
UNIVERSITY OF THE PELOPONNESE & NCSR “DEMOCRITOS”

MSC PROGRAMME IN DATA SCIENCE

Sodasense: A Framework for Collecting and
Managing Data from the Sensors of Mobile

Devices
by

Athanasios Vakouftsis

A thesis submitted in partial fulfillment
of the requirements for the MSc

in Data Science

Supervisor: Spiros Skiadopoulos
Professor

Athens, July 2023

Sodasense: A Framework for Collecting and Managing Data from the Sensors of

Mobile Devices

Athanasios Vakouftsis

MSc. Thesis, MSc. Programme in Data Science

University of the Peloponnese & NCSR “Democritos”, July 2023

Copyright © 2023 Athanasios Vakouftsis. All Rights Reserved.

UNIVERSITY OF THE PELOPONNESE & NCSR “DEMOCRITOS”

MSC PROGRAMME IN DATA SCIENCE

Sodasense: A Framework for Collecting and
Managing Data from the Sensors of Mobile

Devices
by

Athanasios Vakouftsis

A thesis submitted in partial fulfillment
of the requirements for the MSc

in Data Science

Supervisor: Spiros Skiadopoulos
Professor

Approved by the examination committee on July, 2023.

(Signature) (Signature) (Signature)

. .

Spiros Skiadopoulos Christos Tryfonopoulos Theodoros Giannakopoulos
Professor Associate professor Researcher

Athens, July 2023

UNIVERSITY OF THE PELOPONNESE & NCSR “DEMOCRITOS”

MSC PROGRAMME IN DATA SCIENCE

Declaration of Authorship

(1) I declare that this thesis has been composed solely by myself and that it has

not been submitted, in whole or in part, in any previous application for a

degree. Except where states otherwise by reference or acknowledgment, the

work presented is entirely my own.

(2) I confirm that this thesis presented for the degree of Master of Science in

Informatics and Telecommunications, has

(i) been composed entirely by myself

(ii) been solely the result of my own work

(iii) not been submitted for any other degree or professional qualification

(3) I declare that this thesis was composed by myself, that the work contained

herein is my own except where explicitly stated otherwise in the text, and

that this work has not been submitted for any other degree or processional

qualification except as specified.

(Signature)

.

Athanasios Vakouftsis

Athens, July 2023

Acknowledgments

With the completion of this thesis, in the context of the postgraduate program that I

attended at the National Centre for Scientific Research Demokritos in collaboration

with the University of Peloponnese (M.Sc. in Data Science), as a sign of gratitude for

his valuable help, I would like to thank my supervising professor Spiros Skiadopoulos

who entrusted me this subject for this thesis and Konstantinos Vasilakis for his

valuable help on providing me ideas. I would also like to warmly thank my family for

the psychological support they provided, as well as my friends, the fellow students for

their suggestions and ideas, which helped in the implementation of this dissertation

and especially my friends from the undergraduate degree for their on point advices.

Finally, I would like to thank the colleagues who contribute to open source software

for helping me create a more robust and polished software.

- 5 -

To my family.

Περίληψη

Σ
κοπός της εργασίας αυτής είναι ο σχεδιασμός και η υλοποίηση ενός συστήματος

για την συλλογή, την διαχείριση, την επεξεργασία και την αποθήκευση δεδο-

μένων μετακίνησης. Αρχικά περιγράφουμε σύντομα το πρόβλημα και τη λύση την

οποία προσφέρουμε. ΄Επειτα αναλύουμε τα εργαλεία πολλαπλών πλατφορμών στα οπο-

ία αποφασίσαμε να υλοποιήσουμε μία δοκιμαστική εφαρμογή για να δοκιμάσουμε τις

δυνατότητες του κάθε εργαλείου και την εμπειρία χρήσης τους, τα πλεονεκτήματα και

τα μειονεκτήματά τους και τους λόγους που απορρίψαμε κάποια από αυτά. Μετά α-

ναλύουμε την αρχιτεκτονική του εργαλείου στο οποίο αναπτύχθηκε η εφαρμογή, στα

δομικά του μέρη όπως τον τρόπο με τον οποίο δημιουργεί τη διεπαφή, την ενσωμάτωση

του κώδικα σε δύο διαφορετικά λειτουργικά συστήματα και τα εργαλεία που προσφέρει

για την δημιουργία της εφαρμογής. Στη συνέχεια παρουσιάζουμε τις δυνατοτήτες της

εφαρμογής η οποία λειτουργεί σε φορητές συσκευές που έχουν λειτουργικό σύστημα

Android και IOS. Ο χρήστης θα συνδέεται στο σύστημα και θα διαμοιράζει τα δεδο-

μένα των μετακινήσεών του. Τα δεδομένα αυτά θα αποθηκεύονται σε ένα κεντρικό

σύστημα το οποίο θα τα επεξεργάζεται και θα τα διαχειρίζεται. Ακολούθως, μελετάμε

ενδελεχώς την ανάπτυξη όλων των λειτουργιών της εφαρμογής, των διαφόρων οθο-

νών, της διεπαφής που βλέπει ο εκάστοτε χρήστης και τα διάφορα προβλήματα που

προέκυψαν και τον τρόπο αντιμετώπισής τους. Επίσης, αναλύουμε τον τρόπο με τον

οποίο η εφαρμογή συνδέεται στη βάση δεδομένων που δημιουργήσαμε και επιλέξαμε

μετά από έρευνα καθώς και στον τρόπο με τον οποίο τα δεδομένα απόστελονται δη-

μιουργώντας μια δική μας λύση. Τέλος αναφέρουμε τα συμπεράσματα που προέκυψαν

από την ανάπτυξη ολόκληρου του συστήματος που δημιουργήσαμε από την αρχή, τα

προβλήματα που δημιουργήθηκαν κατά την δημιουργία του συστήματος και τέλος τους

στόχους που έχουμε θέσει για την περαιτέρω ανάπτυξη της λύσης που δημιουργήσαμε.

- 7 -

Abstract

T he aim of this thesis is to design and implement a Framework for collecting,

managing and processing movement data. Initially, a brief description of the

problem and the solution we offer. Then we analyze the cross-platform tools we

decided to implement a test application to investigate each tool’s capabilities and

user experience, their advantages and disadvantages, and the reasons we rejected

some of them. After, we examine the architecture of the tool in which the application

was developed, its structural parts such as the manner it creates the interface, the

integration of the code in two different operating systems and the tools it offers

to create the application. Next, we present the features of the application which

works on mobile devices that have Android and IOS operating systems. By using

the application the user will be able to log into the system and share the data of

their movements. The data will be stored in a central system which will process

and manage them. Subsequently, we thoroughly study the development of all the

functions of the application, the various screens, the user interface that each user

sees and the various problems that arose and how to solve them. Later, we analyze

how the application connects to the database system we created and selected after

research and how the data is sent by creating a custom solution. Finally, we report

the conclusions that emerged from the development of the entire framework that we

created from scratch, the problems that arose during the creation of the Framework

and finally the goals that we have set for the further development of the solution

that we created.

- 8 -

Contents

List of Tables iv

List of Figures v

List of Abbreviations vii

1 Introduction 1

1.1 Purpose - Problem description 2

1.2 Thesis structure 3

2 Cross-platform mobile applications development 5

2.1 General information and installation of SDKs 6

2.1.1 Cordova 6

2.1.2 Ionic 7

2.1.3 Xamarin 8

2.1.4 Flutter 8

2.2 Developing the demo application 9

2.2.1 Cordova 9

2.2.2 Ionic 11

2.2.3 Xamarin 12

2.2.4 Flutter 12

2.3 Conclusions 14

3 Flutter: Our developing framework 16

3.1 Architectural layers of Flutter 16

3.2 Reactive user interfaces 17

3.3 Widgets 17

3.3.1 Composition 18

3.3.2 Widget state 18

- i -

CONTENTS

3.3.3 State management 18

3.4 Rendering and layout 19

3.5 Platform embedding 19

3.6 Integrating with other code 20

3.7 Conclusions 20

4 Architecture of the Sodasense Framework and tools used for devel-

oping and testing 22

4.1 Structure of the application 22

4.2 Choosing the best IDE 23

4.3 Testing on devices 25

4.4 Conclusions 26

5 Application tour 27

5.1 Login screen 27

5.2 Registration screen 27

5.3 Main screen 28

5.4 Sidemenu 29

5.5 Route screen 30

5.6 Compass screen 31

5.7 Sensors screen 32

5.8 Settings screen 33

5.9 Conclusions 33

6 Development of the Sodasense framework 34

6.1 User login 34

6.2 User registration 38

6.3 Foreground functionality 42

6.4 Application lifecycle 46

6.5 Permissions 47

6.6 Sensors 48

6.6.1 Pressure sensor 48

6.6.2 Proximity sensor 52

6.6.3 Accelerometer - Magnetometer – Gyroscope sensors 54

- ii -

CONTENTS

6.6.4 Pedometer sensor 58

6.7 Main screen 59

6.8 Route screen 60

6.9 Compass screen 65

6.10 Sensors screen 68

6.11 Settings screen 68

6.12 Sidemenu 70

6.13 Databases 71

6.14 Webservices 76

6.15 Conclusions 77

7 Conclusions and future work 78

7.1 Future extensions 78

- iii -

List of Tables

2.1 Software development kits with their programming languages 6

2.2 Advantages of Flutter and Xamarin 15

2.3 Disadvantages of Flutter and Xamarin 15

- iv -

List of Figures

2.1 Demo build using Cordova (a) and (b) and Ionic (c) and (d) 10

2.2 Visual Studio interface 13

2.3 Demo build using Xamarin (a) and (b) and Flutter (c) and (d) 13

2.4 Flutter interface 14

3.1 Flutter’s layers [1] 17

3.2 Render pipeline [1] 19

3.3 Platform channels [1] 20

4.1 Structure of application 23

4.2 Flutter interface 25

5.1 Starting the application 28

5.2 (a) Main screen without activity permission, (b) Main screen with

activity permissions, (c) Activity permission dialog and (d) Target

button dialog 29

5.3 (a) Sidemenu (b) Logout button of the Sidemenu 30

5.4 (a) Route screen sliding panel and (b) Route screen with loaded map

on the right.Route screen without location permission on the left and

dialog of the left bottom button on the right 31

5.5 (a) Compass screen without location permission (b) Compass screen

with location permission. 32

5.6 On the left the old Sensors screen, in the middle new Sensors screen

and on the right the Settings screen. 33

6.1 37

6.2 (a) Email text-field error text (b) password text-fields error text (c)

Password Text-field show text button (d) Password hide text button 37

6.3 Toast pop up message 38

6.4 Foreground notification 46

- v -

LIST OF FIGURES

6.5 (a) Activity permission buttons and (b) Activity permission pop up

(c) Location permission pop up (d) Application settings location per-

mission on Android 10 and above 47

6.6 Coordinates toast pop-up 63

6.7 (a) Alert dialog of the left button (b) Route date picker 65

6.8 (a) Sliding panel (b) Compass screen with enabled GPS and inter-

net connection (c) Compass screen with disabled GPS and disabled

internet connection. 65

6.9 Sensors screen 68

6.10 (a) Settings screen with light theme (b) Settings screen with dark

theme (c) Compass screen with light theme (d) Compass screen with

dark theme 69

6.11 (a) Sensors sampling rate dialog (b) Altitude sampling rate dialog (c)

Alert dialog of changing the height, daily steps and the gender of the

user 70

6.12 (a) Button that opens the Sidemenu (b) Dialog message when the

user presses the Log out button 71

- vi -

List of Abbreviations

IDE Integrated Development Environment

UI User Interface

PC Personal Computer

SDK Software Development Kit

OS Operating System

GPS Global Positioning System

- vii -

Chapter 1

Introduction

In modern age the technology rapidly evolves every day and we have reach the point

where a mobile device is more powerful compared to desktop computers from 15

years ago. The mobile devices have gone from a point where 15 years ago their

primary functionality was to make calls and send messages. Today mobile devices

can connect to the internet, have a camera at the front and at the back to take

photos with flash, the keypad was replaced with touch displays and have the ability

to recognise a person face through facial recognition with the help of the cam-

era. Fingerprint sensors are also common and there are sensors like accelerometer,

gyroscope, magnetometer and pedometer. The GPS is also included from early de-

velopment of the first smart devices, so each device can recognise the geographical

point of the user from the coordinates longitude and latitude. Finally, sensors like

barometer, digital thermometer or proximity are common too. At the market most

of the devices has at least the following sensors:

Accelerometer. It is a sensor that tracks the acceleration of the device at each of

the x, y and z axis.

Gyroscope. It is a sensor that tracks the rotation of the device at each of the x,

y, and z axis.

Magnetometer. It is a sensor that tracks the magnitude and direction of the

Earth’s magnetic field in the x, y, and z direction.

GPS (Global Positioning System). It is a sensor that register the real time location

of a device with longitude and latitude.

Pedometer. It is a sensor that tracks the steps of device user by the abrupt move-

ment of the device.

- 1 -

1.1 : Purpose - Problem description

Proximity. It is a sensor that detects when a user is holding the device closer than

1cm.

Barometer. It is a sensor that tracks the atmosphere pressure that the device is

in.

Some devices also have bio-metric sensors (for monitoring the temperature and the

heart rate of the user), ambient light sensor or even humidity sensor. Based on the

availability of the sensors, there are multiple applications that utilize them in order

to give the users the metrics and the data that produce. The companies that have

such applications, use these sensors to monitor the activity of each user to create a

more focused product for them, but sometimes users do not know about the usage of

the data from the sensors concluding that the companies use the data with unethical

ways and are not following the proper ways of user’s security and privacy.

1.1 Purpose - Problem description

The purpose of this thesis was to create a complete framework called Sodasense to

track the user’s data, send and save them to off-site database. So the framework was

divided in three parts: the first one was to create a mobile application for Android

and IOS operating systems, that tracks with accuracy the movement of the user, the

environment that the user is currently in, the route that the user has followed, the

distance and the real time speed of the user. The available sensors of each device

contribute to this goal. The second part is to find the proper technique to find and

set up an authentication and authorization service that will keep track of our users

and build web-services which will be responsible for sending and receiving data from

the application to the database on our university server and the third part is to find

the most suitable database for our framework and set it up to save and send the data

that are created from the application. There was the need of creating an application

on both Android and IOS that uses all of the sensors of the device alongside with the

GPS to register useful data about the environment and the movement of the user.

All of the data then will be available to the user without any compromises. The

aim is to respect user’s data by being transparent about the data the device collects

by having prompts for permissions. For better understanding starting of what we

have to do, is to create an application that the user must connect with credentials

in order to create a secure connection between the application and the database.

The application must take full advantage of each sensor available on the device (e.g.

accelerometer, gyroscope, magnetometer, proximity, pedometer, barometer) and the

GPS sensor to track the real time location of the user, The data must be store first

locally on a database in the device and when the device is connected to the internet

- 2 -

Chapter 1 : Introduction

it should send the save data automatically on the database on our server. Also the

application should contain a map to illustrate the user’s location and also the route

that is registered selectable by a calendar. Likewise, a compass must be included

and a place where the user can see the available sensors of the device and their real

time metrics of each sensor. A settings menu is also required on every application in

our days, that has all the basic functionalities like changing the sampling rate of the

sensors, changing the daily target steps and the height of the user and also a button

to extract the local database to a folder of the device in order for the user to have

full control of the created data. The application must work in the background if

the user also wants to have another application open in order for our application to

collect data and must be offline first (should work flawlessly when is not connected

to the internet). The middle layer of the framework (the web-services that will be

designed and created from scratch without the use of any framework) should be

responsible to securely connect the user to the authorization/authentication system

that we will research and set up for our needs and the connect to our database and

also exchange data to and from our database. Finally, we must select the most

suitable database to use on the university server and configure it to connect and

save data properly.

