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Abstract

The aim of this thesis is to provide a comprehensive review of the current state of

the art in detecting bots active on the social media platform of Twitter through the

use of machine learning algorithms. Bots can be classified into a variety of categories

and while some clearly identify themselves as automated accounts, many are posing

as human users. This latter category is known to be used for a number of reasons

like distorting online discourse and swaying political elections, manipulating stock

markets, pushing conspiracy theories and spreading misinformation. Due to the ne-

farious purposes these bots are used for it is important to evaluate current capabilities

in detecting them and identify ways in which they can be improved. For this purpose

four recently published research papers are examined, in which numerous machine

learning methods are used on a common dataset, with varying results in accuracy

and e�ciency. These methods are reimplemented, in order to confirm the original

authors’ findings, and in many cases enhanced by combining elements that proved

e↵ective in other research e↵orts. A part of the work examined attempts to utilize the

sentiment features of posted tweets, while other focuses on account and tweet level

metadata. The rest of them follow a language-agnostic approach or try to classify ac-

counts from single observations. All e↵orts above score highly in performance metrics

(accuracy > 90%) and at least a couple of them achieve nearly perfect classification

accuracy (AUC > 99%). Methods that use sentiment features demonstrate the need

for better feature engineering in order to extract more features while the rest high-

light the importance of further research in sampling techniques and the social aspect

of making bot detection systems public and open source.
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Glossary of Terms

Accuracy Accuracy computes how many times a model made a correct prediction

across the entire dataset.

AdaBoost (AB) Belongs to the ensemble learning methods and sublimates the

“Wisdom of the Crowds” principle: models that individually show poor per-

formance can form a strong model when combined. It is basically a Boosting

technique used as an Ensemble Method in Machine Learning. It is called Adap-

tive Boosting as the weights are re-assigned to each instance, with higher weights

assigned to incorrectly classified instances..

Area under curve (AUC) AUC measures the entire two-dimensional area under-

neath the entire Region of Convergence curve from (0,0) to (1,1).

Condensed Nearest Neighbors (C-NN) Undersampling technique that randomly

selects the samples within its k-nearest neighbors from the majority class that

are to be removed.

Convolutional Neural Network (CNN) A Convolutional Neural Network is a

class of artificial neural network most commonly applied to analyze visual im-

agery.

Cresci 2015 dataset (C15) Created by the Cresci team in 2015 to support a study

on detecting Twitter fake followers. Used to test the adaptability of methods

used in chapters 5 and 6, to new data..

Cresci 2017 dataset (C17) Twitter dataset created in 2017 by Cresci et al. The

main dataset used in the papers examined by this study.

Edited Nearest Neighbor (ENN) An undersampling technique that removes sam-

ples from the majority class to match the minority class.

F1 score A machine learning evaluation metric that measures a model’s accuracy.

It combines the precision and recall scores of a model.

viii



Feed-forward Neural Network (FNN) A feedforward neural network is an ar-

tificial neural network wherein connections between the nodes do not form a

cycle.[1] As such, it is di↵erent from its descendant: recurrent neural networks.

Global Vectors for Word Representation (GloVE) An unsupervised learning

algorithm developed by Stanford for generating word embeddings by aggregat-

ing global word-word co-occurrence matrix from a corpus..

K-nearest neighbors (KNN) IA non-parametric supervised learning method used

for classification and regression. In both cases, the input consists of the k closest

training examples in a data set.

Logistic Regression (LG) A classification algorithm. It is used to predict a binary

outcome based on a set of independent variables. A data analysis technique that

uses mathematics to find the relationships between two data factors. It then

uses this relationship to predict the value of one of those factors based on the

other.

Long short-term memory (LSTM) Long short-term memory is an artificial neu-

ral network used in the fields of artificial intelligence and deep learning. Unlike

standard feedforward neural networks, LSTM has feedback connections.

Matthew’s Correlation Coe�cient (MCC) A statistical tool used for model eval-

uation. Its job is to gauge or measure the di↵erence between the predicted

values and actual values and is equivalent to chi-square statistics for a 2 x 2

contingency table.

Multi-layer Perceptron (MLP) A multilayer perceptron (MLP) is a fully con-

nected class of feedforward artificial neural network (ANN). The term MLP is

used ambiguously, sometimes loosely to mean any feedforward ANN, sometimes

strictly to refer to networks composed of multiple layers of perceptrons (with

threshold activation).

Natural Language Processing (NLP) Natural language processing is an inter-

disciplinary subfield of linguistics, computer science, and artificial intelligence

concerned with the interactions between computers and human language, in

particular how to program computers to process and analyze large amounts of

natural language data.
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Precision Precision is the ratio between the True Positives and all the Positives.

Random Forest (RF) A popular machine learning algorithm that belongs to the

supervised learning techniques. It can be used for both Classification and Re-

gression problems and is based on the concept of ensemble learning, which is

a process of combining multiple classifiers to solve a complex problem and to

improve the performance of the model..

Recurrent Neural Network (RNN) A recurrent neural network is a special type

of artificial neural network adapted to work for time series data or data that

involves sequences. Ordinary feedforward neural networks are only meant for

data points that are independent of each other.

Region of Convergence (ROC) Region of Convergence is defined as the set of

points in s-plane for which the Laplace transform of a function x(t) converges.

It is the range of Re(s) (i.e.,�) for which the function X(s) converges.

Stochastic Gradient Descent (SGD) A variant of the Gradient Descent algo-

rithm used for optimizing machine learning models. In this variant, only one

random training example is used to calculate the gradient and update the pa-

rameters at each iteration..

Synthetic Minority Oversampling Technique (SMOTE) An oversampling method

of balancing class distribution in the dataset. It selects the minority examples

that are close to the feature space. It then draws the line between the examples

in the features space and draws a new sample at a point along that line..

TextBlob TextBlob is a Python library for processing textual data. It provides a

simple API for diving into common natural language processing (NLP) tasks

such as part-of-speech tagging, noun phrase extraction, sentiment analysis, clas-

sification, translation, and more.

Tomek Links (TL) An undersampling technique that is basically a modification of

the Condensed Nearest Neighbors technique. Uses a properties rule to decide

which of the nearest neighbors to delete.
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Chapter 1

Introduction

In 2023, Twitter has more than 350 million monthly users. What initially was an

SMS-based app for updating close friends and family has evolved to a dominant force

in the global media landscape, now handling more than 500 million tweets daily [1].

And while Twitter’s share in social media users globally might seem like a fraction

of what other social media currently has (Facebook: 2.93 billion users, Instagram:

1.35 billion users, TikTok: 834 million users), Twitter is universally considered as

the most influential among them and the public town square of the world. It is the

platform of choice of 69% of U.S. based journalists and the podium for many political

figures around the world [2].

As a free tool for real-time communication of massive scale, it been praised by

researchers for democratizing discussions [3] and giving an outlet for people living in

oppressed countries to raise awareness for social and political issues in their countries.

It also considered a functional framework for disaster response, when people need eas-

ily accessible means to seek support, check on family and friends, gather information

about the magnitude of a disaster and provide first-hand accounts of ground zero [4].

Case in point the earthquakes in Turkey and Syria in February 2023, where people

called for help on social media, through their phones, from under the rubble [5].

Also notable is it’s capacity to shape political discourse, influence the stock market,

distract and direct the attention of millions of people. Following recent events such as
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the 2016 US presidential election, or the still ongoing COVID-19 pandemic, many have

expressed concerns about the e↵ects of false stories (“fake news”), circulated largely

through social media, including Twitter [6, 7]. However, this trend of misinformation

during times of humanitarian crises propagating through social media platforms is not

novel. Previous research has focused on the spread of misinformation and conspiracy

theories on social media in the aftermath of the 2010 Haiti earthquake [8], the 2012

Sandy Hook Elementary School shooting [9], Hurricane Sandy in 2012 [10], the 2013

Boston Marathon bombings [11, 12], and the 2013 Ebola outbreak [13].

With the media coverage of events of global attention exploding, the proliferation of

conflicting information quickly became evident. The engagement patterns of Twitter

accounts posting unverified information or blatant misinformation were soon linked

to automation mechanisms behind the content posted [14]. This aspect of Twitter

posting activity even came under the spotlight by Elon Musk, who amidst an ongoing

deal to purchase Twitter for $44 billion claimed that 33% of ’visible accounts’ are

’false or spam accounts’, statement that grossly contradicted Twitter’s a�rmation

that bots comprise less than 5% of its active users [15].

1.1 Motivation

While it is already established that bot presence in social media is a problem, ex-

amining the scale of it can help realize just how serious of a problem it really is and

whether actions should be taken on a private or government level.

Studies, done as far back as 2015, have shown than nearly 48 million of Twitter’s

user-base could be bots [16]. But even if Twitter’s optimistic claim that bots are

less than 5% of its users (roughly 17 million users) is true, that is not indicative of

the reach an automated tweet can get. In 2021, Facebook stated that it blocked 4.5

billion accounts in the first nine months of the year, while in a similar way TikTok

reported that they have removed 53 million fake accounts starting January through

June 2022 [17, 18]. Content often spreads from one social media to the other, with
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tweets being posted on Facebook, short TikTok videos posted on Instagram, Reddit

threads being linked on Twitter, the reach one social media post can get can never

be accurately estimated. With the latest metrics showing that more than half of

the world population (59%) is on some form of social media with 4.76 billion users

spending an average of 2h 31m daily [19] scrolling through their timelines, it is evident

that social media, including Twitter, is a vast attack surface for malicious bots.

The bots’ connection to online misinformation has caused concern among Ameri-

cans, especially in the aftermath of the 2016 U.S. presidential election. Congressional

hearings held in 2018 [20] along with investigations and research done by academic

researchers and social media [21, 22] have suggested that social media bots are a ma-

jor factor in spreading misinformation. The topic has drawn the attention of much

of the public, with a survey done in 2018 showing that 8 in 10 of the US citizens

that have heard of the phenomenon believe they are used maliciously. Also notable:

34% of Americans have never heard about bots [23]. For clarity in this part of the

subject, R. Gorwa and D. Guilbeault have formulated a typology for the various kinds

of automated, or seemingly automated, software commonly referred to as bots [24].

Present below is a part of that typology, most closely related to the bot categories

referenced in this thesis and present in the used dataset.

• Crawlers and scrapers: bots used to index and archive websites

• Chatbots: used to engage in natural dialog with physical persons

• Spambots: used to post messages, URLs, images etc. en masse

• Social bots: used to generated content on social media, often posing as real

humans

• Sockpuppets: accounts used by real humans with false provided credentials

• Cyborgs: accounts used by both real humans and by automation mechanisms

3



While Twitter is the digital town square and an accessible place for voicing an

opinion, it is also a huge advertising platform. In 2021, $4.51 billion out of $5.08

of Twitter’s revenue came from advertising [25]. And while diversifying Twitter’s

revenue stream to make the platform less reliant on advertising is a standing goal,

analysts and industry experts claim that it will be di�cult to grow subscription

revenue in the manner outlined by current Twitter management [26]. Bots are the

main tool with which ad fraud is conducted, with yearly costs estimated in the billions

[23]. With advertisers looking to deepen their engagement with humans and marketers

that rely too heavily on ad impressions as a measure of success, too many fake accounts

could translate to decreased monetization and loss of revenue [27].

Bots can have a hurtful impact on the public discourse, the platform they operate

on, and the advertisers that depend on the platform. But they can also negatively

a↵ect the platform’s user-base directly in various ways: site slowdowns, comment

spam, rogue reviews, skewed analytics, promotion exploitation. But they can also

a↵ect users in a way that can spill over to the rest of the user’s activity, with ways

that fall on the spectrum of cybersecurity. Bots can post links to malicious websites

and applications and lead to loss of data, infected systems, hacked bank accounts or

worse.

This whole range of problems caused by malicious bots creates the need for a

comprehensive review of the current state of the art in bot detection, and the ways

already available methods can be pushed further to produce more accurate results

with improved e�ciency.

1.2 Thesis Objectives

The purpose of this thesis is to provide an understanding of current methods used in

detecting bots on Twitter by presenting the approach used in four recently published

research papers (least recent one published in 2018), compare their performance and

underline the room for improvement and the opportunities for future work. The
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frame of reference for these papers is that all of them employ tools based on machine

learning and their feature set is both content-based and account-based. They also use

the same dataset, the one created in 2017 by Stefano Cresci and the rest of the authors

of the ”The paradigm-Shift of Social Spambots: Evidence, Theories, and Tools for the

Arms Race” research paper [28]. More details about the dataset are given in the data

chapter below. The focus is on explaining the purpose of each study, examining and

simulating the methods used, interpreting the results and summarizing the strengths

and limitations of each approach.

The code used and most technical details of the methods used in these papers

were not publicly available. For this reason and in the scope of this thesis, the

machine learning algorithms used by the researchers was retraced and reproduced

taking into account the limited information available, to gain a better understanding

of the methods applied and confirm the claims on performance made by the authors.

1.3 Thesis Outline

This thesis is organized in a text-to-text way. In chapter 2, related work is discussed

along with the datasets used across all research papers selected. Then the four papers

are discussed on separate chapters with a short introduction followed by the methods

used and technical details, the results in terms of the metrics used and a conclusions

section.

A point-by-point comparison between the papers was avoided in order to escape

the illusion of a ping-pong game and focus on the heart of the argument in the most

readable way possible.
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Chapter 2

Preliminaries

2.1 Related Work

Most of the work done on Twitter bot classification approaches the issue as a binary

classification problem, meaning it focuses on telling bots apart from real users, with-

out going into specifics about the type of bots that were recognized. This does not

mean that there is a total absence of multinomial classification approaches in the field.

The work done by Jan Novotny[29], closely examined later in this project, sets out

to identify three di↵erent categories of bots among real users, social bots, traditional

bots and fake followers. Another research team , Gianvecchio et al.[30], worked on

classifying accounts as bots, humans, or sth in-between: cyborgs. C.A. Davis[31] and

his team worked on distinguishing di↵erent types of bot accounts without technically

using multinomial classification, but rather employing binary classification methods

and K-means clustering to identify bot and real user subcategories. Kagan et al. were

one of the first teams to work on sentiment extraction and analysis with the purpose

of Twitter bot detection, followed by Heidari and Knauth’s teams, whose work is

also examined in this project [32, 33]. Most other approaches focus on recognizing

automated behavior through identifying rigid posting habits and time patterns or

optimizing already tried methods. Optimization that’s possible through refining the

set of features used, creating leaner and easier to understand models that can even

identify a bot by a single data point.
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What these research e↵orts have in common is that they all use the dataset de-

scribed in section 2.2.1 and that they all involve both account-based features and

content-based features. This means that they take into account available informa-

tion for both the account’s configuration and the tweets that were posted from it.

