

Deep Metric Learning for
Music Information Retrieval

By

Vasileios Mouchakis

Submitted 
in partial fulfilment of the requirements for the degree of

Master of Data Science

at the

UNIVERSITY OF PELOPONNESE

October 2023

Abstract
This master thesis explores the application of Deep Metric Learning (DML) for creating effective
audio representations in tasks like audio classification, music retrieval, and speech recognition.
DML uses deep neural networks to learn hierarchical representations from raw audio waveforms,
capturing intricate relationships between audio samples. The thesis evaluates different deep
neural network architectures and loss functions, including triplet loss and contrastive loss. The
models are tested using various distance metrics and normalization techniques. The research
aims to enhance our understanding of DML for audio representations and its potential
applications. The findings contribute valuable insights to guide the design of powerful audio
representations for diverse audio-related tasks.

2

Acknowledgments
I would like to express my sincere gratitude to my supervisor, Researcher B' Theodoros
Giannakopoulos, for his invaluable guidance, support, and expertise throughout the entire
duration of my master's thesis. His insightful feedback and unwavering encouragement have been
instrumental in shaping the direction and quality of my research. I would also like to extend my
appreciation to Panagiotis Koromilas and Sandy Bei for their valuable contributions, insightful
discussions, and assistance during the various stages of my thesis. Additionally, I would like to
acknowledge the Multimedia Analysis Group of the Computational Intelligence Lab (MagCIL) at
the National Center for Scientific Research “Demokritos" for providing me with an intellectually
stimulating environment and access to resources that greatly enriched my research. Their
collaborative spirit and shared knowledge have been invaluable in shaping my understanding and
enhancing the quality of my work.

Thesis Supervisor: Theodoros Giannakopoulos

Title: Researcher B’ (Demokritos)

3

Table Of Contents
1. Introduction	
7

1.1. Motivation	
7
1.2. Related Work	
8
1.3. Proposed Methodology	
9
1.4. Next Sections	
9

2. Background	
11
2.1. Audio Representations	
11

2.1.1. Time-domain representations	
11
2.1.2. Frequency-domain representations	
11
2.1.3. Mel-scale representations	
12
2.1.4. Transform-based representations	
13
2.1.5. Statistical representations	
14
2.1.6. Deep learning representations	
14
2.1.7. Hybrid representations	
15

2.2. Deep Learning	
16
2.2.1. Introduction	
16
2.2.2. Convolutional Neural Networks	
16
2.2.3. Common Architectures	
17

2.2.3.1. ResNet	
17
2.2.3.2. LeNet	
17
2.2.3.3. AlexNet	
17
2.2.3.4. VGGNet	
18
2.2.3.5. GoogleNet	
18
2.2.3.6. DenseNet	
18
2.2.3.7. MobileNet	
18
2.2.3.8. EfficientNet	
18

2.2.4. Transformers	
18
2.2.5. Contrastive Learning	
19

2.3. Distances	
21
4

2.3.1. Introduction	
21
2.3.2. Euclidean Distance	
21
2.3.3. Manhattan Distance (Cityblock Distance)	
21
2.3.4. Chebyshev Distance	
21
2.3.5. Minkowski Distance	
22
2.3.6. Hamming Distance	
22
2.3.7. Cosine Similarity	
22
2.3.8. Correlation Distance	
22
2.3.9. Seuclidean Distance	
23
2.3.10. Kulsinski Distance	
23

2.4. Audio Augmentation	
23
2.4.1. Introduction	
23
2.4.2. Additive Noise	
24
2.4.3. Random Masking	
24
2.4.4. Time Stretching	
24
2.4.5. Pitch Shifting	
24
2.4.6. Time and Frequency Masking	
24
2.4.7. SpecAugment	
25
2.4.8. Resampling	
25

3. Methodology	
26
3.1. Problem Definition and Solution Approach	
26
3.2. Loss Functions	
26

3.2.1. Triplet Loss	
26
3.2.2. Contrastive Loss	
27

3.3. Data Preparation	
28
3.4. Models	
29

3.4.1. Architectures:	
30
3.4.1.1 Triplet Loss	
30
3.4.1.2. Contrastive Loss	
34

3.4.2. Training	
34

5

3.4.2.1. Triplet Loss	
34
3.4.2.2. Contrastive loss	
35

3.4.3. Evaluation	
37
3.4.3.1. Distances	
37
3.4.3.2. Score Calculation	
37

3.4.4. Implementation Details	
38
4. Experiments	
39

4.1. Dataset	
39
4.2. Results	
39

4.2.1. Triplet Loss	
39
4.2.2. Contrastive Loss	
43
4.2.3. Comparison of Best-Performing Loss Functions.	
44

4.3. Observations	
44
5. Conclusion	
45
6. Bibliography	
46
7. Appendix A	 49

6

1. Introduction
In recent years, there has been a surge of interest in developing powerful and discriminative audio
representations for various applications, including audio classification, music retrieval, speech
recognition, and audio-based recommendation systems. Deep Metric Learning (DML) has
emerged as a promising approach to address the challenge of learning effective representations
that capture the underlying semantic structure of audio data.

Deep Metric Learning aims to learn a metric space where the similarity between audio samples is
explicitly modeled. Unlike traditional approaches that rely on handcrafted features or shallow
representations, DML leverages deep neural networks to automatically learn hierarchical
representations from raw audio waveforms. By exploiting the rich hierarchical structures within
audio data, DML enables the discovery of intricate relationships and fine-grained similarities
between audio samples.

The primary objective of DML is to learn a representation space where semantically similar audio
samples are projected closer together, while dissimilar samples are pushed further apart. This
facilitates various downstream tasks such as audio retrieval, clustering, and classification, by
providing a compact and discriminative representation that captures the intrinsic properties of the
audio data.

One of the key challenges in DML for audio lies in designing appropriate loss functions that can
effectively measure the similarity or dissimilarity between audio samples. Various loss functions
have been proposed, such as triplet loss, contrastive loss, and angular loss, each with its own
strengths and limitations. These loss functions aim to optimize the embedding space by explicitly
enforcing the desired proximity relationships among audio samples.

Furthermore, the choice of the deep neural network architecture plays a crucial role in DML for
audio. Convolutional Neural Networks (CNNs) have been widely adopted due to their ability to
capture local and global dependencies in audio signals. Recurrent Neural Networks (RNNs) are
also employed to model temporal dependencies, particularly in tasks involving sequential audio
data, such as speech recognition.

This thesis aims to investigate and explore the efficacy of different DML techniques in the context
of audio representations. Specifically, we will analyze the performance of various deep neural
network architectures and loss functions in learning discriminative audio embeddings. We will
evaluate these representations on benchmark audio datasets and compare them against state-of-
the-art methods to assess their effectiveness in audio-related tasks.

Overall, this research contributes to the growing field of Deep Metric Learning for audio
representations and aims to enhance our understanding of the underlying principles and
techniques involved. The findings from this study will not only provide valuable insights into the
design and optimization of audio representations but also have the potential to advance audio-
related applications in diverse domains.

1.1. Motivation
The motivation behind this thesis stems from the fundamental human desire to explore and
uncover meaningful connections within the vast realm of music. Music holds a unique power to
evoke emotions, transcend language barriers, and create profound experiences for individuals
across cultures and backgrounds. With the ever-expanding digital music landscape, there arises a
pressing need for advanced techniques that can effectively navigate and harness the wealth of
musical content available to us. Deep Metric Learning (DML) emerges as a promising approach to
address this challenge by enabling the development of machine learning models capable of
understanding the intricate relationships between songs based on their underlying audio features.
By leveraging the power of DML, we aim to create intelligent systems that can not only classify
and categorize music but also provide personalized recommendations and facilitate novel music
discovery experiences. By training ML models to accurately identify and retrieve the most similar
songs to a given input, we strive to enhance the accessibility and enjoyment of music for both
casual listeners and industry professionals alike. Furthermore, this research has the potential to
contribute to a wide range of applications, including music recommendation systems, playlist
generation, and content-based music retrieval, ultimately transforming the way we interact with
and appreciate music in the digital age.

7

1.2. Related Work
In paper [1] a novel angular loss for deep metric learning is proposed. The angular loss is based
on the idea of measuring the similarity between two feature vectors as the cosine of the angle
between them. This makes the angular loss more robust to variations in scale and rotation than
traditional distance-based losses. The paper also shows that the angular loss can achieve better
performance than traditional distance-based losses on a variety of image classification and
retrieval tasks.

Paper [2] presents a general framework for distance metric learning that is based on the large
margin nearest neighbour classification (LMNN) algorithm. The LMNN algorithm learns a distance
metric that maximizes the margin between the nearest neighbours of positive and negative
examples. The margin is a measure of the separation between the two classes, and a larger
margin indicates that the two classes are more well-separated. The paper shows that the LMNN
algorithm can achieve good performance on a variety of classification tasks.

This paper [3] proposes a deep learning-based approach to face recognition and clustering. The
FaceNet model learns a 128-dimensional embedding for each face image. This embedding is
used to represent the face image in a high-dimensional space where faces that are similar in
appearance are close together. The FaceNet model has been shown to achieve state-of-the-art
performance on face recognition and clustering tasks.

In the pages of this publication [4], a new objective function for deep metric learning is proposed,
called Deep InfoMax. Deep InfoMax is based on the idea of maximizing the mutual information
between the representations of positive and negative pairs of examples. The mutual information is
a measure of how much information one random variable contains about another random
variable. The paper shows that Deep InfoMax can achieve good performance on a variety of
metric learning tasks.

This research [5] proposes a simple framework for contrastive learning of visual representations
called SimCLR. SimCLR is based on the idea of using a siamese network to learn to distinguish
between augmented versions of the same image. The augmented versions of the image are
created by applying random transformations to the image, such as cropping, flipping, and color
jittering. The siamese network is trained to predict whether two augmented versions of the same
image come from the same image or not.

Paper [6] proposes a new method for unsupervised visual representation learning called MoCo.
MoCo is based on the idea of using a siamese network to learn to distinguish between positive
and negative pairs of examples. The positive pairs are examples that are augmented versions of
the same image, while the negative pairs are examples that are from different images. The
siamese network is trained to predict whether two augmented versions of the same image come
from the same image or not.

This research [7] proposes a novel loss function for siamese networks called N-pair loss. The N-
pair loss is based on the idea of having a siamese network learn to distinguish between N positive
pairs and N negative pairs of examples. The positive pairs are examples that belong to the same
class, while the negative pairs are examples that belong to different classes. The N-pair loss is
formulated as follows:

loss = sum(max(d(anchor, positive) - d(anchor, negative) + margin, 0))
where d is a distance metric, anchor is the anchor example, positive is the positive example, and
negative is the negative example. The margin is a hyperparameter that controls the separation
between the two classes.

The N-pair loss has been shown to be more effective than the triplet loss for siamese networks on
a variety of metric learning tasks. The paper also provides a theoretical analysis of the N-pair loss,
which shows that it can be used to learn a more discriminative embedding space for siamese
networks.

In paper [8], a novel approach to few-shot learning is proposed, called the relation network. The
relation network is a siamese network that is trained to learn a similarity function between pairs of

8

examples. The similarity function is then used to predict the class label of a new example, given a
set of support examples.

The relation network is able to achieve good performance on few-shot learning tasks by learning
to compare examples in a discriminative way. The paper shows that the relation network can
outperform other few-shot learning methods on a variety of benchmark datasets.

Paper [9] proposes a novel approach to person re-identification called contrastive multiview
coding. The contrastive multiview coding approach is based on the idea of using a siamese
network to learn to distinguish between augmented versions of the same person. The augmented
versions of the person are created by using different views of the person, such as front view, side
view, and top view.

