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Περίληψη 

  

 Στην παρούσα διδακτορική διατριβή ερευνώνται οι ασύρματες οπτικές 

επικοινωνίες, γνωστές και ως επικοινωνίες λέιζερ. Η εν λόγω τεχνολογία κάνει χρήση 

του οπτικού και υπερύθρου φάσματος για την μετάδοση της πληροφορίας και 

προσφέρει σημαντικά πλεονεκτήματα σε σχέση με την υφιστάμενη κατηγορία των 

επικοινωνιών με ραδιοκύματα, όπως αυξημένες δυνατότητες ρυθμού μετάδοσης 

δεδομένων, ασφάλεια έναντι υποκλοπών και παρεμβολών, χαμηλό κόστος και ευκολία 

εγκατάστασης και τέλος κανέναν περιορισμό στις χρησιμοποιούμενες συχνότητες 

εκπομπής. Η μεγαλύτερη πρόκληση που αντιμετωπίζουν τα συστήματα επικοινωνίας 

λέιζερ, είναι οι εγγενείς περιορισμοί τους από τις περιβαλλοντικές συνθήκες και 

ιδιαίτερα από το φαινόμενο της ατμοσφαιρικής τυρβώδους ροής. Η τεχνολογία αυτή 

έχει τόσο επίγειες όσο και υποβρύχιες και διαστημικές εφαρμογές. Κάθε μια από τις 

ανωτέρω εφαρμογές, καλείται να αντιμετωπίσει διαφορετικές δυσκολίες και 

περιορισμούς, λόγω των διαφορετικών ατμοσφαιρικών συνθηκών που η διαδιδόμενη 

δέσμη λέιζερ συναντά στην πορεία της.  

 Στην παρούσα διατριβή εξετάζεται, πειραματικά, η απόδοση μιας ασύρματης 

οπτικής ζεύξης που λειτουργεί σε θάλασσιο περιβάλλον. Το φαινόμενο της 

ατμοσφαιρικής τυρβώδους ροής σε ένα τέτοιο περιβάλλον εμφανίζει αρκετές διαφορές 

με το αντίστοιχο άνωθεν επίγειου περιβάλλοντος και είναι αυτό που ευθύνεται για το 

φαινόμενο του σπινθηρισμού, δηλαδή της χωρικής και χρονικής μεταβολής της 

λαμβανόμενης οπτικής ισχύος από τον δέκτη. Η ταχύτητα των μεταβολών αυτών 

απαιτεί την χρήση στατιστικών κατανομών για την μελέτη τους. Διάφορες τέτοιες 

κατανομές έχουν μελετηθεί και αποδειχθεί ότι μπορούν να περιγράψουν με αρκετή 



ακρίβεια τις διακυμάνσεις της λαμβανόμενης ισχύος σε άμεση συνάρτηση με την 

ένταση του φαινομένου της ατμοσφαιρικής τυρβώδους ροής, μετρούμενης με την 

παράμετρο κατανανομής του δείκτη διάθάσης στην ατμόσφαιρα, 𝐶𝑛
2.  

 Βασικός στόχος της παρούσας μελέτης είναι η, σε πειραματικό επίπεδο, 

συσχέτιση του φαινομένου αυτού με την απόδοση μιας ασύρματης οπτικής ζεύξης 

άνωθεν θαλασσίου περιβάλλοντος. Συγκεκριμένα, με χρήση κατάλληλων 

πειραματικών διατάξεων, τόσο στο κτίριο εργαστηρίων της Σχολής Ναυτικών Δοκίμων 

(ΣΝΔ) όσο και στις εγκαταστάσεις του Naval Postgraduate School (NPS) στο 

Μοντερέυ της Καλιφόρνια, γίνεται συλλογή βασικών ατμοσφαιρικών δεδομένων 

(ταχύτητα ανέμου, σχετική υγρασία, θερμοκρασία αέρα, ηλιακή ακτινοβολία, σημείο 

δρόσου, ατμοσφαιρική πίεση και ρυθμός βροχόπτωσης), τιμών της παραμέτρου 

κατανομής δείκτη διάθλασης της ατμόσφαιρας (𝐶𝑛
2) με διάφορες μεθόδους και του 

λαμβανόμενου σήματος στον δέκτη του συστήματος. Εν συνεχεία, γίνεται 

μοντελοποίηση παλινδρόμησης και ταξινόμησης του λαμβανόμενου σήματος και της 

παραμέτρου κατανομής δείκτη διάθλασης της ατμόσφαιρας βάσει των ατμοσφαιρικών 

δεδομένων τόσο με χρήση βασικών πολυωνυμικών μοντέλων, όσο και με χρήση 

διαφόρων αλφορίθμων μηχανικής μάθησης, όπως Random Forest, Gradient Boosting, 

Decision Trees, k-Nearest Neighbors καθώς και νευρωνικών δικτύων μονού και 

πολλαπλών επιπέδων. Εξετάζεται η αξιοπιστία διάφορων βασικών κατανομών 

πυκνότητας πιθανότητας του λαμβανομένου σήματος του συστήματος με χρήση 

μεθόδων θεωρίας της πληροφορίας (Kullback-Leibler και Jensen-Shannon 

divergence). Εξάγεται με χρήση θεωρητικού μοντέλου η πιθανότητα αποκοπής της 

ζεύξης και εν συνεχεία μοντελοποιείται η ταξινόμηση της σε λειτουργική ή μη, με 

χρήση βαθέων νευρωνικών δικτύων. Τέλος γίνεται μοντελοποίηση πειραματικών 

δεδομένων της παραμέτρου κατανομής δείκτη διάθλασης με χρήση αλγορίθμων 



μηχανικής μάθησης (Random Forest, Neural Network και Gradient Boosting) καθώς 

και ταξινόμηση αυτών αναλόγως της έντασης, με χρήση βαθέων νευρωνικών δικτύων. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Abstract 
  

 This dissertation investigates the free space optical communications (FSOCs) 

technology, the so-called laser communications (LaserComm). The FSO technology 

operates in the optical and infrared spectrum for data transmission and offers significant 

advantages comparing to their radio frequency (RF) counterparts. These include 

increased data rate transmission, greater security and immunity, lower cost of 

installation and, finally, no license restrictions. The major challenge that FSO systems 

face, is the degradation effects of the atmosphere and in especially the optical 

turbulence. FSO technology applications span from terrestrial and underwater to space.  

Each FSO application face different kind of challenges due to the variety of the 

atmospheric conditions that a propagating beam encounters.  

 An FSO link over a maritime environment is investigated. The optical turbulence 

phenomenon in a maritime environment exhibits significant differences with a 

terrestrial one and causes the effect of scintillation, that is the spatial and temporal 

variation of the irradiance in the receiver. To study these variations, statistical 

distributions are required. Already, many different probability density functions (PDFs) 

have been studied and related the received irradiance with the optical turbulence effect, 

quantified by the refractive index structure parameter, 𝐶𝑛
2.  

 The major goal of this dissertation is the experimental assessment of the optical 

turbulence effect towards an FSO link over maritime environment. We utilized the 

experimental site of the Hellenic Naval Academy (HNA), Piraeus, Greece as well as 

the site of the Naval Postgraduate School (NPS) in Monterey, California to collect 

macroscopic meteorological parameters (wind speed, relative humidity, air 



temperature, solar radiation, dew point, air pressure and rainfall rate), 𝐶𝑛
2 values with 

different methods and the received signal strength (RSSI) on the FSO terminal. Based 

on this data, initially we developed second-order polynomial models for the RSSI 

parameter, using regression modeling, to quantify its relation with the macroscopic 

environmental parameters and demonstrated the prediction accuracy of various 

machine learning based algorithms (Random Forest, Gradient Boosting, Decision 

Trees, k-Nearest Neighbors, Neural Networks) for an FSO link performance. The 

similarity between different probability distributions is investigated, by employing an 

information theoretic method, namely the so-called Jensen–Shannon divergence, a 

symmetrization of the Kullback–Leibler divergence. The outage probability of the link 

is estimated by utilizing a theoretical model and the operational status of the link, either 

functional or not, is modeled by a classification deep neural network (DNN). Finally, 

the refractive index structure parameter, 𝐶𝑛
2, is modelled using ML-based regression 

(Random Forest, ANN και Gradient Boosting) and classification algorithms (DNN). 
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CHAPTER 1 

Introduction 

 Over the last few decades, a new application of a rather older technology arose, 

the so-called free space optical (FSO) communication or else, the laser communication 

(LaserComm). As appears in its definition, the FSOC technology makes use of a laser 

beam as its medium carrier for the information transfer through the free space. The 

capacity requirements for the information channels in the 21st century calls for an 

effective alternative of the traditional radio frequency (RF) technology and the FSO 

technology aims to fill this gap. 

 

1.1 Background 

 Initially driven by the requirements of the defense sector, the first attempts for 

FSO systems developments were focused on military solutions [1]. Later on, 

commercial applications were also developed, spanning in any kind of environment, 

from space to underneath the sea surface. Perhaps, the most evident asset of FSOC is 

their potential for increased data rate (several 10s of Gb), as compared to their RF 

counterpart, due to their inherently very high carrier frequency (on THz level) and 

therefore bandwidth [1]. Despite being applicable for operation in almost any kind of 

environment, currently the terrestrial applications are the most widely implemented. 

Links up to several kilometers can be established, given certain limitations that can 

affect this range. As a result, prior to the installation of an FSO link, the typical local 

atmospheric conditions must have been measured in order to be able to predict the 

performance of the link. Other advantages of the FSO systems include high security 



and immunity against electromagnetic interference (LPD/LPI), very low installation 

expenditures and power requirements as compared to RF links and no license 

requirements for operation [2]. The broad spectrum of the potential FSO applications 

can be classified into three main categories: (i) Optical Wireless Satellite Networks 

(OWSNs), (ii) Optical Wireless Terrestrial Networks (OWTNs) and (iii) Optical 

Wireless Home Networks (OWHNs) (Figure 1.1) [2].  OWSNs are supposed to exploit 

the satellite infrastructure in order to provide a global backbone wireless network and 

cover almost any terrestrial point. OWSNs can constitute an alternative to the existing 

wired internet, especially for the maritime communications that are actualized through 

optical fibers laid on the seabed. The OWTNs refer to wireless networks between 

certain points on any terrain, but limited from the line-of-sight (LOS) requirement. 

However, they can provide a variety of solutions such as “last mile” applications, 

complementing the existing optical fiber cables, bridge geographical separated 

locations, such as ship to ship or building to building and finally provide an alternative 

operational mode to RF networks in order to improve their availability. OWHNs are 

wireless networks confined in the interior of a building or a house. They can be either 

LOS or non-LOS links, also known as diffused links, exploiting the backbone 

infrastructure of the building [2].  



 

Figure 1.1. The conceptual topology of integrated optical wireless networks [3].  

 

 The transmitting light can be modulated by frequency, amplitude, phase or 

polarization. Most frequent are either amplitude modulation combined with direct 

detection or phase modulation combined with homodyne or heterodyne receiver [3]. 

The technically simplest scheme is the on-off keying (OOK), where “on” refers to 

transmission of light and “off” for a pause and correspond to a logic “1” and “0”, 

respectively. This modulation comes with a non-return-to-zero (NRZ) or return-to-zero 

(RZ) coding. Both of them are sensitive to long strings of ones or zeros transmission 

and this could lead to loss of synchronization. The addition of 8B10B coding along with 

the NRZ assures that no inter-symbol interference will occur because the average signal 

remains constant [3]. Coherent modulation systems are also used, such as binary phase 

shift keying (BPSK) or differential phase shift keying (DPSK) which are much more 

sensitive than the OOK systems but also more complex and vulnerable to phase 

distortions of the received beam [3]. Generally, OOK systems are considered much 

more robust in terms of atmospheric effects and with higher supportability from market 

components, consequently they are preferred for free space links.  



 A significant drawback of the FSO systems that could potentially lead to a total 

blackout of the link, is the atmospheric effects. Since the atmosphere consists of many 

different particles like aerosols, dust, smoke etc. or large precipitation due to rain, haze 

or snow, the laser beam propagating through this may face significant power loss 

because of the attenuation or scattering effects [4]. The main factors that cause power 

loss to the propagating beam are the following: 

  a. Absorption and Scattering Losses: Constitute the main attenuation 

factor. At the specific spectrum part of interest for FSO systems (IR and visible) the 

molecular absorption has the strongest effect. The optical depth term, τ, correlates the 

power transmitted PT and received PR, whose ratio defines the transmittance, as follows 

[4]: 

           𝑃𝑅 = 𝑃𝑇exp⁡(−𝜏)               (1.1) 

 The total attenuation coefficient of the propagating signal is comprised of four 

factors, that are the absorption and scattering coefficients of the molecules and aerosols 

[4]: 

                                   𝛾(𝜆) = 𝑎𝑚(𝜆) + 𝑎𝑎(𝜆) + 𝛽𝑚(𝜆) + 𝛽𝑚(𝜆)                           (1.2) 

 The absorption coefficients are strongly dependent on the wavelength; thus the 

known atmospheric windows have to be exploited in order to avoid high absorption 

losses. The scattering coefficients depend on the radius of the particles that the beam 

encounters and classified in the Rayleigh scattering if the wavelength is larger and Mie 

scattering if their size is comparable. For smaller wavelengths, the scattering can be 

described using the diffraction theory.  

  b. Free-Space Losses 

   The propagation of the light in free space causes, usually the highest 

losses to an FSO system. The free space losses are given by [4]:      



      𝐿𝑠 = (
𝜆

4𝜋𝑅
)
2

                                          (1.3) 

 where R is the range of the link and is significantly higher than the RF equivalent 

free-space losses.  

  c. Beam Divergence Loss 

   The diffraction phenomenon causes the propagating beam to spread 

out as it travels away from the transmitter. This fact along with the narrow field of view 

(FOV) of the FSO receiver, allows only a small amount of the transmitted energy to be 

collected, which can be approximated as follows [4],  

      𝑃𝑅 ≈ 𝑃𝑇 (
𝐷𝑇𝐷𝑅

𝜆𝑅
)
2

             (1.4) 

 where DT and DR are the antenna diameter of the transmitter and the receiver, 

respectively. Despite preferring a narrow beam divergence, a careful trade-off with the 

pointing and tracking requirements has to be made, because these two features are 

inversely proportional.   

  d. Weather Conditions Losses 

   As mentioned previously, the propagating beam faces power 

reduction due to existing particles along its path. The most prominent factor because its 

size is comparable to the beam’s wavelength, is fog, which can ultimately lead to link 

outage. Visibility is a measure that is used to estimate the optical attenuation of the 

beam, characterized by the specific attenuation, defined as the attenuation per unit 

length expressed in dB/km, given by [4],  

        𝛽(𝜆) =
1

𝑅
10 log (

𝑃𝑇

𝑃𝑅
)             (1.5) 

 The specific attenuation (Eq. 1.5) due to fog, snow and rain takes a different form, 

mainly based on the visibility and has been extensively modeled.   

  e. Pointing Losses 



   FSO systems, either stationary or mobile are very sensitive in terms 

of alignment. Any imperfection can lead to link outage, therefore either a perfect 

alignment with frequent corrections for stationary systems or an advanced acquisition, 

tracking and pointing (ATP) subsystem for mobile systems, are absolutely necessary.  

 The unique features of the FSO technology have triggered the FSO community 

to put a lot of effort towards their further development. However, plenty of issues have 

yet to be solved, in order to fully benefit from them. The most prominent research 

challenges that still need to be overcome are the following [2]: 

  a. Channel modeling: There is a significant need to fully describe an 

optical channel in terms of optical turbulence effects on the laser propagation, so as we 

could come up with ways to improve it. The numerous potential applications make this 

issue even more complicate. Therefore, new efficient ways to model the channel are 

required, such as machine learning algorithms.    

  b. Pointing, Acquisition and Tracking (PAT): The extremely narrow 

transmitted beam (few mrads) and the narrow FOV of the receiver, result in very 

challenging PAT requirements, especially for applications with extended propagation 

distance. Several hardware design approaches exist, which propose either a coarse-

pointing or a coarse-sensing beacon signal, for easier receiver detection [5, 6]. 

Advanced hardware architecture and improved synchronization methods are still two 

major issues that need to be solved [2]. A way to increase the bandwidth of a link -of 

FSO systems that has been adopted recently, is the use of space division multiplexing, 

where in order to multiplex many encoded data channels within a communication 

system orthogonal or spatially separable optical modes are used [7]. This type of FSO 

systems require very accurate PAT, a fact that limits the use of this technology due to 

the increased cost of a high performance PAT subsystem. Abadi et. al. have proposed 



a very low cost prototype FSO system with auto locate (via GPS) and align capability 

based on commercial of the shelf (COTS) components [7]. This prototype includes a 

telescope mount controlled by a computer and a Small Form Pluggable (SFP) 

transceiver operating at 1550 nm which uses an algorithm to self-align the transceiver 

with nearby transceivers that have been located by the GPS.  

  c. Advanced hardware design: FSO systems are quite vulnerable to 

atmospheric effects that directly affect the reliability of the link. However, several 

solutions have been adopted, in terms of hardware design, to overcome this issue, such 

as the hybrid RF/FSO and the Multiple Input Multiple Output (MIMO) architecture. It 

has been shown that this spatial diversity technique can decrease the outage probability 

and increase the power gain [8]. Examples of advanced techniques on hardware design 

include the control of transmitting divergence and receiving FOV as well as the 

incorporation of the Wavelength-Division Multiplexing (WDM) [2]. An architecture 

has been proposed by Born et. al. to allow multidirectional communications in an 

asymmetric link using a passive uplink with retro-modulation without requiring the 

increase of power and the number of elements to steer the beam. Such a link uses an 

active link which is being modulated by the retromodulator and reflected as a passive 

link. This architecture reduces significantly the PAT requirements and allow a number 

of transceivers, within the FOV of the retromodulator, to be linked [9]. It is ideal for 

implementation between a stationary and a mobile platform, where the former does not 

have size and power restrictions, whereas the latter is able to compensate with the 

inevitable platform jitter disturbances. However, these come at the cost of the data rate 

capacity. Recently, multiple-quantum-well (MQW) modulators in conjunction with 

corner cubes and cat’s eye retroreflectors have been demonstrated and allow data rates 

at the level of several tens of Mbps with the potential for Gbps speeds [9]. Quintana et. 



al. presented the design and operation of a MQW-based modulator embedded in an 

asymmetric Fabry-Perot cavity. This modulator was tested in an outdoor environment, 

operating at 150 Mbps with a bit error rate (BER) of 1.22 x 10-6 in a distance of 200 m 

[10].  

  d. FSO networking: This FSO related research area include topics such 

as integrated topology design, topology design with QoS guarantees, distributed 

topology design and dynamic rate allocation [2].  

  e. Transport layer issues: Up to now, there have not been proposed 

successful transport protocols [11]. The extended propagation distance and high data 

rate transmission, cause poor efficiency in typical transport protocols (TCP). Currently, 

existing TCPs possess a throughput of less than 10%, despite using advanced hardware 

techniques, resulting in lack of broadband services exploitation [2].     

 An eminent FSO project that leads the way to the future of laser communications 

technology, is the NASA’s Lunar Laser Communication Demonstration (LLCD), 

consisted of one space (onboard Lunar Atmospheric Dust and Environment Explorer 

spacecraft) and three alternative ground terminals (the primary in White Sands, NM 

and two alternatives, one in JPL’s Optical Communications Telescope Laboratory, 

California and one in Tenerife, Canary Islands) [12]. The operating wavelength of the 

system was 1.5 μm, supporting 4 uplinks and 16 downlinks at up to 20 and 622 Mbps, 

respectively. The LLST was comprised of one optical and two electronic modules 

(modem and control electronics). The optical module produced the ~15 μm divergence 

laser beam and was coupled through optical fibers with the modem to generate the 

downlink (at a power of 0.5 W) and process the uplink signal [12]. The main features 

of the White Sands station are four 15 cm telescopes for the uplink signal (at a power 

of 10 W) and four 40 cm telescopes for receiving the downlink signal all of which are 



carried by a single gimbal. The overall LLCD project characterized as absolutely 

successful [12].   

 In contrast to traditional FSO links, i.e. symmetric, a more sophisticated approach 

is the asymmetric links or else indirect links, enabled through modulating retro-

reflectors (MRR). In this case, instead of two active trancseivers the link is 

accomplished through a single laser beam which is passively retro-reflected back to the 

interrogator [13]. In such a link, the power of the laser, the beam divergence and PAT 

requirements are determined by the interrogator, whereas the MRR characteristics that 

affect the performance of the link are the gain of its optical antenna and the efficiency 

and bandwidth of the modulation [13]. It must be noted that an indirect link possesses 

twice as much free space losses, therefore the antenna optical gain plays a crucial role 

in overcoming this pitfall, since the MRR acts both as a receiver and a transmitter. 

Typically, an MRR is a corner cube prism, where the modulator can either cover the 

face of the corner cube or act as a reflector in one of the sides of the prism [13]. The 

major challenge for an MRR is the tradeoff between the size and the data rate capability, 

two parameters that are inherently inversely proportional, yet this technology would 

allow an FSO system to meet the size, weight and power (SWaP) requirements of small 

mobile platforms [13].  

 A key design issue for an FSO system is the wavelength of operation. The most 

common used spectra are the 780-850 nm (near-infrared) and the 1520-1600 nm (short-

wave-infrared) [14]. In terms of eye safety, the latter is much safer since above 1400 

nm the radiation is absorbed before reaching the eye retina. This fact, allows FSO 

systems operating in the 1520-1600 nm range to have higher power with the same safety 

standards. On the other hand, in the Near-Infrared (NIR) spectrum, a variety of low-

cost and high efficiency optoelectronic devices exist, whereas in the Short-Wave 



Infrared (SWIR) spectrum, PIN or APD based InGaAs detectors are optimized to 

operate in 1550 nm [14]. However, this FSO design parameter is also highly dependent 

on the atmospheric transmission and has to be taken into consideration.      

 Apparently, the anticipated environment of operation for an FSO system will 

dictate the performance requirements of the link. As mentioned above, the two main 

issues for the availability of an optical link are the atmospheric attenuation and 

turbulence. A different approach that has been proven to be necessary for an all-weather 

and long range link, is the combination of a lasercomm with a high bandwidth 

directional RF system [15]. The Applied Physics Laboratory of the John Hopkins 

University, has been involved in numerous developments and demonstrations of 

lasercomm systems, from a laboratory environment to a complex system of systems 

level. Special focus has been given to hybrid RF/FSO systems which ultimately lead to 

the successful demonstration of the complex system of systems DARPA FOENEX 

program, whose goal was the development and demonstration of a multinode airborne 

hybrid RF/FSO communications network [15]. 

 

Figure 1.2. Overview chart of the DARPA FOENEX program [15]. 



    

 The sum of the degradation effects, i.e turbulence and attenuation, can result in 

received signal fading for an FSO system, which are fluctuating randomly, since the 

propagating wave irradiance is also a randomly fluctuating value [16]. The reliability 

of the optical link, meaning the likelihood that the received signal is above a certain 

level, can be determined by using adequate statistical methods. The most common 

measure for the irradiance fluctuations is their probability density function (PDF) [16]. 

A joint PDF of the irradiance fluctuations and its derivative, can give us other fade 

issues, such as expected number of fades below threshold and their mean time [16]. 

Developing a closed form mathematical expression for the PDF, whose parameters will 

directly depend on the existing atmospheric conditions, that will be valid under any 

conditions, is highly desirable. Up to now, an extended number of PDFs exist, that can 

describe the irradiance fluctuations, in either strength regime of turbulence conditions, 

or, a few of them in any regime [16]. In any case, the PDF of the irradiance fluctuations 

is nonstationary and depends upon the turbulence parameters, the characteristics of the 

beam and the parameters of the receiver [17]. Since a reliable PDF is absolutely 

necessary for a robust FSO link, a thorough background of the existing PDFs will be 

given in a later chapter.    

 

 1.1.1 Motivation 

 Superiority in the modern warfare dictates the importance of information sharing, 

a concept that leads to the future network-centric operations, for example the access 

and distribution of sensor-based data is an eminent principle in such operations [18]. 

Equivalently, modern societies depend heavily on the available capacity of information 

exchange links in order to support the various “tele” requirements, either for working, 



studying, buying, or even health purposes. The capabilities of the existing RF links 

seem to have reached their limits. On the other hand, the inherent capabilities of the 

FSOC technology, promise to fill this gap and act as a valuable complement to the RF 

networks [18]. The much higher operating frequencies of the FSO systems result in 

higher available bandwidth as compared to RF, the collimated laser beam has increased 

LPI and LPD properties as well as high protection against interference [19]. Therefore, 

it is crucial for these FSO benefits to be exploited, so as to get the money spent for high 

quality communications worth. However, several constraints also exist that can degrade 

the performance of an FSO link, with the atmospheric effects to be the most 

unpredictable and perhaps severe. For that reason, a major research area that has been 

identified is channel modeling, in order to quantify those effects on the performance of 

the link [2]. Special attention, should be given at the optical turbulence properties and 

their impact to the atmospheric laser propagation in the free space [20]. Therefore, it is 

indicated that further research in the link performance improvement through optical 

turbulence modeling is required, so as more efficient FSOC systems will be employed.  

 

 1.1.2 Historical Background 

 The historical roots of the FSO technology can be found at the end of the 19th 

century, when Alexander Graham Bell invented the so called Photophone, an 

instrument able to send optical signals to another, demonstrating the principle of optical 

communications [1]. An FSO system is a mean of communication which uses the free 

space as the transmission medium of optical signals in high data rates. The research on 

actual FSO systems started back in the 1960s’ [2]. Three are the main temporal eras of 

the FSO experimental development, the first, spans from 60s to 90s where the laser 

invention resulted in the idea of optical communications, the second during 1990s, 



where the first ground to space and vice versa experiments took place and finally after 

2000, where numerous other applications of optical communications came into play 

and were demonstrated experimentally [1]. In particular, the invention of LASER in 

1960 by Maiman, offered a great chance to enhance the communication capabilities by 

using beams propagating at the free space over long distances. The first FSO 

experiment, took place in 1968 in Rome, Italy, with a red laser between two buildings 

4 km apart [1]. Another critical milestone in FSO development, was the invention of 

semiconductor light source in 1970 by Alferov. Between 1994 and 1996, the first 

symmetric ground to space link experiment was demonstrated in Tokyo, Japan, 

between the ETS-VI satellite and the Communications Research Laboratory (CRL) [1]. 

Another important date that changed the path of FSO development, was the 11th of 

September 2001, where the laser communication links, immediately substitute the 

demolished communication networks in New York, USA. As stated at the Deep Space 

Optical Communications Project of the National Aeronautics and Space Administration 

(NASA) its goal was “to develop key technologies for the implementation of a deep 

space optical transceiver and ground receiver that will enable greater than 10X the data 

rate of a state-of-the-art deep space RF system (Ka-band) for similar spacecraft mass 

and power” [20]. On the other hand, the European Space Agency (ESA) has started 

investing in laser communications in summer 1977 with an ultimately similar goal [2]. 

Notable projects that can be mentioned include: a) the Semiconductor Intersatellite Link 

Experiment (SILEX) in 2001, between GEO-LEO satellites and GEO – ground, b) the 

Geosynchronous Lightwave Technology Experiment (GeoLite) experiment between 

GEO satellites, ground and aircrafts and c) the Mars Laser Communication 

Demonstration (MLCD) for a deep space link from Earth to Mars [1]. Despite the fact 

that FSO technology indeed promised a new communications era, after several decades 



of developmental efforts, the result did not meet the standards. However, the recent 

advances in the FSO optical and communication components, gave a new boost for 

FSO implementation in the wireless access networks [2].    

 

 1.1.3 Previous Work 

 Since the main goal of this dissertation is the investigation, characterization and 

modeling of the atmosphere to the laser beam propagation in the free space and 

consequently the effects towards an FSO system performance, a summary brief of 

previous experimental campaigns with similar objectives is presented.  

 The most comprehensive work has been done by the US Naval Research 

Laboratory (NRL), which included both electro-optical components development and 

atmospheric characterization, for more than fifteen years [21]. NRL has focused on the 

quantification of atmospheric effects on an FSO link in a maritime environment and for 

that reason a long range (16 km), maritime lasercomm test facility (LCTF) has been 

developed across Chesapeake Bay, Maryland, where transmission, scintillation index 

and angle-of-arrival measurements can be taken [22, 23]. With regard to link 

availability, a 100 Mbps FSO link with packet error rate measurements, assessed the 

long term availability of the link, in a reduced to 100 mW output power mode due to 

unattendance restrictions, resulted in 76% availability. This probability would have 

exceeded 90% if full output power and error correction protocols have been used [24]. 

With regard to atmospheric transmission measurements, a portable scatter-based 

transmission monitor, operating at the 1550 nm has been developed, to determine the 

local visibility, defined as the distance where the optical signal has been reduced by 5% 

of its initial value. A reasonable question is whether such a point measurement is 

representative of a long range path. For light to moderate rain this could be true, 



whereas for heavy rain it depends on the size of the rain drop [25]. Numerous 

measurements under different weather conditions, time of year and location, have been 

executed to measure optical turbulence [26]. The Transportable Atmospheric Test 

System (TATS) was developed to measure scintillation through a variety of instruments 

and through analysis of the scintillation index, 𝜎𝐼
2 and the power spectral density (PSD) 

of the scintillation [27]. An interesting result of those measurements, was that the 

diurnal scintillation variation of over water measurements, was less than over land but 

surprisingly very similar to a desert environment. A comparison of a 95% availability 

versus range for a 1550 nm direct FSO link in a maritime and a desert environment, 

showed that for the latter is much further, as shown in Figure 1.3. Statistical analysis of 

TATS measurements, showed a very good fit of the log-normal distribution for any 

environment.     



 

Figure 1.3. FSO link availability versus operating range for (upper) desert and (lower) 

maritime environment [24]. 

 The fiber optics communications industry has already developed and improve a 

number of components that can also be adopted from the FSO community, such as laser 

and amplifiers. However, other components exist, that are either not useful or not 

appropriate for fiber optics. NRL have made a significant progress in filing that gap by 

developing new components or use COTS when they are available. The component 

with the biggest number of different possible options, is the photodetector, where many 



alternatives can result in equivalent performance but with an impact to the other 

required components. For example, optical preamplifiers are used in the fiber optics 

communications, but in FSO either adaptive optics or adequate receiver aperture 

diameter is required. NRL, on the other hand, selected a larger area high performance 

InGaAs detector approach, based on market available components and eye safe. From 

mid-2000s, NRL has been collaborating with Optogration Inc. and University of 

Virginia to develop more sophisticated Avalanche Photodetectors (APD) with better 

noise performance and also APD arrays, that combine a larger focal plane than a single 

one, while keeping high bandwidth and sensitivity. Another area of great research 

advancements in NRL is MRRs, which allow SWaP restricted platforms to be able to 

transmit a lot of data [28, 29]. The core of an asymmetric program in NRL included 

two basic MQW MRR architectures. The first is a corner cube based retroreflector and 

the second a cat’s eye approach [30].  Since the traditional squared quantum wells 

required a large applied voltage that limit the available devices for MRRs, NRL 

developed a new design based on strain balanced coupled quantum wells, that decreased 

the voltage requirements, from 20 V to 5 V, with an additional power consumption by 

a factor of 10.  

 

Figure 1.4. A diagram of a Modulating Retro-reflector [24]. 



 

 Another representative long period experimental campaign that took place in 

False Bay, South Africa, called FATMOSE and included a variety of weather 

conditions [31]. The experimental setup was between the Institute of Marine 

Technology (IMT) and the National Sea Rescue Institute (NSRI) in Strandfontein, with 

total length of 15.7 km.  Various sensors were mounted in both locations and in different 

heights above sea level. The campaign lasted for ten months and several atmospheric 

parameters were measured, such as wind speed, absolute humidity, visibility, air-sea 

temperature difference and air temperature and their effect on the performance of 

electro-optical systems were assessed. Of great practical importance is the result of the 

performance improvement that longer wavelengths provide in a laser beam propagation 

[31]. The geographical peculiarities presented a high variability in atmospheric 

parameters, such as the air – sea temperature difference which cause variations of 𝐶𝑛
2 

along the optical path and visibility due to local fog presence. All these environmental 

parameters were used for several model proposals, such as an aerosol model based on 

Junge particle size distribution and the TARMOS model, for temperature and 𝐶𝑛
2 profile 

prediction, which was then validated by real time scintillation measurements [32]. Due 

to the long range of the path, the strong turbulence theory was used and showed a good 

agreement between measured and predicted SI values, which mainly appeared due to 

refraction effects large turbulence eddies [32].  

 Another maritime laser communications trial took place at Port Wakefield, 

Australia, executed by the Command, Control, Communications and Intelligence 

Division of the Australian Defense Science and Technology Organization during 2011 

and demonstrated a novel analogue frequency modulated (FM) ship – to – shore laser 

communications system [33].  In close collaboration with NRL, which provided an 

MRR for trial needs, an optical communications link between a maritime platform and 



the coast was established, as the precursor of a ship – to – ship optical link. Α 

bidirectional optical link, transferred audio and video data at a distance of 3 km, using 

modulating retro-reflectors, for the first time [33]. The success of these trials, indicated 

the high potential of laser communications technology to be adopted for ship – to – ship 

communication purposes, offering additionally communication capabilities during 

emission controlled situations, alternative means of communication and adequate 

bandwidth capacity for network operations [33].  

 In [34] an experimental series of measurements, verified the classical theory of 

optical turbulence, by obtaining intensity data for a multi-wavelength laser beam 

propagating in a horizontal distance of 7 km near the ground. The refractive index 

structure parameter was evaluated for two wavelengths (λ1=532 nm and λ2=1064 nm) 

and then compared to theoretical predictions. The experimental setup included four 

fast-framing cameras synchronized by a software developed for that reason and the 

results showed a good agreement between measurements and predictions [34]. 

 In [35, 36] a radio over FSO (RoFSO) system is presented and assessed under 

turbulent conditions. The experimental demonstration of this system included 

transmission for an extended period of time of different kind of services, such as 3GPP 

cellular, WLAN and terrestrial digital broadcasting TV (ISDB-T) signals at a distance 

of 1 km. In such a system, the RoFSO signal is directly optically amplified before 

emitted in the free space and the received optical signal is focused directly into a single 

mode fiber [36]. The operating wavelength of the RoFSO system is 1550 nm, with an 

output power of 100 Mw and a beacon beam for rough tracking operating at 850 nm.   

 A coastal-oriented experiment was held at the King Abdullah University of 

Science and Technology (KAUST) in Saudi Arabia, were the attenuation coefficient of 

an optical channel was modelled, based on atmospheric parameters such as temperature, 



relative humidity and dew point, utilizing an outdoor FSO system operating at 1310 nm 

and 1550 nm at a distance of 70 m [37, 38].  This model was further validated against 

indoor laser link of the same operating wavelengths. The contribution of this work has 

to do with the illustration of the effects of temperature and humidity variations, which 

are prominent in a maritime environment, on the quality of an FSO channel. The key 

outcome of that analysis was that the 1550 nm wavelength is the least sensitive to 

humidity and temperature effects [37]. 

 In [39], a successful demonstration of an error-free communication link between 

two FSO terminals 5.4 km apart developed by the MIT Lincoln Laboratory is presented, 

to simulate a low angle air-to-ground link with turbulence-induced effects mitigation 

capability, based on the presence of multiple small aperture receivers and a new 

encoding and interleaver hardware. The effectiveness of spatial diversity was 

demonstrated by the fading-induced received optical power probability density function 

width reduction by a factor of 2 [39].    

 

1.2 Structure of this thesis 

 Regardless of the FSO communication application, the turbulent atmosphere is a 

major drawback that must be overcome in order to achieve a reliable optical link. 

Significant impact on this have the environment, the local atmospheric conditions, the 

geometry and the time of the day. In any case, the importance of quantifying those 

effects, has been identified as a paramount goal.  

 Many different experimental turbulence measurement methods exist, including 

predictive modelling of 𝐶𝑛
2 [39]. Using micrometeorology is one way to measure optical 

turbulence [40]. However, there are certain models based on local macro-

meteorological parameters that can be obtained from point measurements. This method 



offers high flexibility in terms of predictive ability, however it’s accuracy might be 

limited because upper and lower bounds of those values exist, that constrain the validity 

area of the models.  

 An emerging topic for optical communications that will certainly gain more 

interest in the near future is Machine learning, which includes a broad spectrum of tools 

that allows interpretation and understanding of data through a trained algorithm. Thus 

it is expected to have much higher prediction accuracy, regardless of the terrain, 

location and time, with only prerequisite adequate training of a ML-based algorithm.  

 The reported work on this thesis includes both extensive regression modeling and 

ML-based training algorithms for FSO performance modeling on a maritime 

environment based on meteorological experimental data.   

 Section 2, provides the background theory of the optical turbulence phenomenon, 

including the fundamental physics beyond the impact of turbulence in the laser 

atmospheric propagation, the classical theory of optical turbulence and the structure 

functions. The differences between weak and strong fluctuation theory as well as the 

power spectrum models are also analyzed and a comprehensive report of various optical 

turbulence modeling experimental efforts is described.  

 Section 3, gives an introduction to the FSO performance metrics, assesses the 

atmospheric effects on the reliability and availability of an optical link and gives an 

overview of the channel modeling probability density functions. An extensive number 

of experimental campaigns for FSO performance modeling in different terrains and 

applications are presented.  

 Section 4, gives an introductory background of machine learning, machine 

learning algorithms and applications for optical communications modeling and fading 

mitigation.  



 In Section 5, two new mathematical models are proposed, to predict the received 

signal strength of an FSO optical link. The models have the form of a second-order 

polynomial with seven macroscopic meteorological parameters as the independent 

variables.  

 In Section 6, a machine learning based scheme was introduced to estimate the 

RSSI parameter of an FSO link over a maritime environment based on macroscopic 

meteorological measurements. To test the proposed approach, a large experimentally 

derived data set was used, which included seven parameters, i.e. air temperature, wind 

speed, solar flux, dew point, relative humidity, air pressure and air-sea temperature 

difference, obtained over a twelve-month period from a commercial FSO system and a 

weather station, respectively. Five popular ML algorithms were trained in order to 

construct a robust model to accurately predict the link’s performance in terms of 

received signal strength. 

 Section 7 is comprised of two main parts, which present a thorough analysis of 

𝐶𝑛
2 and FSO outage probability modeling, by leveraging machine learning algorithms. 

The first part of the chapter is two-fold.  Initially the regression analysis results for 𝐶𝑛
2 

is presented. We utilized six common ML algorithms and trained them on four different 

data sets. Then, a thorough analysis for the outage probability of an FSO link is 

executed. Initially, the corresponding Pout for the measured meteorological conditions 

was derived, based on an existing in the literature mathematical formula. These Pout 

estimations were used to classify the link status as functional or non-functional 

depending on a required availability of 99%, which corresponds to a 1% outage 

probability. We then trained a DNN classifier to model the status of the link based on 

the six measured meteorological parameters. Finally, an empirical mathematical model 

for outage probability estimation was developed based upon those meteorological 



parameters and refractive index.  The second part of this chapter, utilized four common 

ML algorithms and trained them on a preliminary data set consisting of six 

experimentally obtained macroscopic meteorological parameters.  

 In Section 8, we employ an information theoretical method, namely the so-called 

Jensen-Shannon divergence, a symmetrization of the Kullback-Leibler divergence, to 

measure the similarity between different probability distributions. In doing so, a large 

experimental dataset of received signal strength measurements from the HNA FSO link 

is utilized. Additionally, the Pearson family of continuous probability distributions is 

also employed to determine the best fit according to the mean, standard deviation, 

skewness and kurtosis of the modeled data.  

 Section 9, summarizes the key findings and concludes the thesis. 

  

1.3 FSO Applications 

 Optical communications can be applied in a big variety of different scenarios, 

covering the airspace, terrestrial and underwater environment. In this section we 

provide a representative amount of such FSO applications for real world scenarios of 

high military and commercial interest.  

 

 1.3.1 Space Applications   

 The use of lasers in space is no longer something new. They are already being 

used for crosslinks between satellites offering order of magnitudes higher capacity with 

order of magnitudes less power. On the other hand, linking terrestrial or airspace 

moving platforms with geosynchronous satellites constitutes the future of FSO 

technology [41]. The space optical information network layers are composed of, 1) 



satellite optical communication network, 2) ground optical communication relay 

stations, 3) ground microwave communication terminals and 4) point-to-point laser 

communications ground terminals [42]. 

 

Figure 1.5. Notional architecture of an earth-space information network [42]. 

 

 Unlike any uplink or downlink, the inter-satellite links are not limited by the 

weather conditions or the visibility, because they are far beyond the atmosphere. In this 

case though, the acquisition and tracking requirements are very high due to their relative 

movement [34].  Phase coherent techniques, i.e. homodyne or heterodyne are more 

suitable for this scenario in order to achieve the power requirements of the propagation 

distance. The highest published rate between two LEO satellites is a homodyne BPSK 

with 5.6 Gbps [34]. The main challenges of inter-satellite FSO network are the 

following [34]: 

  a. Point-ahead-angle: Refers to the required offset of the returned signal 

due to the relative motion of the terminals, called point-ahead-angle (PAA). PAA is in 

the order of hundreds of micro-radians for deep space links and tens of micro-radians 

for inter-satellite or ground to space links. If PAA is larger than the isoplanatic angle 

from the tracking direction, given by [34],  



     𝜃0
−5 3⁄ = 2.91𝑘2 ∫ ℎ5 3⁄ 𝐶𝑛

2(ℎ)𝑑ℎ
𝐿

0
             (1.6) 

 we observe an effect called point ahead angular anisoplanatism.  

  b. Doppler shift: The frequency changes in the received signal due to 

the relative motion leads to Doppler effect. The amount of shift that has to be 

compensated in data relay systems is around 7.5 GHz which can be even more for LEO 

to LEO links, which can result in a 140 kHz frequency shift in a 2 GHz clock used for 

signaling. An optical phase lock loop or optical injection locking technique can reduce 

the Doppler effect.   

  c. Satellite vibration and tracking: A very challenging task is the 

acquisition and tracking of the received signal due to disturbances caused either by the 

satellite or laser communication assembly. External disturbances caused by the satellite 

include, solar panels, momentum wheels, gimbal packages and thrusters and different 

noise sources of the lasercomm assembly include, relative intensity noise, thermal 

noise, dark current shot noise, signal shot noise and background shot noise. The 

combination of all the aforementioned disturbances can result in misalignment between 

the terminals.  

  d. Background noise sources: These types of noises depend on the 

detection technique and whether optical pre-amplification is used or not. In case of 

direct detection, this noise is caused by the detector, the receiver amplifier and shot 

noise from the signal itself. For coherent detection, the major contributor is the local 

oscillator.  

 The overall comparison among RF and optical systems in space, has indicated 

that each system performs better under certain conditions provided its design is suitable 

for the system’s mission. As an example, let’s consider a Ka-band, where for 

frequencies from 32 to 38 GHz the typical bandwidth is around 500 MHz, whereas for 



a 1.5 μm laser beam the bandwidth is more than 1000 times bigger [43]. At the same 

time however, the small divergence of the laser beam increases significantly the 

pointing and tracking requirements for a satellite crosslink, the EM energy on the laser 

spectrum is more sensitive to atmospheric effects and suffers from higher free space 

loss as a function of the base-ten logarithm log10(f). Considering the beam divergence 

comparison between RF and laser systems is given by the following [41],  

        𝜃 ≈
𝑤𝑎𝑣𝑒𝑙𝑒𝑛𝑔𝑡ℎ

𝑎𝑝𝑒𝑟𝑡𝑢𝑟𝑒⁡𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟
≈

𝜆

𝐷𝑟
              (1.7) 

 

Figure 1.6. A comparison between RF and optical systems divergence [41]. 

 

 The small divergence of a laser beam, apart from reducing the signal loss, 

provides a higher degree of security in the data transfer and immunity against 

interference and jamming. Additional security level can be provided by using quantum 

key distribution, which uses individual light quanta in quantum superposition states in 

order to assure security of communication between two terminals. Despite being 

achievable to a few hundreds of kilometers in terrestrial applications, in space 

environment this is not the case [41]. Already, several research projects have 

demonstrated satellite links utilizing QKD [44 – 46]. 