This information is the basis on which extra features are produced, which are in turn

used to train the classification models. Overall, for the papers examined, the broad

categories for the rationale on which they were based are the following:

1. Sentiment extraction: identifying sentiment expressed by tweets on an account

basis by processing tweet text

2. Language-agnostic bot detection: sentiment extraction by processing expressive

means in tweets other than text, like emojis

3. Bot category classification: identifying time patterns and posting habits by

analyzing tweet-metadata

4. Model optimization and feature minimization: a combination of some of the

above methods with emphasis on creating lean and easily interpretable models

These categories are obviously not exhaustive, and the possibility of an overlap

between groups is very real, however, they were considered a good starting point

for the scope of this thesis. The paper discussed in chapter 3 is representative of the

sentiment extraction category. Chapter 5 is more closely aligned to the third category,

in that many features produced in that paper are about the time-related aspects

of tweet posting and classifying bots in a multinomial way to di↵erent categories .

Chapter 4 is another attempt at sentiment extraction, with emphasis on keeping the

procedure language-agnostic and with universal applicability. The work described

in chapter 6 is about creating simpler and easier to understand models, with basic

o↵-the-shelf machine learning aspects that can o↵er great performance with a modest
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amount of features, that can go as far as identifying a bot by examining a single

tweet.

2.2 Datasets

2.2.1 Cresci 2017

The dataset used across all featured research papers was created by the research team

of Stefano Cresci in the University of Pisa, Italy [28]. It was part of the 2017 research

e↵ort that led to the paper ”The paradigm-Shift of Social Spambots: Evidence, The-

ories, and Tools for the Arms Race”. It is commonly used in research e↵orts because

it is one of the few manually annotated datasets publicly available. It is noteworthy

that for the sake of completeness the authors actually paid for fake follower services.

Fake followers are simple accounts that can inflate the number of followers of another

account. The data is organized into nine folders, containing spreadsheets for four

account categories. Each folder contains two spreadsheets: one with Twitter account

data, the other with tweet content per account. On the account data spreadsheet,

each row contains information about an individual Twitter account and there are no

duplicates. In more detail, when it comes to account data there are nine account

spreadsheets: one for real users, one for fake followers, three for social bots and four

for traditional bots. For cases where there are multiple spreadsheets for the same

category, that is due to the fact that various sampling processes were utilized, so each

process produced it’s own data file. There is no information about tweet content in

this spreadsheet - a complete list of account features can be seen in the last column

of the 2.2 table. In total, there are four di↵erent data labels in the data: genuine

users, social bots, traditional bots, fake followers.

The data files that are about tweet content are organized in a di↵erent way. In each

tweet file, every row represents a unique tweet, and each column represents a piece of

metadata regarding that tweet. In these columns there is also the Twitter account ID
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of the account that posted that row’s tweet - it’s how the account and tweet datasets

are connected. Each account can have several tweets linked to it, which is why in

almost all cases in the presented papers the data is aggregated before processing. The

dataset will, henceforth, be referred to as C17.

2.2.2 Cresci 2015

As an expansion to evaluating the methods used in these research papers, a second

dataset was employed on the same models trained and used on the original dataset.

The goal was to verify whether the tools and procedures used with C17 can be ap-

plied to other datasets with similar results. The dataset, henceforth called C15,

was created in 2015 by the same research team that created C17 [34]. The dataset

is organized into five folders, each one containing four di↵erent spreadsheets: fol-

lowers.csv, friends.csv, tweets.csv, users.csv. The tweets and users spreadsheets are

straightforward to describe, they contain account metadata and tweet information,

and are linked through the user identifiers present in both files. Followers and friends

spreadsheets are basically mapping tables that connect each account to its followers

and to its friends (the accounts it follows). The organization to five folders has to

do with the source of the data and the project they are products of, specifically ’The

Fake Project - TFP’ and ’#elezioni2013 - E13’ for real user data and ’fastfollowerz

- FSF’, ’intertwitter - INT’, ’twittertechnology - TWT’ for fake follower data.

2.3 Data labels - C17

While the C15 dataset was originally used in an e↵ort to distinguish between real

users and fake followers, the C17 was used to identify fake followers but also social

and traditional bots. Due to them being so close in their intended usage, and also

due to the fact they were both produced by the same research team, there is a huge

overlap between the features of the two datasets. In this section the focus is on

C17, since it is the latest dataset of the two and is also, in principle, a superset of
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relationships

dataset accounts tweets followers friends total

The Fake Project (TFP) 469 563,693 258,494 241,710 500,204

#elezioni2013 (E13) 1481 2,068,037 1,526,944 667,225 2,194,169

fastfollowerz (FSF) 1169 22,910 11,893 253,026 264,919

intertwitter (INT) 1337 58,925 23,173 517,485 540,658

twittertechnology (TWT) 845 114,192 28,588 729,839 758,427

real humans dataset (HUM) 1950 2,631,730 1,785,438 908,935 2,694,373

fake accounts dataset (FAK) 1950 118,327 34,553 879,580 914,133

HUM [ FAK 3900 2,750,057 1,819,991 1,788,515 3,608,506

Table 2.1: Cresci 2015: data overview

C15. Theoretically, social and traditional bots along with genuine users fall into the

macro-category of fake followers.

2.3.1 Generalizing from available data

A standard goal when designing and implementing a machine learning approach to

solving a a classification problem, binary or multinomial, is to make sure the methods

utilized can properly adapt to new, unforeseen data based on the same distribution

as the one used when creating the models. The adaptability of the models is founded

on two parameters: the classes considered in the study exist and are actual and

disjointed categories in the real world, and the classes are accurately represented

in the dataset used for training the models. These two parameters translate to a need

for realistic definition of bot classes and a proper sampling procedure applied in the

data gathering e↵ort.

2.3.2 Bot categories

In the C17 dataset is is assumed that there are three bot categories, along with

a category that represents real users. These assumed categories do not correspond

directly to the bot categories listed in paragraph 1.1 and suggested by Gorwa and
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Guilbeault [24], but they are to be considered as more generic supersets, within which

some of those categories fall in.

The defining lines that make these bot categories separate but equal are each

category’s behavior and purpose. For example the purpose of a traditional bot

is to regularly post links to software, websites and sometimes even products. This

purpose is mostly supported through frequency of posting. Social bots on the other

hand, utilize their ability to act in a more social manner, often instilling sentimentality

into their posts with the goal of promoting products and influencing public opinion

on a variety of topics. These are distinct behavioral patterns that support disparate

purposes. For fake followers it is mainly the di↵erence in goals that justifies a distinct

category, not so much the ways in which they interact with other users - though it

is to be expected that there are di↵erences in behavior as well. Fake followers are

characteristically more passive in the ways they engage than all other bot categories.

This is supported by the findings in the ’Retweet-tweet ratio’ feature used in this

project, where fake followers are shown to be retweeting much more often compared

to all other bots and even genuine users (FF: 31.188, SB: 0.4919, TB: 0.0517, GU:

0.7804). Other than tweeting scarcely however, there is nothing that prevents a fake

follower account from being used in any other way a bot or a real account can be

used, and that can be a considered a flaw of the class definition.

The most well defined class is undoubtedly that of genuine users. It is the category

where accounts predominantly tweet manually and it’s also a ’catch-all’ category to

which all non-bot accounts belong in. While defining this category is of minimum

complexity, there’s still the question of how much automation is tolerated in an ac-

count before it is considered a bot.

It is obvious that an account belong to one bot category does not necessarily mean

it will not act in ways that can be attributed to other types of automated accounts.

For example a social bot can be used to promote a product or inflate one’s following.

In order to cover bot category overlap it might be useful, in future works, to
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examine the possibility of multi-label classification, or adding ’super’ categories that

condense more than one categories in them. This prospect is further discussed in

section 7.2.

Genuine users

The data for genuine Twitter users was collected by the authors of [28], by selecting

thousands of accounts randomly and asking each one of them a question in natural

language. Of the accounts that received that question, only 3747 responded, and

are the ones that are included in the dataset. Of these accounts that are verified as

genuine, only 1083 have available tweet data.

Social bots

This type of bots refers to a relatively new and sophisticated kind of bot that poses

as a real person. This part of the dataset contains 6 files in total, 3 pairs of accounts-

tweets files. The first pair of accounts and tweets is about content posted during

the 2014 mayoral election in Rome. It lists 991 Twitter accounts that were used as

amplifiers that retweeted every tweet a specific candidate posted. The second pair is

about 3457 accounts that promoted a smartphone application for finding and hiring

workers specialized in digital arts. The third pair of files contains content of 464

accounts that promoted products on reduced price on Amazon.

Traditional bots

Traditional bots are mainly used for spamming links to websites and applications for

a range of purposes, like increasing a website’s tra�c or facilitating the spread of

malicious software. For the traditional spambots category the dataset included four

spreadsheet files with Twitter user data, but only one with tweet data. Therefore

there is only one pair of accounts-tweets that is usable and it contains 1000 Twitter

accounts. For the papers examined, only the 2nd paper in line of presentation [29]

explicitly comments on the outline of the dataset and the part of the data the authors

used.
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Fake followers

Fake followers are accounts mainly used for inflating one’s follower count. Access

to such accounts is a publicly o↵ered paid service, which is how the authors of [28]

created this part of the dataset. 3351 such accounts are included in the dataset, of

which only 3202 are paired with tweet data and therefore usable.

The merged dataset that includes account-level and tweet-level information has a

total of 67 features. Figure 2.1 below demonstrates how the information is merged

between the accounts and the tweets subsets.

Figure 2.1: Cresci 2017 outline flowchart

2.3.3 Original features

The C17 dataset contains features descriptive of both the accounts involved and the

tweets they posted. The account-based features are derived from account metadata

and include the accounts screen name, its username, its number of followers and
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friends, and others, for a total of 42 features. A friend in Twitter terminology is

the account that is being followed by someone else. As an example if an account A

follows an account B, A is a follower to B while B is a friend to A. The tweet, or

content, based features number a total of 25 attributes and include the body of the

tweet, the date posted, the number of likes(favorites) received as well as how many

replies it has and the number of times it got retweeted.

All four of the papers examined use some of the features readily available in the C17

dataset and build on the available data to produce more attributes to be used in the

classification e↵ort. Computed features are about the sentiment in tweets, patterns

in posting habits, the use of alternative symbols for emotional communication. Table

2.2 showcases the original set of features in the dataset used. For each research paper

the original features utilized, along with the computed features and the final feature

selection are di↵erent and are explained in more detail on each paper’s designated

section.

2.3.4 Sampling Procedure

This section basically aims to report on the characteristics of the sampling procedures

followed and underline the potentially negative e↵ect these could have in classification

performance and generalizing to new data or entirely di↵erent datasets. The di↵erent

categories of Twitter accounts present in the dataset were discussed in section 2.2.1.

The degree to which the category subsets in C17 represented their supposed Twitter

user categories is still pretty open-ended.

As was previously mentioned in paragraph 2.3.2, genuine users were randomly

sampled and were then asked a question in natural language. How the answers were

evaluated is not perfectly clear but it is assumed that the authors of [28] and creators

of the dataset did a manual examination of the answers and also took into considera-

tion other features of the accounts’ metadata. Despite the lack of total transparency

as to how exactly the evaluation was done it is pretty reasonable to assume that a
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No. Content-level Account-level

1 id id

2 text name

3 source screen name

4 user id statuses count

5 truncated followers count

6 in reply to status id friends count

7 in reply to user id favourites count

8 in reply to screen name listed count

9 retweeted status id url

10 geo lang

11 place time zone

12 contributors location

13 retweet count default profile

14 reply count default profile image

15 favorite count geo enabled

16 favorited profile image url

17 retweeted profile banner url

18 possibly sensitive profile use background image

19 num hashtags profile background image url https

20 num urls profile text color

21 num mentions profile image url https

22 created at profile sidebar border color

23 timestamp profile background tile

24 crawled at profile sidebar fill color

25 updated profile background image url

26 - profile background color

27 - profile link color

28 - utc o↵set

29 - is translator

30 - follow request sent

31 - protected

32 - verified

33 - notifications

34 - description

35 - contributors enabled

36 - following

37 - created at

38 - timestamp

39 - crawled at

40 - updated

41 - test set 1

42 - test set 2

Table 2.2: Content-level and account-level features in C17

non-genuine Twitter account would have di�culty slipping through both steps unde-

tected. It is therefore safe to consider this subset as representative of real Twitter
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users and the sample relatively unbiased due to the random sampling that was done.

The subset that contains traditional bot accounts was sampled as part of the work

of C. Yang, R. Harkreader and G. Gu in their work on Twitter spamming [35], which

was provided by request to the authors of the C17 dataset. About 500.000 accounts

and over 14 million tweets are sampled using graph sampling. The content of the

tweets was parsed by special software to identify URLs to malicious websites. The

accounts that had a large concentration of such URLs posted were then manually

examined by the authors to decide on whether they are bots or not. Due to the

element of randomness in graph sampling the initial sample can be safely considered

to be largely unbiased. The second step, however, of manually examining suspicious

accounts depends on discretionary measures that can potentially befoul or skew the

original sample. For example the threshold of 10% was selected by the authors to

signify a potential bot: if more than 10% of an account’s tweets included a URL

to a nefarious website or app then the account is flagged as suspicious and is kept

for manual examination. That would obviously exclude accounts that do not go

past the threshold but could still be bots. Similarly, real accounts that do go above

the threshold will be misflagged as potential bots. This parameter alone can be a

potential source of bias, as is the manual examination process. Due to these aspects

of the filtering process is is not unlikely that there are accounts that were falsely

classified, though it is assumed that if such a problem exists, it is not extensive.

