UNIVERSITY OF THE PELOPONNESE & NCSR “DEMOCRITOS”
MSC PROGRAMME IN DATA SCIENCE

A framework for the collection, aggregation, collation
and prediction of meteorological data

Dimitrios Xenakis
dsc19022

A thesis submitted in partial fulfillment
of the requirements for the MSc
in Data Science

Supervisor: Christos Tryfonopoulos, Professor

Athens, March 2024

UNIVERSITY OF THE PELOPONNESE & NCSR “DEMOCRITOS”
MSC PROGRAMME IN DATA SCIENCE

A framework for the collection, aggregation, collation
and prediction of meteorological data

Dimitrios Xenakis
dsc19022

A thesis submitted in partial fulfillment
of the requirements for the MSc
in Data Science

Supervisor: Christos Tryfonopoulos, Professor

Approved by the examination committee on March 2024

(Signature) (Signature) (Signature)

Christos Tryfonopoulos Theodoros Giannakopoulos Spiros Skiadopoulos
Professor Principal Researcher Professor

ATHENS, MARCH 2024

Dimitrios Xenakis

MSc. Thesis, MSc. Programme in Data Science

University of the Peloponnese & NCSR “Democritos”, March 2024
Copyright © 2024 Dimitrios Xenakis. All Rights Reserved.

It is prohibited to copy, store and distribute this work, in whole or in part, for commercial
purposes. Reprinting, storing and distributing for non-profit, educational or research purposes
is permitted, provided the source is acknowledged and this notice is maintained. Questions
regarding the use of the work for profit should be addressed to the author.

The views and conclusions contained in this paper are those of the author and should not be
construed as representing the official positions of academic institutions.

UNIVERSITY OF THE PELOPONNESE & NCSR “DEMOCRITOS”
MSC PROGRAMME IN DATA SCIENCE

Declaration of Authorship

1. | declare that this thesis has been composed solely by myself and that it has not been
submitted, in whole or in part, in any previous application for a degree. Except where
states otherwise by reference or acknowledgment, the work presented is entirely my
own.

2. | confirm that this thesis presented for the degree of Bachelor of Science in Informatics
and Telecommunications, has
a. been composed entirely by myself
b. been solely the result of my own work
c. not been submitted for any other degree or professional qualification

3. I declare that this thesis was composed by myself, that the work contained herein is my

own except where explicitly stated otherwise in the text, and that this work has not been
submitted for any other degree or processional qualification except as specified.

(Signature)

Dimitrios Xenakis

Acknowledgments

The present postgraduate thesis "Analysis, visualization, forecasting of meteorological data
by machine learning methods" was prepared within the inter-departmental postgraduate
program in Data Science, co-organised by the Department of Informatics and
Telecommunications of the University of Peloponnese and the Institute of Informatics and
Telecommunications of National Centre for Scientific Research “Demokritos”.

| would like to express my warm thanks to my supervisor Professor Christos Tryfonopoulos,
for the opportunity he gave me to prepare this postgraduate thesis, for the trust he showed
me as well as for the excellent cooperation we had throughout its preparation.

In particular, | warmly thank the teaching staff of the University of the Peloponnese as well as
the Institute of Informatics for the knowledge and experiences they offered me.

| would also like to thank Vicky for her undivided and practical support throughout the
elaboration of the work.

Finally, | thank my family for the support and trust they have shown me during my studies, as
well as my close friends for their invaluable support and understanding

NEPINHWH

TNV mapovuca SUTAWUATIKA £pyacio LEAETACOUE TO KATA TTOCO OL UETPHOELS SESOUEVWV
KopoU ToU Tipogpyovtal amo SladopeTIKOUG UETEOPOAOYLKOUC OTABUOUG Kal TINYEG
OUYKAlvOUV UETAEL TOUC. AsSOpEVOU OTL UTIAPXEL TTANBWPA LETEOPOAOYIKWY OTABUWY,YLa
KATIOLO. CUYKEKPLUEVN YEWYPADLKN TEPLOXN, TAPAPEVEL aoadEG TO YEYOVOG, KATA TOCO Ol
Sladopetikol autol otabuol napéxouv mapoduola f oxt Sedopéva.