 1.3.2 Unmanned Air Systems Applications 

 The future of information networks calls for the integration of space and 

terrestrial networks. The development of such a network in a cost-effective manner and 

with high enough capacity, makes the involvement of UAVs inevitable. A UAV often 

needs to interact with other assets in speeds that traditional RF links cannot support, 

such as emergency cases. Given that the RF links are subject to interference, capacity, 

security and spectrum availability issues and the space to ground links are subject to 

high cost, time delay and interference issues, the air to ground UAV links can fill this 

gap [47]. The integration of laser communications and UAV platforms is focused to 

UAV to satellite terminals, UAVs, UAV to ground terminals, and UAV to sea surface 

terminals.  

 The terrestrial 5G networks are usually constrained in terms of coverage, 

especially in cases such as rural areas, post disaster situations, and maritime 

communications. Satellites and drones can provide the solution in the next network 

generation [47]. Lately, there is a lot of ongoing research on how to develop reliable 

optical communication links between a high-altitude platform and a satellite, by solving 

the various atmospheric effects and bridging the gap between air, space, ground and sea 

platforms [47]. Another issue that was identified, was the inability of a single UAV to 

perform several tasks independently, thus the improvement of the cooperation among 

multiple UAVs is of paramount importance. A technology that strongly supports the 

laser communication link between UAVs at the hardware level, is the three dimensional 

(3D) printing [47]. For higher reliability, a star and ring combination networks (Figure 

1.7) provides the best solution.  



 

(a) 

 

(b) 

 

(c) 

Figure 1.7. UAV networks: (a) star architecture; (b) ring architecture; and (c) meshed 

architecture [47]. 



 The UAVs can also provide a very effective alternative to ground 

communications infrastructure in case of a link outage or lack of performance (Figure 

1.8) and with limited pointing and SWaP requirements due to the MRR technology 

[48].  Finally, a crucial environment that could be covered better in terms of broadband 

communications, is the ocean.  

 In [49] a drone-based communication network is considered, consisted of many 

drones loitering above a certain area to provide mobile remote radios. The geometric 

loss caused by the position and orientation fluctuations of the drones is quantified. 

Upper and lower bounds that correspond to approximate expressions, and a closed-form 

statistical model for the geometric loss, are derived and validated through simulations 

[49]. Finally, a very interesting application of UAVs that is of great importance for FSO 

technology, is turbulence measurements in the atmospheric boundary layer [50].  

 

Figure 1.8. A schematic of a hybrid ground ATP mechanism and an MRR mounted in a UAV 

[47].  

 

 1.3.3 Underwater Systems Applications 

 Apart from the more noted space, air and terrestrial applications of optical 

communications, the underwater communications is also worth to mention, despite 

being the more challenging because of the numerous different physical processes that 

exist in the maritime environment [51]. The current technology for underwater 



communications uses acoustic waves that suffer from limited bandwidth, high 

transmission losses, Doppler spread and high latency [51]. Ultimately, these factors 

limit the available data rates in a few tens of kbps for long ranges and a few hundreds 

of kbps for short ranges. For mobile underwater platforms that require higher 

bandwidth, the underwater optical communications offer an alternative with high 

potential. On the other hand, they are significantly affected by the water temperature 

fluctuations, dispersion, scattering and beam steering [51]. A transparency window 

exists though, that allow much better transmission conditions and lies in the blue-green 

wavelengths (450 – 550 nm). In general, the absorption of an optical beam underwater 

is higher for higher wavelengths. The possible alternative architectures for an 

underwater optical wireless communication network (UOWC) can be categorized with 

respect to their spatial coverage, the mobility of the sensor nodes and the channel [52]. 

Classification of underwater optical wireless applications are presented in Figure 1.10.   

 

Figure 1.9. Absorption coefficient for optical waves in aquatic medium [52]. 



 

Figure 1.10. Underwater Optical Wireless Network applications [52]. 

 

 Towards the building of the future smart cities, underwater optical wireless 

networks can play a critical role in the support of the new concept of Internet of 

Underwater Things (IoUT), defined as “the network of smart interconnected 

underwater objects” [53].  The most probable applications of IoUT can be classified in 

either of the following five types: (1) environmental monitoring, (2) disaster 

prevention, (3) military, (4) underwater exploration and (5) others. The main challenges 

that these applications face are related to the following: (1) the propagation speed, (2) 

the transmission range, media and rate, (3) the difficulty to recharge a sensor, (4) the 

mobility and the (5) reliability [53].  

 Α way to improve the performance of UOWC is the use of optical pre-

amplification in single-input single-output (SISO) systems that decreases the sensitivity 

of the receiver. In spite of the existing mismatch between the operating wavelength of 

the current semiconductor optical amplifiers (SOA) and the optimum spectrum for 

underwater transmission, the recent development of Gallium Nitride (GaN) – based 

optoelectronic components, promises to fix it, since they are able to operate in a wide 



spectral range. Combining optical pre-amplification with spatial diversity can improve 

even further the performance of UOWC [54].      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 2 

Optical Turbulence Theory 

 
 The scope of this chapter is to understand and model the atmospheric effects on 

the performance of a free space optical communication link over a maritime 

environment. Special attention has been given in the phenomenon of optical turbulence. 

Thus, this chapter is devoted to conceptually and mathematically describe turbulence 

in fluids and in particular in the atmosphere. Both laminar and turbulent flow states for 

any fluid have been extensively researched since 1950s, where the impact of their 

physical properties to the way they flow was verified. The main attributes of a fluid are 

the flow velocity, the fluid viscosity and the scale length of the flowing field [39].  

 The turbulence in the atmosphere is generated by temperature variations that 

cause various effects on optical waves. In the case where the Earth’s surface is hotter 

than the air, it also causes the lower air masses to be hotter than the higher ones, 

resulting in a negative temperature gradient that causes a light beam parallel to the 

surface to bend upwards, forming the so called phenomenon of mirage [55]. The 

opposite occurs when the Earth surface is colder than the air and results in the 

phenomenon of looming which can allow to see objects, like stars in the sky, even 

beyond the horizon. The temperature gradient leads to changes in the refractive index 

in the atmosphere known as optical turbulence. The propagation of an optical or IR 

wave through the turbulent atmosphere can be described using statistics.  

 

2.1 Introduction 



 The disturbances of the air refractive index caused by the temperature gradients 

result in the formation of cells, called optical turbules. The random fluctuations of the 

refractive index cause several effects on a travelling optical wave, such as temporal, 

spatial and phase fluctuations of the irradiance [55]. Two very important concepts that 

are assumed to mathematically describe a turbulent medium is the statistical 

homogeneity and isotropy. Homogeneity (uniformity along the entire optical path), 

refers to a constant mean value of a random field and that any random fluctuations are 

irrelevant with the observed points and depend only on their vector separation. Isotropy 

(independence of direction), means that correlations between different points depend 

only on the magnitude of the vector separation between them [55].  

 As the air is also considered a fluid, it possesses the phenomenon of turbulence 

and follows the laws of fluid dynamics, where two distinct states of motion exist, a 

laminar and a turbulent. The difference between them is that the velocity flow 

characteristics in the former are uniform or change in a regular way, whereas in the 

latter this is not the case, acquiring random subflows, called turbulent eddies. A non-

dimensional quantity exists, namely the Reynolds number, defined as following [55],  

        𝑅𝑒 = 𝑉𝑙/𝑣               (2.1) 

 where V the characteristic velocity, l the flow dimension and v the kinematic 

viscosity. In general, near the ground the flow is expected to be highly turbulent. A 

certain value of this number defines the transition from one state to the other. The 

mathematical background that governs the highly nonlinear phenomenon of turbulence, 

is the Navier-Stokes equations. However, because the solution of these equations is 

very hard, Kolmogorov developed his own theory for turbulence, based on statistics 

and dimensional analysis and provided a much more simplified approach for turbulence 

analysis with few approximations [55].  



 To better understand the formation of atmospheric turbulence we shall adopt the 

energy cascade theory of turbulence, developed by Kolmogorov. According to this 

theory, the increase of wind speed leads to the overcome of the critical value for the 

Reynolds number and this results in the formation of the turbulent eddies. Due to 

inertial forces, these initial larger turbulent eddies, with size equal to the outer scale 

size, L0, break up into smaller ones, until their size reaches the inner scale value, l0 [4]. 

The range between the outer and the inner scale is called the inertial subrange. The 

outer scale is about a few tens of meters and increases proportionally with height, 

whereas the inner scale is of the order of a few millimeters near the ground. Eddies with 

size smaller than the inner scale dissipate in the form of heat. Figure 11, depicts the 

energy cascade theory, developed by Richardson, for the outer and inner scale of 

turbulent eddies [4]. 

 

Figure 2.1. Energy Cascade model by Richardson, from the outer, L0, to the inner, l0, turbulent 

eddies size [4]. 

 

 The size of the inner scale, l0 and the velocity of these cells, u0, determine the rate 

of heat dissipation into the environment, 𝜖 [55],  

                        𝜖 ≈
𝑣𝑢0

2

𝑙0
2                (2.2) 



 Equation (2.2) can be modified in order to apply in any scale size and the 

transferred energy to the immediately smaller scale size [55], 

                     𝜖 ≈
𝑢𝑙
3

𝑙
=

𝑢0
3

𝑙0
              (2.3) 

 The energy dissipation rate, 𝜖, and the inner scale size, l, are the only contributors 

to the velocity and temperature fluctuations within the turbulent field.  Combining 

Equations (2.2) and (2.3) and eliminating u0, we can extract a theoretical value for the 

inner scale [55],  

                   𝑙0 ≈ 𝜂 ≈ √
𝑣3

𝜖

4
              (2.4) 

 The inverse relation between the inner scale size and the energy dissipation rate 

designates that the stronger the turbulence, the smaller the inner scales. The most 

critical parameter that affects the optical wave propagation is the refractive index of the 

air defined as [55],  

      𝑛(𝑟) = 𝑛0 + 𝑛1(𝑟)             (2.5) 

 where 𝑟 a random point in space, 𝑛0 the mean value of refractive index, equal to 

one, and 𝑛1(𝑟) the random deviation of  𝑛(𝑟). Therefore 〈𝑛1(𝑟) = 0〉 and Eq. (2.5) can 

be rewritten as [55],  

      𝑛(𝑟) = 1 + 𝑛1(𝑟)              (2.6) 

 The index of refraction is directly related to the pressure and the temperature of 

the atmosphere [4],  

   𝑛(𝑟) = 1 + 7.66 × 10−6(1 + 7.52 × 10−3𝜆−2)
𝑃′(𝑟)

𝑇′(𝑟)
 

      ≅ 1 + 79 × 10−6 (
𝑃′(𝑟)

𝑇′(𝑟)
)             (2.7) 



  where λ the wavelength in μm, P the atmospheric pressure in mbar and T the air 

temperature in Kelvin. The humidity fluctuations contribute only in the far-IR region, 

whereas the pressure fluctuations are usually negligible [56].  

 

2.2 Kolmogorov Theory of Turbulence 

 Kolmogorov was the first who realized in 1941 that he could explain the optical 

turbules from dimensional and reliable heuristic arguments. He managed to notice that 

this analysis resulted in universal laws in the statistical sense. The turbulent velocity 

field should be considered as a stochastic variable in the overall sense of statistical 

mechanics. It is independent of how the turbulence is initialized and the way the energy 

is injected is out of scope. Therefore, the chosen force statistics has no effect on the 

statistics of the turbulence [57]. 

 The law that governs the dynamics of the fluids is the Navier-Stokes equation that 

is similar to the second law of Newton and the law for the conservation of the 

momentum. This equation is given by Eq. (2.8) and it can be modified depending on 

the type of the fluid and the flow conditions [57],  

    
𝜕

𝜕𝑡
𝐯 + (𝐯 ∙ 𝛁)𝐯 − 𝑣∆𝐯 =

1

𝜌
(𝑭 − ∇𝑝)               (2.8) 

 where v (r, t) is the velocity field, v the kinematic viscosity (with dimensions [v] 

= L2/T), ρ the density, p the pressure and F the external force. It is important to note 

that this equation possesses the feature of scale invariance. So Eq. (2.8) can be 

converted into the following dimensionless [57],  

        
𝜕

𝜕𝑡̃
𝒗̃ + (𝒗̃ ∙ 𝛁̃)𝒗̃ − (

𝑣𝜏

𝑙2
)∆𝒗̃ =

1

𝜌̃
(𝑭̃ − ∇̃𝑝)             (2.9) 

 where l and τ the characteristic system length and time, respectively. The 

Reynolds number, which was introduced in Eq. (2.9), is a scale dependent parameter 



and its value defines the flow type, either as laminar, for Re(l) << 1, where a regular 

flow occurs, while for Re(l) > 104 an obvious spatial disorder exists in the flow. For 

Reynolds number values that tend to infinity, we have a fully developed turbulent flow. 

Close to the ground the characteristic scale size is l ~ 2 m, the characteristic wind speed 

is from 1 to 5 m/s, and v ~ 0.15 x 10-4 m2/s, leading to large Reynolds numbers on the 

order of Re ~ 105. In such cases the motion is considered highly turbulent. Apparently, 

a turbulent flow designates that the inertial forces have outweighed the viscous forces.  

 

2.3 Structure Functions 

 The classical theory of turbulence, as developed by Kolmogorov, predicts that the 

magnitude and direction of the velocity field of a fluid, fluctuates randomly. His theory 

assumed that for large Reynolds numbers, the small scale structure of turbulence, is 

homogeneous and isotropic, as well as independent of the large-scale structure. 

Additionally, the motion of the small-scale is determined by the kinematic viscosity, v, 

and the energy rate dissipation, 𝜖, of the turbulent energy per unit mass of the fluid.  

 Using dimensional analysis, Kolmogorov proved that the longitudinal structure 

function of the wind velocity within the inertial range (parallel to r vector that connects 

two points in space), satisfies the universal two thirds power law [57]: 

               𝐷𝑅𝑅(𝑅) = 〈(𝑉1 − 𝑉2)
2〉 = 𝐶𝑉

2𝑅2 3⁄ , 𝑙0 ≪ 𝑅 ≪ 𝐿0          (2.10) 

 where V1 and V2 the velocity components of two points in a distance of R and 𝐶𝑉
2 

the velocity structure function, which gives the total amount of energy in the turbulence. 

The velocity structure function and the energy dissipation rate are related by [57],  

                𝐶𝑉
2 = 2𝜖2 3⁄              (2.11) 



 In case of 𝑅 ≪ 𝑙0 , there is a quadratic relation of the distance R with the structure 

function, ant the proportionality constant is such that the two-thirds power law exists 

for R = l0 [57],  

             𝐷𝑅𝑅(𝑅) = {
𝐶𝑉
2𝑙0
−4 3⁄ 𝑅2, 𝑅 ≪ 𝑙0

𝐶𝑉
2𝑅2 3⁄ , 𝑙0 ≪ 𝑅 ≪ 𝐿0

            (2.12) 

 The intersection of the 𝑅2 and 𝑅2 3⁄  curves define the inner scale, l0. No similar 

description for  𝑅 ≫ 𝐿0 exists, because the assumption of isotropy is not valid in that 

region. The 2/3 power law behavior of the structure function in the inertial range is 

equivalent to the power spectrum in three dimensions given by [57],  

𝛷𝑅𝑅(𝜅) = 0.0066𝜀
2 3⁄ 𝜅−11 3⁄ = 

                              = 0.0033𝐶𝑉
2𝜅−11 3⁄ ⁡, 1 𝐿0⁄ ≪ ⁡𝜅 ≪ 1 𝑙0⁄             (2.13) 

 where 𝜅 is the scalar spatial frequency (rad/m). We can observe that the power 

spectrum exhibits a -11/3 power law, corresponding to a one-dimensional spectrum 

with a -5/3 power law. The power laws validity for the structure function and the power 

spectrum have been demonstrated over a wide range of experiments. However, a 

number of works suggest a modest change in the power law behavior of the structure 

function, which may have little effect on second order statistical quantities, but may be 

important in higher-order statistics.   

 Traditionally, the basic ideas about turbulence have been developed concerning 

velocity fluctuations. However, Kolmogorov’s fundamental ideas have been also 

applied to passive scalar physical quantities, such as potential temperature, which does 

not exchange energy with the velocity temperature. An equivalent inner and outer size 

scale form the boundaries of the inertial range, which in case of temperature 

fluctuations, is the inertial-convective range. Additionally, the analogue to the viscosity 

as the dissipation mechanism for velocity fluctuations, is the molecular diffusion. By 



applying the Kolmogorov theory towards temperature fluctuations, yet assuming 

homogeneity and isotropy, we take the same two-third power law [57], 

                          𝐷𝑇(𝑅) = 〈(𝑇1 − 𝑇2)
2〉 ⁡= {

𝐶𝑇
2𝑙0
−4 3⁄ 𝑅2, 𝑅 ≪ 𝑙0

𝐶𝑇
2𝑅2 3⁄ , 𝑙0 ≪ 𝑅 ≪ 𝐿0

           (2.14) 

 where 𝑇1 and 𝑇2 the temperature at two points separated by 𝑅 and 𝐶𝑇
2 the 

temperature structure function (in 𝑑𝑒𝑔2/𝑚2 3⁄ ). The inner scale for temperature 

fluctuations is given by [57],  

          𝑙0 = 5.8(𝐷
3 𝜀⁄ )1 4⁄                       (2.15) 

 where D, the diffusivity of heat in air (in m2/s). The 3-D spectrum of temperature 

fluctuations takes the -11/3 power law form [57],  

𝛷𝑇(𝜅) =
1

4𝜋
𝛽𝜒𝜀−1 3⁄ 𝜅−11 3⁄ = 

                               = 0.0033𝐶𝑇
2𝜅−11 3⁄ ⁡, 1 𝐿0⁄ ≪ ⁡𝜅 ≪ 1 𝑙0⁄                                (2.16) 

 where β the Obukhov – Corrsin constant and χ the rate of dissipation of the mean-

squared temperature fluctuations. Hill and Clifford have noted that there is a small 

“bump” in the temperature spectrum, close to 1 𝑙0⁄ , which can play a significant role in 

various quantities related to optical wave propagation.  

 The statistical description of the random field of the atmospheric refractive index 

caused by turbulence fluctuations, is similar to those caused by the velocity 

fluctuations. Again, an equivalent inertial subrange exists, bounded by an upper and a 

lower limit, where in the statistical homogeneity and isotropy are also valid 

assumptions. Because 〈𝑛1(𝑹)〉 = 0, the covariance function of 𝑛(𝑹) can be expressed 

as [57],  

𝐵𝑛(𝑹𝟏, 𝑹𝟐) ≡ 𝐵𝑛(𝑹𝟏, 𝑹𝟏 + 𝑹) = 〈𝑛1(𝑹𝟏)𝑛1(𝑹𝟏 + 𝑹)〉 



which is a function of R = R1 – R2, for homogeneous field. In case isotropy also exists, 

the covariance function reduces to 𝑅 = |𝑹𝟏 −𝑹𝟐|
2. The refractive index structure 

function exhibits the asymptotic behavior [57],  

        𝐷𝑛(𝑅) = 2[𝐵𝑛(0) − 𝐵𝑛(𝑅)] ⁡= {
𝐶𝑛
2𝑙0
−4 3⁄ 𝑅2, 𝑅 ≪ 𝑙0

𝐶𝑛
2𝑅2 3⁄ , 𝑙0 ≪ 𝑅 ≪ 𝐿0

                (2.17) 

 where 𝐶𝑛
2 the refractive index structure parameter (in m-2/3), whereas the inner 

scale [57],  

           𝑙0 = 7.4𝜂 = 7.4(𝑣3/𝜀)1 4⁄             (2.18) 

 From a physical point of view, 𝐶𝑛
2 is a measure of the strength of the refractive 

index fluctuations and is directly related to the temperature structure constant, 𝐶𝛵
2[58], 

                   𝐶𝑛
2 = (79 × 10−6

𝑃

𝑇2
)
2

𝐶𝑇
2           (2.19) 

  

2.4 Power Spectrum Models for Refractive Index 

Fluctuations 

 Once again we assume a homogeneous and isotropic turbulent field, where the 

energy is constant. Therefore, when we consider the turbulent energy transportation, 

this will be in wavenumber, κ, rather than in the coordinate space. So the spatial power 

spectral density of refractive index fluctuations, Φn(κ), is related with the covariance 

function by the three dimensional Fourier transform [57],  

𝛷𝑛(𝜅) =
1

(2𝜋)3
∭ 𝛣𝑛(𝑅)𝑒𝑥𝑝[−𝑖𝜿 ∙ 𝑹]𝑑

3𝑅 =
∞

−∞

 

                                             =
1

2𝜋2𝜅
∫ 𝛣𝑛(𝑅)
∞

0
sin(𝜅𝑅)𝑅𝑑𝑅            (2.20) 



 The last integral has been obtained by using the spherical symmetry and 𝜅 = |𝜅| 

is the scalar wave number. Based on inverse Fourier transform properties, it follows 

that [57],  

                    𝛣𝑛(𝑅) =
4𝜋

𝑅
∫ 𝜅𝛷𝑛(𝜅) 𝑠𝑖𝑛(𝜅𝑅)𝑑𝜅
∞

0
            (2.21) 

 Therefore, the spectrum can be expressed in terms of the structure function as 

follows [57],  

𝐷𝑛(𝑅) = 2[𝐵𝑛(0) − 𝐵𝑛(𝑅)] = 

                                   = 8𝜋 ∫ 𝜅2𝛷𝑛(𝜅) (1 −
𝑠𝑖𝑛(𝜅𝑅)

𝜅𝑅
) 𝑑𝜅

∞

0
            (2.22) 

 The temperature variations in the atmosphere are the main cause for refractive 

index fluctuations. In other words, humidity and pressure variations can be ignored. It 

is then generally accepted, that the functional form of the spatial power spectrum for 

the refractive index is the same as is for the temperature and additionally that 

temperature fluctuations follow the spectral law that velocity fluctuations also do. 

Based on the two third power law for the structure functions, it can be inferred that the 

associated power spectral density for the refractive index fluctuations within the inertial 

subrange is defined by the Kolmogorov power-law spectrum [57],  

                                 𝛷𝑛(𝜅) = 0.033𝐶𝑛
2𝜅−11 3⁄ , 1 𝐿0⁄ ≪ ⁡𝜅 ≪ 1 𝑙0⁄                       (2.23) 

 which is widely used in theoretical calculations due to its simplicity, even though 

it is valid only within the inertial subrange. The extension of its use outside the inertial 

subrange may lead to divergent integrals.  

 Whenever scale effects cannot be neglected, other proposed models exist to make 

the necessary calculations. In order to extend the power law beyond the inertial 

subrange, the introduction of a function that truncates the spectrum at high wave 

number is required. To do so, Tatarski introduced a Gaussian function leading to the 

spectrum model [57],  



                       𝛷𝑛(𝜅) = 0.033𝐶𝑛
2𝜅−11 3⁄ 𝑒𝑥𝑝 (−

𝜅2

𝜅𝑚
2 ) , 𝜅 ≫

1

𝐿0
; ⁡𝜅𝑚 = 5.92/𝑙0         (2.24) 

 Equation (2.24) is better known as Tatarski spectrum, and before having been 

adopted for refractive index fluctuations, it has been developed by Novikov for velocity 

fluctuations. For κ = 0 there is a singularity for the limiting case 1/L0 = 0 which means 

that while the structure function can be calculated, the covariance function, cannot. 

 A third model also exists, known as von Karman, allowing wave numbers in the 

input range 𝜅 <
1

𝐿0
⁡[57], 

                                𝛷𝑛(𝜅) =
0.033𝐶𝑛

2

(𝜅2+𝜅0
2)
−11 6⁄ , 0 ≤ 𝜅 ≪

1

𝑙0
, 𝜅0 = 2𝜋/𝐿0          (2.25) 

 If we adequately modify the Tatarski model, it can be valid for any wave number 

and be called the modified von Karman spectrum [57],  

                𝛷𝑛(𝜅) =
0.033𝐶𝑛

2

(𝜅2+𝜅0
2)
−11 6⁄ 𝑒𝑥𝑝 (−

𝜅2

𝜅𝑚
2 ) , 0 ≤ 𝜅 < ∞         (2.26) 

 Within the inertial subrange, the Tatarksi and the von Karman spectra are reduced 

to the Kolmogorov spectrum and due to their mathematical convenience they are widely 

used.  

 Finally, another model valid outside the inertial subrange, is the exponential 

spectrum [57],  

                  𝛷𝑛(𝜅) = 0.033𝐶𝑛
2𝜅−11 3⁄ [1 − 𝑒𝑥𝑝 (−

𝜅2

𝜅0
2)] , 0 ≤ 𝜅 ≪

1

𝑙0
        (2.27) 

 where 𝜅0 = 𝐶0/𝐿0, where the scaling constant 𝐶0 depends on the application. 

  

2.5 Free Space Optical Wave Propagation 

 The turbulent eddies, formed by the refractive-index variations, cause various 

distortions to an optical wave propagating through the atmosphere. There, energy is 



injected to form the outer scale size eddies and thereinafter is transferred to smaller 

scale size until it is dissipated.  

 The random amplitude and phase variations of the travelling wave, can be 

theoretically treated by solving the wave equation for the electric field and its respective 

statistical moments, derived from the stochastic Helmholtz equation [58],  

                      ∇2𝐸⃗⃗ + 𝑘2𝑛2(𝑟)𝐸⃗⃗ = 0                    (2.28) 

 where k = 2π / λ is the wavenumber, 𝑟 a random point in space and 𝑛(𝑟)⁡as given 

in Eq. (2.6). The actual equation that traditionally needs to be solved is the scalar 

stochastic Helmholtz equation [58],  

                     𝛻2𝑈 + 𝑘2𝑛2(𝑟)𝑈 = 0           (2.29) 

 which corresponds to either components of electric field. The Born and Rytov 

approximations have traditionally been used to solve Eq. (2.29). These solutions 

assume that backscattering and depolarization effects are neglected, the refractive-

index is assumed uncorrelated in the propagating direction and we can use the paraxial 

approximation. 

 

 2.5.1 Weak and strong fluctuation conditions 

 Theoretical studies of optical wave propagation have been traditionally classified 

to belong to either weak or strong fluctuation theory. For using the Kolmogorov 

spectrum, we use the Rytov variance to distinguish these two cases [58],    

     𝜎𝑅
2 = 1.23𝐶𝑛

2𝑘7 6⁄ 𝐿11 6⁄                        (2.30) 

 where 𝐶𝑛
2 the refractive index structure parameter. For 𝜎𝑅

2 < 1, fluctuations are 

considered as weak and the Rytov variance represents the irradiance fluctuations of an 

unbounded plane wave. For Rytov variance values more than unity, fluctuations are 

considered strong and for very high values 𝜎𝑅
2 → ∞,  saturation regime is reached. For 



a Gaussian-beam wave, this classification based solely on the Rytov variance is not 

adequate, but the scintillation index throughout the beam profile has to be less than 

unity. Therefore, for a Gaussian-beam wave, weak fluctuations require both conditions 

[55],  

     𝜎𝑅
2 < 1⁡and⁡𝜎𝑅

2𝛬5 6⁄ < 1            (2.31) 

 where 𝛬 = 2𝐿/𝑘𝑊2 and W  is the free space beam radius at the receiver. If either 

conditions do not hold, fluctuations are classified as moderate to strong.  

 

 2.5.2 Born Approximation 

 The most popular approaches towards the solution of Eq. (2.29) are the Born and 

Rytov perturbation methods. The difference between those two methods, is that the 

former adds whereas the latter multiplies the perturbation terms.  

 The square of the refractive index in Eq. (2.29) can be written [58],  

    𝑛2(𝒓) = ⁡ [𝑛0 + 𝑛1(𝒓)]
2 ≅ 1 + 2𝑛1(𝒓),⁡⁡⁡|𝑛1(𝒓)| ≪ 1           (2.32) 

 therefore, we can neglect the term 𝑛1(𝒓) as compared to 𝑛1
2(𝒓). For an optical 

wave travelling on the positive z-axis, we can express the optical field at z = L as [58], 

    𝑈(𝑟) = 𝑈0(𝑟) + 𝑈1(𝑟) +⁡𝑈2(𝑟) + ⋯,           (2.33) 

 where 𝑈0(𝑟) is the unperturbed part of the field while the rest of the terms the 

first-order, second-order etc. scattering, caused by random inhomogeneities. 

Substituting Eq. (2.32) and (2.33) into Eq. (2.29) and equating terms of the same order 

we take [58],  

                                                      𝛻2𝑈0 + 𝑘
2𝑈0 = 0                                             (2.34) 

                                      𝛻2𝑈1 + 𝑘
2𝑈1 = −2𝑘

2𝑛1(𝑟)𝑈0(𝑟)⁡                                  (2.35) 

                                     𝛻2𝑈2 + 𝑘
2𝑈2 = −2𝑘2𝑛1(𝑟)𝑈1(𝑟)⁡                                   (2.36) 



 and so forth for higher order perturbations. The most significant advantage of this 

approach, is the transformation of Eq. (2.29) which contains random and space-

dependent coefficients to a homogeneous equation and a system of non-homogeneous 

equations, all with constant coefficients [55].  

 

 2.5.3 Rytov Approximation 

 The Rytov approximation for the solution of Eq. (2.29) was initially used by 

Obukhov in a wave propagation problem in random media. Bounded only to the weak 

fluctuation conditions, this approach expresses the field of the electromagnetic wave as 

following [58],  

                               𝑈(𝒓) ≡ 𝑈(𝒓, 𝐿) = 𝑈0(𝒓, 𝐿)𝑒𝑥𝑝[𝜓(𝒓, 𝐿)]           (2.37) 

 where 𝜓(𝒓, 𝐿) is a complex phase perturbation due to turbulence and is expressed 

as [58],  

                                     𝜓(𝒓, 𝐿) = 𝜓1(𝒓, 𝐿) + 𝜓2(𝒓, 𝐿) + ⋯            (2.38) 

 where  𝜓𝑖(𝒓, 𝐿) the ith-order phase perturbation. As known, the addition of these 

phase perturbations results in a multiplication of the exponential functions of Eq. (2.37).  

 These perturbation terms can be directly related to the previously calculated Born 

perturbations. We introduce the normalized Born perturbations defined by [57], 

                                         𝛷𝑚(𝒓, 𝐿) =
𝑈𝑚(𝒓,𝐿)

𝑈0(𝒓,𝐿)
, 𝑚 = 1, 2, 3, …           (2.39) 

 We then equate the first-order perturbation terms of both approximations [57],  

𝑈0(𝒓, 𝐿)𝑒𝑥𝑝[𝜓1(𝒓, 𝐿)] = ⁡𝑈0(𝒓, 𝐿) + 𝑈1(𝒓, 𝐿) 

     = 𝑈0(𝒓, 𝐿)[1 + 𝛷1(𝒓, 𝐿)]            (2.40) 

 We then divide both terms by 𝑈0(𝒓, 𝐿) and take their natural logarithm [57],  

                       𝜓1(𝒓, 𝐿) = 𝑙𝑛[1 + 𝛷1(𝒓, 𝐿)] ≅ 𝛷1(𝒓, 𝐿), |𝛷1(𝒓, 𝐿)| ≪ 1          (2.41) 



 where 

𝛷1(𝒓, 𝐿) =
𝑈1(𝒓, 𝐿)

𝑈0(𝒓, 𝐿)
= 

              =
𝑘2

2𝜋
∫ 𝑑𝑧
𝐿

0
∬ 𝑑2𝑠𝑒𝑥𝑝 [𝑖𝑘(𝐿 − 𝑧) +

𝑖𝑘|𝒔−𝒓|2

2(𝐿−𝑧)
]
𝑈0(𝒔,𝑧)

𝑈0(𝒓,𝐿)

𝑛1(𝒔,𝑧)

(𝐿−𝑧)

∞

−∞
                    (2.42) 

 where  𝑈0(𝒓, 𝐿) represents the optical field in the receiver plane (z = L), whereas 

𝑈0(𝒔, 𝑧) represent the optical field at an arbitrary point along the propagation path. By 

following the exact same procedure for up to second-order perturbation terms we take 

[57],  

                                         𝜓2(𝒓, 𝐿) = 𝛷2(𝒓, 𝐿) −
1

2
𝛷1
2(𝒓, 𝐿)                                 (2.43) 

 where,  

𝛷2(𝒓, 𝐿) =
𝑈2(𝒓, 𝐿)

𝑈0(𝒓, 𝐿)
= 

           =
𝑘2

2𝜋
∫ 𝑑𝑧
𝐿

0
∬ 𝑑2𝑠𝑒𝑥𝑝 [𝑖𝑘(𝐿 − 𝑧) +

𝑖𝑘|𝒔−𝒓|2

2(𝐿−𝑧)
]
𝑈0(𝒔,𝑧)

𝑈0(𝒓,𝐿)

𝛷1(𝒓,𝐿)𝑛1(𝒔,𝑧)

(𝐿−𝑧)

∞

−∞
           (2.44) 

The first-order perturbation of the Rytov approximation which is directly proportional 

to the first-order perturbation of the Born approximation, is called the single scattering 

approximation. By using this approach, we can calculate many statistical quantities of 

interest (log-amplitude variance, phase variance etc.), but not any statistical moments 

(i.e. mean value etc.), where the second-order perturbation is required. 

  

2.6 Physical Effects 

 2.6.1 Angle-of-arrival fluctuations 

 In the presence of turbulence, the laser beam partially arrives on the receiver off-

axis, due to deflection. These variations in the angle with respect to the optical axis of 

the receiver, represent the concept of angle-of-arrival fluctuations. These fluctuations, 



which depend directly to the turbulence strength and optical path length, are given by 

[58],  

     〈𝛽𝑎
2〉 = 2.91𝐶𝑛

2𝐿(2𝑊𝐺)
−1 3⁄             (2.45) 

 Where WG is the soft aperture radius and is related to the receiver diameter D [58],  

      𝐷2 = 8𝑊𝐺
2                                                  (2.46) 

 In order to deal with this effect, a combination of fast steering mirrors and 

adaptive optics algorithms is required.  

 

 2.6.2 Beam Wander 

 In case of existence of turbulent eddies in the path of the optical beam whose size 

is bigger than the transmitter’s beam size, then we have random deflection of the beam’s 

original path, as a whole. This phenomenon is called beam wander and causes serious 

pointing errors towards the receiver [4]. It is mostly related to the instantaneous field 

of the received optical signal. On the other hand, the short and long term fields, present 

a closer to a perfect Gaussian field profile. A simulated comparison of these three cases, 

namely the instantaneous, the short and the long term, are presented in Figure 2.2, 

assuming a path length of L = 2 km, 𝐶𝑛
2 = 0.6 ∙ 10−14𝑚−2 3⁄ ⁡, λ = 1064 nm and W0 = 2 

cm. The exposition time of the long term field is 34 times the short time. Fante, related 

the beam’s centroid with the short-term, WST, and the long-term WLT, spot size as 

following [59],  

           〈𝑟𝑐
2〉 = 𝑊𝐿𝑇

2 −𝑊𝑆𝑇
2             (2.47)  

 where  

    𝑊𝐿𝑇
2 = 𝑊2[1 + 1.33𝜎𝑅

2𝛬5 6⁄ ], 𝛬 =
2𝐿

𝑘𝑊2                          (2.48) 

 where W, the pure diffraction beam radius at the receiver plane. The short-term 

profile is given by,  



   𝑊𝑆𝑇
2 = 𝑊2 {1 + 1.33𝜎𝑅

2𝛬5 6⁄ [1 − 0.66 (
𝛬0
2

1+𝛬0
2)
2

]}          (2.49) 

 

 (a) Instantaneous beam profile    (b) Short time beam profile        (c) Long time beam profile 

Fig. 2.2. Different profiles of a propagating Gaussian beam [58]. 

 

 2.6.3 Scintillation 

 The random fluctuations of the refractive index in the free space where an optical 

beam is propagating, cause temporal and spatial irradiance fluctuations at the receiver 

and this phenomenon is known as scintillation, a very serious factor that degrades the 

performance of an FSO system and many times its availability and reliability. In order 

to quantify the scintillation effect on the performance of an FSO system, we define 

several statistical quantities, the most common of which is the scintillation index [60],  

                 𝜎𝐼
2 =

〈𝐼2〉−〈𝐼〉2

〈𝐼〉2
=

〈𝐼2〉

〈𝐼〉2
− 1              (2.50) 

 where I is the irradiance of the optical signal at the receiver and 〈∙〉⁡denotes the 

ensemble average.  Classical studies on optical wave propagation, are classified into 

the strong and weak fluctuation theory. Commonly this is done using the value of the 

Rytov variance, as described in Section 2.5.1. Andrews et. al have developed a new 

approach, based on the extended Rytov theory combined with the solution of the 

Helmholtz equation, that treats the turbulence effects separately, namely those caused 

by the small-scale eddies, assumed to be diffractive inhomogeneities, and those caused 



by the large-scale eddies, assumed as refractive inhomogeneities. Mathematically, this 

is expressed as [58],  

         𝐼 = 𝑋𝑌             (2.51) 

 where X and Y the independently mean processes caused by the large and small 

scale turbulence, respectively. The irradiance can also be written as [58],  

            𝐼 = 𝐴𝑒𝑥𝑝(2𝜒)            (2.52) 

 where χ the log-amplitude of the optical wave. When this amplitude is normally 

distributed, it can be expressed in terms of scintillation index [58],  

           𝜎𝐼
2 = exp(4𝜎𝜒

2) − 1 = exp(𝜎𝑙𝑛𝐼
2 ) − 1                      (2.53) 

 where  𝜎𝑙𝑛𝐼
2  the variance of the log-irradiance, which depends on the large and 

small scale variances as follows [58],  

            𝜎𝑙𝑛𝐼
2 = 4𝜎𝜒

2 = 𝜎𝑙𝑛𝑋
2 + 𝜎𝑙𝑛𝑌

2            (2.54) 

 

2.7 Optical Turbulence Modeling 

 Besides the theoretical background of the optical turbulence, a thorough 

experimental analysis has been executed over the last 20 years from many academic 

institutes and research organizations, in order to better understand the effects of optical 

turbulence in laser beam propagation in the free space and be able to predict it.  

 One of the most prominent research campaigns towards the aforementioned goals 

has been executed by the Naval Information Warfare Center (NIWC), San Diego, ex. 

Space and Naval Warfare Systems Center (SPAWAR). NIWC has focused on the 

estimation of the refractive index structure parameter in a maritime environment. 

Specifically, several experimental campaigns have been executed along a 7-km path 

over San Diego Bay concurrently with meteorological measurements obtained from a 

sensor located on the sea surface at the midpoint of the path.  



 A significant difference of a typical diurnal profile of atmospheric turbulence 

between a terrestrial and an over-water propagation path is that the latter does not 

exhibit reduced values around sunrise and sunset. That means that the 𝐶𝑛
2⁡strength does 

not follow the characteristic bell-shaped diurnal profile but a random one during the 

day. Additionally, the 𝐶𝑛
2 strength over water is generally an order of magnitude lower 

than over land [61]. The FSO link availability as a function of range was measured for 

specific set of FSO parameters for a desert (China Lake, CA) and a maritime 

(Chesapeake Beach, MD) environments, and the former, as it would be expected, was 

much larger [61]. Over water, the atmospheric structure constant was found to have a 

strong dependence on the air-sea temperature difference (ASTD). Additionally, 

different beam propagation characteristics were observed for each temperature gradient 

sign. For colder air temperatures the beam transport is improved. Apart from the 

expression of Eq. 2.17 for the refractive index structure parameter (valid for the inertial-

subrange), 𝐶𝑛
2 can be expressed in terms of the temperature structure parameter,⁡𝐶𝑇

2 , the 

specific humidity structure parameter, 𝐶𝑞
2, and the temperature-specific humidity cross-

structure parameter, 𝐶𝑇𝑞, as follows, 

                𝐶𝑛
2 ⁡= ⁡𝐴2𝐶𝑇

2 ⁡+ ⁡2𝐴𝐵𝐶𝑇𝑞 ⁡+ ⁡𝐵
2𝐶𝑞

2⁡               (2.55) 

 where A and B are the partial derivatives of refractive index with respect to 

temperature and specific humidity, respectively [26].  The Meteorology Department of 

the ΝPS has developed a bulk 𝐶𝑛
2 prediction model based upon mean atmospheric layer 

properties, with an emphasis on the ASTD. The model’s basis is the Monin-Obukhov 

similarity (MOS) theory, which assumes conditions to be horizontally homogeneous 

and stationary and turbulent fluxes of momentum, sensible and latent heat, to be 

constant with height. These conditions are most likely to be valid in the open ocean 

rather than in a coastal location; therefore, the bulk model is believed to perform better 



in the former environment [62]. Scaling parameters for wind speed, temperature and 

specific humidity are defined [62],  

      𝑢∗ ≡ 〈−𝑤
′𝑢′〉1 2⁄           (2.56a) 

                                     𝑇∗ ≡ −
〈𝑤′𝑇′〉

𝑢∗
          (2.56b) 

               𝑞∗ ≡ −
〈𝑤′𝑞′〉

𝑢∗
          (2.56c) 

 where u the streamwise wind component and w the vertical wind component. 

Based on the MOS theory, any dimensionless dynamic surface-layer property by the 

proper scaling parameters can be expressed as a universal parameter ξ [62], 

                                                        𝜉 =
𝑧𝑘𝑔(𝑇∗+0.61𝑇𝑞∗)

𝜃𝑢𝑢∗
2             (2.57) 

 where z is the height above the surface, k is the von Karman constant (≈ 0.4), g 

the gravitational acceleration and 𝜃𝑢 is the vertical potential temperature. The mean 

vertical profiles of wind speed, temperature and specific humidity are also defined 

according to MOS theory [62], 

                   𝑈(𝑧) = 𝑈0 +
𝑢∗

𝑘
[𝑙𝑛 (

𝑧

𝑧𝑜𝑈
) − 𝛹𝑈(𝜉)],         (2.58a) 

            𝑇(𝑧) = 𝑇0 +
𝑇∗

𝑘
[𝑙𝑛 (

𝑧

𝑧𝑜𝑇
) − 𝛹𝑇(𝜉)],         (2.58b) 

                                             𝑞(𝑧) = 𝑞0 +
𝑞∗

𝑘
[𝑙𝑛 (

𝑧

𝑧𝑜𝑞
) − 𝛹𝑞(𝜉)],        (2.58c) 

 where 𝛹 functions are the integrated forms of the respective dimensionless profile 

functions and 𝑧𝑜𝑈, 𝑧𝑜𝑇 and 𝑧𝑜𝑞 the heights where the log-z profiles of U, T and q, 

respectively, reach their surface values. Solving those profile expressions for the scaling 

parameters and combining the expressions of the structure parameters in terms of the 

scaling parameters with Eq. 2.17, results in the NAVSLaM model [63], 

    𝐶𝑛
2 =⁡

𝑓(𝜉)𝑘2[𝐴2∆𝑇2+2𝐴𝐵𝑟𝑇𝑞∆𝑇∆𝑞+𝐵
2∆𝑞2]

𝑧2/3[ln(
𝑧

𝑧𝑜𝑇
)−𝛹𝑇(𝜉)]2

           (2.59) 



 and 

         𝜉 =
𝑧𝑔(∆𝑇+0.61𝑇∆𝑞)[ln(

𝑧

𝑧𝑜𝑈
)−𝛹𝑈(𝜉)]

2

𝜃𝑢∆𝑈2[ln(
𝑧

𝑧𝑜𝑇
)−𝛹𝑇(𝜉)]

            (2.60) 

 where f(ξ) is an empirical determined dimensionless function. By iteratively 

solving Eqs. (2.59) and (2.60), 𝐶𝑛
2 can be estimated after parameterizing zoT and zoU in 

terms of known quantity [62]. After extended experimental analysis of the model, 𝐶𝑛
2 is 

found to have strong dependence on the absolute value of the ASTD, increasing for 

higher wind speeds and negative ASTD and decreasing for positive ASTD values [62]. 

Compared to relative humidity, 𝐶𝑛
2 is directly proportional for positive ASTD, except 

for very small positive values [62]. The transition between positive and negative ASTD 

values was found to have a significant effect on the laser beam pointing. Finally, its 

dependence on height was found to scale as z-4/3 for unstable (ξ < 0), z-2/3 for neutral (ξ 

= 0) and constant for stable (ξ > 0) conditions [62]. 

 Sadot and Kopeika have derived experimentally two models, one for practical use 

and the other for scientific understanding [40]. The model predictions presented a 90% 

correlation with actual measurements over a wide range of environmental conditions. 