1.2 Thesis structure

Starting with Chapter 2, a reference is made to all the Software Development

Kits and the Frameworks that are available for building applications on both Android

and IOS. Also a comparison to their pros and cons and which SDK’s we selected

to create the same application on every SDK called Demo application. Another

reason to create the Demo was to test the capabilities of each SDK and what does

it take to be built on each one. Finally we list the arguments of our choice to select

Flutter over every other SDK.

In Chapter 3 we take a deep look of Flutter SDK’s architecture, we analyze how

it is built, what are the widgets, the rendering technique with which the UI is made

by using its custom built engine. We describe Flutter’s connection to the native code

using custom integration techniques for each supported platform.

In Chapter 4 we have an in detail look at the structure of the whole framework,

how each layer communicate with the each other and the way our framework works.

We compare the two best Integrated Development Environments (IDE), what they

offer each one to help us and what we chose. Finally, we analyze the testing on

devices and the manner that was done by configuring the Flutter on each OS.

In Chapter 5 we have a quick demonstration of the application. We have a

tour of what are the functionalities of the application, what a user should expect

- 3 -

1.2 : Thesis structure

to see from every screen (Login, Registration, Main, Route, Compass, Sensors and

Settings) and how to interact with every UI object. Also we give instructions of the

use of the application and what actions to make in order to take full advantage of

all the capabilities of the application.

Chapter 6 is the biggest section of work because we have a complete analysis of

the development of the whole framework, the application, the middle layer which is

the web-services and the hosted database. We start by analyzing the development of

how we built the application, the packages we used and the various functionalities we

created in every screen. Then we proceed to the selection of the databases (both on

the local and the server side) and then we proceed to the creation of the web-services,

the way we build them and are their purpose.

Finally, in Chapter 7 we have the conclusion of this work, the problem we faced

and solved and the future extensions of the framework.

- 4 -

Chapter 2

Cross-platform mobile applications

development

I
n the past few years the smartphone market had 4 competitors of operating

systems namely, Android, IOS, Windows phone OS and Symbian. Windows phone

OS and Symbian were not able to keep up with the trends of the smartphone

market. Progressively users stopped selecting them and they moved to Android and

IOS. Additionally, the development for mobile applications were not easy for pro-

grammers so they stop supporting Windows phone OS and Symbian and likewise,

they moved to developing mobile applications for Android and IOS. The native lan-

guage for developing applications in IOS is Swift. Likewise, Android applications are

natively build in Java [2, 3]. Developing the same application for Android and IOS

simultaneously on their native languages is very time consuming. Each platform

has its own difficulties and its unique ways of building the same application, so a

developer must know both platforms in depth in order to make the same application.

Fortunately, with the evolution and creation of new technologies the development

on both platforms has become easier by creating a single project focusing on the ex-

ecution of both platforms on the same time using software development kits (SDK).

There are various and different software development kits available providing dif-

ferent capabilities to compile code with native design of each platform or with web

design packaged into a mobile application [4, 5, 6, 7, 8]. Table 2.1 shows some

popular SDK’s that developers use.

In this thesis we consider to compare the Ionic, Xamarin, Cordova and Flutter

SDKs since they are the most popular choices among cross-platform tools for devel-

opment.

- 5 -

2.1 : General information and installation of SDKs

SDK Programming languages

Cordova [9] HTML, CSS, Javascript

Ionic [10] Javascript, Angular, React, Vue

Native Script [11] Javascript, Typescript, Angular, Vue, React, Svelte, Capacitor,

HTML

React Native [12] Javascript

Flutter [13] Dart

Xamarin [14] .Net Framework, C#

Felgo [15] Javascript, C++, QML

Rho Mobile [16] Ruby, HTML, CSS, Javascript

Sencha [17] ExtJS

Framework7 [18] HTML, CSS, Javascript, Vue, React, Svelte

Jasonette [19] Javascript, Json

Table 2.1: Software development kits with their programming languages

2.1 General information and installation of SDKs

In order to install and test every SDK we select Windows 10 as our main operating

system (OS). Thus, the following instructions regard normal Windows 10 but with

slight modifications can be adopted for other OSs.

2.1.1 Cordova

We start with Cordova (formely known as PhoneGap), which is a mobile application

development framework that supports Android, IOS and Web applications created

by Nitobi and purchased by Adobe in 2011. The PhoneGap was in released as an

open-source version of the software called Apache Cordova. Cordova uses HTML,

CSS, Javascript for the user interface (UI) and the functionality. We used Visual

Studio Code as our IDE.

To work with Cordova we had to install the following software:

1. The latest version of Java SDK [20]. This will offer the essential tools to work

with Java language.

2. Android Studio [21]. This will offer useful command line tools, the android

emulator and the Gradle which is an advanced build toolkit, to automate and

manage the build process of building an Android application.

- 6 -

Chapter 2 : Cross-platform mobile applications development

3. The latest version of Git [22]. This will offer the ability to download files and

also create and build the application.

To configure the Android SDK we followed the steps of the respective documen-

tation [23]. We opened the Android Studio and selected the Android SDK Manager

(Tools → SDK Manager) and installed:

1. The desired API levels for developing in Android (from Android 7 to 12).

2. The latest version of Android SDK build tools.

To create an new application, we executed the installed launcher of Git and type

the following command:

1 cordova create "name of the application"

The next step is to add the target mobile application platform. Specifically, for

Android we type:

1 cordova platform add android

and for IOS we type

1 cordova platform add ios

2.1.2 Ionic

Ionic is a complete open-source SDK for hybrid mobile application development and

supports Android, IOS and Web applications. It was created by Max Lynch, Ben

Sperry, and Adam Bradley of Drifty Co. in 2013. Ionic uses Javascript, Angular,

React and Vue. We used Visual Studio Code as our IDE. To work with Ionic we had

to install the following software:

1. The latest version of Java SDK [20]. This will offer the essential tools to work

with Java language.

2. Android Studio [21]. This will offer useful command line tools, the android

emulator and the Gradle which is an advanced build toolkit, to automate and

manage the build process of building an Android application.

3. The latest version of Git [22]. This will offer the ability to download files.

- 7 -

2.1 : General information and installation of SDKs

4. The latest version of nodejs [24]. This will offer the ability to create and build

the application.

In command line of Windows 10 we entered the command:

1 npm install -g @ionic/cli

to install Ionic. After the download and installation is complete we could start

working on the mobile application.

2.1.3 Xamarin

Xamarin is an open-source platform for building modern and performant applications

for Android, IOS, tvOS, watchOS, macOS and Windows 10 applications with .NET.

Xamarin is a Microsoft-owned San Francisco-based software company founded in

2011 (acquired by Microsoft in 2016) and the first version of Xamarin was also

released in 2011. To install Xamarin we proceed as follows:

1. Download [25] and install the Visual Studio installer. This will offer the ability

to install Visual Studio IDE.

2. We selected the desired version of Visual Studio which was the Visual Studio

Community 2019.

3. We selected the package Mobile development with .Net.

After the download and installation of Visual Studio and the package is complete

we could start working on the mobile application.

2.1.4 Flutter

Flutter is an open-source UI software development kit created by Google released in

2017 and supports Android, IOS, Mac, Windows, Google Fuchsia and Web applica-

tions. For Flutter the installation we perform the following steps:

1. Download the latest version [26] and we created a folder to copy the contents

of the .zip file.

2. Update the path of the file to the Windows 10 environment variables by creating

a link to the Flutter folder we created before in order to be accesible from the

command line.

- 8 -

Chapter 2 : Cross-platform mobile applications development

3. Entered the command

1 flutter doctor

in the terminal of Windows 10 to check if the Flutter installation is completed.

4. Install Android Studio [21]. This will offer useful command line tools, the

android emulator and the Gradle which is an advanced build toolkit, to auto-

mate and manage the build process of building an Android application which

is crucial part of the Android OS.

5. Install from Android Studio market the Flutter and Dart plugins in order to

connect the folder we created before containing the contents of the SDK with

the Android Studio.

Then we were ready to start developing the application.

2.2 Developing the demo application

To better understand the capabilities of each platform we decided to make the

same application across the four platforms under consideration (namely Ionic, Cor-

dova, Xamarin, Flutter). We chose to built a very simple application on every of

these SDKs. We call this simple application Demo. Demo has a single button.

Each time we press it an alert window appears showing the total number of button

clicks within the current Demo execution.

2.2.1 Cordova

Starting with Cordova, we used Visual Studio Code as the IDE. To create a blank

project we enter the command inside the terminal of Git:

1 cordova create "name of the application"

The above command creates a folder with all the necessary files for the Demo to

run. In order for the Demo to be installed on mobile devices we have to add the

Android and IOS platforms by typing the following commands when opening the Git

and setting the path of work area inside the Demo folder:

1 cordova platform add android

For IOS we type:

- 9 -

2.2 : Developing the demo application

(a) (b) (c) (d)

Figure 2.1: Demo build using Cordova (a) and (b) and Ionic (c) and (d)

1 cordova platform add ios

After completing all the changes in Javascript and HTML we entered the command:

1 cordova build

In order to install and execute the application to a mobile device the Cordova

gives two options, by building and executing automatically the application to an

Android device with the command

1 cordova run android

and for IOS the command

1 cordova run ios

or (only for android) by building the .apk file that was made with the command

1 cordova build

and then in order for the application to be executed the user must install manually

the .apk file. The second way of testing the application is by testing it on android

emulator with the command

- 10 -

Chapter 2 : Cross-platform mobile applications development

1 cordova emulate android

(for the android application we used the Android Studio built-in emulator which

comes pre-installed) and for IOS the testing on emulator must be done on Mac

operating system. Figure 2.1 (a) and (b) shows the implementation of the Demo

application using Cordova.

2.2.2 Ionic

Ionic uses multiple frameworks for building applications like Angular, React, Vue

and vanilla Javascript. We used Angular for building the application. Angular is a

TypeScript based free and open-source web application framework. We created a

blank project with the command:

1 ionic start myApp blank

so the home page was an empty HTML file. The function with the button is inside

a TypeScript file which is the default file for containing the functionality of the

application and then the function is called in the HTML page with an ion button

which also has a container containing the text in home page. The ionic application

can be deployed on an Android device with the command:

1 ionic capacitor run android

and on IOS device with the command:

1 ionic capacitor run ios

To see all the connected devices and their IDs on PC we enter the command

1 ionic capacitor run android --list

and to select a device we enter

1 ionic capacitor run android/ios -target="device -id"

Ionic has a deployment local server that shows in webview how the application

would look like on a selected device, by pressing F12 we can select or even add

a custom device (the webview isn’t emulating the application, just how it looks

from webview to a smaller screen). Ionic can also deploy applications on the same

emulator as Cordova for Android with the command:

- 11 -

2.2 : Developing the demo application

1 ionic capacitor emulate android

and for IOS with the command:

1 ionic capacitor emulate ios

(for android application we used the Android Studio built-in emulator). Figure 2.1

(c) and (d) shows the implementation of the Demo application using Ionic.

2.2.3 Xamarin

The development, we used Visual Studio 2019 as it is the more appropriate IDE for

Xamarin development. The language we used was C# and once again we created a

blank project by selecting a project type named Mobile App(Xamarin.Forms) through

the Visual Studio project menu. Visual Studio creates a folder which contains three

projects, the main project in which we coded the function and the button and two

other projects for having specific code on every platform, even having different UI

for each platform or customizing each UI to make the application look more like a

native built application (Android project, IOS project). We selected the main project

as our startup project and then we selected the .xaml file in which it was created

the homepage of the Demo, we added a button and then we created a function on

the .xaml.cs file. For deployment Visual Studio supports deployment on Android and

IOS devices or by building the .apk file for testing (only for Android devices). Visual

Studio uses the emulator from Android Studio. Figure 2.2 (a) and (b) shows the

location on which we can select the device or the emulator we want to deploy the

Demo for testing. Figure 2.3 shows the implementation of the Demo application

using Xamarin.

2.2.4 Flutter

The development, we used Android Studio as our IDE because it works best with

it providing new layouts when creating a new project and giving many options for

developing on specific platforms or all of the platforms simultaneously and also

Flutter SDK has the best integration on Android Studio. We used the programming

language Dart for creating the Demo as it is the default programming language of

Flutter. We created a blank project by selecting the option New Flutter Project in

Android Studio and chose the boxes of Android and IOS to aim the development on

these two platforms. Flutter just like any other SDK we selected creates a project

- 12 -

Chapter 2 : Cross-platform mobile applications development

Figure 2.2: Visual Studio interface

(a) (b) (c) (d)

Figure 2.3: Demo build using Xamarin (a) and (b) and Flutter (c) and (d)

with every needed file to start creating the Demo. Inside the lib folder of the project

we created a .dart file in which we created a function for the alert and we called it

within a button in the same file. Flutter supports deployment by building an .apk

file (only for Android) or by connecting an Android and IOS device. For emulator

Android Studio uses a built-in emulator which is used on most of the platforms for

testing Android applications. On the Figure 2.4 we can see that we can select the

device or the emulator we want to deploy the Demo for testing. Figure 2.3 (c) and

- 13 -

2.3 : Conclusions

Figure 2.4: Flutter interface

(d) shows the implementation of the Demo application using Flutter.

2.3 Conclusions

As we developed a simple application (app) called Demo in each one of the 4

frameworks we realised that for the project we could not continue with a web frame-

work (like Cordova and Ionic) for the simple reason that they do not have adequate

support for native libraries and it would be much harder to develop functions for

getting data from the device sensors or for using what every device manufacturer

can provide through the Operating System (OS). Another reason was the lack of

translation to native code through an engine.

After examining Cordova and Ionic it is time to continue with Xamarin and Flutter.

These frameworks provide an intermediate layer from writing code from Dart (on

Flutter) and from C# (on Xamarin) translating both the written scripts to native

code for each OS, Java for Android and Swift for IOS. This results of course as the

application gets bigger, optimal execution even on low end devices when writing web

scripts will be much slower as the application has more complicated functionalities.

Lastly both Flutter and Xamarin as they translate the written scripts on native

code it can have provide native User Interface (UI) for both operating systems just

by calling the already built functions on libraries. So it all come down to one of

Flutter and Xamarin. Both have excellent documentation for building apps and both

- 14 -

Chapter 2 : Cross-platform mobile applications development

Flutter Xamarin

Easy to learn Complete ecosystem to build many appli-

cations due to C#, .Net

One file contains UI and functionality Specific files for in depth customization

Provides hot reload Provides hot reload

High performance High performance

Free to use Free to use

Table 2.2: Advantages of Flutter and Xamarin

Flutter Xamarin

Lack of third-party libraries Slow updates of the framework

Flawed IOS support Heavy graphics due to must have platform

specific code

Platform specific optimizations must be

done sometimes on each platform

Platform specific optimizations must be

done sometimes on each platform

Large application size Large application size

Table 2.3: Disadvantages of Flutter and Xamarin

have custom engines as intermediate layer, both have its pros and cons to consider

before proceeding. Tables 2.2 and 2.3 shows the advantages and disadvantages of

each platform [27]. After comparing Xamarin and Flutter thoroughly we realized

that Flutter was the best option for the project as it has a more community based

approach with loads of projects already built and is faster to build a UI as it uses

widgets with dart scripts on one file compared to Xamarin which requires one .xaml

file for UI and one file for writing the C# code. Flutter also uses packages to use as

libraries, in which there are many already built code for run to be used.

- 15 -

Chapter 3

Flutter: Our developing framework

I
n Chapter 2 we have in detail reviewed the cross platform application SDKs.

Our evaluation indicated that Flutter is the best option among the other three

SDKs we tested (Ionic, Cordova and Xamarin) on both building and testing an

application on Android and IOS. Let us now present the details of how the Flutter

SDK is built and what does it take to translate Dart scipts in native code. The

current chapter contains useful information from [1] and is adapted to the specific

work.