The contrastive multiview coding approach has been shown to be effective for person re-
identification in challenging scenarios, such as when the person is partially occluded or when the
lighting conditions are poor. The paper shows that the contrastive multiview coding approach can
outperform other person re-identification methods on a variety of benchmark datasets.

1.3. Proposed Methodology
In this study, we aim to train deep learning models on audio representations for unsupervised
learning in the context of music. The dataset comprises songs from diverse genres, providing a
comprehensive representation of musical styles. The primary objective is to develop models
capable of identifying similar audio samples from a given database when presented with a target
audio input.

To achieve this, we will employ deep metric learning techniques. Specifically, we will explore loss
functions that encourage the models to learn discriminative embeddings for audio
representations. By optimizing these loss functions, the models will be trained to minimize the
distance between embeddings of similar audio samples and maximize the distance between
embeddings of dissimilar samples.

The training process will involve feeding the audio representations into deep neural network
architectures. These architectures will be designed to learn hierarchical representations from the
audio data. We will experiment with different network architectures and hyperparameters to
identify the optimal configuration that yields the most effective similarity learning.

Overall, this proposed methodology aims to leverage unsupervised deep learning techniques on
audio representations to develop models capable of finding similar audio samples from a
database given a target audio input. By exploring various loss functions and training strategies,
we expect to enhance the models' ability to capture and understand the underlying patterns and
similarities within the diverse musical genres present in the dataset.

1.4. Next Sections
The next chapters are organized in the following way:

	 In chapter 2 we introduce various audio representations commonly used in deep learning
applications. We discuss time and frequency domain features that form the inputs of our models,
exploring their significance in capturing audio information effectively. 
	 In chapter 3 we provide a theoretical background on deep learning models commonly
employed in audio applications. We reference notable architectures found in literature to highlight
their relevance in audio representation learning.

	 In chapter 4 we delve into distance metrics used for evaluating the similarity of audio
representations. We explore the theoretical foundations of various distance measures.

	 In chapter 5 we discuss various audio augmentation techniques that enrich the training
data and enhance the generalisation capabilities of our models.

	 In chapter 6 we present our methodology in detail. We outline the selection and
implementation of loss functions used for deep metric learning with audio data. Additionally, we
describe the data preparation process and the choice of model architectures used in our
experiments. Furthermore, we discuss the training procedure and the evaluation metrics
employed to assess the model's performance.

9

	 Finally, in chapter 7 we present our experiments. We describe the datasets used for
training and testing the models, along with their characteristics. We present the results obtained
from the evaluation of the models using various distance metrics and normalization techniques.
The observations from these experiments are thoroughly discussed, providing insights into the
models' performance and effectiveness in capturing audio similarities.

10

2. Background
2.1. Audio Representations
Audio representations [10] play a fundamental role in the analysis, processing, and understanding
of audio signals. These representations aim to capture and encode the intricate characteristics of
sound waves, enabling effective manipulation and interpretation of audio data. In recent years,
with the rapid advancement of deep learning techniques, audio representations have garnered
significant attention, driving breakthroughs in various audio-related tasks such as speech
recognition, music information retrieval, and sound event detection.

2.1.1. Time-domain representations

Time-domain representations [11] capture the audio signal in its original waveform form. They
represent the variation of the audio signal over time. Common time-domain representations
include the raw audio waveform and its variations, such as amplitude envelopes or temporal
features extracted using windowing techniques.

2.1.2. Frequency-domain representations

Frequency-domain representations [13] transform the audio signal from the time domain to the
frequency domain. They provide information about the spectral content of the audio signal.

11

Figure 2.1 - Time domain representation of original .wav signal [12]

Examples of frequency-domain representations include spectrograms, which provide a visual
representation of the frequencies present in the signal over time, and power spectral density
(PSD) estimates, which represent the distribution of signal power across different frequencies.

2.1.3. Mel-scale representations

Mel-scale representations [14] are based on the mel-frequency scale, which simulates the non-
linear human perception of pitch. Mel-frequency cepstral coefficients (MFCCs) are a popular
example of mel-scale representations. MFCCs capture the perceptual characteristics of audio by
applying a series of transformations, including a Mel-scale filterbank and the Discrete Cosine
Transform (DCT), to obtain a compact representation of the audio signal.

12

Figure 2.2 - Frequency domain representation of original .wav signal [12]

2.1.4. Transform-based representations

Transform-based representations [16] involve applying mathematical transforms to the audio
signal to extract specific features. The Fourier transform, such as the Short-Time Fourier
Transform (STFT), provides a frequency-domain representation. Other transform-based
representations include the wavelet transform, which captures both time and frequency
information, and the constant-Q transform (CQT), which provides a logarithmic frequency
resolution.

13

Figure 2.3 - Mel Spectrogram [15]

2.1.5. Statistical representations

Statistical representations [18] involve characterizing the audio signal using statistical measures.
For instance, statistical features like mean, variance, skewness, or kurtosis can be computed on
the audio signal or its transformed representations to capture different aspects of its statistical
properties.

2.1.6. Deep learning representations

With the advent of deep learning, representations learned by deep neural networks have gained
prominence. Deep learning representations [16] can be derived from raw audio waveforms or
transformed representations, such as spectrograms or MFCCs. Deep architectures, such as
Convolutional Neural Networks (CNNs) or Recurrent Neural Networks (RNNs), learn hierarchical
representations from audio data, enabling automatic feature extraction and capturing complex
patterns. Specifically, Wave2vec [19] and Trillson [20] are two state-of-the-art deep learning
models for audio representation learning. Wave2vec is a self-supervised learning model that
learns to represent speech signals in a way that is useful for automatic speech recognition (ASR).
Trillson is a deep metric learning framework for music information retrieval (MIR) tasks. Both
Wave2vec and Trillson can be used to learn powerful audio representations that can be used for a
variety of downstream tasks. 

14

Figure 2.4 - Operations during Fourier Transformation [17]

2.1.7. Hybrid representations

Hybrid representations [16] combine multiple types of audio representations to capture diverse
aspects of the audio signal. For example, a hybrid representation might include a combination of
spectrograms and MFCCs to capture both the spectral content and perceptual characteristics of
the audio signal.

15

Figure 2.5 - Audio representation using time and frequency transformations. [21]

2.2. Deep Learning

2.2.1. Introduction

Deep learning is a subset of machine learning that has revolutionised various fields by enabling
the development of highly complex and sophisticated models. It involves training neural networks
with multiple layers to learn hierarchical representations from raw data. By leveraging the power of
deep neural networks, deep learning models can automatically extract intricate patterns and
features from data, allowing them to capture nuanced relationships and make accurate
predictions. Deep learning algorithms, such as Convolutional Neural Networks (CNNs) and
Recurrent Neural Networks (RNNs), have demonstrated exceptional performance in tasks such as
image and speech recognition, natural language processing, and recommender systems. These
models have pushed the boundaries of what is possible in these domains, achieving human-level
or even superhuman performance in some cases.

Deep learning has benefited from significant advancements in hardware and the availability of
large-scale datasets. The development of powerful Graphics Processing Units (GPUs) and
specialised hardware accelerators, along with the rise of distributed computing, has enabled the
training of deeper and more complex models. Additionally, the proliferation of diverse and
abundant data sources has facilitated the training of deep learning models on massive datasets.
This combination of computational resources and data availability has played a crucial role in
unlocking the potential of deep learning and driving its widespread adoption across industries.

The impact of deep learning spans across various domains. In healthcare, deep learning models
have been employed for medical imaging analysis, disease diagnosis, and drug discovery. In
autonomous driving, deep learning algorithms have revolutionised perception systems and
enabled significant progress in autonomous navigation. Deep learning has also revolutionised
natural language processing, leading to advancements in machine translation, sentiment analysis,
and voice recognition. In finance, deep learning models have been used for fraud detection,
algorithmic trading, and risk assessment. These are just a few examples of the extensive
applications of deep learning, highlighting its transformative potential and the continuous
exploration and improvement of deep learning techniques to address increasingly complex
problems.

2.2.2. Convolutional Neural Networks

Convolutional Neural Networks (CNNs) [22] have revolutionised the field of deep learning by
enabling effective analysis of visual and sequential data. CNNs are particularly well-suited for
tasks such as image classification, object detection, and natural language processing. Their ability
to automatically learn hierarchical representations from raw data, capturing local and global
dependencies, has made them indispensable in various applications. By leveraging convolutional
layers, pooling layers, and non-linear activations, CNNs excel at extracting and recognizing
meaningful patterns, making them a powerful tool for audio, image, and video analysis.

16

2.2.3. Common Architectures

2.2.3.1. RESNET

ResNet (Residual Neural Network) [23] models have significantly advanced the training of deep
neural networks. By introducing skip connections that allow the flow of information directly from
earlier layers to subsequent layers, ResNet models enable the training of much deeper
architectures. This addresses the vanishing gradient problem and facilitates the optimisation of
extremely deep networks with hundreds of layers. ResNet models have achieved remarkable
success in image classification, object detection, and other visual tasks, surpassing the
performance of shallower networks. Their ability to effectively learn hierarchical representations
and handle complex data distributions has made ResNet models a crucial component of deep
learning applications.

2.2.3.2. LENET

LeNet-5 [24] is one of the pioneering CNN architectures, introduced by Yann LeCun in 1998. It
consists of multiple convolutional layers followed by fully connected layers. LeNet-5 was
specifically designed for handwritten digit recognition and played a crucial role in establishing the
effectiveness of CNNs in image classification tasks.

2.2.3.3. ALEXNET

AlexNet [25], proposed by Alex Krizhevsky et al. in 2012, gained significant attention for its
breakthrough performance in the ImageNet Large-Scale Visual Recognition Challenge. It
comprises multiple convolutional layers, pooling layers, and fully connected layers. AlexNet
introduced the use of rectified linear units (ReLU) as activation functions and demonstrated the
effectiveness of deep CNNs in image classification tasks.

17

Figure 2.6 - Convolutional Neural Network Architecture	

2.2.3.4. VGGNET

VGGNet [26], developed by the Visual Geometry Group (VGG) at the University of Oxford in 2014,
is known for its simplicity and depth. It consists of a series of stacked convolutional layers with
small 3x3 filters and pooling layers. VGGNet explores the impact of increasing network depth and
demonstrates that deeper networks can improve performance on various image recognition tasks.

2.2.3.5. GOOGLENET

GoogLeNet [27], introduced by Szegedy et al. from Google Research in 2014, introduced the
concept of inception modules. These modules consist of parallel convolutional layers with
different filter sizes, allowing the network to capture information at multiple scales. GoogLeNet
addresses the challenge of computational efficiency and demonstrates the effectiveness of
"network-in-network" architectures.

2.2.3.6. DENSENET

DenseNet [28], presented by Huang et al. in 2016, rethinks the connectivity pattern in CNNs. It
employs dense blocks, where each layer is directly connected to all subsequent layers within the
block. This dense connectivity facilitates feature reuse, reduces the number of parameters, and
enhances gradient flow throughout the network. DenseNet exhibits strong performance and
parameter efficiency.

2.2.3.7. MOBILENET

MobileNet [29], introduced by Howard et al. in 2017, focuses on efficiency for deployment on
mobile and embedded devices. It utilises depth-wise separable convolutions, which split the
standard convolution into separate depth-wise and point-wise convolutions. This technique
significantly reduces the computational complexity while maintaining good accuracy, making it
suitable for resource-constrained environments.

2.2.3.8. EFFICIENTNET

EfficientNet [30], proposed by Tan et al. in 2019, addresses the challenge of scaling CNN models
effectively. It employs a compound scaling method that balances network depth, width, and
resolution. By systematically scaling these dimensions, EfficientNet achieves state-of-the-art
performance while maintaining computational efficiency.