An interesting finding was the effect of aerosols on scintillation, which have been taken 

into account into their modeling. The models are simple mathematical formulas for 𝐶𝑛
2 

strength prediction, based on macroscopic meteorological parameters which can be 

easily obtained from a local weather station. The first model can be mathematically 

expressed as [40], 

𝐶𝑛
2 = 3.8 × 10−14𝑊(𝑡) + 2 × 10−15𝑇 − 2.8 × 10−15𝑅𝐻 + 2.9 × 10−17𝑅𝐻2 − 1.1 ×

10−19𝑅𝐻3 − 2.5 × 10−15𝑊𝑆 + 1.2 × 10−15𝑊𝑆2 − 8.5 × 10−17𝑊𝑆3 − 5.3 × 10−13 

                   (2.61) 



 where W(t) is a weight function, T is the air temperature in Kelvin, RH the relative 

humidity in hPa and WS the wind speed in m/s. The second model, apart from wind 

speed and relative humidity, takes into account the solar flux in Cal/(cm2 * min) and 

the total cross-sectional area of particles in cm2/m3, namely [40], 

𝐶𝑛
2 = 5.9 × 10−15𝑊(𝑡) + 1.6 × 10−15𝑇 − 3.7 × 10−15𝑅𝐻 + 6.7 × 10−17𝑅𝐻2 −

3.9 × 10−19𝑅𝐻3 − 3.7 × 10−15𝑊𝑆 + 1.3 × 10−15𝑊𝑆2 − 8.2 × 10−17𝑊𝑆3 + 2.8 ×

10−14𝑆𝐹 − 1.8 × 10−14𝑇𝐶𝑆𝐴 + 1.4 × 10−14𝑇𝐶𝑆𝐴2 − 3.9 × 10−13          (2.62) 

 The 𝐶𝑛
2 strength is highly height dependent. The highest values are observed at 

almost zero altitude, whereas at higher altitude decrease rapidly [64]. The above models 

have used a height of 15 meters, therefore all subsequent users need to scale them in 

the desired height. A typical diurnal profile of 𝐶𝑛
2 is characterized by higher values 

during the day, with a peak around midday and lower ones during night. The lowest 

values appear around sunrise and sunset. In order to emphasize this profile, both models 

include a weight function, calculated on the basis of the temporal hour that relates the 

actual time to the times of sunrise and sunset [39], 

     𝐻𝑇 = 12
𝐻𝑎𝑐𝑡𝑢𝑎𝑙−𝐻𝑠𝑢𝑛𝑟𝑖𝑠𝑒

𝐻𝑠𝑢𝑛𝑠𝑒𝑡−𝐻𝑠𝑢𝑛𝑟𝑖𝑠𝑒
            (2.63) 

 where HT is the temporal hour, Hactual is the actual time, Hsunrise is the sunrise time 

and Hsunset the sunset time. Then the weight factor can be assigned based upon Table 

2.1. 

Table 2.1. Weight Function. 

Temporal Hour Interval Weight Factor 

until −4 0.11 

−4 to −3 0.11 

−3 to −2 0.07 

−2 to −1 0.08 

−1 to 0 0.06 

0 to 1 0.05 

1 to 2 0.10 

2 to 3 0.51 

3 to 4 0.75 

4 to 5 0.95 



5 to 6 1.00 

6 to 7 0.90 

7 to 8 0.80 

8 to 9 0.59 

9 to 10 0.32 

10 to 11 0.22 

11 to 12 0.10 

12 to 13 0.08 

over 13 0.13 

 

 An extended number of other independent experimental campaigns toward 

optical turbulence modeling exist. The US Army Research Laboratory (ARL) has been 

working on its Atmospheric Laser Optics Testbed (A_LOT), which is a 2.33 km near 

horizontal optical path. A representative amount of work includes scintillation 

measurements and focal spot displacement to obtain optical turbulence information 

[65], point measurements of temperature variance and its relationship to refractive 

index fluctuations [66] and topographic and meteorological influences upon infrared 

imaging and laser optics communications [67].  

 The United States Naval Research Laboratory and Naval Academy can also 

present a significant research work on optical turbulence [68-70]. Specifically, they 

have developed and evolved ever since, an optical turbulence model known as 

PAMELA [71,72].  The estimated solar irradiance R, determines the radiation class cr 

= R/300 and for wind speed u0, we define the wind speed class cw. The Pasquill stability 

category P, is then defined [26],  

      𝑃 =
−(4−𝑐𝑤+𝑐𝑟)

2
            (2.64) 

The Obukhov buoyancy length scale L can be calculated, for a roughness length for the 

shrub-covered dry lakebed, zr = 0.16m, as follows [26],  

             𝐿 = [(𝑎1𝑃 + 𝑎2𝑃
3)𝑧𝑟

−(𝑎3−𝑎4|𝑃|+𝑎5𝑃
2)]

−1
           (2.65) 

 where,  

𝑎1 = 0.004349, 𝑎2 = 0.003724, 𝑎3 = 0.5034 



𝑎4 = 0.231, 𝑎5 = 0.0325 

 The wind shear φm(ζ) and the potential temperature gradient φh(ζ) are 

dimensionless and can be expressed as a function of the scaled buoyancy parameter ζ 

= z / L. The friction velocity u* is then given by [26],  

                                                               𝑢∗ =
𝜅𝑢0

ln⁡(
𝑧

𝑧𝑟
)
             (2.66) 

 and the characteristic temperature T*,   

                   𝑇∗ =
−𝐻

𝑐𝑝𝜌𝑢∗
             (2.67) 

 where H the heat flux, 𝑐𝑝 the specific heat and 𝜌 the mass density. The eddy 

dissipation rate, 𝜖 is [26],  

                                                          𝜖 = ⁡
𝑢∗
3(𝜑𝑚−𝜁)

0.4𝑧
             (2.68) 

 and for a constant 𝑏 ≈ 2.8 we can evaluate 𝐶𝑛
2 [26],  

                                                        𝐶𝑛
2 =

𝑏𝐾ℎ

𝜖1/3
(
𝑑𝑛

𝑑𝑧
)
2

             (2.69) 

 where Kh the turbulent exchange coefficient for heat and  
𝑑𝑛

𝑑𝑧
 given by [26],  

       
𝑑𝑛

𝑑𝑧
= −

77.6×10−6𝑃𝑎𝑇∗𝜑ℎ

0.4𝑧𝑇2
            (2.70) 

 In [73], a new approach for optical turbulence estimation was developed, the 

method of available power. This theory does not take into account the optical intensity 

distribution of the laser beam. It is based on an analysis of the optical intensity profile 

and works with the redistribution of the optical intensity within the laser beam. The 

method’s name comes from the fact the intensity’s integration result in the available 

optical power [74],  

     𝑉𝐴𝑃 = ∬𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦            (2.71) 

 where f(x,y) the three-dimensional available power function obtained by the local 

minimum in each of the scanned pixels of the laser beam intensity profile. The available 



power function f(x,y) needs to be positive in order for the method to be valid. The 

integration limits are defined by the size of the receiving optical lens. The relative 

volume of the available power, VAP,r, is given as the ratio of the volume of available 

power to the volume of available power in non-turbulent atmosphere, VAP,o. 

Consequently, the turbulence attenuation is given by [74],  

                        𝛼𝐴𝑃 = 10𝑙𝑜𝑔𝑉𝐴𝑃,𝑟                       (2.72) 

 Another bulk method approach for optical turbulence modeling is the Thierman-

Kohnle concept according to which the vertical profile of 𝐶𝑇
2 is [75],  

                                  𝐶𝑇
2 = 4𝛽

𝑇∅
2

(𝑘𝑧)2/3
[1 + 7

𝑧

𝐿∅
+ 20 (

𝑧

𝐿∅
)
2

]
1/3

           (2.73) 

 where β is an empirical constant set to 35 W/m2, 𝑇∅
2 the turbulent temperature 

scale, z the elevation, k the von Karman constant equal to 0.35 and 𝐿∅ the Monin-

Obukhov length, in case of stability (
𝑧

𝐿∅
> 0) where air is warmer than the ground, 

whereas [75],  

        𝐶𝑇
2 = 4𝛽

𝑇∅
2

(𝑘𝑧)2/3
[1 − 7

𝑧

𝐿∅
+ 75 (

𝑧

𝐿∅
)
2

]
−1/3

          (2.74) 

 in case of instability  (
𝑧

𝐿∅
< 0), where air is colder than the ground. Furthermore, 

the turbulent temperature scale and the Monin-Obukhov length can be expressed in 

terms of the wind velocity, 𝑢∅, measured at height zu [75],  

     𝑢∅ = 𝑢𝑘 [𝑙𝑛 (
𝑧𝑢

𝑧0
) − 𝜓(𝐿∅)]

−1

                           (2.75) 

                 𝑇∅ = −
𝑄0

𝑢∅
            (2.76) 

               𝐿∅ =
𝑢∅
2𝑇

𝑘𝑔𝑇∅
             (2.77) 

 where 𝑧0 the roughness length of the ground surface in meters, 𝑄0 the vertical 

turbulent kinematic heat flux (in K times meters per second) and g the acceleration due 



to gravity. Depending on the stability of the conditions, the parameter 𝜓(𝐿∅) is 

expressed as [75],  

   𝜓(𝐿∅) = {
2𝑙𝑛 (

1+𝑦

2
) + 𝑙𝑛 (

1+𝑦2

2
) − 2𝑡𝑎𝑛−1𝑦 +

𝜋

2
,
𝑧

𝐿∅
< 0⁡⁡

−
4.7𝑧𝑢

𝐿∅
,
𝑧

𝐿∅
> 0⁡⁡

    (2.78) 

 where y is,  

            𝑦 = (1 −
15𝑧𝑢

𝐿∅
)
1/4

           (2.79) 

 

 2.7.1 Numerical Weather Prediction Modeling 

 A different way to predict the optical turbulence in the atmosphere and exploit it 

for FSO systems performance assessment and improvement, is the numerical weather 

prediction (NWP) models. For experiments that use optical devices which are sensitive 

to scintillation effects caused by fluctuations in the atmospheric refractive index, it is 

highly desirable to have a method for forecasting the scintillation levels. This requires 

a forecast model of atmospheric conditions as a starting point. However, since most 

NWP models cover a large area, the grid spacing of even high-resolution models is 

necessarily coarse relative to the scales of scintillation [76]. Most NWP models suffer 

from smoothing and filtering effects so that the smallest scales produced by the model 

are in fact underresolved.  

 Tatarski proposed a theoretical model in 1961 to compute 𝐶𝑛
2 defined as [77],  

                   𝐶𝑛
2(𝑧) = 𝛾𝑀2𝐿0(𝑧)

4/3            (2.73) 

 where 𝛾 ≈ 2.8 a constant, 𝐿0 the outer scale of the turbulence, and M the vertical 

gradient of the generalized potential refractive index of the air [77],  

             𝑀 = −80 ∙ 10−6
𝑃

𝑔𝑇
𝑁2            (2.74) 



 where P the atmospheric pressure in hPa, T the air temperature in K, g the gravity 

acceleration and N the buoyancy frequency given by [77],  

                𝑁2 =
𝑔

𝜃

𝜕𝜃

𝜕𝑧
             (2.75) 

 where θ the potential temperature in K, given by [77],  

              𝜃 = 𝑇 (
1000

𝑃
)
𝑅 𝑐𝑃⁄

                       (2.76) 

 where R = 287 JK-1kg-1 the gas constant of the air and cP = 1004 JK-1kg-1 the 

specific heat capacity at a constant pressure [77]. This model, coupled with a Weather 

Research Forecast (WRF) model have been used to predict the refractive index in the 

vertical profile [77-80]. The exact process is forecasting routine meteorological 

parameters by a WRF model and then predict 𝐶𝑛
2 by a turbulence model (i.e. Monin-

Obukhov Similarity Theory based model) based on these forecasts.  

 WRF model is a mesoscale NWP model both for professional forecasts and 

atmospheric research. WRF has been developed by the National Center of Environment 

Prediction (NCEP) and the National Center of Atmospheric Research (NCAR) of the 

United States. WRF is initialized by the Global Forecast System (GFS) data, with a 

horizontal resolution of 1o X 1o (longitude and latitude). WRF model exports a big 

variety of routine meteorological parameters which depend upon the physical schemes 

that have been chosen for the simulation. The available schemes are the following [77]: 

 (1)  The micro-physics process uses the WRF Single-Moment 3 class (WSM-

3) scheme which is suitable for medium-scale grid dimension, and contains three kinds 

of water materials: water vapor, cloud water or cloud ice, rainwater or snow.   

 (2)  The Rapid Radiative Transfer Model (RRTM) scheme is used for the 

longwave radiation. The longwave process is caused by water vapor, ozone, carbon 

dioxide and other gases, as well as by the optical depth of cloud. 



 (3)  The shortwave radiation uses the Goddard scheme which is suitable for 

cloud resolution models. 

 (4)  The planetary boundary layer uses the Yonsei University (YSU) scheme 

which is suitable for ocean environment simulation and adds the process of dealing with 

entrainment at the top of planetary boundary layer. 

 (5)  The surface layer uses the Monin-Obukhov scheme which is based on the 

Monin-Obukhov similarity theory (MOST). 

 (6)  The cumulus parameterization uses the Kain-Fritsch scheme which consists 

of a cloud model concerning the water vapor lifting and subsidence, with the 

phenomena, such as, entrainment, detrainment, air-current ascension and subsidence 

covered.  

 

2.8 Optical Turbulence Modeling in Monterey Bay 

 An experimental campaign took place during September and October of 2020 

over the Monterey Bay in California. The main goal of this campaign was to measure 

atmospheric turbulence over the water and compare the results with a theoretical model 

called the Navy Surface Layer Model (NAVSLaM), developed by the Meteorology 

Department at the Naval Postgraduate School (NPS), as well as conduct a regression 

analysis for turbulence predictive modeling based on environmental parameters. The 

results showed very good agreement between theory and experiment. 

 The experimental measurements took place over the southern part of the 

Monterey Bay, California. The experiment utilized an MZA DELTA turbulence 

monitor, which consisted of a telescope located on the Coast Guard pier and a target 

board located on a coastal bluff (Figure 2.3). The optical path distance was 1563 meters, 

at a height that varied from ~2.8 meters above sea level at the telescope to ~10 meters 



above sea level at the target board; these heights fluctuated due to tidal variation. More 

than 95% of the path was over the water. The DELTA uses a Celestron f/10, 6-inch 

diameter aperture Schmidt-Cassegrain telescope equipped with a Point Grey 3.2 mega-

pixel Grasshopper 3 USB Camera in order to obtain images of the target board. A laptop 

computer was connected to the camera through a USB cable, in order to store and 

analyze the images. The MZA software calculates 𝐶𝑛
2⁡along the image path by tracking 

target board features as they jitter due to turbulence. Specifically, it measures 

differential jitter of feature pairs as a function of angular separation. The 𝐶𝑛
2 turbulence 

profiles are estimated by observing the jitter over many length scales, as illustrated in 

Figure 2.4. Turbulent cells close to the telescope (the red box in Figure 2.4) are 

associated with jitter correlations over larger scales (the red line in the target board 

image on the right in that figure), while cells close to the target board (the green box) 

cause jitter correlations over smaller scales (the green line). Thus, by applying a path 

weighting function, it is possible to obtain a 𝐶𝑛
2 profile along the beam path. DELTA 

measurements are separated into ten bins. Path-weighting functions in each bin are 

heavily weighted at the receiver, extending to the midpoint of the path, but effectively 

zero at the target. Path weighting functions model how turbulence along the path 

contributes to the expected value of the tilt-variance is observed. The system was set 

up to take one measurement every minute and the output file contained the turbulence 

profile. Figure 2.5 shows the locations of the DELTA telescope, the target board, and 

the weather stations. 



 

Figure 2.3 The MZA DELTA telescope and the Ambient WS-2000 weather station located on 

the Coast Guard Pier (left) and the target board (right) [J7]. 

 

Figure 2.4. Differential jitter measurements vs angular separation using MZA 

DELTA system [J7]. 

 

Figure 2.5. The maritime path over Monterey Bay, CA. The MZA DELTA telescope was 

located on the Coast Guard Pier and the target board on a coastal bluff [J7].    



 The experimental setup also included weather stations located on the Coast Guard 

Pier next to the DELTA (Ambient WS-2000) and on the Municipal Pier (NOAA 

weather station). Real time data from these weather stations were used as inputs to the 

NAVSLaM model for 𝐶𝑛
2 predictions. The WS-2000 weather station was installed at a 

height of ~4.8 meters above sea level, providing meteorological data such as air 

temperature, relative humidity, air pressure, wind speed, solar radiation, and rainfall 

rate; the NOAA weather station provided additional measurements, including tidal 

height and sea temperature. 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 3 

FSO Performance Modeling 

 
 Two are the main factors in order to characterize the performance of an FSO link, 

that is the channel modeling and system performance metrics. This section provides the 

background of channel modeling, including the atmospheric effects that affect a laser 

beam propagating in the atmosphere and the most well-known probability density 

functions (pdf) that are being utilized towards irradiance fluctuations modeling. 

Additionally, the performance metrics on the system-level are provided, to include bit 

error rate (BER), outage probability, average capacity and outage capacity. Finally, 

representative experimental FSO performance modeling efforts, are also presented.  

 

3.1 Introduction  

 In the FSO optics, the modulated optical signal of the transmitter is propagating 

through the dynamically changing atmosphere. This fact, has been proved, both 

theoretically and experimentally, that causes link performance degradation and even 

total outage. The main root causes are two, the free space propagation effects and the 

system itself.  

 The optical signal before being transmitted in the free space is being modulated, 

with multiple possible techniques which influence parameters, such as bandwidth and 

energy efficiency. Perhaps, the most commonly used techniques are the On-Off Keying 

(OOK), the phase shift keying (PSK), the differential phase shift keying (DPSK) and 

orthogonal modulation formats [81]. The modulation formats exhibit different 



sensitivity on the turbulence flow in the atmosphere, which results in received optical 

power decrease, something that affects the bit-error-rate (BER). The advantage of OOK 

modulation is its simplicity, however it is more sensitive to atmospheric turbulences 

and other disturbing influences for received level fluctuations. In this case, the BER is 

defined as follows [81],  

                      𝐵𝐸𝑅𝑂𝑂𝐾−𝑁𝑅𝑍 =
1

2
𝑒𝑟𝑓𝑐 (

1

2√2
√𝑆𝑁𝑅)             (3.1) 

 In [82], it is shown that an Optical Wireless Communication (OWC) system 

which uses an Optical Code Division Multiple Access (OCDMA) based on Carbon 

Nanotubes (CNTs), exhibits improved data rate, BER and signal-to-noise ratio (SNR). 

Another approach for FSO performance enhancement in terms of modulation scheme, 

is the optical spatial modulation (OSM) as a mean to achieve spatial diversity in 

coherent FSO systems [83]. By using a generic analytical framework for obtaining the 

average bit error rate probability (ABEP) of uncoded and coded OSM with coherent 

detection in the presence of turbulence, it was shown that OSM can offer comparable 

performance with conventional coherent FSO schemes [83]. For the case of multiple-

input multiple-output (MIMO) FSO communication systems, it is shown that the 

performance is worse for a spatial multiplexing scheme when OOK modulation is 

employed, even with the optimal maximum likelihood detection at the receiver, as 

compared to the repetition coding (RC) case for equal transmission rate [84]. In such a 

transmitter architecture (MIMO), by controlling the amplitude and phase of the optical 

field at each transmitter, based on turbulence state information fed back from the 

receiver, it has been shown that the system’s performance was significantly increased 

by exploiting the instantaneous structure of the turbulence [85].  

 Another factor that seriously affects the performance of an FSO communication 

link is the pointing errors, especially at high range links. Simulations have shown that 



the maximum pointing error allowed to achieve a 10-9 BER for clear weather, can reach 

13.53 μrad. In case of heavy fog, which is the worst case scenario for an FSO link, it is 

shown that even very small pointing errors can lead to total link failure [86].    

 Another essential element of supporting the engineering development and 

operational employment of aerospace electro-optical sensor systems, is the extinction 

coefficient measurements, which allow the calculation of their range performance, 

either for current or possible future applications, such as ranging, weapons, remote 

sensing and possible planetary exploration missions. Novel methods were proposed in 

[87], based on laser energy measurement incident on surfaces with known geometric 

and reflection characteristics by using IR detectors. They also proposed algorithms that 

allow a direct determination of the atmospheric transmittance and spatial characteristics 

of the laser spot, as [87, Tables 7 - 9]. Assuming an extended target, the power at the 

detector is expressed as follows [87],  

           𝑃 = 𝐾𝑆𝑌𝑆 ∙ 𝜌 ∙
1

𝑑0
2 ∙ 𝑒

−2𝛾𝑑0              (3.2) 

 where ρ the target reflectivity, d0 the distance between the transmitter and the 

target, γ the extinction coefficient and KSYS a constant including all relevant transmitter 

system parameters.  

 The first step in studying the mean fade time in an FSOC system, is the temporal 

analysis of the irradiance at the detector plane. A novel technique to execute this 

analysis for a laser beam (i.e Gaussian) propagating through the turbulent atmosphere 

is by means of computer simulation, and specifically by a known numerical method to 

generate long phase screens [88-89]. In order to simulate the wind effect, these screens 

are displaced in a transverse direction as the wave propagates. The temporal power 

spectrum SI can be derived from the temporal covariance BI with a Fourier transform 

[88],  



                    𝑆𝐼(𝜔) = 2∫ 𝐵𝐼(𝜏) exp(−𝑗𝜔𝜏) 𝑑𝜏
∞

0
             (3.3) 

 The most relevant parameter needed to assess the link’s availability is the mean 

fade time, defined as the continuous average period of time in which the received power 

is below a certain level. This time period is expressed as follows [89],  

             〈𝑇(𝐹0)〉 ≡
𝑃{𝐹<𝐹0}

〈𝑛(𝐹0)〉
              (3.4) 

 where F the fading level below the average power, F0 a certain fading value, 

〈𝑛(𝐹0)〉 the expected number of fades per second and 𝑃{𝐹 < 𝐹0} the fading probability.  

 When assessing the performance of hybrid radio-frequency/FSOC system, we 

need to investigate the noise propagation effect, which can be very serious when 

battery-charged sensor nodes have very limited transmit power. In [90], an exact 

expression for the cumulative distribution function (CDF) is presented as follows,  

                               𝐹𝛾𝐹𝑆𝑂(𝑥) = ∑
𝑏𝑗(𝛼,𝛽,𝛿)

(𝜂𝑤𝜇𝑤)
𝑗+𝛽
𝑤

𝑥
𝑗+𝛽

𝑤 +∞
𝑗=0

𝑏𝑗(𝛼,𝛽,𝛿)

(𝜂𝑤𝜇𝑤)
𝑗+𝛽
𝑤

𝑥
𝑗+𝛽

𝑤                         (3.5) 

 where 𝜇𝑤 the average electrical SNR, α and β atmospheric parameters, δ a ratio 

between the equivalent beam radius and the pointing error displacement standard 

deviation at the receiver and [90],  

           𝑏𝑗(𝛼, 𝛽, 𝛿) =
𝑎𝑗(𝛼,𝛽)𝛿

2

{(𝑗+𝛽)(𝛿2−𝑗−𝛽)𝛷𝑗+𝛽}
             (3.6) 

 Outdoor experiments for FSO performance validation and assessment, including 

different applications, terrains, geometry and environments are perhaps the safest way 

to extract reliable insights about their feasibility and potential for future use [91]. 

However, outdoor experiments are usually expensive and difficult to reproduce, 

therefore it is often helpful to develop realistic numerical and experimental simulations. 

Spatial light modulators (SLMs), have been demonstrated as a well-suited alternative 

for simulating different turbulent conditions in a laboratory [92].  

 



3.2 Environmental Effects 

 The performance of FSO links is subject to various environmental factors like 

fog, haze, rain, etc. that lead in received signal power degradation. From these factors, 

the atmospheric attenuation is usually dominated by fog, since its particle size is 

comparable with the wavelength of interest in FSO system. It can alter the optical signal 

characteristics or even completely block the light passage because of absorption, 

scattering, and reflection. The atmospheric visibility is a useful measure of atmospheric 

environmental conditions prediction and is defined as the distance that a parallel 

luminous beam travels through the atmosphere until its intensity drops 2% of its original 

value. In order to estimate the optical attenuation based on the visibility statistics to 

predict the availability of an FSO system, the relationship between visibility and 

attenuation has to be known. In order to characterize the attenuation of an optical signal 

propagating through a medium, we use a term called “specific attenuation” which is 

defined as the attenuation per unit length expressed in dB/km and is given as [93],  

           𝛽(𝜆) =
1

𝑅
∙ 10𝑙𝑜𝑔 (

𝑃0

𝑃𝑅
) =

1

𝑅
∙ 10𝑙𝑜𝑔(𝑒𝛾(𝜆)𝑅)            (3.7) 

 where R the link length, P0 the emitted optical power, PR the optical power at a 

distance R and γ(R) the atmospheric attenuation coefficient.  

  (i) Fog effect: The fog particle is composed of very fine water droplets 

or ice, or combination of them near the earth’s surface, which scatter the light and hence 

reduce the visibility. Fog is correlated with a visibility of less than 1 km and relative 

humidity that reaches the saturation level (100%) [93]. The most important parameter 

which describes fog, is the particle size distribution, usually modeled by the modified 

gamma distribution, as follows [93],  

                     𝑛(𝑟) = 𝑁0𝑟
𝑚𝑒𝑥𝑝(𝛬𝑟𝜎)              (3.8) 



 where n(r) denotes the number of particles per unit volume per unit increment of 

the particle having radius r and N0, m, Λ and σ are the four adjustable parameters that 

characterize the particle size distribution. 

  In FSOC systems, the operating wavelength is chosen to fall within the low 

absorption bands. Therefore, absorption contribution to the total attenuation coefficient 

becomes very small as compared to the scattering effect [94]. Therefore, studying fog 

particles scattering is important in order to predict the attenuation for wireless network 

planning and installation. Determining the size, and water content in fog particles is 

important to predict the attenuation. The fog particle radii differ in different climatic 

regions and therefore, we can observe different attenuation for optical wave 

propagating through fog conditions even at the same wavelength. Assuming spherical 

shape, fog particles can be categorized into following three classes based on their radii 

[95]: 

  a) Aitken particles and ultra-fine particles: Fine particles with an 

average size ranging between 0.001 and 0.1 μm. 

  b) Fine particles: The size range of these particles lie within 0.1 and 1 

μm. 

  c) The larger particles: The size of these particles lie within 1 and 100 

μm. 

 Apparently, this information is difficult to achieve and not always available at the 

FSO link installation site. Therefore, researchers have proposed empirical models that 

depend on visibility data, which are widely available from meteorological stations in 

cities. Such models have been developed from Kruse, Kim and Al Nabulsi and use this 

approach and predict specific attenuation using visibility. The specific attenuation in 

dB/km for both Kim and Kruse model is given by [96],  



        𝑎𝑠𝑝𝑒𝑐 =
10𝑙𝑜𝑔𝑉%

𝑉(𝑘𝑚)
(
𝜆

𝜆0
)
−𝑞

             (3.9) 

 where V(km) is the visibility, V% is the transmission of air drops to percentage 

of clear sky, λ the operating wavelength and λ0 the wavelength of reference (550 nm). 

 For Kruse model [96],  

              𝑞 = {
1.6,⁡⁡⁡𝑉 > 50𝑘𝑚

1.3,⁡⁡⁡6𝑘𝑚 < 𝑉 < 50𝑘𝑚

0.585𝑉1/3,⁡⁡⁡𝑉 < 6𝑘𝑚⁡
           (3.10)  

 For Kim model [96], 

              𝑞 = {

1.6,⁡⁡⁡𝑉>50𝑘𝑚⁡
1.3,⁡⁡⁡6𝑘𝑚<𝑉<50𝑘𝑚

0.16𝑉 + 0.34, 1𝑘𝑚 < 𝑉 < 6𝑘𝑚⁡
𝑉−0.5,⁡⁡⁡0.5𝑘𝑚<𝑉<1𝑘𝑚

0,⁡⁡⁡𝑉<0.5𝑘𝑚

          (3.11) 

 The specific attenuation in dB/km, both for advection and radiation fog is given 

by Al Naboulsi as follows [96],  

            𝑎𝑠𝑝𝑒𝑐 (
𝑑𝐵

𝑘𝑚
) =

10

𝑙𝑛10
𝛾(𝜆)           (3.12) 

 Finally, Ijaz model is given, for wavelengths from 0.6 to 1.6 μm, by [93],  

           𝑎𝑠𝑝𝑒𝑐 (
𝑑𝐵

𝑘𝑚
) =

17

𝑉
(
𝜆

0.55
)
−𝑞(𝜆)

           (3.13) 

 where q(λ) = 0.1428λ – 0.0947.  This model is valid only for visibilities between 

15 m and 1 km.  

 It has been shown, that the fog attenuation effect does not have linear relationship 

with wavelengths in the region from 0.6 to 1.6 μm, for V < 0.5 km, whereas the effect 

of smoke attenuation is found to be linearly decreasing from 0.83 to 1.55 μm from very 

dense smoke (V < 0.07 km) to moderate smoke (V < 0.5 km) [97]. In [98] a fog sensor 

is presented, which obtains environmental data, process them mathematically and can 

exploit them for FSO link evaluation as well as in process of switching FSO link with 

some form of back up radio link (RF/FSO).  



 The Wavelength Division Multiplexing (WDM) technique, allows many signals 

to be multiplexed together and transmitted as one signal. When applied in FSOC 

systems, multiple modulating signals modulate different optical carriers, which are then 

multiplexed and sent through a single laser beam. An improved version of this 

technique, to better cope with the atmospheric effects, is the multibeam WDM, where 

more than one beam of the multiplexed signal traverse through the free space and reach 

the receiver [99]. Since each beam follows a different path, faces different attenuation 

too. In [99] it was shown that a multibeam WDM-FSO system exhibits a significantly 

improved performance under heavy haze conditions.  

 (ii) Rain effect: Rain attenuation, although heavily dependent on the 

precipitation microphysics, is of the same order of magnitude as at mm-waves. That 

being said, when fog is non-negligible, FSOCs are outperformed by microwave links 

in high-availability applications. On the other hand, in locations where fog is rare or 

not present at all, rain is the main atmospheric phenomenon that limits the performance 

of an FSO link. Several models have been developed to predict the attenuation caused 

by rain at millimeter frequency level, such as the International Telecommunication 

Union – Radio communication sector (ITU-R), the Brazilian, the Lin and the 

Moupfouma [100]. Although several models for FSO applications exist, they are 

usually location dependent and based on limited local data.  

 Specific attenuation due to rain, in the optical transmission windows that are 

usually adopted by commercial FSO systems, is wavelength independent, and is often 

calculated from the rain rate R (in mm/h) as follows [100],  

         𝛾 = 𝑘𝑅𝑎             (3.14) 

 where k and α are coefficients that are very sensitive to the distribution of the 

raindrop size. A typical example is the experimental calculation of these coefficients 



for a typical tropical region, as k = 2.03 and α = 0.74 by using least square mean 

equation (LSME) method with Levenberg–Marquardt optimization based on one year 

collected heavy rain data [101]. Typical values for rain attenuation prediction model 

coefficients are shown in Table 3.1 [102]. 

Table 3.1. Rain attenuation prediction model for FSO 

Attenuation Relation 

Light Rain (R<3.8 mm/hr) 0.509R0.63 

Mean Rain (3.8<R<7.6 mm/hr) 0.319R0.63 

Strong Rain (R>7.6 mm/hr) 0.163R0.63 

Rain 0.365R0.63 

 

 Specific rain attenuation in dB/km can be calculated by integrating all drop sizes 

as follows [103],  

                       𝛾 = 4.343 ∫𝑄(𝐷, 𝜆,𝑚)𝑁(𝐷)𝑑𝐷            (3.15) 

 In order to be able to build a global model, a methodology able to synthesize 

realistic rain fields globally is presented in [100]. Afterwards, the relationship between 

specific attenuation and rain rate is derived from scattering theory and finally the rain 

attenuation impairing a link of an arbitrary length is obtained by integrating specific 

rain attenuation along that path. The results are presented in the form of the 

complementary cumulative distribution function (CCDF) of rain attenuation, a key 

element supporting the design of wireless communication systems. 

 (iii) Snow effect: Snow attenuation depends on the size of the snowflakes and 

the snowfall rate. Since snowflakes are larger than the raindrops, they cause deeper 

fades in the signal. Snowflakes can be as large as 20mm in diameter, therefore, they 

can completely block the path of the optical signal, based on the width of the beam. The 



snow attenuation can be classified into wet and dry. The specific attenuation (dB/km) 

for snow rate S in mm/hr is given as follows [4], 

                  𝛽𝑠𝑛𝑜𝑤 = 𝑎𝑆
𝑏             (3.16) 

 where the values of parameters a and b in dry and wet snow are [4], 

Dry⁡snow: 𝑎 = 5.42 × 10−5 + 5.4958776,⁡⁡⁡𝑏 = 1.38 

                      Wet⁡snow: 𝑎 = 1.023 × 10−4 + 3.7855466,⁡⁡⁡𝑏 = 0.72           (3.17) 

 The snow attenuation can also be approximated based on the visibility as follows 

[4],  

                𝑎𝑠𝑛𝑜𝑤 =
58

𝑉
                        (3.18) 

 

3.3 Channel Statistical Modeling 

 In this section, the various performance metrics of the wireless channels 

environment in modern communications schemes, whose availability and reliability is 

closely related to the signal fading conditions, are presented. The energy propagation 

in a mobile radio environment is characterized by several effects, like multi-path fading 

and shadowing, which result in channel strength variations over time and frequency. 

These variations can be classified into two categories, the large scale fading, due to path 

loss and shadowing and the small scale fading, due to reflection, scattering, diffraction 

and absorption of the propagating waves with physical obstacles [104]. The 

mathematical modeling of wireless channels is also facilitated by another classification 

of the fading phenomena, the slow and the fast, based on the rate at which the magnitude 

and phase of the received signal varies with respect to channel changes. This 

classification is related to the channel’s coherence time Tc, a measure of the minimum 

time required for the magnitude change of the channel to become uncorrelated from its 



previous value. The coherence time is related to the channel Doppler spread fd as 

follows [104],  

           𝑇𝑐 ≅ 1 𝑓𝑑⁄              (3.19) 

 A wireless channel is classified as slow fading, when Tc, is large relative to the 

delay requirement of a specific application, and fast fading when it is small. It is 

important to notice that the characterization of a fading channel as slow or fast depends 

strongly on the bit rate of the link, which means that as data rates increase, a wireless 

channel is better described as slow fading and vice versa.  

 Initially, statistics of irradiance referred only on single family distributions, such 

as the modified Rician and lognormal (LN) distribution. Later, the nonstationary nature 

of atmospheric turbulence, showed that these distributions could not describe 

turbulence accurately [105]. There has been a significant interest, in the development 

of an accurate PDF for received irradiance description of an optical wave after 

propagating through a turbulent path. The goal is to derive a distribution valid 

throughout the strength region of turbulence. An ideal PDF of irradiance, would be 

valid in all turbulence regimes, for any receiving aperture size, has parameters related 

to physical atmospheric quantities, and is described by a closed mathematical form 

[105]. 

 Malaga Distribution 

 In this distribution the small-scale fading characteristic of the atmospheric 

channel is primarily due to diffraction and is modelled by three different signal 

components, the line-of-sight (LOS) field component, 𝑈𝐿, and two scattered 

components due to small-scale fluctuations [106]. The first, 𝑈𝑆
𝐶, is the quasi-forward 

signal that is scattered by eddies within the propagation axis, assumed to be coupled 

with 𝑈𝐿. The second, 𝑈𝐶
𝐺 , is the scattered energy by off-axis eddies and considered 



statistically independent from the other two. Therefore, the optical field is described as 

follows [106],  

                                             𝑈 = (𝑈𝐿 + 𝑈𝐶
𝐺 + 𝑈𝑆

𝐶)exp⁡(𝜒 + 𝑗𝑆)                           (3.20) 

 where χ and S are real random variables (RVs) which represent the log-amplitude 

and phase fluctuations of the optical field, respectively. Both variables model the large-

scale fading characteristic of the channel which is due to refractive effects [107]. The 

LOS components are defined as follows [107],  

𝑈𝐿 = √𝐺√𝛺exp⁡(𝑗𝜑𝐿) 

                                                𝑈𝑆
𝐶 = √𝐺√𝜉𝑐exp⁡(𝑗𝜑𝐶)             (3.21) 

 where G is a random variable that follows the Gamma distribution and E[G]=1 

and φL and φC deterministic phases of the LOS and the coupled-to-LOS components. Ω 

is the LOS average optical power represented by 𝛺 = 𝐸[|𝑈𝐿|
2] and ξ the average optical 

power of the total scatter components, represented by  𝜉 = 𝐸 [|𝑈𝑆
𝐶|
2
+ |𝑈𝐶

𝐺|
2
] = 𝜉𝑐 +

𝜉𝑔. The amount of scattering power is represented by the parameter ρ, which relates the 

two scattering components and ranges from 0 to 1 [108]. Thus we take,  

     𝜉𝑐 = 𝜌𝜉⁡𝑎𝑛𝑑⁡𝜉𝑔 = (1 − 𝜌)𝜉           (3.22) 

 and the total average optical power [108],  

      𝐸[𝐼] = 𝛺 + 𝜉             (3.23) 

 From Eq. (3.20) the irradiance in the receiver is expressed as follows [108],  

       𝐼 = |𝑈𝐿 + 𝑈𝑆
𝐶 + 𝑈𝐶

𝐺|
2
exp(2𝜒) = 𝑌𝑋           (3.24) 

 where 𝑋 = 𝑒𝑥𝑝(2𝜒) and  𝑌 = |𝑈𝐿 + 𝑈𝑆
𝐶 + 𝑈𝐶

𝐺|
2
 are independent variables for the 

large and small-scale fluctuations, respectively [108]. The large-scale parameter 

follows a log-normal distribution but for better mathematical tractability it is modeled 

with a Gamma pdf, whereas the small-scale parameter, is obtained from a combination 



of a Nakagami-m distribution and a Rayleigh random phasor. Thus, the small-scale 

fluctuation pdf is given by [108],  

       𝑓𝑌(𝑦) =
1

𝜉𝑔
[

𝛽𝜉𝑔

𝛺′+𝛽𝜉𝑔
]
𝛽

𝑒𝑥𝑝 [−
𝑦

𝜉𝑔
] 𝐹1 (𝛽; 1;

𝛺′

𝛺′+𝛽𝜉𝑔

𝑦

𝜉𝑔
)1           (3.25) 

 where 𝛺′ = 𝛺 + 𝜉𝑐 + 2√𝛺𝜉𝑐cos⁡(𝜑𝐿 − 𝜑𝐶) is the average power from the 

coherent contributions, β the shape parameter of the Nakagami distribution, whereas 

1F1(·) the Kummer confluent hypergeometric function of the first kind [109]. Finally, 

we take the pdf of the received irradiance I as follows [110],  

            𝑓𝐼(𝐼) = 𝐴∑ 𝑎𝑘𝐼
𝑎+𝑘

2
−1𝐾𝑎−𝑘 (2√

𝛼𝛽𝐼

𝜉𝑔𝛽+𝛺′
)

𝛽
𝑘=1            (3.26) 

 where, 

                        𝐴 =
2𝑎

𝑎
2

𝜉𝑔
1+
𝑎
2𝛤(𝑎)

(
𝜉𝑔𝛽

𝜉𝑔𝛽+𝛺′
)
𝛽+

𝑎

2
            (3.27) 

 and  

          𝑎𝑘 = (𝛽−1
𝑘−1

)
(𝜉𝑔𝛽+𝛺

′)
1−
𝑘
2

𝛤(𝑘)
(
𝛺′

(𝜉𝑔
)
𝑘−1

(
𝛼

𝛽
)

𝑘

2
           (3.28) 

 Gamma-Gamma Distribution 

 The Gamma-Gamma distribution is a two parameter model based on the doubly 

stochastic scintillation theory which assumes that the large scale irradiance fluctuations 

modulate the small scale irradiance fluctuations of the propagating beam and both of 

them are governed by two independent Gamma distributions [111]. A significant 

advantage of this distribution, is that it’s parameters are directly related to the local 

atmospheric turbulence conditions, as well as with the parameters of the link, such as 

the link’s length, the aperture diameter of the receiver and the operational wavelength. 

 We can express the second moment of Eq. (3.24) as follows [111],  

           〈𝐼2〉 = 〈𝑋2〉〈𝑌2〉 = (1 + 𝜎𝑥
2)(1 + 𝜎𝑦

2)           (3.29) 



 where  𝜎𝑥
2 and 𝜎𝑦

2 are the normalized variances of X and Y respectively. To 

develop an irradiance pdf model for this distribution, it is assumed that both large-scale 

and small-scale irradiance fluctuations are governed by the Gamma distribution [112],  

                                     𝑓(𝑥) =
𝑎(𝑎𝑥)𝑎−1

𝛤(𝑎)
exp(−𝑎𝑥) , 𝑥 > 0, 𝑎 > 0           (3.30) 

 By fixing x and setting y = I/x, we can take the conditional pdf [111],  

     𝑝𝑦(𝐼|𝑥) =
𝛽(𝛽𝐼/𝑥)𝛽−1

𝑥𝛤(𝛽)
exp⁡(−

𝛽𝐼

𝑥
)           (3.31) 

 where x is the conditional mean value of I.  Forming the average of Eq. (3.31) 

over the gamma distribution, leads to the Gamma-Gamma distribution [111],                    

⁡⁡⁡⁡⁡𝑝(𝐼) = ∫ 𝑝𝑦 (
𝐼

𝑥
) 𝑝𝑥(𝑥)𝑑𝑥 =

∞

0

2(𝑎𝛽)(𝑎+𝛽) 2⁄

𝛤(𝛼)𝛤(𝛽)
𝐼(𝑎+𝛽) 2⁄ −1𝐾𝑎−𝛽[2(𝑎𝛽𝐼)

1 2⁄ ], 𝐼 > 0  (3.32)  

 The parameter α represents the effective number of large-scale cells of the 

scattering process and β the effective number of small-scale cells. The gamma-gamma 

pdf results in,  

                〈𝐼2〉 = (1 +
1

𝑎
) (1 +

1

𝛽
)           (3.33) 

 The gamma-gamma distribution has been extensively used for turbulence channel 

modeling in FSO link performance studies [113 – 118].   

 A new and unifying statistical model for irradiance fluctuations and valid under 

all range of turbulence conditions was proposed in [119], named Double Generalized 

Gamma. Actually, it demonstrated an excellent match to simulation data and proved to 

be superior as compared to Gamma-Gamma model. By integrating (3.32) we take the 

Double Generalized Gamma distribution [120],   

𝑓𝐼(𝐼) = ⁡
𝛾2𝑝𝑝

𝑚2−1/2𝑞𝑚1−1/2(2𝜋)1−(𝑝+𝑞)/2𝐼−1

𝛤(𝑚1)𝛤(𝑚2)
×

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝐺1,𝑝+𝑞+1
𝑝+𝑞,1 [(

𝐼𝛾2

𝛺2
)
𝑝 𝑚1

𝑞
𝑚2
𝑝

𝑝𝑝𝑞𝑞𝛺1
𝑞 |

1
∆(𝑞:𝑚1), ∆(𝑝:𝑚2), 0

]           (3.34) 



 where G [.] the Meijer G-function, mi correspond to parameters alpha and beta of 

Eq. (3.32).  