The social bots subset was created through a mixed e↵ort of three di↵erent sam-

pling processes by the authors of [28], though no specifics are given as to how these

processes work. The first sampling process focused on the activities of a, back then,

novel type of social bots that were observed during the 2014 Mayoral election in

Rome. The second process was about accounts continually posting tweets with the

#TALNTS hashtag that refers to a niche hiring app about artists. The third sam-

pling process is about a group of bots that were observed advertising product listings

on the Amazon platform. All these bot groups would mix political and promotional
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tweets with posts that closely resemble genuine users’ content like songs and YouTube

videos. Due to the relative obscurity of the internal works of these process it is not

possible to assess potential bias in this subset. Similarly to the subset of genuine users,

closer examination of suspicious accounts was done manually. This examination, ap-

parently, involves comparing tweet content and account metadata between accounts

to identify the ones that have similar behavioral patterns and excluding standouts.

Despite the overall vagueness in the sampling process it is not unreasonable to link

the patterns of online activity observed by the authors to automated Twitter accounts

and consider the subset to really consist of social bots.

Fake followers’ sampling was done in a very simple way, as the authors bought

access to such accounts by paying three di↵erent online marketplaces for the service.

Paying for Twitter accounts and then using them to boost one’s following is as close

to the definition of fake followers as it gets, so there is no question as to whether

the subset contains the claimed type of accounts. The question of sampling bias and

whether fake followers from other providers will exhibit di↵erent characteristics is

also su�ciently answered, since this subset is sourced from three di↵erent providers,

it is safe to assume that other similar services will not be significantly di↵erent in the

properties of the accounts they supply.

2.3.5 Class balancing

Many real-world classification cases exhibit some degree of class imbalance, which is

what happens when each class does not comprise an equal amount of a dataset. C17

is no exception, where for genuine users, social bots and fake followers the samples

exceed 3.000, for traditional bots the dataset only has 1.000 entries. And while

this di↵erence does not constitute a gross imbalance, it can still a↵ect classification

performance and model flexibility, as the classifiers will likely be more biased in favor

of the more common classes [36].

This imbalance is not linked to real circumstances and profusion of social bots and
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fake followers over traditional bots. It’s most likely connected to the di↵erent ways

the various parts of the dataset were sampled. To remedy that, and only in papers

2 and 4, the classes are balanced out by the means of undersampling. Samples are

removed from the categories with a surplus, until all of them have the same number of

observations. That inevitably entails the loss of, potentially useful, information but

1.000 samples per class is still considered a healthy amount of data that can support

the classification methods used. This means that in the cases where undersampling

is used, the dataset contains 4.000 tuples.

2.4 Data labels - C15

C15 is a combination of datasets created as byproducts of various research initiatives

that will be briefly described below. The paper’s primary goal was to investigate the,

back then novel, issue of fake Twitter followers, and while the final dataset is much

smaller in scale, during the whole research e↵ort of the authors over 9 million Twitter

accounts were crawled along with almost 3 million tweets.

2.4.1 Generalizing from available data

The principles behind training models that will be able to perform on new data are the

same as described in paragraph 2.3.1, essentially correct class definition and sampling

procedures. The same applies in the C15 dataset, for which the classes defined and

sampling procedures are described below.

2.4.2 Defining classes

As was previously stated, the work that produced the C15 dataset’s main focus was

to automate detection of Twitter accounts that are created for the sole purpose of

inflating the follower’s count of a targeted account. This, e↵ectively, boils down the

classes used to the main two, humans and fake followers.
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2.4.3 Original features

Understandably the type of e↵ect that fake followers provide can also be provided by

other types of automated accounts, like bots, spammers and even real user accounts.

This means that all these types of accounts potentially fall into the macro-category

of fake followers, and that the features that are already proven to be e↵ective in

detecting them could perform well in detecting fake followers as well. The original

features are almost identical to the ones present in C17 (see 2.2), with only a few

missing in content-level and account-level features. The missing features in C15 that

are present in C17 are listed below:

• Content-level : contributors, favorited, retweeted, possibly sensitive, crawled at,

updated

• Account-level : is translator, follow request sent, notifications, contributors en-

abled, following, timestamp, crawled at, test set 1, test set 2

None of the missing features, however, are utilized in the examined four papers,

therefore these are only listed for the sake of completeness.

2.4.4 Sampling Procedure

The datasets that were combined to create C15 along with the sampling approaches

that were used are briefly descibed in this section below.

• The Fake Project : A project that started its activities on December 2012. It

was based on a Twitter account with the handle @TheFakeProject and a profile

description that read ”Follow me only if you are NOT a fake”. The account was

created by researchers at the Institute of Informatics and Telematics of Italy’s

National Research Council (IIT-CNR) and the idea was to create an account

that would only be followed by real Twitter followers. Within 12 days of the

account’s creation the followers count reached 574 followers. The followers’
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accounts were crawled, which led to the collection of 616,193 tweets and 971,649

linked accounts (relationships). There was also a verification phase where these

574 accounts were sent a private message with a URL to a unique CAPTCHA.

469 of these accounts completed the CAPTCHA and were classified as ”certified

humans” and are included in the C15 dataset. The account is still present in

2023 with a follower count of 398 and appears to be inactive.

• #elezioni2013 : This dataset was produced in the context of a sociological study

done by the University of Perugia and the Sapienza University of Rome that

looked into the evolution in the Italian political discourse during a 3-year pe-

riod in 2013-2015. More than 84,000 Twitter accounts that used the hashtag

#elezioni2013 were examined in the span of two months leading up to the 2013

general elections in Italy. Of these accounts, more than half were classified as

politicians, candidates, parties, bloggers, journalists and were excluded. The

classification was done by keyword-driven queries on the username and the

profile description of the accounts. The rest of the accounts were classified

as citizens (about 40,000). This subset of ’citizen’ accounts was sampled and

narrowed down to a set of 1488 accounts, which were then manually verified

by sociologists from the University of Perugia to ascertain the nature of their

profiles and tweets. The verification process was extensive and included the

analysis of profile pictures, profile descriptions and a careful examination of the

accounts’ timelines. URLs in profile descriptions were manually checked for

validity while accounts that had no profile picture or description were dropped

from the dataset. The verification process took up almost two months and

resulted in a dataset of 1481 Twitter accounts.

The above two subsets result in a total of 1950 (= 469 + 1481) Twitter accounts

that are verified to belong to real humans. It is worth noting that the accounts

in the ’The Fake Project’ participated in the project on a voluntary basis,
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come from Europe and the US and are mainly researchers, social media experts

and journalists. The accounts in the #elezioni2013 dataset are mostly Italian

users that come from a variety of professional backgrounds and social standings,

are not politicians/journalists/bloggers/political parties and they all share an

interest in politics.

• fastfollowerz, intertwitter, twittertechnology : These three subsets contain 3000

fake follower account from three di↵erent online marketplaces. 1000 fake ac-

counts were bought by the research team from http://fastfollowerz.com for $19.

Another 1000 accounts were bought from http://intertwitter.com for $14. Both

marketplaces provided more accounts than originally paid for, respectively 1169

accounts from fastfollowerz and 1337 from intertwitter. The last millenary was

bought from http://twittertechnology.com for $13, with only 845 of the accounts

ending up in the dataset as 155 of them were almost immediately suspended by

Twitter.

The above subsets result in a pool of 3351 (=1169 + 1337 + 845) fake Twitter

accounts. While this fake followers dataset is not exhaustive, it is the product of

using services publicly available and easily searchable on commonly used search

engines, therefore representative of what can easily be done by an average user.

This set of 3351 accounts was undersampled down to 1950, to match the size

of the ’real humans’ subset and lead to a dataset of balanced distribution of

fake followers and humans. An overview of the subsets that went into the final

Cresci 2015 dataset can be seen on the 2.1 table.

21

http://fastfollowerz.com
http://intertwitter.com
http://twittertechnology.com


Chapter 3

Sentiment Extraction

This paper’s approach is based on M. Workman’s 2018 study on social media ex-

changes [37], specifically on the aspects of confirmation bias and the backfire

e↵ect. The backfire e↵ect is what happens when one side of an exchange provides

many arguments to support their opinion and change the other side’s mind but, in-

stead, succeeds in making the second side entrench itself in their original position

and show a stubborn resistance to change [38]. As an example when a Twitter user

regularly receives a lot of tweets that contrast his personal opinion, that person will

usually become defensive and decide to not move away from their original belief -

regardless of how solid the opposing arguments are. Thus the attempt to convince

the user will ’backfire’ and the reverse e↵ect is achieved. Confirmation bias is when

people tend to process information by interpreting, or looking for and handpicking

parts of information that are consistent with their beliefs and theories. On Twitter,

as in all social media, e↵ects like confirmation bias and the backfire e↵ect can lead to

what is commonly referred to as ’echo chambers’ [39]. An echo chamber is an envi-

ronment or a digital space where a person only encounters opinions and information

that are aligned with their personal values and reinforce their opinions. These spaces

allow for circulation of existing views without opposition, which cordons constructive

discourse o↵ and circles around to more confirmation bias. Echo chambers can dra-

matically increase social and political polarization and extremism. Bots can pick up
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on these e↵ects and use them to create fake trends and spread misinformation, which

can then be exploited commercially by driving tra�c to web news outlets or by doing

product placements. The e↵ectiveness of these bots is largely based on the emotional

reaction their content has on real users, which is why they usually try to infuse strong

emotions in their posts, like anger, bitterness, resentment and desperation.

In order to identify these e↵orts from bots to cause emotional reactions, the authors

base their approach on the belief that a very biased opinion can be identified by the

sentimental ’symmetry’ of an account’s tweets. In other words, if the tweets posted by

an account show a weighty concentration of positive, negative, or neutral statements,

this could be linked to confirmation bias and then traced back to characteristics

usually attributed to accounts with automated behavior [37]. It is to be expected that

a human user would voice opinion of varying sentiments, like in example one could

be happy with a play they watched but be dissatisfied with a recent purchase. With

bots, the variety in the number of positive/negative posts is characteristically low [37].

To establish the idea that sentiment is a discriminating feature for identifying bot

accounts, the authors perform a quantitative analysis that proves that the variation

of the mentality between di↵erent tweets posted per account is drastically di↵erent.

The analysis is done on the C17 dataset previously described.

3.1 Feature selection

The authors follow a forked approach where they test a selection of machine learning

methods on a subset of the original features and then repeat the process with the

newly created sentiment features added to the subset. The subset of original features

is comprised of followers count, friends count, retweet count, reply count, num hash-

tags, num urls. The enhanced subset also includes CountNeutral, CountPositive,

CountNegative, SumPositive, SumNegative, AvgPositive, AvgNegative. This parallel

approach is done to determine the e↵ect of the new sentiment features on the machine

learning models used. Details of data cleaning and the number of rows used are not
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specified in the paper, so it is assumed that the dataset is used in it’s entirety.

3.2 Produced Features

For the quantitative analysis of tweet sentiment a new set of features is created for

each Twitter account present in the dataset. These new features are shown in table

3.1 below.

Sentiment Feature Description

Count-Neutral Number of neutral tweets per user

Count-Positive Number of positive tweets per user

Count-Negative Count of negative tweets per user

Sum-Positive Sum of polarity scores of positive tweets per user

Sum-Negative Sum of polarity scores of negative tweets per user

Average-Positive Sum-Positive / Count-Positive

Average-Negative Sum-Negative / Count-Negative

Table 3.1: Sentiment features

In order to create these attributes the polarity score of each tweet is calculated with

a python library for text processing called Textblob1. Textblob will parse through a

tweet’s text and produce a polarity score which can then be used to classify a tweet

as positive, negative or neutral. Polarity score has value that range from -1 to 1. A

negative value means that the tweet is of negative sentiment, 0 is for neutral and a

positive value designates a positive sentiment.

3.3 Methods and Procedure

The machine learning models employed in this paper are Random Forest, Support

Vector Machine, Logistic Regression and a Feed-Forward Neural Network. The main

goal is to evaluate whether the newly created sentiment features can really help

identify bot accounts and how much of an improvement do they pose compared to

using readily available tweet and account metadata. This will also establish whether

this approach can help examine tweets in a language other than English. In this

1https://textblob.readthedocs.io/en/dev/
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section the four di↵erent methods used are presented along with the metrics they

achieved, with and without the created sentiment features.

3.3.1 Random Forest

The RF method is applied as seen on the work of Battur and Yaligar published in

2018 [40]. The features used are the ones mentioned in section 3.1, and while not a

lot of technical details are included in the paper, it is mentioned that 10-fold cross-

validation is applied and 20 trees are created. The cross-validation resampling method

uses di↵erent portions of given data to train the model on - that helps estimate the

skill of a machine learning model on previously unseen data. The number of trees used

is decided through grid search, a method for hyper-parameter optimization. Of the

metrics used, this study focuses on accuracy and the F1 score, since these are metrics

that are used in all examined papers and o↵er a common basis for comparison across

the table. It is worth noting that while all methods are stated to have been tested

on both the original feature set and the enhanced one, only in RF and FFNN the

authors provide performance metrics for both feature sets. Metrics achieved by all

methods are shown in table 3.2.

3.3.2 SVM

Two variations of the Support Vector Machine learning method are used: SVC -

Support Vector Classification and SVR - Support Vector Regression. The data is

split into 70-10-20 subsets for training, validation and test. The SVM kernel was

configured to use a nonlinear hyper-plane polynomial function with a degree of 7

(default is 3). Overall, both variations achieved accuracy and F1 score that reached

a bit over 90% and MCC of about 85%. More details in table 3.2.
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3.3.3 Logistic Regression

Logistic regression is applied on the enhanced feature set and achieves accuracy of over

87% and F1 score of about 89%.These metrics are confirmed by the reimplementation

of the original authors’ methods that was done as part of this thesis.

3.3.4 Feed-Forward Neural Network

A feed forward neural network is an artificial neural network wherein the information

moves in only one direction - forward. From the input nodes, through the hidden

ones and onward to the output, the information never goes backwards or moves in a

circle: that’s the main di↵erence to recurrent neural networks. This implementation

of FFNN (also called ANN: Artificial Neural Network) uses two hidden layers. In

addition to these, a dropout layer is added to the model to help prevent overfitting.

A dropout layer will randomly set input units to 0 with a user-specified rate during

training time. The input units that do not get picked for dropout are scaled up by

1 / (1 - rate) so that the sum of overall inputs stays the same. If a dropout layer is

applied to an input vector, it nullifies some of its features and leaves unmodified the

rest of them. If applied to a hidden layer, it nullifies some hidden neurons.

