while the mechanisms of SAR images on section 2.3.1. The Green, Red, NIR and

SWIR features are not used individually but as part of NDVI and MNDWI. The

features based on kernels (Median, Edge etc.) were mainly incorporated to capture

the spatial information encapsulated in satellite images, while this type of features

have been utilized by many land cover mapping campaigns like the map product

named S2CLC-2017 [28]. This type of spatial features are created from deep learning

models while for shallow architectures an extra effort is needed. Lastly, the ratio

between VV and VH was insipred by Copernicus Land Monitoring Services technical

documentations [29]. The Figure 4.3 illustrates the Pearson correlation between

features and the target value (flood, no flood).

As can be seen the features with highest correlation with the target value are the

SAR bands. More specifically, the Median-s3-VH feature has the highest correlation,

with the VH and VV to be following. On the other hand, features based on raw

optical bands, apart from near infrared, do not appear to be highly correlated with

the target value. However the synthetic features accounted as NDVI and NDWI are

more than 50% correlation with the label. As far as correlation between features

there is need some high correlations reaching the number 80% but these in the
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Figure 4.3: Correlation matrix between features

experiments are not used simultaneously.

4.3.1 U-NET

The UNET architecture was thoroughly described in the previous chapter 3. As an

optimizer was used the Adam algorithm instead of the classical stochastic gradient

descent procedure to update network’s weights. Additionally, as a cost function

the binary cross entropy function was used for binary classification while the cate-

gorical cross entropy for multi-label classification. In the same concept for binary

segmentation the last layer had as an activation function the sigmoid while for multi

labeled segmentation the softmax. Furthermore a 10% of the training set was kept

for validation during the training procedure, while an early stop was applied based

on validation loss, with 200 epochs. The number of total epochs was choosen based

on the computational limitations of google colab. The total trainable parameters

reached the number of 1,941,681.

- 59 -



4.3 : Results

4.3.1.1 Single-Modal - UNET

The results presented on Table 4.4 are separate experiments with radar and opti-

cal bands along with the respective labels. More specifically from sentinel 1 were

extracted the two available bands meaning the VV and VH, while from sentinel 2

were extracted the red, green, blue, near infrared and shortwave infrared. It should

also be mentioned that sentinel 2 comes with three classes including clouds while

sentinel 1 only two classes since radar penetrates clouds.

Table 4.4: UNET Single Modal Hand Labeled

Hand Labeled

Source & Labels IoU Acc F1 Prec Recall

S1Hand & S1OtsuLabelHand 0.89 0.94 0.94 0.94 0.94

S2Hand & LabelHand 0.47 0.72 0.72 0.72 0.72

Based on Table 4.4 Sentinel 1 radar bands gave superior results than Sentinel 2

optical bands, in terms of both evaluation metrics (Accuracy and Intersection Over

Union). However the algorithm fed with features from optical bands had to predict

apart from water/ non-water pixels the ones with clouds which is not an easy task.

In the Figure 4.4 are illustrated two examples from single modal experiments

subject to Radar and Optical images, respectively. From left to right the first image

indicates the binary ground truth where white represent water and black indicates

background pixels, mainly land cover. The second black and white image represents

the predicted values from trained U-NET model. The UNET gave good predictions

apart from the areas where small water parts are close to each other. On the other

hand the trained on optical bands, UNET model, did not achieved an equivalent

performance where failed to recognize most of the cloudy pixels (green colour) and

small water parts (red colour) from the background.

Table 4.5: UNET Single Modal Weakly Labeled

Weakly Labeled

Source & Labels IoU Acc F1 Prec Recall

S1Hand & S1OtsuLabelWeak 0.81 0.87 0.87 0.87 0.87

Weakly labeled image patches showed significant results even though only two
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Figure 4.4: An example of a ground truth mask and the corresponding prediction based
on UNET and sentinel 1 (left) and sentinel 2 (right).

bands were used, Table 4.5.

Table 4.6: UNET Single Modal Weakly Supervised

Weakly Supervised

Trained On Tested on IoU Acc F1 Prec Recall

S1Hand & S1OtsuLabelWeak S1OtsuLabelHand 0.77 0.86 0.86 0.86 0.86

The weakly supervised experimental results presented in Table 4.6 shows that

deep learning is capable to achieve considerable accuracies without much effort on

labeling.

4.3.1.2 Multi-Modal - UNET

The multi modal results illustrated in Table 4.7 imply that the combination of

sentinel 1 and sentinel 2 bands do not improve the accuracy in detecting flooded

pixels. Part of the reason could be the difference in acquisition date between sentinel

1 and sentinel 2.
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Table 4.7: UNET Multi Modal Hand Labeled

Hand Labeled

Source & Labels IoU Acc F1 Prec Recall

S1Hand - S2Hand & S1OtsuLabelHand 0.72 0.82 0.82 0.82 0.82

S1Hand - S2Hand & LabelHand 0.42 0.71 0.71 0.71 0.71

Finally, the best results using U-NET were given by single modal sentinel 1 bands

along with the hand labeled ground truths.