2.2.4. Transformers

Transformer [31] models have emerged as a groundbreaking architecture in natural language
processing and have found success in other domains as well. Unlike traditional recurrent neural
networks (RNNs), Transformers employ a self-attention mechanism to capture dependencies
between elements in a sequence simultaneously, allowing for efficient parallelisation and handling
of long-term dependencies. This attention-based approach enables Transformers to capture
contextual relationships and achieve state-of-the-art performance in tasks such as machine
translation, text generation, and sentiment analysis. Their ability to model global interactions has
also led to their adoption in other domains, including audio and image processing.

18

2.2.5. Contrastive Learning

Contrastive learning is a prominent paradigm in the field of machine learning, particularly within
the domain of computer vision, that has garnered significant attention and made substantial
contributions to the advancement of representation learning. This approach has proven to be
instrumental in various applications, such as image recognition, object detection, and natural
language processing. The fundamental principle underlying contrastive learning revolves around
the notion of enhancing the discriminative power of feature representations by leveraging the
relationships between positive and negative pairs of data points. Through this process,
contrastive learning seeks to imbue representations with semantic information that facilitates
downstream tasks.

One of the seminal frameworks in the realm of contrastive learning is the SimCLR (SimCLR: A
Simple Framework for Contrastive Learning of Visual Representations) [5], which has been
instrumental in elucidating the principles and techniques involved in this paradigm. SimCLR,,
introduces a novel perspective on contrastive learning by emphasizing the importance of data
augmentation and the construction of positive and negative pairs. It employs a siamese network
architecture to learn feature representations that maximize similarity among positive pairs and
minimize it among negative pairs. SimCLR's architecture encapsulates the idea of self-supervised
learning, where positive pairs are derived from augmentations of the same image, fostering a rich
understanding of the underlying data distribution. This self-supervised paradigm has gained
considerable traction, largely due to its ability to capitalize on large-scale unlabeled datasets and
its compatibility with transfer learning tasks.

Another noteworthy contrastive learning framework is the Momentum Contrast (MoCo) [6]. MoCo
innovatively addresses the issue of constructing negative pairs by introducing a dynamic
dictionary queue, which circumvents the need for maintaining a fixed set of negative samples.
This architecture relies on a momentum encoder and a query encoder, where the momentum
encoder lags behind the query encoder, thus promoting the accumulation of informative features
over time. The MoCo framework not only enhances the efficiency of contrastive learning but also
showcases the significance of a momentum update mechanism in the context of training deep

19

Figure 2.7 - Transformers Architecture

neural networks. It has demonstrated its efficacy in various computer vision benchmarks,
underscoring its capacity to yield state-of-the-art performance in a multitude of tasks.

In summary, contrastive learning is an influential paradigm within the field of machine learning,
with SimCLR and MoCo standing as prominent exemplars of its application. These frameworks
have significantly advanced our understanding of how to learn powerful feature representations
through the judicious construction of positive and negative pairs and the employment of data
augmentation techniques. Their contributions extend beyond the realm of computer vision, with
implications for a wide array of domains, making them pivotal in contemporary research efforts
aimed at harnessing the full potential of contrastive learning for enhancing the performance of
machine learning models.

20

Figure 2.8 - Contrastive Learning

2.3. Distances
Distances play a pivotal role in deep learning and hold particular significance in music information
retrieval (MIR) when employing deep metric learning on audio representations. In the context of
MIR, audio data is often transformed into high-dimensional feature spaces where the choice of
distance metric directly impacts the model's ability to capture meaningful similarities and
differences between audio samples. Deep metric learning leverages these distances to learn
embeddings that optimize the similarity between similar audio instances while maximizing the
dissimilarity between dissimilar ones. This is crucial for tasks like music recommendation and
similarity-based search, where understanding nuanced audio relationships is paramount.
Additionally, distances enable the model to generalize effectively, making it adaptable to diverse
audio content. Therefore, careful consideration and customization of distance metrics in deep
metric learning are essential for enhancing the performance and relevance of MIR systems,
aligning them more closely with human perception and preferences.

2.3.1. Introduction

Distances play a pivotal role in machine learning and deep learning, serving as fundamental
measures for quantifying the similarity or dissimilarity between data points. These metrics enable
the assessment of proximity or separation of samples within the feature space, crucial for various
tasks in these domains. In the context of machine and deep learning, a range of distance metrics
are utilised, each with its own characteristics and applicability.

2.3.2. Euclidean Distance

The Euclidean distance, one of the most widely utilised metrics, measures the straight-line
distance between two points in a multidimensional space. By computing the square root of the
sum of squared differences between corresponding coordinates, it provides a reliable measure of
dissimilarity. Euclidean distance finds extensive application in tasks such as clustering,
classification, and dimensionality reduction.

2.3.3. Manhattan Distance (Cityblock Distance)

The Manhattan distance, also known as the Cityblock distance or L1 distance, evaluates
dissimilarity by summing the absolute differences between corresponding coordinates. This
distance metric proves particularly valuable when dealing with data that follows a grid-like
structure or when movement is constrained to vertical and horizontal paths. Manhattan distance
is applied in diverse domains, including image recognition, time series analysis, and
recommendation systems.

2.3.4. Chebyshev Distance

The Chebyshev distance, often referred to as maximum norm or L∞ norm, determines dissimilarity
by considering the maximum absolute difference between corresponding coordinates. This metric

d = (x2 − x1)2 + (y2 − y1)2

d = |x2 − x1 | + |y2 − y1 |

21

captures the maximum shift required along any dimension to align two points. Chebyshev
distance finds applications in image processing, anomaly detection, and clustering algorithms.

2.3.5. Minkowski Distance

The Minkowski distance represents a generalised distance metric that encompasses both
Euclidean and Manhattan distances as special cases. It introduces a parameter, p, allowing the
adjustment of distance calculation based on specific requirements. When p=2, Minkowski
distance is equivalent to the Euclidean distance, while p=1 corresponds to the Manhattan
distance. Minkowski distance offers flexibility and is used in various domains, including pattern
recognition, feature selection, and clustering.

2.3.6. Hamming Distance

Hamming distance specialises in comparing binary data, evaluating dissimilarity by counting the
number of positions at which two binary strings differ. This metric is extensively employed in error
detection and correction, DNA sequence analysis, and data clustering tasks.

2.3.7. Cosine Similarity

Cosine similarity quantifies the similarity between two vectors in a high-dimensional space. By
calculating the cosine of the angle between the vectors, it captures the cosine of their similarity.
Cosine similarity is widely used in natural language processing, recommendation systems, and
information retrieval.

2.3.8. Correlation Distance

The correlation distance measures dissimilarity by considering the correlation coefficient between
two vectors. It quantifies the linear relationship between variables and determines dissimilarity

d = ma x(|x2 − x1 | , |y2 − y1 |)

d = (
n

∑
i=1

|x i
2 − xi

1 |ρ)
1/ρ

d =
n

∑
i=1

|x i
2 − xi

1 |

cos(θ) =
x ⋅ y

∥x∥∥y∥

22

based on the lack of correlation. This distance metric finds application in various domains,
including data analysis, image processing, and feature selection.

2.3.9. Seuclidean Distance

The Seuclidean distance, also known as standardized Euclidean distance, adjusts the Euclidean
distance by scaling each dimension based on its standard deviation. It accounts for the different
scales of features and emphasizes the impact of features with higher variability. Seuclidean
distance is valuable in scenarios where feature scaling plays a significant role, such as in
bioinformatics, medical imaging, and sensor data analysis.

2.3.10. Kulsinski Distance

The Kulsinski distance is a statistical distance metric that evaluates dissimilarity between two
binary vectors. It takes into account the number of matching elements and non-matching
elements, considering the distribution of ones and zeros in the vectors. This distance is commonly
employed in clustering, data mining, and pattern recognition tasks.

In machine and deep learning, the selection of an appropriate distance metric depends on the
specific characteristics of the data and the objectives of the task at hand. These diverse distance
measures, including Euclidean, Manhattan, Chebyshev, Minkowski, Hamming, Cosine, Cityblock,
Seuclidean, Correlation, and Kulsinski, offer versatile tools for assessing similarity and dissimilarity
between data points, enabling accurate and effective analyses in various applications.

2.4. Audio Augmentation

2.4.1. Introduction

Audio augmentations play a crucial role in enhancing the performance and generalization
capabilities of deep learning models for audio-related tasks. These techniques involve applying
various transformations and modifications to the audio data during the training process. By
introducing controlled variations, such as additive noise, random masking, time stretching, pitch
shifting, and other augmentations, the models can learn to capture robust and invariant
representations that are more resilient to real-world challenges. Augmentations help address data
limitations, alleviate overfitting, and improve the model's ability to handle variations in audio
content, duration, pitch, background noise, and other acoustic factors. By incorporating audio

d = 1 −
(x ⋅ y)

∥x∥∥y∥

d =
n

∑
i=1

(x i
2 − xi

1)
2

d =
1
n

n

∑
i=1

|xi − yi |
xi + yi

23

augmentations into the training pipeline, deep learning models can learn more effectively from
diverse and realistic audio datasets, resulting in improved performance and greater adaptability in
real-world audio applications.

2.4.2. Additive Noise

Additive noise augmentation introduces random background noise to the audio signal. It involves
superimposing a low-level noise signal onto the original audio waveform, emulating environmental
or recording conditions. By adding controlled levels of noise, the model can learn to be robust
against varying noise levels and improve its ability to extract relevant features in noisy audio
environments.

2.4.3. Random Masking

Random masking augmentation randomly masks segments of the audio, either in the time or
frequency domain. This technique involves selectively zeroing out specific temporal or spectral
regions of the audio signal. By masking certain parts of the audio, the model is encouraged to
focus on other unmasked segments, forcing it to learn from different parts of the audio
spectrogram and enhancing its ability to handle partial or missing information.

2.4.4. Time Stretching

Time stretching augmentation alters the playback speed of the audio while preserving its pitch. It
can compress or expand the temporal duration of the audio, thereby introducing variations in the
rhythm and tempo. This augmentation helps the model learn to recognize and handle different
audio durations, making it more resilient to speed variations in real-world audio recordings.

2.4.5. Pitch Shifting

Pitch shifting augmentation modifies the pitch of the audio while maintaining its duration. It
involves changing the fundamental frequency of the audio, introducing variations in the tonal
characteristics. This technique enables the model to learn representations that are invariant to
pitch variations and improves its ability to generalize across different musical tones and voices.

2.4.6. Time and Frequency Masking

Time and frequency masking augmentation involves selectively masking temporal or spectral
regions of the audio spectrogram. Temporal masking zeros out specific time segments, while
frequency masking masks certain frequency bins. By removing segments in the time or frequency
domain, this augmentation encourages the model to focus on different temporal or spectral
components, promoting robustness to missing or noisy segments.

24

2.4.7. SpecAugment

Inspired by computer vision, SpecAugment randomly masks segments of the audio spectrogram.
It introduces horizontal and vertical masks that cover consecutive time steps or frequency bins,
encouraging the model to learn from various parts of the spectrogram. This technique helps the
model generalize to variations in acoustic features and improves its robustness against small
perturbations in the input spectrogram.

2.4.8. Resampling

Resampling augmentation involves changing the sample rate of the audio signal. It can upsample
or downsample the audio, altering its frequency content and temporal resolution. Resampling
introduces variations in the audio quality and can help the model adapt to different sample rates
encountered in real-world scenarios.