3.4 Results and Discussion

All above algorithms, along with the sentiment features, were reimplemented in order

to confirm the authors’ findings when it comes to performance. In most cases the

results found are pretty close to the claimed results and can be seen in the score table

3.2 in parentheses. The authors’ claim that using sentiment features can provide a

modest, but not negligible, improvement in performance metrics is confirmed. Also,

their conclusion that, among the methods tried, Random Forest and the Feed-Forward

Neural Network are the most suitable in utilizing sentiment features to identify Twit-
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Dataset Algorithm Accuracy F1 Score Precision Recall MCC

C17
Random Forest

(original
feature set)

0.887
(0.9151)

0.874
(0.8413)

(0.8559) (0.8355)
0.843
(0.6887)

C17
Random Forest

(enhanced
feature set)

0.923
(0.9167)

0.912
(0.8434)

(0.8596) (0.8362)
0.887
(0.6931)

C17

Random Forest
SMOTE+ENN

(enhanced
feature set)

(0.9575) (0.9210) (0.9304) (0.9152) (0.8445)

C17

Random Forest
Tomek Links
(enhanced
feature set)

(0.9681) (0.9410) (0.9488) (0.9356) (0.8836)

C17
FFNN

(enhanced
feature set)

0.910
(0.91)

0.927
(0.937)

(0.90) (0.91)
0.874
(0.4746)

C17

FFNN
SMOTE+ENN

(enhanced
feature set)

(0.9361) (0.9308) (0.9177) (0.9212) (0.6712)

C17

FFNN Tomek
Links

(enhanced
feature set)

(0.9228) (0.9213) (0.9398) (0.9101) (0.7129)

C17
SVM(SVC)
(enhanced
feature set)

0.914
(0.8341)

0.922
(0.775)

(0.7624) (0.8341)
0.889
(0.1165)

C17

SVM(SVC)
SMOTE+ENN

(enhanced
feature set)

(0.9575) (0.9210) (0.9304) (0.9152) (0.6445)

C17

SVM(SVC)
Tomek Links
(enhanced
feature set)

(0.9371) (0.9449) (0.8267) (0.8957) (0.6883)

C17

Logistic
Regression
(enhanced
feature set)

0.874
(0.8550)

0.888
(0.8173)

(0.8253) (0.8550)
0.685
(0.3544)

C17

Logistic
Regression

SMOTE+ENN
(enhanced
feature set)

(0.8933) (0.8525) (0.8491) (0.8637) (0.6779)

C17

Logistic
Regression

Tomek Links
(enhanced
feature set)

(0.8721) (0.8349) (0.8517) (0.8821) (0.6117)

Table 3.2: Performance Metrics in Sentiment Extraction

ter bots, is aligned with the findings of this thesis. The only metric that there is large

gap between the original paper scores and the reimplementation ones is the MCC,

especially on the SVM model and the Logistic Regression model. Whether the MCC

is a preferable metric to the F1 score is debatable [41].

As an addition to simulating the authors’ original work, two data balancing tech-
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niques were also used in conjunction with the four machine learning methods discussed

above. The first one is a combination of the SMOTE oversampling technique, com-

bined with the ENN undersampling method. The second one is SMOTE combined

with the Tomek Links undersampling method, inspired by the work examined in sec-

tion 6.2.1. This kind of intervention benefited the classification e↵ort greatly, as can

be seen in table 3.2. In many cases, like with Random Forest, the scores achieved

with the balanced dataset exceeded the scores reported by the authors. Even in cases

where our reimplementation results did not closely align the ones reported by the

authors, this data balancing act proved to close the distance by a significant measure.

That could potentially point to data preparation techniques that were applied in the

original work done by the authors, but were not mentioned in the paper.

While the approach with extracting the sentiment of tweets can bring some im-

provements with identifying bots, it’s not a technique without shortcomings. One

of them is that it is heavily reliant on third party text processing libraries, like in

this case Textblob. Most of these libraries currently support only a limited range

of languages which means that this technique is not language-agnostic for the time

being. There’s another, less technical, aspect of it that can be problematic - the

distinction between bots and trolls [42]. The homogeneity in sentiment of tweets can

be characteristic of not only automated accounts, but also internet trolls. It is very

common for trolls that engage in online discourse, especially in polarizing subjects

like politics and religion, to be very linear in the sentiments they express: everything

is good, or nothing is. This approach can misidentify trolls, who are real humans, as

bots.

It is useful to examine feature importance in this paper, so to compare with features

that were most influential in the classification e↵ort in other papers and gain a more

complete understanding of the features that are more important across the board. Of

the 13 features in the enhanced subset, the 5 most important ones are shown in figure

3.1 below. It’s obvious that the top positions are dominated by sentiment features,
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with the top spot going to the number of positive tweets an account has produced. It

is noticeable that five out of seven sentiment features heavily influenced the accuracy

of this approach, with only the ’AvgPositive’ and ’CountNegative’ features missing

from the top spots.

Figure 3.1: Feature importance in Sentiment Extraction
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Chapter 4

Language-agnostic Bot Detection

The author of this paper gives another spin at identifying Twitter bots, without focus-

ing on subcategories the bots could belong in but instead trying to adopt a language-

agnostic approach. In this research e↵ort the emphasis is on the prospective of de-

tecting bots by account-level metadata only and establishing whether content-level

analysis provides measurable benefits. The author also tries to explore the capability

of identifying bots based only on account-level information and the ways that would

extend to language-agnostic detection methods. The last research question is, with

regard to how di�cult is it to gather training data for bot detection, just how small

can a dataset be and still provide adequate training results.

4.1 Feature selection

The dataset used here is once again the C17. A subset of the original features is used

as the basis for producing other features that are more closely aligned to the research

question this paper aims to answer. The core features, along with the ones produced,

are shown in the table 4.1 below. Of a total of 68 features used here, only five are

readily available in C17, the rest are derived from other features in the dataset.
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4.2 Produced Features

The features used and namely the ones produced fall under two main categories, the

account-based and the content-based, not dissimilar to other approaches we’ve seen

so far. The account-based features are then categorised to two subcategories: the

features that specifically target aspects of an account’s profile name, and all others.

Account-level features

Drawn from account metadata present in the C17 dataset, some of these features are

used in the same form they are found in, others are derived with simple calculations

from available data. They basically fall under two categories, generic profile features

and profile name features.

• Profile name features: The profile name a user chooses is one of the more

personal aspects of having a Twitter account. It can be selected with varying

purposes in mind, stretching from personalization to satire, even impersonation

[43]. The rationale behind focusing on this specific aspect of a user profile

is that, empirically, real users tend to be more creative in matters of online

identity, compared to bot accounts that have shown to be more rigid and bland

in their online representation. Some of these features are:

(i) screen name length: A Twitter account has a screen name (e.g. Joe Doe)

and a username, also called ’handle’ (e.g. doe). This attribute refers to

the length (meaning the number of characters) of the first one. Paradoxi-

cally, in C17 the screen name attribute is called ’name’ and the username

attribute is called ’screen name’.

(ii) user name length: The number of characters in the Twitter account’s ’han-

dle’.

(iii) screen name digits : Number of (non-unique) digits in the screen name.

(iv) user name unicode group: This feature group refers to 105 features, one

31



for each Unicode code group, with binary values that work as flags and

provide information as to whether a character that belongs in that Unicode

group exists in the account’s username. The reasoning behind this is that,

the more Unicode groups an account’s username has characters from the

more creative it is, therefore it can be assumed that it is less likely to be

a bot. The author does not go into much detail as to how they achieved

that, nor the resources they used. In our reimplementation, since we could

not find more information on the Unicode groups the author refers to, nor

ways to identify them in a string of characters, we used a library called

sequence from the unicodeblock package that can count the number of

unique Unicode blocks in a string of characters.

(v) screen name unicode group: See point above, applied to an account’s screen

name.

(vi) levenshtein user name screen name: It’s been observed that bot accounts

usually have screen names and usernames that are pretty similar, in an

attempt to appear more legitimate. This feature tries to model this obser-

vation by calculating the Levenshtein distance between screen name and

username [44]. The Levenshtein distance is a string metric for measuring

the di↵erence between two character sequences.

• Generic profile features : The more generic profile features are basic Twitter

account metadata and can be seen in rows one to 13 in the first column of table

4.1. Some of these features are:

(i) default profile: If a user has not filled in the ’bio’ field in their profile, which

is like a short profile description with maximum length of 160 characters,

they are considered to have a default profile.

(ii) geo enabled : Another Twitter profile aspect, this feature is about whether
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a user has specified a geographic location in their profile. Location accu-

racy cannot be established and is therefore irrelevant.

(iii) protected : This flag, when true, means that the user has used the setting

that hides one’s tweets from non-followers. In order for someone to see

protected tweets they have to make a follow request to the account whose

tweets they want to see, and can see the tweets only in the case the account

in question accepts the follow request.

(iv) is verified : This feature refers to the so-called blue checkmark/badge that

an account could get through a verification process done by Twitter. At

the time the C17 dataset was created, the verification process and the blue

badge were only considered for highly influential accounts like political

figures, online influencers, corporate accounts of large companies etc. As

of April 2023 the blue checkmark and the verification process are done

through a Twitter subscription service and are entirely di↵erent to the

legacy procedures that led to the verified status this feature is about [45].

(v) friends count : The number of Twitter accounts being followed by an ac-

count.

(vi) followers count : The number of Twitter accounts that follow an account.

(vii) favorites count : The number of tweets an account has liked/marked as a

’favorite’.

(viii) listed count : The number of lists an account is a member of. This feature

would only count the number of public lists an account is in.

(ix) statuses count : The total number of tweets and account has posted.

(x) profile use background image: This flag, if true, means that the user has

set a background image on their profile.

Content-level features
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These features are about the content Twitter accounts actually produce, which is

mainly the tweets they post. Most of these features are derived from the text body of

the tweets and a few of them are based on readily available tweet metadata. Content-

level features fall under two subcategories, behavioral and core content. Behavioral

features are basically features that are based on time patterns and how often an

account tweets. The core content features are produced in an attempt to derive

intention and sentiment from tweets in a language-agnostic way.

• Core content features : Tweet text is tokenized by splitting it into character

units that are separated by commas, colons, exclamation marks, brackets etc.

In our reimplementation the tweets are split on white-space, which makes sure

that characters that are part of an emoji set are not being left out. For distri-

butional features there is an asterisk (⇤) right beside the feature’s name, and

it includes calculating a feature’s mean, median, standard deviation, minimum

and maximum values, skewness and kurtosis.

(i) number of tokens⇤: Distributional values of the number of tokens on an

account-level.

(ii) number of hashtags⇤: Distributional values of the number of hashtags on

an account-level. While the author does not specifically weigh in on this, in

our reimplementation it was the number of unique hashtags per tweet that

was used in the aggregation to account-level distribution. The hashtags

were extracted by identifying the tokens that start with a ’#’ symbol, with

the ones that exist in multitude getting filtered out so only one instance

per hashtag remains. The unique hashtags extracted are then counted.

(iii) n of tokens wo hashtags urls symbols⇤: Distribution values of the number

of plaintext tokens on an account-level. Excluded from this count are

tokens of hashtags, URLs and all non-alphanumeric sequences. The author

does not go into details as to how they did that, in the reimplementation
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the tweet text was stripped of non-plaintext tokens by the use of the tweet-

preprocessor library and its clean() utility1. Then the process followed is

identical to the one in the ’number of hashtags’ feature.

(iv) number of urls⇤: Distributional values of the number of URLs per tweet.

It is based on the ’num urls’ feature that is readily available in the C17

dataset and contains the number of (non-unique)URLs per tweet.

(v) special char repeats rate⇤: This feature is intended to detect sequences of

special characters, specifically question and exclamation marks. It is not

clear how the author modeled this feature but in the reimplementation the

sequences of special characters were extracted, counted, and then used in

producing distributional values.

(vi) emojis classic,kaomji faces,line art,other : These features refer to di↵erent

types of emojis detected and then used to extract sentiment out of a tweet’s

text. The reasoning behind targeting emojis is that it serves the purpose

of achieving a language-agnostic approach of identifying bots. The author,

again, provides no technical details as to how they were able to detect

these specific types of emojis. Due to that, in our reimplementation we

only focused on the Unicode emojis the emoji2 python library can detect

through the list emojis() utility. The extracted emojis were then fed to the

get emoji sentiment rank() utility of the emosent3 library that will then

produce a sentiment score per tweet. These values are then aggregated on

an account-level and distribution values are calculated, based on individual

occurrences of emojis in single tweets.

• Behavioral features : These features are produced to support the theory that pre-

cise scheduling and rigid posting habits can point to automated behaviors and

1https://pypi.org/project/tweet-preprocessor/
2https://pypi.org/project/emoji/
3https://pypi.org/project/emosent-py/
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ultimately bots. In an e↵ort to model such behaviors this small set of features is

created based on statistical properties of tweet time metadata. Distributional

features come with an asterisk (⇤).

(i) time between tweets⇤: Models time between consecutive tweets and calcu-

lates mean, median, standard deviation, min and max values, skewness

and kurtosis. The implementation of this was pretty straightforward since

every tweet comes with a timestamp of the moment it was posted.

(ii) time between retweets⇤: Similar to the previous feature but this is one is

only about retweets. In the reimplementation done to simulate the author’s

e↵ort, we extracted all retweets per account. The retweets can be found

in the dataset by the capitalized ’RT’ characters at the beginning of a

tweet’s text. Retweets per account are then sorted and the time between

consecutive retweets is recorded. The first retweet in the list will have a

time di↵erence of zero. With the time between retweets now found the

distributional values, mentioned above, are calculated per account.

(iii) tweet rate(avg): The average number of tweets posted daily. Calculated by

dividing the total number of tweets posted by an account by the account’s

age in days. The accounts’ age was calculated at a set time of June 1st

2019, the approximate date this paper was published.