3.1 Architectural layers of Flutter

Flutter is designed as an extensible, layered system. Figure 3.1 shows the struc-

ture of the layers [1]. It consists of three layers and no layer has privileged access

to the layer below, every part of the framework layer is designed to be optional

and replaceable. The first layer consists of Dart framework which contains wid-

gets, rendering technique, cupertino and material (which are libraries that offer

comprehensive sets of controls that use the widget layer’s composition primitives to

implement the Material or IOS design languages), animation, painting, gestures and

foundation. The second layer contains the Flutter engine which is written in C# and

is responsible for rasterizing composited scenes whenever a new frame needs to be

painted. It provides the low-level implementation of Flutter’s core API, including

graphics through Skia, text layout, file and network I/O, accessibility support, plu-

gin architecture, and a Dart run-time and compile tool-chain. Flutter applications

are packaged in the same way as any other native application. The last layer is

the embedder which is written in a language that is appropriate to the underlying

operating system that is Java and C++ for Android, Objective-C/Objective-C++ for

IOS and MacOS, and C++ for Windows 10 and Linux. Using the embedder, Flutter

code can be integrated into an existing application as a module or as the entire

- 16 -

Chapter 3 : Flutter: Our developing framework

Figure 3.1: Flutter’s layers [1]

content of the application.

3.2 Reactive user interfaces

On the surface, Flutter is a reactive, pseudo-declarative (by declarative by mean

is the manner in which the developer describe the current User Interface state and

leaves the transitioning to the framework [28]) User Interface (UI) framework, in

which the developer provides a mapping from application state to interface state,

and the framework takes on the task of updating the interface at run-time when the

application state changes. Flutter decouples the UI from its underlying state which

means that the user only creates the UI description and the framework takes care of

using that configuration to both create and update the user interface appropriately.

A widget declares its UI by overriding the build() method, which is a function that

converts state to UI.

3.3 Widgets

Flutter widgets are included as a unit of composition. Widgets are the building

blocks of a Flutter application’s UI. Each widget is an immutable declaration of part

of the UI. Widgets form a hierarchy based on composition. Each widget nests inside

its parent and can receive context from the parent. This structure carries all the

way up to the root widget.

- 17 -

3.3 : Widgets

3.3.1 Composition

Widgets are typically composed of many other small, single-purpose widgets that

combine to produce powerful effects. There is a class hierarchy which is deliberately

shallow and broad to maximize the possible number of combinations, focusing on

small, composable widgets that each do one thing well. Core features are abstract,

with even basic features like padding and alignment being implemented as separate

components rather than being built into the core of the layout component.

3.3.2 Widget state

In Flutter there are two major classes of widgets: stateful and stateless widgets. If

widgets do not change their state and they do not have any properties that change

over they are called StatelessWidgets otherwise the unique characteristics of a

widget need to change based on user interaction or other factors, that widget is

stateful. When an element on the UI changes (e.g. a textfield that changes its

context when a button is pressed), the widget needs to be rebuilt to update its

part of the UI. These widgets subclass StatefulWidgets, and they store mutable

state (the state that can change after the initialization) in a separate class that

subclasses state. StatefulWidgets do not have a build method, instead their UI is

built through their state object (an object e.g. mounted that determines if a widget

is shown on screen or not). Whenever the programmer change a state object the

SetState() method must be called to signal the framework to update the UI by

calling the state’s build method again.

3.3.3 State management

The state is managed and passed around with a constructor in a widget to initialize

its data. The method build() can ensure that any child widget is instantiated with

the data it needs. As widget trees get deeper, however, passing state information

up and down the tree hierarchy becomes cumbersome. So, a third widget type,

InheritedWidget, provides an easy way to grab data from a shared ancestor. In-

heritedWidget can be used to create a state widget that wraps common ancestor in

the widget tree. InheritedWidgets also offer an updateShouldNotify() method,

which Flutter calls to determine whether a state change should trigger a rebuild of

child widgets that use it. As applications grow, more advanced state management

approaches that reduce the ceremony of creating and using stateful widgets become

more attractive. Many Flutter apps use utility packages like Provider, which is

a package that makes it easy to share information through the widget tree and

- 18 -

Chapter 3 : Flutter: Our developing framework

Figure 3.2: Render pipeline [1]

provides a wrapper around InheritedWidget.

3.4 Rendering and layout

Cross-platform frameworks typically work by creating an abstraction layer over

the underlying native Android and IOS UI libraries, attempting to smooth out the

inconsistencies of each platform representation. Application code is often written

in an interpreted language like Javascript, which must in turn interact with the

Java-based Android or Objective-C-based IOS system libraries to display UI. All this

adds overhead that can be significant, particularly when there is a lot of interaction

between the UI and the application logic. Figure 3.2 shows the pipeline of dataflow

of the system.

3.5 Platform embedding

Flutter UI built, laid out, composited, and painted by Flutter itself. The mech-

anism for obtaining the texture and participating in the application lifecycle of the

underlying operating system inevitably varies depending on the unique concerns of

that platform. The engine is platform-agnostic, presenting a stable Application Bi-

nary Interface (ABI) that provides a platform embedder with a way to set up and use

Flutter. The platform embedder is the native OS application that hosts all Flutter

content, and acts as the glue between the host operating system and Flutter. When

a Flutter application starts, the embedder provides the entrypoint, initializes the

Flutter engine, obtains threads for the UI and rastering, and creates a texture that

Flutter can write to. The embedder is also responsible for the application lifecycle,

including input gestures (such as mouse, keyboard, touch), window sizing, thread

management, and platform messages. Flutter currently includes platform embedders

- 19 -

3.6 : Integrating with other code

Figure 3.3: Platform channels [1]

for Android, IOS, Windows 10, MacOS, and Linux.

3.6 Integrating with other code

Flutter provides a variety of interoperability mechanisms, when the programmer

accessing code or APIs written in a language like Kotlin or Swift, calling a native C-

based API, embedding native controls in a Flutter application, or embedding Flutter

in an existing application. For mobile and desktop apps, Flutter allows the program-

mer to call into custom code through a platform channel, which is a mechanism for

communicating between the Dart code and the platform-specific code of the host

application. By creating a common channel (encapsulating a name and a codec),

messages can be send and received between Dart and a platform component writ-

ten in a language like Kotlin or Swift. Data is serialized from a Dart type like Map

into a standard format, and then deserialized into an equivalent representation in

Kotlin (such as HashMap) or Swift (such as Dictionary). Figure 3.3 shows the exact

procedure of integration.

3.7 Conclusions

As we chose Flutter SDK for our developing framework we realised that it is

a well built ecosystem of tools to make it easy for every programmer to develop

applications. Flutter team used best practices to create a robust architecture which

consist of three layers closely related to each other in order to work well. The

- 20 -

Chapter 3 : Flutter: Our developing framework

first layer contains the Dart language which is the developing language of Flutter,

the second layer is the Flutter’s engine which is responsible for the most of the

functionalities required for every application and lastly is the Embedder layer which

is responsible for every platform specific functionality of every supported device - OS.

With Flutter’s reactive user interfaces and widget tools it is easier than ever to create

an application to many platforms. Using the platform embedding and integrating

with other code from every supported platform with the help of platform channels

the programmer can built one main application and with small changes can execute

it on multiple platforms.

- 21 -

Chapter 4

Architecture of the Sodasense

Framework and tools used for

developing and testing

T he architecture of the application was something that changed a lot of times

until we ended up choosing the best practises to store our data. First in

order to begin developing the application we had to choose the best IDE to work

with, examining all the available options to debug, build and test the application.

While finding the best IDE was not hard, testing the application on IOS required

some troubleshooting in order to install the proper software.

4.1 Structure of the application

One of the biggest struggles of this thesis was to find the way to store our

data locally and then finding a way to upload them on a university server using an

authorization system in order to prevent unauthorized access. After we found the

most appropriate databases for our project to work with which were SQLite for local

database and MongoDB for the server, the schema was simple. The user has a mobile

device which has all the needed sensors (such as GPS, accelerometer, magnetometer,

gyroscope, pedometer, proximity and barometer) and also has a stable connection

to the internet. After the user opens the application and connects, the application

sends the username and password to a web-service that is responsible for user login

and then the web-service sends a request to Keycloak, which is an open source

authorization software to authenticate that the credentials are correct and let the

user proceed to main page [29]. As the user moves the device, the sensors of the

device are collecting data and store them locally to an SQLite (as it has a small

footprint under 1MB of space [30, 31]) database and if the user is connected to

- 22 -

Chapter 4 : Architecture of the Sodasense Framework and tools used for developing and

testing

Figure 4.1: Structure of application

the internet the application uses another web-service (there are 3 web-services that

sends data to the server, more information on Chapter 6), which is responsible for

making sure the data are sent with a proper format, the data contains the unique id

and then sends the current data from each sensor to each collection on our database.

Then, after each checking is completed the web-service sends the data on our server.

On our server we chose to have the NoSQL MongoDB database. It is an open source

NoSQL data management system used for big data storage. The primary data entity

in MongoDB is called document and is formed by a single JSON file. Documents

are the logical counterpart of records in relational databases. Similar documents are

organized in collections (which logically correspond to relational tables). MongoDB

is easy to use and very scalable [32]. Figure 4.1 shows the structure of application.

4.2 Choosing the best IDE

When it comes to developing applications for Flutter the are two choices for

Integrated Development Environments (IDE). The first one is the Visual Studio Code

and second is the Android Studio. The Visual Studio Code is a more lightweight

IDE and comes with all the things a programmer would expect (like debugging,

breakpoints), but it does not contain an Android emulator. The Android Studio

on the other hand comes with all the things the Visual Studio Code has and also

include an Android emulator built-in with a tool to select the version of Android

device the programmer wants to debug the created application. We had experience

with Android Studio, so we selected it as Flutter application development tool. To

integrate Flutter, we followed the steps that we described on the Chapter 2. For

Flutter integration on Android Studio we installed two plugins through the Android

Studio plugin store, the first one was Dart to be able to write, compile and debug

- 23 -

4.2 : Choosing the best IDE

Dart code and the second one was Flutter plugin to connect the installed framework

on the computer with the Android Studio environment. Android Studio combined

with Flutter supports 3 types of builds for deployment on a device [33]:

1. debug

2. profile

3. release

In more depth:

1. The debug mode, the application is set up for debugging on a physical device,

emulator, or simulator. Debug mode for mobile applications means that:

• Assertions are enabled (assertion is a statement that disrupts normal

execution if a boolean condition is false to help with debugging).

• Service extensions are enabled (service extensions are a set of tools that

provide additional debugging capabilities e.g.debugAllowBanner, debug-

DumpApp, debugDumpRenderTree,debugPaint).

• Compilation is optimized for fast development and run cycles.

• Debugging is enabled, and tools supporting source level debugging can

connect to the process.

2. The profile mode, some debugging ability is maintained—enough to profile

your application’s performance. Profile mode is disabled on the emulator and

simulator, because their behavior is not representative of real performance.

On a mobile device, profile mode is similar to release mode, with the following

differences:

• Some service extensions, such that enabling the performance overlay, are

enabled. Tracing is enabled, and tools supporting source-level debugging

such as DevTools can connect to the process.

• Tracing is enabled, and tools supporting source-level debugging such as

DevTools can connect to the process.

3. The release mode, is used when the programmer wants the maximum optimiza-

tion and minimal footprint size. This mode is not supported on the simulator

or emulator. For mobile device, release mode means that:

• Assertions are disabled.

• Debugging information is stripped out.

- 24 -

Chapter 4 : Architecture of the Sodasense Framework and tools used for developing and

testing

Figure 4.2: Flutter interface

• Debugging is disabled.

• Compilation is optimized for fast startup, fast execution, and small pack-

age sizes.

• Service extensions are disabled.

Figure 4.2 shows the UI of the Android Studio and the available tools provided

by the Flutter framework such as performance, outline and inspector tools.

4.3 Testing on devices

Since, we use Windows 10 as our main OS and MacOS as our secondary OS we

installed Flutter on each OS in order to test it on Android and IOS. Even though we

can build the application for Android and IOS on MacOS (due to the nature of the

Apple software the testing on IOS can only be done on MacOS) we found a MacMini

on later development stage so we started testing the application on the early stages

only on Android devices on Windows 10. The first 5 steps for Flutter installation are

the same on both Windows 10 and MacOS and we perform the following steps:

1. Download the latest version [34] and we create a folder to copy the contents

of the .zip file.

2. Update the path on Windows 10 and MacOS by creating a link to the Flutter

folder we created before in order to be accessible from the terminal.

3. Enter the command

- 25 -

4.4 : Conclusions

1 flutter doctor

in the terminal of each OS to check if the Flutter installation is completed.

4. Install Android Studio [21]. This will offer useful command line tools, the

android emulator and the Gradle which is an advanced build toolkit, to auto-

mate and manage the build process of building an Android application which

is crucial part of the Android OS.

5. Install from Android Studio market the Flutter and Dart plugins in order to

connect the folder we created before containing the contents of the SDK with

the Android Studio.

We had to make some adjustments on the application for the iPhone, so we

installed Xcode IDE from the App store of MacOS. Then in order to install the

application on a IOS device we had to install Cocoapods. We perform the following

steps only on MacOS

1. On terminal we entered the following command

1 curl -L https :// get.rvm.io | bash -s stable

2. Reopen terminal to enter the following command

1 rvm install ruby -2.6

2 rvm --default use 2.6.6

3 gem install cocoapods

Then we were ready to install the application on both Android and IOS device.

4.4 Conclusions

The architecture of the Framework was something that changed many times as

we were searching the best way to combine all the three main components: The

best practices to built the UI of the application in order to be user friendly and

easy to use, the most suitable database system to set on our university server and

finally the best way to build the web-services, for the application to communicate,

authorize/authenticate and exchange data with the database. After solving the

mentioned issues, the procedure to find the appropriate tools and the testing on

both Android and IOS devices was straight forward easy to be done.

- 26 -

Chapter 5

Application tour

S
odasense Framework was built in mind with the principle of been simple to

use, straightforward and fast for the average user. We selected to create a UI

that will help the user understand every capability of the application in order

to be used to its fullest. The privacy of the user’s data was also a critical part for

us, so we chose in order to use the application the user should create an account

first.

5.1 Login screen

Login screen is the first screen the user sees after he/she opens the application.

Figure 5.1 shows on the left Login screen of the application. From there it has two

options, if user has already registered to the framework, he/she enters the e-mail

and the password and then presses the button Login in order to connect to the

application, else he/she must presses the text beneath the Login button Don’t Have

an Account? Sign up to proceed to the registration screen. The e-mail text-field has

built-in email validator to inform the user that the inputed e-mail is not valid. The

user must be connected to the internet to proceed to the main screen. If the user

has not logged out since the last time the application was closed on their device, the

user will be redirected to the main screen without entering the credentials again.

5.2 Registration screen

Registration screen is where a new user can register to framework by providing

username, email and password. Just like the Login screen the email text-field has an

email validator to warn in case the user enters a non valid email. In the framework

the e-mail must be unique, if the user enters an e-mail that already exist when the

button is pressed a small text poping from the bottom will tell the user to enter

another e-mail. The username is only for displaying it inside the application and

- 27 -

5.3 : Main screen

(a) Login (b) Registration

Figure 5.1: Starting the application

keep a copy in the database. The user must type a password and type the same

password again on the confirmation text-field. If the two password text-fields do

not match, the user will be warned with a red text under the second text-field. The

password must be greater than 10 letters and less than 16 letters while containing

at least a special character from these: !, @, #, $, %, ˆ, &, *. The user just like on

the Login screen, must be connected to the internet in order to proceed to the main

screen. Figure 5.1 shows on the right the Register screen of the application.

5.3 Main screen

Figure 5.2 (a) shows the main screen without activity permission (is the per-

mission of which the user agrees to allow the application collect movement data).

The main screen is the homepage of the application. On this screen the user gets

redirected after the registration or the login. On the main screen the user can see

the daily progress of the steps and five buttons to go to the other screens or to logout

from the application.

If we want to collect daily steps we must give the permission of activity to the

application (if the user has an android device with android version 8 or 9 it’s not

required to give permission). Figure 5.2 (c) shows the dialog that will appear after

the user press the button ‘Request Permission’. The user must enter the desired

daily steps target, the height of the user (must be between 0-250cm else there will

a warning which will not allow the user to press the ‘ok’ button) and the option to

select between male or female for accurate tracking of kilometers walked by the user

(the activity permission will be asked only the first time of opening the application).