IKOTOG TNG €PYAOLOG QUTAG EWVOL VO OCUYKEVIPWOEL HETEOPOAOYIKA OSedopéva amo
SLapopETIKEG TINYEC YLa TNV TtepLoxh tng TplmoAng, €8pag tou Naveniotnuiou MNeAomovvricou
KOLLVOL UTIOPECEL HECA ATTIO SLAYPAUOTA KOL VPO HOTA VO TIPOCHEPEL TTOCOTLKA KOUL TIOLOTIKA
anoteAféoparta, 600 adopd AMOKALOELG TTOU EVOOXOUEVWE UTIAPXOUV HETAEY TWV OTAOUWV.

Emionc otnv mopouca epyacio yivetal plo mpoomabsla ywa TNV Snuloupylo evog
BpaxumpodBbeopou povtéhou TPOPAsYPnG Bepuokpaciag ypnolpomolwviag evo LSTM
VEUPWVLKO Siktuo Kal Baciletal oe LoToplkd S£60pEvVa TTOU £XOULE SN CUYKEVTPWOEL.

H peBodoloyia mou akoAouBroope ATOV OPXLKA N CUYKEVTPWON TwV SES0UEVWV QTTO TLG
SlapopeTIkEG NYES, Xpnoluomolwvtog web scraping, evw énetta ta 6edouéva autd adou
UETOOXNUOTIOTOUV OE KOWEG HOVASEG HETPNONC amoBnksvovtal Hovipa. Exovtag ta
SeSopéva amoBnKeupEVa UMOPOUUE va SNLLOUPYNCOULE YPAdHLOTO OTITLKOTIOLWVTAG TUXOV
Sladopéc mou umdpyouv oe pla SeSopévn XPOVIKA OTLYUR. AvodoplKkA PE TO HOVTEAO
TPOPBAEPNG, XpnotpomolnOnké n texvikr tou Grid Search yia tnv eUpeon Twv BEATIOTWY TLUWV
TWV TOPAUETPWY TOU. TO HOVIEAO HOC XPNOLUOTOLEL TIG TeAeUTOleG 64 UETPAOELC YO VO
TiPoBAEYEL TIG EMOUEVEG 12 OL OTIOLEG AVTLOTOLXOUV OE €va XPOVLKO opilovia 6 wpwv.

Méoa armo tnv mapanavw SLadikooia KATOHANYOUE OTA CUUTTEPACHATA OTL UTIAPXOUV b
SL0popEC PETAEL TWV HETEOPOAOYLIKWY OTABUWY oTnVv meploxn tng TpimoAng, mapdio mou ol
otaBuol autol Bplokovral oe KOVTIVEG AMOOTACELG LETAEY TOUG, OMWE EMioNG OTL lvatl ePLKTN
n duvatotnta BpaxunpdBeoung mpoPAedng Beppokpaciog HECW VEUPWVLKWY SIKTUWV.

NE€eLg KAsldLa

ZuMhoyn peteopoloylkwv Sedopévwy, ZUyKpLon peteopoloylkwv SeSopévwvy, MpoBAedn
Oepuokpaciag, Machine learning, Deep learning, Long short-term memory, LSTM,
Elasticsearch, Kibana, Scrapy.

ABSTRACT

Nowadays, there are several different sources (weather stations, sites) of meteorological
data, regarding a specific geographical area, however it remains uncertain and unclear how
much these data converge. One approach to solve this particular problem is to collect
meteorological data from different stations for the same geographical area, visualize and
aggregate them in a time series analysis. The above approach was used for the city of “Tripoli”
— Peloponesse — Greece, and after collecting data from seven different local meteorological
stations, we concluded that there are clear differences on climate parameters (temperature,
humidity, wind, precipitation, etc.) between the different stations, even though these stations
are very close to each other. Also, using the historical data that have been collected, we train
and deploy a short-term temperature prediction model, using a biredirectional LSTM models.
The deployed model proves to be accurate in the prediction of temperature for the specific
area, demonstrating its efficiency for short-term predictions of temperature values.