4.3 Methods and Procedure

In this paper the measures of model performance are accuracy, precision, recall, F1

score and AUC ROC - area under the ROC curve. In order to have results more

directly comparable to performance metrics in other papers, our reimplementation

focuses on accuracy, precision and F1 score. The authors report that they experi-

mented with the typical machine learning methods suitable for the task like Logistic
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No. Account-level Content-level

1 default profile time between retweets⇤

2 geo enabled ratio time between tweets⇤

3 protected tweet rate(avg)

4 is verified emojis classic⇤

5 friends count emojis kaomji faces⇤

6 followers count emojis line art⇤

7 favorites count emojis other⇤

8 listed count number of tokens⇤

9 statuses count number of hashtags⇤

10 profile use background image
n of tokens wo hashtags urls -

symbols⇤

11 Number of likes given number of urls⇤

12 Number of tweets special char repeats rate

13 Tweets per day -

14 screen name length -

15 user name length -

16 screen name digits -

17 user name unicode group -

18 screen name unicode group -

19 levenshtein user name screen name -

Table 4.1: Language-agnostic Bot Detection Features

Regression, Support Vector Machine, Random Forest, Multi-layer Perceptrons and

AdaBoost, with AdaBoost emerging as the method having the most high valued met-

rics. Only the performance values achieved by AdaBoost are listed in the paper.

In our reimplementation, all mentioned methods are implemented and their results

are shown in table 4.2 below. Results shown in parentheses are the ones produced

by the reimplementation. Since the authors only provided results from the AdaBoost

method, only those numbers are seen in the paper. It is worth noting that the authors

tested the listed methods in a variety of subsets of the features shown in table 4.1,

before finally testing them on the whole feature set. Our comparison was done with

the results of the methods applied on the whole feature set, which is what brought

the best results in the original paper.
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Dataset Algorithm Accuracy Precision Recall F1 Score AUC

C17 AdaBoost
0.9881
(0.8167)

0.9958
(0.8377)

0.9835
(0.8167)

0.9896
(0.8115)

0.9959
(0.9505)

C17
Logistic

Regression
(0.9287) (0.9429) (0.9355) (0.9447) (0.9879)

C17 SVM (0.9266) (0.9317) (0.9241) (0.9354) (0.9648)

C17
Random
Forest

(0.9554) (0.9512) (0.9554) (0.9525) (0.9388)

C17
Multi-layer
Percep-
trons

(0.9287) (0.9455) (0.9355) (0.9447) (0.9879)

Table 4.2: Language-agnostic Bot Detection Performance Metrics

4.3.1 AdaBoost

The AdaBoost classifier is a machine learning technique that is used as an ensembling

method. Ensembling is a meta approach (meaning it’s a machine learning algorithm

that learns from the output of other machine learning algorithms) to machine learning,

that can achieve better performance metrics by combining predictions from multiple

models, often weak learners. With AdaBoost the weak learners are decision trees

with a single split that are called decision stumps. The way AdaBoost works is it

progressively puts more weight onto di�cult to classify instances, and less weight on

those that are already handled well. It initially fits a classifier on the original dataset

and then fits extra copies of the classifier on the same dataset, but with modified

weights for incorrectly classified instances. These weight modifications will shift the

focus on the cases that are more di�cult to classify. AdaBoost algorithms can be

used for classification and regression problems.

The authors in this paper use AdaBoost after resampling the training data using

SMOTE-ENN. SMOTE-ENN is a method developed by Gustavo Batista et al. in

2004, and it combines the SMOTE ability to generate synthetic examples for the mi-

nority class of a dataset and the ENN capacity to delete observations from both classes

identified as being of di↵erent class to the observation’s class and its K-nearest neigh-

bor majority class. The authors resampled the training subset which was then used

with the AdaBoost classifier. Reported accuracy for AdaBoost is 0.9896 and ROC-
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AUC is 0.9959. In our reimplementation we could not confirm these metrics, possibly

because applying SMOTE-ENN to the training dataset was very time-consuming and

had to be abandoned. Our implementation of AdaBoost produced accuracy of 0.8167

and ROC-AUC of 0.9505.

4.3.2 Logistic Regression

There are no technical details of the authors’ implementation of Logistic Regression or

the performance metrics it achieved in the research paper. Our reimplementation of

Logistic Regression achieved metrics that start from 0.9287 and stretch up to 0.9879.

More details can be seen at the second row of the 4.2 table.

4.3.3 SVM

No technical details were provided as to how SVM was implemented in this paper, and

no performance metrics to compare to. In our reimplementation the SVC - Support

Vector Classification variation of SVM was used, with the dataset split in an 80-20

analogy for training-testing and a polynomial function of degree 7. Results achieved

are similar to the ones brought by Logistic Regression and they are in the range of

0.9266 (accuracy), up to 0.9648 (ROC-AUC).

4.3.4 Random Forest

The Random Forest algorithm used in our reimplementation had 20 trees, used the

Gini impurity function to measure the quality of the splits and employed 5-fold

cross-validation to evaluate scores. This configuration was decided based on previous

e↵orts that involved the Random Forest algorithm and performed well. The metrics

RF achieved came up on top of all methods used in this paper, including AdaBoost,

which is something that contradicts the authors’ inferences. Accuracy achieved is

0.9554, with other metrics hovering a bit over 0.93.
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4.3.5 Multi-layer Perceptrons

A multilayer perceptron is a type of fully connected FFNNs - Feed Forward Neural

Networks. A fully connected neural network is a class of artificial neural networks

with architecture where all neurons, or nodes, of a layer are connected to the neurons

of the next layer. An MLP is made of, at least, three layers of nodes. These typically

are an input layer, a hidden layer and an output layer. All nodes in the MLP, except

the input nodes, use a nonlinear activation function. It is these multiple layers and

the activation function that distinguish an MLP from a linear perceptron.

In our reimplementation the MLP consisted of two hidden layers and achieved

accuracy of 0.9287 and AUC of 0.9879, with the rest of the metrics in the 0.9+ range.

4.4 Results and Discussion

All performance metrics achieved by the reimplementation of the machine learning

methods that this paper utilized can be seen in table 4.2. Scores in parentheses

for the AdaBoost algorithm show the reimplementation’s performance, the values

without parentheses are the performance claimed by the authors. AdaBoost is the

only method for which the authors provided performance scores and is the method

that achieved the best metrics in their implementation. Our results were not the

same, with Random Forest coming up on top of our metrics, which can be attributed

to technical di�culties in implementing SMOTE-ENN resampling. The top scores,

however, between the authors’ AdaBoost and the reimplementation’s RF are not

wildly di↵erent, with AdaBoost achieving metrics around 0.98 and RF performing at

the 0.95+ range.

As with the previous two papers examined, it is useful to go over the most im-

portant features in the dataset that are the most influential in the classification’s

performance. By using the RandomForestRegressor 4 library of sklearn’s ensemble

4https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.
html
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package, we extracted the top 17 most important features for the Random Forest

algorithm that achieved the best performance in our reimplementation, which can be

seen in figure 4.1 below.

It is noticeable that the top spot in feature importance is shared by features that

are basically the number of words in a tweet and the number of URLs in a tweet.

Followed by the TimeBetweenRetweets Kurtosis and the TimeBetweenRetweets Skew-

ness features that are a good indication of the consistency and how often an account

retweets other tweets. It is useful to note here that a retweet does not necessarily

mean that the tweet ’shared’ belongs to another account. An account can retweet

their own tweets, meaning a traditional bot can post a URL with a tweet and then

retweet that same tweet through the day just to refresh its exposure and the attention

it gets. We can also see two Unicode-related features in prominent positions in the

list, the ScreenNameUnicodeGroups and the UsernameUnicodeGroups. The presence

of these two gives ground to the theory that real users can be more creative when it

comes to choosing their screen and user names. There is a also a feature that exploits

the emojis that are sometimes present in tweets, the EmojisSentiment Median. This

emoji feature however cannot strongly support the viability of a language-agnostic

approach in bot detection, as many of the other top features are content-level.
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Figure 4.1: Language-agnostic Bot Detection Feature Importance
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Chapter 5

Bot category classification

In this study the author takes the Twitter bot identification e↵ort one step further,

by not only detecting a bot but also classifying it to a bot category. With today’s

diversified landscape of automated accounts, there are many bots that are not only

safe for the platform to keep online, they are actually useful for the user-base. For

example the @RemindMeOfThis bot can be used as a reminder to revisit specific

tweets later in time. @threadreaderapp will unroll a long tweet thread and provide a

link to a page with all the thread’s content in an easy to read format. @pikasome can

produce screenshots of tweets when mentioned in a comment under the tweet. These

bots, along with other sophisticated social bots and sockpuppets give ground to the

argument that not all types of bots should be lumped together into the same, unified

group. And this paper’s research goal is to identify the machine learning method that

would perform best in this multinomial classification task.

5.1 Feature selection

Due to the large number of features available in the C17 dataset, a feature selection

must be done. The most straightforward way to do this, and the one used by the

author, is selecting the features used in similar works that have shown to be working

well. In this case the features selected were used in a similar manner by J. Fernquiest

and his team in their work about political bots in the Swedish general election [46].
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In Fernquiest’s work a total of 140 features were used, many of them based on the

features of the C17 dataset. About 20 of those features were produced by fetching

additional Twitter data through Twitter’s API, including some features that it is not

perfectly clear how they were calculated. So in this paper, 120 features were used,

the core of which can be seen in table 5.1.

No. Account-level Content-level

1 Age of account Hashtags per tweet

2 Follower-friend ratio Hours of day tweeting

3 Given likes per follower Length of tweets⇤

4 Given likes per friend Mentions per tweet

5 Has location
Normalized distribution hours

tweeting

6 Has default profile description
Normalized distribution of tweet

endings

7 Length of username
Normalized distribution weekdays

tweeting

8 Likes per day Number of words⇤

9 Number of followers Retweets achieved per tweet

10 Number of friends Retweet-tweet ratio

11 Number of likes given Time between mentions⇤

12 Number of tweets Time between retweets⇤

13 Tweets per day Time between tweets⇤

14 - Time between URLs⇤

15 - Unique hashtags per tweet

16 - Unique mentions per tweet

17 - Unique sources

18 - URLs per tweet

19 - Weekdays tweeting

Table 5.1: Bot Category Classification Core Features

5.2 Produced Features

It is important to point out that some entries in 5.1 actually enclose multiple features.

And while some of them like ’Age of account’ seem quite straightforward, for others

it’s better to go into a bit more detail and clarify what they actually entail. In addition

to that, features marked with an asterisk (*) represent five di↵erent features: mean,

median, standard deviation, min and max values. Most other features, unless noted

otherwise, correspond to the mean value of whatever tweet metadata the feature
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designates. For account-level features all entries correspond to one feature each.

Follower-friend ratio A ’follower’ in Twitter terminology is an account that

follows another account, meaning the follower will see the follower’s tweets in their

timeline. The follower is the follower’s ’friend’. The follower-friend ratio is basically

the relation between the number of users following an account and the number of

accounts that account follows itself (followers count\friends count).

Has location & Has default profile description Each Twitter profile can

exhibit a 160 character profile description called ’Bio’, along with a location and a

website the user would like to have on display. Providing this information is not

obligatory and if a user has opted to leave these fields empty it is considered that

they have have a default profile. These binary, account-level features are shown on

lines 5 and 6 of table 5.1. Value of 1 means true and 0 means false.

Tweets per day & Likes per day These features are calculated by dividing the

count of each measure by the age of the account in days. The age of the account

can be seen at the created at feature of the users subset in the C17 dataset. In the

reimplementation of this paper’s work the date of reference selected was June 1st

2019, in order to approximate the time period within which the paper was submitted.

Weekdays tweeting This feature actually refers to 7 features, each feature being

the count of tweets an account has posted on a specific day of the week. So in the

final dataset used to train the machine learning algorithms this feature can be seen as

seven distinct features (e.g. Tweets Monday, Tweets Tuesday) with integer values.

Hours of day tweeting For each Tweet posted there is a timestamp of when that

was done at the C17 created at feature of the tweets subset (not to be confused with

the feature with the same name in the users subset which is the account’s creation

date). Using the hour part of the timestamp it is easy to count the number of tweets

posted at a specific hour of the day throughout the account’s lifetime. This leads to

the creation of 24 features, each one containing the number of tweets posted by the

account at each respective hour.

45



Normalized distribution hours tweeting/tweet endings/weekdays tweet-

ing These features are basically the ’Weekdays tweeting’ and ’Hours of day tweeting’

features in the form of percentages. They basically show what percentage of an ac-

count’s tweets are posted on each day and on each hour. This means that another

7 features are created for the distribution of tweets per day and twenty-four for the

distribution per hour.

Tweet endings The ways a tweet can end are as many as any letter, number

or symbol available. It would obviously be impossible to create a designated feature

for each possible ending, therefore features are created for each one of the following

endings, with ending being the last character in the tweet: period, question mark,

exclamation mark, lower case letter, upper case letter, digit. There is also a catch-all

feature for all other possible endings called ’other tweet endings’. For each one of

these cases the number of tweets, per account, is counted and then normalized, in

the same way the hours/weekdays tweeting features are handled. With these features

created it is visible at glance what percentage of tweets an account posts ends in a

similar manner.

Retweet-tweet ratio This feature measures the analogy of the number of original

tweets an account posts versus the number of tweets it ’retweets’ or forwards. A

retweet can be done by an account on its own tweets or on the tweets posted by

other accounts. The C17 dataset includes a feature called ’retweet count’ that is the

count of tweets an account has retweeted. The values in this feature were confirmed

in the reimplementation of this paper’s work by counting the number of tweets per

account that started with capitalized RT letters. For the retweet-tweet ratio the

number of retweets per account is divided by the original tweets posted by the account

(NumberOfRetweets\NumberOfTweets). On a side note, the Retweets achieved per

tweet feature is a content-level tweet that’s basically the number of times a tweet was

retweeted.

Time between mentions\tweets\retweets\URLs These features measure the

46



time between tweets posted by an account that share similar characteristics. The

intention was to be able to see how much time passed between, for example, two

tweets that include mentions or URLs, or are retweets. Mentions are tweets that

are directed to specific users in a thread by stating their username preceded by the

symbol. Only the most recent 100 tweets per account are taken into consideration for

these features. Not much detail is given in this paper as to how this was implemented

so in the reimplementation the first step was to extract three di↵erent subsets of

the C17 dataset where all tweets either include mentions or URLs or are retweets.

Then a maximum of 100 most recent tweets were kept for each account. With the

time a tweet was posted available in the original features it was easy to calculate

the di↵erence, in hours, between two consecutive tweets. With the time di↵erence

between tweets now calculated the mean, median, standard deviation and minimum

and maximum values are now computed per account. This exercise is done four times,

one for the tweets that include mentions, one for the retweets, one for tweets that

include at least one URL and one for the rest of the tweets. This results to a total of

20 new features which are then merged with the original dataset.