4.3.2 Random Forest

For this set of experiments a various hand crafted features were utilized from both

sentinel 1 and sentinel 2 raw spectral bands. More specifically from optical bands

were constructed the NDVI and NDWI while from sentinel 1 the devision between

VV and VH. Apart from these futures three more kernel based features were con-

structed based on VH and NIR bands respectively. Those are the median filter with

and variance filters with kernel size of 3 and the roberts edge detection filter. It

should be noted that this type of models are note fed by batches of 2D images but

with flattening the images into 1D vectors.

4.3.2.1 Single-Modal - Random Forest

Single modal hand labeled experiments showed satisfactory results with the Sentinel-

2 giving superior results probably because of the higher number of features utilized

compared to Sentinel-1. For Sentinel-1 use 6 features VV, VH, VV/VH, Median,

Variance, Rodert Edge and for Sentinel-2 7 features NDVI, NDWI, Median, Vari-

ance, Robert edge, Blue, Green.

Table 4.8: Random Forest Single Modal Hand Labeled

Hand Labeled

Source & Labels IoU Acc F1 Prec Recall

S1Hand & S1OtsuLabelHand 0.79 0.89 0.89 0.89 0.89

S2Hand & LabelHand 0.87 0.93 0.93 0.93 0.93

In the Table 4.8 are listed the quantitative evaluation showing the superiority of
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sentinel-2 bands in segmenting flooded areas.

Table 4.9: Random Forest Single Modal Weakly Labeled

Weakly Labeled

Source & Labels IoU Acc F1 Prec Recall

S1Weak & S1OtsuLabelWeak 0.81 0.90 0.90 0.90 0.90

In the Table 4.9 the quantitative evaluation report is shown based on weakly

labeled dataset, showing a slight increase in the performance compared to previously

noted hand labeled dataset.

Table 4.10: Random Forest Single Modal Weakly Supervised

Weakly Supervised

Trained Tested IoU Acc

S1Weak & S1OtsuLabelWeak S1Hand & S1OtsuLabelHand 0.77 0.88

Precision Recall

0.88 0.88

F1 score

0.88

Weakly supervised (Table 4.10) experiments gave promising results, even though

slightly decreased performance than the ones based on hand labeled ground truths.

As can be seen from Figure 4.5 the Sentinel-1 gave good quality results despite

some salt and pepper noise in the land. On the other hand experiment based on

Sentinel-2 managed to predict most of the land area but failed to distinguish clouds

from water. Overall the Sentinel-1 bands gave superior results in quantitative as

qualitative evaluation as well. For sentinel 1 black color indicates land and white

the flooded area. For sentinel 2 blue indicates land, white the flooded pixels and

red the clouds.

4.3.2.2 Multi-Modal - Random Forest

Multi modal illustrated in Table 4.11 uses all the available features from sentinel 1

and sentinel 2 spectral bands. The distinction between the two experiments bellow

is that the first one is a binary classification while the second has additionally one

class concerning the clouds.
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Figure 4.5: An example of a ground truth mask and the corresponding prediction based
on RF and sentinel 1 (left) and sentinel 2 (right).

Table 4.11: Random Forest MultiModal Hand Labeled

Hand Labeled

Source & Labels IoU Acc F1 Prec Recall

S1Hand - S2Hand & S1OtsuLabelHand 0.84 0.92 0.92 0.92 0.92

S1Hand - S2Hand & LabelHand 0.87 0.93 0.93 0.93 0.93

Even though the second experiment dealt with the detection of clouds apart of

the flooded pixels, gave superior accuracies. In conclusion, the best results using

RF were given by sentinel 2 bands.

Since Random Forest works with hand crafted features a feature importance

ranking is possible to be informative. In the Figure 4.6 it can be seen that optical

band are more informative in detecting flooded pixels than the sar bands. More

specifically the NDVI is while the NDWI cames second as the literature suggest. In

the literature there is also strong evidence that VH band is the most significant in

separating flood from background pixels.
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Figure 4.6: Feature importance for multi-modal RF

4.3.3 Transfer Learning

In the current study the VGG16 architecture pretrained on the Imagenet publicly

available data is being used, while the Sen1Floods11 dataset is used for fine tuning.

For these experiments only first two convolutional layers from VGG16 were used as

feature extractors. A summary of the new constructed model can be seen in the

Figure 4.7.

Figure 4.7: The model summary of the VGG16 used.