The selection of the gender is important because there is a formula for calculating

- 28 -

Chapter 5 : Application tour

(a) (b) (c) (d)

Figure 5.2: (a) Main screen without activity permission, (b) Main screen with ac-

tivity permissions, (c) Activity permission dialog and (d) Target button dialog

the average length of step per gender [35]. After the user presses the button ‘ok’

the user can see the progress on a circular progress bar. Figure 5.2 (b) shows the

card which is a widget (card is the widget name on Flutter which has all the text

and the circular progress bar of the main screen) which contains all the information

of the user’s daily steps.

The daily steps are saved on SQL database table (locally on device) for later

synchronization with a central database as shown on image of application structure

on Chapter 4. On the top right corner we can see a target icon which is a button.

From there the user can change the daily steps target and the height of the user(in

the case a child uses the application). In the main screen also the application collects

data from the GPS and the rest of the sensors. Every time the user changes location

a copy of the timestamp, latitude and longitude is saved on SQL database table

(locally on device) for later synchronization with a central database. Also Every 10

seconds a copy of each sensor data is taken and with a timestamp is saved on SQL

database table (locally on device) for later synchronization with a central database.

Figure 5.2 (d) shows the dialog of the target button. On the top left corner there

are 3 parallel lines, if the user presses it or by sliding from the left to the right of

the screen the sidemenu will appear on which the user can navigate to the rest of

the screens. Figure 5.3 (a) shows the sidemenu of the application.

5.4 Sidemenu

Sidemenu is where the user can navigate through the multiple screens of the

application (Main screen, Route, Compass, Sensors, Settings). The Main screen is

- 29 -

5.5 : Route screen

(a) (b)

Figure 5.3: (a) Sidemenu (b) Logout button of the Sidemenu

the main screen of the application, the Route screen is where the user can see a

map with the current position of the user and the path the user has created with a

user icon with a red line, Compass screen is a screen with compass (which uses the

magnetometer of the device), location, address and altitude. Sensors is the screen

in which the user can see all the data from the device sensors. Settings is the screen

in which the user can change between light and dark theme, change the rate of the

sensors of collecting data and the Logout is a button that appears a dialog box in

which the application asks if the user wants to logout from the application. If the

user presses the button ‘Yes’, the user will be redirected to the Login screen and

he/she will have to enter the credentials in order to login again or the next time the

user opens the application. Figure 5.3 (b) shows dialog box of the Logout button.

5.5 Route screen

Route screen is the screen where the map is. The screen illustrates the current

position of the user on the map. In order for the tracking to work properly the

user must have enabled the GPS on the device before opening this screen, else the

map will be loaded but the coordinates will not update each time the user changes

location. After the user selects this screen for the first time the application will

require real time tracking permission in order for the map to be loaded, so two

buttons are on the screen, the first one to select without the type of permission

the user wants to give to the application and the second one is to open application

settings so that the user will give manually the real time tracking permission to the

application. Figure 5.4 (a) shows how the screen looks without tracking permission.

After the user gives the required permission to the application, the map will

- 30 -

Chapter 5 : Application tour

(a) (b) (c) (d)

Figure 5.4: (a) Route screen sliding panel and (b) Route screen with loaded map

on the right.Route screen without location permission on the left and dialog of the

left bottom button on the right

be loaded using the internet connection and will show the user’s current position

on map. On the bottom right corner there is the button which zoom to the user

current location. By pressing the button for 3 seconds a popup will appear from

the bottom to warn the user that the coordinates are saved to the clipboard. If the

user navigate to the map losing the current location marker this button also centers

the map with the center point being the user’s current position marker. Figure 5.4

(b) shows the dialog of the left bottom button. On the bottom left corner there is

a second button which appear a dialog to select a starting date and the number of

coordinate points to be drawn on the map or to select only a specific day to draw

the first 2000 coordinate points. By pressing the button 3 seconds the route will be

erased from the map. Figure 5.4 (d) shows how the screen focus on the user when

the user presses the button on the bottom right. Lastly, there is a sliding panel that

shows the total distance in kilometers if a user has selected a route and the user’s

current moving speed. Figure 5.4 (c) shows the sliding up panel.

5.6 Compass screen

In Compass screen the user can see a compass which uses the magnetometer of

the device, some geographical information about the user’s location. In order to see

the geographical information like latitude, longitude, address and altitude, requires

from the user to give real time tracking permission. Figure 5.5 (a) shows how the

screen look like before getting the permission by the user. So, in order for the user to

have the full potential of the Compass screen, the user must give the permission to

- 31 -

5.7 : Sensors screen

(a) (b)

Figure 5.5: (a) Compass screen without location permission (b) Compass screen

with location permission.

allow location tracking. If the user does not allow the location tracking, the compass

screen will not work properly and also the altitude will not be shown on the screen

and not registered on the local database.

In order for the application to show the coordinates (latitude, longitude) the user

must enable the GPS and press the button on the top right corner (pin icon) to get

the current coordinates. If the user also wants the current address and the current

altitude the user must connect to the internet by opening the Wi-fi or the cellular

data and then pressing again the pin button. Every some seconds (10 seconds is

the default) a copy of the timestamp and altitude is saved on SQL database table

(locally on device) for later synchronization with a central database (in order for

the altitude to be saved an internet connection is required). The compass in order

to work does not require enabled GPS or internet connection. The Figure 5.5 (b)

shows the image after the user gives the real time tracking permission (the GPS and

the internet are disabled).

5.7 Sensors screen

This is the screen where the user can see some sensors of the device such as

pedometer, barometer, accelerometer, gyroscope, magnetometer and proximity. If

the device does not have a sensor then next to its sensor there will be a message of

the current sensor saying that the sensor is not available. The pressure sensor shows

the pressure on milli bars. The proximity sensor show if something is close enough

to the sensor, under 1 cm the sensor shows yes else is shows no. If the mobile device

does not have pedometer sensor the total count of steps will be ‘-’. Due to design

- 32 -

Chapter 5 : Application tour

(a) (b) (c)

Figure 5.6: On the left the old Sensors screen, in the middle new Sensors screen and

on the right the Settings screen.

of being not very attractive and not very user friendly we decided to completely

change how the sensors screen look like. The Figure 5.6 (a) and (b) shows the old

and new screen of the sensors.

5.8 Settings screen

Settings screen is the last screen of the application. The user here can change

between light and dark theme to change while using the application, even though

the application takes by default the theme that the device currently use, the user can

change it anytime. Also the user can change the sampling rate of the altitude and

the sensors such as accelerometer, barometer, pedometer, gyroscope, magnetometer

and proximity. Finally the user can change the daily target steps, the height and

the gender. The option ’Save DB to downloads’ is for copying local database for

debugging purposes. Figure 5.6 (c) shows how the settings screen look like.

5.9 Conclusions

As we take a look at the capabilities of each screen of the application we can see

that each screen has a unique UI and has a different functionality. If the user allow

all of the permissions to collect data from GPS and the various sensors the device

has, the user can receive the maximum potential of the application. The route will

be registered and later the user can see by date the registered route. Because of the

nature of this framework, all of the data belong to each user and can extract the

database to the device for later research on the data.

- 33 -

Chapter 6

Development of the Sodasense

framework

T he development of the application was the biggest part and the most difficult

compared to the database on the server and the web-services. By starting

this project from scratch we had the ability to create the application exactly as we

wanted it and setting our goals on every version farther than previous time. The UI

is also a part where we followed best practices to ensure that the user will never be

lost on a screen of the application by giving the option to move a different screen by

selecting it on the side menu. Every functionality is written within a function so it

can be used on all files and is well documented for someone who wants to read the

code. Each file of the project contains the code for each screen with the exception

of the SqlDatabase.dart file. Every time we completed the goals we had set each

time, a new version was born and was immediately send to friends for testing. Even

though the testing on some devices may be successful, there is always the concern of

the developer to exist some unidentifiable bugs that are not reported by the users.

The complete project of this thesis can be found on Github [36].

6.1 User login

The Login screen (Login.dart) is extended with a stateful widget which means

that this screen has states, because it has User Interface (UI) elements that changes

if the user interacts with them. Also it has only 4 UI elements, two text-fields, one

button and one gesture detector. To get the text from each text-field we used a

TextEditingController for e-mail text-field and another one for the password text-

field. The TextEditingController also requires a listener to work properly, so it

must be initialized once every time the screen is opened for the first time the app

is launched. To do this we used the function initState which is a core component

- 34 -

Chapter 6 : Development of the Sodasense framework

of a stateful class. Then, when the app terminates the listeners must be disposed.

Below we can see the initialization of the Controller.

1 @override

2 void initState (){

3 super.initState ();

4

5 // Start listening to changes with listeners

6 mail_txtController.addListener(mailvalue);

7 pass_txtController.addListener(passvalue);

8 }

9

10 @override

11 void dispose (){

12 //Clean controllers when the widget is

13 // removed from the widget tree

14 //and removes the values of both listeners

15 mail_txtController.dispose ();

16 pass_txtController.dispose ();

17 super.dispose ();

18 }

The first text-field in which the user can enter the e-mail has built-in an e-mail

validator. We used the package ‘email validator’ [37] which checks if the value in the

current text-field is an e-mail. Basically it checks if the text has the necessary form

of an e-mail (for example text@text.text). We built a function to check whether the

e-mail text-field is empty or if the e-mail is valid. Below we can see the code for

checking the if the e-mail is valid.

1 // Function for displaying the correct error message on email

text -field

2 String? Mail_Text -field_check (){

3 String mail_msg=’’;

4 if(mail_txtController.text.isEmpty ==true){

5 mail_msg=’Email can\’t be empty ’;

6 print(mail_msg);

7 mail_check=false;

8 return mail_msg;

9 }

10 else if(EmailValidator.validate(mail_txtController.text)==

false){

11 mail_msg=’Enter a valid Email ’;

- 35 -

6.1 : User login

12 print(mail_msg);

13 mail_check=false;

14 return mail_msg;

15 }

16 else if(EmailValidator.validate(mail_txtController.text)==

true){

17 mail_check=true;

18 mail_msg=’Valid email ’;

19 print(mail_msg);

20 }

21 }

When a user enters something and then deletes it, there is an error text (a small

red text below the text-field) indicating that the text-field cannot be empty but the

text will not appear if the text-field does not change for the first time. Figure 6.2

(a) shows the empty e-mail warning message.

In order to know if the text-field changes state we used the built-in function of

Text-field widget called onChanged which monitors every change it happens on the

current text-field. Then we have a boolean variable which calls a function returning

true or false if the text-field changed for the first time. If it changed it calls the

function to check the context of the text, if the text is an e-mail, if the text is

empty or if the text is a valid e-mail (in which case the error text disappears). The

password text-field works with the same logic. We used the same built-in function

onChanged() of the Text-field widget to know if there is a text entered in the text-

field for the first time by setting another boolean variable which calls a function

returning true or false. Below we can see the function which is called to check if

there is a text entered in the text-field or not.

1 // Function for displaying the correct error message on

password text -field

2 String? Pass_Text -field_check (){

3 String pass_msg=’’;

4 if(pass_txtController.text.isEmpty ==true){

5 pass_msg=’Password can\’t be empty ’;

6 print(pass_msg);

7 print(pass_check);

8 pass_check=false;

9 return pass_msg;

10 }

11 else if(pass_txtController.text.isEmpty == false){

12 pass_check=true;

- 36 -

Chapter 6 : Development of the Sodasense framework

13 pass_msg=’Valid password ’;

14 print(pass_msg);

15 }

16 }

If the user types something in the password text-field and then deletes it an

error text below the text-field will appear warning the user that the password text-

field cannot be empty. Figure 6.2 (b) shows the warning message under password

text-field.

The password text-field has also the option to hide and show the password as

the user is typing it by clicking the eye button at the end of the text-field. This

is feasible by using a built-in function of the text-field called obscuredText(). We

used this function with a boolean variable that when the user presses the button

the variable changes from true to false and vice versa. Figure 6.2 (c) and (d) shows

how the button works.

If the user does not have an account he/she must create one from the regis-

tration page by pressing the text ‘Don’t Have an Account? Sign up’ which is a

GestureDetector widget. It has a function called onTap() that triggers when the

user touches the text. When the onTap() function is triggered we forward the user

to the registration page to sign up. Finally the user must press the button Login in

order to proceed. When the button is pressed the user must have already enabled

the device Wi-fi or cellular data and has a stable connection to the internet or else

(a) (b) (c) (d)

Figure 6.1

Figure 6.2: (a) Email text-field error text (b) password text-fields error text (c)

Password Text-field show text button (d) Password hide text button

- 37 -

6.2 : User registration

the user will not be able to login and there will be pop up text warning the user that

the device is not connected to the internet. To check if the user has the device Wi-fi

or cellular data enabled we used the package ‘connectivity plus’ [38] and for check-

ing if the user is connected to the internet the package ‘internet connection checker’

[39]. The pop up text is called Toast and we used the package ‘fluttertoast’ [40]

in order to display a message with an animation to the user. Figure 6.3 shows the

toast message that is displayed when the user is connected to the internet.

Figure 6.3: Toast pop up message

Also the two text-fields must be valid in order to login. If the above conditions

are met then the user will be redirected to the main page of the application.

6.2 User registration

Registration page (Signup.dart) is extended with a stateful widget. It consists

by 6 UI elements, four text-fields, one button and one gesture detector. To get

the text from each text-field we used the same logic just like on the login screen,

one TextEditingController() with its listener for each text-field. Inside the

initState() function we have the initializations of the listeners and the dispose

of them inside the dispose function as shown on below.

1 @override

2 void initState (){

3 super.initState ();

4 //Start listening to changes with listeners

5 user_txtController.addListener(uservalue);

6 mail_txtController.addListener(mailvalue);

7 pass_txtController.addListener(passvalue);

8 confpass_txtController.addListener(confvalue);

- 38 -

Chapter 6 : Development of the Sodasense framework

9 }

10

11 @override

12 void dispose (){

13 //Clean controllers when the widget is removed from the

14 // widget tree and removes the values of listeners

15 user_txtController.dispose ();

16 mail_txtController.dispose ();

17 pass_txtController.dispose ();

18 confpass_txtController.dispose ();

19 super.dispose ();

20 }

The first text-field is a simple text-field for only saving and showing the username

of the user. It shows an error message below the text-field in case that the user writes

a username and then deletes it to warn the user that the text-field cannot be empty.

We used the function onChanged() from the Text-field widget to know when the

user types on the text-field and then we used the function below to warn the user if

it is necessary. Below we can see the function for validating the user e-mail.

1 // Function for displaying the correct error message on

username text -field

2 String? User_Textfield_check (){

3 String user_msg=’’;

4 if(user_txtController.text.isEmpty ==true){

5 user_msg=’Username can\’t be empty ’;

6 print(user_msg);

7 user_check=false;

8 return user_msg;

9 }

10 else if(user_txtController.text.isEmpty == false){

11 user_check=true;

12 user_msg=’Valid username ’;

13 print(user_msg);

14 }

15 }

The e-mail text-field is built the exact same way as in the login screen using

the function onChanged() to use a function for checking if the text-field is empty

or if the e-mail is valid. The password text-field uses the onChanged() function of

text-field widget with a function to check if the criteria for a strong password are

- 39 -

6.2 : User registration

met which are: the length of the password must be between 10 and 16 letters and

use at least a special character like !, @, #, $, %, ˆ, &, . Below we can see the

function that checks if the text-field is empty.