Unique hashtags, mentions, sources per tweet Similar to the ’Hashtags per

tweet’ and ’Mentions per tweet’ features, but di↵erent in that they include the number

of unique instances of a hashtag,mention or source. Source of a tweet is the platform

through which the tweet was posted, and it can be the Twitter web app, the o�cial

iOS and Android Twitter apps or any 3rd party app available like Tweetbot or Aviary.

It should be noted that as of January 20 2023, Twitter has blocked all API access to

3rd party apps e↵ectively banning all non-o�cial clients from using Twitter services

[47]. For example if an account is being accessed and used to post from Twitter’s

web app and from the Android mobile app, the ’Unique sources’ feature’s value would

be 2. In the simulation of the author’s implementation, both hashtags and mentions

were extracted to di↵erent lists per tweet. These lists were then traversed to count

both total instances and unique instances per tweet. This approach is not without
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flaws as it can potentially take into account words with preceding hashtags or at signs

(@), though that is considered to have nominal impact.

5.3 Methods and Procedure

The measures of model performance in this paper are accuracy, precision, F1 score

and MCC - Matthews Correlation Coe�cient. The first three are commonly used in

multinomial classification and MCC, while originally developed for binary classifica-

tion, has been generalized into a version that can handle multinomial classification as

well. Macro average was used with these metrics, which is computing the metric for

each class separately and then averaging over the number of classes (micro average

would be to use all the class combined to compute the average). MCC is a more

reliable statistical rate that produces high scores only if its predictions achieved good

results in all four confusion matrix categories (true positives, false negatives, true

negatives, false positives), comparatively to the size of positive elements and the size

of negative elements in the dataset.

As previously mentioned in paragraph 2.3.5, the way the imbalance between class

subsets is handled is through undersampling. That leads to a dataset of 4.000 tuples,

of which 80% (3200 rows) is used as a training set and 20% (800 rows) as a test set.

No validation set is used and hyper-parameter tuning is done through cross-validation.

Hyper-parameters have to be chosen by the model creator and include, for example,

the weight of penalty in logistic regression, the number of trees in random forest, the

rate of learning in neural networks, the number of neighbors in k-nearest-neighbors,

and others.

One way to make parameter tuning more targeted and less arbitrary is through

cross-validation. In this paper a 5-fold cross-validation process is used to do that, and

the way it works is that it splits the training dataset into five di↵erent parts, uses a

combination of hyper-parameters to train the model on four of these parts and tests

it on the fifth part. The model is measured on its accuracy and then the process is
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repeated with a di↵erent combination of training sets and testing set. The average

of accuracy measurements is recorded for this cycle. When all five combinations are

performed on the model, another cycle starts with another set of hyper-parameter

values. When all selected combinations of hyper-parameters are used on the model,

the combination that performed the best is nominated to be used on the test set [48].

5.3.1 Random Forest

For the RF algorithm the hyper-parameters that can be tuned are the number of

trees used and the number of features searched in each split. Through the cross-

validation process described above, the number of tress is set to 200 and the number

of features that are used for each split is set to the square root of the total number of

features (
p
120 ⇡ 11). In creating the RF model, the function to measure the quality

of a split was set to criteria value of ”gini” for the Gini impurity measure. The

final outcome of a decision tree, like the RF, is heavily influenced by its hierarchical

structure. To decide on this structure it is necessary to answer a couple of questions,

like which feature should be placed at the root node, or which features should act as

internal nodes and which as leaf nodes. The Gini index is a splitting measure that

helps answer these questions. Also called Gini coe�cient or impurity, it computes the

probability of a specific variable to be erroneously classified when chosen randomly.

When building a decision tree it is preferable to choose the feature with the smallest

value in Gini index as the root node. The author does not explain the reasoning

behind choosing Gini index but it is likely because of it being more computationally

e�cient to alternatives like ’Information Gain’. Metric results are discussed in section

5.4.

5.3.2 Logistic Regression

Logistic regression is a parametric classification model, despite having the word ’re-

gression’ in its name. LR models have a fixed number of parameters that depend on
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the number of input features and they output categorical results - binary classifica-

tion. In general, multinomial logistic regression builds a linear predictor based on the

transformation of linear combinations of features, in order to build class probabilities.

In this paper’s application of LR and in order to escape overfitting, regularization with

a L2 penalty term is used. The tuning parameter for regularization is set to be one,

value found through cross-validation. In the reimplementation done to confirm the

author’s findings, a maximum number of 500 iterations was arbitrarily chosen as a

parameter in training the model. The maximum number of iterations is the maximum

number of iterations taken for the solvers to converge.

5.3.3 ANN

Artificial Neural Networks are computational models that are inspired by the biologi-

cal human networks that constitute the human brain. An ANN is technically a bunch

of artificial neurons that are interconnected to each other. The information coming

through is processed by filtering done at the densely connected artificial neutrons.

Each connection between neurons can transmit the signal from one neutron to an-

other. The neurons are structured into several sequential layers, with each neuron in

a layer being connected to all neurons in the previous layer and the next. Each layer

receives input from the previous layer, processes it and passes it on to the next layer.

The first layer in the layout is called input layer, and it mainly receives the input

and feeds it to the next layer. If an input layer receives p features, it’ll have p + 1

neurons. The extra neuron constantly outputs a signal of one value to introduce a

bias term, similarly to the intercept term in regression models. Right after the input

layer are the hidden layers, where the processing takes place. The number of hidden

layers that can be stacked is up to the model creator, though with adding hidden

layers comes a trade-o↵ in computational speed. Each hidden layer transforms linear

combinations of the output of the previous layer, whether input or another hidden

layer, which are then pushed forward to the output layer. Each hidden layer intro-
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duces a bias term with an extra neuron in the same way that is done in the input

layer. The output layer produces estimated probabilities for each class. If the out-

put layer has p features, it’ll also have p neurons. Each neuron in the output layer

will receive a linear combination of outputs from the hidden layer and transform it

to estimated probabilities for each observation to belong to a specific class. In this

implementation the softmax function is used for the transformation described above,

and the sigmoid function is the activation function used by the hidden layer. By ap-

plying cross-validation it is decided to only have one hidden layer with nine neurons

in each one of them. Fitting the ANN starts by randomly assigning values to all

weights, most often by a distribution with values close to zero. Then an observation

from the training set is fed into the model which then produces a vector of predicated

class probabilities. The target values are already known, so the gradient of the error

function can be computed. The gradient is computed through a process called back-

propagation, which is the technique that is used in this paper, because it is considered

to be faster than forward-propagation [49]. The weights are then updated by using

gradient descent. This procedure is repeated for every tuple in the dataset. When

all tuples of a dataset are fed into the model, one cycle called epoch has passed. The

model is considered to be fitted when the designated number of epochs has passed.

The features present in the dataset are standardized, meaning they are given mean

value of zero and variance value of one. This will help avoid having features with

higher absolute values being credited with higher importance by the regularization

process [48]. Standardization process adds a penalty term to the error function, which

will in turn shrink the weights towards zero and decrease the risk of overfitting.

5.3.4 k-Nearest Neighbors

The simplest among the methods used in this paper, k-NN classifies new data by

measuring the Euclidean distance between the feature vector of a new observation

and every observation in the training subset. The algorithm will then sort the found
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distances in a descending order and will appoint the observation in question to the

class most commonly found in the top k entries of the sorted list (k = number of

neighbors). The author of this paper tested a range of values through cross-validation

(1, 2, 3, 4, 5, 10, 20, 50) but does not point out the value that brought the highest

performance. In the reimplementation done as part of this project the number of

neighbors used is 2.

Before training the model, all features are standardized to have mean zero and

variance one - because the only way for Euclidean distance to make sense as a distance

measure is to have everything measured in the same unit system.

5.4 Results and Discussion

The results of this paper can be seen in table 5.2. Values in parentheses are the results

produced by the reimplementation of the methods described in the paper. It obvious

that in many cases the results brought by our reimplementation are very close to the

ones claimed by the author.

With the C17 dataset, the author’s data indicates that the Random Forest model

followed by the ANN are the best performing by most measures. And while our

reimplementation was able to replicate the scores achieved by RF and ANN, it is

Logistic Regression and k-NN that bear the best results among methods employed.

Dataset Algorithm Accuracy Precision F1 Score MCC

C17 Random Forest
0.9912
(0.992)

0.9913
(0.993)

0.991
(0.992)

0.988
(0.990)

C17 Logistic Regression
0.975
(0.998)

0.975
(0.998)

0.975
(0.998)

0.966
(0.997)

C17 ANN
0.9800
(0.979)

0.98019
(0.976)

0.979
(0.981)

0.973
(0.972)

C17 k-NN
0.9262
(0.998)

0.9266
(0.999)

0.925
(0.999)

0.902
(0.999)

C15 Random Forest (0.971) (0.976) (0.966) (0.938)

C15 Logistic Regression (0.974) (0.972) (0.974) (0.944)

C15 ANN (0.968) (0.973) (0.973) (0.952)

C15 k-NN (0.974) (0.999) (0.999) (0.999)

Table 5.2: Bot Category Classification Performance Metrics
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The models used on the C17 dataset were also applied on the C15 dataset, with

results visible on the last four lines of table 5.2. It is noteworthy that all models

achieve accuracy safely above 95%, which given the results seen in chapter 3 and

other works in the field seem relatively good. It also goes to show that the methods

applied in this paper can indeed handle new, previously unseen data and provide

good classification accuracy. Another point regarding metrics is that precision, F1

score and MCC do not really provide any useful information regarding the models’

performances. The goal of these metrics is to identify patterns in classification e↵orts

that accuracy does not succeed in finding. With precision, F1 score and MCC so

close to accuracy results, no novel aspect of the models is revealed.

It is also useful to examine the feature importance (here obtained from the RF

algorithm), in order to gain a better understanding of which features are most crit-

ical to classification performance, and how many of them are in the original set of

features. The ten most important features of the ones used in this paper are shown

in the figure 5.1 below. Note that the feature importance metrics were taken by the

reimplementation of this paper’s methods.

Figure 5.1: Bot Category Classification feature importance
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The top spot in importance is taken by a content-based feature, and it seriously

outweighs all other features. The features that follow are a mix of content-based

and account-based features, meaning that there is no specific type of features that

complete dominates the list. Only one of the text-oriented features like length of

tweets, number of words etc has made it to the list, (’TweetsEnding UpperCase’).

None of the generic time-oriented features, like time or day of the week tweeting,

have made it to the list, however, it is the feature about the standard deviation in

time between two consecutive tweets that takes the top spot.
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Chapter 6

Model optimization and feature
minimization

At this point it’s been established that social media, Twitter included, are justifiably

praised for being able to democratize opinion sharing and empowering online dis-

course. But it’s also apparent that they can facilitate the spread of political agendas,

misinformation, fate and extremism [3]. These types of malign e↵ects have been, for

the most part, been linked to software-controlled social media accounts.

The biggest challenge in detecting this type of accounts, commonly known as bots,

is the lack of extensive enough datasets that will support the development of machine

learning models that are based on supervised learning. In the previous papers we

examined, most methods we encountered focus on detecting bots on a combined

account-level and content-level basis. That means that an algorithm would process

the activity record of an account, a couple dozens of tweets, along with the account

profile’s metadata and try to determine whether the account in question is a bot or

not. And while these methods are reasonable successful in that regard, the ones that

really excelled, like the one featured in chapter [5], required a lot of data and plenty

of produced features.

It is this paper’s focus to try and remedy that by providing an approach that

will: a) be able to identify a bot account by a single tweet, b) be able to enhance

existing datasets by producing more samples of human and automated accounts,
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while avoiding the strenuous cost in time, e↵ort and resources, of data collection and

manual annotation. The authors use two methodological approaches to achieve these

goals, which are outlined in sections 6.2 and 6.3.

6.1 Feature selection

In this work the authors use the, by now familiar, C17 dataset [28]. The dataset is

not used in its entirety, but only the subsets of genuine accounts and social spambots.

This part of the dataset makes for a total of 8,386 twitter accounts and almost 12

million tweets.

Though many approaches in the field utilize large numbers of features, memorably

the work of Allen Davis et al. utilizes north of 1,500 features [50], studies have shown

that using a modest set of features can lead to similarly high performance in detecting

bots as their maximalist counterparts [51, 52]. Smaller number of features will lead

to more e�cient models that can be trained in shorter time intervals. It can also

help produce models that avoid overfitting and are more easily interpretable. In this

paper a total of 16 features are used, 10 for account-level data and 6 for content-level.

Features used are shown in table 6.1 below.

No. Account-level Content-level

1 default profile retweet count

2 geo enabled reply count

3 protected favorite count

4 is verified number of hashtags

5 friends count number of URLs

6 followers count number of mentions

7 favorites count -

8 listed count -

9 statuses count -

10 profile use background image -

Table 6.1: Model Optimization and Feature Minimization Features Used
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6.2 Approach 1: Account-level classification

This approach focuses on proving that bot detection can be done on an account-level,

meaning there is no tweet data involved, with a small number of highly interpretable

features that require little to no preprocessing and machine learning architectures of

low complexity. This prospective is supported by similar work that underlines the

importance of Twitter accounts’ metadata as a strong factor in identifying automated

accounts [52].

6.2.1 Methods and Procedure

Within the context of this approach a number of familiar machine learning meth-

ods are tested, specifically Logistic Regression, Stochastic Gradient Descent, Random

Forest and the AdaBoost classifier. These techniques are evaluated in three di↵er-

ent iterations, one with the dataset in its original form and two with oversampling

techniques used in order to balance the dataset. The oversampling methods used

are basically di↵erent variations of the SMOTE (Synthetic Minority Oversampling

Technique).

The way SMOTE works is that it produces samples based on the feature set of

the minority examples, which are the classes that have the smallest representation

in the dataset. Usage of SMOTE is combined with two di↵erent undersampling

techniques that will help balance out the potential bias introduced by oversampling.

Two undersampling techniques are used, in combination with SMOTE: ENN - Edited

Nearest Neighbors and Tomek Links.

The ENN rule for undersampling was introduced by Dennis Wilson in 1972 [53].