 Double-Weibull Distribution 

 If we consider a random variable, x, with a Weibull distribution we take [121],  

           𝑓𝑥(𝑥) =
𝛽𝑥𝛽−1

𝛺
exp⁡(−

𝑥𝛽

𝛺
)           (3.35) 

 where β > 0 irradiance fluctuation strength related parameter of the distribution 

and Ω > 0 is related to the average power. The n-order moment of x is given by [121],  

         𝐸〈𝑥𝑛〉 = (𝛺)𝑛 𝛽⁄ 𝛤 (1 +
𝑛

𝛽
)           (3.36) 

 where  𝐸〈. 〉 denotes the expectation and Γ (.) the Gamma function. The second 

moment of the irradiance is given by Eq. (3.29). Then the scintillation index is given 

by,  

         𝜎𝐼
2 =

𝐸〈𝐼2〉

𝐸〈𝐼〉2
− 1 = (1 + 𝜎𝑥

2)(1 + 𝜎𝑦
2) − 1                      (3.37) 

 If we assume that both irradiance scales are governed by the Weibull distribution, 

then using the generalized statistical model proposed in [122] and after some 

simplifications we take the Double-Weibull pdf of I,  

               𝑓𝐼(𝐼) =
𝛽2𝑘(𝑘𝑙)

1
2

(2𝜋)
𝑙+𝑘
2
−1
𝐼−1 × 𝐺𝑘+𝑙,0

0,𝑘+𝑙 [(
𝛺2

𝐼𝛽2
)
𝑘

𝑘𝑘𝑙𝑙𝛺1
𝑙 |∆
(𝑙; 0), ∆(𝑘; 0)

−
]          (3.38) 

 I-K Distribution 

 The I-K distribution has been found to be applicable for the received irradiance 

fluctuations modeling under all range of turbulence conditions. It includes two 

parameters, namely α and ρy, which represent the effective number of scatters and a 

coherence parameter, respectively. The pdf of the I-K distribution is expressed as 

follows [123], 



𝑓𝐼𝐾,𝐼𝑟(𝐼𝑟) =

{
 

 2𝑎𝑦 (
𝑦𝐼𝑟

𝜌
)

𝑎−1

2
𝐾𝑎−1(2√𝑎𝜌)𝐼𝑎−1(2√𝑎𝑦𝐼𝑟),⁡⁡⁡𝑓𝑜𝑟⁡𝐼𝑟 <

𝜌

𝑦

2𝑎𝑦 (
𝑦𝐼𝑟

𝜌
)

𝑎−1

2
𝐼𝑎−1(2√𝑎𝜌)𝐾𝑎−1(2√𝑎𝑦𝐼𝑟),⁡⁡⁡𝑓𝑜𝑟⁡𝐼𝑟 >

𝜌

𝑦

                   (3.39) 

 where 𝐼𝑟 = 𝐼 𝐼𝑛⁄  the normalized irradiance, I and In the instantaneous and average 

received irradiance, respectively. Additionally, y = 1+ ρ and I(.) and K(.) the modified 

Bessel function of the first and the second kind of order v, respectively [124].  

 Log-Normal (LN) Distribution 

 The log-normal distribution models pretty accurately the behavior of the channel 

under weak turbulence conditions. One of the main advantages of this model, as stated 

in Gamma-Gamma distribution too, is that the link’s parameters are directly related 

with the ones of the distribution. The log-normal distribution model of the normalized 

irradiance I is expressed as follows [60],  

         𝑓𝐼(𝐼) =
1

𝐼𝜎√2𝜋
𝑒𝑥𝑝 (−

(ln(𝐼)+𝜎2 2⁄ )
2

2𝜎2
)           (3.40) 

 where σ2 the log-irradiance variance, depending on the channel characteristics 

and expressed for a plane wave propagation as follows [60],  

               𝜎2 = 𝑒𝑥𝑝 [
0.49𝜎𝑅

2

(1+0.65𝑑2+1.11𝜎𝑅
12 5⁄

)
7 6⁄ +

0.51𝜎𝑅
2(1+0.69𝜎𝑅

12 5⁄
)
−5 6⁄

1+0.9𝑑2+0.62𝑑2𝜎𝑅
12 5⁄ ] − 1           (3.41) 

 while for a spherical wave propagation the expression is as follows [60],  

                𝜎2 = 𝑒𝑥𝑝 [
0.49𝜎𝑅

2

(1+0.18𝑑2+0.56𝜎𝑅
12 5⁄

)
7 6⁄ +

0.51𝜎𝑅
2(1+0.69𝜎𝑅

12 5⁄
)
−5 6⁄

1+0.9𝑑2+0.62𝑑2𝜎𝑅
12 5⁄ ] − 1          (3.42) 

where 𝑑 = √𝑘𝐷2/4𝐿 the receiver diameter.  

 Fisher-Snedecor F Distribution 

 The F-Distribution is also a two-parameter distribution based on the doubly 

stochastic turbulence induced fading, which assumes that the small-scale irradiance 

variations are modeled by a gamma distribution and are subject to the large-scale 



variations which are modeled by an inverse gamma distribution [125]. The irradiance 

can be expressed in the form of Eq. (3.24) that corresponds to the multiplication of the 

small (IS) and large (IL) scale irradiance fluctuations. This model assumes that the small-

scale parameter is modeled by a gamma distribution given by Eq. (3.30). Many previous 

works, suggested that the large scale parameter is better expressed by the log-normal 

distribution. More recently, the inverse gamma distribution has also been suggested as 

an accurate approximation to the log-normal distribution. Additionally, the inverse 

gamma is related to the gamma distribution and exhibits semi heavy-tailed 

characteristics that allows it to model the large-scale fading [125]. The pdf for the large-

scale is given by [126], 

             ⁡𝑓𝐼𝐿(𝑦) =
(𝑏−1)𝑏𝑦−𝑏−1

𝛤(𝑏)
𝑒𝑥𝑝 (−

𝑏−1

𝑦
) , 𝑏 > 1           (3.43) 

 IS and IL are independent, therefore the pdf expression for I is given by [126],  

    𝑓𝐼(𝐼) = ∫ 𝑥−1𝑓𝐼𝑠(𝑥)𝑓𝐼𝐿(𝐼𝑥
−1)𝑑𝑥

∞

0
            (3.44) 

 Thus, if we substitute the two previous mentioned expressions for IS and IL in Eq. 

(3.44) we take the F-distribution for I in closed form [126],  

          𝑓𝐼(𝐼) =
𝑎𝑎(𝑏−1)𝑏𝐼𝑎−1

𝐵(𝑎,𝑏)(𝑎𝐼+𝑏−1)𝑎+𝑏
            (3.45) 

 where the scintillation index can be computed as follows [126],  

                                           𝜎𝐼
2 = (1 +

1

𝑎
) (1 +

1

𝑏−2
) − 1            (3.46) 

 and 𝜎𝑆
2 =

1

𝑎
 and 𝜎𝐿

2 =
1

𝑏−2
 the normalized variances for IS and IL, respectively.  

 Exponentiated Weibull Distribution 

 In [127], the authors also proposed a different model, with performance 

comparable to the Log-normal and the Gamma-Gamma models, the so-called 

Exponentiated Weibull model. This model is developed on the idea that for a non-

stationary process, where the signal statistics vary significantly over the time of 



observation, a mixture of models, with weighted summation of different distributions, 

is more suitable. The main concept accounts for one on-axis term and an unknown 

number of independent off-axis terms. To provide the necessary degrees of freedom to 

the mathematical model to account for all (with unknown number) uncorrelated terms, 

a generic average is used as follows [128], 

      𝐼𝑝 = ∑ 𝑤𝑗𝐼𝑗
𝑝𝑚

𝑗=1            (3.47) 

 where Ij are the Weibull random variables and wj their weighting factors.  Then, 

the PDF of a random variable I described by the exponentiated Weibull (EW) 

distribution is given as follows [129],  

  𝑓𝐼(𝐼; 𝛼, 𝛽, 𝜂) =
𝛼𝛽

𝜂
(
𝛪

𝜂
)
𝛽−1

𝑒𝑥𝑝 [−(
𝛪

𝜂
)
𝛽

] {1 − 𝑒𝑥𝑝 [−(
𝛪

𝜂
)
𝛽

]}
𝑎−1

         (3.48) 

 

3.4 FSO Link Analysis 

 It is absolutely essential to be able to predict an FSO link performance in order to 

design and operate a practical, and cost-effective system. The system must be able to 

establish a laser communication link between transmitting and receiving terminals with 

a certain availability (outage probability) and a probability of error lower than a 

specified bit-error rate (BER). 

 A laser beam propagating through the atmosphere is attenuated by absorption and 

scattering due to the presence of aerosols, dust, smoke, fog, clouds, rain, snow, and 

atmospheric molecules. The induced photocurrent from the received optical signal is 

given as follows [130], 

                     𝑖 =
𝐺𝑃𝑅𝐸𝐶𝜆𝑞

ℎ𝑐
             (3.49) 



 where PREC the received power, q the electronic charge and G the avalanche 

photon detector (APD) gain. The mean-square fluctuations in the signal current isig is 

given as follows [130],  

     〈𝑖𝑠𝑖𝑔𝑛𝑜𝑖𝑠𝑒
2 〉 = 2𝑞𝑀𝐹𝑖𝑠𝑖𝑔𝐵𝑊𝑑𝑒𝑡           (3.50) 

 where F the excess-noise factor for the APD. Equivalent expressions can be 

deduced for the currents due to background and the detector noise. If we assume the 

mean-square fluctuations in the photo detector current due to signal, background, and 

detector noise are all independent and uncorrelated, the total root-mean-square (rms) 

noise for a binary 1 or 0 can be calculated as follows [130], 

 𝜎1 = √〈𝑖𝑠𝑖𝑔𝑛𝑜𝑖𝑠𝑒
2 〉 + 〈𝑖𝑏𝑘𝑔𝑛𝑜𝑖𝑠𝑒

2 〉 + 〈𝑖𝑑𝑒𝑡𝑛𝑜𝑖𝑠𝑒
2 〉, for transmission of binary 1      (3.51) 

  𝜎0 = √〈𝑖𝑠𝑖𝑔𝑛𝑜𝑖𝑠𝑒
2 (𝜂)〉 + 〈𝑖𝑏𝑘𝑔𝑛𝑜𝑖𝑠𝑒

2 〉 + 〈𝑖𝑑𝑒𝑡𝑛𝑜𝑖𝑠𝑒
2 〉, for transmission of binary 0         (3.52)   

    where  𝑖𝑠𝑖𝑔𝑛𝑜𝑖𝑠𝑒
2 (𝜂) is the extinction ratio of the laser signal, therefore, accounts 

for the incomplete modulation of the laser from an ON state to an OFF state. The 

probability of detecting either a 1 or 0 in error is given as follows [130], 

          𝑒𝑟𝑟𝑜𝑟1 = ⁡∫
𝑒𝑥𝑝[−(𝑖−𝐼)2/2𝜎1

2]

√2𝜋𝜎1
2

𝑑𝑖
0.5𝐼

−∞
            (3.53)   

    𝑒𝑟𝑟𝑜𝑟0 = ⁡∫
𝑒𝑥𝑝[−𝑖2/2𝜎0

2]

√2𝜋𝜎0
2

𝑑𝑖
∞

0.5𝐼
            (3.54) 

 Then, the overall BER is the mean of these two probabilities,  

          BER = (error1+error0)/2            (3.55) 

 The goal for a lasercomm system is to transmit the maximum number of bits per 

second over the maximum possible range with the fewest errors. Typically, a “1” 

denotes a pulse of a transmitted light whereas “0” denotes no optical light transmission. 

The bit rate of the link is defined as the number of either “1s” or “0s” per second.  



 The BER of the system depends on the modulation format, and the signal-to noise 

ratio (SNR), where the noise contributions come from all possible sources which 

include signal shot noise, dark current noise, thermal/Johnson noise in the electronics 

following the photo detector, and the background noise. In a turbulent channel, the SNR 

is a fluctuating term, therefore it is appropriate to extract the average (mean) value 

which can be expressed as follows [130],  

      〈𝑆𝑁𝑅〉 =
𝑆𝑁𝑅0

√
𝑃𝑆0
〈𝑃𝑆〉

+𝜎𝐼
2(𝐷)𝑆𝑁𝑅0

2

           (3.56) 

 where SNR0 the signal-to-noise ratio in the absence of turbulence, PS0 the signal 

power in the absence of atmospheric effects, 〈𝑃𝑆〉⁡the mean input signal power and  

𝜎𝐼
2(𝐷) the aperture-averaged scintillation index. In presence of turbulence, the 

probability of error for a wireless IM/DD system using OOK signaling technique, is 

related to the SNR as follows [130],  

                  𝐵𝐸𝑅 =
1

2
∫ 𝑝𝐼(𝑠)𝑒𝑟𝑓𝑐 (

〈𝑆𝑁𝑅〉𝑠

2√2〈𝑖𝑆〉
)𝑑𝑠

∞

0
             (3.57) 

 In the case of a channel modeled by the Malaga pdf the average BER for a system 

with IM/DD (OOK), can be written in closed-form expression as follows [131],  

          𝑃𝑏(𝑒) =
2𝑎−1𝐴

8𝜋√𝜋
𝐵
𝑎

2 ∑ 2𝑘𝐵
𝑘

2𝑎𝑘 × 𝐺5,2
2,4 (

8𝑅2𝑃𝑡
2

𝜎𝛮
2 𝛣2|

1−𝛼

2
,
2−𝛼

2
,
1−𝑘

2
,
2−𝑘

2
, 1

0,
1

2

)
𝛽
𝑘=1    (3.58) 

 with 𝐵 =
𝛾𝛽+𝛺′

𝛼𝛽
 and the rest of parameters as previously defined in par. 3.3.  

 The BER of IM/DD with OOK is given by Pb(e) = p(1)p(e|1) + p(0)p(e|0), where 

p(1) and p(0) the probabilities of sending 1 and 0 bits, respectively and p(e|1) and p(e|0) 

are the conditional bit error probabilities when the transmitted bit is 1 and 0, 

respectively. If we also consider that p(1) = p(2) = 1/2 and p(e|1) = p(e|0), then the 

conditioned on h is given as follows [132],  



    𝑃𝑏(𝑒|ℎ) = 𝑝(𝑒|1, ℎ) = 𝑝(𝑒|0, ℎ) = 𝑄 (
√2𝑃𝑡ℎ

𝜎𝑁
)          (3.59) 

 Where Q(.) the Gaussian Q function. Then, the average BER can be obtained by 

averaging over the pdf of h [132],  

               𝑃𝑏(𝑒) = ∫ 𝑓ℎ(ℎ)𝑃𝑏(𝑒|ℎ)𝑑ℎ
∞

0
            (3.60) 

 Using a K turbulence model for the irradiance and expressing the Kv(.) and erf(.) 

integrands as Meijer’s G functions, a closed-form solution of BER for a FSO system 

under misalignment-induced fading is given as follows [132],  

             𝑃𝑏(𝑒) =
2𝛼−3𝛾2

√𝜋3𝛤(𝛼)
𝐺6,3
2,5(

16𝑃𝑡
2𝐴0

2

𝜎𝛮
2𝑎2

|

2−𝛾2

2
,
1−𝛼

2
,
2−𝛼

2
, 0,

1

2
, 1

0,
1

2
,
−𝛾2

2

)          (3.61) 

 Assuming a maritime Visible Light Communication (VLC) multi-hop (maritime 

transceiver) IM/DD (OOK) communication link system using DF relays, which 

includes k hops and (N-1) DF relays, the equivalent end-to-end SNR at the receiver is 

given as follows [133],  

             𝜇 = (∑
1

𝜇𝑘

𝑁
𝑘=1 )

−1

            (3.62) 

 where 𝜇𝑘 = (𝜂𝐼𝑘)
2/𝑁0 the instantaneous SNR at the kth hop. Assuming that all 

hops have the same statistical behavior, an approximated bit error rate (BER) of a DF-

based multi-hop FSO is given as follows [133],  

            𝐵𝐸𝑅 ≈
1

2
(1 − (1 − 2𝐵𝐸𝑅𝑘)

𝑁)           (3.63) 

 where BERk the BER at the kth hop.  

 A variety of experimental estimation research works for BER of FSO links under 

all turbulence strength regions and for differently modeled irradiance fluctuations exist 

in the literature [134-137].   

 As described in the previous paragraphs, the atmospheric turbulence causes 

fading on the propagating laser beam, which within the context of laser communications 



affects the reliability of an FSO link. The optical turbulence effects on the beam include 

the intensity decrease of the received signal and below a threshold value it can even 

cause outage of the link. The frequency of the signal intensity fluctuations, as compared 

to the bit rate of the channel, characterizes the fading statistics that describe this 

channel, as either fast or slow. Fast fading statistics refer to the case where the 

fluctuations are much more rapid than the bit rate, whereas slow statistics refer to the 

case where these fluctuations are slow as compared to the bit rate.  

 Another performance metric, apart from the bit-error-rate (BER), that is useful 

for both fast and slow fading statistics is the outage probability (Pout) of the link. Pout is 

defined as the probability that the instantaneous SNR in the receiver falls below a 

critical threshold that is determined by the sensitivity of the receiver. Apparently, the 

lower this probability the more reliable the FSO link. The relationship between the 

irradiance and the SNR on the receiver is given by the expression [60], 

                       𝐼 = √
𝛾

𝜇
             (3.64) 

 where γ and μ are the instantaneous and the average electrical SNR, defined as 

𝛾 = (𝜂𝐼)2/𝑁0, and 𝜇 = (𝜂〈𝐼〉)2/𝑁0, respectively. Substituting Eq. (3.64) in the PDF 

for a Gamma-Gamma modeled channel [Eq. (3.32)] and with a power transformation 

of I, we obtain the PDF of the irradiance in terms of the instantaneous SNR on the 

receiver [60], 

         𝑓𝛾(𝛾) =
(𝛼𝛽)(𝛼+𝛽) 2⁄

𝛤(𝛼)𝛤(𝛽)

𝛾((𝛼+𝛽) 4)⁄ −1

𝜇((𝛼+𝛽) 4)⁄ 𝛫𝛼−𝛽 (2√𝛼𝛽√
𝛾

𝜇
) ,⁡⁡⁡⁡𝛪 > 0          (3.65) 

 Therefore, as stated before, if we assume γth to be the threshold value of the 

instantaneous SNR in the receiver, we define the outage probability for a channel 

modeled with the Gamma Gamma distribution as follows [60], 



            𝑃𝑜𝑢𝑡 = 𝑃𝑟(𝛾 ≤ 𝛾𝑡ℎ) = 𝐹𝛾(𝛾𝑡ℎ) =

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡
(𝛼𝛽)(𝛼+𝛽) 2⁄

𝛤(𝛼)𝛤(𝛽)
(
𝛾𝑡ℎ

𝜇
)

𝑎+𝛽

4
𝐺1,3
2,1(𝛼𝛽√

𝛾𝑡ℎ

𝜇
|

1 −
𝑎+𝛽

2
𝑎−𝛽

2
,
𝛽−𝑎

2
, −

𝑎+𝛽

2

)                      (3.66) 

 Based on the Shannon theorem, the capacity of a communication channel is given 

as follows [60],  

      𝐶 = 𝐵𝑙𝑜𝑔2(1 + 𝛤)            (3.67) 

 where B the bandwidth and Γ the SNR at the receiver. However, since the SNR 

fluctuates randomly, it is considered a random variable and Eq. (3.67) does not have a 

significant meaning, thus we have to define the average capacity for a fast fading 

channel and the outage capacity for a slow fading channel. The expression for the 

evaluation of the average capacity of an optical link modeled by a Gamma Gamma PDF 

is given as follows [60],  

                    〈𝐶〉 =
𝐵(𝑎𝛽/√𝜇)

𝑎+𝛽
2

𝛤(𝛼)𝛤(𝛽)ln⁡(2)
∫ ln⁡(1 + 𝛾)𝛾

𝛼+𝛽

4
−1𝐾𝛼−𝛽 (2√𝛼𝛽√

𝛾

𝜇
)𝑑𝛾

∞

0
         (3.68) 

 Other expressions for the average (ergodic) capacity of dual-hop FSO 

communication system employing amplify-and-forward (AF) relaying [138] and of a 

MIMO FSO system [139] exist.  

 As previously mentioned, the appropriate metric for the estimation of the 

performance of the FSO channel for the cases of slow fading statistics is the outage 

capacity. Assuming again a Gamma Gamma modeled channel, the expression for the 

outage (normalized) capacity is given as follows [60],  

        𝑓𝐶̃ =
2𝐶̃ln⁡(2)(𝛼𝛽)

𝛼+𝛽
2

𝛤(𝛼)𝛤(𝛽)

(2𝐶̃−1)

𝛼+𝛽
4

−1

𝜇
𝛼+𝛽
4

𝐾𝛼−𝛽 (2√𝛼𝛽√
2𝐶̃−1

𝜇
)          (3.69)  

 The outage probability estimation of an FSO link is extremely significant in the 

case of a hybrid RF/FSO link. In that case, the FSO sub-system of the hybrid system 



initiates the transmission with the selected link as long as its instantaneous signal-to-

noise ratio (SNR) at the optical receiver is above a certain threshold. When the SNR 

falls below this threshold, the system switches to the RF sub-system, while putting the 

FSO sub-system on a standby mode. The outage probability and average symbol error 

rate (SER) of a proposed hybrid FSO/RF system was extensively analyzed in [140] and 

the following expression was given,  

                     𝑃𝑜𝑢𝑡 = 𝐹𝛾
𝐹𝑆𝑂(𝛾𝑡ℎ)𝐹𝛾

𝑅𝐹(𝛾𝑡ℎ)            (3.70) 

 where,  

          𝐹𝛾
𝐹𝑆𝑂(𝛾𝑡ℎ) = ∏ 𝐹𝑗

𝐹𝑆𝑂(𝛾𝑡ℎ)
𝑁𝑓
𝑗=1

            (3.71) 

 the cumulative distribution of the instantaneous SNR at the FSO receiver.   

 In [141] the outage probability of an FSO link was estimated based on actual 

visibility data collected from different sites of India.  

 Another outage probability expression was proposed in [142], for an FSO system 

using multi-pulse pulse position modulation (MP-PPM) over Gamma-Gamma 

turbulence channel,  

         𝑃𝑒(ℎ) ≤
(𝑀𝑘 )−1

2√𝜋
𝐺1,2
2,0 (𝜇2ℎ2|

1

0,
1

2

)            (3.72) 

 where G is the Meijer G-function, h the optical intensity fluctuations resulting 

from the atmospheric attenuation ha, atmospheric turbulence ht, and pointing error 

effects hp, μ the mean value of the beam displacement due to pointing errors and 

           (𝑀
𝑘
) =

𝑀!

𝑘!(𝑀−𝑘)!
             (3.73) 

 the number of unique symbols generated by k pulses among M slots. 

 In the case of a relay-assisted FSO channel (A, B and C nodes), the outage 

probability can be derived for a bit-detect-and-forward (BDF) protocol using time 

diversity, assuming a statistical channel model as follows [143], 



    𝑌𝐵𝐷𝐹 =
1

2
𝑋𝐼𝐴𝐶 + 𝑍𝐴𝐶 +

1

2
𝑋∗𝐼𝐵𝐶 + 𝑍𝐵𝐶            (3.74) 

 where  𝑍𝐴𝐶 , 𝑍𝐵𝐶~𝑁(0,𝑁0/2) and X* a random variable corresponding to the 

information detected at node B, therefore, equal to X when the bit has been detected 

correctly at B and X*=dE – X when it has been detected incorrectly and dE an Euclidean 

distance, 𝑑𝐸 = 2𝑃𝑜𝑝𝑡√𝑇𝑏𝜉, with Popt the average optical power transmitted, Tb the bit 

period and ξ the square of the increment in the Euclidean distance due to the use of a 

pulse shape of high peak-to-average optical power ratio. The outage probability which 

corresponds to the BDF cooperative protocol is given as follows [143],  

                𝑃𝑜𝑢𝑡
𝐵𝐷𝐹 = 𝑃𝑜𝑢𝑡

0 ∙ (1 − 𝑃𝑏
𝐴𝐵) + 𝑃𝑜𝑢𝑡

1 ∙ 𝑃𝑏
𝐴𝐵           (3.75) 

 where  𝑃𝑜𝑢𝑡
0  and 𝑃𝑜𝑢𝑡

1  the outage performance when the bit is correctly and 

incorrectly detected at B and 𝑃𝑏
𝐴𝐵 the BER corresponding to the A-B link.  

 In [144], the performance of different MIMO FSO communication schemes has 

been analyzed. In particular, different FSO diversity methods have been compared 

using the outage probability in a gamma-gamma modeled turbulence channel.  The 

diversity gains of MIMO repetition coding (RC), MIMO transmit laser selection (TLS), 

MIMO all-active relaying (AR) and MIMO selective relaying (SR) was derived and 

was proved that MIMO-RC and MIMO-TLS, on one hand, and MIMO-AR and MIMO-

SR, on the second hand, achieve the same diversity gain. By comparing the MIMO and 

The main result of the study was that it is always better, from a diversity gain point of 

view, to add more apertures to the source and destination rather than adding more relays 

in their vicinity despite the fact that the fading variance along FSO links decreases with 

the distance. 

 

3.5 Fading Mitigation Techniques 



 As previously mentioned, the atmospheric turbulence causes irradiance 

fluctuations and/or beam wander effect of the received signal, something that can lead 

to an increased BER in the system. These effects, result in deep signal fades lasting 

from 1 to 100 μs. Assuming a link operating at a nominal data rate of 1 Gbps, this fading 

duration would result in a loss of 105 consecutive bits. This loss would definitely 

degrade the performance and availability of the link, therefore effective mitigation 

techniques must be employed in order to compensate this issue.   

 

 3.5.1 Aperture Averaging 

 The received beam will intensively fluctuate due to turbulence, if the size of the 

receiver aperture is much smaller than the beam diameter. The atmosphere will provide 

an acceptance angle for the receiver assuming detector at the receiver to be 

omnidirectional and only the scattered optical signal from turbulent cells within this 

acceptance cone will contribute to the received signal power. The largest acceptance 

cone will be for smallest eddy size (inner scale), l0, and is given as follows [4], 

      𝜃𝑚𝑎𝑥 ≅
𝜆

𝑙0
             (3.76) 

 In case that the maximum width of the cone, given by 𝑅𝜃𝑚𝑎𝑥, is bigger than l0, 

the acceptance cone may contain smaller cells and the received power will fluctuate 

much more as long as receiver aperture is less than beam diameter. Increasing the 

receiver aperture in order to overcome irradiance fluctuations is called aperture 

averaging. A parameter used to quantify the power fluctuations reduction by aperture 

averaging is called aperture averaging factor, Af, defined as the ratio of normalized 

variance of the irradiance fluctuations from a receiver with aperture diameter DR to that 

from a point receiver [4],  



                  𝐴𝑓 =
𝜎𝐼
2(𝐷𝑅)

𝜎𝐼
2(0)

                                   (3.77) 

 where  𝜎𝐼
2(𝐷𝑅) and 𝜎𝐼

2(0) the scintillation indices for a receiver with aperture DR 

and a point receiver (DR ~ 0), respectively.  

 

 3.5.2 Spatial Diversity  

 Increasing the receiver aperture size is not always the best solution because, doing 

so beyond a certain point will lead increased background noise. Therefore, the best 

alternative is the replacement of the bigger size aperture diameter with an array of small 

apertures, in either end of the link, in sufficient distance apart, but certainly greater than 

the coherence length of the atmosphere, r0, so that multiple beams are independent and 

at least uncorrelated. This technique, is known as spatial diversity and the systems that 

apply it are called either single-input-multiple-output (SIMO), multiple-input-single-

output (MISO) or multiple-input-multiple-output (MIMO). Α single beam propagating 

through the atmosphere will end up splitting into various small beam segments. These 

segments will then independently reach the receiver either in or out of phase with 

respect to each other, causing signal fading. If instead multiple independent and 

uncorrelated beams are used, then any overlapping at the receiver will result in addition 

of power from different beams. Consequently, the deep fading probability will be 

reduced significantly. Another advantage of this technique, is that it allows for lower 

power transmission leading to a safer laser beam for a human eye. The improvement in 

the performance of an FSO that applies spatial diversity technique, expressed as the 

summed output power is given as follows [4],  

         𝐼𝑟 = 𝜂∑ (𝐼𝑠,𝑗 + 𝐼𝑛,𝑗)
𝑁
𝑗=1             (3.78) 



 where N the number of the statistically independent detectors, η the optical to 

electrical conversion efficiency and 𝐼𝑠,𝑗 and 𝐼𝑛,𝑗 are the signal and noise currents 

corresponding to the jth receiver, respectively. Additionally, the mean rms SNR is given 

as follows [4],  

            〈𝑆𝑁𝑅𝑁〉 = √𝑁〈𝑆𝑁𝑅1〉            (3.79) 

 where 〈𝑆𝑁𝑅1〉 the mean SNR of a single detector receiver. Eq. (3.79) designates 

that the output SNR from the N independent detectors can improve the system 

performance by a factor of √𝑁. The number of the detectors or the number of 

transmitted beams required to achieve a given BER depends upon the strength of the 

atmospheric turbulence but in principle, the received irradiance statistics are improved 

with the increase of both numbers. In [145], an FSO system with one output and two 

inputs has been used, with two tunable iris diagrams for effective receiver aperture 

diameter selection, to measure the aperture averaging and the spatial diversity effect in 

a controlled laboratory environment, for aperture diameters of 10mm, 15mm, 20mm, 

30mm and 35mm and for weak turbulence conditions. The experiment results, indeed, 

verified the theoretical beneficial effect of both aforementioned techniques.  

 

 3.5.3 Adaptive Optics  

 Another fading mitigation technique that helps to deliver an undistorted beam 

through the atmosphere is the employment of adaptive optics, a closed-loop control 

which pre-corrects the beam by putting the conjugate of the atmospheric turbulence 

before transmitting it into the atmosphere, reducing that way the spatial and time 

fluctuations. An adaptive optics system consists of wavefront sensor to measure the 

closed-loop phase front, corrector to compensate for the phase front fluctuations, and a 

deformable mirror that is driven by a suitable controller. In [146], an adaptive optical 



transceiver telescope was used to investigate the possibility of correcting wavefront 

aberrations under strong atmospheric turbulence conditions over a distance of several 

kilometers. A fiber laser was connected to a fiber positioner within the telescope, which 

acted as the transmitter by sending a laser beam at 1550 nm through the turbulent 

atmosphere to a retro reflector mounted on the top of a water tower at a distance of 2.33 

km. The reflected laser light was received and focused onto the fiber tip, guided to a 

photo detector by a splitter and recorded by a PC in order to be used as the feedback 

signal for the adaptive optics controller, which controlled the fiber-tip positioner and a 

six-channel adaptive mirror using a stochastic parallel gradient descent optimization 

algorithm. The experiments showed that for different turbulence conditions, the low-

order adaptive optics system in the transceiver telescope, controlled using an SPGD 

algorithm, increased the average returned intensity of the back-reflected light from the 

retro reflectors on the water tower. 

 

 3.5.4 Semiconductor Optical Amplifier 

 Finally, another novel fade mitigation technique, applicable on outdoor optical 

wireless systems. The key idea is to leverage the nonlinear power-dependent gain 

properties of a semiconductor optical amplifier (SOA), in order to provide unbalanced 

amplification between faded and non-faded instances of the optical wireless signal. In 

[147], this power equalization process to smooth out fade-induced power fluctuations 

and drastically reduce the probability of the system being in a fade state, was 

demonstrated. The results predicted that the fade probability, under medium to strong 

turbulence conditions governed by gamma-gamma statistics, can be reduced by over 

80% when the SOA is introduced at the optical wireless receiver. It was also shown that 

the duration of remaining fades was reduced by a sizeable percentage, and a percentile 



reduction of the average fade duration of over 85% could be achieved at the SOA 

output. In [148], it was also shown that with respect to first order statistics, a SOA-

assisted system exhibits significantly lower average BERs, higher link availabilities. In 

the same way, the sensitivity improvement can be utilized to partially or fully 

compensate for the fade margin in medium-to-strong turbulence for link lengths that do 

not exceed several hundreds of meters. With respect to the second order statistics, the 

presented analytical results on the amplified system demonstrated a drastic 

improvement of the average fade duration (AFD) irrespective of the link length. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 4 

ML for Laser Communications 

  

4.1 Introduction 

 The fields of Artificial Intelligence (AI), Machine Learning (ML) and Deep 

Learning (DL), have been evolved and proved tremendously successful over the last 

few decades. Traditionally, DL is considered a sub-field of ML which is considered a 

sub-field of AI. A very general definition for ML is that it is a set of methods and 

algorithms whose goal is the relationship prediction of an input and an output by means 

of training certain parameters [149].  In principle, these algorithms constitute a black 

box with regard to the specific task they are intended to complete, rather they are 

trainable based on data. This fact, does not mean that every algorithm is appropriate for 

every kind of problem or equally effective. This decision, remains up to the user to 

make it. ML approach has several advantages; ML algorithms can be utilized where no 

sufficient domain knowledge is available to build expert systems, they can be used for 

many different tasks that are similar in structure, only after being trained for the new 

problem.  

 Machine learning belongs to the computer science field and basically trains a 

computer from data or from the interaction with a real or virtual environment via 

statistical methods. It can be divided into three sub-categories, based on the training 



nature they provide to the computer, the supervised, the unsupervised and the 

reinforcement learning. 

 

 4.1.1 Supervised Learning 

 Supervised learning utilizes a given dataset, such as an input where the output is 

known, in order to train a ML algorithm, which, thenceforth, is able to label unknown 

data.  Input variables -or predictors- are denoted with an X whereas the output variable 

or response is denoted with a Y. Usually, the predictors are more than one and it is 

assumed that a general relationship among them exists [150], 

               𝑌 = 𝑓(𝑋) + 𝜀                           (4.1) 

 where f is an unknown function and ε a zero mean random error, statistically 

independent to X. Supervised learning is focused on estimating this function f for 

prediction and inference purposes. Having estimated f, one can predict the output for a 

specific set of input variables. The accuracy of this prediction depends upon the so-

called reducible and irreducible errors. The reducible error refers to the inherent 

inaccuracy due to any inappropriateness of the function f, whereas the irreducible error 

is included otherwise since Y is a function of ε. On the other hand, inference refers to 

the understanding of the relationship between inputs and outputs and the impact of 

certain changes in inputs on their corresponding output [150]. Problems with a 

quantitative response are called regression problems whereas problems with a 

qualitative response are called classification problems.  

 



Figure 4.1. The two main paradigms for the supervised learning, classification and regression 

[149].  

 

 A classic example is image classification. For a given set of images depicting cats 

and dogs, a trained ML algorithm should be able to distinguish a new picture whether 

it is a cat or a dog. The training process follows a division of the entire dataset into three 

parts, the larger is for training and the other two for validating and testing the algorithm. 

The ultimate goal is to minimize the error of the predicted values, something that rates 

the performance of the trained algorithm. In case of having better performance for the 

test set than for the training set, we then face overfitting of our data. Overfitting is a 

negative sign for our training process and indicates a highly complex model that follows 

the errors too closely, thus is biased and will perform poorly with new data. The 

performance on the validation set, is used after the training is completed, for comparing 

different algorithms, machine learning models architectures and hyperparameters. 

Apart from a classification problem that distinguishes among two or more discrete 

values or features, there are regression problems, where the solution has a continuous 

value. Since the algorithm is not explicitly programmed in supervised learning, 

insufficient data or falsely labeled data will lead to an incorrect algorithm, therefore the 

dataset quality is very important. 

 Most ML algorithms are categorized either as parametric or non-parametric, that 

is a known or not form of f.  Parametric methods involve a two-step approach for model 

development, initially the assumption of the form of function f and the training 

procedure of this function. Non-parametric methods, on the other hand, do not make 

explicit assumptions about the functional form of f. Instead they seek an estimate of f 

that gets as close to the data points as possible without being too rough or wiggly. 



 4.1.2 Unsupervised Learning 

 In contrast with the supervised learning, unsupervised learning uses unlabeled 

data and its goal is to find patterns that can adequately describe the data, called features, 

and keep only them to develop a new dataset with reduced redundancy. In the 

previously mentioned example of the difference between pictures with cats and dogs, 

an unsupervised learning process would lead to the recognition that pictures of dogs 

have common features and there is contrast with the pictures with cats. This process is 

also called clustering, where cluster refers to the collection of pictures of either dogs or 

cats. This procedure would also be applicable for outlier or anomaly detection on a 

dataset. For example, if we add a picture depicting a fox, then a third cluster would be 

recognized, detecting that way the anomaly. Another common application for 

unsupervised learning is the face recognition, where pictures are translated into a 

domain in which they can be compared mathematically. A face recognition system, 

uses a dataset of human faces, to learn how to extract features that preserve the most 

distinguishable patterns of a human face. That way, the system translates every human 

face into a vector representation of these most important features. Therefore, by 

comparing these vectors, we can distinguish different faces.  

 

 4.1.3 Reinforcement Learning  

 Reinforcement learning, is a different method where an algorithm learns by 

rewarding itself for actions that favor a desired outcome and is based on a Markov 

decision process [151]. A famous example, is the AlphaGoZero algorithm, trained by 

Google Deepmind team, to learn the game of Go, by taughting itself through self-play 

and reinforcing/rewarding moves which led to victory.  

 



 4.1.4 Assessing Model Accuracy 

 In order to estimate the function f that best fits a data set we have to be aware of 

the special attributes that possesses in terms of accuracy and interpretability. For 

example, a linear regression algorithm may be very clear to interpret but also very 

restrictive, especially when a non-linear relationship between input and output actually 

holds. On the other hand, algorithms such as support vector machines or boosting 

methods, could lead to such complicated models that may be very difficult to interpret 

[150]. However, if prediction accuracy is the desired outcome, models with high 

flexibility seem to be the best choice. This is not always the case though, since 

overfitting of the data will, despite decreasing the training error, increase the testing 

error. Therefore, a careful bias – variance tradeoff has to take place before selecting the 

most appropriate model. The term variance refers to how much f will change if the same 

model is used on a different data set, whereas bias refers to the error introduced by 

modeling a real-life problem. In general, more flexible models tend to increase the 

variance and decrease the bias [150].  

 

4.2 Machine Learning Algorithms 

 In this section, we will shortly introduce some of the most common ML methods, 

either for supervised or unsupervised learning, such as random forests, support vector 

machines, artificial neural networks and k-means.  

 

 4.2.1 Random Forests 

 The first algorithm, namely Random Forest (RF), belongs to the tree-based 

methods which are suitable both for regression and classification problems. What these 



types of algorithms do, is segmenting the predictor space of the data into small regions 

and use the mean or mode value of these regions to make the final prediction of the 

response value. Since the splitting rules of these regions can be summed up in a tree, 

these algorithms are known as decision-tree methods [150]. The simple decision-tree 

methods have proved not so effective in terms of accuracy; therefore, more advanced 

methods exist to deal with more complex data, i.e. random forests and boosting. The 

advantages of decision-tree methods include: 1) easy to explain, 2) they mimic better 

the human decision-making process, 3) they can be easily depicted in a graph and 4) 

they can handle qualitative predictors without requiring dummy variables [150]. The 

training of a decision tree is translated into finding the best set of decision rules for 

training set division, which will be used towards new data. In general, decision trees 

are overfitting and are highly vulnerable in training dataset changes, since it is difficult 

to generalize these decision rules in other problems. The two basic steps of the DT 

process include the following [29]: 

  a.  Predictor space division into J distinct and non-overlapping regions, 

R1, R2, … RJ. The criterion to determine the optimal split point is to minimize the RSS 

given by,                

                    ∑ ∑ (𝑦𝑖 − 𝑦𝑅𝑗)
2

𝑖∈𝑅𝑗

𝐽
𝑗=1               (4.2) 

where yRj is the mean response for the training observations in the j-th box.  

  b.  For every observation falling into a certain region, the prediction 

emerges from the response mean value based on the training observations that belong 

to the same region.    

 A general process followed in decision tree based statistical learning methods in 

order to achieve a lower variance, is bagging, in other terms, to take several training 

subsets from the entire dataset, create a model for each one of these subsets and average 



the predictions of each model. An improvement of bagging is random forest, that 

decorrelates the trees (subsets). Instead of considering the whole set of p predictors for 

each split criterion, a random sample of m predictors is only considered. Typically, we 

choose 𝑚 ≈ √𝑝, that is, the number of predictors considered at each split is 

approximately equal to the square root of the total number of predictors. This random 

selection is repeated in each and every split step, meaning that a new sample is chosen. 

Therefore, a strong predictor will not be considered in each tree and consequently we 

will avoid the correlation among them, hence less variable.   

 The method of random forests was originally proposed by Ho [152], who 

extended the notion of the single decision tree model to an ensemble of individual 

decision trees, to improve the generalization properties of the method. The main idea is 

that each individual decision tree is trained only on a random subset of the training data, 

or receives only a randomly selected subset of the data features as input data. The 

overall label of a class in the data is obtained by selecting the most prevalent within the 

individual predictions, something that improves the generalization capability of the 

decision tree method.  

 

Figure 4.2. A schematic view of the random forest approach [149]. 

 

 Another general approach for prediction accuracy improvement is boosting. In 

contrast with bagging, this approach follows a sequential procedure to train the model, 

by using information from the previously trained tree [150]. Specifically, the first 



decision tree is fitted to the training data set, the second is fitted using the residuals of 

the previous one, then this new tree is added to the fitted function in order to update the 

residuals. This procedure is followed by fitting rather small trees -few number of 

terminal nodes- to the residuals and that way we improve the model in areas where it 

does not perform as well. An additional shrinkage parameter λ exists, that allows more 

and different trees to be fitted in certain areas where higher residuals appear. 

 

 4.2.2 Support Vector Machines 

 The support vector machine (SVM) algorithm is based on the selection of a 

suitable hyperplane that will split the input features of every class in the right side of 

the hyperplane, a flat affine subspace of dimension p-1, for a p-dimensional space.  The 

mathematical definition of a hyperplane in a p-dimensional space is given as follows,  

         𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 +⋯+ 𝛽𝑝𝑋𝑝 = 0           (4.2) 

 where any X = (X1,X2,…,Xp)
T for which (4.2) holds is a point on the hyperplane.  

 The simplest case of a SVM, is the maximal margin classifier, where the selection 

of the hyperplane is selected based on the maximum perpendicular distance of each 

training point. SVM, developed in the 1990s, were primarily applied for supervised 

classification tasks, but can also be used in regression as well as unsupervised tasks, i.e. 

clustering. In case of classification, the new data can then be classified based on the 

side of the hyperplane they reside to, i.e a point X that does not verify Eq. (4.2). Because 

of the apparent high nonlinearity of most of the training datasets, high-dimensional 

feature spaces were proposed, in which the linear separation of the data will be always 

achievable, as shown in Figure 4.3. A certain trick is used in order to keep the 

computational cost in such high dimension, low, the so-called kernel trick. By selecting 

and applying a suitable kernel function, the coordinates of the data points never have to 



be computed explicitly in the high-dimensional feature space, while computations can 

be carried out implicitly. In other words, the enlarged feature space is in fact linear, but 

in the original feature space, the decision boundary has the form of a quadratic 

polynomial with non-linear solutions.   

 

Figure 4.3. The idea of the higher-dimension feature space used in SVM algorithm [149].  

 

 4.2.3 K-nearest Neighbors  

 The K-nearest Neighbors (KNN) algorithm is a simple model to implement for 

regression and classification problems. To evaluate the effectiveness and adequacy of 

any algorithm we need to account for output interpretation ease, calculation time, and 

power of prediction. The main advantages of KNN algorithm are the easiness of its 

output interpretation and the significantly low time for calculation. KNN is a simple 

algorithm that stores all available cases and predicts the numerical target based on a 

similarity measure, e.g., distance functions. A simple implementation of KNN 

regression is to calculate the average of the numerical target of the K nearest neighbors. 

Another approach uses an inverse distance weighted average of the K nearest neighbors. 

KNN regression uses the same distance functions as KNN classification. Choosing the 

optimal value for K is best done by first inspecting the data. In general, a large K value 

is more precise as it reduces the overall noise; however, the compromise is that the 



distinct boundaries within the feature space are blurred. Cross-validation is another way 

to retrospectively determine a good K value by using an independent data set to validate 

the K value. Mathematically, the KNN regression algorithm can be expressed as the 

average of all training points in N0, 

              𝑓(𝑥0) =
1

𝐾
∑ 𝑦𝑖𝑥𝑖∈𝑁0

              (4.3) 

 where xi is the input and yi is the output of the model, x0 a prediction point and N0 

the K points that are closer to x0. A similar process is followed for a clustering problem. 

Initially, we need to choose the k data points at random, as centroids, then all data points 

are assigned to the respectively nearest cluster centroid, and thus each data point is 

assigned to one of the k clusters, and finally an update of the cluster centroids is taking 

place by computing the center of all points assigned to the respective cluster. The 

second and third step are repeated till every cluster is finalized.    

 

 4.2.4 Neural Networks 

 A Neural Network (NN) mimics the functionality of the human brain, where the 

human neurons are represented by the nodes and the various connections among them 

by adjusted weights among the nodes. A node (perceptron) consists the fundamental 

component of a neural network which receives several xi input signals with a 

corresponding wi weight and an b applied bias, a factor associated with the storage of 

information. The sum of these signals enters the node where a certain activation 

function takes place and process the information according to the type of the function. 