1 // Function for displaying the correct error message on

password text -field

2 String? Pass_Text -field_check (){

3 String pass_msg=’’;

4 if(pass_txtController.text.isEmpty ==true){

5 pass_msg=’Password can\’t be empty ’;

6 print(pass_msg);

7 pass_check=false;

8 return pass_msg;

9 }

10 else if(pass_txtController.text.isEmpty == false){

11 if(pass_txtController.text.length < 10 ||

pass_txtController.text.contains(new RegExp(r’(?=.*[!@#$

%^&*]) ’)) == false){

12 pass_msg=’Password must be at least 10 letters\nand

contain special characters (!@#\$%^&*) ’;

13 pass_check=false;

14 return pass_msg;

15 }

16 else if(pass_txtController.text.length > 16 ||

pass_txtController.text.contains(new RegExp(r’(?=.*[!@#$

%^&*]) ’)) == false){

17 pass_msg=’Password must be maximum 16 letters\nand contain

special characters (!@#\$%^&*) ’;

18 pass_check=false;

19 return pass_msg;

20 }

21 else{

22 pass_check=true;

23 pass_msg=’Valid password ’;

24 print(pass_msg);

25 }

26 }

27 }

The functionality for the hide and show button at the end of the text-field is

the same as in the Login screen. The confirm text-field also uses the function

- 40 -

Chapter 6 : Development of the Sodasense framework

onChanged() to call a function to check if the text that is written on the password

text-field is the same as the one written on the confirm password text-field. The

function also checks if the text-field is empty and warns the user. Below we can see

the function for the confirmation text-field.

1 // Function for displaying the correct error message on

confirmation password text -field

2 String? Conf_Text -field_check (){

3 String conf_msg=’’;

4 if(confpass_txtController.text.isEmpty ==true){

5 conf_msg=’Password can\’t be empty ’;

6 print(conf_msg);

7 conf_check=false;

8 return conf_msg;

9 }

10 else if(confpass_txtController.text.isEmpty == false){

11 if(confpass_txtController.text.compareTo(

pass_txtController.text) != 0){

12 conf_check=false;

13 conf_msg=’Password isn\’t same as the one above ’;

14 return conf_msg;

15 }

16 else{

17 conf_check=true;

18 conf_msg=’Valid username ’;

19 print(conf_msg);

20 }

21 }

22 }

The user finally must press the button ‘Sign up’ in order to create an account.

The user must have enabled the Wi-fi or the cellular data of the device and have

a stable connection to the internet before pressing the button just like the login

button on the Login screen. Of course the four text-fields must have a valid con-

text to proceed to get redirected to the Main screen or else a Toast message will

appear to warn the user that some credentials may be missing or to connect to the

internet. The text below the button named ‘Already Have an Account? Sign in’

is GestureDetector widget with a onTap() function that when it is triggered by

touch the user will be redirected to the Login screen.

- 41 -

6.3 : Foreground functionality

6.3 Foreground functionality

When the user closes the application, the application by default will stop all

the functionality it has and will shut down. Before searching for the best package

that does exactly what we wanted we had to search what does it take to keep an

application running if the user changes to another application or if the user locks

the device. We searched first on Android what is needed to make it work (writing

native code) and we found out that the application must become a service. In the

Android documents it states [41] that a service is an application component that can

perform long-running operations in the background and it does not provide a user

interface. If it starts, the service might continue running for some time even after

the user switches to another application. Additionally, a component can bind to a

service to interact with it and even perform interprocess communication (IPC). The

service has three types: Foreground, Background, Bound.

• The foreground service performs some operation that is noticeable to the user

and it must display a Notification. Foreground services continue running even

when the user isn’t interacting with the application.

• The background service performs an operation that isn’t directly noticed by

the user and it is not necessary to display a Notification.

• A service is bound when an application component binds to it by calling bind-

Service(). A bound service offers a client-server interface that allows compo-

nents to interact with the service, send requests, receive results, and even do

so across processes with interprocess communication (IPC). A bound service

runs only as long as another application component is bound to it. Multiple

components can bind to the service at once, but when all of them unbind, the

service is destroyed.

So we had to find a way to make the application a background service or a fore-

ground service. After some search we found that an application like this which uses

real time tracking must be a foreground service as Android and Apple documents

suggest. But before we found this suggestion we installed two packages (both of

them did not work as intended) that make the application a background service

[42, 43]. After the mentioned suggestion we tried some packages that make the

application a foreground service. We used the packages: foreground service, flut-

ter foreground plugin, flutter foreground service, flutter foreground service plugin

[44, 45, 46, 47]. None of these worked as we would like to. As a last resort we

thought of writing native code using platform channels for both Android and IOS

but that would be difficult and we had to make it ourselves because we did not found

- 42 -

Chapter 6 : Development of the Sodasense framework

anything similar. We found a last package called ‘flutter foreground task’ [48]. For-

tunately it worked as we would like to and we integrate it in the application. The

whole code of the foreground functionality must be inside the main file which is

the main screen and so the application will begin running in the foreground after

the user enters the main screen for the first time. To achieve this functionality the

home of the application (which is the first screen the user will encounter by default

as Flutter provides) must be wrapped by the widget WithForegroundTask that the

foreground package provides. Below we can see the code that is provided by the

package and it must be included to initiate the functionality.

1 class MyTaskHandler extends TaskHandler {

2 SendPort? _sendPort;

3 int _eventCount = 0;

4

5 @override

6 Future <void > onStart(DateTime timestamp , SendPort? sendPort)

async {

7 _sendPort = sendPort;

8

9 //You can use the getData function to get the stored data.

10 final customData = await FlutterForegroundTask.getData <

String >(key: ’customData ’);

11 // print(’customData: $customData ’);

12 }

13

14 @override

15 Future <void > onEvent(DateTime timestamp , SendPort? sendPort)

async {

16 // FlutterForegroundTask.updateService(

17 // notificationTitle: ’MyTaskHandler ’,

18 // notificationText: ’eventCount: $_eventCount ’

19 //);

20

21 // Send data to the main isolate.

22 sendPort ?.send(_eventCount);

23 _eventCount ++;

24 }

25

26 @override

27 Future <void > onDestroy(DateTime timestamp , SendPort?

sendPort) async {

- 43 -

6.3 : Foreground functionality

28 // You can use the clearAllData function to clear all the

stored data.

29 await FlutterForegroundTask.clearAllData ();

30 }

31

32 @override

33 void onButtonPressed(String id) {

34 // Called when the notification button on the Android

platform is pressed.

35 // print(’onButtonPressed >> $id ’);

36 }

37

38 @override

39 void onNotificationPressed () {

40 // Called when the notification itself on the Android

platform is pressed.

41 //

42 // "android.permission.SYSTEM_ALERT_WINDOW" permission must

be granted for

43 // this function to be called.

44

45 // Note that the app will only route to "/resume -route"

when it is exited so

46 // it will usually be necessary to send a message through

the send port to

47 // signal it to restore state when the app is already

started.

48 FlutterForegroundTask.launchApp("/resume -route");

49 _sendPort ?.send(’onNotificationPressed ’);

50 }

51 }

Below we can see the code that is used for configurating in each OS the Notifi-

cations options the programmer wants to have. On IOS the options are very limited

compared to Android but we kept the notification simple on both operating systems.

1 Future <void > initForegroundTask () async {

2 await FlutterForegroundTask.init(

3 androidNotificationOptions: AndroidNotificationOptions(

4 channelId: ’notification_channel_id ’,

5 channelName: ’Foreground Notification ’,

6 channelDescription:’This notification appears when the

- 44 -

Chapter 6 : Development of the Sodasense framework

foreground service is running.’,

7 channelImportance: NotificationChannelImportance.LOW ,

8 priority: NotificationPriority.LOW ,

9 iconData: const NotificationIconData(

10 resType: ResourceType.mipmap ,

11 resPrefix: ResourcePrefix.ic,

12 name: ’launcher ’,

13),

14),

15 iosNotificationOptions: const IOSNotificationOptions(

16 showNotification: true ,

17 playSound: true

18),

19 foregroundTaskOptions: const ForegroundTaskOptions(

20 interval: 1000,

21 autoRunOnBoot: false ,

22 allowWifiLock: true ,

23),

24 printDevLog: true ,

25);

26 }

27

28 Future <bool > startForegroundTask () async {

29 // You can save data using the saveData function.

30 await FlutterForegroundTask.saveData(key: ’customData ’,

value: ’hello ’);

31

32 bool reqResult;

33 if (await FlutterForegroundTask.isRunningService) {

34 reqResult = await FlutterForegroundTask.restartService ();

35 } else {

36 reqResult = await FlutterForegroundTask.startService(

37 notificationTitle: ’App is running on the background ’,

38 notificationText: ’Tap to return to the app’,

39 callback: startCallback ,

40);

41 }

42

43 ReceivePort? receivePort;

44 if (reqResult) {

45 receivePort = await FlutterForegroundTask.receivePort;

46 }

- 45 -

6.4 : Application lifecycle

Figure 6.4: Foreground notification

47 return _registerReceivePort(receivePort);

48 }

As always the functions initForegroundTask() and StartForegroundTask()

which are for notifications options and starting the notification service respectively

are stated inside the initState() function on Main screen class. Figure 6.4 shows

how the notification looks like.

6.4 Application lifecycle

Flutter provides a way of observing when the application changes state with

the function didChangeAppLifecycleState. With this function the programmer can

observe the states of the application:

• inactive - The application is in an inactive state and is not receiving user input

(IOS only)

• paused - The application is not currently visible to the user, not responding

to user input, and running in the background

• resumed - The application is visible and responding to user input

• suspending - The application will be suspended momentarily (Android only)

• detached – The application is closing

In order for this function to work the class must have an Observer by adding with

WidgetsBindingObserver() after the name of the class. Then we initiated an Ob-

server on initState() with WidgetsBinding.instance?.addObserver(this) and

dispose it on dispose() function with WidgetsBinding.instance?.removeObserver(this).

It was not needed by default on every Flutter application to observe the state of the

application but we wanted to know when the application go to the background or

when the user is interacting with the application to know when we must enable or

disable the background location functionality. Also we wanted to stop foreground

functionality of the application when the user close the application.

- 46 -

Chapter 6 : Development of the Sodasense framework

6.5 Permissions

If the programmer wants to ask the user to collect data from the sensors of

the device it is necessary to include permissions. Flutter does not provide how to

ask permissions so we used the package ‘permission handler’ [49]. We used this

package for getting permissions for activity tracking (getting daily steps) and real

time location (getting longitude and latitude). We added activity permission in

the main file (main.dart) in which the user must accept the permission in order for

the daily steps to be counted. The Figure 6.5 (a) shows the two buttons with two

different options.

Figure 6.5 (b) shows the dialog that appears after the user presses the first button

and asks if the user wants to give permission for activity tracking with a system pop

up directly. The second button is for redirecting the user on the application settings

in order for the user to manually accept the settings. The permission for the real

time location is located in the navigation screen and in the compass screen. When

the user selects for the first time the navigation screen the permission for the location

will show up with a system pop up and the user have 3 options, to use location when

the application is in use, to give one time permission of location to the application

or to deny to give permission as shown on Figure 6.5 (c).

If the user deny on the pop up two buttons will appear on the screen, one for

requesting permission for the location appearing the same pop up again and the

other button will open the application’s settings. Only on Android 10 and above in

(a) (b) (c) (d)

Figure 6.5: (a) Activity permission buttons and (b) Activity permission pop up (c)

Location permission pop up (d) Application settings location permission on Android

10 and above

- 47 -

6.6 : Sensors

the options for the location permission there is a fourth option (Allow all the time)

that the user must select through application’s settings in order for the background

location to work, if the user does not select this option the next time the user enters

the navigation screen the application will redirect the user to the permissions options

of the application to select it. Figure 6.5 (d) shows the application’s settings for

location permission.

If the user gives location permission for the first time to the application through

navigation screen the application will not request the permission again on compass

screen and if the user gives location permission on the first time on compass screen

the application will not request the permission again on navigation screen.

6.6 Sensors

6.6.1 Pressure sensor

To get data from the pressure sensor we got through a small odyssey. We first

searched if there was available a package that gets the pressure data from the sensor

on both Operating Systems (Android and IOS) but there was not anything on the

time we were building the functionality. So the next worst solution would be to

write native code on Kotlin for Android and Swift for IOS and connect the native

code with Flutter using platform channels. Thankfully we found exactly one Github

project on which we were able to take some ideas and build on top of that [50]. So

on Android side we created a main file with name MainActivity.kt and we created

a variable a method channel and an event channel (in short both method channel

and event channel exist for communicating with Dart, method channel is for sending

information like status and event channel is for sending values even if they change

dynamically). To connect two same types of channels between native and Dart

the channels must have the same name (for example the variable for availability of

pressure sensor is called pressure sensor on Android, IOS and Dart file). The method

channel purpose is for sending if the device has a pressure sensor or not. Below we

can see the code on Android for the availability of the sensor.

1 // Channel for pressure

2 presschannel = MethodChannel(messenger , press_channel)

3 presschannel !!. setMethodCallHandler{

4 call ,result ->

5 if (call.method == "isSensorAvailable") {

6 result.success(sensorManager !!. getSensorList(Sensor.

TYPE_PRESSURE).isNotEmpty ())

7 } else {

- 48 -

Chapter 6 : Development of the Sodasense framework

8 result.notImplemented ()

9 }

10 }

The code for the data from the sensor we made a class StreamHandler in another

file which basically registers a listener to get the events from the sensor as we can

see below.

1 class StreamHandler(private val sensorManager: SensorManager ,

sensorType: Int , private var interval: Int =

SensorManager.SENSOR_DELAY_NORMAL):

2 EventChannel.StreamHandler , SensorEventListener {

3 private val sensor = sensorManager.getDefaultSensor(

sensorType)

4 private var eventSink: EventChannel.EventSink? = null

5

6 override fun onListen(arguments: Any?, events: EventChannel.

EventSink ?) {

7 if (sensor != null){

8 eventSink = events

9 sensorManager.registerListener(this , sensor , interval)

10 }

11 }

12

13 override fun onCancel(arguments: Any?) {

14 sensorManager.unregisterListener(this)

15 eventSink = null

16 }

17

18 override fun onSensorChanged(event: SensorEvent ?) {

19 val sensorValues = event !!. values [0]

20 eventSink ?. success(sensorValues)

21 }

22

23 override fun onAccuracyChanged(sensor: Sensor?, accuracy:

Int) {

24 }

25 }

Below we can see the call of the StreamHandler class in the main file.

1 pressureChannel = EventChannel(messenger , pressure_channel)

- 49 -

6.6 : Sensors

2 pressureStreamHandler = StreamHandler(sensorManager !!, Sensor

.TYPE_PRESSURE)

3 pressureChannel !!. setStreamHandler(pressureStreamHandler)

For IOS we followed the same steps by making a .swift file having the main

function inside. Then we made a variable for the method channel (pressure sensor)

and a variable for event channel (pressure channel). Below we can see the function

for checking if the pressure sensor is available on the current device.

1 let presschannel = FlutterMethodChannel(name: press_channel ,

binaryMessenger: controller.binaryMessenger)

2

3 presschannel.setMethodCallHandler ({

4 (call: FlutterMethodCall , result: @escaping FlutterResult)

-> Void in

5 switch call.method {

6 case "isSensorAvailable":

7 result(CMAltimeter.isRelativeAltitudeAvailable ())

8 default:

9 result(FlutterMethodNotImplemented)

10 }

11 })

We followed the same methodology for getting data from the sensor making

another class inside the file to handle the events of the sensor as shown below.

1 class PressureStreamHandler: NSObject , FlutterStreamHandler {

2 let altimeter = CMAltimeter ()

3 private let queue = OperationQueue ()

4

5 func onListen(withArguments arguments: Any?, eventSink

events: @escaping FlutterEventSink) -> FlutterError? {

6

7 if CMAltimeter.isRelativeAltitudeAvailable () {

8 altimeter.startRelativeAltitudeUpdates(to: queue) { (data ,

error) in

9 if data != nil {

10 //Get pressure

11 let pressurePascals = data?. pressure

12 events(pressurePascals !. doubleValue * 10.0)

13 }

- 50 -

Chapter 6 : Development of the Sodasense framework

14 }

15 }

16 return nil

17 }

18

19 func onCancel(withArguments arguments:Any?) -> FlutterError?

{

20 altimeter.stopRelativeAltitudeUpdates ()

21 return nil

22 }

23 }

Below we can see the function we called inside the main file.