- 65 -



4.3 : Results

4.3.3.1 Single-Modal - Transfer Learning

For single modal experiments and in order to be compiled with the VGG16 architec-

ture which takes as input only three bands we had to eliminate some of the available

information. For sentinel 1 experiments the VV, VH and VH/VV were used while

for sentinel 2 experiments the Red, Near Infrared and the Shortwave Infrared bands

we used mainly because in literature these are the most common spectral bands

utilized to detect water.

Table 4.12: Transfer Learning Single Modal Hand Labeled

Hand Labeled

Source & Labels IoU Acc F1 Prec Recall

S1Hand & S1OtsuLabelHand 0.84 0.92 0.92 0.92 0.92

S2Hand & LabelHand 0.47 0.65 0.65 0.65 0.65

For this set of experiments the best results were achieved by sentinel 1 bands

while sentinel 2 bands illustrated quite poor results, mainly because of the cloud

coverage and many false positives as shown in the Figure 4.6.

The Figure 4.8 gives an example of two classification maps, one based one sentinel

1 (on the left) and another one based on sentinel-2 (on the right). The transfer

learning approach based on sar bands achieves visually an excellent result with no

apparent mistakes. On the other hand sentinel 2 bands achieved a significant result

apart from the salty noise in the center, which is mainly because of the bad quality

of the ground truth. For sentintel 1 white color indicated flooded areas while black

pixels are the surrounding area. For sentinel 2 green color indicates the flooded

pixels while the blue the background and red the clouds.

Table 4.13: Transfer Learning Single Modal Weakly Labeled

Weakly Labeled

Source & Labels IoU Acc F1 Prec Recall

S1Weak & S1OtsuLabelWeak 0.86 0.92 0.92 0.92 0.92

The experiments based on weakly labeled (Table 4.13) image gave superior ac-

curacies than the hand labeled images, mainly in terms of IoU. Single modal weakly

- 66 -



Chapter 4 : Experimental Results

Figure 4.8: An example of a ground truth mask and the corresponding prediction based
on Transfer Learning - VGG16 and sentinel 1 (left) and sentinel 2 (right).

supervised (Table 4.14) achieved significant performance equivalent of hand labeled

experiments.

Table 4.14: Transfer Learning Single Modal Weakly Supervised

Weakly Supervised

Trained Tested IoU Acc

S1Hand & S1OtsuLabelWeak S1Hand & S1OtsuLabelHand 0.83 0.91

Precision Recall

0.91 0.91

F1 score

0.91

4.3.3.2 Multi-Modal - Transfer Learning

For the multi modal experiments the VH band was used from sentinel 1 while from

sentinel 2 we incorporated only the Red and Near Infrared bands.

Mutimodal experiments were not as well as expected but if instead raw spectral

bands we used hand crafted features like the ones used in Random Forest, the results
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Table 4.15: Transfer Learning Multi Modal Hand Labeled

Hand Labeled

Source & Labels IoU Acc F1 Prec Recall

S1Hand - S2Hand & S1OtsuLabelHand 0.73 0.85 0.85 0.85 0.85

S1Hand - S2Hand & LabelHand 0.55 0.71 0.71 0.71 0.71

might be better. Lastly, the best results using Transfer Learning were given by single

modal sentinel 1 weakly labeled.

4.3.4 Baseline Model

For this section of experiments only the hand labeled images were used. Since the

baseline model does not make use of training phases the weakly labeled images do

not make sense to use them. Additionally, it should be noted that for sentinel 2

images only the ones without clouds were selected, since no thresholding algorithm

could detect them from spectral bands information.

The following tables 4.16, 4.17 present the performance of each experiment. It

can be seen that sentinel 1 gave significantly better results compared with sentinel 2,

in terms of accuracy and IoU. Overall both of them illustrate a general good quality

performance and they could be used for first stage flood disaster assessments.

Table 4.16: Baseline approach based on VH band

Hand Labeled

Source & Labels IoU Acc F1 Pre Recall

S1Hand & S1OtsuLabelHand 0.73 0.86 0.86 0.86 0.86

Table 4.17: Baseline approach based on NDWI spectral index

Hand Labeled

Source & Labels IoU Acc F1 Pre Recall

S2Hand & LabelHand 0.66 0.81 0.81 0.81 0.81

The Figure 4.9 demonstrates two predicted images based on Otsu thresholding

approach. The first row presents an example from thresholding a VH band and the

second row an example from thresholding a NDWI image. Both of them indicate

sufficient quality for a first estimation of the flood event but the results are quite
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Figure 4.9: An example of a predicted image and the corresponding ground truth mask
based on Otsu thresholding. The first row illustrates the results from sentinel 1 while the
second row the results from sentinel 2. The white color indicates areas with flood and the
black pixels the background

noise. Inspecting visualy the classification maps, quantitatively, the best result is

given by the NDWI index rather than VH band. SAR based segmentation failed

to capture small land areas surrounded by water and also suffers from salt and

pepper kind of noise. On the contrary optical based segmentation illustrates less

noisy results. The white color indicates areas with flood and the black pixels the

background.
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Conclusions and Future Work