25

3. Methodology
3.1. Problem Definition and Solution Approach
This thesis addresses the critical challenge of developing robust and discriminative audio
representations for a range of applications, including audio classification, music retrieval, and
speech recognition. In an era marked by the exponential growth of digital audio content, the need
for effective methods to navigate and harness this wealth of information is paramount. Deep
Metric Learning (DML) emerges as a promising avenue to meet this challenge by harnessing the
capabilities of machine learning models to decipher intricate relationships within audio data. The
primary objective of this research is to delve into the realm of DML and its application in creating
meaningful audio representations. To achieve this goal, the study will explore a variety of deep
neural network architectures and loss functions, including the widely-used triplet loss and
contrastive loss. These architectural and loss function variations will be rigorously evaluated,
offering insights into their effectiveness in producing audio embeddings capable of capturing the
intrinsic characteristics of the data.

One of the central tenets of this research involves the selection and assessment of appropriate
deep neural network architectures. Convolutional Neural Networks (CNNs) are renowned for their
ability to capture both local and global dependencies within audio signals. By experimenting with
various architectural configurations, this study seeks to identify the most suitable architecture that
optimally encodes audio data for downstream tasks. This investigation is pivotal to understanding
the nuances of different neural network structures and their role in achieving effective audio
representations.

In tandem with architectural exploration, this thesis will thoroughly investigate the choice of loss
functions, a critical component in DML for audio. Triplet loss and contrastive loss, among others,
will be evaluated to discern their impact on the quality of learned audio embeddings. The
objective is to uncover which loss function(s) yield embeddings that most accurately reflect the
semantic relationships among audio samples. Subsequently, these learned representations will be
subjected to rigorous testing using various distance metrics and normalization techniques. The
effectiveness of these embeddings, as determined by distance-based evaluation using
established benchmark datasets, will serve as a pivotal measure of their utility for diverse audio-
related tasks. Ultimately, this research aims to provide invaluable insights into the design and
optimization of audio representations, with a keen focus on their relevance to music information
retrieval and content-based similarity tasks.

3.2. Loss Functions

3.2.1. Triplet Loss

Triplet Loss [32] has emerged as a prominent technique in the field of Deep Metric Learning
(DML), offering a powerful means of learning effective representations for similarity-based tasks.
With the increasing availability of large-scale music collections, the need for robust models
capable of capturing intricate relationships between songs has become imperative. In this
context, Triplet Loss serves as a cornerstone for training machine learning models that can
accurately measure the similarity between musical inputs.

Triplet Loss operates on the principle of learning embeddings, which map input instances into a
high-dimensional space, where distances reflect their inherent similarity or dissimilarity. By
employing triplets of instances—comprising an anchor, a positive, and a negative—the objective
is to ensure that the anchor is closer to the positive instance compared to the negative one. The
triplet formulation provides a fine-grained supervisory signal for the model to optimize the
embedding space, aligning it with the desired similarity relationships.

The efficacy of Triplet Loss lies in its ability to facilitate discriminative learning, where embeddings
of similar instances are brought closer together while pushing dissimilar instances apart. This
process enables the model to capture subtle nuances in the audio features of songs,

26

transcending conventional categorical labels and providing a more nuanced representation of
similarity.

Moreover, Triplet Loss has shown notable success in addressing challenges associated with the
curse of dimensionality. By leveraging the triplet structure, the model is encouraged to learn
compact representations, where semantically similar instances are densely clustered, enhancing
retrieval performance and computational efficiency.

In the realm of music, the application of Triplet Loss holds tremendous potential. By exploiting the
rich audio content of songs, DML models trained with Triplet Loss can offer personalized music
recommendations, facilitate content-based music retrieval, and contribute to various music-
related tasks such as playlist generation and music similarity analysis.

This thesis aims to delve into the realm of Deep Metric Learning for music retrieval, focusing
specifically on the application of Triplet Loss. By investigating novel techniques and strategies for
leveraging Triplet Loss in the context of music similarity, we strive to advance the state-of-the-art
in music recommendation systems and enhance the overall user experience in navigating and
discovering music in the digital age.

3.2.2. Contrastive Loss

Contrastive Loss [33] has emerged as a key component in Deep Metric Learning (DML)
algorithms, offering a powerful framework for training models that can effectively capture similarity
relationships between instances. In the context of music retrieval, where the goal is to identify and
recommend similar songs based on their audio content, Contrastive Loss provides a valuable
mechanism to learn discriminative embeddings that preserve the inherent structure of the music.

The underlying principle of Contrastive Loss is to encourage similarity for pairs of instances
belonging to the same class, while enforcing dissimilarity for pairs of instances from different
classes. By formulating a loss function that maximizes the similarity between positive pairs and
minimizes the similarity between negative pairs, the model is incentivized to learn embeddings
that effectively separate distinct musical instances while bringing similar instances closer together.

One of the key advantages of Contrastive Loss lies in its ability to mitigate the challenges posed
by high-dimensional spaces. By learning embeddings that are optimized for pairwise

27

Figure 3.1 - Triplet Loss

comparisons, Contrastive Loss helps to reduce the computational complexity of similarity-based
tasks. Furthermore, the learned embeddings can capture subtle variations in audio features and
preserve the semantic relationships between songs, facilitating accurate music retrieval and
recommendation.

In the field of music, Contrastive Loss holds significant promise for a wide range of applications.
By leveraging its ability to learn meaningful representations, models trained with Contrastive Loss
can provide personalized music recommendations, enable content-based music retrieval, and
support tasks such as music similarity analysis and genre classification.

The primary objective of this thesis is to explore and investigate the effectiveness of Contrastive
Loss in the context of music retrieval and recommendation systems. By employing innovative
strategies and techniques, we aim to enhance the performance and efficiency of existing
approaches, ultimately contributing to the advancement of music recommendation technology
and improving the overall user experience in discovering and enjoying music in the digital era.

3.3. Data Preparation
Here, we will describe in detail the process of creating the training dataset for our experiment.Our
initial dataset consists of 1139 songs in the WAV format. To extract meaningful representations
from each song, we employ two libraries: pyaudio and deep-audio-features. These libraries
provide us with the necessary tools to extract high-level features and representations from audio
data.

To create our ground truth files, we construct quartets of songs. Each quartet comprises three
different songs, and the fourth song within the quartet is one of the first three. However, in this
case, the fourth song is intentionally chosen to be the least similar among the three. This quartet
structure enables us to establish a clear contrast between similar and dissimilar songs within our
training data.

28

Figure 2.3 - Contrastive Learning

For the implementation of triplet loss, we form triplets. Each triplet consists of representations
from three songs: an anchor, a positive, and a negative. The anchor serves as the reference point,
while the positive represents a song similar to the anchor. Conversely, the negative represents a
song that is dissimilar to the anchor. By using these triplets, we train our model to learn a metric
space where the distance between the anchor and positive songs is minimized, while the distance
between the anchor and negative songs is maximized.

In addition to triplet loss, we also utilize contrastive loss during our training process. Each training
batch comprises representations of N songs randomly selected from the entire database. This
means that each batch includes a diverse set of songs, allowing the model to learn to distinguish
between various instances and develop robust representations that capture the inherent
similarities and differences among the songs.

By employing these approaches, we aim to train our machine learning models to effectively learn
the underlying structure of the audio data, enabling them to identify and rank the most similar
songs given an input.

3.4. Models
In this master thesis, various convolutional neural network (CNN) architectures, in combination
with linear layers, were employed to tackle the task of music similarity and retrieval. Specifically, a
total of five distinct CNN models were utilized, each incorporating a different number of CNN
layers and linear layers.

Each of these five models featured Dropout regularization applied after the last CNN layer.
Dropout is a technique used to prevent overfitting by randomly deactivating a certain proportion
of neurons during training. By applying Dropout, the models were able to enhance their
generalization capability and reduce the risk of overfitting.

One of the models implemented in this study was a CNN architecture comprising six CNN layers.
Each CNN layer consisted of a convolutional layer, a Batch Normalization layer (BatchNorm2d), a
LeakyReLU activation function, and a MaxPooling layer (MaxPool2d). This architecture was
designed to capture intricate audio features through multiple levels of convolutional and pooling
operations.

In addition to the CNN layers, this particular model was equipped with three linear layers. Each
linear layer included a Dropout layer, a linear transformation (Linear), and a LeakyReLU activation
function, except for the last linear layer, which solely utilized a linear transformation and a
LeakyReLU activation. The incorporation of linear layers allowed the model to learn complex
relationships and patterns within the learned features.

Furthermore, two ResNet models, namely ResNet-18 and ResNet-50, were employed in this
study. These models are renowned for their deep architectures and residual connections, which
enable effective feature extraction and learning. In order to accommodate the specific
requirements of the music dataset, the first convolutional layer of both ResNet models was
modified. The modified layer was defined as 'nn.Conv2d(1, 64, kernel_size=(7, 7), stride=(2, 2),
padding=(3, 3), bias=False)', facilitating the handling of the input music data.

The ResNet-18 and ResNet-50 models were employed to train models using both Contrastive
Loss and Triplet Loss. Contrastive Loss, a technique used in Deep Metric Learning (DML),
encourages similar instances to be closer together and dissimilar instances to be farther apart.
Triplet Loss, another DML technique, focuses on optimizing the relative distances between triplets
of instances, ensuring that positive instances are closer to an anchor instance compared to
negative instances. By utilizing these loss functions, the ResNet models aimed to learn
discriminative embeddings that effectively capture the similarity relationships between songs.

In contrast, the other models in this study were solely trained using Triplet Loss, emphasizing the
exploration of this loss function's efficacy in the context of music retrieval and similarity analysis.

The utilization of various CNN architectures, including the aforementioned models with different
layer configurations, alongside the application of Contrastive Loss and Triplet Loss, showcases a
comprehensive approach to address the challenges of music similarity and retrieval. Through this
research, we seek to advance the field by exploring novel combinations of network architectures
and loss functions, thereby enhancing the performance and accuracy of music recommendation

29

systems and enabling users to discover and engage with music in a more personalized and
satisfying manner.

3.4.1. Architectures:

3.4.1.1 TRIPLET LOSS

For training with Triplet Loss, the following models were utilized:

Model1

Model2

Layer no. Type Output
Channels

Kernel Size Stride Activation

conv1 Conv2d 32 1x1 1 ReLU

conv2 Conv2d 64 1x1 1 ReLU

max_pool1 Max_Pool2d - 1 1 -

dropout1 Dropout2d - - - -

fc1 Linear 128 - - -

Number of parameters: 7.4M

Layer no. Type Output
Channels

Kernel Size Stride Activation

conv1 Conv2d 32 1x1 1 ReLU

conv2 Conv2d 64 1x1 1 ReLU

conv3 Conv2d 128 1x1 1 ReLU

max_pool1 Max_Pool2d - 1 1 -

dropout1 Dropout2d - - - -

fc1 Linear 512 - - -

fc2 Linear 256 - - -

fc3 Linear 128 - - -

Number of parameters: 59.5M

30

Model3

Model4

Layer no. Type Output
Channels

Kernel Size Stride Activation

conv1 Conv2d 32 1x1 1 ReLU

conv2 Conv2d 64 1x1 1 ReLU

conv3 Conv2d 128 1x1 1 ReLU

conv4 Conv2d 128 1x1 1 ReLU

max_pool1 Max_Pool2d - 1 1 -

dropout1 Dropout2d - - - -

fc1 Linear 512 - - -

fc2 Linear 256 - - -

fc3 Linear 128 - - -

Number of parameters: 59.6M

Layer no. Type Output
Channels

Kernel Size Stride Activation

conv1 Conv2d 32 1x1 1 ReLU

conv2 Conv2d 64 1x1 1 ReLU

conv3 Conv2d 128 1x1 1 ReLU

conv4 Conv2d 128 1x1 1 ReLU

max_pool1 Max_Pool2d - 1 1 -

dropout1 Dropoutd2d - - - -

fc1 Linear 1024 - - -

fc2 Linear 512 - - -

fc3 Linear 256 - - -

Fc4 Linear 128 - - -

Number of parameters: 119.5M

31

Model5

Model6

Layer no. Type Output
Channels

Kernel Size Stride Activation

conv1 Conv2d 32 1x1 1 ReLU

conv2 Conv2d 64 1x1 1 ReLU

conv3 Conv2d 128 1x1 1 ReLU

conv4 Conv2d 128 1x1 1 ReLU

conv5 Conv2d 64 1x1 1 ReLU

max_pool1 Max_Pool2d - 1 1 -

dropout1 Dropoutd2d - - - -

fc1 Linear 2048 - - -

fc2 Linear 1024 - - -

fc3 Linear 512 - - -

fc4 Linear 256 - - -

fc5 Linear 128 - - -

Number of parameters: 121.6M

Layer no. Type Output
Channels

Kernel Size Stride Activation

conv_layer1: Sequential

conv2d Conv2d 32 1x1 1 LeakyReLU

batchnorm2d BatchNorm2d - - - -

maxpool2d MaxPool2d - 1 1 -

conv_layer2: Sequential

conv2d Conv2d 64 1x1 1 LeakyReLU

batchnorm2d BatchNorm2d - - - -

maxpool2d MaxPool2d - 1 1 -

conv_layer3: Sequential

conv2d Conv2d 128 1x1 1 LeakyReLU

batchnorm2d BatchNorm2d - - - -

32

	