1 let pressurechannel = FlutterEventChannel(name:

pressure_channel , binaryMessenger: controller.

binaryMessenger)

2 pressurechannel.setStreamHandler(pressureStreamHandler)

After this procedure the native code on both Android and IOS is done and we

moved to connect the native code with Dart. The pressure functionality is inside the

Sensors screen in which also the user can see if the device has pressure sensor or not

and the data it gets from the sensor. First we created the corresponding method

channel and event channel and then we made a function to check if the device has

a pressure sensor. Below we can see the function for getting the availability of the

pressure sensor.

1 // Future for checking the availability of pressure sensor

2 Future <void > check_pressure_availability () async {

3 try {

4 var available = await press_channel.invokeMethod(’

isSensorAvailable ’);

5 setState (() {

6 press_check = available;

7 });

8 } on PlatformException catch (e) {

9 print(e);

10 }

11 }

Then we called the function in initState() to be called once every time the

- 51 -

6.6 : Sensors

application opens this screen to check if there is pressure sensor on the device and

also listen to the StreamHandler to get data from the sensor in case there is as

shown on below.

1 // pressure initialization event

2 pressureSubscription = pressure_channel.

receiveBroadcastStream ().listen ((event) {

3 setState (() {

4 if(press_check == true){

5 pressure=event;

6 pmsg = ’${pressure.toStringAsFixed (2)} mbar’;

7 if(press_check == false)

8 {

9 pmsg = ’Pressure not available ’;

10 }

11 }

12 else{

13 pmsg = ’Pressure not available ’;

14 }

15 });

16 });

6.6.2 Proximity sensor

To get data from proximity sensor it was much easier because there was a package

called ‘proximity sensor’ [51] which has pre-build functions to get data from the

sensor. On Android to know if there is a proximity sensor on the device (or at least

a virtual sensor) we made a method channel writing native code in the same file we

made for pressure sensor (MainActivity.kt) to send the status of the sensor. Below

we can see the Kotlin function for the proximity method channel.

1 // Channel for proximity

2 proxchannel = MethodChannel(messenger , prox_channel)

3 proxchannel !!. setMethodCallHandler{

4 call ,result ->

5 if (call.method == "isSensorAvailable") {

6 result.success(sensorManager !!. getSensorList(Sensor.

TYPE_PROXIMITY).isNotEmpty ())

7 } else {

8 result.notImplemented ()

- 52 -

Chapter 6 : Development of the Sodasense framework

9 }

10 }

Then in the Sensors screen (Sensors.dart) we created a function for getting the

availability of the sensor from the method channel. Below we can see the Dart

function for getting from native code the availability of the sensor.

1 // Future for checking the availability of proximity sensor

2 Future <void > check_proximity_availability () async {

3 if(Platform.isIOS){

4 prox_check = true;

5 }

6 try {

7 var available = await prox_channel.invokeMethod(’

isSensorAvailable ’);

8 setState (() {

9 prox_check = available;

10 });

11 } on PlatformException catch (e) {

12 print(e);

13 }

14 }

Below we can see the function to get the data from the sensor.

1 // Future for gettind data from proximity sensor

2 Future <void > listenSensor () async {

3 FlutterError.onError = (FlutterErrorDetails details) {

4 if (foundation.kDebugMode) {

5 FlutterError.dumpErrorToConsole(details);

6 }

7 };

8 _streamSubscription = ProximitySensor.events.listen ((int

event) {

9 setState (() {

10 if(prox_check == true) {

11 _isNear = (event > 0) ? true : false;

12 if (_isNear == true) {

13 nmsg = "’Yes’";

14 }

15 else {

16 nmsg = "’No’";

- 53 -

6.6 : Sensors

17 }

18 }

19 else{

20 nmsg = ’Proximity not available ’;

21 }

22 print(nmsg);

23 });

24 });

25 }

On IOS there is no need to check for proximity sensor because every supported

device to run this application has the sensor.

6.6.3 Accelerometer - Magnetometer – Gyroscope sensors

To get data from acceleration sensor, magnetometer sensor and gyroscope sensor we

used the package ‘sensors plus’ [52] which has pre-build functions to get data from

the sensors but not the availability of them in the device. To get the availability on

Android of the sensors we followed the same strategy as in proximity and pressure

sensors by writing native code and using method channels for communicating with

the Dart files. Below we can see the native code used for checking availability.

1 // Channel for accelerometer

2 accchannel = MethodChannel(messenger , acc_channel)

3 accchannel !!. setMethodCallHandler{

4 call ,result ->

5 if (call.method == "isSensorAvailable") {

6 result.success(sensorManager !!. getSensorList(Sensor.

TYPE_ACCELEROMETER).isNotEmpty ())

7 } else {

8 result.notImplemented ()

9 }

10 }

11

12 // Channel for gyroscope

13 gyrochannel = MethodChannel(messenger , gyro_channel)

14 gyrochannel !!. setMethodCallHandler{

15 call ,result ->

16 if (call.method == "isSensorAvailable") {

17 result.success(sensorManager !!. getSensorList(Sensor.

TYPE_GYROSCOPE).isNotEmpty ())

- 54 -

Chapter 6 : Development of the Sodasense framework

18 } else {

19 result.notImplemented ()

20 }

21 }

22

23 // Channel for magnetometer

24 magnchannel = MethodChannel(messenger , magn_channel)

25 magnchannel !!. setMethodCallHandler{

26 call ,result ->

27 if (call.method == "isSensorAvailable") {

28 result.success(sensorManager !!. getSensorList(Sensor.

TYPE_MAGNETIC_FIELD).isNotEmpty ())

29 } else {

30 result.notImplemented ()

31 }

32 }

Below we can see the Sensors screen, after we created three Future functions to

get the availability of each sensor from the native code.

1 // Future for checking the availability of accelerometer

sensor

2 Future <void > check_acc_availability () async {

3 if(Platform.isIOS){

4 acc_check = true;

5 }

6 try {

7 var available = await acc_channel.invokeMethod(’

isSensorAvailable ’);

8 setState (() {

9 acc_check = available;

10 });

11 } on PlatformException catch (e) {

12 print(e);

13 }

14 }

15

16 // Future for checking the availability of gyroscope sensor

17 Future <void > check_gyro_availability () async {

18 if(Platform.isIOS){

19 gyro_check = true;

20 }

- 55 -

6.6 : Sensors

21 try {

22 var available = await gyro_channel.invokeMethod(’

isSensorAvailable ’);

23 setState (() {

24 gyro_check = available;

25 });

26 } on PlatformException catch (e) {

27 print(e);

28 }

29 }

30

31 // Future for checking the availability of magnetometer

32 Future <void > check_magn_availability () async {

33 if(Platform.isIOS){

34 magn_check = true;

35 }

36 try {

37 var available = await magn_channel.invokeMethod(’

isSensorAvailable ’);

38 setState (() {

39 magn_check = available;

40 });

41 } on PlatformException catch (e) {

42 print(e);

43 }

44 }

We called the functions inside the initState() function and to get data from

each sensor and we also initiated inside the initState() the events listeners for the

data streams as shown below.

1 // accelerometer initialization event

2 userAccelerometerEvents.listen ((UserAccelerometerEvent event)

{

3 setState (() {

4 if(acc_check == true){

5 ax = event.x;

6 ay = event.y;

7 az = event.z;

8 amsg=’x:${ax.toStringAsFixed (2)} y:${ay.toStringAsFixed

(2)} z:${az.toStringAsFixed (2)}’;

9 }

- 56 -

Chapter 6 : Development of the Sodasense framework

10 else{

11 amsg=’Accelerometer not available ’;

12 }

13 });

14 });

15

16 // gyroscope initialization event

17 gyroscopeEvents.listen ((GyroscopeEvent event) {

18 setState (() {

19 if(gyro_check == true) {

20 gx = event.x;

21 gy = event.y;

22 gz = event.z;

23 gmsg = ’x:${gx.toStringAsFixed (2)} y:${gy.

toStringAsFixed (2)} z:${gz.toStringAsFixed (2)}’;

24 }

25 else{

26 gmsg=’Gyroscope not available ’;

27 }

28 });

29 });

30

31 // magnetometer initialization event

32 magnetometerEvents.listen ((MagnetometerEvent event) {

33 setState (() {

34 if(magn_check == true){

35 mx = event.x;

36 my = event.y;

37 mz = event.z;

38 mmsg=’x:${mx.toStringAsFixed (2)} y:${my.toStringAsFixed

(2)} z:${mz.toStringAsFixed (2)}’;

39 }

40 else{

41 mmsg=’Magnetometer not available ’;

42 }

43 });

44 });

Again for IOS there is no need to check for accelerometer, gyroscope and magne-

tometer sensors because every supported device to run this application has all these

sensor.

- 57 -

6.6 : Sensors

6.6.4 Pedometer sensor

For counting steps we had to get data from the pedometer sensor and once again we

were lucky because there is a package named ‘pedometer’ [53] that does this exact

functionality. Below we can see the functions we created to get the number of steps,

to show the availability and to initialize them.

1 void onStepCount(StepCount event) {

2 print(event);

3 setState (() {

4 if(box.get(’today_steps ’)==null){

5 box.put(’today_steps ’ ,0);

6 }

7 else{

8 box.put(’today_steps ’,box.get(’today_steps ’) + 1);

9 dist = double.parse (((box.get(’today_steps ’) * box.get(’

steps_length ’))/ 1000).toStringAsFixed (3));

10 }

11 });

12

13 box.put(’date’,date_once);

14 }

15

16 void onStepCountError(error) {

17 print(’onStepCountError: $error ’);

18 setState (() {

19 steps = ’Pedometer not\navailable ’;

20 });

21 }

22

23 void initPlatformState () {

24

25 _stepCountStream = Pedometer.stepCountStream;

26 _stepCountStream.listen(onStepCount).onError(

onStepCountError);

27

28 if (! mounted) return;

29 }

The onStepCount() function counts every step the user does and saves it to

a local database (more on database section), the onStepCountError() function

- 58 -

Chapter 6 : Development of the Sodasense framework

checks if the device has a pedometer sensor and the initPlatformState() function

initializes the pedometer and registers the changes, it is called in the initState()

function.

6.7 Main screen

Main screen (main.dart) is extended with a stateful widget. It consists by seven

buttons at first. If the user’s device is Android 10 and above the screen will show

two buttons in which the first one is requesting the permission to register physical

activity in order to count the daily steps, the second button to open the application

settings to manually give the physical activity permission (if the user’s device is

Android 9 or 8 the two buttons won’t appear) and the other five buttons is to redirect

the user to each screen and to logout the user. After the user gives the required

permission an Alert Dialog will appear asking for the user to enter height, daily

steps target and the gender. As seen on previous text-fields, each text-field requires

a TextEditingController with a listener, a function to know if the user interacts

with the current text-field for the first time and a function to check the context of

the text-field. On the second text-field for example the user must enter a height

between 0 and 250cm and requires also the text-field to not be empty. Below we

can see the function we have created to check if the text-field is empty.

1 // Function for displaying the correct error message on height

2 //text -field

3 String? Height_Text -field_check (){

4 String height_msg=’’;

5 if(heightController.text.isEmpty ==true){

6 height_msg=’Height can\’t be empty ’;

7 print(height_msg);

8 height_check=false;

9 return height_msg;

10 }

11 else if(int.parse(heightController.text) > 250){

12 height_msg=’Height must be less than 250cm’;

13 print(height_msg);

14 height_check=false;

15 return height_msg;

16 }

17 else if(int.parse(heightController.text) <= 250){

18 height_check =true;

19 height_msg=’Valid height ’;

20 print(height_msg);

- 59 -

6.8 : Route screen

21 }

22 }

After entering all the requirements a widget called Card will appear on the screen

with the daily target of steps and the progress of them in a circular progress bar.

The Card uses an elevation option inside the widget to be give the user a more 3d

aspect of the widget (the daily steps are saved in a database, more on that topic on

database section). On the top right corner there is a target icon which is a button,

when the user presses the button another Alert Dialog will show up to give the

option to the user to change the height and the daily steps target. On the bottom of

the Card the user can see the kilometers by foot calculated by the number of steps

and the height that the user has given. If the device does not have a pedometer

sensor the package we used named ’pedometer’ will try and calculate the number of

steps by the motion of the device using the accelerometer and the gyroscope of the

device, not very accurate though.

6.8 Route screen

Route screen (navigation.dart) is also extended with a stateful widget. When the

user enters the screen for the first time if has not already given the permission to

track real time location before showing the map two buttons will appear, the first one

to request permission for real time location and the second one to open application’s

settings to manually give permission. After giving the permission the map will

appear with a button on the left bottom corner. It’s important that the user must

have enabled the GPS if opening the screen for the first after a full shutdown and be

connected to the internet in order for the map to load, due to a bug in initialization

of positioning the marker will not show the correct location of the user if enters the

screen with the GPS disabled and enable it after entering. For maps there are not

many options if the programmer does not want to implement native maps. The first

and the most popular choice is to use the package ‘google maps flutter’ [54] which

is the best package for implementing maps on flutter due to having official support

from Google and a special functionality which is camera animation. The biggest

flaw of this package is that it requires to get an API key from google maps platform

which is free for only a specific amount of API calls which can easily be reached,

after the limit it is not free. So the next best choice is the package ‘flutter map’ [55]

which is the one that we have used and it is free. It is community based which means

that is less supported and the updates are less often. It is a Dart implementation

of Leaflet Maps with tiles from Open Street Maps which are also free. This plugin

by itself does not provide other functionalities other than showing the map with

- 60 -

Chapter 6 : Development of the Sodasense framework

a small dot where the user is currently on the map for the first time opening the

map. If for example the user moved from the point was before he/she has to select

another screen in the application and select again the navigation screen. In order

to show on the map every time the user changes location we used the package

‘flutter map location marker’ [56] which also has a marker with the heading of the

device. To get the changes of position we integrated the package in the FlutterMap

widget with a LocationMarkerLayer widget as shown below.

1 LocationMarkerLayerWidget(

2 plugin: LocationMarkerPlugin(

3 centerCurrentLocationStream:

center_current_location_StreamController.stream ,

4 centerOnLocationUpdate: center_on_location_update

5),

6 options: LocationMarkerLayerOptions(

7 marker: DefaultLocationMarker(

8 color: Colors.green ,

9 child: Icon(

10 Icons.person ,

11 color: Colors.white ,

12),

13),

14 markerSize: const Size(40, 40),

15 accuracyCircleColor: Colors.green.withOpacity (0.1),

16 headingSectorColor: Colors.green.withOpacity (0.8) ,

17 headingSectorRadius: 120,

18 markerAnimationDuration: Duration(milliseconds: Duration.

millisecondsPerSecond),

19),

20)

We also used the package ‘location’ [57] to get the latitude and longitude as value

because the flutter map location marker did not provide the information we needed

but only the representation on the map. To get the location in the foreground or

in the background the location package provides a function and all we had to do

was to enable it through the lifecycle (as mentioned in the Lifecycle section above)

when the application goes to the background and disable it when the application is

resumed. We initialiazed the function onLocationChanged.listen in initState()

to get the location changes and called a function to save the coordinates and check

for the GPS status as shown below.

- 61 -

6.8 : Route screen

1 location.onLocationChanged.listen ((loc.LocationData cLoc) {

2 currentLocation = cLoc;

3 setState (() {

4 setpoint(cLoc.latitude , cLoc.longitude);

5 speed = cLoc.speed! * 3.6;

6 });

7 insert_toDb ();

8 });

1 void setpoint(latitude ,longitude) async{

2 serviceEnabled = await geo.Geolocator.

isLocationServiceEnabled ();

3

4 lat=latitude;

5 lng=longitude;

6 }

We added a button on the right bottom corner in case that the user wanted

to navigate the map without losing where the user is on the map, when the user

presses the button the screen will show the user current location with the marker

in the center of the screen. We also wanted to have a way for the user to see

his/hers route on map with a line (called polyline), so we used the package ‘flut-

ter map tappable polyline’ [58] which shows with a red line the route that the user

has travelled. Below we can see the code of how we showed the line using a tem-

porary list with coordinates with the package as a widget inside the FlutterMap

widget. When the user presses the button for around 3 seconds the coordinates are

copied to clipboard with a small pop-up warning the user. Figure 6.6 shows how

the toast popup looks like.