The way it works is it uses the K = 3 nearest neighbors to identify datapoints that are

misclassified and then proceeds to remove them, before applying a K = 1 classification

rule. The combination of SMOTE and ENN is reported by the authors to bring a

significant improvement in classification accuracy, compared to when applied to the
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dataset in its original form. In our implementation we also encountered improvement

in performance metrics, though not as drastic as the one claimed by the authors.

More details can be seen in table 6.2.

Tomek Links is another undesampling technique proposed by Ivan Tomek in 1976

[54]. It is considered an improvement on the CNN - Condensed Nearest Neighbors un-

dersampling technique, that randomly selects samples with their k nearest neighbors

that need to be removed from the majority class. The Tomek Links methods builds

upon the CNN by selecting pairs of observations that meet a couple of requirements,

specifically for two observations a and b:

1. Observations a’s nearest neighbor is observation b.

2. Observations b’s nearest neighbor is observation a.

3. Observations a and b are not in the same class. One of them belongs to the

majority class and the other to the minority class.

The authors report little improvement in performance when combining SMOTE with

Tomek Links, and that is also observed in our reimplementation. Performance metrics

chosen are accuracy, precision, recall, F1-Score and AUC ROC.

6.2.2 Logistic Regression

No technical details are given as to how Logistic Regression was implemented. What’s

known is that it was ran with three di↵erent configurations: on the dataset without ap-

plying balancing techniques, then with SMOTE+ENN and finally with SMOTE+Tomek.

In the first case the scores are in the range of 0.88 - 0.94, in the second case scores

point to near-perfect accuracy with numbers in the range of 0.98 - 0.99 and in the third

case scores are 0.90 to 0.92. These scores point to the SMOTE+ENN configuration

as the most e↵ective in bot classification, combined with Logistic Regression.

In our reimplementation the results are mostly similar. Logistic Regression without

data balancing achieved scores in the 0.90 - 0.91 range. The SMOTE+ENN configura-
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tion had scores in the 0.91 - 0.97 spectrum and the SMOTE+Tomek brought accuracy

within 0.90 - 0.92. These configurations were also tested on the C15 dataset with sim-

ilar results: No balancing: 0.89 - 0.91, SMOTE+ENN: 0.97 - 0.98, SMOTE+Tomek:

0.89 - 0.91.

6.2.3 Stochastic Gradient Descent

SGD was tested in three iterations as well. The metrics with the original configu-

ration were the lowest among the three, with performance in the 0.86 - 0.87 range.

SMOTE+ENN brings vast improvements, with performance in the 0.94-0.95 range.

SMOTE+Tomek comes second with scores a bit over 0.90.

SGD in the reimplementation brought scores in the 0.91 - 0.92 range for the original

configuration. SMOTE+ENN was the top of the three with performance between 0.92

- 0.93. SMOTE+Tomek was not far o↵ with scores in 0.88 - 0.90. Also tested on the

C15 dataset: No balancing: 0.91 - 0.92, SMOTE+ENN: 0.93 - 0.95, SMOTE+Tomek:

0.89 - 0.90.

6.2.4 Random Forest

Random Forest has been a top performer throughout all papers we’ve examined so far

and this is no exception. RF with the original dataset configuration achieves scores

of over 0.98 in all metrics. With SMOTE+ENN scores are near perfect, with values

over 0.99. SMOTE+Tomek has similarly high metrics in the 0.98 - 0.99 range.

In the reimplementation Random Forest also performed well: with the original

dataset metrics hovered above the near-perfect 0.98 point. SMOTE+ENN was be-

tween 0.98 and 0.99 and SMOTE+Tomek around the 0.98 point. With the C15

dataset: No balancing: 0.96 - 0.98, SMOTE+ENN: 0.97 - 0.99, SMOTE+Tomek:

0.97 - 0.98.
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6.2.5 AdaBoost

Adaboost had the best performance in two of the three configurations noted above.

With the original dataset it achieved metrics of over 0.98, with SMOTE+ENN it went

even higher at 0.9981 of accuracy and AUC and with SMOTE+Tomek it hovered over

0.98.

In the reimplementation the scores were around 0.98 for the original configuration,

0.99 - 1.00 range for the SMOTE+ENN and 0.95 - 0.98 for the SMOTE+Tomek. For

the C15 dataset: No balancing: 0.96 - 0.97, SMOTE+ENN: 0.95 - 0.97, SMOTE+Tomek:

0.94 - 0.96.

Overall, with no retouching on the dataset the Random Forest classifier came

up on top with accuracy of 0.9839 and AUC of 0.9845. With balancing treatment on

the dataset AdaBoost was the top performer with near perfect accuracy and AUC

of 0.9981 for SMOTE+ENN, and 0.9865 for SMOTE+Tomek. Table 6.2 contains in

detail the scores achieved by the authors, as well as the scores in the reimplementation

and the use of the models on the C15 dataset.
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Dataset Algorithm Accuracy Precision Recall
F1

Score
AUC

C17 Logistic Regression
0.9066
(0.9100)

0.9400
(0.9174)

0.9300
(0.9037)

0.9300
(0.9092)

0.8891
(0.9037)

C17
Stochastic Gradient

Descent
0.8726
(0.9100)

0.8700
(0.9288)

0.8700
(0.9193)

0.8700
(0.9236)

0.8680
(0.9193)

C17 Random Forest
0.9839
(0.9669)

0.9800
(0.9663)

0.9800
(0.9686)

0.9800
(0.9667)

0.9845
(0.9349)

C17 AdaBoost
0.9823
(0.9695)

0.9800
(0.9697)

0.9800
(0.9695)

0.9800
(0.9695)

0.9823
(0.9961)

C17
SMOTE+ENN -

Logistic Regression
0.9859
(0.9138)

0.9900
(0.9164)

0.9900
(0.9138)

0.9900
(0.9132)

0.9862
(0.9749)

C17
SMOTE+ENN -

Stochastic Gradient
Descent

0.9433
(0.9215)

0.9500
(0.9240)

0.9400
(0.9306)

0.9400
(0.9374)

0.9443
(0.9359)

C17
SMOTE+ENN -
Random Forest

0.9937
(0.9953)

0.9900
(0.9944)

0.9900
(0.9972)

0.99
(0.9888)

0.9938
(0.9988)

C17
SMOTE+ENN -

AdaBoost
0.9981
(0.9695)

1.0000
(0.9697)

1.0000
(0.9695)

1.0000
(0.9695)

0.9981
(0.9961)

C17
SMOTE+Tomek -
Logistic Regression

0.9094
(0.9133)

0.9200
(0.9165)

0.9100
(0.9178)

0.9100
(0.9182)

0.9098
(0.9169)

C17
SMOTE+Tomek -
Stochastic Gradient

Descent

0.9039
(0.8918)

0.9000
(0.8842)

0.9000
(0.8842)

0.9000
(0.8875)

0.9031
(0.9050)

C17
SMOTE+Tomek -
Random Forest

0.9859
(0.9888)

0.9900
(0.9891)

0.9900
(0.9899)

0.9900
(0.9891)

0.9859
(0.9846)

C17
SMOTE+Tomek -

AdaBoost
0.9865
(0.9793)

0.9512
(0.9525)

0.9554
(0.9603)

0.9525
(0.9603)

0.9865
(0.9699)

C15 Logistic Regression (0.9130) (0.8926) (0.8988) (0.8993) (0.9074)

C15
Stochastic Gradient

Descent
(0.9202) (0.9148) (0.9220) (0.9220) (0.9280)

C15 Random Forest (0.9849) (0.9841) (0.9785) (0.9682) (0.9836)

C15 AdaBoost (0.9778) (0.9762) (0.9718) (0.9669) (0.9711)

C15
SMOTE+ENN -

Logistic Regression
(0.9836) (0.9709) (0.9737) (0.9708) (0.9899)

C15
SMOTE+ENN -

Stochastic Gradient
Descent

(0.9388) (0.9384) (0.9438) (0.9429) (0.9542)

C15
SMOTE+ENN -
Random Forest

(0.9911) (0.9723) (0.9791) (0.9737) (0.9902)

C15
SMOTE+ENN -

AdaBoost
(0.9738) (0.9638) (0.9578) (0.9610) (0.9683)

C15
SMOTE+Tomek -
Logistic Regression

(0.8988) (0.8914) (0.8958) (0.8912) (0.9150)

C15
SMOTE+Tomek -
Stochastic Gradient

Descent
(0.9099) (0.8830) (0.8981) (0.8973) (0.9003)

C15
SMOTE+Tomek -
Random Forest

(0.9846) (0.9837) (0.9783) (0.9886) (0.9884)

C15
SMOTE+Tomek -

AdaBoost
(0.9641) (0.9576) (0.9438) (0.9429) (0.9658)

Table 6.2: Approach 1 Performance Metrics, Account-level features
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6.3 Approach 2: Content-level classification

With this approach the focus is on the ability to be able to identify bots from a

single piece of data, a tweet. With the limitations in creating datasets with reliably

annotated bots, being able to identify this type of accounts by a single observation

will be a turning point in tackling the adverse e↵ects they have on online discourse.

While there are various, reasonably successful, works on bot detection based on

tweet content, there are none that perform well and are based on using single obser-

vations. Using basic features such as the ones listed in the content-level column in

table 6.1, with no data preparation such as balancing, brings accuracy that does not

exceed the threshold of 80%.

6.3.1 Methods and Procedure

Many of the high performing techniques in Twitter bot detection utilize NLP - Nat-

ural Language Processing tools to identify patters and habitual elements in tweeting

style. These techniques, however, are shown to be ine↵ective against advanced so-

cial bots [28] that more closely resemble human behavior. This lack of adaptability

will also translate to reduced readiness in identifying bots from single data points.

To bypass these limitations of conventional methods, an LSTM (Long Short Term

Memory) model is used, which is a refined variant of RNNs - Recurrent Neural Net-

works. LSTMs are capable of learning long-term dependencies, especially in sequence

prediction problems. They are designed with feedback connections that are capable

of processing entire sequences of data. RNNs, and subsequently LSTMs, have been

shown to be suitable for NLP work since their design allows recognizing relationships

in sequential data [55]. In order to use an LSTM model it is necessary to convert

tweet data to a suitable form.
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6.3.2 Data preprocessing

To prepare tweet data for usage in an LSTM model, the first step is to tokenize the

tweets and create a string of tokens for each one of them. These tokens are then parsed

through, and special elements are replaced with tags. These special elements include

URLs, hashtags, numbers, usernames. For example an identified URL is replaced

by the tag < url >, a user mention is replaced by the tag < user >. This will

e↵ectively help the LSTM to learn the substructure of the language used by training

on element/word co-occurrence. In our reimplementation this was done by utilizing a

python package for regular expressions 1 and distinct patterns for hashtags, numbers,

URLs and user mentions.

Similarly, the most common emojis encountered are replaced by tags. The emojis

targeted are smile, heart, lolface, angryface, neutralface, which are converted to <

smile >, < heart >, < lolface >, < angryface >, < neutralface >. In the

reimplementation this was done with regular expressions and patterns of the Unicode

representation of the emojis.

A more interesting step in data preprocessing is done by identifying two patterns

in the tokens parsed: words written in all caps and words that contain more than

two repeated letters. When one or both of these patterns are recognised, relevant

tags are appended to the token. In example, the word ’POOL’ will be replaced by

two tokens, ’POOL’ and < allcaps >. The misspelled word ’BRITTTLE’ will be

replaced by three tokens, ’BRITTTLE’, < allcaps > and < consecutivechars >. In

our reimplementation this was done by creating two processes, one checks a token for

consecutive characters, the second checks for fully capitalized tokens, references the

first process for finding consecutive characters and then appends the appropriate tags

to the tokens. All tokens are then converted to lower case.
1https://docs.python.org/3/library/re.html
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6.3.3 Long Short Term Memory

These tokens are then transformed to an embedding layer by using a set of pre-trained

GloVE - Global Vectors for Word Representation2. GloVe is an unsupervised learning

algorithm for obtaining vector representations of words. The embedding layer in an

LSTM is used to create word vectors for incoming words and it sits between the input

layer and the LSTM layer. The embedding layer uses weights that can be initialized

with random values, or can be initialized by using third-party word embeddings, like

GloVE. Note that word embeddings are a type of word representation that allows

words with similar meaning to have a similar representation. Using this kind of third

party embeddings is a form of transfer learning, since semantic information that was

learned during the embedding process is transferred between words.

Using an LSTM does not come without shortcomings. Since a Twitter account’s

metadata are not sequential, meaning they are independent data points that make

sense without informational context(unlike tweet text), they cannot be utilized by a

conventional LSTM architecture. This means that if we want to push the performance

of an LSTM a bit further by combining tweet data with account metada, that will

not be possible with a traditional LSTM. To combat that, the authors have proposed

a contextual LSTM architecture that can utilize account metadata as well. This

architecture can be seen in figure 6.1 below. Notice the elements in blue color, which

are the additions compared to a conventional LSTM.

The way this architecture works is by giving a supplementary input to the out-

put layer. This supplementary/auxiliary input will contain the account metadata

mentioned earlier. The main input is the tweet text, tokenized and processed into

GloVE vectors, which are then fed into the LSTM model as described above. The

32-dimensions output vector produced by the LSTM is concatenated with the sup-

plementary input, concatenation that is then given as an input to a two-layers(sized

2https://nlp.stanford.edu/projects/glove/
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Figure 6.1: Contextual LSTM architecture

128 and 64 nodes) neural network with ReLU activation functions that produce the

main output. An auxiliary output is introduced as a regularization mechanism whose

target is the classification label as well.

This approach is tested in four batches: a) the simple, o↵-the-shelf classifiers,

used on tweet metadata (see content-level column in 6.1) without data balancing,

b) same classifiers combined with SMOTE+ENN, c) same classifiers combined with

SMOTE+Tomek, d) the LSTM architecture with di↵erent configurations.
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6.4 Results and Discussion

The first batch that used only a tweet’s metadata, performed rather underwhelmingly,

with accuracy that barely exceeds the 0.80 threshold. The second batch that utilized

SMOTE combined with ENN sees a leap in performance with all models scoring in

the 0.80 - 0.90 range. The third batch that utilized SMOTE combined with Tomek

saw no such improvement, surprisingly it even had a small decline in performance

with scores in the 0.76 - 0.77 range. Batch four, the LSTM, achieved the best scores

overall, with accuracy and AUC around 0.95.