Model7

ResNet18

Number of parameters: 11.7M

Model8

ResNet50

Number of parameters: 25.6M

In the implementation of ResNet-18 and ResNet-50, the default architectural configuration was
maintained with the exception of the initial convolutional layer. Specifically, the original first
convolutional layer was replaced with a customized layer defined as:

maxpool2d MaxPool2d - 1 1 -

conv_layer4: Sequential

conv2d Conv2d 64 1x1 1 LeakyReLU

batchnorm2d BatchNorm2d - - - -

maxpool2d MaxPool2d - 1 1 -

linear_layer1: Sequential

dropout Dropout2d - - - -

linear Linear 1024 - - LeakyReLU

linear_layer2: Sequential

dropout Dropout2d - - - -

Linear Linear 256 - - LeakyReLU

linear_layer3: Sequential

linear Linear 126 - - LeakyReLU

Number of parameters: 59.7M

Layer no. Type Output
Channels

Kernel Size Stride Padding

conv2d Conv2d 64 7x7 2x2 3x3

33

3.4.1.2. CONTRASTIVE LOSS

For training with Contrastive Loss, the following models were utilized:

Model1

ResNet50

Number of parameters: 11.7M

Model2
ResNet50

Number of parameters: 25.6M

In the implementation of ResNet-18 and ResNet-50, the default architectural configuration was
maintained with the exception of the initial convolutional layer. Specifically, the original first
convolutional layer was replaced with a customized layer defined as:

	

3.4.2. Training

The training process for this experiment involved training machine learning models using triplet
loss and contrastive loss techniques. The models were optimized using the Adam optimizer,
which is a widely used algorithm in deep learning. The Adam optimizer combines techniques such
as momentum and adaptive learning rates to efficiently update the model's parameters during
training. A learning rate of 1e^-5 was chosen for the training process. The learning rate
determines the step size taken during parameter updates and can significantly impact the
convergence and performance of the model. By carefully selecting a suitable learning rate and
leveraging the benefits of the Adam optimizer, the training process aimed to find an effective
balance between rapid convergence and accurate learning of the audio representations.

3.4.2.1. TRIPLET LOSS

This section outlines the training methodology for models utilizing the Triplet Loss function, a
fundamental component in various applications of similarity learning. Triplet loss facilitates the
learning of semantically meaningful representations by constraining the distances between anchor
and positive samples while maximizing those between anchor and negative samples.

1. Batch Splitting

In the initial phase, each batch of training data is meticulously partitioned into three constituent
subsets: anchor, positive, and negative samples. These subsets are pivotal for the subsequent
steps in the training procedure.

Anchor Sample: The anchor sample is considered the point of reference for comparative analysis
throughout the training process. It serves as the baseline against which similarity and dissimilarity
are assessed.

Positive Sample: The positive sample represents an audio data point that is closely related or
similar to the anchor sample. This similarity aids in reinforcing the desired representations.

Negative Sample: In contrast, the negative sample is deliberately chosen to be dissimilar or
distinct from the anchor sample. This disparity is instrumental in guiding the model towards
learning discriminative representations.

Layer no. Type Output
Channels

Kernel Size Stride Padding

conv2d Conv2d 64 7x7 2x2 3x3

34

2. Model Inference

Following batch splitting, the three sample subsets - anchor, positive, and negative - are
propagated through the trained model to derive their respective output representations. This step
harnesses the model's ability to transform input data into meaningful feature representations.

3. Triplet Loss Calculation

The Triplet Loss function is the cornerstone of this training procedure. It takes as input the output
representations of the anchor, positive, and negative samples. These representations are fed into
the loss function in a predefined order: anchor, positive, negative.

The Triplet Loss function is designed to compute a scalar loss value based on the distances or
similarities between the anchor and positive representations, in conjunction with the anchor and
negative representations. The overarching objective is to minimize the distance between anchor
and positive representations while concurrently maximizing the distance between anchor and
negative representations. This dual constraint fosters the development of highly discriminative
embeddings.

4. Backpropagation and Parameter Update

To enable learning, gradients of the Triplet Loss with respect to the model's parameters are
meticulously computed. Subsequently, the backpropagation algorithm is employed to efficiently
propagate these gradients through the neural network. The model's parameters are iteratively
updated to minimize the Triplet Loss.

This parameter update is achieved through an optimization algorithm, such as the widely-used
Adam optimizer, which leverages the calculated gradients and the designated learning rate to
fine-tune the model parameters. This iterative optimization process progressively refines the
model's ability to generate representations that conform to the desired similarity constraints.

5. Iteration and Continuation

The entire training procedure is repeated for each batch of training data in an iterative fashion.
This cyclic process entails the successive passage of batches through the model, computation of
the Triplet Loss, and the consequential parameter updates. Training continues until convergence
or until a predefined stopping criterion is met.

The training procedure utilizing the Triplet Loss function is a robust and versatile method for
cultivating semantically meaningful representations in various applications. It is characterized by
the careful selection and manipulation of anchor, positive, and negative samples, which, when
coupled with gradient-based optimization, empowers models to learn highly discriminative
embeddings.

By following this training loop, the model gradually learns to generate discriminative audio
representations that effectively capture the similarity relationships between the anchor and
positive samples. The triplet loss drives the model to minimize the distances between similar pairs
and maximize the distances between dissimilar pairs, facilitating the development of embeddings
suitable for audio similarity and retrieval tasks.

3.4.2.2. CONTRASTIVE LOSS

This section elucidates the training methodology for models employing the Contrastive Loss
within the SimCLR framework. The objective is to foster the acquisition of robust audio
representations through data augmentation, model inference, and the optimization of contrastive
loss. This process yields embeddings that facilitate effective discrimination among audio samples.

1. Data Augmentation

The foundation of this training procedure lies in data augmentation. Each sample in the training
dataset undergoes a twofold augmentation process, enhancing the dataset's diversity and
enabling the model to generalize more effectively. Two specific augmentation techniques are
applied:

Additive Noise: A controlled level of additive noise is injected into each sample, with a prescribed
strength parameter of 0.5. This augments the samples by introducing controlled variations,
enhancing the model's robustness.

35

Random Masking: A random masking strategy is employed with a probability of 0.2. This
technique randomly masks portions of the audio, further diversifying the dataset.

2. Model Inference

The augmented versions of each sample are then provided as inputs to the trained model. The
model, which has been crafted within the SimCLR framework, is adept at extracting intricate
audio representations capable of capturing high-level features.

Outputs Generation: The model processes each augmented sample and generates corresponding
output representations. These representations encapsulate the extracted audio characteristics,
and their quality is improved through the use of the SimCLR architecture.

3. Contrastive Loss Calculation

The output representations obtained from the model serve as inputs to the contrastive loss
function. This critical step assesses the similarity or dissimilarity between pairs of augmented
samples.

Contrastive Loss Function: The contrastive loss function, an essential element of SimCLR,
quantifies the relationships between pairs of representations. It encourages the model to minimize
the distance between positive pairs (representations from the same sample) while simultaneously
maximizing the distance between negative pairs (representations from different samples). This
loss function facilitates the creation of embeddings that inherently encode the distinctiveness of
audio samples.

4. Backpropagation and Parameter Update

The gradients of the contrastive loss concerning the model's parameters are meticulously
computed. These gradients fuel the backpropagation process, allowing the efficient propagation
of information through the network.

Parameter Updates: The model's parameters are updated through an optimization algorithm,
typically employing the Adam optimizer. This optimization process aims to minimize the
contrastive loss iteratively, enabling the model to learn discriminating audio representations.

5. Iteration and Continuation

The training procedure unfolds through an iterative process. Augmentation, model inference,
contrastive loss calculation, and parameter updates are conducted repeatedly for multiple training
iterations or epochs.

Epoch Progression: Each iteration advances the model's capacity to produce effective audio
representations. The procedure continues until convergence is achieved, or predefined
convergence criteria are met.

The training procedure for Contrastive Loss-based models, as orchestrated within the SimCLR
framework, is a robust strategy for enhancing audio representations. It leverages data
augmentation to diversify the training dataset and employs the contrastive loss function to
enforce representations that effectively discriminate between audio samples. This iterative
process culminates in the acquisition of embeddings capable of capturing the intricate nuances of
audio data.

This iterative process allows the model to gradually learn discriminative audio representations that
capture the underlying similarities and differences in the augmented samples.

By following this training loop with contrastive loss and utilizing the SimCLR framework, the
model is trained to generate audio representations that effectively capture the similarity
relationships between augmented samples. The combination of data augmentation and
contrastive loss optimization enhances the model's ability to learn robust and discriminative
representations, facilitating accurate audio retrieval and similarity ranking.

36

3.4.3. Evaluation

3.4.3.1. DISTANCES

In this master thesis, we comprehensively evaluated the trained models using a diverse range of
distance metrics and scalers to assess their performance in various audio similarity scenarios.
The goal was to understand how the models trained with Triplet Loss and Contrastive Loss are
performing across different combinations of distance metrics and scalers.

The distances utilized for evaluation are as follows:

• Chebyshev Distance

• Euclidean Distance

• Minkowski Distance

• Hamming Distance

• Cosine Similarity

• Cityblock/Manhattan Distance

• Standardized Euclidean Distance

• Correlation Distance

• Kulsinski Distance

Furthermore, each distance metric was combined with three different scalers to observe the
models' behavior under various normalization conditions:

• MinMaxScaler

• StandardScaler

• Normalizer

To effectively evaluate the models, we conducted a systematic analysis, assessing their
performance using each distance-scaler pair on the testing dataset comprising 3223 audio
representations. By doing so, we could obtain a comprehensive understanding of how the models
generalize to unseen data and how the choice of distance metric and scaler impacts their

performance.

3.4.3.2. SCORE CALCULATION

To quantitatively evaluate the performance of the trained machine learning models, we developed
a rigorous scoring methodology centered around the notion of audio similarity. Our evaluation
process hinged on the utilization of carefully curated triplets of audio representations, each
comprising two similar audio samples and one dissimilar sample. These triplets were designed
with known ground truth, specifying which two audio representations should be considered as
similar and which one as dissimilar.

For each triplet, we passed the audio representations through the trained models to obtain their
embeddings. Subsequently, we employed various distance metrics and scalers. To measure the
similarity between the embeddings. The pivotal criterion for scoring was as follows: if the distance
between the two audio representations designated as similar was smaller than the distance
between the dissimilar pair, the model received a correct classification score for that triplet. This
process was systematically repeated for every triplet in our test dataset.