1 TappablePolylineLayerWidget(

2 options: TappablePolylineLayerOptions(

3 polylineCulling: true ,

4 pointerDistanceTolerance: 20,

5 polylines: [

6 TaggedPolyline(

7 tag: ’My Polyline ’,

8 // An optional tag to distinguish polylines in callback

9 points: polylineCoordinates ,

10 color: Colors.red ,

11 strokeWidth: 9.0,

- 62 -

Chapter 6 : Development of the Sodasense framework

Figure 6.6: Coordinates toast pop-up

12),

13],

14 onTap: (polylines , tapPosition) => print(’Tapped: ’ +

polylines.map((polyline) => polyline.tag).join(’,’) + ’at’

+ tapPosition.globalPosition.toString ()),

15 onMiss: (tapPosition){

16 print(’No polyline was tapped at position ’ + tapPosition.

globalPosition.toString ());

17 }),

18),

This package [58] has also a function called onTap in which the user can tap a

polyline and in our case print the position of the polyline on map. The user can

use the functionalities of the map without connecting to the internet and can see a

part of the map that was saved the last time the user used the map with the device

connected to an internet connection. We used the package ‘cached

network image’ [59]. So we built a function to get an image of what the user sees

on screen and we save it based on the coordinates and the options we have set on

the map widget as shown below.

1 class CachedTileProvider extends TileProvider {

2 const CachedTileProvider ({ customCacheManager });

3 @override

4 ImageProvider getImage(Coords <num > coords , TileLayerOptions

options) {

5 return CachedNetworkImageProvider(

6 getTileUrl(coords , options),

- 63 -

6.8 : Route screen

7 //Now you can set options that determine how the image

gets cached via whichever plugin you use.

8);

9 }

10 }

Basically when the user uses the map with the device connected to the internet

this package saves a number of tiles around the user and the map is saved as an image

inside the package of the application and the image is kept for 30 days, after that

the image gets deleted automatically. This method in order to work requires to built

a Cache Manager to save the image, so we used the package ‘flutter cache manager’

[60] in which we can configure the number of objects we want to save and the

duration of the data we want to be kept as seen below.

1 static final customCacheManager = CacheManager(

2 Config(

3 ’customCacheKey ’,

4 stalePeriod: Duration(days :30),

5 maxNrOfCacheObjects: 200

6),

7);

On the bottom left corner we added another button to give the option to user

to select the route he/she wants to load on the map with polylines. There are two

options available, the first one is to select one date until the current date and load

with a slider a number of coordinates points from 10 to 5000 (the user will be

warned that selecting more than 2000 coordinates points are only suggested if the

user has a high end device). If the number of points on the given dates are more

than the number that the user has selected then it will be loaded the first number of

coordinate points that the user has selected. The second option is to select a specific

day and load the route of this specific date. Again if the coordinate points are more

than 2000 points it will load the first 2000 points on the map of the specific day. If

on both selected options there are not any coordinate points saved a toast pop-up

will appear and warn the user that there are not any saved route on these dates.

When the user presses the button for around 3 seconds the polylines will reset and

disappear from the map. Figures 6.7 (a) and (b) shows the Alert dialog with the two

options as mentioned above and the DatePicker for selecting the date.

Finally, on the bottom of the screen there is a small grey circular button, when it

is pressed there is sliding panel appearing from bottom to top. We used the package

‘sliding up panel’ [61]. When it is opened, it shows the total distance in kilometers

- 64 -

Chapter 6 : Development of the Sodasense framework

(a) (b)

Figure 6.7: (a) Alert dialog of the left button (b) Route date picker

(a) (b) (c)

Figure 6.8: (a) Sliding panel (b) Compass screen with enabled GPS and internet

connection (c) Compass screen with disabled GPS and disabled internet connection.

if the user has selected to show a route on the map and the moving speed in km/h

in real time. Figure 6.8 (a) shows the Sliding panel of the Route Screen.

6.9 Compass screen

Compass screen (Compass.dart) is extended with a stateful widget due to having

changing values. In order to use this screen the user must give the location per-

mission to the application (we used the permission handler package mentioned on

the permissions section above). As in the navigation screen, when the user enters

for the first time on this screen will see two buttons, the first one to ask permission

- 65 -

6.9 : Compass screen

with a native pop up message to give directly the location permission and the second

button to direct the user to the application’s settings to give the location permission

manually. If the user has already given the location permission to the application

through the navigation screen then the two buttons will not show up. After the user

gives the location permission four text-fields show up and an image of a compass.

The first text-field shows the angles from the north, the second text-field show the

address that the user is currently, the third one shows the latitude and longitude

and the fourth one shows the altitude. In order to get the latitude and longitude

the user must enable the GPS on the device. If the user enters the screen without

the GPS enabled he/she has to press the button on the top right corner to get the

coordinates. In order to get the address and the altitude the user must have an

internet connection. Figure 6.8 (b) and (c) shows the screen, on the left when the

device has internet connection and an enabled GPS and on the right when the device

has not an internet connection and the GPS is disabled. To get the coordinates we

used the package ‘geolocator’ [62]. Below we can see the function we created to get

the status of the GPS and also the current position of the user.

1 // Function for getting the status of GPS

2 Future <Position > getGeoLocationPosition () async {

3

4 serviceEnabled = await Geolocator.isLocationServiceEnabled ()

;

5

6 return await Geolocator.getCurrentPosition(desiredAccuracy:

LocationAccuracy.best);

7 }

The function returns a variable of type position which contains information of the

current latitude, longitude and altitude. Then to find the current address from

the coordinates we used the package ‘geocoding’ (https://pub.dev/packages/

geocoding) and then we created the function below to get the address given the

coordinates we found with the previous function (we print on the screen not only

the address but also the country and the postal code) as shown below.

1 // Function for getting lat lng and

2 Future <void > GetAddressFromLatLong(Position position)async {

3 List <Placemark > placemarks = await placemarkFromCoordinates(

position.latitude , position.longitude);

4 double alt_placemarks = await position.altitude;

5 print(placemarks);

6 Placemark place = placemarks [0];

- 66 -

https://pub.dev/packages/geocoding
https://pub.dev/packages/geocoding

Chapter 6 : Development of the Sodasense framework

7 setState (() {

8 Address = ’${place.street}, ${place.locality}, ${place.

postalCode}, ${place.country}’;

9 });

10 }

Then we created the function shown below to call the two functions mentioned

above and initialized it in initState() in order every time the user enters the screen

to show the corresponding messages.

1 // Function for setting address and location

2 void getData () async {

3 Position position = await getGeoLocationPosition ();

4 lat=position.latitude.toStringAsFixed (4);

5 lng=position.longitude.toStringAsFixed (4);

6 Altitude = position.altitude;

7

8 print(’$location ’);

9 GetAddressFromLatLong(position);

10 }

For the compass we used the package ‘flutter compass’ [63]. Just like a physical

compass this package uses the magnetometer of the device and shows the angles from

north that the device is heading to. The compass is a single image of a compass

and the package uses the gyroscope of the device to rotate the image. The package

provides a stream of the angles and sets as 0 when the device is heading to north,0-

179 when the device is to the right of the north and -180-0 when the device is

heading to the left of the north. We did not like this approach so we created a

simple function to show to the user the angles from 0-359. Below we can see the

simple function we created to get the angles.

1 // Function for getting the angles of compass

2 void get_angle(event) {

3 setState (() {

4 if(event.heading >0){

5 angle = event.heading;

6 }

7 else{

8 angle = event.heading + 360;

9 }

10 });

- 67 -

6.10 : Sensors screen

Figure 6.9: Sensors screen

11 }

We integrated the package as widget inside the screen and is build every time

the user enters the screen and is initialized in initState() function.

6.10 Sensors screen

Sensors screen (Sensors.dart) is extended with a stateful widget. It consists by

six ListTile. Next to each sensor, the user can see the availability of the sensor or

if the device has a sensor the data it creates (the functionality of each sensor is

mentioned on the Sensors section above). This screen exists only for showing the

user the available sensors on the device and their values when an event is occurred

(for example when the user spins the device), so the user can not interact with this

screen. Figure 6.9 shows the sensors screen.

6.11 Settings screen

Settings screen (Settings.dart) is extended with a stateful widget. It consists by

five card widgets, the first one has a SwitchListTile widget inside the Card widget

which changes the theme of the whole application from light to dark and vice versa.

It has a field which holds a value, that the user can change between the two values

by pressing the toggle button (SwitchListTile wiget). To manage the theme, we

created the file Theme provider.dart in which we have the functionality to change

the theme of the application. To easily use this file we used the package ‘provider’

[64] which is a wrapper around InheritedWidget. In Theme provider.dart file we

have two classes, in the first one we have a function to set a boolean variable to

change between light and dark theme so we can use it in the settings screen and the

- 68 -

Chapter 6 : Development of the Sodasense framework

(a) (b) (c) (d)

Figure 6.10: (a) Settings screen with light theme (b) Settings screen with dark theme

(c) Compass screen with light theme (d) Compass screen with dark theme

second class is where we have the light and the dark theme colors for everything we

use in the application. The color of the background change from white to dark grey

and the color of the text changes from black to white. By default the selected theme

is the selected theme that the device is using, for example if a user’s device is set to

dark theme then when the user opens the application, the application’s theme will

be also dark. This is done by getting the system’s theme in the Theme provider file

and setting it in the main file when we build the whole application, before the user

encounters the first screen when opening the application as shown below.

1 return MaterialApp(

2 title: ’Sodasense ’,

3 themeMode: themeProvider.themeMode ,

4 theme: MyThemes.lightTheme ,

5 darkTheme: MyThemes.darkTheme ,

6 debugShowCheckedModeBanner: false ,

7 home:WithForegroundTask(

8 child: (saved_mail !=null && saved_pass !=null)? MyHomePage

() : Login()

9)

10);

Figures 6.10 (a) with (c) and (b) with (d) shows on the left the application using

light mode and on the right using the dark mode.

The second and the third card widget gives the ability to the user to change the

- 69 -

6.12 : Sidemenu

(a) (b) (c)

Figure 6.11: (a) Sensors sampling rate dialog (b) Altitude sampling rate dialog (c)

Alert dialog of changing the height, daily steps and the gender of the user

sampling rate of the sensors(pressure, accelerometer, gyroscope, magnetometer and

proximity) and the sampling rate of the altitude accordingly with and Alert dialog.

Figures 6.11 (a) and (b) shows the Alert dialogs of the aforementioned card widgets.

The card widget ’Change steps, height and gender’ gives the ability to the user

to change the height of the user, the daily steps target and the gender of the user

just like on the Main Screen. Figure 6.11 (c) shows the Alert Dialog of this card

widget. Finally, the last option ’Save DB to downloads’ gives the option to the user

to extract a copy of the local database of the device to the Downloads folder of the

device and it was built mainly for debugging purposes.

6.12 Sidemenu

Sidemenu (Sidemenu.dart) is the only ’screen’ that is extended with a stateless

widget because we do not have a state to change. We chose to use Drawer widget

to navigate through our screens as we though it was more convenient and more

beautiful for the user. The next option was tabs but because we have multiple

screens on the application it would be more difficult for the user to select a tab. To

open the sidemenu the user must press the three parallel lines on the top left corner

of each screen or slide from the left of the screen to the right to show up. Figure

6.12 (a) shows the three parallel lines the user must press in order for the sidemenu

to appear.

It consists by 2 Texts widgets and 6 ListTiles widgets. In the 2 texts we show the

username and the e-mail that the user has used to log in, and the first 5 ListTiles are

used to navigate to each one of our screens (Homepage, Route, Compass, Sensors,

- 70 -

Chapter 6 : Development of the Sodasense framework

(a) (b)

Figure 6.12: (a) Button that opens the Sidemenu (b) Dialog message when the user

presses the Log out button

Settings). The last ListTile is used to log out the user from the application and

also the database with a pop up dialog, it also terminates the background location

functionality of the application. In order for the user to log out he/she must press

the log out ListTile and select ”Yes” in the dialog, else the ”No” option will close the

dialog and won’t disconnect the user. Figure 6.12 (b) shows the logout Alert dialog.

6.13 Databases

For saving the data that the application creates was one of the most difficult

tasks we encountered on the creation of the application. We wanted the application

to save the data locally on device and when the device is online to synchronize

the data to a server that is hosted to our university. We though to use a NoSQL

database so we searched for a solution (a package) that provides offline and online

database self hosted (not on cloud). The most popular choice that provides the

above requirements is ObjectBox [65]. ObjectBox is a database that the programmer

can create objects and store them to the database. ObjectBox for the local database

is easy to install, all we had to do was to install the package and start working. But

to synchronize the data to our hosted database we had to request a key with the

program from the company in order to work. After requesting the key, we answered

to a Google Forms questionnaire for the reasons we selected the ObjectBox and why

we wanted to use a hosted database and after this form we had answer another

form about some personal data and billing address even though the hosted database

was free only to realize that this database did not have built-in authorization and

authentication functions. So we searched for other solutions and we found Couchbase

- 71 -

6.13 : Databases

lite which is also a NoSQL database that offers the same functionalities but not

authentication and authorization. So we decided to take a different approach and

have a separate database for saving the data locally and a separate database hosted

on the server of the university. So we decided to host a Mongodb database on the

server of the university and for the local database we searched for the best solution.

First we tried NoSQL databases and we had multiple packages to choose:

• ObjectBox

• Hive

• SharedPreferences

• Sembast

• Couchbase Lite

• Realm

ObjectBox, Hive, Sembast, Couchbase Lite and Realm work similar and support

creating objects to save them in their database and all them support CRUD oper-

ations. SharePreferences wraps platform-specific persistent storage for simple data

(NSUserDefaults on IOS and macOS, SharedPreferences on Android). Data may be

persisted to disk asynchronously, and there is no guarantee that writes will be per-

sisted to disk after returning. So we decided to use Hive as it is the most lightweight

and is written in pure Dart. The idea of the Hive database is simple, the programmer

creates a box with a name and put data to the box with the function put(). Then

in order to retrieve the data the programmer must use the function get(). The

data can be either variables, list, maps and objects. In order to save objects to the

database programmer must generate a type adapter. The update operation is only

available if the programmer extends the object with HiveObject. When we started

using the Hive database we noticed that the update operation of the database is not

the same like an SQL database, because if for example we added a list to a box, the

new list we added overwrites the previous one and we wanted to keep the data from

the first time the user registers to the application until every time the user enters

the application again. So we used Hive only for some basic tasks, like saving the

e-mail and the password of the user to keep a session, so the user every time he/she

closes the application and opens it again to be redirected to the main screen without

the need of re-typing the credentials, for saving the target of steps and the daily

steps and for saving the user’s height and gender. To check if the user has already

logged in to the application without logging out by pressing the ”Logout” button

in the Sidemenu, we checked before running the main function of the application if

- 72 -

Chapter 6 : Development of the Sodasense framework

the ’e-mail’ and ’pass’ fields in the box are empty to redirect the user to appropriate

screen. Below we can see the function to check if there is an open session.

1 void main() async{

2 //Hive commands for initializing and opening a box to store

data

3 await Hive.initFlutter ();

4 // Hive.registerAdapter(UserAdapter ());

5 box = await Hive.openBox(’user’);

6 check_session ();

7 runApp(MyApp());

8 }

9 void check_session () async{

10 saved_mail = await box.get(’email ’);

11 saved_pass = await box.get(’pass’);

12 }

1 return MaterialApp(

2 title: ’Sodasense ’,

3 themeMode: themeProvider.themeMode ,

4 theme: MyThemes.lightTheme ,

5 darkTheme: MyThemes.darkTheme ,

6 debugShowCheckedModeBanner: false ,

7 home:WithForegroundTask(

8 child: (saved_mail !=null && saved_pass !=null)? MyHomePage

() : Login()

9)

10);

So we searched for available SQL packages and we found Drift, Floor and Sqflite.