All these complex combinations of input signals, weights, activation functions and 

biases for each layer, allows for a sufficient modeling of highly non-linear relationships.  

A NN structure is defined in two dimensions, namely the number of layers and the 

number of nodes in each layer. A NN with only one layer is called a single perceptron 



model whereas a network with multiple layers is called multiple layer perceptron model 

or a deep neural network. The best number for either dimensions is a matter of research 

and different in each model. The perceptron transfer function can then be expressed as 

[153], 

                          𝑦 = 𝑓(∑ 𝑤𝑖𝑗𝑥𝑖 + 𝑏
𝑛
𝑗=1 )             (4.4) 

 The internal layer perceptrons, those in between the input and output layers, 

receive the summed weighed values of the input parameters and provide the “input” 

signal for the output layer. All layers are fully connected to each other. The architecture 

of a multi-layer perceptron model, i.e. shallow neural network, and the input-output 

mapping can be represented as follows [153], 

           𝑦 = 𝑔(∑ 𝑤𝑗𝑓(∑ 𝑤𝑖𝑗𝑥𝑖 + 𝑏
𝑛
𝑖=1 ) + 𝑐

𝑚1
𝑗=1 )             (4.5) 

 where g is the transfer function and c the bias for the output layer. Other ANN 

architectures could include more than a single hidden layer. The transfer function to 

characterize the hidden layer, can be one of the following functions, [153], 

  a. Tangent Hyperbolic Function: 𝑓(𝑥) =
(𝑒𝑥−𝑒−𝑥)

(𝑒𝑥+𝑒−𝑥)
 

  b. Sigmoid Function: 𝑓(𝑥) =
1

1+𝑒−𝑥
 

  c. Rectified Linear Unit (ReLU) Function: 𝑓(𝑥) = max⁡(0, 𝑥) 

  d. Gaussian Function:𝑓(𝑥) = 𝑒−𝑥
2
 

  e. Linear Function: 𝑓(𝑥) = 𝑥  

 A NN can represent a much wider range of functions than a single neuron, in cost 

of having more free parameters. It can represent arbitrarily complex functions by 

increasing the number of hidden nodes, which is equivalent to increasing the number 

of free parameters. The amount of free parameters determines its computational 



complexity and with an increasing number of parameters, a NN becomes prone to 

overfitting.  

 

Figure 4.4. A general view of a feed-forward NN with two hidden layers (left) and the design 

of a perceptron neuron (right) [149]. 

 

 During the training of a NN through a supervised learning process, the samples 

of the training set are used to adjust the weights of the neural network, such that the 

output vector becomes similar to the target vector for every sample of the training set, 

                     𝑓𝜃(𝑥
(𝑛)) = 𝑦(𝑛) ≈ 𝑡(𝑛)              (4.6) 

 where  𝑥(𝑛) a set of input vectors and 𝑡(𝑛) their corresponding outcome. The first 

step to do so is the loss function definition, which is application specific. For 

classification problems, we typically choose the cross-entropy loss, whereas for 

regression problems is the mean squared error (MSE) [153], 

                          𝐿𝑐𝑟𝑜𝑠𝑠−𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝜃) =
1

𝑁
∑ [−∑ 𝑡𝑑

(𝑛)
𝑙𝑜𝑔(𝑦𝑑

(𝑛)
)𝐷

𝑑=1 ]
𝜃

𝑁
𝑛=1           (4.7a) 

                         𝐿𝑀𝑆𝐸(𝜃) =
1

𝑁
∑ [

1

2𝐷
∑ |𝑡𝑑

(𝑛)
− 𝑦𝑑

(𝑛)
|
2

𝐷
𝑑=1 ]

𝜃

𝑁
𝑛=1                                 (4.7b) 

 where N is the number of samples in the training set and D is the number of output 

nodes. The loss function minimization typically is achieved by the gradient descent 

optimization, where the gradient of the loss function w.r.t. the weights of the neural 



network is computed. A learning rate is also set up to determine the speed of algorithm 

learning. The training process of a single weight update, is called batch gradient 

descent, because only a single batch was involved. The term batch refers to a small 

subset of the whole training set and is used for a more rapid and flexible training 

process. Another common term is epoch, which is the number of times a NN has been 

trained with all batches. The whole training process goal is to find the local minima of 

the loss function, however, whether the trained neural network performs sufficient is 

determined with the validation and test phase. If the loss of test set increases while the 

loss of the training set decreases, then our NN is overfitting on the training set. 

 

4.3 Machine Learning for FSO Modeling  

 Machine Learning use for Optical Communications research is a recently 

emerged topic that will definitely continue to increase rapidly. The value of this 

approach is derived mainly from the unique characteristics of the FSO research field 

rather than the applied ML algorithms. By reviewing the literature on this topic, we can 

notice that a number of ML algorithms or a number of specific FSO-related applications 

have not been extensively leveraged. After all, a balanced mix of both fields must be 

achieved, in order to get the best results from this synergy [154]. 

 An important challenge in using machine learning techniques for scientific 

applications is to be able to use domain knowledge and data-driven algorithms in 

synergy. Machine learning algorithms have already been exploited by the optical 

communications community and in particular the free space optical communications 

community. For example, in [155], a data-driven fiber channel deep learning (DL) 

modeling method is introduced in an optical communication system. Specifically, a 

bidirectional long short-term memory is selected to perform fiber channel modeling for 



on-off keying (OOK) and pulse amplitude modulation 4 signals. A deep learning based 

-convolutional neural network- atmospheric turbulence compensation method to 

correct the distorted vortex beam and improve the performance of orbit angular 

momentum (OAM) multiplexing communication is presented in [156]. FSO related 

channel modeling, is studied using DL techniques in [157] for all turbulence strength 

regimes and results published therein indicate that DL can provide performance that is 

reasonably close to the perfect channel estimation scheme. The ability to mitigate the 

negative effects of atmospheric turbulence for FSO systems performance is studied in 

[158-160] using ANN, Generative Machine Learning (GML) and convolutional neural 

networks (CNN) through simulated and experimentally obtained data. ML techniques 

using DT, RF and ANN, for Cn
2 estimation, is presented in [161,162] and compared 

against macroscopic meteorological parameters. Other ML algorithms have also been 

used to predict RSSI for a hybrid RF/FSO detector by developing both regression and 

classification models [163, 164]. Finally, an overview of the, as expected, next 

generation of the ANN, the so-called optical neural networks (ONNs) and previous 

studies on the field are reviewed in [165]. The novelty of the current study lies in the 

comparison of various classical ML algorithms that are presented for the first time in 

predicting RSSI measurements, especially for the particular domain of interest, Piraeus, 

Greece. The contribution of this paper is that it a) provides an extension of previous 

related works in terms of the utilized ML algorithms i.e. KNN and ANN which both 

performed sufficiently enough and b) provides a unique experimental data analysis in 

terms of the terrain of the link i.e. maritime which exhibits different characteristics from 

a terrestrial one.  

 In [166], several evolutionary algorithms (EAs) in conjunction with the 

Levenberg - Marquardt (LM) back-propagation algorithm are used, in order to train 



different ANNs and in particular the L-SHADE algorithm, which self-adapts control 

parameters and dynamically adjusts population size. Five new hybrid training methods 

were designed by combining LM with self-adaptive Differential Evolution (DE) 

strategies. These new training methods obtained better performance to ANN weight 

optimization than the original LM method. The concept of atmospheric turbulence 

characterization by using laser light backscattered off a moving unresolved target or a 

moving target with a glint is considered and analyzed through wave-optics numerical 

simulations in [167]. This technique is based on analysis of the autocorrelation function 

and variance of the power signal measured by the target-in-the-loop atmospheric 

sensing (TILAS) system composed of a single-mode-fiber-based optical transceiver 

and the moving target. It is shown that the TILAS received power signal autocorrelation 

function strongly depends on the turbulence distribution and is weakly sensitive to the 

turbulence strength.  

 Optical turbulence severely affects different types of optoelectronic and adaptive 

optics systems. Direct measurements of the refractive index structure parameter are 

incomplete, for many types of environments, particularly in the maritime, because it is 

difficult and expensive to deploy the appropriate instrumentation [168]. To fill this gap, 

a backpropagation neural network (BPNN) approach has been proposed for the 

forecasting and verification of optical turbulence profiles in the offshore atmospheric 

boundary layer. In [169], the performance of this BPNN approach is further evaluated 

against the Holloman Spring 1999 thermosonde campaigns (HMNSP99) model for 

outer scale, and the Hufnagel/Andrew/Phillips (HAP) model for a single parameter. The 

results have shown that the agreement between the BPNN approach and the 

measurements is very close. On the other hand, in [170], the atmospheric turbulence 



refractive index structure parameter is predicted using deep neural network (DNN)-

based processing of short-exposure laser beam intensity scintillation patterns.  

 

4.4 Machine Learning Applications for Fading Mitigation 

 A vortex beam (VB) is a structured light which carries orbital angular momentum 

(OAM) and presents a “doughnut” intensity distribution, due to the phase singularity in 

the beam cross-section. The VBs possess many significant optical properties and show 

promising applications in optical trapping, optical microscopy and imaging, quantum 

information, optical storage, and optical communications [171]. In particular, by 

multiplexing OAM modes of VBs, the capacity of an optical communication link can 

reach the Tbps-class. However, the spiral phase of VB is very sensitive to the 

transmission environment and can easily be distorted. The demodulation and 

demultiplexing technologies for OAM communications have been studied, by utilizing 

the information capture and automatic classification capabilities of deep learning [172]. 

The turbulence correction in conjugate superposition OAM modes has been realized 

through deep learning based compensation method and proved to be more accurate and 

faster in terms of correction ability than AO system. In [171, 173], a novel deep learning 

based turbulence compensation method is introduced, for correcting the distorted VB 

and improving the performance of OAM multiplexing communication. Gaussian probe 

beam (GPB) is introduced, as information extraction object, in order to simultaneously 

compensate the turbulence distortion for multiple VBs. A convolutional neural network 

(CNN) model, through supervised learning, can learn to produce compensation phase 

screen through the intensity distribution of GPB in randomly changed turbulent 

environments and result in a significantly improved mode purity of the distorted VB. 

By achieving a communication link through OAM multiplexing, the BER of each OAM 



channel is reduced, after it is counterbalanced by the trained CNN, by almost two orders 

of magnitude in moderate to strong turbulence conditions. The results demonstrated 

that the proposed CNN model predicts accurately the turbulent phase and showed good 

generalization ability in compensating quickly and accurately the distorted VBs. In 

[158], an optical feedback network is designed, utilizing an ANN scheme which only 

relies on measuring the intensity profile of the distorted modes and demonstrated its 

turbulence effects correction capabilities via simulations. Initially, a laser beam directed 

onto a spatial-light modulator (SLM) with a given phase profile is simulated, used to 

convert each incident optical beam from a Gaussian mode profile into a Laguerre-Gauss 

mode. The resulting mode profile, has then a “petal pattern” of bright and dark spots, 

in a circular configuration. In order to simulate the beam, the Fresnel Transfer Function 

(TF) propagator and the Fresnel Impulse Response (IR) propagator was used. 

Additionally, the addition of this unsupervised learning scheme can be extended to 

demodulate more complex optical profiles which are difficult to be labeled and 

classified with current supervised techniques [174].   

 

 

 

 

 

 

 

 

 

 



CHAPTER 5 

Experimental Statistical Modeling of 

FSO Performance in Maritime 

Environment 

 

 This chapter includes the results that have been published in the peer-reviewed 

journals [J1] and [J2]. 

 

5.1 Introduction 

 Free space optical (FSO) communications is a significant application of the laser 

technology initially developed in 1960. Since then, much research has been conducted 

into FSO communications and different applications have been demonstrated, including 

terrestrial, maritime, space and deep space applications. Despite the initial uncertainties 

about its potential, the ongoing development of optoelectronic devices and its proven 

success in military applications provided the required boost to continue investments in 

the field [175]. The ever-increasing demands on reliable and high-speed data transfer 

lead the way to the current research efforts to advance the optical wireless 

communications (OWC) technology so it can be exploited by both small and light 

platforms. 

 FSO technology offers significant advantages over its RF counterpart and 

benefits applications in platforms with increased weight and space limitations. 

Therefore, platforms with size, weight and power constraints can benefit from more 

compact communication systems while achieving higher performance. FSO technology 



applications span from fixed point to point networks, e.g. LAN, last mile access, fiber 

backup, to high speed moving platforms, e.g. UAVs, aircrafts. The applied laser 

technology level allows not only for terrestrial but also for underwater and space 

applications. The principal advantages of FSO communications include increased 

bandwidth, greater security and immunity, lower cost of installation and, finally, no 

license restrictions. However, FSO communications are susceptible to various 

atmospheric effects and phenomena, including molecular and aerosol absorption and 

scattering as well as atmospheric turbulence. The performance of a laser 

communication link is highly affected by these phenomena that can ultimately cause 

temporary link interruption. These deleterious effects exhibit a rather different behavior 

in a maritime environment as compared to the terrestrial one [176, 177]. Therefore, 

exhaustive research in such an environment is required in order to characterize the local 

weather effects on the FSO performance. Atmospheric turbulence can be a major 

degradation factor for an FSO link and, therefore, extensive theoretical and 

experimental research work has been devoted to quantify its effects on atmospheric 

laser propagation. 

 This chapter is divided into two parts, both of which model the performance of 

an FSO link in a maritime environment. In the first part of this chapter, the performance 

of a commercial FSO link in a maritime environment is explored. Since measuring 

directly an optical link over sea is rather difficult, it is very helpful to construct simple 

models for optical link performance quantification based upon routinely single point-

measured environmental parameters. To this end, a second-order polynomial model is 

proposed to predict the RSSI of the system based upon local macroscopic parameter 

measurements. The collected data spanned over a period of approximately 40 days, 

within which the fluctuations of these parameters were quite intense. The model was 



validated twice against observed data in later periods and proved to be very accurate, 

i.e., a correlation > 0.8. The model includes basic meteorological parameters, including 

wind speed, air temperature, humidity, air pressure, solar radiation, dew point, and 

rainfall rate. Finally, the probability density function of the RSSI data has been 

compared against standard channel models, i.e., Gamma, Lognormal, Weibull, and the 

best fit is estimated using the Kullback-Leibler (KL) divergence. 

The main goal of the second part of this chapter, is to use a large data set obtained 

from the same FSO link, located at the entrance of Piraeus port, during the winter of 

2020, in order to gain a better understanding of the effects of atmospheric conditions to 

the performance of the link. Apparently, experimenting with a laser link in the open sea 

for extended period of time is not trivial. Therefore, we utilized an established link 

between two fixed points on the land that crosses a maritime environment and allows 

for adequate experimental data to be obtained. A twenty two-day data collection period 

has been used to construct our proposed model for RSSI as a function of local 

environmental conditions (air temperature, wind speed, dew point, humidity, pressure, 

solar radiation and air-sea temperature difference) with a very decent approximation 

(R2 = 71%). The model has been validated and exhibited better accuracy as compared 

to our, elsewhere [J1], proposed RSSI model. Finally, a 𝐶𝑛
2 parameter estimation model 

in maritime environment (NAVSLaM), proposed by the meteorology department of the 

Naval Postgraduate School, has been employed to correlate the measured RSSI 

parameter with the estimated atmospheric turbulence strength. 

 

5.2 Experimental Setup 

 The experimental instrumentation was located on the roof of the Hellenic Naval 

Academy (HNA), i.e., primary terminal, and the lighthouse of Psitalia island, i.e., 



remote terminal. The horizontal optical link is located 35 meters above the sea and 

crosses the entrance of the Piraeus port; nearly the entire path is over the water and, 

thus, clearly a maritime environment. Figure 5.1 shows the exact spots of both terminals 

in the map, as well as the ambient environment that the 2958-m-long optical link 

operates.  

 

Figure 5.1. The laser communications link located across Piraeus harbor entrance [J1]. 

 

This link will be disrupted whenever a vessel taller than 35 m crosses the path; 

therefore, to minimize these disruptions, the experiment was carried out during the 

winter when fewer cruise ships visit the port. The FSO system used in the experiment 

was an MRV TS5000/155 model. The setup consisted of two terminals with operational 

characteristics available in Table 5.1. The system’s scheme used is intensity 

modulation/direct detection (IM/DD) and it operates in a data rate of 155 Mbps. It uses 

an open protocol to automatically identify and lock on the current data rate and clock. 

 

 

 



Table 5.1. FSO System Parameters. 

Parameter Value 

Operating Wavelength 850 nm 

Light Source 3 Lasers 

Total Output Power  150 mW 

Beam Divergence 2 mrad 

Detector Type APD 

FOV 2 mrad 

Sensitivity −46 dBm 

 

Both terminals utilized stand-alone PCs in order to send and receive/store data. 

The interface between them is achieved through an SFP multimode fiber cable, 

operating at 1310 nm, which drives the optical signal from the detector through an O-

E converter directly to the PC. The RSSI data is then stored and is available to export 

for further analysis. The terminal over Psitalia island (Fig. 5.2) can be remotely 

operated from the HNA through the optical link. 

 

Figure 5.2. The FSO link from the Psitalia Island (left) and the HNA’ building (right) 

point of view [J1]. 

 

Additionally, an Ambient Weather (WS-2000) weather station is co-located with 

the HNA FSO terminal (Fig. 5.3) to provide real time measurements of macroscopic 

meteorological parameters that include wind speed, wind direction, air temperature, 

relative humidity, air pressure, dew point, solar radiation and rainfall rate. These 

measurements are then stored and readily available to export, analyze and study. 



 

Figure 5.3. The MRV TS5000/155 FSO system on the Hellenic Naval Academy and the 

co-located ambient weather WS-2000, weather station [J1]. 

 

5.3 Results and Analysis (Base Model) 

 The experimental measurements for the first part of this chapter, spanned over a 

period of two months, from 30 November 2019 until 31 January 2020. During the first 

part (30 November 2019–10 January 2020), the observed data were utilized to build the 

model. Due to technical reasons, the data collection during that period was not 

perpetual. During the second part, which consisted of two sub-periods (10–15 January 

2020 and 24–31 January 2020), the model was validated against real data. The obtained 

data were stored and exported every few days for further analysis using spreadsheets 

and MATLAB. The location where the experiment took place, along with the diverse 

meteorological conditions, provided a very challenging environment for a laser 

communications link. During that period, the FSO link operated successfully in warm 

and sunny, rainy, cold and windy days. Therefore, the model was trained on a wide 

variety of conditions. Figures 5.4 and 5.5 show the fluctuations of the observed 

meteorological parameters over the data collection period, including air temperature, 

dew point, relative humidity, air pressure, wind speed, solar radiation and rainfall rate.  



 

Figure 5.4. Air Temperature, Dew Point and Relative Humidity fluctuations over the data 

collection period. 

 

Figure 5.5. Air Pressure, Wind Speed and Solar Radiation fluctuations over the data 

collection period. 

Table 5.2 summarizes the mean, minimum and maximum values of the 

meteorological parameters observed during the data collection period. 

 

 

 



Table 5.2. Collection of Mean, Minimum and Maximum observed values of meteorological 

parameters during the data collection period. 

 

Air 

Temperature 

(°C) 

Dew 

Point 

(°C) 

Relative 

Humidity (%) 

Air Pressure 

(hPa) 

Wind 

Speed 

(m/s) 

Solar Radiation 

(W/m2) 

Mean 

Value 
14.07 8.3 69.34 1017.77 2.09 70.5 

Min 

Value 
5.70 −4.9 32.00 990.70 0.00 0.0 

Max 

Value 
22.20 14.7 94.00 1028.70 25.80 613.3 

 

 5.3.1 Regression Model 

 A set of 25,056 data points (one measurement/minute) within a period of 42 days 

was utilized to deduce the empirical model for RSSI prediction. The following second-

order polynomial has been selected to provide a good fit among seven independent 

parameters (wind speed, relative humidity, air temperature, air pressure, solar radiation, 

dew point and hourly rainfall rate) and the dependent RSSI, 

𝑅𝑆𝑆𝐼 = −61236.2 − 4.7678 ∗ 𝑃 + 0.002386 ∗ 𝑃2 + 461.42 ∗ 𝑇 − 0.8294 ∗

𝑇2 − 0.6145 ∗ 𝑅𝐻 − 0.0236 ∗ 𝑅𝐻2 + 8.2251 ∗ 𝐷𝑃 + 0.2627 ∗ 𝐷𝑃2 − 0.1626 ∗

𝑊𝑆 − 0.011 ∗ 𝑊𝑆2 + 0.04889 ∗ 𝑆𝐹 − 3.8313 ∗ 10−5 ∗ 𝑆𝐹2 − 3.75634 ∗ 𝐻𝑅     (5.1) 

 

 

Figure 5.6. Comparison between observed and modeled RSSI for the data collection period. 



where T stands for the air temperature in Kelvin, P is the air pressure in hPa, RH 

is the percentage of relative humidity, DP is the dew point in Celsius, WS represents 

the wind speed in meters per second, SF being the solar flux in Watts per square meter 

and HR is the rain rate in mm/hour. The derived model demonstrated a very decent 

accuracy with an R2 of 68.2%. Figure 5.6 shows the predicted values of RSSI based on 

the results of the regression analysis versus the observed one. 

 By using linear correlation coefficients, we further investigated the correlation 

coefficients of the considered parameters with RSSI. In the case under consideration, 

relative humidity appeared to have the most significant correlation with RSSI, with a 

negative value of −0.56557, indicative of its adverse effect to the link’s performance. 

Table 5.3 summarizes the correlation coefficients of all seven parameters with RSSI. 

 

Table 5.3. Matrix of linear correlation coefficients for measured meteorological parameters 

and received signal strength from 30 November 2019 to 10 January 2020. 

 
Air 

Pressure 

Air 

Temperature 

Relative 

Humidity 

Dew 

Point 

Wind 

Speed 

Solar 

Flux 

Hourly 

Rain Rate 
RSSI 

Air Pressure 1        

Air 

Temperature 
−0.26383 1       

Relative 

Humidity 
−0.24084 0.234145 1      

Dew Point −0.31862 0.77857 0.788697 1     

Wind Speed −0.02946 −0.17976 −0.42763 −0.39007 1    

Solar Flux 0.058201 0.279619 −0.33786 −0.04767 0.140114 1   

Hourly Rain 

Rate 
−0.26519 −0.02916 0.236718 0.117156 −0.01767 −0.04762 1  

RSSI 0.13399 0.219768 −0.56557 −0.20549 0.131537 0.44691 −0.35769 1 

 

Emphasis should be given to the impact of rain on the performance of the optical 

link. During the data collection period, i.e., totally 22.5 hours, exhibited a non-zero 

precipitation rate, thus allowing further investigation on these effects. As shown in 

Table 4, the rain has a moderate anti-correlated relation (−0.35769) with RSSI. 



Additional analysis on MATLAB showed that a 32% of the total RSSI variance is 

explained by the variance of the hourly rain rate, i.e., R2 in Figure 5.7. 

 

Figure 5.7. versus hourly rainfall rate measured data. 

 

 5.3.2 Model Validation 

 The validation period of the first model was from 10 – 15 January 2020. During 

this period, in general, the range of the observed parameters is smaller than the data 

collection period, the mean air temperature is 3 degrees lower, and the mean air pressure 

was more than 7 hPa higher. Qualitatively, the modeled RSSI estimations, as seen in 

Figure 5.8, demonstrated a very good fit with the observed values with a few exceptions 

where the observed values exhibited strong fluctuations. In this part, the model 

predicted a smoother form with less fluctuations. Quantitatively, the observed RSSI 

values as compared to the predicted values for this period had an R2 of 76%. The 

percentage of the predicted values variance is explained very well by the variance of 

the observed values: that is the R2 reached a value of 69%. The model also correlated 

very well with a linear correlation coefficient of 0.8327. Apart from the modeled and 

observed values graph, Figure 5.8 shows the RSSI values graph predicted by the model 

proposed in [Eq. 6, 178] by J. Latal et al. A relatively significant constant offset of 



approximately 80 – 100 RSSI units is observed during the entire period. It should be 

pointed out that the model proposed by J. Latal et al. [Eq. 6, 178] referred to a terrestrial 

terrain in contrast with our model, which focuses on a maritime environment. 

 

Figure 5.8. Model evaluation for measured RSSI data for the period 10 – 15 January 

2020. The grey line shows the literature modeled RSSI proposed by J. Latal et al. [178]. 

 

The second validation period was from 24 to 31 January 2020. During this period, 

the mean values as well as the range of the observed parameters were closer to those of 

the data collection period. Qualitatively, the modeled RSSI estimations (Eq. 5.1), as 

seen in Figure 5.9, again yielded a very good match with the observed values. It lacked 

accuracy on the parts where observed RSSI values exhibited abrupt “peaks”. In these 

parts, the model seemed to follow better the peak values of the observations. 

Quantitatively, the observed RSSI values, as compared to the meteorological 

parameters of this period, had an even better R2 (84%). The percentage of the predicted 

values variance is also explained better by the variance of the observed values, that is 

the R2, reached a value of 74%. The model also correlated very well with the observed 

values with a linear correlation coefficient of 0.8645. Finally, the model proposed in 



[Eq. 6, 178] had an even larger offset which at some points reached values of around 

100–120 RSSI units. 

 

Figure 5.9. Model evaluation for measured RSSI data for the period 24–31 January 2020. 

The grey line shows the literature modeled RSSI proposed by J. Latal et al. [Eq. 6, 178].  

 

 5.3.3 RSSI Distribution Fitting Analysis 

 The Kullback-Leibler (KL) divergence provides a very useful mathematical tool 

to measure the difference of two probability distributions [179]. KL divergence is a 

non-symmetric measure between two probability distributions p(x) and q(x). The KL 

divergence, denoted DKL (p(x) || q(x)), represents the information lost: the smaller the 

KL divergence, the more the two distributions are similar. In case of a discrete random 

variable x, assume two probability distributions p(x) and q(x), both non-negative and 

both summing up to unity for any x in X. The definition of KL divergence is then [179], 

        𝐷𝐾𝐿(𝑝(𝑥)||𝑞(𝑥)) = ∑ 𝑝(𝑥)𝑙𝑛
𝑝(𝑥)

𝑞(𝑥)𝑥∈𝑋              (5.2) 

Typically, p(x) represents the “true” or a theoretical calculated distribution of the 

observed data, whereas q(x) represents a model or an approximation of p(x). In case of 

a continuous variable x, then 



        𝐷𝐾𝐿(𝑝(𝑥)||𝑞(𝑥)) = ∫ (𝑥)𝑙𝑛
𝑝(𝑥)

𝑞(𝑥)

+∞

−∞
𝑑𝑥             (5.3) 

Based on the KL divergence theory, the theoretical distribution that best fits the 

observed RSSI data during the collection period (30 November 2019–10 January 2020) 

has been deduced. Utilizing the distribution fitting application of MATLAB, initially 

we estimated the parameters of the probability density function of three theoretical 

distributions, namely lognormal, Weibull and gamma, for the considered RSSI values 

range, i.e., min. 331–max. 512. The empirical PDF of the RSSI data has also been 

evaluated and the corresponding results are available both graphically in Figure 5.10 

and numerically in Table 5.4, from where it becomes evident that among the three 

considered probability distributions, the gamma distribution yields the best fit, a fact 

that is difficult to be ascertained from an inspection of Figure 5.10. 

 

Figure 5.10. PDF fits of gamma, lognormal and Weibull distributions for observed RSSI 

data for the time period from 30 November 2019 to 10 January 2020. 

 

 

 

 



Table 5.4. divergence for Gamma, Lognormal and Weibull probability distributions. 

 DKL (p(x) || q(x)) 

Gamma 4.17 × 10−2 

Lognormal 4.38 × 10−2 

Weibull 7.95 × 10−2 

 

5.4 Results and Analysis (Improved Model) 

 The experimental measurements for the improved model, took place during the 

winter of 2020. An initial period of twenty-two days (24 Jan to 14 Feb) was devoted 

for data collection, analysis and model construction. Once per minute, the RSSI 

parameter was collected and logged from the MRV FSO system. That frequency was 

selected in order to easily correlate those measurements with the weather station’s data 

collection, which include wind speed (WS), pressure (P), air temperature (T), dew point 

(DP), solar radiation (SF) and relative humidity (RH). Additionally, the improved 

model included as an independent variable the air-sea temperature difference (ASTD). 

An online weather statistics database [180] was exploited for the sea temperature 

measurements. The range of the environmental parameters values over this period is 

presented in Table 5.5. 

 

Table 5.5. The value range of the environmental parameters for the period 21 Jan to 14 

Feb 20. 

Parameter Min Value Mean Value Max Value 

RSSI 335 422.39 517 

P (hPa) 987.7 1017.6 1035.3 

T (oC) 273.8 282.8 290.7 

RH(%) 41 69,61 93 

DP (oC) -5.5 7.29 13.4 

WS (m/s) 0 2.89 20 

SF (W/m2) 0 103.53 735.7 

ASTD (oC) -11.1 -2.23 5.7 

 



As known, the relative humidity exhibits a significant anti-correlated behavior 

with temperature. This is the case between ASTD and RH too, as shown in Figure 5.11. 

 

Figure 5.11. The highly anti-correlated relation between relative humidity and air-sea 

temperature difference during the period 24 Jan to 14 Feb 20. 

 

On the other hand, the observed RSSI shown a good agreement with the ASTD 

in terms of their fluctuation trends. The measurements “gap” during the 8th of February 

is due to a temporary technical issue on the FSO system.  

 

Figure 5.12. Observed RSSI and ASTD measurements comparison during the period 24 Jan to 

14 Feb 20.  



 5.4.1 RSSI Statistical Modeling 

 The data collected during that period (24 Jan to 14 Feb 20) gave 26.238 data 

points that allowed an accurate model construction to relate the RSSI with seven 

macroscopic environmental parameters. We used a linear regression analysis to 

construct a second-order model that would allow RSSI predictions based on 

environmental parameters point measurements. The regression analysis summary 

output showed a significant similarity between measured and predicted RSSI values, 

that is certified by an R2 parameter value of 71,1%. A linear correlation coefficient was 

also used to numerically evaluate their analogy (0,843). The resulting regression model 

is given as,  

𝑅𝑆𝑆𝐼 = 112100,8 + 21,4 ∗ 𝑃 − 0,01 ∗ 𝑃2 − 878,1 ∗ 𝑇 + 1,57 ∗ 𝑇2 + 10,47 ∗

𝑅𝐻 − ⁡⁡⁡0,066 ∗ 𝑅𝐻2 − 19,83 ∗ 𝐷𝑃 + 0,52 ∗ 𝐷𝑃2 − 0,62 ∗𝑊𝑆 − 0,09 ∗ 𝑊𝑆2 +

0,12 ∗ 𝑆𝐹 − 0,0001 ∗ 𝑆𝐹2 − 7,8 ∗ 𝐴𝑆𝑇𝐷 − 2,3 ∗ 𝐴𝑆𝑇𝐷2              (5.4) 

Fig. 5.13 presents a comparison between the RSSI values directly measured from 

the MRV FSO system (blue line) and those predicted by our model (red line). 

 

Figure 5.13. Comparison between measured from FSO system and predicted from the model 

RSSI values for the period 24 Jan to 14 Feb 20. 



 5.4.2 Improved Model Validation 

 In order to validate our model and its ability to predict the RSSI parameter from 

macroscopic environmental point-measurements, we selected two distinct periods, the 

first from 20 to 26 Feb 20 and the second from 7 to 11 Mar 20. The same environmental 

measurements were taken, and the observed RSSI value was compared with the 

predicted one. The environmental conditions during this period was pretty much the 

same with the collection data period. This fact is assumed to favor our model in terms 

of its predictability. As a comparison to the improved model, the RSSI parameter is 

also computed by our base model presented elsewhere [J1]. It is observed that the 

inclusion of the ASTD as an independent parameter plays a key role to its improvement 

comparing to the base model. Fig. 5.14 shows the comparison between the observed 

(blue line), base (red line) and improved (yellow) model. Our improved model achieves 

an R2 parameter of 70,5%, which quantitatively supports its statistical significance. 

Qualitatively, it can be shown from Fig. 5.14 that the predicted parameters have a very 

good fit with the observed ones, even in harsh RSSI value differences as during the 

morning of the 23 February. Two minor failures are observed during the midday of the 

24th and 25th of February where the model seems to underestimate the observed RSSI 

values. Overall, the improved model achieves a significant linear correlation coefficient 

of 0,78 with the observed values as compared to 0,73 of the base model. 



 

Figure 5.14. Observed RSSI parameter as compared to both the base and the improved model 

for the period from 20 to 26 February 2020. 

 

 The exact same validation procedure was followed for the period from 7 to 11 of 

March 20, where again our model proved its ability to make legitimate predictions for 

the RSSI parameter. Figure 5.15 shows the comparison between the observed, base and 

improved models. Qualitatively, the improvement of the predictability of our model is 

apparent as compared to the base model which overestimated the RSSI parameter 

throughout the whole period, except two peak values observed during midday of 10th 

and 11th of March. The linear correlation coefficient comparison, is slightly better for 

the improved model (0,81 compared to 0,79) however this validity check has to do 

mainly with how good the model follows the general trend of the real measurements. 

As already stated, the base model has indeed an adequate correlation with the observed 

values, however it fails to accurately predict the real values. Finally, the improved 

model during this period exhibits less accuracy in terms of its R2 parameter (66%), 

however, it is still reliable for bulk estimations. 



 

Figure 5.15. Observed RSSI parameter as compared to both the base and the improved model 

for the period from 7 to 11 March 2020.  

 

 5.4.3 NAVSLaM 𝐶𝑛
2 Predictions 

 A maritime environment exhibits different atmospheric phenomena and 

specialized models are required for atmospheric turbulence predictions in such an 

environment, as compared to predictions for a terrestrial one. This paper [J2] utilized 

such a model (NAVSLaM) to predict the 𝐶𝑛
2 strength along the propagation path of the 

link based on point measurements of macroscopic environmental parameters. Special 

attention is given to the effect of the ASTD, since this parameter is found to have a 

significant impact to the turbulence behavior [181]. By solving Eqs. (2.59) and (2.60) 

in an iterative process, we estimated the 𝐶𝑛
2 during both validation periods and as a 

comparison we also estimated the 𝐶𝑛
2 utilizing other empirical models that are not 

focused on a maritime environment [Eqs. 12,13, 182]. A significant disagreement 

between model predictions is observed, a fact that justifies the different mechanisms of 

atmospheric turbulence over a maritime environment, so that maritime atmospheric 

turbulence cannot be predicted by a model focused on laser propagation over land. 



Figures 5.16 and 5.17 show the turbulence fluctuation over two period of times, 20 to 

26 Feb and 7 to 11 Mar 20. 

 

Figure 5.16. Prediction of  𝐶𝑛
2 over the period from 20 to 26 Feb 20. NAVSLaM model 

(yellow line) as compared to empirical models. 

 

Figure 5.17. Prediction of 𝐶𝑛
2.over the period from 7 to 11 Mar 20. NAVSLaM model 

(yellow line) as compared to empirical models. 

 

The 𝐶𝑛
2  mean value for the first period is approximately 7.5×10-16, with a 

minimum of 3.5×0-19 and a maximum of 3.2×10-15. The equivalent values for the second 

period are, 2.2×10-16, 1.2×10-18 and 1.2×10-15. The values plotted in both figures are in 

logarithmic scale and a significant difference between the empirical models and 



NAVSLaM is apparent. Specifically, the prediction based on the empirical models has 

a mean value of approximately two order of magnitudes higher and as known they 

exhibit a diurnal bell-shaped profile, with a maximum value around midday and 

minimum around the sunrise and sunset. This diurnal profile is not the case for 

turbulence over a maritime environment as shown in Figures 5.16 and 5.17. 

The 𝐶𝑛
2 predictions over both periods allowed an analysis of the effect of the 

turbulence strength to the received signal. Therefore, in Figures 5.18 and 5.19 we 

plotted the RSSI parameter and the 𝐶𝑛
2 in logarithmic scale. In both periods, a strong 

anti-correlated relation was observed, demonstrating the deleterious effect of 

turbulence on the laser propagation.  

 

Figure 5.18. RSSI vs 𝐶𝑛
2 for the period from 20 to 26 Feb 20. A strong anti-correlated 

relation is observed. The 𝐶𝑛
2  is plotted in a logarithmic scale. 



 

Figure 5.19. RSSI versus 𝐶𝑛
2 for the period from 7 to 11 Mar 20. Again a highly anti-

correlated relation is observed. The 𝐶𝑛
2 value is plotted in a logarithmic scale.  

 

As previously stated the ASTD parameter value has a significant impact on the 

turbulence strength. During the two validation periods, both stable (ASTD > 0) and 

unstable (ASTD < 0) conditions occurred. During the first period (20 - 26 Feb) the 

ASTD had a mean value of -3.33 oC whereas during the second period the mean value 

was -0.57 oC. As shown in Figures 5.20 and 5.21, as the ASTD parameter value 

approached to zero the atmospheric turbulence strength decreases, whereas for greater 

absolute values the turbulence increases.   

 

Figure 5.20. 𝐶𝑛
2 measurements versus air-sea temperature difference for the period from 

20 to 26 Feb 20.  



 

Figure 5.21. 𝐶𝑛
2 measurements versus air-sea temperature difference for the period from 

7 to 11 Mar 20. 

 

The atmospheric turbulence is highly height-dependent. The highest values are 

observed at zero altitude, whereas significantly lower at higher altitudes. For positive 

ASTD values the 𝐶𝑛
2 profile initially has larger gradient with height near zero height 

and then becomes less dependent on height than for negative ASTD values. Figure 5.22 

shows the height dependence of 𝐶𝑛
2 for a typical midday and sunset time. It is obvious 

that the turbulence strength differs by an order of magnitude between the value at the 

surface and a height of 35m, where our experimental setup is located. This fact would 

favor FSO systems in maritime platforms that are set in the highest possible location.   

 

Figure 5.22. Height dependence of 𝐶𝑛
2 for a typical midday (blue line) and sunset (red line) 

time. 



5.5  Summary 

 In this chapter, two new mathematical models are proposed, to predict the 

received signal strength of an FSO optical link. The models have the form of a second-

order polynomial with seven macroscopic meteorological parameters as the 

independent variables.  

  The predicted RSSI values of the base model, fitted the observed values quite 

well, yielding an R2 value of 68.2%. The correlation of all seven parameters to the RSSI 

has been calculated to deduce the weight of each one’s effect. Emphasis has been given 

to the rain effect, where 32% of the RSSI variance was explained by the rainfall rate 

variance (R2 = 0.32). The proposed model has been validated against real data in two 

separate periods and the R2 and correlation coefficient between the observed and 

modeled RSSI values has been computed to check how good the fit was. Both periods 

exhibited high R2 and correlation coefficient, namely 69% and 0.8327, respectively. 

 The second proposed model is an improved edition of the base model. A closed 

form expression is constructed that predicts RSSI parameter based upon point 

measurements of local environmental parameters, including wind speed, air 

temperature, humidity, pressure, dew point, solar flux and air–sea temperature 

difference. The latter has been found to have a significant impact on the laser beam 

propagation over sea. The regression analysis output showed a significant fit between 

measured and predicted RSSI values, that is certified by an R2 parameter value of 

71.1%. A linear correlation coefficient was also used to numerically evaluate their 

analogy, i.e. 0.843. We then validated our model and its ability to predict the RSSI 

parameter from macroscopic environmental point-measurements, during two distinct 

periods, the first from 20 to 26 February 2020 and the second from 7 to 11 March 2020. 

Overall, the improved model achieved a significant linear correlation coefficient of 0.78 



with the observed values as compared to 0.73 of the base model for the first period and 

0.81 as compared to 0.79 for the second period. The goodness of fit parameter R2 

between the improved model prediction and the observed values was 70.5% and 66% 

for the two periods, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 6 

Machine Learning Algorithms for 

Received Optical Power Prediction of an 

FSO Link Over a Maritime 

Environment 

 

 This chapter includes the results that have been published in the peer-reviewed 

journal [J3]. 

6.1 Introduction 

 Across the past 20 years, there has been extensive research on how to estimate 

how well an optical communications link would work when it is used across water. 

Numerous atmospheric phenomena and turbulence effects have been well studied, and 

lengthy experimental data have made it possible to build straightforward models. This 

chapter's goal is to provide a variety of machine learning (ML) methods that can 

accurately anticipate how well a free-space optical communication (FSO) link would 

function given current atmospheric conditions. An extensive data set of the received 

signal strength indicator (RSSI) parameter for an FSO link was collected and analyzed 

against seven local atmospheric parameters, i.e. wind speed, pressure, temperature, 

humidity, dew point, solar flux and air-sea temperature difference. The k-nearest-

neighbors (KNN), decision trees (DT), random forest (RF), gradient boosting regressor 

(GBR) and artificial neural networks (ANN) algorithms have been employed and 

compared among each other, using the root mean square error (RMSE) and the 



coefficient of determination (R2) of each model as the primary performance indices. 

The analysis showed an excellent fit for all ML models, proving their ability to offer a 

significant improvement in FSO performance modeling as compared to empirical 

regression models. The ANN model performed best and achieved an R2 equal to 

0.94867, whereas RF model achieved the optimum RMSE result (7.37). 

 Based on the knowledge that the seven measured parameters can have a 

significant impact on FSO performance, which was learned from the findings reported 

in the previous chapter, the variance selection of the seven measured parameters was 

made. With the exception of the ANN, the creation of ML algorithms followed the 

following process: 80% of the input data set was used to train the model, and the 

remaining 20% was utilized to verify the model's accuracy using the RMSE and R2 

parameters as performance measures. In case of the ANN model development, the 

dataset was split in three subsets, i.e. 70%, 15% and 15%, allocated to a training, 

validation and testing phase, respectively. The role of the validation phase is the fine 

tuning of the model’s hyperparameters. The analysis resulted in an excellent fit for all 

models (R2>0.85) and also to the fact that the ambient temperature proved to be 

statistically the most important meteorological parameter for RSSI prediction. 

 A recently emerging topic, machine learning for optical communications, will 

undoubtedly get more attention in the near future. It comes with a wide range of tools 

that let the trained algorithm evaluate and comprehend the data. The methods of 

supervised learning for regression models are the main topic of this chapter. In order to 

estimate the function that best fits a data set, we have to be aware of the special 

attributes that possesses in terms of accuracy and interpretability. For example, a linear 

regression algorithm may be very clear to interpret but also very restrictive, especially 

when a non-linear relationship between input and output actually holds. On the other 



hand, algorithms such as support vector machines or boosting methods, could lead to 

such complicated models that may be very difficult to interpret. However, if prediction 

accuracy is the desired outcome, models with high flexibility seem to be the best choice. 

This is not always the case though, since overfitting of the data will, despite decreasing 

the training error, increase the testing error. Therefore, a careful bias – variance tradeoff 

has to take place before selecting the most appropriate model. The term variance refers 

to how much will the function be changed, if the same model is used on a different data 

set, whereas bias refers to the error introduced by modeling a real-life problem. In 

general, more flexible models tend to increase the variance and decrease the bias. 

 

6.2 Experimental Setup  

 In order to measure the received signal strength for a real FSO system, a 2958-

meter propagation path was established over Piraeus port entrance at the Hellenic Naval 

Academy (HNA), Piraeus, Greece. A commercial FSO system was used to take RSSI 

measurements, to compare with the model predictions. Specifically, the FSO system 

used in the experiments is a MRV TS500/155 transceiver, operating at 850nm with a 

maximum output power of 150-mW and data rate of 155-Mbps. It utilizes three laser 

sources with a beam divergence of 2mrad each and a single receiver with a diameter of 

20-cm, sensitivity of -46 dBm, and an avalanche photodetector (APD). It also uses an 

open protocol to automatically identify and lock on the current data rate and clock. The 

first terminal was located on the roof of a building at HNA, whereas the second was 

located on the Psytalia Island lighthouse. The horizontal propagation path was 

approximately 35 m above the surface of the sea and over 95% of it over water. Tidal 

changes at that area are minimal, therefore altitude changes of the propagation path 

were ignored. In addition to collecting measured readings from the FSO system, a WS-



2000 weather station near the MRV was deployed to measure macroscopic 

meteorological parameters, including ambient temperature, air pressure, relative and 

absolute humidity, dew point, solar flux, ultra-violet index, rainfall rate, wind speed 

and direction. An online weather statistics database, [180] was also exploited to take 

sea temperature measurements from which the air-sea temperature difference was 

estimated. Measurements from both sensors were taken every minute, twenty-four 

hours per day. 