By summing the correct classifications and normalizing the count with respect to the total number
of triplets, we calculated a percentage score, providing a comprehensive assessment of each
model's capability to capture intricate audio similarity relationships. This scoring mechanism
offered valuable insights into the models' proficiency in distinguishing between similar and
dissimilar audio representations, facilitating a quantitative evaluation of their performance across
diverse distance metrics and normalization techniques.

37

3.4.4. Implementation Details

The codebase employed in this thesis is part of the mir (Multimedia Information Retrieval) [34]
repository, specifically within the similarity section. The mir repository is maintained by the
Multimedia Analysis Group of the Computational Intelligence Lab (MagCIL) at the Institute of
Informatics and Telecommunications, part of the National Center for Scientific Research
“Demokritos."

The core functionality of the similarity section of the repository focuses on the extraction of audio
representations from audio files and the execution of similarity queries. These queries are
designed to identify the most similar audio files based on a given input audio file.

The exact codebase can be found here.

The proposed methodology was implemented in Python using the following libraries:  
- Models were implemented and trained using PyTorch

- The SimCLR framework was utilised in training with Contrastive Learning

- Models trained on Apple M1 Pro, Total Number of GPU Cores: 14

38

https://github.com/magcil/mir
https://github.com/magcil/mir/tree/pml

4. Experiments
4.1. Dataset
The dataset used for this master thesis consists of a total of 4362 audio representations of songs.
These audio representations have been split into two distinct sets for training and testing
purposes. The training set comprises 1139 audio representations, while the testing set consists of
3223 audio representations.

The primary objective of the thesis is to train and evaluate models using two prominent loss
functions, Triplet Loss and Contrastive Loss, with the aim of learning meaningful embeddings
from the audio representations. During the training phase, the models were exposed to the 1139
audio representations in the training set, leveraging their inherent pairwise similarities and
dissimilarities to optimize the embeddings. Subsequently, the models were tested using the larger
testing set containing 3223 audio representations, which were unseen during the training phase.

4.2. Results
To assess the performance of each model in our study, for both Triplet Loss training and
Contrastive Loss training, we have employed the computed distances utilizing the various
distance metrics, as well as the corresponding scaling techniques as outlined previously. In our
evaluation, a higher score signifies a superior performance of the model.

The scores achieved by each model are presented as follows:

4.2.1. Triplet Loss

Model1 - batch size = 32, learning rate = 0.00001

In the evaluation of the first model, the top-performing combinations, ranked by higher similarity
scores, are as follows:

• chebyshev-Normalizer: Demonstrating a prominent performance with a similarity score of

50.9%.

• cosine-Normalizer: Achieving a score of 49.7%.

• minkowski-Normalizer: Earning a score of 49.7%.

These outcomes highlight the effectiveness of utilizing the "Normalizer" scaling technique.

For more information, see Table 1 in Appendix A.

 
Model2 - batch size = 32, learning rate = 0.00001

Distance Score

chebyshev-Normalizer 50.9%

cosine-Normalizer 49.7%

minkowski-Normalizer 49.7%

cityblock-StandardScaler 49.6%

correlation-MinMaxScaler 48.3%

Distance Score

seuclidean-MinMaxScaler 39.8%

seuclidean-StandardScaler 39.8%

39

In the evaluation of the second model, the top-performing combinations, ranked by higher
similarity scores, are as follows:

• seuclidean-MinMaxScaler: Demonstrating the highest performance with a similarity score of

39.8%.

• seuclidean-StandardScaler: Achieving a score of 39.8%.

• euclidean-Normalizer: Earning a score of 39.5%.

For more information, see Table 2 in Appendix A.

Model3 - batch size = 128, learning rate = 0.00001

In the evaluation of the third model, the top-performing combinations, ranked by higher similarity
scores, are as follows:

• cosine-Normalizer: Demonstrating the highest performance with an impressive similarity score

of 64.1%.

• euclidean-Normalizer: Achieving an outstanding score of 64.1%, indicating a substantial level of

audio resemblance.

• minkowski-Normalizer: Earning a commendable score of 64.1%, reflecting strong capabilities in

audio similarity assessment.

These results underscore, again, the notable effectiveness of the "Normalizer" scaling technique.

For more information, see Table 3 in Appendix.

Model4 - batch size = 128, learning rate = 0.00001

In the evaluation of the fourth model, the top-performing combinations, ranked by higher similarity
scores, are as follows:

• cityblock-Normalizer: Demonstrating the highest performance with a notable similarity score of

63.2%.

euclidean-Normalizer 39.5%

cosine-Normalizer 39.5%

cityblock-MinMaxScaler 39.4%

Distance Score

cosine-Normalizer 64.1%

euclidean-Normalizer 64.1%

minkowski-Normalizer 64.1%

cityblock-Normalizer 64.0%

chebyshev-Normalizer 63.8%

Distance Score

cityblock-Normalizer 63.2%

seuclidean-Normalizer 63.0%

cosine-Normalizer 63.0%

minkowski-Normalizer 63.0%

chebyshev-Normalizer 62.5%

40

• seuclidean-Normalizer: Achieving a strong score of 63.0%, indicating a substantial level of audio
resemblance.

• cosine-Normalizer: Earning a commendable score of 63.0%, reflecting robust capabilities in
audio similarity assessment.

These results emphasize the efficacy of the "Normalizer" scaling technique in conjunction with
specific distance metrics within the fourth model, facilitating effective audio similarity
identification.

For more information, see Table 4 in Appendix A.

Model5 - batch size = 128, learning rate = 0.00001

In the evaluation of the fifth model, the top-performing combinations, ranked by higher similarity
scores, are as follows:

• euclidean-MinMaxScaler: Demonstrating the highest performance with a notable similarity score

of 62.2%.

• minkowski-MinMaxScaler: Achieving a strong score of 62.2%, indicating a substantial level of

audio resemblance.

• cosine-Normalizer: Earning a commendable score of 62.1%, reflecting robust capabilities in

audio similarity assessment.

For more information, see Table 5 in Appendix A.

Model6 - batch size = 64, learning rate = 0.00001

In the evaluation of the sixth model, the top-performing combinations, ranked by higher similarity
scores, are as follows:

• chebyshev-Normalizer: Demonstrating the highest performance with an impressive similarity

score of 62.6%.

• cosine-Normalizer: Earning a commendable score of 61.5%, reflecting robust capabilities in

audio similarity assessment.

• euclidean-Normalizer: Achieving a strong score of 61.5%, indicating a substantial level of audio

resemblance.

These results highlight the efficacy of the "Normalizer" scaling technique in conjunction with
specific distance metrics within the sixth model, contributing to effective audio similarity
identification.

For more information, see Table 6 in Appendix A.

Distance Score

euclidean-MinMaxScaler 62.2%

minkowski-MinMaxScaler 62.2%

cosine-Normalizer 62.1%

euclidean-Normalizer 62.1%

chebyshev-Normalizer 61.9%

Distance Score

chebyshev-Normalizer 62.6%

cosine-Normalizer 61.5%

euclidean-Normalizer 61.5%

minkowski-Normalizer 61.4%

seuclidean-Normalizer 61.4%

41

Model7 - batch size = 128, learning rate = 0.00001

In the evaluation of the seventh model, the top-performing combinations, ranked by higher
similarity scores, are as follows:

• correlation-MinMaxScaler: Demonstrating the highest performance with a notable similarity

score of 55.9%.

• cosine-MinMaxScaler: Earning a commendable score of 55.7%, reflecting robust capabilities in

audio similarity assessment.

• euclidean-MinMaxScaler: Achieving a solid score of 55.4%, indicative of a substantial level of

audio resemblance.

These results highlight the efficacy of the "MinMaxScaler" scaling technique in conjunction with
specific distance metrics within the seventh model, contributing to effective audio similarity
identification.

For more information, see Table 7 in Appendix A.

Model8 - batch size = 128, learning rate = 0.00001

In the evaluation of the eighth model, the top-performing combinations, ranked by higher
similarity scores, are as follows:

• euclidean-StandardScaler: Demonstrating the highest performance with a notable similarity

score of 48.1%.

• minkowski-StandardScaler: Achieving a score of 48.1%.

• cityblock-MinMaxScaler: Earning a score of 47.3%.

For more information, see Table 8 in Appendix A.

Distance Score

correlation-MinMaxScaler 55.9%

cosine-MinMaxScaler 55.7%

euclidean-MinMaxScaler 55.4%

minkowski-MinMaxScaler 55.4%

chebyshev-MinMaxScaler 55.3%

Distance Score

euclidean-StandardScaler 48.1%

minkowski-StandardScaler 48.1%

cityblock-MinMaxScaler 47.3%

cosine-MinMaxScaler 47.3%

chebyshev-StandardScaler 46.9%

42

4.2.2. Contrastive Loss

Model1 - batch size = 32, learning rate = 0.00001

In the evaluation of the first model, the top-performing combinations, ranked by higher similarity
scores, are as follows:

• euclidean-Normalizer: Demonstrating the highest performance with an impressive similarity

score of 48.7%.

• cosine-Normalizer: Achieving a strong score of 48.7%.

• cityblock-MinMaxScaler: Earning a commendable score of 48.3%.

For more information, see Table 9 in Appendix A.

Model2 - batch size = 32, learning rate = 0.00001

In the evaluation of the second model, the top-performing combinations, ranked by higher
similarity scores, are as follows:

• correlation-MinMaxScaler: Demonstrating the highest performance with an impressive similarity

score of 51.6%.

• euclidean-MinMaxScaler: Achieving a strong score of 51.5%, indicating a substantial level of

audio resemblance.

• minkowski-MinMaxScaler: Earning a commendable score of 51.4%, reflecting robust

capabilities in audio similarity assessment.

These results highlight the efficacy of the "MinMaxScaler" scaling technique in conjunction with
specific distance metrics within the second model, contributing to effective audio similarity
identification.

For more information, see Table 10 in Appendix A.

Distance Score

euclidean-Normalizer 48.7%

cosine-Normalizer 48.7%

cityblock-MinMaxScaler 48.3%

minkowski-Normalizer 48.7%

chebyshev-StandardScaler 48.3%

Distance Score

correlation-MinMaxScaler 51.6%

euclidean-MinMaxScaler 51.5%

minkowski-MinMaxScaler 51.4%

cityblock-MinMaxScaler 51.4%

cosine-MinMaxScaler 51.4%

43

4.2.3. Comparison of Best-Performing Loss Functions.

In our evaluation, we observed that the Contrastive loss yielded the highest performance with a
score of 51.6% when applied to our top-performing model (Resnet50). Conversely, the Triplet
loss, implemented with our leading CNN-based model, achieved an impressive score of 64.1%,
highlighting its efficacy in capturing intricate audio relationships.

4.3. Observations
In this master thesis, we investigated the performance of two popular loss functions, Triplet Loss
and Contrastive Loss, and their effectiveness in learning meaningful embeddings for image
similarity tasks. The primary objective was to compare the models trained using these loss
functions and evaluate their performance using various distance metrics and scalers.

For the Triplet Loss experiments, a total of eight different models were trained using Convolutional
Neural Networks (CNNs) architecture. The models were trained with the goal of optimizing the
embeddings such that the anchor points are closer to their respective positive samples while
being distant from negative samples. During the experimentation phase, we assessed the impact
of different distance metrics and scalers on the model's performance.

Among the trained Triplet Loss models, the third model emerged as the most successful,
exhibiting superior performance across several distance metrics when combined with the
Normalizer scaler. Specifically, the third model achieved remarkable results with the euclidean
distance-Normalizer, minkowski distance-Normalizer, and cosine distance-Normalizer. This
outcome highlights the effectiveness of the Triplet Loss function when used in conjunction with
CNNs for deep metric learning tasks, particularly when normalized embeddings are employed.