Drift is built on top of Sqlite, Floor is an abstraction of Sqlite and Sqflite is Sqlite

package for Flutter. We ended up using Sqflite as it is the most stable package

[66]. We used SQL database for saving the coordinates of the user, for saving data

from the sensors (pressure, acceleration, gyroscope, magnetometer, proximity and

pedometer) every 10 seconds and altitude every 5 seconds. We have created a file

(SqlDatabase.dart) containing all the SQL statements (including creation of tables,

insertion to tables and selection from tables) and the required functions for the

database like the creation of the database file (db.db) and the initialization of it.

We have 4 tables for saving the data we need (coordinates, altitude, daily steps,

sensors). The daily steps are inserted into the SQL database once per different day,

- 73 -

6.13 : Databases

we save the date of the last date and we check if the date of the last step is the

different than the current day, if it is we insert the steps into the database with the

current date. Of course in order for this function to work properly we execute it

before we start counting the current’s date steps. Below we can see the function of

checking the dates which is in initState() function and the function to insert into

the database table (these functions are inside the main.dart file).

1 if((box.get(’date’) != date_once) && (box.get(’date’) != null

)){

2 insert_toDb ();

3 box.put(’today_steps ’ ,0);

4 }

1 insert_toDb () async{

2 int stp = box.get(’today_steps ’);

3 date = DateTime.now().millisecondsSinceEpoch;

4 await SqlDatabase.instance.insert_daily_steps(date ,stp ,0);

5 List <Map > lista = await SqlDatabase.instance.

select_daily_steps ();

6 print(lista);

7 }

For saving the coordinates the strategy was much simpler, we decided to save

the coordinates to the database every time the user changes position, so this was

done in the function we have the listener for changing position just as we have on

the Route screen (the functions are inside the main.dart file). Below we can see the

function for inserting the coordinates to database table.

1 location.onLocationChanged.listen ((loc.LocationData cLoc) {

2 currentLocation = cLoc;

3

4 setState (() {

5 setpoint(cLoc.latitude , cLoc.longitude);

6 speed = cLoc.speed! * 3.6;

7 });

8

9 insert_toDb ();

10 });

For saving the altitude again the strategy was simple, we decided to save the

- 74 -

Chapter 6 : Development of the Sodasense framework

altitude every 5 seconds to the database using a timer (this was done inside the

main.dart file). We followed the same strategy with saving the data, we checked for

the availability of them and then saved the data every 10 seconds and the function-

ality is inside the main.dart file in initState function. Below we can see the function

for inserting the sensors data to the database tables.

1 timer = Timer.periodic(Duration(seconds: srt), (Timer t) {

2 if(acc_check == true){

3 insert_acc_toDb ();

4 }

5 else{

6 ax=0;

7 ay=0;

8 az=0;

9 }

10 if(gyro_check == true){

11 insert_gyro_toDb ();

12 }

13 else{

14 gx=0;

15 gy=0;

16 gz=0;

17 }

18 if(magn_check == true){

19 insert_magn_toDb ();

20 }

21 else{

22 mx=0;

23 my=0;

24 mz=0;

25 }

26 if(press_check == true){

27 insert_pressure_toDb ();

28 }

29 else{

30 pressure =0;

31 }

32 if(prox_check == true){

33 insert_prox_toDb ();

34 }

35 insert_sensors_toDb ();

36 });

- 75 -

6.14 : Webservices

After we solved the problem of saving the data locally, we had to resolve the

issue of copying the data from the device to a MongoDB database in a server of our

university. Before that we wanted somehow to authenticate and authorizing the user

and we ended up using Keycloak. Keycloak is an open source software to allow single

sign-on with Identity and Access Management [67]. We selected Keycloak because

it is a self hosted service and was easy to setup. In order to connect the application

with the Keycloak because it is not safe to be directly connected with each other we

had to make some web services (one for the login of the user, one for the registration

of the user to the Keycloak etc.). After we built the web-services all we had to do

in the application was to make an http post request to web-services in order for the

data to be transferred to the Keycloak using the package ’http’ [68].

6.14 Webservices

As we mentioned in the previous section, in order to connect the application with

Keycloak, send and receive data to MongoDB we created 6 web services using PHP.

To communicate with each web service we send http post requests and requires the

data to be encoded as .json file. In every web service we check if the required field is

empty and returns an error message. Starting with Register screen, we created the

web service userRegister.php which requires email, username, lastname, firstname

and password. If the email does not exist from other user then the registration of

the user is successful. For Login screen we created the userLogin.php web service in

which we send the username and the password of the registered user. If the login

is successful the web service returns an acccess token that the Keycloak has sent

to allow the user to connect to the application else if the login is not successful

it returns an error message. The same web service (userLogin.php) is called af-

ter a successful user registration in order to get an access token. Finally, for the

Main screen we created four web services for each of the SQLite tables we have on

the device. altitudeData.php is for uploading the altitude data, dailystepsData.php

for uploading the daily steps, userTrackingData.php for uploading the coordinates

and sensorsData.php for uploading pressure, acceleration, gyroscope and magne-

tometer (for each one the x, y and z axis), proximity and steps. Every one of

these web services (altitudeData.php, dailystepsData.php, userTrackingData.php,

sensorsData.php) requires on each http post request the access token, the user id

and then the specific list of each attribute, i.e. altitudeData.php requires the list

with the altitude data, dailystepsData.php requires the list with the daily steps data

etc.

- 76 -

Chapter 6 : Development of the Sodasense framework

6.15 Conclusions

After having a complete breakdown of the development of the framework, we can

see the strong points of this work, the struggles we encountered and the problems

we solved. On the parts of the application where we send and receive data like

Login, Register and Main screen we followed the best security practices to ensure

that a man in the middle cannot acquire access to our framework. The foreground

functionality, although it was a difficult task to complete, we wanted to make sure

that all the capabilities of the application like gathering data from sensors must be

working. Finding also the best and most suitable database for both local and on

server side, was solved after trying multiple packages and technologies. Finally, we

built web-services to create a middle layer to our framework between the application

and the database on server to take on the task of send, receive and process data to

Keycloak and to MongoDB to be sure every task is completed.

- 77 -

Chapter 7

Conclusions and future work

In our days, a high percentage of the people have a smartphone both Android and

IOS and want to know their daily movement. In the present thesis, a complete

solution was given, a framework that includes a user’s tracking application, a way of

sending automatically the saved data of every device to our server and the manner

of saving data to a hosted database of our selection to a university server. The

application includes all the necessary functions that a user needs to register all of

the movement on a daily basis, the user’s route that can be selected using calendar

and the ability of the user to manipulate the generated data by the user’s need

and by the way every user wants. Our focus was on the convenience and usability.

During the development of the framework we encountered some major problems but

were solved with the help of the Flutter community, forums, with videos and with

lots of troubleshooting. Even though the thesis journey has come to an end the

framework will grow as seen on the section below.

7.1 Future extensions

This is only the start of this project and many changes have been initiated.

We have gathered some rough thoughts for future expansion starting by adding

functionality to count the daily user’s route distance and by adding animations to

the application. We should also fill the settings screen with more options for example

to change the user’s username and password. If we want to expand the application

we should try different databases like Timescale and Influx in order to understand

which one is the most suitable for our framework. Also, a web application for

checking all of the data that a user’s device has created would be a good addition.

Likewise, in our days a good addition to our framework would be a chat bot, to

make it easier for the users e.g. to count the total days of using the application or

the total distance of the registered route or even the habits of the user by using the

- 78 -

Chapter 7 : Conclusions and future work

data of the movement by the sensors. Finally a crucial part of expansion would be

to find and fix bugs that may or may not be present in the future due to the use

of the application by a large number of users, as its extensive use will lead to the

detection of any bugs and the testing on real environment and testing on a high

volume of users.

- 79 -

References

[1] https://docs.flutter.dev/resources/architectural-overview#

architectural-layers.

[2] Matt Neuberg. iOS 15 Programming Fundamentals with Swift: Swift, Xcode,

and Cocoa Basics. O’Reilly Media, 2021.

[3] Dawn Griffiths. Head First Android Development: A Brain-Friendly Guide.

Shroff/O’Reilly, 2017.

[4] Raymond K. Camden. Apache Cordova in Action. Manning, 2015.

[5] Andreas Dormann. Ionic 6: Create awesome apps for iOS, Android, Desktop

and Web. D&D Verlag Bonn, 2022.

[6] Alessandro Del Sole. Xamarin with Visual Studio. BPB Publications, 2022.

[7] Eric Windmill. Flutter in Action. Manning, 2019.

[8] Priyanka Tyagi. Pragmatic Flutter. CRC Press, 2021.

[9] https://cordova.apache.org/.

[10] https://ionicframework.com/.

[11] https://nativescript.org/.

[12] https://reactnative.dev/.

[13] https://flutter.dev/.

[14] https://dotnet.microsoft.com/en-us/apps/xamarin.

[15] https://felgo.com/.

[16] https://tau-platform.com/en/products/rhomobile/.

[17] https://www.sencha.com/.

[18] https://framework7.io/.

[19] https://jasonette.com/.

[20] https://www.oracle.com/java/technologies/downloads.

[21] https://developer.android.com/studio.

- 80 -

https://docs.flutter.dev/resources/architectural-overview#architectural-layers
https://docs.flutter.dev/resources/architectural-overview#architectural-layers
https://cordova.apache.org/
https://ionicframework.com/
https://nativescript.org/
https://reactnative.dev/
https://flutter.dev/
https://dotnet.microsoft.com/en-us/apps/xamarin
https://felgo.com/
https://tau-platform.com/en/products/rhomobile/
https://www.sencha.com/
https://framework7.io/
https://jasonette.com/
https://www.oracle.com/java/technologies/downloads
https://developer.android.com/studio

References

[22] https://git-scm.com/.

[23] https://cordova.apache.org/docs/en/10.x/guide/platforms/android/

index.html.

[24] https://nodejs.org/en/.

[25] https://visualstudio.microsoft.com/downloads/.

[26] https://docs.flutter.dev/get-started/install/windows.

[27] https://blog.logrocket.com/xamarin-vs-flutter/.

[28] https://docs.flutter.dev/get-started/flutter-for/declarative.

[29] Stian Thorgersen and Pedro Igor Silva. Keycloak - Identity and Access Man-

agement for Modern Applications. Packt Publishing, 2021.

[30] Sunny Kumar Aditya and Vikash Kumar Karn. Android SQLite Essentials.

Packt Publishing, 2014.

[31] Gene Da Rocha. Learning SQLite for iOS. Packt Publishing, 2016.

[32] Shannon Bradshaw. MongoDB: The Definitive Guide: Powerful and Scalable

Data Storage. O’Reilly Media, 2019.

[33] https://docs.flutter.dev/testing/build-modes.

[34] https://docs.flutter.dev/get-started/install.

[35] https://marathonhandbook.com/average-stride-length/.

[36] https://github.com/ThanosVk/Sodasense.

[37] https://pub.dev/packages/email_validator.

[38] https://pub.dev/packages/connectivity_plus.

[39] https://pub.dev/packages/internet_connection_checker.

[40] https://pub.dev/packages/fluttertoast.

[41] https://developer.android.com/guide/components/services.

[42] https://pub.dev/packages/flutter_background.

[43] https://pub.dev/packages/flutter_background_service.

[44] https://pub.dev/packages/foreground_service.

[45] https://pub.dev/packages/flutter_foreground_plugin.

[46] https://pub.dev/packages/flutter_foreground_service.

[47] https://pub.dev/packages/flutter_foreground_service_plugin.

[48] https://pub.dev/packages/flutter_foreground_task.

[49] https://pub.dev/packages/permission_handler.

- 81 -

https://git-scm.com/
https://cordova.apache.org/docs/en/10.x/guide/platforms/android/index.html
https://cordova.apache.org/docs/en/10.x/guide/platforms/android/index.html
https://nodejs.org/en/
https://visualstudio.microsoft.com/downloads/
https://docs.flutter.dev/get-started/install/windows
https://blog.logrocket.com/xamarin-vs-flutter/
https://docs.flutter.dev/get-started/flutter-for/declarative
https://docs.flutter.dev/testing/build-modes
https://docs.flutter.dev/get-started/install
https://marathonhandbook.com/average-stride-length/
https://github.com/ThanosVk/Sodasense
https://pub.dev/packages/email_validator
https://pub.dev/packages/connectivity_plus
https://pub.dev/packages/internet_connection_checker
https://pub.dev/packages/fluttertoast
https://developer.android.com/guide/components/services
https://pub.dev/packages/flutter_background
https://pub.dev/packages/flutter_background_service
https://pub.dev/packages/foreground_service
https://pub.dev/packages/flutter_foreground_plugin
https://pub.dev/packages/flutter_foreground_service
https://pub.dev/packages/flutter_foreground_service_plugin
https://pub.dev/packages/flutter_foreground_task
https://pub.dev/packages/permission_handler

References

[50] https://github.com/nhandrew/platformcode.

[51] https://pub.dev/packages/proximity_sensor.

[52] https://pub.dev/packages/sensors_plus.

[53] https://pub.dev/packages/pedometer.

[54] https://pub.dev/packages/google_maps_flutter.

[55] https://pub.dev/packages/flutter_map.

[56] https://pub.dev/packages/flutter_map_location_marker.

[57] https://pub.dev/packages/location.

[58] https://pub.dev/packages/flutter_map_tappable_polyline.

[59] https://pub.dev/packages/cached_network_image.

[60] https://pub.dev/packages/flutter_cache_manager.

[61] https://pub.dev/packages/sliding_up_panel.

[62] https://pub.dev/packages/geolocator.

[63] https://pub.dev/packages/flutter_compass.

[64] https://pub.dev/packages/provider.

[65] https://pub.dev/packages/objectbox.

[66] https://pub.dev/packages/sqflite.

[67] https://www.keycloak.org/.

[68] https://pub.dev/packages/http.

- 82 -

https://github.com/nhandrew/platformcode
https://pub.dev/packages/proximity_sensor
https://pub.dev/packages/sensors_plus
https://pub.dev/packages/pedometer
https://pub.dev/packages/google_maps_flutter
https://pub.dev/packages/flutter_map
https://pub.dev/packages/flutter_map_location_marker
https://pub.dev/packages/location
https://pub.dev/packages/flutter_map_tappable_polyline
https://pub.dev/packages/cached_network_image
https://pub.dev/packages/flutter_cache_manager
https://pub.dev/packages/sliding_up_panel
https://pub.dev/packages/geolocator
https://pub.dev/packages/flutter_compass
https://pub.dev/packages/provider
https://pub.dev/packages/objectbox
https://pub.dev/packages/sqflite
https://www.keycloak.org/
https://pub.dev/packages/http

	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Purpose - Problem description
	Thesis structure

	Cross-platform mobile applications development
	General information and installation of SDKs
	Cordova
	Ionic
	Xamarin
	Flutter

	Developing the demo application
	Cordova
	Ionic
	Xamarin
	Flutter

	Conclusions

	Flutter: Our developing framework
	Architectural layers of Flutter
	Reactive user interfaces
	Widgets
	Composition
	Widget state
	State management

	Rendering and layout
	Platform embedding
	Integrating with other code
	Conclusions

	Architecture of the Sodasense Framework and tools used for developing and testing
	Structure of the application
	Choosing the best IDE
	Testing on devices
	Conclusions

	Application tour
	Login screen
	Registration screen
	Main screen
	Sidemenu
	Route screen
	Compass screen
	Sensors screen
	Settings screen
	Conclusions

	Development of the Sodasense framework
	User login
	User registration
	Foreground functionality
	Application lifecycle
	Permissions
	Sensors
	Pressure sensor
	Proximity sensor
	Accelerometer - Magnetometer – Gyroscope sensors
	Pedometer sensor

	Main screen
	Route screen
	Compass screen
	Sensors screen
	Settings screen
	Sidemenu
	Databases
	Webservices
	Conclusions

	Conclusions and future work
	Future extensions