6.3 Results and Analysis 

 The results of this paper were extracted based on a large data set of measurements 

recorded between the 30th November 2019 and the 27th October 2020. Several technical 

issues, including system resets and line-of-sight blockages due to maritime traffic, did 

not allow continuous measurements. Additional data cleaning before analysis, reduced 

the data points to a total amount of 144803. Both sensors internal clocks were 

synchronized and the measurements were taken at one-minute intervals. The input data 

obtained from the WS-2000 station, was stored into a .xlsx file format, screened and 

redundant data was excluded to result in a clean dataset, consisted of eight columns 

including wind speed in m/s, air temperature in K degrees, dew point in °C, relative 

humidity (%), air-sea temperature difference in °C, solar flux in W⋅m-2 and relative 

pressure in mbar. An additional column was added to include the water temperature 

from the online database. Each data row was then compounded with the respective 

output value of RSSI for the same date/time. Any measurements with missing or non-

physical values were excluded. For example, heavy maritime vessel traffic entering or 

leaving the Piraeus port caused many of the RSSI values inaccurate because they 

blocked the LOS.  



 The first step of the ML development process, was to take the set of all 

observations and divide it randomly into two subsets. The first subset was used to train 

the model. The second subset was used to test the model once it had been trained. This 

second dataset is referred to as the test subset. The objective was to estimate the 

performance of the machine learning model on new data, i.e., data not used to train the 

model. There is not an optimum percentage to split the data set for training and testing, 

rather the need to account for the computational cost to train and test the model as well 

as an adequate representativeness on both subsets. We chose to follow a split of 80% 

for training and 20% for the testing subset of our models, except for ANN, where a 

70%, 15%, 15% scheme was selected, accounting for the validation subset too. Specific 

performance measures should be used in order to measure how did the models perform 

on predicting the RSSI value based on unseen meteorological parameters. Among 

others, we selected to apply the RMSE which represents the square root of the variance 

and the coefficient of determination, R2. The RMSE is defined as,  

         𝑅𝑀𝑆𝐸 = √
∑ (𝑥𝑖−𝑥̂𝑖)

2𝑁
𝑖=1

𝑁
                                          (6.1) 

where N is the total number of observations, xi is the i-th actual RSSI observation, while 

𝑥̂𝑖 stands for the i-th predicted one. The R2 metric has the form,  

           𝑅2 = 1 −
𝑆𝑆𝑟𝑒𝑠

𝑆𝑆𝑡𝑜𝑡
                (6.2) 

where 𝑆𝑆𝑟𝑒𝑠 defined as ∑ (𝑥𝑖 − 𝑥̂𝑖)
2𝑁

𝑖=1 , and 𝑆𝑆𝑡𝑜𝑡 as ∑ (𝑥𝑖 − 𝑥𝑖̅)
2𝑁

𝑖=1 , where 

𝑥𝑖̅⁡represents the mean value of the RSSI observations.  

 The flowchart diagram of the followed ML approach to model the RSSI, is shown 

in Figure 6.1. 



 

Figure 6.1. Flow chart diagram for the ML-based methodology for FSO system RSSI 

modeling. 

 The data analysis was performed using the programming language Python 

(version 3.8). Specifically, Jupyter Νotebook, a web-based interactive computing 

notebook, which allows the implementation of various libraries, e.g. Pandas, Numpy, 

Matplotlib, Seaborn, for advanced data analytics and visualization. Matlab (version 

2016a) was also used to run the ANN model. 

 The meteorological data spanned throughout all seasons of a year, therefore the 

observed values covered a large range, of environmental conditions. Apart from the 

descriptive statistics of each meteorological parameter that are presented in Table 6.1, 

it is worth observing the correlation between them and the independent value of RSSI. 

These correlations are shown in a matrix representation in Figure 6.2, where darker 

colors indicate higher anti-correlation, whereas lighter colors indicate higher 

correlation. 

Table 6.1. The value range of the meteorological parameters for the period 30 Nov 2019 to 27 

Oct 2020. 

Parameter Min Value Mean Value Max Value 

RSSI 187 420.4 517 



P (hPa) 987.7 1040.6 1015 

T (oC) 273.8 306 288.7 

RH(%) 22 63.5 94 

DP (oC) -5.5 11.3 24.6 

WS (m/s) 0 2.95 25.8 

SF (W/m2) 0 140.1 1149.5 

ASTD (oC) -11.1 -1.39 10 

 

 

Figure 6.2. Matrix of linear correlation coefficients for measured meteorological parameters 

and received signal strength. 

 6.3.1. K-Nearest Neighbors Algorithm 

 The KNN algorithm is a simple model to implement for regression and 

classification problems. The main advantages of KNN algorithm are the easiness of its 

output interpretation and the significantly low time for calculation. KNN is a simple 

algorithm that stores all available cases and predicts the numerical target based on a 

similarity measure, e.g., distance functions. A simple implementation of KNN 

regression is to calculate the average of the numerical target of the K nearest neighbors. 



Another approach uses an inverse distance weighted average of the K nearest neighbors. 

KNN regression uses the same distance functions as KNN classification. Choosing the 

optimal value for K is best done by first inspecting the data. In general, a large K value 

is more precise as it reduces the overall noise. The coefficient of determination, R2, and 

RMSE for our experimental data set are plotted against various number of neighbors 

(K) in Figure 6.3, starting from 2 up to 50. As shown in Figure 6.3, the coefficient of 

determination for the training subset, initiates from a value of 0.95 and then gradually 

decreases to 0.75 when K = 50. The equivalent values for the testing subset had a peak 

value of 0.85 for K = 3, meaning that this is the optimal value for the number of 

neighbors that best fits KNN model to the data set, therefore is the value we selected 

for our model A structured process of scanning the training subset, i.e. grid search, to 

determine the optimal value for a parameter is employed to determine the optimal K 

value (K = 3). 

 

Figure 6.3. Performance metrics plot for KNN algorithm against different number of 

Neighbors. 

 6.3.2 Decision Tree Algorithm 



 A second simple and easy to interpret algorithm is the DT. Despite not so accurate 

compared to other decision tree methods, e.g. random forests, gradient boosting, is still 

a good alternative for regression and classification problems. This algorithm splits the 

predictor space into several regions and make predictions based on the mean of the 

training observations of the corresponding region. Starting from the root node, a 

decision tree is constructed by recursive partitioning. Each node is then split into two 

child nodes, based on the observation parameter that results in the maximum 

information gain. This process, known as recursive binary splitting, continues until the 

leaves are pure, i.e. samples at each node belong to the same class. The two basic steps 

of the DT process include the following: 

  a.  Predictor space division into J distinct and non-overlapping regions, 

R1, R2, … RJ. The criterion to determine the optimal split point is to minimize the RSS 

given by,  

       ∑ ∑ (𝑦𝑖 − 𝑦𝑅𝑗)
2

𝑖∈𝑅𝑗
𝐽
𝑗=1              (6.3) 

  where 𝑦𝑅𝑗 is the mean response for the training observations in the j-th box.  

  b.  For every observation falling into a certain region, the prediction 

emerges from the response mean value based on the training observations that belong 

to the same region.    

 Figure 6.4 shows the first three levels of the decision tree to predict RSSI. The 

root node assigns observations where T<=299.65 to the left branch with a 

corresponding mean RSSI value of 423.452. The right branch, i.e. false outcome, leads 

to a child node that is further split based on the solar flux value and a corresponding 

mean RSSI value of 375.092, as shown in more details in Figure 6.5. That is, for any 



training observation that includes a solar flux parameter value less than 4.9, the left 

branch will be selected and the corresponding values for the dew point parameter will 

then be examined.  

 

Figure 6.4. Decision Tree model for RSSI prediction. Each node depicts the split selection 

parameter, the resulted mean squared error (MSE) of the split, the number of samples 

included to the specific region and the mean RSSI value based on the samples of the region. 

 

Figure 6.5. Resulting child node for RSSI. 

 The process described above can be followed until different depth levels are reached. 

However, there is a critical number of levels that improve the fit to the training data but 



decreases the fit to the test data; in other words, an overfitting effect comes in to play. This 

issue is shown in Figure 6.6, where up to a tree depth of 9, the training and testing R2 values 

coincide. For larger tree depths, the testing R2 values tend to converge in a value of 0.9 and no 

more improvement can occur. For this model, a tree depth of twenty is selected as it provides 

the optimum performance metrics values for the testing subset. Larger tree depth values can 

result in a decrease of model performance.  

 

Figure 6.6. Performance metrics plot for Decision Tree algorithm against different number of 

Neighbors. 

 6.3.3 Random Forest 

 The decision tree algorithm exhibits high variance that can correspond to less 

prediction accuracy. That means that if we apply a certain model built from the DT 

algorithm to different data sets, we will probably observe significantly different results. 

Instead, the prediction accuracy of a model with low variance would be consistent in 

any data set. To improve this issue, the method of bagging is applied, to improve DT 

algorithm’s performance. This method makes use of the general principle that 

averaging different sets of data will result in lower variance. Therefore, if we train our 



DT model for different samples from a single training data set and average their 

predictions, we will achieve a model with higher prediction accuracy.  

 The RF algorithm elaborates on this principle and by decorrelating the trees to 

achieve an even higher performance. The way to do so, is described previously, in 

Chapter 4.  

 The results of running a RF algorithm in our data set, improved compared to the 

single decision tree method. A coefficient of determination, R2, for the model 

evaluation of 0.95 is achieved and is indicative that this occurs with not so many 

different trees, as shown in Figure 6.7. Approximately, 20 different trees are sufficient 

to construct a model with the highest possible accuracy. Therefore, considering the 

lower complexity of a RF model with less trees and since more trees do not provide 

better results, we selected a value of twenty for our model. It is also important to notice 

that training and testing R2 do not coincide for any number of trees; instead there is a 

constant difference of 0.05. On the other hand, the RMSE begins with a value of 4.5 

for two trees and rapidly reduces to less than 3 for the rest of the number of trees. A 

significant advantage of the RF algorithm is that by adding more trees we do not risk 

overfitting.  

 



Figure 6.7. Performance metrics plot for Random Forest algorithm against different number 

of Trees. 

 6.3.4 Gradient Boosting Algorithm 

 Another approach to improve prediction performance is gradient boosting, which 

can be applied to many machine learning methods. The major difference of this 

approach is that instead of training the model concurrently, as is done in decision tree 

and random forest methods, it trains it sequentially. Specifically, the first decision tree 

is fitted to the training data set, the second is fitted using the residuals of the previous 

one, then this new tree is added to the fitted function in order to update the residuals. 

This procedure is followed by fitting rather small trees -few number of terminal nodes- 

to the residuals and that way we improve the model in areas where it does not perform 

as well. An additional shrinkage parameter λ exists, that allows more and different trees 

to be fitted in certain areas where higher residuals appear.  

 We selected to fit our Gradient Boosting Regressor model to our data set by using 

a tree number -iterations- of 5000 and a learning rate of 0.05. The model performed 

sufficiently and was comparable to the RF by achieving the value R2=0.941 and an 

RMSE=7.71. In Figure 6.8 the model improvement is illustrated in terms of predictive 

accuracy as compared to the boosting iterations, which in the case of regression 

problems equals the number of trees, since each iteration uses a single tree.  



 

Figure 6.8. Training and testing MSE as n trees are added to the GBR algorithm. 

 Impurity-based feature importance can be misleading for features with many 

unique values. As an alternative, we can compute the permutation importance. 

Permutation feature importance is a model inspection technique that can be used for 

any fitted estimator when the data is tabular, something very useful for non-linear 

estimators. The permutation feature importance is defined as the decrease in a model 

score when we randomly shuffle the value of a single feature. This procedure breaks 

the relationship between the feature and the target, thus the drop in the model score is 

indicative of how much the model depends on the feature. This technique benefits from 

being model agnostic and can be calculated many times with different permutations of 

the feature. For the current test subset, both the impurity-based and permutation 

methods -as a box-plot figure- identify the air temperature as the most significant 

predictive feature, whereas the rest of the ranking differs as shown in Figure 6.9. 



 

Figure 6.9. Feature Importance (left) and Permutation Importance (right)for the GBR model 

estimators. 

 6.3.5 Artificial Neural Network Algorithm 

 Another powerful form for ML model’s implementation is the ANN. An ANN 

resembles the function principles of a human’s brain. The analogy is that in place of the 

brain neurons, an ANN model uses the nodes that deliver the signal’s information 

within the network. The basis of an ANN is the perceptron, which receives an input 

signal xi with a weight of wi, a bias b, added through a summation junction and then 

passed through an activation function f to provide the final output, as shown in Figure 

6.10. All these complex combinations of input signals, weights, activation functions 

and biases for each layer, allows for a sufficient modeling of highly non-linear 

relationships.  



 

Figure 6.10. The multilayer perceptron network architecture for RSSI prediction. 

 The internal layer perceptrons, those in between the input and output layers, 

receive the summed weighed values of the input parameters, i.e. temperature, pressure, 

dew point, solar flux, wind speed, relative humidity and air-sea temperature difference, 

and provide the “input” signal for the output layer. All three layers are fully connected 

to each other. The proposed ANN architecture contains seven nodes in the input layer 

and a single node in the output layer RSSI, which receives the weighted input signals 

from the hidden layers along with a bias and represents the values of the predicted 

variable. Other ANN architectures could include more than a single hidden layer.  

 We used a standard Levenberg-Marquardt learning method to train a two-layer 

feed-forward network with sigmoid hidden neurons and linear output neurons, for an 

extended number of nodes, i.e. 2-100, in order to map the macroscopic meteorological 

parameters obtained from the weather station to the RSSI parameter obtained from the 



FSO system. The Neural Net Fitting application of MATLAB was used to perform all 

the ANN computations. 

 The ANN algorithm applies a three-fold division of the entire data set, i.e. the 

training, validation and testing subsets. The training data subset is presented to the 

network during training and the network is adjusted according to its error. The 

validation subset is used to measure the generalization of the network and stop the 

training when generalization stops improving. The testing subset is used to 

independently measure the performance of the network after training. Seventy percent 

of the entire data set was assigned to the training of the network, 15% to the training 

validation, and 15% for the network’s performance testing. Figure 6.11 shows the 

performance of the MLP ANN algorithm for the RSSI prediction based on the seven 

meteorological parameters. We trained, validated and tested the algorithm for different 

number of nodes of the hidden layer, which resulted in significant decrease of the model 

prediction error approximately up to the 20-th node. Further increase of hidden layer 

nodes, provides slightly better results but also a substantially bigger computational cost. 

Figure 6.12 shows the error distribution for the training, validation and testing subsets, 

which appears to follow a normal distribution indicative of a very good performance of 

the prediction regression model, also shown in Figure 6.13, for a node number of 50 

and a coefficient of determination R2 = 0.921, both for the training and the testing phase. 



 

Figure 6.11. Performance metrics plot for MLP ANN algorithm against different number of 

hidden layer’s nodes. 

 

Figure 6.12. Error Histogram of the proposed ANN architecture for RSSI prediction for the 

training, validation and testing phases. 



 

Figure 6.13. Regression Fits for the proposed ANN architecture for RSSI prediction. 

 

 6.3.6 Model Comparison and Discussion 

 To create a forecasting model for the RSSI parameter of an FSO connection, five 

ML algorithms were used. The challenge of fitting a conventional linear or non-linear 

model, i.e., polynomial, was extremely difficult due to the size of the data set and the 

significant variation of the independent variables. A second-order polynomial in 

particular performed quite poorly when it was first fitted to the data set, with R2 values 

of 0.36 for the training subset and 0.05 for the testing subset. Therefore, more complex 

models were needed to get appropriate RSSI parameter prediction accuracy. Five 

distinct machine learning (ML) algorithms were trained and evaluated, and their 

performance was assessed using the coefficient R2 and RMSE as performance 

indicators. Table 6.2 summarizes the results for each model, for the training, validation 

(if applicable) and testing phase. The ANN proved to be the most accurate model with 

an R2 = 0.94867 but also very high in computational time cost (approximately three 

hours to train, validate and test the model). On the other hand, all three tree-methods 



provided comparable results within a relatively short training period of time. Finally, 

the KNN algorithm resulted in a slightly less accurate model, yet much better than the 

polynomial and still statistically significant for RSSI prediction. 

 Despite using a much larger data set that covered an entire year and included 

measurements from various seasons, this study’s ML algorithm proved to be 

significantly more reliable and accurate than the polynomial model created in the 

previous chapter, according to comparisons with earlier studies. The value range of the 

observed meteorological parameters is substantially wider than those in [J1, J2], as 

indicated in Table 6.1.  However, the prediction accuracy performance of the models 

used in this study, outperformed the previous ones since they achieved an R2>0.9, 

which is significantly higher comparing to an R2~0.7 of the previous models. 

Regression models for RSSI prediction developed in [183, 184], also did not achieve 

an accuracy higher than 70%. Definitely, the ML algorithms provide a more efficient 

method to predict the RSSI parameter of an FSO link. However, the ML algorithms 

provide in a less intuitive prediction model and require a deeper comprehension in order 

to interpret the results.  

Table 6.2. Performance comparison of the Baseline and five ML algorithm models for RSSI 

prediction in terms of R-squared (R2) and root mean square error (RMSE). 

Approach  R2   RMSE  

 Training Validation Test Training Validation Test 

Baseline 0.36 - 0.05 - - - 

KNN 0.93 - 0.85 8.29 - 12.48 

DT 0.9764 - 0.91 4.9 - 9.71 

RF 0.994 - 0.947 2.7 - 7.37 



GBR - - 0.9417 - - 7.71 

ANN 0.9496 0.9468 0.94867 10.06 10.19 10.17 

 

6.4 Summary 

 A machine learning-based method for estimating the RSSI parameter of an FSO 

connection over a marine environment based on macroscopic meteorological 

observations was described in this chapter. Seven parameters, including air 

temperature, wind speed, solar flux, dew point, relative humidity, air pressure, and air-

sea temperature difference, were obtained over the course of a year from a commercial 

FSO system and a weather station, respectively, and were used to test the proposed 

approach. Five popular ML algorithms were trained in order to construct a robust model 

to accurately predict the link’s performance in terms of received signal strength. The 

results showed a significant improvement compared to traditional regression modeling 

techniques, i.e polynomials, and their prediction accuracy performance measured by 

the coefficient of correlation, R2 and the RMSE was extremely promising for even more 

complex predictive modeling. The significance of each of the independent variables 

was also studied with the gradient boosting regression algorithm by using two different 

approaches. Both of them showed that air temperature influences the output parameter 

the most. While all five ML methods showed a high degree of RSSI prediction 

accuracy, the ANN approach resulted in the most accurate model in terms of R2, i.e. 

0.94867, while the RF in terms of RMSE values, i.e. 7.37. ANN and GBR did require 

a significant computational time, while the three other methods gave their results in a 

much shorter training time. In conclusion, this work offered a full understanding of 

RSSI prediction accuracy utilizing several machine learning techniques that 

demonstrated to be remarkably accurate to model such a connection of complicated 



systems. The superior performance of ML approaches compared to the widely used 

regression method shows that ML is the best modelling option when overall prediction 

is the goal and the volume of data is high, that ML approaches allow for the ability to 

tune hyperparameters to enable optimal performance, and that trained models can either 

be used for continuous streamflow RSSI predictions or improved by adding more data.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 7 

Machine Learning Algorithms for 

Optical Turbulence Prediction over a 

Maritime Environment 

 

 This chapter includes the results that have been published in the peer-reviewed 

journals [J4 and J5]. It consists of two parts, the first, that presents the ML-based 

turbulence modeling approach for the data acquired at the NPS premises and the second 

that presents the equivalent approach for the data acquired at the HNA premises.  

7.1 Introduction 

 The purpose of the first part of this chapter is two-fold. First, to introduce the 

application of machine learning algorithms in modeling the refractive index structure 

parameter (𝐶𝑛
2) and estimate its value through regression analysis of macroscopic 

meteorological parameters, obtained from the NPS site. Secondly, it applies well known 

mathematical expressions to estimate the outage probability of a notional FSO link, 

based on the strength of the optical turbulence and model the link status (On-Off) based 

on macroscopic meteorological parameters, by utilizing a DNN classification 

algorithm.  

 The second part, presents the ML-based modeling approach of the refractive 

index structure parameter (𝐶𝑛
2), based on macroscopic meteorological parameters and 

𝐶𝑛
2 values, obtained from the HNA experimental site.  To do so, four machine learning 



algorithms were employed, including a Random Forest (RF), a Gradient Boosting 

Regressor (GBR) and two Neural Networks (a single layer and a deep network).  

 The fluctuations of the irradiance intensity on the receiver of a terrestrial FSO 

system, caused by the propagation through the atmospheric turbulence, result in a 

phenomenon called “scintillation”. It can lead to significant power losses and 

eventually communication disruption. Turbulence strength can be classified in the 

weak, moderate and strong regime. It can be derived from theoretical formulas that 

shorter wavelengths experience smaller irradiance fluctuations, which is significantly 

important to be modeled. For that reason, many studies have been devoted to develop 

the probability density function (PDF) of the irradiance fluctuations to the receiver for 

every turbulence strength regime. This chapter utilizes experimentally derived 𝐶𝑛
2 data, 

with values spanning over every regime, therefore we apply the gamma gamma (GG) 

distribution which is the most suitable and can also be expressed in closed form. The 

PDF of this distribution is given by Eq. (3.32).  

 As described in the previous chapters, the atmospheric turbulence causes fading 

on the propagating laser beam, which within the context of laser communications 

affects the reliability of an FSO link. The optical turbulence effects on the beam include 

the intensity decrease of the received signal and below a threshold value it can even 

cause outage of the link. The frequency of the signal intensity fluctuations, as compared 

to the bit rate of the channel, characterizes the fading statistics that describe this 

channel, as either fast or slow. A performance metric that is useful for both fast and 

slow fading statistics is the outage probability (Pout) of the link, which is given by Eq. 

(3.66). 

  



7.2 NPS Experimental Setup  

 The whole experimental setup has been installed on the roof of Spanagel Hall at 

the Naval Postgraduate School, at an elevation of about 20 meters above sea level, and 

was a follow up experimental campaign to that conducted in a near maritime 

environment [J3]. Figure 1 depicts the experimental apparatus, consisted of a tripod 

with four instruments: an IRGASON (Integrated CO2/H2O Open-Path Gas Analyzer 

and 3D Sonic Anemometer), an infrared radiometer, a net radiometer, and a global 

positioning system (GPS) receiver. The entire system was oriented to the northwest 

(facing Monterey Bay). This allowed the bay's onshore winds to flow across the device, 

while the building prevented southeasterly winds. From late January till late November 

2021, continuous data collection was conducted. The obtained data included air 

temperature, ground (roof) temperature, solar flux, wind speed, sonic temperature and 

water vapor concentration readings. 

 

Figure. 7.1. The experimental setup location on the roof of Spanagel Hall (left) and the 

instruments utilized to obtain the macroscopic meteorological parameters. 



 The IRGASON is a three-dimensional sonic anemometer with an integrated 

optical gas analyzer. By synchronizing gas, wind, pressure, and temperature 

measurements, the optical turbulence values were calculated. The infrared radiometer 

is a sensor used to detect surface temperature by monitoring the surface's blackbody 

radiation. Part of the shortwave light (between 280 and 4000 nm) emitted by the sun is 

reflected by the Earth's surface. Atmospheric and terrestrial molecules absorb solar 

radiation and emit it as longwave thermal radiation (between 4 and 100 micrometers). 

Net radiation flux is the difference between inbound (downwelling) and outgoing 

(upwelling) radiation. Differences between incoming and outgoing shortwave radiation 

provide information regarding the amount of solar radiation absorbed by the ground. 

Consequently, the SN500SS net radiometer was utilized to compute the solar flux. 

Finally, the GPS receiver GPS16X-HVS served as a clock for this experiment, since 

the datalogger’s clock was set to synchronize with the GPS data automatically. 

 The 𝐶𝑛
2 values were extracted from the sonic anemometer based upon the 

Kolmogorov’s mathematical expression that relates, within the inertial subrange, the 

amplitude and frequency of the sonic temperature fluctuations as follows,  

      𝑃𝑆𝐷(𝑓) ∝ 𝐶𝑇
2𝑓−5 3⁄              (7.1) 

 which results in a -5/3 slope on a log-log plot of the PSD against frequency. 

Therefore, fitting a line on PSD gives us the 𝐶𝑇
2 and from Eq. (2.19) we get 𝐶𝑛

2. The ML 

algorithms were then trained on the logarithm (base 10) of those estimated 𝐶𝑛
2 values. 

7.3 Results and Analysis (NPS Site) 

 The data collected from the instruments presented on the previous section 

included air temperature, wind speed, water vapor concentration, solar flux, sonic 



temperature and ground temperature as independent macroscopic meteorological 

parameters. As also described previously, we utilized Kolmogorov theory to extract the 

refractive index structure parameter from the sonic temperature and wind speed 

obtained from the IRGASON, which used as the dependent variable for our modeling 

purposes. An almost 40-second interval power spectral density (PSD) of the sonic 

temperature (i.e 2048 observations at a 50Hz frequency) provided the 𝐶𝑛
2. Average 

values for all other measurements were calculated over the same time interval. That 

gave us totally almost 525000 observations (point measurements) of turbulence 

strength, i.e. 𝐶𝑛
2, and routine meteorological parameters which were stored for further 

analysis. The complete dataset can be found in [185].  

 

 7.3.1 Data Analysis 

 The data obtained spanned over a period of almost eleven months. That means 

that the meteorological parameters, primarily the temperatures, had a significant 

variance due to their seasonality dependence. To include this seasonality dependence 

on our analysis, as well as to have a more effective manipulation of the datasets, we 

divided the whole dataset in four distinct sets of almost equal size. These different sets 

represent, but not precisely coincide, with the four seasons. However, since they are 

almost match to the four seasons, we treated each one of them as a season representative 

(i.e. autumn (1/9 – 20/10), winter (25/1 – 31/3), spring (1/4 – 30/6) and summer (1/7 – 

31/8)), as shown in Datasets 1 through 4 [191]. Our focus was primarily to the seasonal 

effect on the 𝐶𝑛
2. Figure 7.2 presents the distribution plot of 𝐶𝑛

2, in a logarithmic scale, 

for every season. Apparently, the refractive index parameter is a very complex metric 

to extract definite conclusions, since multiple non-linear phenomena affect its value, 



however an approximate analysis can be done. To that end, Figure 7.3 shows the daily 

moving average for the entire period of every season. We notice that during winter, 𝐶𝑛
2 

exhibits, in average, the lower values in contrary with summer where we observe the 

higher values. This is partially supported by the fact that the mean observed value of 

𝐶𝑛
2 in winter is the lowest, whereas in summer is the highest. It is interesting though to 

mention that during winter we observed a higher maximum value for 𝐶𝑛
2 than in 

summer. During spring and autumn, the corresponding mean values reside within the 

rest two. In general, the time series of all seasons, follow the same pattern. Another 

characteristic of 𝐶𝑛
2 values, is that winter and autumn exhibit much lower variance as 

compared to summer and spring (Figure 7.2). 

 

 

Figure. 7.2. Distribution plots for 𝐿𝑜𝑔𝐶𝑛
2 per season. 



 

Figure. 7.3. The daily moving average of the 𝐶𝑛
2 for every season.  

 Finally, the correlation between the measured atmospheric parameters and 𝐶𝑛
2 for 

the entire period, is depicted in the heatmap of Figure 7.4. In this figure, we have 

included an additional parameter Dtemp, defined as the difference between the ground 

and the air temperature, which has a significant negative effect on 𝐶𝑛
2. The darker a cell 

the stronger the anti-correlation between the corresponding two parameters. On the 

other hand, a lighter cell corresponds to a stronger correlation.  

 

Figure. 7.4. Correlation matrix for the macroscopic meteorological parameters and 𝐶𝑛
2. 



 7.3.2 Regression Analysis for Cn
2 Modeling 

 The analysis of this chapter is based on the extended number of observations 

taken from January to November 2021. During this period, we didn’t face any technical 

issues, therefore our dataset can be considered continuous. Additional data cleaning 

before analysis, reduced the data points to a total amount of 524786, on a ~40 second 

interval. The measured data obtained from all sensors, was logged into an .xlsx file 

format, i.e. six columns. Each data row was then compounded with the respective 

output value of 𝐶𝑛
2 for the same date/time. We excluded measurements with missing or 

non-physical values. That is, 𝐶𝑛
2 values above 2x10-12 m-2/3 that are not considered 

realistic. After collecting, compiling and cleaning the data set, the ML process was 

initiated. The first step was to take the set of all observations and divide it randomly 

into two subsets. The first subset was used to train the model. The second subset was 

used to test the model once it had been trained. This second dataset is referred to as the 

test subset. The objective was to estimate the performance of the ML model on 

unknown data, i.e. data not used to train the model. There is not an optimal percentage 

in which to split the data set, rather the need to account for the computational cost to 

train and test the model as well as an adequate representativeness in the two subsets. 

We chose to split at 80% for training and 20% for testing. Certain performance 

measures should be used in order to measure how well the models performed comparing 

to each other, on predicting 𝐶𝑛
2 values based on unseen meteorological parameters. We 

applied the RMSE which represents the square root of the variance and the coefficient 

of determination, R2, a number between 0 and 1 that measures how well a statistical 

model predicts an outcome. All data during the preparation phase has been scaled to a 

0 to 1 scale so as to account for the different variance of each parameter. The data 

analysis was performed using the programming language Python (version 3.8) in a 



Jupyter Νotebook environment, a web-based interactive computing notebook, which 

allows the implementation of various libraries, e.g. Pandas, Numpy, Matplotlib, 

Seaborn, for advanced data analytics and visualization.  

 To execute the regression modeling analysis, we utilized six well-known ML 

algorithms, Artificial Neural Networks (ANN), Random Forest (RF), Gradient 

Boosting Regressor (GBR), k-Nearest Neighbor (KNN), Decision Trees (DT) and Deep 

Neural Networks (DNN). As mentioned above, the same analysis was repeated for all 

seasons and each algorithm was fine tuned to achieve the best accuracy. The following 

sections present these results and comment on the selected hyperparameters for each 

algorithm.  

 The ANN that best fitted the observed data during autumn was a single layer 

perceptron model that included 100 neurons in its hidden layer. The optimum batch size 

was 32 and the model trained over 400 epochs. A standard Levenberg-Marquardt 

learning method was used to train the feed-forward network with sigmoid hidden 

neurons and linear output neurons. The results of this algorithm showed a moderate to 

low accuracy, with R2 = 0.55 and RMSE= 0.0916.  

 The results for the RF algorithm in our data set gave a significantly improved 

coefficient of determination, R2, for the model evaluation of 0.78 which was the best 

value among all algorithms for autumn, as shown in Figure 7.6. Approximately, 300 

different trees are sufficient to construct the model with the highest possible accuracy. 

Additionally, an RMSE = 0.064 showed a great improvement in the error of the 

predicted values. 

 A Gradient Boosting Regressor model was used to fit the autumn data set by using 

a tree number -iterations- of 2000, maximum depth = 6, minimum sample split = 12 



and a learning rate of 0.05. The model performed sufficiently and was comparable to 

the RF by achieving a value of R2 = 0.7 and an RMSE = 0.075. 

 The KNN algorithm achieved its best performance for a value of k = 15 which 

resulted in R2 = 0.71 and an RMSE = 0.073. That is, it slightly outperformed the GBR 

algorithm.  

 The DT algorithm, which is a simplified version of the RF model, as expected 

had poorer performance than RF. The optimum depth of trees was found to be 15 for 

this occasion with a corresponding R2 = 0.637 and an RMSE = 0.083. 

 Finally, perhaps the more complex and demanding to fine tune, DNN algorithm, 

comprised of three layers of neurons (1st hidden layer=50, 2nd hidden layer = 30 and 3rd 

hidden layer = 10), ran over batches of 32 for a total number of 400 epochs. The results 

for this model were R2 = 0.61 and an RMSE = 0.085. Figure 7.5 collectively presents 

the scattering plot for each algorithm.  

 



 

 

Figure. 7.5. Scattering plots of the six ML algorithms for the autumn data set. 

 The results of the performance for all ML algorithms are presented collectively 

in Figure 7.6, where the performance ranking is clearly depicted and shows that the RF 

exhibited the best fit.  



 

Figure. 7.6. R2 and RMSE metrics for the ML algorithms autumn data set. 

 We presented detailed results for the performance of each algorithm with regard 

to the autumn dataset, but the same procedure was followed repeatedly for every 

seasonal dataset. Therefore, we directly plot in Figures 7.7 through 7.9 the 

corresponding algorithm performance metrics comparison. 

 

Figure 7.7. R2 and RMSE metrics for the ML algorithms spring data set. 



 

Figure. 7.8. R2 and RMSE metrics for the ML algorithms summer data set. 

 

Figure. 7.9. R2 and RMSE metrics for the ML algorithms winter data set. 

 To conclude this section, it is important to comment on the overall performance 

of each algorithm. RF appeared to be the best, since it achieved the highest metrics 

values on every season. Interestingly, the one followed was KNN, pretty close to GBR. 

DT and DNN also demonstrated similar performance to each other, but poorer than 

GBR. Finally, ANN had the worst fit over all datasets.  



 7.3.3 Outage Probability Calculation 

 The next step in our analysis was the estimation of the outage probability for a 

notional FSO link based on the experimental meteorological and optical turbulence 

data.  Initially, the experimental 𝐶𝑛
2 data was utilized to compute the Rytov variance, 

Eq. (2.30) for a plane wave, 𝜎𝑅
2, along with a typical wavelength λ = 850 nm and a link 

range, R = 3000 meters. The same parameters plus 𝑑 = √𝐾𝐷2 4𝐿⁄ , with D = 20 cm for 

the diameter of the FSO receiver, allowed to calculate the environmental conditions 

dependent parameters α and β from the following equations, 

        𝛼 = [𝑒𝑥𝑝 [
0.49𝜎𝑅

2

(1+0.18𝑑2+0.5𝜎𝑅
12 5⁄

)
7 6⁄ ] − 1]

−1

             (7.2) 

                              𝛽 = [𝑒𝑥𝑝 [
0.51𝜎𝑅

2(1+0.69𝜎𝑅
12 5⁄

)
−5 6⁄

(1+0.9𝑑2+0.62𝑑2𝜎𝑅
12 5⁄

)
7 6⁄ ] − 1]

−1

             (7.3) 

 We assumed a typical SNR level 𝐼 = √
𝛾

𝜇
= 10⁡𝑑𝐵.⁡By applying Eq. (3.66) we 

were then able to compute the corresponding outage probability for every 𝐶𝑛
2 

measurement instance, thus a total of almost 525000 data points for all four seasons. 

The last step described in section 7.3.4, was to model the outage probability based on 

the six measured meteorological parameters and build a mathematical expression. A 

flowchart of the overall process is depicted in Figure 7.10. 



 

Figure. 7.10. The outage probability of a notional FSO link extraction flowchart. 

 

 7.3.4 DNN Classification 

 A received signal below a certain strength level, i.e. threshold, in an FSO link, 

would eventually result in fading and perhaps a total link interruption. To cope with 

this inherent disadvantage of laser communications technology, a different approach is 

followed, which brings into play a hybrid scheme, to include both laser and radio 

frequency, although the corresponding data rate in the radio frequency mode will be 

less than the laser mode. That way, whenever the received signal strength is below that 

threshold value of the receiver sensitivity, the operation mode of the link automatically 

switches to RF mode, in order to compensate the atmospheric, e.g. fog, haze, or other 

physical, e.g. LOS blockage, effects. Therefore, it is of great interest to be aware of the 

certain availability of the link.  



 This section presents a DNN approach to model the status of a notional FSO link, 

that is either functional (On) or non-functional (Off) in the laser mode. That way, we 

can be able to predict the status of the link, whether it will operate in the laser or radio 

frequency mode. To do so, we utilized the environmental data set per season as 

described in Section 7.3.1 and built a deep neural network (Fig. 7.11) to classify the 

link’s operational status as functional (On) or Non-functional (Off). We assumed a 

required 99% availability for our link, that is any outage probability more than Pout = 

0.01. Therefore, a “0” was attached to every row in our dataset with Pout > 0.01 and a 

“1” for Pout < 0.01. The resulted split of our experimental data for all seasons was quite 

unbalanced and showed that the vast majority of the observations imply a non-

functional on its laser mode FSO link, under the aforementioned assumptions of outage 

probability estimation. However, it gives interesting insights on a realistic operational 

performance of an FSO link. Figure 7.12 presents the results on the “0” sand “1” s of 

the link. Similar allocation among “0” s and “1” s exhibited by the rest three seasons 

too.  

 The network has three hidden layers with 50, 30 and 10 neurons, respectively. A 

feed-forward back propagation algorithm was used, with a dropout rate of 0.5 per layer. 

The activation function for the three hidden layers was a rectifier (ReLU) whereas for 

the output layer a sigmoid function. In order for the algorithm to monitor the progress 

of the algorithm fitting, a binary cross entropy loss function was used and the Adam 

optimizer to adapt the gradient descent of the loss function. The algorithm was trained 

against the 80% of the dataset and tested over the rest 20%. An early stopping criterion 

was also introduced to avoid overfitting the model, which lead to a total of 189 training 

epochs for a batch size of 32.  



 

Figure. 7.11. The Deep Neural Network approach to classify the FSO link laser mode status. 

 

Figure. 12. The cumulative results of the FSO operational status for the Autumn season. “0” 

for non-functional and “1” for functional laser operation. 

 Figure 7.13 shows the progressive performance of the model throughout training, 

measured by the accuracy and loss both for the training and the validation set. The 

model exhibits a significant accuracy early on the epochs iteration, which after slight 



variations seems to get stabilized after around 150 epochs. The early stopping criterion 

interrupted training at the 189th epoch. Figure 7.14, presents the confusion matrix of the 

DNN classification model. By definition a confusion matrix C is such that Ci,j is equal 

to the number of observations known to be in group i and predicted to be in group j. 

Thus, in a binary classification the count of true negatives is C0,0, false negatives is C1,0, 

true positives is C1,1 and false positives is C0,1. As shown in Figure 7.13, we confirmed 

the excellent classification performance of the DNN, since we observe that false 

negatives C1,0 = 0 and false positives is C0,1= 39, which means that out of the almost 

2400 “1”s only 39 false predictions made instead. 

 

Figure 7.13. The loss/accuracy performance of the deep neural classifier for the Autumn 

season. An early stopping criterion interrupted the training after 189 epochs. 



 

Figure 7.14. The confusion matrix for the DNN classifier during Autumn. 

 7.3.5 Modeling Outage Probability 

 The last section of the first part of this chapter, aimed to develop an easily 

interpretable mathematical model for outage probability estimation, based upon routine 

meteorological parameters and refractive index. A first order polynomial has been 

selected to provide a decent fit among seven independent parameters, i.e. IR 

temperature, solar flux, atmospheric water concentration, air temperature, wind speed, 

atmospheric pressure and logarithmic refractive index structure parameter, and the 

dependent Pout to the autumn dataset with a coefficient, R2= 0.55. The mathematical 

expression that gives the predicted outage probability is given,  

𝑃𝑜𝑢𝑡 = 0.349 − 2.423 ∗ 10
−4𝐼𝑅𝑡𝑒𝑚𝑝 + 4.911 ∗ 10−6𝑆𝑜𝑙𝑎𝑟⁡𝐹𝑙𝑢𝑥 − 3.391 ∗

10−4𝐻2𝑂𝑐𝑜𝑛 + 4.249 ∗ 10−4𝑇𝑎𝑖𝑟 + 6.489 ∗ 10−4𝑈𝑚𝑆𝑜𝑛𝑖𝑐 − 7.467 ∗ 10−4𝑃𝑎𝑖𝑟 +

1.849 ∗ 10−2𝐿𝑜𝑔𝐶𝑛
2                                                           (7.4) 



 Figure 7.15 plots the predicted values of Pout obtained from Eq. (7.4) against the 

measured values obtained from Eq. (3.66) for the autumn dataset. The daily mean value 

– instead of raw data - for both values has been used for a clearer depiction. We notice 

that the model’s predictions follow the general trend of the experimental Pout, thus it 

can be used to give very good estimates for the performance of an FSO link.  

 

Figure 7.15. Measured vs Predicted outage probability time series for autumn. 

7.4 HNA Experimental Site 

 The HNA experimental site is as presented in Chapters 5 and 6, with the addition 

of a BLS450 scintillometer, located in the vicinity of the MRV and WS-2000 to 

measure the atmospheric turbulence and heat flux over the path length. A scintillometer 

measures turbulence along the path between an optical transmitter and a receiver. 

Resulting in a path integrated 𝐶𝑛
2 measurement. Its operation principle is based on the 

modulation of light by atmospheric refractive index fluctuations in the air, the 

phenomenon called scintillation. Compared to conventional turbulence measurements 

with point sensors, a scintillometer gathers spatially representative results with lower 

statistical scatter and shorter averaging times. As a double-ended remote sensing 

system, the BLS450 also allows access to such a terrain (i.e. over water) without need 



to install in-situ sensors. Figure 7.16 shows the MRV TS5000/155 FSO system, co-

located with the BLS450 scintillometer and the ambient weather WS-2000, weather 

station on the roof of the laboratory building of the Hellenic Naval Academy. 

 

Figure 7.16. The MRV TS5000/155 FSO system, co-located with the BLS450 scintillometer 

and the ambient weather WS-2000, weather station on the roof of the laboratory building of 

the Hellenic Naval Academy. 

7.5 Results and Analysis (HNA Site) 

 The experimental measurements that took place during the last week of May 2022 

and comprised the first compete dataset from the upgraded instrumentation setup of the 

HNA experimental site. An initial period of a week (24 to 31 May) was devoted for the 

data collection, analysis and ML-based models construction and validation. 

Furthermore, the observed meteorological data was used for 𝐶𝑛
2 predictions based on 

two theoretical models. The main goals of this research analysis were i) the regression 

modeling of the refractive index structure parameter (𝐶𝑛
2) using ML algorithms and the 

assessment of their prediction accuracy, and ii) the application of ML algorithms for 

the classification modeling of the strength level of the 𝐶𝑛
2 parameter (i.e. low, high).  



 7.5.1 Data Set 

 During the aforementioned period, the observed 𝐶𝑛
2 parameter values from the 

BLS450 scintillometer were logged once per minute. The same time interval was used 

for the atmospheric data collection and storage from the WS-2000 weather station in 

order to accurately match them with the 𝐶𝑛
2 measurements and compile them in an .xlsx 

file. A few technical issues, such as system resets and line-of-sight link blockages due 

to maritime traffic, resulted in a few missed measurements. The meteorological 

conditions during the experiment were pretty stable, with air temperature values 

ranging from 20 to 29 oC, relative humidity within 45 and 85 percent and very low 

average wind speed. A key parameter of the meteorological data was the air-sea 

temperature difference (ASTD). To extract this parameter, we used the online weather 

statistics database [186]. The entire dataset was screened and redundant recorded data 

excluded to end up with a clean dataset including 8055 rows and eight columns with 

the meteorological parameters and the respective output value of 𝐶𝑛
2 for the same 

date/time. Therefore, a single user-friendly file was compiled for further process and 

analysis.   

 7.5.2 Regression Modeling Results 

 The first part of the analysis is devoted to the modeling of the refractive index 

structure parameter by using four machine learning based regression algorithms, 

namely a single layer neural network applied in the Neural Fitting application of 

Matlab, a deep neural network, a gradient boosting regressor and a random forest 

applied in a Jupyter notebook of Anaconda environment using Python language. Two 

different software application approaches were followed to compare the prediction 



accuracy of a built-in model with a user defined model which allows for much more 

flexibility.  

 The Neural Fitting application allows for data selection, creation and training a 

network and performance evaluation according to the mean square error and regression 

analysis. A single hidden layer feed-forward network with sigmoid hidden neurons and 

linear output neurons was created in order to fit the seven meteorological parameters 

(inputs) to the 𝑙𝑜𝑔𝐶𝑛
2 (output). The network was trained either with a Levenberg – 

Marquardt backpropagation algorithm or with a Bayesian Regularization algorithm. 

The first one requires more memory but less time to train the model. Training stops 

automatically when generalization stops improving, as indicated in the mean square 

error of the validation samples. The second algorithm requires more time but can result 

in good generalization for difficult, small or noisy datasets. Training stops according to 

adaptive weight minimization. The network was trained several times using different 

training algorithms (Levenberg – Marquardt and Bayesian Regularization) and number 

of nodes. The best outcome came from a network with 70 nodes, trained with a 

Levenberg – Marquardt algorithm which result in an R2 of 0.896 and a mean square 

error (MSE) of 0.0834. R2 measures the correlation between outputs and target values. 