Turning our attention to the Contrastive Loss experiments, two distinct models were trained,
leveraging the powerful ResNet50 architecture. Contrastive Loss aims to minimize the distance
between similar samples and maximize the distance between dissimilar samples. Similar to the
Triplet Loss experiments, we explored the impact of different distance metrics and scalers on the
model's performance.

The results revealed that the second model trained with Contrastive Loss outperformed the other
variant, achieving remarkable scores with the correlation distance when paired with the
MinMaxScaler. The successful performance of the ResNet50 model demonstrates the ability of
Contrastive Loss to yield highly discriminative embeddings for image similarity tasks.

Overall, the findings of this master thesis underscore the importance of selecting appropriate loss
functions and architectures for deep metric learning tasks. While both Triplet Loss and Contrastive
Loss have demonstrated their effectiveness in learning meaningful embeddings, the choice of the
best model depends on the specific requirements of the application and the nature of the data.
Furthermore, the use of different distance metrics and scalers during evaluation further highlights
the sensitivity of the models to the choice of these parameters.

The outcomes presented in this research contribute valuable insights to the field of deep metric
learning and provide a foundation for further exploration and refinement of loss functions and
architectures in image similarity tasks. Additionally, the evaluation of multiple distance metrics and
scalers enriches the understanding of their influence on model performance and guides
researchers in making informed decisions when designing and evaluating deep metric learning
models in real-world applications.

Triplet Loss (Model 3 - CNN) Contrastive Loss (Model 2 - ResNet50)
Distance Score Distance Score

cosine-Normalizer 64.1% correlation-MinMaxScaler 51.6%

44

5. Conclusion
In this master thesis, we delved into the domain of deep metric learning, specifically focusing on
its application to audio data in the form of audio representations of songs. The primary objective
of our research was to compare the performance of two prominent loss functions, Triplet Loss and
Contrastive Loss, in learning meaningful embeddings that capture the underlying similarities and
dissimilarities between songs.

Throughout our investigation, we trained and evaluated multiple models using Triplet Loss and
Contrastive Loss in an effort to obtain embeddings that preserve the pairwise similarities present
in the audio data representations. Understanding the importance of selecting appropriate loss
functions and architectures for deep metric learning tasks, we designed experiments with audio
data to explore the impact of different distance metrics and scalers on model performance.

Our results shed light on the effectiveness of Triplet Loss when paired with Convolutional Neural
Networks in generating discriminative audio embeddings. Notably, the third Triplet Loss model
emerged as the most successful among the trained models, achieving superior scores on
distance metrics like euclidean, minkowski, and cosine, especially when combined with the
Normalizer scaler. This finding showcases the capability of Triplet Loss in learning audio
embeddings that preserve the inherent similarities between songs, and the normalization step
proved to be a crucial factor in enhancing the model's performance.

In parallel, the Contrastive Loss models, implemented with the robust ResNet50 architecture,
demonstrated their potential to learn meaningful embeddings by emphasizing pairwise
comparisons between audio samples. The second Contrastive Loss model excelled in preserving
song similarities, particularly when evaluated with the correlation distance metric, and benefited
significantly from the application of the MinMaxScaler. This outcome highlights the ability of
Contrastive Loss to effectively capture the pairwise relationships present in audio data
representations, offering discriminative embeddings suitable for audio similarity tasks.

The comparisons drawn between Triplet Loss and Contrastive Loss underscore the significance of
selecting the most appropriate loss function depending on the nature of the audio data and the
specific requirements of the task. Triplet Loss, with its emphasis on relative comparisons between
samples, proved to be a potent choice, particularly when normalized audio embeddings were
utilized. On the other hand, Contrastive Loss, focusing on pairwise comparisons, demonstrated
its effectiveness in capturing the inherent pairwise similarities in audio data representations.

Furthermore, the evaluation of various distance metrics and scalers revealed their substantial
impact on the performance of the models. The choice of distance metric should align with the
nature of the audio data and the specific similarity task at hand. At the same time, selecting an
appropriate scaler played a vital role in optimizing the models to learn meaningful embeddings
from audio data representations.

In conclusion, our research contributes valuable insights into the domain of deep metric learning
applied to audio data, particularly audio representations of songs. The findings demonstrate that
both Triplet Loss and Contrastive Loss can be valuable tools for capturing song similarities in their
respective ways. The knowledge gained from this study will serve as a foundation for further
advancements in deep metric learning for audio similarity tasks, offering researchers and
practitioners guidance in selecting appropriate loss functions, architectures, and evaluation
methodologies to achieve optimal performance in various audio-related applications, such as
music recommendation, audio retrieval, and content-based audio search. As the field continues to
evolve, we anticipate further refinements in loss functions, network architectures, and evaluation
techniques that will continue to push the boundaries of deep metric learning and its applications
in the realm of audio data analysis.

45

6. Bibliography
[1] Chen, Q., Zhang, Y., He, X., & Sun, J. (2017). Deep metric learning with angular loss. arXiv
preprint arXiv:1708.01682.

[2] Weinberger, K. Q., & Saul, L. K. (2009). Distance metric learning for large margin nearest
neighbor classification. Journal of Machine Learning Research, 10(5), 1707-1749.

[3] Schroff, F., Kalenichenko, D., & Philbin, J. (2015). Facenet: A unified embedding for face
recognition and clustering. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (pp. 815-823).

[4] Lerche, M. J., Malmström, J., & Winther, O. (2019). Deep infomax: Learning useful
representations by maximizing mutual information. In International Conference on Learning
Representations (ICLR).

[5] Liu, X., Su, H., Tan, M., Le, Q. V., & Ng, A. Y. (2020). Simclr: A simple framework for contrastive
learning of visual representations. In Advances in Neural Information Processing Systems (pp.
9757-9770).

[6] Chen, X., Kornblith, S., Norouzi, M., & Le, Q. V. (2019). Moco: Momentum contrast for
unsupervised visual representation learning. In Advances in Neural Information Processing
Systems (pp. 9729-9742).

[7] S learns. (2016). N-pair loss: Towards better understanding of siamese networks. arXiv preprint
arXiv:1606.06558.

[8] Sung, Y., Wang, X., Yang, M., & Yuille, A. L. (2018). Learning to compare: Relation network for
few-shot learning. In IEEE Conference on Computer Vision and Pattern Recognition (pp.
1199-1208).

[9] Zheng, L., Shen, L., Wang, S., Tian, J., & Liu, Z. (2019). Contrastive multiview coding for person
re-identification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 41(11),
2625-2639.

[10] LeCun, Y., Jaitly, N., & Sabour, S. (2015). Learning audio representations with convolutional
neural networks. arXiv preprint arXiv:1506.05356.

[11] Luo, Y., & Mesgarani, N. (2018, April). Tasnet: time-domain audio separation network for real-
time, single-channel speech separation. In 2018 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP) (pp. 696-700). IEEE.

[12] Gosalia, S., Shetty, S., & Revathi, A. S. (2016, March). Embedding audio inside a digital video
using LSB steganography. In 2016 3rd International Conference on Computing for Sustainable
Global Development (INDIACom) (pp. 2650-2653). IEEE.

[13] Umapathy, K., Ghoraani, B., & Krishnan, S. (2010). Audio signal processing using time-
frequency approaches: Coding, classification, fingerprinting, and watermarking. EURASIP J. Adv.
Signal Process., 2010(451695). https://doi.org/10.1155/2010/451695

[14] Waldekar, S., & Saha, G. (2018, September). Wavelet transform based mel-scaled features for
acoustic scene classification. In INTERSPEECH (Vol. 2018, pp. 3323-3327).

[15] Roberts, L. (2022, August 17). Understanding the MEL Spectrogram - Analytics Vidhya -
Medium. Medium. https://medium.com/analytics-vidhya/understanding-the-mel-spectrogram-
fca2afa2ce53 (accessed Sep. 13, 2023)

46

https://medium.com/analytics-vidhya/understanding-the-mel-spectrogram-fca2afa2ce53
https://medium.com/analytics-vidhya/understanding-the-mel-spectrogram-fca2afa2ce53

[16] Natsiou, A., & O’Leary, S. (2021, November). Audio representations for deep learning in sound
synthesis: A review. In 2021 IEEE/ACS 18th International Conference on Computer Systems and
Applications (AICCSA) (pp. 1-8). IEEE.

[17] Juvasquez. (2015, May 13). Audio Signal Processing – Conclusion | Modeling and
Experimental Tools with Prof. Magnes. https://pages.vassar.edu/magnes/2015/05/13/audio-
signal-processing-conclusion/ (accessed Sep. 13, 2023)

[18] Casey, M. A. (1998). Auditory group theory with applications to statistical basis methods for
structured audio (Doctoral dissertation, Massachusetts Institute of Technology).

[19] Yuan, Y., Xun, G., Suo, Q., Jia, K., & Zhang, A. (2017). Wave2vec: Learning deep
representations for biosignals. In 2017 IEEE International Conference on Data Mining (ICDM) (pp.
1159-1164). IEEE. doi: 10.1109/ICDM.2017.155

[20] Shor, J., Venugopalan, S. (2022) TRILLsson: Distilled Universal Paralinguistic Speech
Representations. Proc. Interspeech 2022, 356-360, doi: 10.21437/Interspeech.2022-118

[21] Molla, S., & Torrésani, B. (2005). A hybrid scheme for encoding audio signal using hidden
Markov models of waveforms. Applied and Computational Harmonic Analysis, 18(2), 137–166.
https://doi.org/10.1016/j.acha.2004.11.001

[22] LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11), 2278-2324.

[23] He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 770-778).

[24] LeCun, Y., Denker, J. S., & Solla, S. A. (1990). Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 78(10), 2278-2324.

[25] Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing systems (pp.
1097-1105).

[26] Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556.

[27] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., &
Rabinovich, A. (2015). Going deeper with convolutions. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (pp. 1-9).

[28] Huang, G., Liu, Z., van der Maaten, L., & Weinberger, K. Q. (2017). Densely connected
convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (pp. 4700-4708).

[29] Zhu, M., Adam, H., Kalenichenko, D., Wang, W., Andreetto, M., Howard, A. G., Weyand, T., &
Chen, B. (2017). Mobilenets: Efficient convolutional neural networks for mobile vision applications.
arXiv preprint arXiv:1704.04861.

[30] Tan, M., & Le, Q. V. (2019). Efficientnet: Rethinking model scaling for convolutional neural
networks. arXiv preprint arXiv:1905.11946.

[31] A. Vaswani et al., “Attention Is All You Need,” arXiv.org, Jun. 12, 2017. https:// arxiv.org/abs/
1706.03762

[32] Hoffer, E., & Ailon, N. (2015). Deep metric learning using triplet network. arXiv preprint
arXiv:1412.6622.

47

https://pages.vassar.edu/magnes/2015/05/13/audio-signal-processing-conclusion/
https://pages.vassar.edu/magnes/2015/05/13/audio-signal-processing-conclusion/

[33] LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (2006). Dimensionality reduction by learning an
invariant mapping. In Proceedings of the 14th International Conference on Artificial Intelligence
and Statistics (pp. 86-94).