Our reimplementation mostly confirms the authors’ findings on the performance

improvements the LSTM brings and its capacity to identify bots based on single data

points. Performance that can extend to other datasets as well, as our testing on the

C15 dataset showed. All scores achieved in the reimplementation can be seen in table

6.3 along with the original scores achieved in the paper.
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Dataset Algorithm Accuracy Precision Recall
F1

Score
AUC

C17 Logistic Regression
0.8008
(0.8000)

0.8000
(0.7686)

0.8000
(0.7892)

0.7900
(0.7962)

0.7633
(0.7974)

C17
Stochastic Gradient

Descent
0.7625
(0.7448)

0.7600
(0.7322)

0.7600
(0.7478)

0.75
(0.7437)

0.7191
(0.7496)

C17 Random Forest
0.8042
(0.7765)

0.80
(0.7765)

0.80
(0.7975)

0.80
(0.7725)

0.7765
(0.7975)

C17 AdaBoost
0.7991
(0.8099)

0.80
(0.7694)

0.80
(0.7651)

0.79
(0.7683)

0.7618
(0.7946)

C17
SMOTE+ENN -

Logistic Regression
0.9188
(0.9161)

0.92
(0.8849)

0.92
(0.8715)

0.92
(0.8859)

0.8820
(0.8979)

C17
SMOTE+ENN -

Stochastic Gradient
Descent

0.8992
(0.8979)

0.91
(0.8788)

0.90
(0.8821)

0.90
(0.8738)

0.8860
(0.8816)

C17
SMOTE+ENN -
Random Forest

0.9233
(0.9325 )

0.99
(0.9761)

0.99
(0.9745)

0.99
(0.9745)

0.8806
(0.8736)

C17
SMOTE+ENN -

AdaBoost
0.9234
(0.9151)

0.93
(0.9244)

0.92
(0.9108)

0.93
(0.9138)

0.9065
(0.8937)

C17
SMOTE+Tomek -
Logistic Regression

0.7666
(0.7779)

0.79
( 0.7765)

0.77
(0.7732)

0.66
(0.6448)

0.7667
(0.7697)

C17
SMOTE+Tomek -
Stochastic Gradient

Descent

0.7664
(0.7791)

0.78
(0.7803)

0.77
(0.7855)

0.76
(0.7672)

0.7664
(0.7727)

C17
SMOTE+Tomek -
Random Forest

0.7747
(0.7675)

0.79
(0.7637)

0.77
(0.7716)

0.77
(0.7693)

0.7748
(0.7696)

C17
SMOTE+Tomek -

AdaBoost
0.7715
(0.7893)

0.79
(0.7732)

0.77
(0.7753)

0.77
(0.7754)

0.7716
(0.7821)

C17 LSTM + GloVE
0.9553
(0.9600)

0.9600
(0.9541)

0.9600
(0.9553)

0.9600
(0.9529)

0.9567
(0.9646)

C15 Logistic Regression (0.7695) (0.7966) (0.7637) (0.7795) (0.7693)

C15
Stochastic Gradient

Descent
(0.7367) (0.7549) (0.7338) (0.7419) (0.7569)

C15 Random Forest (0.7844) (0.7761) (0.7878) (0.7735) (0.7830)

C15 AdaBoost (0.7661) (0.7745) (0.7761) (0.7987) (0.7600)

C15
SMOTE+ENN -

Logistic Regression
(0.8800) (0.9151) (0.8989) (0.8894) (0.9000)

C15
SMOTE+ENN -

Stochastic Gradient
Descent

(0.9096) (0.8947) (0.8831) (0.8804) (0.9079)

C15
SMOTE+ENN -
Random Forest

(0.9148) (0.9763) (0.9733) (0.9811) (0.8924)

C15
SMOTE+ENN -

AdaBoost
(0.9227) ( 0.9060) (0.9147) (0.9251) (0.9182)

C15
SMOTE+Tomek -
Logistic Regression

(0.7823) (0.7667) (0.7819) (0.6254) (0.7705)

C15
SMOTE+Tomek -
Stochastic Gradient

Descent
(0.7748) (0.7694) (0.7745) ( 0.7693) (0.7787)

C15
SMOTE+Tomek -
Random Forest

(0.7839) (0.7885) (0.7832) (0.7864) (0.7897)

C15
SMOTE+Tomek -

AdaBoost
(0.7776) (0.7827) (0.7878) (0.7747) (0.7790)

C15 LSTM + GloVE (0.9447) (0.9581) (0.9562) (0.9357) (0.9722)

Table 6.3: Approach 2 Performance Metrics, Tweets’ metadata

Overall, as can be seen in tables 6.2 and 6.3, in almost all cases the Random Forest
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and the AdaBoost algorithms come up on top, performance-wise. Even in the second

approach with LSTM dominating in all metrics, the next best scores are attributed

to Random Forest and AdaBoost.

In terms of minority oversampling the combination of SMOTE and ENN is clearly

the better choice for this task. Both in the original scores and in our reimplementation,

and also in our application of the models on the C15 dataset, this combination clearly

helped push classification performance higher, especially on the account-level bot

detection task.

With tweet-level bot detection that performs well by examining a single data point,

the LSTM works great with a GloVE embedding, which goes to show that his archi-

tecture can improve performance in the order of 5%, compared to AdaBoost in the

SMOTE+ENN configuration, even by using a single tweet’s text body.

As with previous papers examined we tried to identify the most important features

in the datasets involved. Results can be seen in images 6.2 and 6.3. It appears the

most important feature for account-level classification is the favorites count feature,

meaning the number of likes an account has given, followed by friends count and

followers count - the number of accounts and account follows and the number of fol-

lowers it has. For the content-level approach the number of mentions (num mentions)

seems to be the most important feature in the classification e↵ort. The number of

mentions feature contains the number of accounts mentioned in a tweet. It is followed

by the number of hashtags(num hashtags) used in tweet and the number of retweets

a tweet has received(retweet count).
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Figure 6.2: Model Optimization and Feature Minimization Feature Importance -
Account level

Figure 6.3: Model Optimization and Feature Minimization Feature Importance -
Content level
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Chapter 7

Conclusions, Recommendations, &
Future Work

7.1 Conclusions

The purpose of this work was to find and analyze studies in the Twitter bot detection

field, explain their purposes, examine the dataset they use, explain their methods and

confirm their results and summarize the strengths and limitations of the studies. For

this purpose we selected and examined four papers - the criteria of selection being

how recently they were published, their claimed performance scores, how interesting

their approaches seemed and also the practical benefit that they all used the same

dataset.

The first paper, authored by researchers of the George Mason University [32] aimed

to identify bots by using sentiment features that can be extracted from the text body

of the tweets. The idea is based on the concepts of confirmation bias and the backfire

e↵ect and its purpose is to see whether these sentiment features can indeed benefit

the classification e↵ort and improve the accuracy of the models used, and also to

examine whether this approach can be used to non-English tweets. The dataset used

is C17. Five di↵erent methods are utilized, Random Forest, Feedforward Neural

Network, Support Vector Machine, Logistic Regression. Of these methods, Random

Forest and FFNN come up on top, on both the authors’ implementation and our

reimplementation. It is confirmed that there is an improvement when using the
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enhanced feature set with the sentiment features, as can be seen at the first two

rows of the table 3.2. Overall, this approach was proven to be e↵ective in detecting

bots with accuracy metrics hovering over 0.90. It was also proven that it can handle

non-English tweets, since the same methods were tested with tweets in Dutch and

produced similar results. It has to be noted thought that this aspect of the approach

is heavily reliant on the libraries that can extract sentiment from tweet text, like

Textblob. If the library does not support a specific language, the process comes to a

halt. It is also worth noting that in the subset of 13 (7 produced + 6 readily available

in C17) features that were used for training and testing the models, the five most

important features were all sentiment-related 3.1.

The second paper is similar in nature to the first paper, in that the author aims

for a language-agnostic approach to bot detection. Research goals include exploring

the possibility of detecting on a, purely, account-level basis (without having to exam-

ine the content the accounts produce), whether that would facilitate detecting bots

by completely avoiding language-specific features and finally to survey the quantity

boundaries of an e↵ective training dataset - meaning how large does a dataset need

to be in order to achieve reasonable high performance scores in detecting bots. The

dataset used in both the original author’s implementation and our reimplementation

is the C17. The methods used are for the most part the same ones used in other

papers examined: Random Forest, Multi-layer Perceptron, Support Vector Machine,

Adaboost and Logistic Regression. A total of 68 features are used, of which only 5

are readily found in C17, the rest are produced/calculated. The main mass of fea-

tures produced revolve around interpreting the sentiment of emojis present in tweets.

Of the methods used AdaBoost, combined with SMOTE+ENN for data balancing

brought the best performance, with all metrics climbing over 0.98, and Random

Forest with scores around 0.95. Our reimplementation of AdaBoost performed sim-

ilarly to the model created by the author with scores in the impressive 0.99 - 1.0

range. For the rest of the methods there were no scores mentioned in the paper so
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there is no room for comparison there. Overall, the research questions the author set

out to answer can be considered answered. A dataset of about eight thousand man-

ually annotated Twitter accounts has proven to be able to support high-performing

machine learning models. Tweet content can indeed benefit the classification pro-

cess, compared to only using account-level features. Account-level detection is indeed

feasible, with methods employing only account-level features performing around 0.90

with almost all methods, which supports the argument that this kind of approach can

benefit language-agnostic e↵orts in account-level bot detection. The aspect of identi-

fying the sentiment of a tweet through the emojis present in the text can bring some

benefits, as emoji sentiment features are amongst the most important features seen in

figure 4.1. This cannot, however, be considered a robust aspect of this methodology,

as many tweets do not employ emojis as a means of expression.

The third paper takes a more fine-grained approach to bot classification, by treating

traditional spambots, social bots and fake followers as three separate categories. The

reason for this are the recent advancements in AI and the automation landscape and

how diversified the bots are nowadays, it might be immaterial to consider bots a

unified group. So the author’s goal is to find the best performing machine learning

method for the task of bot detection and categorization. The dataset used for training

and testing is the C17, and in our reimplementation we also used the C15 to test how

well the models used will expand to new data. The methods used are Random Forest,

Logistic Regression, an Artificial Neural Network and k-Nearest-Neighbors. The last

two methods are mainly tested for diversity purposes by the author, there does not

seem to be many studies around that have utilized them. 120 features are produced,

and only the 100 most recent tweets per account were used. That will help balance

the dataset out, since the TweetsPerDay feature showed that genuine users post on

average 15 tweets per day - which is multiple times higher than any other account type.

Of the methods used theRandom Forest came up on top with accuracy of over 0.99,

with Logistic Regression and the ANN being close seconds. Our reimplementation

72



produced results very similar to the ones claimed by the author, with all methods

performing over the 0.97 threshold and Random Forest exceeding 0.99 in all metrics.

Testing these models on the C15 brought equally great results, with metrics around

0.94 and in most cases over 0.97. So the goal the author set out to do is achieved,

however it is also shown that the data used may be su↵ering from sampling bias.

That would mean that some members of the intended population were not sampled

with the same frequency as others. It is considered highly irregular that a real user

would post 15 tweets on average daily, or that they would have tweets with more than

700 retweets. It is hard to say though if such cases are merely outliers or a fault in the

sampling process, and the extent of the sampling bias - if it exists. Using the models

on the C15 dataset indicates that the approach described in this paper can indeed

be used on other datasets and bear impressive results, which does help suspend the

concerns about the quality of the data. The point still stands though, that emphasis

should be put on developing reliable and e�cient sampling procedures in order to

improve available data in both quality and quantity.

The final paper examined focuses on the tweet-level aspect of bot detection by

proposing a methodology that will classify an account based on a single data point.

They also suggest ways to overcome the lack of extensive labeled datasets by uti-

lizing synthetic minority oversampling techniques to generate large labeled datasets.

The dataset used is the C17, with a total of 16 features, all readily available in the

dataset. The authors follow a forked approach: account-level classification with ba-

sic, low-complexity, o↵-the-shelf algorithms used on a small set of ten features that

perform in the range of 0.94 to 0.98. They then use the same algorithms enhanced

by using SMOTE minority oversampling, combined with ENN and Tomek Links un-

dersampling techniques. These combinations push the performance to the 0.98 - 0.99

range, with AdaBoost and Random Forest being the top performers and proving

that near-perfect scores can be achieved without complex machine learning architec-

tures. The same round of tests is done on a set of six content-level features, which
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will bring scores in the range of 0.77 - 0.92, with AdaBoost and Random Forest

again at the top positions of performance. For the content-level approach, and af-

ter performing pre-processing on the data, they also employ an LSTM architecture,

combined with a pre-trained GloVE model, with performance that is in the range of

0.9553 - 0.9643, for the various configurations that were tested. Similar results were

achieved by the our reimplementation that was tested on both the C17 and the C15

datasets, and achieved scores in the 0.93 - 0.97 range. This goes to show that tweet-

level bot detection can be performed with very high levels of accuracy, small number

of features and datasets that are limited in size. Models that are based on small

number of features have the extra benefit of being e�cient and highly interpretable.

7.2 Future Work

Throughout all the papers examined the most prevalent di�culty in the research

e↵orts was the scarcity of extensive datasets that will support future studies in bot

detection and sampling procedures that will be able to keep up with the increasing

levels of sophistication and complexity the modern bots continue to demonstrate.

Before looking into developing more robust sampling techniques, it would be useful

to do more research in the bot classes that actually exist. The bot classes used in this

project and the studies it examined are by no means exhaustive. Looking more into

what demarcates one bot category from the other, as well as quantifying habitual

elements per category would not only promote our understanding of what constitutes

a specific type of bot, but will also help reduce bias in the sampling process. In

that direction it would also be helpful to examine cases of category overlap, where

one bot category’s elements leak into another’s. Establishing ’super’ categories that

contain more than one sub-categories, or looking into multi-label classification could

help in that regard.

Another aspect of bot detection would be the open-sourcing of available tools and

the interconnection with APIs/web services that will make identifying bots accessible
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to less tech-savvy individuals. On a larger scale, open source tools like this could be

used in mapping out a Twitter account’s body of followers, or analyze a tweet’s real

impact by purging its stats from bot-sourced interactions, like retweets and likes.
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