The closer its value to 1, the closer their relationship. The MSE is the average of the 

summation of the squared difference between the actual output value and the predicted 

output value.  The split of the data followed an 80/10/10 mode for training, validation 

and testing. The results of the network fitting are shown in Figure 7.17.  



 

Figure 7.17. Regression plot for the Single Hidden Layer Network. 

 To develop the Random Forest model, we used the sklearn module and 

specifically the RandomForestRegressor function. There are several different 

parameters we can select for an RF model. In our case, after executing a grid search 

and cross validation, we found the optimal set of the following parameters, the number 

of decision trees that will be running in the model (n_estimators = 80), the criterion 

(loss function) used to determine the model outcome (criterion = MSE), the maximum 

possible depth of each tree (default value allows for leaves expansion until they are all 

pure) and the maximum number of features under consideration in each split (equal to 

the number of estimators). The results showed a very good agreement between model 

predictions and observed values, i.e. an R2 of 0.865 and a RMSE of 0.241 and are 

plotted in Figure 7.18.  



    

Figure 7.18. Scatter plot (left) and line plot (right) for observed vs predicted 𝐶𝑛
2 values for the 

Random Forest regression model. 

 Gradient boosting (GB) is one of the variants of ensemble methods where weak 

learners are created in series in order to produce a string ensemble model. GB makes 

use of the residual error for learning. The main training steps for a GB model are the 

following: i) an initial tree estimates the label value, ii) afterwards, the residual error is 

calculated, iii) then, another model is created to predict the error based on the previous 

model, not the label and iv) the label prediction is updated based on the error prediction. 

Again, the GB model includes several hyperparameters that can be initially selected 

and tuned adequately. The hyperparameters selected for this model are, i) the number 

of boosting stages to perform (n_estimators = 1000), ii) the learning rate of the model 

(learning_rate = 0.05), iii) the maximum depth of the individual regression estimators 

(max_depth = 6) and iv) the minimum number of samples required to split an internal 

node (min_samples_split = 12). The results again showed good agreement between 

model predictions and observed values, i.e. an R2 of 0.851 and a RMSE of 0.252 and 

are plotted in Figure 7.19. 



  

Figure 7.19. Scatter plot (left) and line plot (right) for observed vs predicted 𝐶𝑛
2 values for the 

Gradient Boosting regression model. 

 The last algorithm explored was a deep neural network, the evolution of a single 

layer network in order to overcome inherent limitations. Practically, a deep neural 

network is a single neural network with added hidden layers. The number of the hidden 

layers and the number of nodes in each layer control the neural network model capacity 

and depends on the specific problem we want to solve. As the dataset was not too big, 

we limited the number of layers in the deep learning model in order to save time and 

avoid overfitting. For this model, a three hidden layer architecture with a sequentially 

decreasing number of nodes in each layer (30/20/10), was selected and ran over batches 

of 16 for a total number of 350 epochs. A ReLu activation function was used to connect 

the hidden layer nodes and a linear for the output node because it was a regression 

model. The ReLu activation outputs the input directly if it is greater than 0; otherwise 

it returns zero. The loss function (Figure 7.20) was based on the mean squared error 

with an Adam optimizer. The line plot shows the expected behavior. Namely, that the 

model rapidly learns the problem, decreasing the loss function down to about 0.01 in 



about 75 epochs and remains pretty stable thereafter. The line plot also shows that train 

and test performance remain comparable during training, whereas the training line is a 

bit bumpy. Figure 7.21 presents the scattering and line plots for the DNN algorithm. 

The results for this model were R2 = 0.79 and an RMSE = 0.088. 

 

Figure 7.20. Τhe line plot of the loss function during DNN model training. 

 

Figure 7.21. Scatter plot (left) and line plot (right) for observed vs predicted 𝐶𝑛
2 values for the 

DNN regression model. 



 7.5.3 Turbulence Classification Modeling  

 Many studies have been performed to create a mathematical model for the 

probability density function (pdf) of the received irradiance. The result of these studies, 

is the development of various statistical models for the scintillation induced by the 

atmospheric turbulence for a range of atmospheric conditions. The turbulence strength 

has been divided into two levels, the weak and the strong, defined by the value of the 

Rytov variance, 𝜎𝑅
2. For 𝜎𝑅

2 values less than unity, the statistics of irradiance can be 

adequately described by the lognormal model. In case of higher turbulence strength, the 

lognormal pdf is not so accurate and therefore not appropriate for strong turbulence 

level irradiance modeling. For 𝜎𝑅
2 higher than unity, the statistics for received irradiance 

can be well described by the negative exponential or the gamma-gamma pdf. Apart 

from these two models, numerous others exist that can sufficiently describe the 

irradiance statistics in either turbulence level or some for both. 

 This section aims to describe a DNN approach to model the turbulence strength 

level, that is either strong or weak. That way, we can be able to use the applicable 

statistical model to describe the channel based on its current status. To do so, we utilized 

the environmental data set as described in Section 7.5.1 and built a deep neural network 

as shown in Fig. 7.22 to classify the turbulence strength level.  



 

Figure 7.22. The three-layer deep neural network for turbulence strength classification. 

 

 In the raw dataset described in Section 7.5.1, we assumed a notional value of 

refractive index structure parameter, 𝐶𝑛
2 > 5 ∙ 10−15, to characterize it as strong and for 

𝐶𝑛
2 < 5 ∙ 10−15 weak. Given Eq. (2.30), for 𝐶𝑛

2 = 5 ∙ 10−15, λ = 850 nm and L = 3000 

meters, 𝜎𝑅
2 ≈ 1. Therefore, a “0” was attached to every row in our dataset with 𝐶𝑛

2 <

5 ∙ 10−15 and a “1” for 𝐶𝑛
2 > 5 ∙ 10−15. The resulted split of our experimental data was 

quite balanced and showed that strong values slightly outnumbered the weak, as shown 

in Figure 7.23. 



 

Figure 7.23. The cumulative results of the turbulence strength level. “0” denotes weak and 

“1” strong turbulence conditions. 

 The network has three hidden layers with 30, 20 and 10 neurons, respectively. A 

feed-forward back propagation algorithm was used, with a dropout rate of 0.5 per layer. 

The activation function for the three hidden layers was a rectifier (ReLU) whereas for 

the output layer a sigmoid function. In order for the algorithm to monitor the progress 

of the algorithm fitting, a binary cross entropy loss function was used and the Adam 

optimizer to adapt the gradient descent of the loss function. The algorithm was trained 

against the 80% of the dataset and tested over the remaining 20%. We used a total 

number of 500 training epochs for a batch size of 8. Figure 7.24 shows the progressive 

performance of the model throughout training, measured by the accuracy and loss 

function both for training and validation sets. The model exhibited a significant 

accuracy early on the epochs iteration. After approximately 200 epochs we observe a 



slight divergence between the training and validating measurements, which remain 

pretty constant throughout the entire epochs number.  

 

Figure 7.24. The loss/accuracy performance of the deep neural classifier of the turbulence 

strength for a total of 500 epochs. 

 Figure 7.25, presents the confusion matrix of the DNN classification model. By 

definition a confusion matrix C is such that Ci,j is equal to the number of observations 

known to be in group i and predicted to be in group j. Thus, in a binary classification 

the count of true negatives is C0,0, false negatives is C1,0, true positives is C1,1 and false 

positives is C0,1. As shown in Figure 7.25, our model exhibited a very acceptable 

classification performance, given the high variability of our target value (𝐶𝑛
2), since we 

observe that false negatives are only C1,0 = 87 and false positives are C0,1 = 132, which 

is translated in an accuracy value of 0.87. In other words, 87% of the model’s prediction 

will be correct.  



 

Figure 7.25. The confusion matrix for the DNN classifier. 

7.6 Summary 

 This chapter is comprised of two main parts, which present a thorough analysis 

of 𝐶𝑛
2 and FSO outage probability modeling, by leveraging machine learning 

algorithms.  

 The first part of the chapter is two-fold.  Initially the regression analysis results 

for 𝐶𝑛
2 is presented. We utilized six common ML algorithms and trained them on four 

different data sets. The results showed a great variance on the prediction accuracy of 

each model. Specifically, the ANN algorithm, a single layer perceptron model, that 

included 100 neurons in its hidden layer, with a training batch size of 32, showed a 

moderate to low accuracy, with R2 = 0.55 and RMSE = 0.0916. The RF algorithm gave 

a significantly improved coefficient of determination for the model evaluation, R2= 

0.78, which was the best value among all algorithms for every season. Additionally, an 

RMSE = 0.064 showed a great improvement in the error of the predicted values. The 



Gradient Boosting Regressor model, used a tree number -iterations- of 2000 and also 

performed very sufficiently. It was comparable to the RF by achieving a value of R2 = 

0.7 and an RMSE = 0.075. The KNN algorithm achieved its best performance for a 

value of k = 15, which resulted in R2 = 0.71 and an RMSE = 0.073. That is, it slightly 

outperformed the GBR algorithm. The DT algorithm, with an optimum depth of 15 

trees resulted in R2 = 0.637 and RMSE = 0.083. Finally, the DNN algorithm, comprised 

of three hidden layers of neurons (1st hidden layer = 50, 2nd hidden layer = 30 and 3rd 

hidden layer = 10), resulted in an R2 = 0.61 and an RMSE = 0.085. The second part of 

the paper was devoted on a thorough analysis for the outage probability of an FSO link. 

Initially, the corresponding Pout for the measured meteorological conditions was 

derived, based on an existing in the literature mathematical formula. These Pout 

estimations were used to classify the link status as functional or non-functional 

depending on a required availability of 99%, which corresponds to a 1% outage 

probability. We then trained a DNN classifier to model the status of the link based on 

the six measured meteorological parameters. Finally, an empirical mathematical model 

for outage probability estimation was developed based upon those meteorological 

parameters and refractive index. Both the DNN classifier and the regression formula 

showed a very good performance. On the author’s knowledge, an experimentally 

obtained outage probability analysis for an FSO link does not exist in the literature, 

therefore the presented results of this paper is of significant importance for the FSO 

technology community.  

 The second part of this chapter, utilized four common ML algorithms and trained 

them on a preliminary data set consisting of six experimentally obtained macroscopic 

meteorological parameters. The results showed very good prediction accuracy for every 

model. Specifically, the ANN algorithm, a single layer perceptron model that included 



70 neurons in its hidden layer, with a training batch size of 32, trained with a Levenberg 

– Marquardt algorithm, resulted in an R2 of 0.896 and a mean square error (MSE) of 

0.0834. The RF algorithm, comprised from 80 estimators, also gave a highly acceptable 

coefficient of determination, an R2 of 0.865 and a RMSE of 0.241. The Gradient 

Boosting Regressor model, with 1000 boosting stages (n_estimators), a learning rate of 

0.05, maximum depth of the individual regression estimators equal to six and minimum 

number of samples required to split an internal node equal to twelve, resulted in an R2 

of 0.851 and a RMSE of 0.252. Finally, the DNN algorithm, comprised of three hidden 

layers of neurons (1st hidden layer = 30, 2nd hidden layer = 20 and 3rd hidden layer = 

10), ran over batches of 16 for a total number of 350 epochs, resulted in an R2 = 0.79 

and a RMSE = 0.088.  Additionally, we developed a DNN approach to classify the 

turbulence strength level as either strong or weak utilizing the same data set. A notional 

value of refractive index structure parameter, 𝐶𝑛
2 = 5 ∙ 10−15⁡𝑚−2/3 was set to 

distinguish between strong and weak region and the resulted split of the experimental 

data was quite balanced. The network has three hidden layers with 30, 20 and 10 

neurons, respectively and a dropout rate of 0.5 per layer. The algorithm was trained 

against the 80% of the dataset and tested over the remaining 20%, for a total number of 

500 training epochs and a batch size of 8. The model exhibited a very acceptable 

classification performance, given the highly variability of our target value (𝐶𝑛
2), since 

we observed an accuracy of 87% on the model’s prediction.  

 

 

 

 

 



CHAPTER 8 

RSSI probability density functions 

comparison using Jensen-Shannon 

divergence and Pearson distribution 

 

 This chapter includes the results that have been published in the peer-reviewed 

journal [J6].  

8.1 Introduction 

 Traditionally, a large number of probability density functions (PDFs) have been 

utilized to model the received optical power of an FSO link. The most widely used and 

accepted PDF models include the Log-Normal (LN), Gamma-Gamma (GG), Gamma, 

Weibull, K, I-K, Malaga, the Fisher-Snedecor F and the negative exponential. In order 

to evaluate the performance of an optical communication system, various link 

parameters can be employed, such as the probability of detection, the outage 

probability, the average capacity and the outage capacity. In any case, knowledge of 

the PDF of the received optical power is required; however, it is rather difficult to 

determine which PDF better fits the statistics of the received power data. 

 In the open technical literature, several PDF models are available for weak, 

moderate and strong turbulence. For example, the Log-Normal and the Gamma-Gamma 

distributions describe accurately the weak and moderate regime whereas the gamma-

gamma, the negative exponential and the K-distribution yield a better fit at the strong 

regime [4]. Apart from selecting a distribution corresponding to the correct turbulence 



strength regime, it is risky to assume that only a certain one fits accurately experimental 

data. Instead, it is critical to investigate the best fit among different distributions.  

 Motivated by the above, the main contribution of this chapter is to propose a 

methodology of comparing different theoretical distribution models, for any turbulence 

strength regime. To achieve this, several theoretical PDF models are fitted to the 

dataset's histogram using a sizable empirically measured dataset of the received signal 

intensity of an FSO connection in the marine environment. Initial comparisons of five 

theoretical models are made using the Kullback-Leibler (KL) and Jensen-Shannon (JS) 

divergences, and the best match is decided by the absolute value of the associated 

divergence. The type that best matches experimental data is also determined using the 

Pearson family of probability distribution functions, which consists of seven different 

continuous probability distributions. 

8.2 Experimental Setup 

 The commercial FSO communications system located on the Hellenic Naval 

Academy’s building roof and on Psitalia’s island lighthouse, which has been already 

describe in the previous chapters, was utilized for the data acquisition of the received 

signal strength indicator (RSSI) of the optical link. The system has been set to obtain a 

measurement of the received signal strength indicator (RSSI) every minute, during each 

day, and then store these values in a connected PC for further analysis.  

 The data collection period of the RSSI parameter spanned over a year, from the 

30th November of 2019 to the 27th October 2020, to include totally 144802 data points. 

At the same time, several macroscopic meteorological parameters were also measured 

from a standalone weather station located close to the FSO system so that their 

fluctuations can be monitored and estimate their influence to RSSI. This dataset of the 



RSSI measurements is used to apply the PDF fits comparison. The descriptive statistics 

of the dataset is shown in Table 8.1. 

Table 8.1. Descriptive statistics for the RSSI measurements from 30th November 2019 to 27th 

October 2020. 

Statistic Value 

Mean 420.385927 

Standard Error 0.084275342 

Median 425 

Mode 445 

Standard Deviation 32.06917633 

Kurtosis 1.481024233 

Skewness -0.798160493 

Maximum 187 

Minimum 517 

 

8.3 Results and Analysis 

 In this section, we examine the fitting comparison techniques of different PDFs 

to an experimentally gathered dataset. This process will benefit the performance 

analysis of an FSO link and allow for credible reliability and availability estimations.   

 

 8.3.1  Kullback-Leibler Divergence 

 A fundamental concept of the information theory is the Kullback-Leibler (KL) 

divergence, a method to measure the conventionally defined “distance” among two 

distributions [186]. The entropy of a random variable is the information required to 

describe it [187]. We assume two distinct distributions defined on the same probability 

space, the first, p, which refers to a theoretical probability distribution and is measured 



against an experimental or modeled distribution, q. The KL divergence, also called the 

relative entropy, measures the inefficiency of assuming a distribution to be q when in 

reality is p. The relative entropy or KL divergence between two distributions is then 

given [187], 

     𝐷𝐾𝐿(𝑝||𝑞) = ∑ 𝑝𝑖𝑙𝑜𝑔2
𝑝𝑖

𝑞𝑖
𝑖               (8.1) 

 The KL divergence is non-negative and asymmetric in p and q, meaning that,  

                  𝐷𝐾𝐿(𝑝||𝑞) ≠ 𝐷𝐾𝐿(𝑞||𝑝)                         (8.2) 

 The lower the value of the DKL, the less the distance between p and q, which 

ultimately can become zero if the two distributions are identical. Additionally, in case 

an i exists where pi > 0 and q = 0, then the KL divergence goes to infinity. Cover and 

Thomas, give a technical interpretation of the KL divergence, as the “coding penalty” 

associated with a distribution q selected to compare with a distribution p [187]. A 

relevant important measure is the mutual information, which gives the amount of a 

random variable explained from another. Let two random variables X, and Y, then their 

mutual information is given by the relative entropy of their joint distribution p(x, y) and 

the product distribution p(x)p(y) [187], 

     𝐼(𝑋, 𝑌) = 𝐷(𝑝(𝑥, 𝑦)||𝑝(𝑥)𝑝(𝑦))             (8.3) 

 Five theoretical distribution models where utilized to apply the Kullback-Leibler 

divergence Eq. (8.1) in order to evaluate and compare their fit performance to the real-

valued RSSI data. The theoretical PDFs used where: 

Weibull: 𝑓(𝑥) =
𝑘

𝜆
(
𝑥

𝜆
)
𝑘−1

𝑒−(
𝑥

𝜆
)
𝑘

                 (8.4) 

Gamma: 𝑓(𝑥) =
𝛽𝛼𝑥𝑎−1𝑒−𝛽𝑥

𝛤(𝛼)
, 𝑓𝑜𝑟⁡𝑥 > 0⁡𝑎𝑛𝑑⁡𝛼, 𝛽 > 0                                           (8.5) 



Log − Normal⁡(LN): 𝑓(𝑥) =
1

𝑥𝜎√2𝜋
𝑒𝑥𝑝 (−

(ln(𝑥)+𝜎2/2)
2

2𝜎2
)              (8.6) 

Burr: 𝑓(𝑥) = 𝑐𝑘
𝑥𝑐−1

(1+𝑥𝑐)𝑘+1
                  (8.7) 

Extreme − Value⁡(EV): 𝑓(𝑥) =
1

𝛽
𝑒−(𝑥+𝑒

−𝑥)                (8.8) 

 The Kullback-Leibler divergence was calculated for these five PDFs and the best 

fit to the observed RSSI data (30th Nov 19 – 27th Oct 20) was deduced. Initially the 

frequency occurrence of each RSSI observation is calculated. The probability density 

of the RSSI data was then developed by dividing the frequency of each observation by 

the total number of observations. We then utilized the distfit MATLAB application to 

obtain the parameters of the theoretical distributions within the observed RSSI values 

range (187-517). By applying Eq. (8.1) for each model, the KL divergence was 

calculated (Figure 8.1). The Burr distribution is proved to best fit our data and thus 

exhibited the lowest KL divergence value, 2.77×10-2, followed by Weibull distribution 

with a value of 3.07×10-2.     

 

Figure 8.1. The Kullback-Leibler divergence values for Gamma, Weibull, Lognormal, Burr 

and Extreme-Value distribution.   



 The probability density functions for each theoretical model against the observed 

RSSI data are depicted in Figure 8.2, and their corresponding probability plots in 

Figures 8.3-8.5. 

 

 

 



 

 

Figure 8.2. Probability density functions fits to RSSI data. 

 It is obvious graphically from the probability plots that the Burr distribution best 

fits the RSSI data. In particular, it presents an excellent agreement with the 

experimental data with an exception in the far upper tail of the distribution. In contrast, 

the rest four of the tested distributions exhibit a noteworthy disagreement in both tails.   



 

 

Figure 8.3. Probability plots for Burr and Extreme-Value distribution against RSSI data. 

 



 

Figure 8.4. Probability plots for Gamma and Log-Normal distribution against RSSI data. 

 

Figure 8.5. Probability plots for Weibull distribution against RSSI data. 

 

 8.3.2 Jensen-Shannon Divergence 

 Another method of measuring the similarity of two probability distributions is the 

Jensen-Shannon divergence (JSD). The JSD is based on the KL divergence, however it 

exhibits a few but important differences with it, that it is symmetric and it always has a 

finite value. The square root of JSD is also defined as JS distance [188] and it is given 

by, 



                                      𝐽𝑆𝐷(𝑃||𝑄) =
1

2
𝐷(𝑃||𝑀) +

1

2
𝐷(𝑄||𝑀)             (8.9) 

 where, M=(P+Q)/2, and D(P||M) and D(Q||M) are the KL divergences as defined 

by Eq. (8.1). Provided that at least one of the two measured distributions uses base 2 

logarithm, it is upper bounded by 1,  

                      0 ≤ 𝐽𝑆𝐷(𝑃||𝑄) ≤ 1             (8.10) 

 The JSD, also called capacitory discrimination, can be understood as the total KL 

divergence to the average distribution, M and can be also mathematically defined as a 

Jensen divergence of the Shannon information h [22], 

            𝐽𝑆(𝑝; 𝑞) = ℎ (
𝑝+𝑞

2
) −

ℎ(𝑝)+ℎ(𝑞)

2
            (8.11) 

 where the notation ‘;’ is used instead, to emphasize its symmetry. Other 

symmetrizations of the KL divergence can be found in the literature, including among 

other the extrinsic Jensen-Shannon divergence, the Jeffreys divergence and the 

extended Kullback-Leibler divergence [189]. In terms of the JSD, we can also define it 

as the mutual information between a random variable X and the binary indicator 

variable Z, used to switch between P and Q, whose mixture distribution is associated 

with X. 

 In order to calculate the JSD of each theoretical distribution against the observed 

RSSI data we utilized Eq. (8.9). The M parameter was deduced by taking the average 

between each model and the RSSI data, a total of five. Following that, we calculated 

the KL divergence between each distribution, including the RSSI data distribution, and 

the corresponding M parameter, a total of ten distinct KL values. Finally, the JSD is 

calculated and the results are shown in Figure 8.6.  



 

Figure 8.6. The Jensen-Shannon divergence values for Gamma, Weibull, Lognormal, Burr 

and Extreme-Value distribution. 

  

 8.3.3 Pearson Distribution Family 

 The Pearson family of continuous probability distributions, has become popular 

within the research community due to its ability to take into account the skewness and 

kurtosis of a probability distribution. This fact is really valuable when theoretical 

probability distributions need to be fit to experimental data that exhibits skewness, that 

is the asymmetry of a real-valued data around its mean. Skewness can take negative, 

positive or zero values, where negative indicates the distribution tail’s on the left, 

whereas positive on the right. Pearson, originally identified four types of distributions, 

characterized by two quantities, β1 and β2. Any valid solution of Eq. (8.12) defines a 

Pearson type PDF [196].   

         
𝑑𝑓(𝑥)

𝑑𝑥
+

𝑎+(𝑥−𝜆)

𝑑(𝑥−𝜆)2+𝑐(𝑥−𝜆)+𝑏
= 0           (8.12) 

 where, 



     

{
 
 

 
 𝑏 =

4𝛽2−3𝛽1

10𝛽2−12𝛽1−18
𝜇2

𝑎 = 𝑐 = √𝜇2√𝛽1
𝛽2+3

10𝛽2−12𝛽1−18

𝑑 =
2𝛽2−3𝛽1−6

10𝛽2−12𝛽1−18

           (8.13) 

 where λ the location parameter of the distribution.   

 The solution for each type of Pearson distribution differs to the values of 

parameters a, b, c and d. Many types included to Pearson family distributions, are 

commonly used today in various applications, such as the beta, gamma and t-

distribution [191].  

 The value of the discriminant of the quadratic function, 

      𝑓(𝑥) = 𝑑𝑥2 + 𝑎𝑥 + 𝑏           (8.14) 

 distinguishes the two main cases which group the distribution types.  

 We applied a standard pearsrnd function in MATLAB in order to determine the 

type of Pearson distributions that best fits the observed RSSI data. The mean value, 

standard deviation, skewness and kurtosis of the RSSI data were required to calculate 

the d, a, and b parameters of Eq. (8.14), where d = 0,0548, a = -0,3116 and b = 0,08355. 

The results showed that a Type IV Pearson PDF would best fits the data given by [191], 

   𝑓(𝑥) =
𝐴

[𝐴0+𝑑(𝑥+𝐴1)2]1/(2𝑑)
𝑒𝑥𝑝 [−

𝑏−𝐴1

√𝑑𝐴0
𝑎𝑟𝑐𝑡𝑎𝑛 (

𝑥+𝐴1

√𝐴0/𝑑
)]          (8.15) 

 where A0 = b – c2(4d)-1 and A1 = c(2d)-1. The Pearson Type IV cumulative 

distribution function (CDF) against the RSSI data is plotted in Figure 8.7 and shows a 

very good agreement. 



 

Figure 8.7. The cumulative distribution function for Pearson Type IV against RSSI data. 

8.4 Summary 

 The modeling accuracy degree of five probability density functions to a large 

experimental dataset of the received signal strength for an FSO link has been studied. The focus 

of this paper is to identify among those PDFs the one that best fits to the observed data based 

on the available comparison methods. To that end, the Gamma, Lognormal, Extreme-Value, 

Burr and Weibull distributions have been utilized to calculate initially their Kullback-Leibler 

divergence and a symmetrization of it, the Jensen-Shannon divergence, with the RSSI data. The 

Burr distribution was found to best fir the experimental data, with a KL and JS divergence 

values of 2.77×10-2 and 6.53×10-3, respectively. The Weibull and EV distributions also 

exhibited a comparable accuracy in contrast with the Gamma and Lognormal, whose “distance” 

from real data was of an order of magnitude higher. The Pearson distribution family of 

continuous probability functions was also used and the results showed that a type IV function 

yield the best fit. Both methods offer a straightforward process of comparing among different 

PDFs for fitting accuracy on real data. The two aforementioned methods follow a different 

approach to select the most appropriate PDF to fit to a dataset. KL and JD, allow for the 



calculation of the performance metric of each candidate PDF, thus designate the best one as the 

one with the lowest divergence. On the other hand, the Pearson approach, compares among 

predefined PDFs and the algorithm determines which is the best. From a practical point of view, 

the KL and consequently the JD metrics are more useful to be applied in a real-world dataset, 

since they directly provide a certain output that allows any PDF to be examined, whereas the 

Pearson method selects within a more limited number of options.             

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 9 

Conclusions 

 

 Over the last few decades, a new application of a rather older technology arose, 

the so-called free space optical (FSO) communication or else, the laser communication 

(LaserComm). The capacity requirements for the information channels in the 21st 

century calls for an effective alternative of the traditional radio frequency (RF) 

technology and the FSO technology aims to fill this gap. Perhaps, the most evident asset 

of FSOC is their potential for increased data rate (several 10s of Gb), as compared to 

their RF counterpart, due their inherently very high carrier frequency (on THz level) 

and therefore bandwidth. A significant drawback of the FSO systems that could 

potentially lead to a total blackout of the link, is the atmospheric effects. Since the 

atmosphere consists of many different particles like aerosols, dust, smoke etc. or large 

precipitation due to rain, haze or snow, the laser beam propagating through this may 

face significant power loss because of the attenuation or scattering effects. Special 

attention has been given in the phenomenon of optical turbulence. Two are the main 

factors in order to characterize the performance of an FSO link, that is the channel 

modeling and system performance metrics.  

 The fields of Artificial Intelligence (AI), Machine Learning (ML) and Deep 

Learning (DL), have been evolved and proved tremendously successful over the last 

few decades. Machine Learning use for Optical Communications research is a recently 

emerged topic that will definitely continue to increase rapidly. The value of this 

approach is derived mainly from the unique characteristics of the FSO research field 



rather than the applied ML algorithms. By reviewing the literature on this topic, we can 

notice that a number of ML algorithms or a number of specific FSO-related applications 

have not been extensively leveraged. 

 This thesis presented a review of both traditional and machine learning methods, 

and applied them in novel contexts to model and predict the performance of optical 

communication systems and optical turbulence over maritime environment, thus 

increasing their availability. In this section, the results of this work are summarized and 

an outlook on potential future research directions is presented. 

 The reviewed traditional and machine learning methods were applied in FSO 

performance and optical turbulence modeling as follows: 

 

 Statistical Modeling of FSO Performance in Maritime 

Environment 

 In this chapter, two new mathematical models were proposed, to predict the 

received signal strength (RSSI) of an FSO optical link over maritime environment. The 

models have the form of a second-order polynomial with seven macroscopic 

meteorological parameters as the independent variables. The first proposed model (base 

model) was validated against real data in two separate periods and the R2 and 

correlation coefficient between the observed and modeled RSSI values were computed 

to check how good the fit was. Both periods exhibited high R2 and correlation 

coefficient, namely 69% and 0.8327, respectively. The second proposed model was an 

improved edition of the base model by including the air-sea temperature difference, as 

an additional independent variable. Overall, the improved model achieved a significant 



linear correlation coefficient of 0.78 with the observed values as compared to 0.73 of 

the base model for the first period and 0.81 as compared to 0.79 for the second period. 

The goodness of fit parameter R2 between the improved model prediction and the 

observed values was 70.5% and 66% for the two periods, respectively. 

 

 Machine Learning Algorithms for Received Optical 

Power Prediction 

 In this chapter, a machine learning based scheme was introduced to estimate the 

RSSI parameter of an FSO link over a maritime environment based on macroscopic 

meteorological measurements. To test the proposed approach, a large experimentally 

derived data set was used. Five ML algorithms were trained in order to construct a 

robust model to accurately predict the link’s performance in terms of received signal 

strength. The results showed a significant improvement, as compared to traditional 

regression modeling techniques, and their prediction accuracy performance measured 

by the coefficient of correlation, R2 and the RMSE was extremely promising for even 

more complex predictive modeling. The superlative performance of the ML approaches 

comparing to the common-used regression method indicates that, first, ML is the 

appropriate modelling choice when overall prediction is the goal and the volume of data 

is high, second, allows the ability to tune hyper parameters per ML approach to enable 

optimal performance, and, finally, the trained models can be either improved by adding 

more data or be used for continuous streamflow RSSI predictions.      

  



 Machine Learning Algorithms for Optical Turbulence 

Prediction 

 This chapter introduces the application of machine learning algorithms in 

modeling the refractive index structure parameter (𝐶𝑛
2) and estimate its value through 

regression analysis of macroscopic meteorological parameters, obtained from the NPS 

site. Secondly, it applies well known mathematical expressions to estimate the outage 

probability of a notional FSO link, based on the strength of the optical turbulence and 

model the link status (On-Off) based on macroscopic meteorological parameters, by 

utilizing a DNN classification algorithm.  

 The second part, presented the ML-based modeling approach of the refractive 

index structure parameter (𝐶𝑛
2), based on macroscopic meteorological parameters and 

𝐶𝑛
2 values, obtained from the HNA experimental site.  To do so, four machine learning 

algorithms were employed, including a Random Forest (RF), a Gradient Boosting 

Regressor (GBR) and two Neural Networks (a single layer and a deep network).  

 

 RSSI probability density functions comparison using 

Jensen-Shannon divergence and Pearson distribution 

 This chapter studied the modeling accuracy degree of five probability density 

functions to a large experimental dataset of the received signal strength for an FSO link, 

in order to identify among those PDFs the one that best fits to the observed data based 

on the available comparison methods. To that end, the Gamma, Lognormal, Extreme-

Value, Burr and Weibull distributions have been utilized to calculate initially their 



Kullback-Leibler divergence and a symmetrization of it, the Jensen-Shannon 

divergence, with the RSSI data. The Pearson distribution family of continuous 

probability functions was also used and the results showed that a type IV function yield 

the best fit. The two aforementioned methods follow a different approach to select the 

most appropriate PDF to fit to a dataset. KL and JD, allow for the calculation of the 

performance metric of each candidate PDF, thus designate the best one as the one with 

the lowest divergence. On the other hand, the Pearson approach, compares among 

predefined PDFs and the algorithm determines which is the best. From a practical point 

of view, the KL and consequently the JD metrics are more useful to be applied in a real-

world dataset, since they directly provide a certain output that allows any PDF to be 

examined, whereas the Pearson method selects within a more limited number of 

options.             

 

 

 

 

 

 

 

 

 

 

 

 

 



References 

 
1. D. M. et al., “Free Space Optical Technologies”, Trends in Telecommunications 

Technologies. InTech, Mar. 01, 2010. doi: 10.5772/8488. 

2. In Keun Son, Shiwen Mao, A survey of free space optical networks, Digital 

Communications and Networks, Volume 3, Issue 2, 2017, Pages 67-77. 

3. Henniger, Hennes and Otakar Wilfert. “An Introduction to Free-space Optical 

Communications.” (2010). 

4. Kaushal, Hemani& Jain, Vk&Kar, Subrat. (2017). Free-Space Optical Channel 

Models. 10.1007/978-81-322-3691-7_2. 

5. B. Epple, H. Henniger, Discussion on design aspects for free-space optical 

communication terminals, IEEE Commun. Mag. 45 (October (10)) (2007) 62- 69. 

6. G. Baister, P. Gatenby, Pointing, acquisition and tracking for optical space 

communications, Electron. Commun. Eng. J. 6 (December (6)) (1994) 271–280. 

7. Abadi, M.M., Cox, M.A., Alsaigh, R.E. et al. A space division multiplexed free-

space-optical communication system that can auto-locate and fully self align with a 

remote transceiver. Sci Rep 9, 19687 (2019). https://doi.org/10.1038/s41598-019-

55670-1. 

8. E.J. Lee, V.W. Chan, optical communication over the clear turbulent atmospheric 

channel using diversity, IEEE J. Sel. Areas Commun. 22 (November (9)) (2004) 1896–

1906. 

9. Brandon Born, Ilija R. Hristovski, Simon Geoffroy-Gagnon, and Jonathan F. 

Holzman, "All-optical retro-modulation for free-space optical communication," Opt. 

Express 26, 5031-5042 (2018). 



10. C. Quintana et al., "High Speed Electro-Absorption Modulator for Long Range 

Retroreflective Free Space Optics," in IEEE Photonics Technology Letters, vol. 29, no. 

9, pp. 707-710, 1 May1, 2017, doi: 10.1109/LPT.2017.2680842. 

11. V.W. Chan, Free-space optical communications, IEEE/OSA J. Light. Technol. 

24 (December (12)) (2006) 4750–4762. 

12. B. S. Robinson, D. M. Boroson, D. A. Burianek, D. V. Murphy, "Overview of the 

lunar laser communications demonstration," Proc. SPIE 7923, Free-Space Laser 

Communication Technologies XXIII, 792302 (21 February 2011); 

https://doi.org/10.1117/12.878313. 

13. S. Das et al., "Requirements and challenges for tactical free-space Lasercomm," 

MILCOM 2008 - 2008 IEEE Military Communications Conference, San Diego, CA, 

USA, 2008, pp. 1-10, doi: 10.1109/MILCOM.2008.4753049. 

14. Mikołajczyk, Janusz; Bielecki, Zbigniew; Bugajski, Maciej; Piotrowski, Józef; 

Wojtas, Jacek; et al.  Metrology and Measurement Systems; Warsaw Vol. 24, Iss. 4, 

(2017): 653-674. DOI:10.1515/mms-2017-0060 

15. Young, D.W. & Hurt, H.H. & Sluz, J.E. & Juarez, J.C. (2015). Development and 

demonstration of laser communications systems. Johns Hopkins APL Technical Digest 

(Applied Physics Laboratory). 33. 122-138. 

16. Stromqvist Vetelino, Frida, "Fade Statistics For A Lasercom System And The 

Joint Pdf Of A Gamma-gamma Distributed Irradiance And Its Time Derivative" (2006). 

Electronic Theses and Dissertations. 824. 

17. Wayne, David, "The Pdf Of Irradiance For A Free-space Optical 

Communications Channel: A Physics Based Model" (2010). Electronic Theses and 

Dissertations. 4300. 



18. J. C. Juarez, A. Dwivedi, A. R. Hammons, S. D. Jones, V. Weerackody and R. A. 

Nichols, "Free-Space Optical Communications for Next-generation Military 

Networks," in IEEE Communications Magazine, vol. 44, no. 11, pp. 46-51, November 

2006, doi: 10.1109/MCOM.2006.248164. 

19. Casey, Charles J., John Gibson, Gurminder Singh, Charles Prince and Peter 

Ateshian. “Suitability of free space optical communication in military environments.” 

(2015). 

20. NASA, Deep Space Optical Communications (DSOC), 2016, [online]. Available: 

〈https://gameon.nasa.gov/projects/deep-space-optical-communications-dsoc/〉. 

21. Moore, Christopher & Burris, Harris & Stell, Mena & Wasiczko, Linda & Suite, 

Michele & Mahon, Rita & Rabinovich, William & Gilbreath, Gcharmaine & Scharpf, 

William. (2005). Atmospheric Turbulence Studies of a 16 km Maritime Path. 

Proceedings of SPIE - The International Society for Optical Engineering. 5793. 12. 

10.1117/12.606019. 

22. M. F. Stell; C.I. Moore; H.R. Burris; M.R. Suite; M.J. Vilchek; M.A. Davis; R. 

Mahon; E. Oh; W.S. Rabinovich; W.J. Scharpf; G. C. Gilbreath and A.E. Reed. Passive 

Optical Monitor for Atmospheric Turbulence and Windspeed. Proc. SPIE 5160, Free-

Space Laser Communications and Active Laser Illumination III, Bellingham, WA, 

2004; doi: 10.1117/12.508051. 

23. Wasiczko, L.M.; Moore, C.I.; Burris, H.R.; Suite, M.; Stell, M.; Murphy, J.; 

Gilbreath, G.C.; Rabinovich, W.; Scharpf, W. Characterization of the Marine 

Atmosphere for Free-Space Optical Communication. In Proceedings of the SPIE 

6215, Atmospheric Propagation III, Orlando (Kissimmee), FL, USA, 17 May 2006. 

24. Rabinovich, W.S.; Moore, C.I.; Mahon, R.; Goetz, P.G.; Burris, H.R.; Ferraro, 

M.S.; Murphy, J.L.; Thomas, L.M.; Gilbreath, G.C.; Vilcheck, M.; Suite, M.R.; Free-



space optical communications research and demonstrations at the U.S. Naval Research 

Laboratory,Appl. Opt. 2015,Vol. 54, F189-F200. 

25. C. I. Moore; H. R. Burris; W. S. Rabinovich; L. Wasiczko; M. R. Suite; L.A. 

Swingen; R. Mahon; M. F. Stell; G. C. Gilbreath; W. J. Scharpf; Overview of NRL's 

maritime laser communication test facility. Proc. SPIE 5892. Free-Space Laser 

Communications V, Bellingham, WA, 2005. doi: 10.1117/12.622252. 

26. Stephen Doss-Hammel, Eun Oh, Jennifer C. Ricklin, Frank D. Eaton, G. 

Charmaine Gilbreath, Dimitri Tsintikidis, "A comparison of optical turbulence 

models," Proc. SPIE 5550, Free-Space Laser Communications IV, (20 October 2004); 

https://doi.org/10.1117/12.563746. 

27. Rita Mahon, Christopher I. Moore, Harris R. Burris, William S. Rabinovich, 

Michele R. Suite, Linda M. Thomas, "Power spectra of a free space optical link in a 

maritime environment," Proc. SPIE 7464, Free-Space Laser Communications IX, 

746407 (21 August 2009); doi: 10.1117/12.828860. 

28. H. R. Burris; C. I. Moore; L. A. Swingen; M. J. Vilcheck; D. A. Tulchinsky; R. 

Mahond; L. M. Wasiczko; M. F. Stell; M. R. Suite; M. A. Davis; S. W. Moore; W. S. 

Rabinovich; J. L. Murphy; G. C. Gilbreath; J. Scharpf; Latest Results from the 32km 

Maritime Lasercom Link at the Naval Research Laboratory, Chesapeake Bay Lasercom 

Test Facility. Proc. SPIE 5793. Atmospheric Propagation II, Bellingham, WA, 2005; 

doi: 10.1117/12.606030. 

29. Rabinovich, William & Mahon, Rita & Burris, Harris & Spie, Member & 

Gilbreath, Gcharmaine & Goetz, Peter & Moore, Christopher & Stell, Spie & Vilcheck, 

Michael & Witkowsky, Jennifer & Swingen, Lee & Suite, Michele & Oh, Eun & 

Koplow, Jeffrey. (2004). Free-space optical communication link at 1550 nm using 



multiple-quantum-well modulating retroreflectors in a marine environment. Optical 

Engineering. 23. 10.1117/12.507737. 

30. G. C. Gilbreath; W. S. Rabinovich; C. I. Moore; H. R. Burris; R. Mahon; K. J. 

Grant; P. G. Goetz; J. L. Murphy; M. R. Suite; M. F. Stell; M.L. Swingen; L. M. 

Wasiczko; S. R. Restaino; C. Wilcox; J. R. Andrews; W. J. Scharpf; Progress in Laser 

Propagation in a Maritime Environment at the Naval Research Laboratory. Proc. SPIE 

5892. Free-Space Laser Communications V, Bellingham, WA, 2005; doi: 

10.1117/12.633390. 

31. De Jong, A.N.; Schwering, P.B.; Van Eijk, A.M.; Gunter, W.H.; Validation of 

Atmospheric propagation models in littoral waters. Optical Engineering 2013, Vol. 

52(4), 046002. 

32. de Jong, A. N., Schwering, P. B. W., Benoist, K. W., Gunter, W. H., Vrahimis, 

G., and October, F. J., “Long-term measurements of atmospheric point-spread functions 

over littoral waters as determined by atmospheric turbulence”, in Infrared Imaging 

Systems: Design, Analysis, Modeling, and Testing XXIII, 2012, vol. 8355. 

doi:10.1117/12.917718. 

33. Grant, K. J.; Murry, K.A.; Clare, B.A.; Perejma, A.S.; Martinsen, W.S. Maritime 

Laser Communications Trial. General Document, Defense Science and Technology 

Organization, Edimburg South Australia, June 2012 

34. H. Kaushal and G. Kaddoum, "Optical Communication in Space: Challenges and 

Mitigation Techniques," in IEEE Communications Surveys & Tutorials, vol. 19, no. 1, 

pp. 57-96, First quarter 2017, doi: 10.1109/COMST.2016.2603518. 

35. Ni, Wei & Miyamoto, Yuichi & Wakamori, Kazuhiko & Kazaura, Kamugisha & 

Matsumoto, Mitsuji & Higashino, Takeshi & Tsukamoto, Katsutoshi & Komaki, 



Shozo. (2009). Experimental Study of Atmospheric Turbulence Effects on RoFSO 

Communication Systems. Piers Online. 5. 65-70. 10.2529/PIERS080907042345. 

36. Kazaura, Kamugisha & Suzuki, Toshiji & Wakamori, Kazuhiko & Matsumoto, 

Mitsuji & Higashino, Takeshi & Tsukamoto, Katsutoshi & Komaki, Shozo. (2009). 

Experimental Demonstration of a Radio on Free Space Optics System for Ubiquitous 

Wireless. Piers Online. 5. 235-240. 10.2529/PIERS080907022238. 

37. Alheadary, W.G.; Park, K.-H.; Alfaraj, N.; Guo, Y.; Stegenburgs, E.; Ng, T.K.; 

Ooi, B.S.; Alouini, M.-S. Free-space optical channel characterization and experimental 

validation in a coastal environment. Opt. Express 2018, 26, 6614–6628. 

38. Alheadary, W.G.; Park, K.-H.; Ooi, B.S.; Alouini, M.-S. Free-space optical 

channel characterization in a coastal environment. J. Commun. Inf. Networks 2017, 2, 

100–106. 

39. Oermann, R. J. Novel Methods for the Quantification of Atmospheric Turbulence 

Strength in the Atmospheric Surface Layer. PhD Thesis, School of Chemistry and 

Physics, University of Adelaide, Adelaide SA, Australia, 2014. 

40. Sadot, D.; Kopeika, N. S. Forecasting optical turbulence strength on the basis of 

macroscale meteorology and aerosols: models and validation. Opt. Eng. 1992, 31 

doi:10.1117/12.56059. 

41. Dmytryszyn, M.; Crook, M.; Sands, T. Lasers for Satellite Uplinks and 

Downlinks. Sci 2021, 3, 4. https://doi.org/10.3390/sci3010004 

42. Jing, M., Liying, T. & Siyuan, Y. Technologies and applications of free-space 

optical communication and space optical information network. J. Commun. Inf. Netw. 