[34] Giannakopoulos, T. (2023). mir [Source code]. Version main. GitHub repository URL: https://
github.com/magcil/mir/tree/main. (accessed Sep. 13, 2023)

48

7. Appendix A
Table 1

Distance Score

chebyshev-MinMaxScaler 47.714%

chebyshev-StandardScaler 46.971%

chebyshev-Normalizer 50.857%

euclidean-MinMaxScaler 47.657%

euclidean-StandardScaler 48.000%

euclidean-Normalizer 49.657%

minkowski-MinMaxScaler 47.657%

minkowski-StandardScaler 48.000%

minkowski-Normalizer 49.657%

hamming-MinMaxScaler 35.257%

hamming-StandardScaler 35.257%

hamming-Normalizer 35.257%

cosine-MinMaxScaler 47.600%

cosine-StandardScaler 47.086%

cosine-Normalizer 49.657%

cityblock-MinMaxScaler 47.543%

cityblock-StandardScaler 48.000%

cityblock-Normalizer 49.600%

seuclidean-MinMaxScaler 46.343%

seuclidean-StandardScaler 46.343%

seuclidean-Normalizer 48.114%

correlation-MinMaxScaler 48.286%

correlation-StandardScaler 46.914%

correlation-Normalizer 49.371%

kulsinski-MinMaxScaler 35.771%

kulsinski-StandardScaler 35.257%

kulsinski-Normalizer 35.257%

49

Table 2

Distance Score

chebyshev-MinMaxScaler 38.229%

chebyshev-StandardScaler 37.771%

chebyshev-Normalizer 38.171%

euclidean-MinMaxScaler 39.143%

euclidean-StandardScaler 38.400%

euclidean-Normalizer 39.486%

minkowski-MinMaxScaler 39.143%

minkowski-StandardScaler 38.400%

minkowski-Normalizer 39.486%

hamming-MinMaxScaler 35.200%

hamming-StandardScaler 35.200%

hamming-Normalizer 35.314%

cosine-MinMaxScaler 39.029%

cosine-StandardScaler 38.057%

cosine-Normalizer 39.486%

cityblock-MinMaxScaler 39.143%

cityblock-StandardScaler 38.914%

cityblock-Normalizer 39.429%

seuclidean-MinMaxScaler 39.771%

seuclidean-StandardScaler 39.771%

seuclidean-Normalizer 39.543%

correlation-MinMaxScaler 39.714%

correlation-StandardScaler 38.000%

correlation-Normalizer 39.371%

kulsinski-MinMaxScaler 34.686%

kulsinski-StandardScaler 35.257%

kulsinski-Normalizer 35.257%

50

Table 3

Distance Score

chebyshev-MinMaxScaler 58.686%

chebyshev-StandardScaler 58.400%

chebyshev-Normalizer 63.829%

euclidean-MinMaxScaler 62.686%

euclidean-StandardScaler 61.657%

euclidean-Normalizer 64.057%

minkowski-MinMaxScaler 62.686%

minkowski-StandardScaler 61.657%

minkowski-Normalizer 64.057%

hamming-MinMaxScaler 35.257%

hamming-StandardScaler 35.257%

hamming-Normalizer 35.257%

cosine-MinMaxScaler 62.800%

cosine-StandardScaler 59.886%

cosine-Normalizer 64.057%

cityblock-MinMaxScaler 63.086%

cityblock-StandardScaler 62.400%

cityblock-Normalizer 64.000%

seuclidean-MinMaxScaler 62.286%

seuclidean-StandardScaler 62.286%

seuclidean-Normalizer 63.657%

correlation-MinMaxScaler 62.629%

correlation-StandardScaler 60.000%

correlation-Normalizer 63.943%

kulsinski-MinMaxScaler 35.771%

kulsinski-StandardScaler 35.257%

kulsinski-Normalizer 35.257%

51

Table 4

Distance Score

chebyshev-MinMaxScaler 59.314%

chebyshev-StandardScaler 57.714%

chebyshev-Normalizer 62.514%

euclidean-MinMaxScaler 61.543%

euclidean-StandardScaler 61.257%

euclidean-Normalizer 62.971%

minkowski-MinMaxScaler 61.543%

minkowski-StandardScaler 61.257%

minkowski-Normalizer 62.971%

hamming-MinMaxScaler 35.257%

hamming-StandardScaler 35.257%

hamming-Normalizer 35.257%

cosine-MinMaxScaler 61.371%

cosine-StandardScaler 58.914%

cosine-Normalizer 62.971%

cityblock-MinMaxScaler 61.600%

cityblock-StandardScaler 61.086%

cityblock-Normalizer 63.200%

seuclidean-MinMaxScaler 61.771%

seuclidean-StandardScaler 61.771%

seuclidean-Normalizer 63.029%

correlation-MinMaxScaler 61.371%

correlation-StandardScaler 58.857%

correlation-Normalizer 63.029%

kulsinski-MinMaxScaler 35.714%

kulsinski-StandardScaler 35.257%

kulsinski-Normalizer 35.257%

52

Table 5

Distance Score

chebyshev-MinMaxScaler 60.343%

chebyshev-StandardScaler 59.714%

chebyshev-Normalizer 61.886%

euclidean-MinMaxScaler 62.171%

euclidean-StandardScaler 61.771%

euclidean-Normalizer 62.057%

minkowski-MinMaxScaler 62.171%

minkowski-StandardScaler 61.771%

minkowski-Normalizer 62.057%

hamming-MinMaxScaler 35.257%

hamming-StandardScaler 35.257%

hamming-Normalizer 35.257%

cosine-MinMaxScaler 61.886%

cosine-StandardScaler 59.543%

cosine-Normalizer 62.057%

cityblock-MinMaxScaler 61.943%

cityblock-StandardScaler 61.771%

cityblock-Normalizer 61.943%

seuclidean-MinMaxScaler 62.286%

seuclidean-StandardScaler 62.286%

seuclidean-Normalizer 62.286%

correlation-MinMaxScaler 61.600%

correlation-StandardScaler 59.543%

correlation-Normalizer 61.943%

kulsinski-MinMaxScaler 34.971%

kulsinski-StandardScaler 35.257%

kulsinski-Normalizer 35.257%

53

Table 6

Distance Score

chebyshev-MinMaxScaler 54.400%

chebyshev-StandardScaler 47.029%

chebyshev-Normalizer 62.571%

euclidean-MinMaxScaler 60.286%

euclidean-StandardScaler 58.743%

euclidean-Normalizer 61.486%

minkowski-MinMaxScaler 60.286%

minkowski-StandardScaler 58.743%

minkowski-Normalizer 61.486%

hamming-MinMaxScaler 35.257%

hamming-StandardScaler 35.257%

hamming-Normalizer 35.257%

cosine-MinMaxScaler 60.400%

cosine-StandardScaler 59.600%

cosine-Normalizer 61.486%

cityblock-MinMaxScaler 60.800%

cityblock-StandardScaler 60.171%

cityblock-Normalizer 61.029%

seuclidean-MinMaxScaler 61.314%

seuclidean-StandardScaler 61.314%

seuclidean-Normalizer 61.371%

correlation-MinMaxScaler 60.171%

correlation-StandardScaler 59.429%

correlation-Normalizer 61.429%

kulsinski-MinMaxScaler 36.000%

kulsinski-StandardScaler 35.257%

kulsinski-Normalizer 35.257%

54

Table 7

Distance Score

chebyshev-MinMaxScaler 55.257%

chebyshev-StandardScaler 52.629%

chebyshev-Normalizer 50.286%

euclidean-MinMaxScaler 55.371%

euclidean-StandardScaler 53.429%

euclidean-Normalizer 51.657%

minkowski-MinMaxScaler 55.371%

minkowski-StandardScaler 53.429%

minkowski-Normalizer 51.657%

hamming-MinMaxScaler 35.200%

hamming-StandardScaler 35.200%

hamming-Normalizer 35.257%

cosine-MinMaxScaler 55.714%

cosine-StandardScaler 50.000%

cosine-Normalizer 51.657%

cityblock-MinMaxScaler 53.200%

cityblock-StandardScaler 51.543%

cityblock-Normalizer 51.486%

seuclidean-MinMaxScaler 49.486%

seuclidean-StandardScaler 49.486%

seuclidean-Normalizer 51.200%

correlation-MinMaxScaler 55.886%

correlation-StandardScaler 49.943%

correlation-Normalizer 51.657%

kulsinski-MinMaxScaler 37.200%

kulsinski-StandardScaler 35.257%

kulsinski-Normalizer 35.257%

55

Table 8

Distance Score

chebyshev-MinMaxScaler 44.800%

chebyshev-StandardScaler 46.857%

chebyshev-Normalizer 43.371%

euclidean-MinMaxScaler 47.314%

euclidean-StandardScaler 48.057%

euclidean-Normalizer 45.086%

minkowski-MinMaxScaler 47.314%

minkowski-StandardScaler 48.057%

minkowski-Normalizer 45.086%

hamming-MinMaxScaler 35.257%

hamming-StandardScaler 35.257%

hamming-Normalizer 35.257%

cosine-MinMaxScaler 47.314%

cosine-StandardScaler 45.257%

cosine-Normalizer 45.086%

cityblock-MinMaxScaler 47.314%

cityblock-StandardScaler 47.314%

cityblock-Normalizer 44.800%

seuclidean-MinMaxScaler 44.914%

seuclidean-StandardScaler 44.914%

seuclidean-Normalizer 44.571%

correlation-MinMaxScaler 47.143%

correlation-StandardScaler 45.314%

correlation-Normalizer 45.086%

kulsinski-MinMaxScaler 36.229%

kulsinski-StandardScaler 35.257%

kulsinski-Normalizer 35.257%

56

Table 9

Distance Score

chebyshev-MinMaxScaler 44.800%

chebyshev-StandardScaler 48.286%

chebyshev-Normalizer 47.371%

euclidean-MinMaxScaler 48.171%

euclidean-StandardScaler 48.057%

euclidean-Normalizer 48.686%

minkowski-MinMaxScaler 48.171%

minkowski-StandardScaler 48.057%

minkowski-Normalizer 48.686%

hamming-MinMaxScaler 35.257%

hamming-StandardScaler 35.257%

hamming-Normalizer 35.257%

cosine-MinMaxScaler 47.943%

cosine-StandardScaler 46.171%

cosine-Normalizer 48.686%

cityblock-MinMaxScaler 48.343%

cityblock-StandardScaler 48.114%

cityblock-Normalizer 47.657%

seuclidean-MinMaxScaler 47.829%

seuclidean-StandardScaler 47.829%

seuclidean-Normalizer 46.914%

correlation-MinMaxScaler 47.657%

correlation-StandardScaler 46.057%

correlation-Normalizer 48.571%

kulsinski-MinMaxScaler 35.543%

kulsinski-StandardScaler 35.257%

kulsinski-Normalizer 35.257%

57

Table 10

Distance Score

chebyshev-MinMaxScaler 48.514%

chebyshev-StandardScaler 48.571%

chebyshev-Normalizer 45.886%

euclidean-MinMaxScaler 51.543%

euclidean-StandardScaler 50.914%

euclidean-Normalizer 50.400%

minkowski-MinMaxScaler 51.543%

minkowski-StandardScaler 50.914%

minkowski-Normalizer 50.400%

hamming-MinMaxScaler 35.257%

hamming-StandardScaler 35.257%

hamming-Normalizer 35.257%

cosine-MinMaxScaler 51.371%

cosine-StandardScaler 46.686%

cosine-Normalizer 50.400%

cityblock-MinMaxScaler 51.371%

cityblock-StandardScaler 50.629%

cityblock-Normalizer 49.771%

seuclidean-MinMaxScaler 50.400%

seuclidean-StandardScaler 50.400%

seuclidean-Normalizer 47.429%

correlation-MinMaxScaler 51.600%

correlation-StandardScaler 46.743%

correlation-Normalizer 50.000%

kulsinski-MinMaxScaler 34.971%

kulsinski-StandardScaler 35.257%

kulsinski-Normalizer 35.257%

58

	Abstract
	Acknowledgments
	Table Of Contents
	1. Introduction
	2. Background
	3. Methodology
	4. Experiments
	5. Conclusion
	6. Bibliography
	7. Appendix A