5.1 Conclusions

Even though the initial dataset is very diverse and large, covering large geo-

graphic areas and plenty of flood events it should be noted that it is very difficult

to manage and contains many faulty tiles and pixels. The trial of experiments in-

cluded images with the original tile size of 512x512 pixels but the training phase was

disappointingly long and thus restricting the experiments. Thus measures had to

be taken so to limit the required computational power and time. This was achieved

with cropping the tiles into 126x126 pixels and eliminating tiles with unbalanced

ground truth and faulty pixels. The experimental results are illustrated aggregated

in a comparative way in the Tables 5.1 and 5.2.

Answering the question about which sensor achieved better results the answer

is Sentinel-1 synthetic aperture radar, which is apparent from the three single hand

labeled experiments from all three classification schemes. More specifically, UNET

and Transfer Learning approaches gave better results when fed with SAR data while

Random Forest when fed with optical bands.

Comparing the results from multimodal and single modal experiments there is

no clear answer on which approach is better, since Transfer Learning gave equivalent

results for both feature spaces.

For the weakly supervised part of experiments we only have available sentinel 1
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Table 5.1: Single Modal Aggregated Results

UNET TL RF

Hand Labeled IOU Acc IOU Acc IOU Acc

S1Hand&S1OtsuLabelHand 0.89 0.94 0.84 0.92 0.79 0.89

S2Hand&LabelHand 0.47 0.72 0.47 0.65 0.87 0.93

Weakly Labeled

S1Weak&S1OtsuLabelWeak 0.81 0.87 0.86 0.92 0.81 0.90

Weakly Supervised

Trained On=S1Weak&S1OtsuLabelWeak 0.77 0.86 0.83 0.91 0.77 0.88

Tested On=S1Hand&S1OtsuLabelHand

Baseline – – – – – –

S1Hand(VH) & S1OtsuLabelHand 0.73 0.86

S2Hand(NDWI) & LabelHand 0.66 0.81

Table 5.2: Multi Modal Aggregated Results

UNET TL RF

Hand Labeled IOU Acc IOU Acc IOU Acc

S1Hand - S2Hand & S1OtsuLabelHand 0.72 0.82 0.73 0.85 0.84 0.92

S1Hand - S2Hand & LabelHand 0.42 0.71 0.55 0.71 0.87 0.93

images. Comparing the results from weakly supervised trained models against the

ones with hand labeled ground truth data, we see great results from both sides.

It could be argued that weakly labeled ground truth can achieve equivalent results

with the strictly hand labeled ones.

Even though deep learning can perform high accuracies the casual way of hand

crafted features with shallow architectures like RF can also achieve high scores.

Comparing these two classification schemes given the current results, we have no

clear winner but in general swallow architecture achieves superior results on multi-

modal datasets compared to deep learning.

Last but not least, the developed baseline model failed to provide better perfor-

mance for every deep and machine learning models in terms of hand labeled sentinel

1 data. On the other hand baseline surpassed the performance of deep learning in

terms of using hand labeled sentinel 2 images, but this might be because of the

exclusion of cloudy pixels.
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5.2 Future Work

The dataset in its original form is quite large but given the computational power

it should be tried to run experiments including the entire dataset apart from the

faulty tiles as described in chapter 4. Overall the future endeavours could be sum-

marized in the following list, without order of significance.

• Sentinel’s constellation offers an enormous amount of data but with low spatial

resolution, which hinders the accuracy of the flood mapping tasks. Inline with that

assertion could be examined the high spatial resolution satellite images offered by

ESA’s third party contributing mission where a researcher can apply for free

access to a large amount of data ownership of private companies. Apart from

this program other private companies offer similar educational accounts like the

ones advertised by Planet and ICEYE. The high spatial resolution of less than

one meter (GSD) could improve the accuracies of the models and produce better

maps.

• Apart from pre-trained VGG16 could be examined the utilization of other ar-

chitectures like Xception, ResNET or EfficientNet. Keras python module offers

plenty of pre-trained models.

• Experimentation with other hand crafted features could lead to superior results.

In literature there is evidence that geomorphological features like elevation, slope

and aspect can potentially help in the identification of flooded areas. These fea-

tures could be calculated from a digital elevation model.

• Expand the dataset with extra flood events in different geographic regions utilizing

the ground truth layers available on the public databases described in section 2.2.2.

This way the models could be valuated on unseen images and lead to unbiased

results and generalized models.

• Expand the labels to include cloud shadows as a thematic class. It was noticed that

most the cloudy images are also suffering from cloud shadows, causing changes in

spectral responses in unpredicted way.
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