1, 61–71 (2016). https://doi.org/10.1007/BF03391546 

43. Munemasa, Yasushi & Saito, Yoshihiko & Carrasco-Casado, Alberto & Trinh, 

Phuc & Takenaka, Hideki & Kubo-oka, Toshihiro & Shiratama, Koichi & Toyoshima, 



Morio. (2019). Feasibility study of a scalable laser communication terminal in NICT 

for next-generation space networks. 211. 10.1117/12.2536131. 

44. Kevin Günthner, Imran Khan, Dominique Elser, Birgit Stiller, Ömer Bayraktar, 

Christian R. Müller, Karen Saucke, Daniel Tröndle, Frank Heine, Stefan Seel, Peter 

Greulich, Herwig Zech, Björn Gütlich, Sabine Philipp-May, Christoph Marquardt, and 

Gerd Leuchs, "Quantum-limited measurements of optical signals from a geostationary 

satellite," Optica 4, 611-616 (2017). 

45. Sharma, V., Banerjee, S. Analysis of atmospheric effects on satellite-based 

quantum communication: a comparative study. Quantum Inf Process 18, 67 (2019). 

https://doi.org/10.1007/s11128-019-2182-0 

46. Takenaka, H., Carrasco-Casado, A., Fujiwara, M. et al. Satellite-to-ground 

quantum-limited communication using a 50-kg-class microsatellite. Nature Photon 11, 

502–508 (2017). https://doi.org/10.1038/nphoton. 2017.107 

47. Ding, J.; Mei, H.; I, C.-L.; Zhang, H.; Liu, W. Frontier Progress of Unmanned 

Aerial Vehicles Optical Wireless Technologies. Sensors 2020, 20, 5476. 

https://doi.org/10.3390/s20195476. 

48. P. V. Trinh et al., "Experimental Channel Statistics of Drone-to-Ground Retro-

Reflected FSO Links With Fine-Tracking Systems," in IEEE Access, vol. 9, pp. 

137148-137164, 2021, doi: 10.1109/ACCESS.2021.3117266. 

49. M. Najafi, H. Ajam, V. Jamali, P. D. Diamantoulakis, G. K. Karagiannidis and 

R. Schober, "Statistical Modeling of FSO Fronthaul Channel for Drone-Based 

Networks," 2018 IEEE International Conference on Communications (ICC), Kansas 

City, MO, USA, 2018, pp. 1-7, doi: 10.1109/ICC.2018.8422552. 

https://doi.org/10.1038/nphoton


50. Witte, Brandon M., "Development of an Unmanned Aerial Vehicle for 

Atmospheric Turbulence Measurement" (2016). Theses and Dissertations--Mechanical 

Engineering. 82. https://uknowledge.uky.edu/me_etds/82  

51. H. Kaushal and G. Kaddoum, "Underwater Optical Wireless Communication," in 

IEEE Access, vol. 4, pp. 1518-1547, 2016, doi: 10.1109/ACCESS.2016.2552538. 

52. Nasir Saeed, Abdulkadir Celik, Tareq Y. Al-Naffouri, Mohamed-Slim Alouini, 

Underwater optical wireless communications, networking, and localization: A survey, 

Ad Hoc Networks, Volume 94, 2019, 101935, ISSN 1570-8705, 

https://doi.org/10.1016/j.adhoc.2019.101935.  

53. Kao, C.-C.; Lin, Y.-S.; Wu, G.-D.; Huang, C.-J. A Comprehensive Study on the 

Internet of Underwater Things: Applications, Challenges, and Channel 

Models. Sensors 2017, 17, 1477. https://doi.org/10.3390/s17071477. 

54. A. C. Boucouvalas, K. P. Peppas, K. Yiannopoulos and Z. Ghassemlooy, 

"Underwater Optical Wireless Communications With Optical Amplification and 

Spatial Diversity," in IEEE Photonics Technology Letters, vol. 28, no. 22, pp. 2613-

2616, 15 Nov.15, 2016, doi: 10.1109/LPT.2016.2607278. 

55. Andrews L.C.; Phillips R.L. Laser Beam Propagation through Random Media, 

2nd ed.; SPIE Optical Engineering Press: Bellingham, WA, USA, 2005. 

56. Heba Yuksel. Studies of the Effects of Atmospheric Turbulence on Free Space 

Optical Communications. PhD Thesis. Electrical Engineering Departmen. University 

of Maryland, College Park, 2005. 

57. Angel Fernandez. Experiments for Laser Beam Propagation through Optical 

Turbulence: Development, Analysis and Applications. Mathematical Physics. 

Université d’Angers; Universidad técnica Federico Santa María (Valparaiso, Chili), 

2016.  

https://uknowledge.uky.edu/me_etds/82
https://doi.org/10.1016/j.adhoc.2019.101935


58. R. Barrios and F. Dios, ‘Wireless Optical Communications Through the 

Turbulent Atmosphere: A Review’, Optical Communications Systems. InTech, Mar. 

07, 2012. doi: 10.5772/34740. 

59. R.L. Fante, Electromagnetic beam propagation in turbulent media: An update, 

Proceedings of the IEEE, 10.1109/PROC.1980.11882, 68, 11, (1424-1443), (1980). 

60. Nistazakis, H.E.; Katsis A.; Tombras, G.S. On the reliability and performance of 

FSO and hybrid FSO communication systems over turbulent channels; Nova Science 

Publishers: Hauppauge, NY, USA, 2011; pp. 69–112.64.  

61. Rabinovich, W.S.; Moore, C.I.; Mahon, R.; Goetz, P.G.; Burris, H.R.; Ferraro, 

M.S.; Murphy, J.L.; Thomas, L.M.; Gilbreath, G.C.; Vilcheck, M.; Suite, M.R.; Free-

space optical communications research and demonstrations at the U.S. Naval Research 

Laboratory, Appl. Opt. 2015,Vol. 54, F189-F200. 

62. Frederickson, P.A.; Davidson, K.L.; Zeisse, C.R.; Bendall, C.S. Estimating the 

refractive index structure parameter (Cn2) over the ocean using bulk methods. Journal 

of Applied Meteorology2000, 39, 1770-1783. 

63. Frederickson, P.; Hammel, S.; Tsintikidis, D. Measurements and modeling of 

optical turbulence in a maritime environment. Proc SPIE 2006. 10.1117/12.683017. 

64. Lionis A.; Cohn K.; Pogue C. Experimental Design of a UCAV-based High 

Energy Laser Weapon. Master’s Thesis, Naval Postgraduate School, Monterey, CA, 

USA, December 2016. 

65. Tunick, A. Optical turbulence parameters characterized via optical measurements 

over a 2.33-km free-space laser path. Opt. Express 2008, 16, 14645–14654. 

66. Tunick, A. Statistical analysis of optical turbulence intensity over a 2.33 km 

propagation path. Opt. Expres 2007, 15, 3619–3628. 

67. Tunick, A.; Nikolay, T.; Mikhail, V.; Gary, C. Characterization of optical 

turbulence (Cn2) data measured at the ARL A_LOT facility; Technical Report for U.S. 

Army Research Laboratory: Adelphi, MD, USA, September 2005. 



68. Chang, Mark; Gilbreath, Gcharmaine; Oh, Eun; Distefano, Emi; Restaino, 

Sergio; Wilcox, Christopher and Santiago, Freddie. (2007). Comparing horizontal path 

𝐶𝑛
2 measurements over 0.6 km in the tropical littoral environment and in the desert - art. 

No. 65510I. Proc SPIE. 10.1117/12.718257. 

69. Jellen, Christopher, Charles Nelson, Cody J. Brownell, John Burkhardt and Miles 

Oakley. “Measurement and analysis of atmospheric optical turbulence in a near-

maritime environment.” IOP SciNotes 1 (2020). 

70. Olga Korotkova, Svetlana Avramov-Zamurovic, Reza Malek-Madani, and 

Charles Nelson, "Probability density function of the intensity of a laser beam 

propagating in the maritime environment," Opt. Express 19, 20322-20331 (2011). 

71. Oh, Eun & Ricklin, Jennifer & Gilbreath, Gcharmaine & Vallestero, Neil & 

Eaton, Frank. (2004). Optical turbulence model for laser propagation and Imaging 

applications. Proceedings of SPIE - The International Society for Optical Engineering. 

25-32. 10.1117/12.504556. 

72. Oh, Bun & Ricklin, Jennifer & Eaton, Frank & Gilbreath, CHarmaine & Doss-

Hammel, Steve & Moore, Chris & Murphy, James & Oh, Yeonju & Stell, Mena. (2004). 

Estimating optical turbulence using the PAMELA model. Proceedings of SPIE - The 

International Society for Optical Engineering. 12. 10.1117/12.561481. 

73. Wilfert, Otakar and Lucie Dordová. “Calculation and Comparison of Turbulence 

Attenuation by Different Methods.” (2010). 

74. Wilfert, Otakar and Lucie Dordová. Laser beam attenuation determined by the 

method of available optical power in turbulent atmosphere. Journal of 

Telecommunications and Information Technology, 2009, no. 2, p. 53-57. 



75. Hongxing Wang, Bifeng Li, Xiaojun Wu, Chuanhui Liu, Zhihui Hu & Pengfei 

Xu (2015): Prediction model of atmospheric refractive index structure parameter in 

coastal area, Journal of Modern Optics, DOI: 10.1080/09500340.2015.1037801. 

76. Frehlich, Rod & Sharman, Robert & Vandenberghe, Francois & Yu, Wei & Liu, 

Yubao & Knievel, Jason & Jumper, George. (2010). Estimates ofCn2from Numerical 

Weather Prediction Model Output and Comparison with Thermosonde Data. Journal of 

Applied Meteorology and Climatology. 49. 1742-1755. 10.1175/2010JAMC2350.1. 

77. Alohotsy Rafalimanana, Christophe Giordano, Aziz Ziad, Eric Aristidi, 

"Prediction of atmospheric turbulence by means of WRF model for optical 

communications," Proc. SPIE 11852, International Conference on Space Optics — 

ICSO 2020, 118524G (11 June 2021); doi: 10.1117/12.2599659. 

78. Chun Qing, Xiaoqing Wu, Xuebin Li, Wenyue Zhu, Chunhong Qiao, Ruizhong 

Rao, and Haipin Mei, "Use of weather research and forecasting model outputs to obtain 

near-surface refractive index structure constant over the ocean," Opt. Express 24, 

13303-13315 (2016). 

79. Cheinet, S., Beljaars, A., Weiss-Wrana, K. et al. The Use of Weather Forecasts 

to Characterise Near-Surface Optical Turbulence. Boundary-Layer Meteorol 138, 453–

473 (2011). https://doi.org/10.1007/s10546-010-9567-z. 

80. Chun Qing, Xiaoqing Wu, Honghua Huang, Qiguo Tian, Wenyue Zhu, Ruizhong 

Rao, and Xuebin Li, "Estimating the surface layer refractive index structure constant 

over snow and sea ice using Monin-Obukhov similarity theory with a mesoscale 

atmospheric model," Opt. Express 24, 20424-20436 (2016). 

81. A. Vanderka; L. Hajek; J. Latal; J. Vitasek and P. Koudelka. Design, Simulation 

and Testing of the OOK NRZ Modulation Format for Free Space Optic Communication 



in a Simulation Box. Advances in Electrical and Electronic Engineering Journal. Vol. 

12, No 6. 2014. 

82. Fahad A.Rida, Jafaar & Rida, A & Bhardwaj, A K & Jaiswal, A. (2014). Design 

Optimization of Optical Wireless Communication (OWC) Focusing On Light Fidelity 

(LI-FI) Using Optical Code Division Multiple Access (OCDMA) Based on Carbon 

Nanotubes (CNTS) International Journal of Advanced Research in Engineering and 

Technology (IJARET). Vol. 5. Issue 10, October 2014, pp. 69-103.  

83. K. P. Peppas and P. T. Mathiopoulos, "Free-Space Optical Communication with 

Spatial Modulation and Coherent Detection Over H-K Atmospheric Turbulence 

Channels," in Journal of Lightwave Technology, vol. 33, no. 20, pp. 4221-4232, 15 

Oct.15, 2015, doi: 10.1109/JLT.2015.2465385. 

84. G. Yang, M. -A. Khalighi, T. Virieux, S. Bourennane and Z. Ghassemlooy, 

"Contrasting space-time schemes for MIMO FSO systems with non-coherent 

modulation," 2012 International Workshop on Optical Wireless Communications 

(IWOW), Pisa, Italy, 2012, pp. 1-3, doi: 10.1109/IWOW.2012.6349694. 

85. A. L. Puryear. 2011. Optical Communication Through the Turbulent Atmosphere 

with Transmitter and Receiver Diversity, Wavefront Control, and Coherent Detection. 

PhD Thesis. Massachusetts Institute of Technology. Department of Electrical 

Engineering and Computer Science.  

86. Aly, Moustafa. (2012). Pointing Error in FSO Link under Different Weather 

Conditions. International Journal of Video & Image Processing and Network Security. 

12. 6-9. 

87. Sabatini, Roberto and Richardson, Mark. "New techniques for laser beam 

atmospheric extinction measurements from manned and unmanned aerospace vehicles" 



Open Engineering, vol. 3, no. 1, 2013, pp. 11-35. https://doi.org/10.2478/s13531-012-

0033-1.  

88. Federico Dios, Jaume Recolons, Alejandro Rodríguez, and Oscar Batet, 

"Temporal analysis of laser beam propagation in the atmosphere using computer-

generated long phase screens," Opt. Express 16, 2206-2220 (2008). 

89. Lars Sjöqvist, Markus Henriksson, Ove Steinvall, "Simulation of laser beam 

propagation over land and sea using phase screens: a comparison with experimental 

data," Proc. SPIE 5989, Technologies for Optical Countermeasures II; Femtosecond 

Phenomena II; and Passive Millimetre-Wave and Terahertz Imaging II, 59890D (3 

November 2005); https://doi.org/10.1117/12.630655. 

90. Jeong, D.-K.; Park, C.-S.; Kim, D. Statistical Analysis of Noise Propagation 

Effect for Mixed RF/FSO AF Relaying Application in Wireless Sensor Networks. 

Sensors 2020, 20, 979. https://doi.org/10.3390/s20040979. 

91. He, D.; Wang, Q.; Liu, X.; Song, Z.; Zhou, J.; Wang, Z.; Gao, C.; Zhang, T.; Qi, 

X.; Tan, Y.; Ren, G.; Qi, B.; Ren, J.; Cao, Y.; Huang, Y. Shipborne Acquisition, 

Tracking, and Pointing Experimental Verifications towards Satellite-to-Sea Laser 

Communication. Appl. Sci. 2019, 9, 3940. https://doi.org/10.3390/app9183940. 

92. Carolina Rickenstorff, José A. Rodrigo, and Tatiana Alieva, "Programmable 

simulator for beam propagation in turbulent atmosphere," Opt. Express 24, 10000-

10012 (2016). 

93. M. A. Esmail, H. Fathallah and M. -S. Alouini, "Outdoor FSO Communications 

Under Fog: Attenuation Modeling and Performance Evaluation," in IEEE Photonics 

Journal, vol. 8, no. 4, pp. 1-22, Aug. 2016, Art no. 7905622, doi: 

10.1109/JPHOT.2016.2592705. 



94. I. I. Kim, B. McArthur, and E. J. Korevaar, “Comparison of laser beam 

propagation at 785 nm and 1550 nm in fog and haze for optical wireless 

communications,” in Proc. SPIE Opt. Wireless Commun. III, Feb. 2001, vol. 4214, pp. 

26–37. 

95. Khan, Muhammad Saeed & Grabner, M & Muhammad, Sajid & Awan, M.s & 

Leitgeb, Erich & Kvicera, V. & Nebuloni, Roberto. (2012). Empirical Relations for 

Optical Attenuation Prediction from Liquid Water Content of Fog. Radioengineering. 

21. 911-916. 

96.  Nadeem, F., & Leitgeb, E. (2010). Dense Maritime Fog Attenuation Prediction 

from Measured Visibility Data. Radioengineering, 19(2), 223-227. 

97. M. Ijaz, Z. Ghassemlooy, H. Le Minh, S. Rajbhandari and J. Perez, "Analysis of 

fog and smoke attenuation in a free space optical communication link under controlled 

laboratory conditions," 2012 International Workshop on Optical Wireless 

Communications (IWOW), Pisa, Italy, 2012, pp. 1-3, doi: 

10.1109/IWOW.2012.6349680. 

98. J.Toth, M.Tatarko, L.Ovsenik, et.al. Free Space Optics Availability and 

Reliability. Carpathian Journal of Electronic and Computer Engineering 7/2 (2014) 19-

23. 

99. Grover, Marvi; Singh, Preeti and Kaur, Pardeep. (2017). Performance Analysis 

of Multibeam WDM-FSO System in Clear and Hazy Weather Conditions. 

10.1007/978-981-10-1708-7_21. 

100. Korai, U.A.; Luini, L.; Nebuloni, R. Model for the Prediction of Rain Attenuation 

Affecting Free Space Optical Links. Electronics 2018, 7, 407. 

https://doi.org/10.3390/electronics7120407. 



101. Samir A. Al-Gailani, Abu Bakar Mohammad, Usman U. Sheikh, Redhwan Q. 

Shaddad, Determination of rain attenuation parameters for free space optical link in 

tropical rain, Optik, Volume 125, Issue 4, 2014, Pages 1575-1578, ISSN 0030-4026, 

https://doi.org/10.1016/j.ijleo.2013.10.018. 

102. Zabidi, S. A., Islam, M. R., Al-Khateeb, W., & Naji, A. W. (2012). Analysis of 

Rain Effects on Terrestrial Free Space Optics based on Data Measured in Tropical 

Climate. IIUM Engineering Journal, 12(5). https://doi.org/10.31436/iiumej.v12i5.232. 

103.  Basahel, Ahmed A., Md. Rafiqul Islam, Mohamed Hadi Habaebi and Suriza 

Ahmad Zabidi. “A proposed rain attenuation prediction method for free space optical 

link based on rain rate statistics.” (2015). 

104. K. P. Peppas, H. E. Nistazakis, and G. S. Tombras, ‘An Overview of the Physical 

Insight and the Various Performance Metrics of Fading Channels in Wireless 

Communication Systems’, Advanced Trends in Wireless Communications. InTech, 

Feb. 17, 2011. doi: 10.5772/15028. 

105.  Wayne, David, "The Pdf of Irradiance for A Free-space Optical Communications 

Channel: A Physics Based Model" (2010). PhD Thesis. School of Electrical 

Engineering and Computer Science. University of Central Florida. Orlando, FL.  

106. José M. Garrido-Balsells, F. Javier Lopez-Martinez, Miguel Castillo-Vázquez, 

Antonio Jurado-Navas, and Antonio Puerta-Notario, "Performance analysis of FSO 

communications under LOS blockage," Opt. Express 25, 25278-25294 (2017). 

107. López-González, F. J., Jurado-Navas, A., Garrido-Balsells, J. M., Castillo-

Vázquez, M., & Puerta-Notario, A. (2017). Characterization of sub-channel based 

Málaga atmospheric optical links with real β parameter. Optica Applicata, 47(4), 545-

556. https://doi.org/10.5277/oa170405. 



108. José María Garrido-Balsells, Antonio Jurado-Navas, José Francisco Paris, Miguel 

Castillo-Vazquez, and Antonio Puerta-Notario, "Novel formulation of the ℳ model 

through the Generalized-K distribution for atmospheric optical channels," Opt. Express 

23, 6345-6358 (2015). 

109. Dror, Itai; Atar, S.; Grossman, Shlomit; Kopeika, Norman S. Accurate method 

for prediction of atmospheric transmission according to weather. Optical Engineering, 

vol. 35, pp. 2548–2555, 1996. doi:10.1117/1.600863. 

110. L. Kong, W. Xu, L. Hanzo, H. Zhang and C. Zhao, "Performance of a Free-Space-

Optical Relay-Assisted Hybrid RF/FSO System in Generalized M-Distributed 

Channels," in IEEE Photonics Journal, vol. 7, no. 5, pp. 1-19, Oct. 2015, Art no. 

7903319, doi: 10.1109/JPHOT.2015.2470106. 

111. Ammar Al-Habash, Larry C. Andrews, and R. L. Phillips "Mathematical model 

for the irradiance probability density function of a laser beam propagating through 

turbulent media," Optical Engineering 40(8), (1 August 2001). 

https://doi.org/10.1117/1.1386641. 

112. Bourazani,   D.; Stasinakis, A.N.; Nistazakis, H.E.; Varotsos, G.K.; Tsigopoulos, 

A.D.; Tombras, G.S.; Experimental Accuracy Investigation for Irradiance Fluctuations 

of FSO Links Modeled by Gamma Distribution. In Proceedings of the 8th International 

Conference from Scientific Computing to Computational Engineering, Athens, Greece, 

4–7 July 2018. 

113. H. E. Nistazakis, M. P. Ninos, A. D. Tsigopoulos, D. A. Zervos and G. S. 

Tombras (2016) Performance study of terrestrial multi-hop OFDM FSO 

communication systems with pointing errors over turbulence channels, Journal of 

Modern Optics, 63:14, 1403-1413, DOI:10.1080/09500340.2016.1149626. 



114. H. E. Nistazakis, G. S. Tombras, A. D. Tsigopoulos, E. A. Karagianni and M. E. 

Fafalios, "Capacity estimation of optical wireless communication systems over 

moderate to strong turbulence channels," in Journal of Communications and Networks, 

vol. 11, no. 4, pp. 384-389, Aug. 2009, doi: 10.1109/JCN.2009.6391352. 

115. Antonio García-Zambrana, Carmen Castillo-Vázquez, Beatriz Castillo-Vázquez, 

and Rubén Boluda-Ruiz, "Bit detect and forward relaying for FSO links using equal 

gain combining over gamma-gamma atmospheric turbulence channels with pointing 

errors," Opt. Express 20, 16394-16409 (2012). 

116. N. D. Chatzidiamantis, D. S. Michalopoulos, E. E. Kriezis, G. K. Karagiannidis 

and R. Schober, "Relay selection protocols for relay-assisted free-space optical 

systems," in Journal of Optical Communications and Networking, vol. 5, no. 1, pp. 92-

103, Jan. 2013, doi: 10.1364/JOCN.5.000092. 

117. C. K. Datsikas, K. P. Peppas, N. C. Sagias and G. S. Tombras, "Serial Free-Space 

Optical Relaying Communications Over Gamma-Gamma Atmospheric Turbulence 

Channels," in Journal of Optical Communications and Networking, vol. 2, no. 8, pp. 

576-586, August 2010, doi: 10.1364/JOCN.2.000576. 

118. M. Uysal, Jing Li and Meng Yu, "Error rate performance analysis of coded free-

space optical links over gamma-gamma atmospheric turbulence channels," in IEEE 

Transactions on Wireless Communications, vol. 5, no. 6, pp. 1229-1233, June 2006, 

doi: 10.1109/TWC.2006.1638639. 

119. M. A. Kashani, M. Uysal and M. Kavehrad, "A novel statistical model for 

turbulence-induced fading in free-space optical systems," 2013 15th International 

Conference on Transparent Optical Networks (ICTON), Cartagena, Spain, 2013, pp. 1-

5, doi: 10.1109/ICTON.2013.6602795. 



120. M. A. Kashani, M. Uysal and M. Kavehrad, "On the performance of MIMO FSO 

communications over Double Generalized Gamma fading channels," 2015 IEEE 

International Conference on Communications (ICC), London, UK, 2015, pp. 5144-

5149, doi: 10.1109/ICC.2015.7249140. 

121. N. D. Chatzidiamantis, H. G. Sandalidis, G. K. Karagiannidis, S. A. Kotsopoulos 

and M. Matthaiou, "New results on turbulence modeling for free-space optical 

systems," 2010 17th International Conference on Telecommunications, Doha, Qatar, 

2010, pp. 487-492, doi: 10.1109/ICTEL.2010.5478872. 

122. N. C. Sagias, G. K. Karagiannidis, P. T. Mathiopoulos, and T. A. Tsiftsis, “On 

the performance analysis of equal-gain diversity receivers over generalised gamma 

fading channels,” IEEE Trans. Wireless Commun., vol. 5, no. 10, pp. 2967–2975, Oct. 

2006. 

123. G.K. Varotsos, A.N. Stassinakis, H.E. Nistazakis, A.D. Tsigopoulos, K.P. 

Peppas, C.J. Aidinis, G.S. Tombras, Probability of fade estimation for FSO links with 

time dispersion and turbulence modeled with the gamma–gamma or the I-K 

distribution, Optik, Volume 125, Issue 24, 2014, Pages 7191-7197, ISSN 0030-4026, 

https://doi.org/10.1016/j.ijleo.2014.08.047. 

124. H. Nistazakis; A. Tsigopoulos; M. Hanias; C. Psychogios; D. Marinos; C. Aidinis 

and G. Tombras. (2011). Estimation of Outage Capacity for Free Space Optical Links 

over IK and K Turbulent Channels. Radioengineering. 20. 

125. K. P. Peppas, G. C. Alexandropoulos, E. D. Xenos and A. Maras, "The Fischer–

Snedecor F -Distribution Model for Turbulence-Induced Fading in Free-Space Optical 

Systems," in Journal of Lightwave Technology, vol. 38, no. 6, pp. 1286-1295, 15 

March15, 2020, doi: 10.1109/JLT.2019.2957327. 



126. S. K. Yoo, S. L. Cotton, P. C. Sofotasios, M. Matthaiou, M. Valkama and G. K. 

Karagiannidis, "The Fisher–Snedecor F Distribution: A Simple and Accurate 

Composite Fading Model," in IEEE Communications Letters, vol. 21, no. 7, pp. 1661-

1664, July 2017, doi: 10.1109/LCOMM.2017.2687438. 

127. Maged A. Esmail, Experimental performance evaluation of weak turbulence 

channel models for FSO links, Optics Communications, Volume 486, 2021, 126776, 

ISSN 0030-4018, https://doi.org/10.1016/j.optcom.2021.126776. 

128. R. Barrios. 2013. Exponentiated Weibull fading channel model in free-space 

optical communications under atmospheric turbulence. PhD Thesis. Department of 

Signal Theory and Communications. Universitat Polit`ecnica de Catalunya. Barcelona, 

Spain. 

129. R. Barrios and F. Dios. (2012). Exponentiated Weibull model for the irradiance 

probability density function of a laser beam propagating through atmospheric 

turbulence. Optics & Laser Technology. 45. 10.1016/j.optlastec.2012.08.004. 

130. A.K. Majumdar. Free-space laser communication performance in the atmospheric 

channel. J. Opt. Fiber Commun. 2005, 2, 345–396. 

131. A. Jurado-Navas, J. M. Garrido Balsells, J. Francisco Paris, M. Castillo-Vázquez, 

and A. Puerta-Notario, "General analytical expressions for the bit error rate of 

atmospheric optical communication systems," Opt. Lett. 36, 4095-4097 (2011). 

132. H. G. Sandalidis, T. A. Tsiftsis, G. K. Karagiannidis and M. Uysal, "BER 

Performance of FSO Links over Strong Atmospheric Turbulence Channels with 

Pointing Errors," in IEEE Communications Letters, vol. 12, no. 1, pp. 44-46, January 

2008, doi: 10.1109/LCOMM.2008.071408. 

133. K. Hyeong-Ji, T. Samrat Vikramaditya and C. Yeon-Ho, "Multi-hop relay-based 

maritime visible light communication," Chin. Opt. Lett. 14, 050607- (2016). 



134. J. Libich, M. Komanec, S. Zvanovec, P. Pesek, W. O. Popoola, and Z. 

Ghassemlooy, "Experimental verification of an all-optical dual-hop 10 Gbit/s free-

space optics link under turbulence regimes," Opt. Lett. 40, 391-394 (2015). 

135. L. Li, R. Zhang, Z. Zhao et al. High-Capacity Free-Space Optical 

Communications Between a Ground Transmitter and a Ground Receiver via a UAV 

Using Multiplexing of Multiple Orbital-Angular-Momentum Beams. Sci Rep 7, 17427 

(2017). https://doi.org/10.1038/s41598-017-17580-y. 

136. Le Minh, H., Ghassemlooy, Z., Ijaz, M., Rajbhandari, S., Adebanjo, O., Ansari, 

S., Leitgeb, E. (2010) 'Experimental study of bit error rate of free space optics 

communications in laboratory controlled turbulence', Workshop on Optical Wireless 

Communications in conjunction with the IEEE Globecom 2010, Miami, Florida, USA, 

6-10 December. Institute of Electrical and Electronics Engineers Globecom 

Workshops, pp. 1072-1076. 

137. Garlinska, M.; Pregowska, A.; Gutowska, I.; Osial, M.; Szczepanski, J. 

Experimental Study of the Free Space Optics Communication System Operating in the 

8–12 µm Spectral Range. Electronics 2021, 10, 875. 

https://doi.org/10.3390/electronics10080875.  

138. Κ. Peppas, Α. Stassinakis, Η. Nistazakis and G. Tombras. (2013). Capacity 

Analysis of Dual Amplify-and-Forward Relayed Free-Space Optical Communication 

Systems Over Turbulence Channels with Pointing Errors. Optical Communications and 

Networking, IEEE/OSA Journal of. 5. 1032-1042. 10.1364/JOCN.5.001032. 

139. Trung, Ha & Ai, Duong & Pham, Anh. (2015). Average Channel Capacity of 

Free-Space Optical MIMO Systems Over Atmospheric Turbulence Channels. ASEAN 

Engineering Journal Part A, Vol 5 No 2, ISSN 2229-127X p.57. 5. 57-66. 



140. S. Sharma, J. Tan, A. S. Madhukumar and R. Swaminathan, "Switching-Based 

Transmit Antenna/Aperture Selection in a MISO Hybrid FSO/RF System," 2018 IEEE 

Global Communications Conference (GLOBECOM), Abu Dhabi, United Arab 

Emirates, 2018, pp. 1-6, doi: 10.1109/GLOCOM.2018.8647284. 

141. A.J. Kshatriya, Y.B. Acharya, A.K. Aggarwal. et al. Estimation of FSO link 

availability using climatic data. J Opt 45, 324–330 (2016). 

https://doi.org/10.1007/s12596-016-0327-4. 

142. Τ. Ismail, Ε. Leitgeb, and M. Al-Nahhal. (2018). Performance Improvement of 

FSO System using Multi-Pulse PPM and SIMO under Atmospheric Turbulence 

Conditions and with Pointing Errors. IET Networks. 7. 10.1049/iet-net.2017.0203. 

143. C. Castillo-Vázquez, R. Boluda-Ruiz, B. Castillo-Vázquez and A. García-

Zambrana, "Outage performance of DF relay-assisted FSO communications using time 

diversity," 2015 IEEE Photonics Conference (IPC), Reston, VA, USA, 2015, pp. 423-

426, doi: 10.1109/IPCon.2015.7323709. 

144. C. Abou-Rjeily, "Performance Analysis of FSO Communications With Diversity 

Methods: Add More Relays or More Apertures?" in IEEE Journal on Selected Areas in 

Communications, vol. 33, no. 9, pp. 1890-1902, Sept. 2015, doi: 

10.1109/JSAC.2015.2432526. 

145. Y. Guowei; S. Rajbhandari; M.A. Khalighi and S. Bourennane. (2012). 

Experimental Works on Free-Space Optical Communications with Aperture Averaging 

and Receive Diversity in a Controlled Laboratory Environment. Conference: Actes des 

Journées d’études Algéro-Françaises de Doctorants en Signal, Image & Applications. 

Alger, Algeria. 

146. Polnau, Ernst & Vorontsov, Mikhail & Carhart, Gary & Weyrauch, Thomas & 

Beresnev, Leonid. (2007). Adaptive compensation over a 2.33 km propagation path 



with retro reflectors under strong scintillation conditions. Atmospheric Optics: Models, 

Measurements, and Target-in-the-Loop Propagation. Proc. of SPIE Vol. 6708 67080C-

1. 

147. K. Yiannopoulos, N. C. Sagias and A. C. Boucouvalas, "Fade Mitigation Based 

on Semiconductor Optical Amplifiers," in Journal of Lightwave Technology, vol. 31, 

no. 23, pp. 3621-3630, Dec.1, 2013, doi: 10.1109/JLT.2013.2285260. 

148. K. Yiannopoulos, N. C. Sagias and A. C. Boucouvalas, "On the Performance of 

Semiconductor Optical Amplifier-Assisted Outdoor Optical Wireless Links," in IEEE 

Journal on Selected Areas in Communications, vol. 33, no. 9, pp. 1869-1876, Sept. 

2015, doi: 10.1109/JSAC.2015.2433052. 

149. A. Beck and M. Kurz. A Perspective on Machine Learning Methods in 

Turbulence Modelling. GAMM-Mitteilungen 44. 

https://doi.org/10.1002/gamm.202100002. 

150. G. James, D. Witten, T. Hastie and R. Tibshirani. 2013. An Introduction to 

Statistical Learning with Applications in R. Springer New York Heidelberg Dordrecht 

London. 

151. R. S. Sutton and A. G. Barto, Introduction to reinforcement learning. MIT press 

Cambridge, 1998, vol. 135. 

152. T. K. HO, Random decision forests, in Proceedings of 3rd International 

Conference on Document Analysis and Recognition, vol. 1, IEEE, 1995, pp. 278–282. 

153. Cifuentes, Jenny; Marulanda, Geovanny; Bello, Antonio; Reneses, Javier. 2020. 

Air Temperature Forecasting Using Machine Learning Techniques: A Review. 

Energies 13, no. 16: 4215. 

154. M.A. Amirabadi. A survey on machine learning for optical communication 

[machine learning view]. arXiv preprint arXiv:1909.05148 (2019). 

155. D. Wang, Y. Song, J. Li, J. Qin, T. Yang, M. Zhang, X. Chen and A. Boucouvalas. 

Data-driven Optical Fiber Channel Modeling: A Deep Learning Approach. Journal of 

Lightwave Technology. vol. 38, no. 17, pp. 4730-4743, 1 Sept.1, 2020, doi: 

10.1109/JLT.2020.2993271.  



156. J. Liu, P. Wang, X. Zhang, Y. He, X. Zhou, H. Ye, Y. Li, S. Xu, S. Chen, and D. 

Fan, "Deep learning based atmospheric turbulence compensation for orbital angular 

momentum beam distortion and communication," Opt. Express 27, 16671-16688 

(2019). 

157. M. Amirabadi, M.Kahaei, S. A. Nezamalhosseini and V. T. Vakili. Deep 

Learning for channel estimation in FSO communication system. Optics 

Communications, Vol. 459, 2020, 124989, ISSN 0030-4018, 

https://doi.org/10.1016/j.optcom.2019.124989. 

158. S. Lohani and R. Glasser. Turbulence correction with artificial neural networks. 

Opt. Lett.  43, 2611-2614 (2018). 

159. S. Lohani, E.M. Knutson and R.T. Glasser. Generative machine learning for 

robust free-space communication. Communations Physics 3, 177 (2020). 

https://doi.org/10.1038/s42005-020-00444-9. 

160. P. Mishra, Sonali, A. Dixit and V. K. Jain, "Machine Learning Techniques for 

Channel Estimation in Free Space Optical Communication Systems," 2019 IEEE 

International Conference on Advanced Networks and Telecommunications Systems 

(ANTS), GOA, India, 2019, pp. 1-6, doi: 10.1109/ANTS47819.2019.9117976. 

161. C. Jellen, J. Burkhardt, C. Brownell, and C. Nelson, "Machine learning informed 

predictor importance measures of environmental parameters in maritime optical 

turbulence," Appl. Opt. 59, 6379-6389 (2020). 

162. Y. Wang and S. Basu, "Using an artificial neural network approach to estimate 

surface-layer optical turbulence at Mauna Loa, Hawaii," Opt. Lett.  41, 2334-2337 

(2016). 

163. Haluška, R.; Šuľaj, P.; Ovseník, Ľ.; Marchevský, S.; Papaj, J.; Doboš, Ľ. 

Prediction of Received Optical Power for Switch-ing Hybrid FSO/RF System. 

Electronics 2020, 9, 1261. 

164. J. Tóth, L. Ovseník, J. Turán, L. Michaeli, M. Márton, Classification prediction 

analysisof RSSI parameter in hard switch-ing process for FSO/RF systems, 

Measurement (2017), doi: https://doi.org/10.1016/j.measurement.2017.11.044 

165. Runqin Xu, Pin Lv, Fanjiang Xu, Yishi Shi. A survey of approaches for 

implementing optical neural networks. Optics & Laser Technology, Volume 136, 2021, 

106787, ISSN 0030-3992, https://doi.org/10.1016/j.optlastec.2020.106787. 

166. S. K. Goudos, G. V. Tsoulos, G. Athanasiadou, M. C. Batistatos, D. Zarbouti and 

K. E. Psannis, "Artificial Neural Network Optimal Modeling and Optimization of UAV 

https://doi.org/10.1016/j.optcom.2019.124989
https://doi.org/10.1038/s42005-020-00444-9
https://doi.org/10.1016/j.measurement.2017.11.044
https://doi.org/10.1016/j.optlastec.2020.106787


Measurements for Mobile Communications Using the L-SHADE Algorithm," in IEEE 

Transactions on Antennas and Propagation, vol. 67, no. 6, pp. 4022-4031, June 2019, 

doi: 10.1109/TAP.2019.2905665. 

167. V.A. Kulikov; S.L. Lachinova; M.A. Vorontsov; V.S.R. Gudimetla. 

Characterization of Localized Atmospheric Turbulence Layer Using Laser Light 

Backscattered off Moving Target. Appl. Sci. 2020, 10, 6887. 

https://doi.org/10.3390/app10196887. 

168. C. Bi; C. Qing; P. Wu; X. Jin; Q. Liu; X. Qian; W. Zhu; N. Weng. Optical 

Turbulence Profile in Marine Environment with Artificial Neural Network Model. 

Remote Sens. 2022, 14, 2267. https://doi.org/10.3390/rs14092267. 

169. M. Xu; S. Shao; Q. Liu; G. Sun; Y. Han; N. Weng. Optical Turbulence Profile 

Forecasting and Verification in the Offshore Atmospheric Boundary Layer. Appl. Sci. 

2021, 11, 8523. https://doi.org/10.3390/app11188523. 

170. A.M. Vorontsov; M.A. Vorontsov; G.A. Filimonov; E. Polnau. Atmospheric 

Turbulence Study with Deep Machine Learning of Intensity Scintillation Patterns. 

Appl. Sci. 2020, 10, 8136. https://doi.org/10.3390/app10228136. 

171. J. Liu, P. Wang, X. Zhang, Y. He, X. Zhou, H. Ye, Y. Li, S. Xu, S. Chen, and D. 

Fan, "Deep learning based atmospheric turbulence compensation for orbital angular 

momentum beam distortion and communication," Opt. Express 27, 16671-16688 

(2019). 

172. J. Li, M. Zhang, and D. Wang, “Adaptive demodulator using machine learning 

for orbital angular momentum shift keying,” IEEE Photonics Technol. Lett. 29(17), 

1455–1458 (2017). 

173. W. Xiong, P. Wang, M. Cheng, J. Liu, Y. He, X. Zhou, J. Xiao, Y. Li, S. Chen, 

and D. Fan, "Convolutional Neural Network Based Atmospheric Turbulence 

Compensation for Optical Orbital Angular Momentum Multiplexing," J. Lightwave 

Technol. 38, 1712-1721 (2020).  

174. Lohani, S., Knutson, E.M. & Glasser, R.T. Generative machine learning for 

robust free-space communication. Commun Phys 3, 177 (2020). 

https://doi.org/10.1038/s42005-020-00444-9. 

175. Ghassemlooy, Z.; Popoola, W.O. Terrestrial Free-Space Optical 

Communications. In Mobile and Wireless Communications Network Layer and Circuit 



Level Design; Fares, S.A., Adachi, F., Eds.; Books on Demand: Metro Manila, 

Philippines, 2010; pp. 355–392. 

176. S. Doss-Hammel, D. Tsindikidis, D. Merritt, J. Fontana, Atmospheric 

characterization for high energy laser beam propagation in the maritime environment, 

in: Atmospheric Tracking, Imaging and Compensation, Proceedings of the SPIE 5552, 

Bellingham, WA, 2004; Michael T. Valley, Mikhail Vorontsov. 

177. A.N. De Jong, P.B. Schwering, A.M. Van Eijk, W.H. Gunter, Validation of 

atmospheric propagation models in littoral waters, Opt. Eng. 52 (4) (2013) 046002. 

178. Latal, J.; Vitasek, J.; Hajek, L.; Vanderka, A.; Koudelka, P.; Kepak, S.; Vasinek, 

V. Regression Models Utilization for RSSI Prediction of Professional FSO Link with 

Regards to Atmosphere PhenomenaIn Proceedings of the 2016. International 

Conference on Broadband Communications for Next Generation Networks and 

Multimedia Applications (CoBCom), Graz, Austria, 14–16 September 2016. 

179. Kullback, S.; Leibler, R.A. On information and sufficiency. Ann. Math. Stat. 

1951, 22, 79–86. 

180. https://weather-stats.com/greece/athenes/sea_temperature#details. 

181. R. Mahon, C. Moore, H. Burris, W. Rabinovich, M. Suite, L. Thomas, Power 

spectra of a free space optical link in a maritime environment, in: Proc. SPIE 7464, Free 

Space Laser Communications IX, San Diego, CA, 2009,  

http://dx.doi. org/10.1117/12.828860. 

182. D. Sadot, N.S. Kopeika, Forecasting optical turbulence strength on the basis of 

macroscale meteorology and aerosols: models and validation, Opt. Eng. 31 (1992) 

http://dx.doi.org/10.1117/12.56059. 

183. Latal, J.; Vitasek, J.; Hajek, L.; Vanderka, A.; Koudelka, P.; Kepak, S.; Vasinek, 

V. Regression Models Utilization for RSSI Prediction of Professional FSO Link with 

https://en.wikipedia.org/wiki/Solomon_Kullback
https://en.wikipedia.org/wiki/Richard_Leibler
https://en.wikipedia.org/wiki/Annals_of_Mathematical_Statistics
https://en.wikipedia.org/wiki/Annals_of_Mathematical_Statistics
https://weather-stats.com/greece/athenes/sea_temperature#details
http://dx.doi/


Regards to Atmosphere Phenomena In Proceedings of the 2016. International 

Conference on Broadband Communications for Next Generation Networks and 

Multimedia Applications (CoBCom), Graz, Austria, 14–16 September 2016. 

184. Hajek, L.; Vitasek, J.; Vanderka, A.; Latal, J.; Perecar, F.; Vasinek, V. 

Statistical prediction of the atmospheric behavior for free space optical link. In 

Proceedings of the SPIE 9614, Laser Communication and Propagation through the 

Atmosphere and Oceans IV, San Diego, CA, USA, 4 September 2015. 

185. A. Lionis, K. Peppas, A. Tsigkopoulos, A. Sklavounos, A. Stasinakis, H. 

Nistazakis, K. Kohn, K. Aidinis, September 21, 2022, "Experimental Machine Learning 

Approach for Optical Turbulence and FSO Outage Performance Modeling", IEEE 

Dataport, doi: https://dx.doi.org/10.21227/8bqw-gy72. 

186. Kullback, S., Leibler, R.: On Information and Sufficiency. Annals of 

Mathematical Statistics 22(1) (1951) 79-86. 

187. Cover, T.M.; Thomas, J.A. Elements of Information Theory; John Wiley & 

Sons: Hoboken, NJ, USA, 2012. 

188. Fuglede, B.; Topsoe, F. (2004). "Jensen-Shannon divergence and Hilbert space 

embedding". Proceedings of the International Symposium on Information Theory, 

2004. IEEE. p. 30. doi:10.1109/ISIT.2004.1365067. ISBN 978-0-7803-8280-0. 

189. Nielsen F. On a Generalization of the Jensen-Shannon Divergence and the 

Jensen-Shannon Centroid. Entropy (Basel). 2020 22(2):221. doi: 10.3390/e22020221. 

190. Lahcene, Bachioua. (2013). On Pearson families of distributions and its 

applications. African Journal of Mathematics and Computer Science Research. Vol. 

6(5), pp. 108-117. DOI: 10.5897/AJMCSR2013.0465. 

https://dx.doi.org/10.21227/8bqw-gy72


191. Wei-Liem, Loh. (2004). On the characteristic function of Pearson type IV 

distributions. Institute of Mathematical Statistics. (Lecture Notes-Monograph Series). 

Vol. 45. 171-179.   

 

 

 