Keywords:

Meteorological data collection, Meteorological data aggregation, Temperature forecasting,
Temperature prediction, Machine learning, Deep learning, Long short-term memory, LSTM,
Elasticsearch, Kibana, Scrapy.

Table of Contents

B P AHWH. ... e e e e e 1
ABSTRACT ...ttt ettt et e e e e et te e e e e e e s s s ab b aeeeeeesea s asbataeeeeeesanstbaeeeeeeeeeannrreees 3
LISt Of TADIES ... ettt st et sabe e s ne e e b e sans 6
LISE OF FISUI@Soeeiieeieee ettt ettt e et e e e et e e e ettt e e e e aataeeeestaeeesansaeeeennsseeesannaeeeas 6
Chapter 1 — INtrodUCLIONooiiiiiiei e e e e s et e e e e abae e e e anes 8
1.1 TRESIS PUIMPOSE ...ttt et e st e e e s te e e s sate e e e sntaaeesntaeeesan 8
1.2 Existing Approach and Differentiation................cccocovviiiiiiiiiiiii e, 9
13 Organization and Presentationccccoiiiiiiiiie e 10
Chapter 2 = Related WOKKooooiiiiiiiee et e ettt e e e rae e e e 11
Chapter 3 — System Archite@Cture...............coooooiiii i 13
3.1 End to End Analysis development...............cccooiiiiiiiiiiiie e 13
3.2 Core stack — Data Managementcoovciiiiiiiiiieeeiiiie et 14
I N CF- 11 o [=1 g gV BT | - NSRS 14
3.2.2 Weather Data SOUICES.............ccoeiiiiiiiiiieieesee ettt st e e e 16
3.2.3 Forming and Transforming Datacccceiieiiiiiiniiiie e 18

3.2 Persistence stack = Data StOragecccoecvvieiiciiii e 23
3.3 View Stack —Data VIEWcociiiiiiiiiiiiieiee ettt ettt 26
3.4 Other Tools — Jupyter NotebooKkccuviiieiiicce e 27
Chapter 4 — Data Analysis and Visualization..................ccccoi i 29
4.1 VISUQlIZAtiONSoooiiiiieiieeee e s 29
4.2 DAshbOardscocooiiiiiiiii e e 38
Chapter 5 — Weather Data FOrecasting.............ccccoeoviiiiiiiiiii it 39
LN R o [T T L= o N I - U UURRR 43
5.2 - OPHIMUZEL ..o e e e e s e e e e e e e e e e e nabtaraeaeeeeannees 45
5.3 - UNIES oo 46
5.4 = BatCh Sizeoomeiieee e e 47
5.5 — Activation FUNCEION............oooiiiiii e 48
5.6 -LearNiNg RAteouiiiiiiii et e e e e et e e e e e e e nnbr e e e e e e e e eeannes 49
5.7 - Training and Evaluation ProCessc.uvveiiiiiiicciiiieeee ettt et e e e e 50
Chapter 6 — Conclusions and Future EXtensions...............cccccevviiieiiciiiee e 60
6.1 CONCIUSION ...ttt ettt et sb e s bt e b e b e smee st e e reenneens 60
REFEIENCES...... ..ottt ettt b e bt s bt e s at e e be e beesbeesbeesaeesaneeane 62

List of Tables

TABLE 1 — TABLE OF (STATION) DATA SOURCESveeeeurieeeereeeeiitreeeesreeeeeisseeeeesseeeeaseeeeesssseesasssseesssseseessseesassesens 16
TABLE 2 - WEATHER STATIONS COORDINATEScuuutvuteeeeeeeeeursteeeseeesaaiusssessesssesssssssssesssesssssssssesssessassssseeessennnnnns 17
TABLE 3 WEATHER OBJECT FIELDS ..vvuvuuuuuuususununnnnnnnnnnnnnnnnnnnnnnsnnnnnnnnssnsssnnnsnnnnnnnnnnnsnsnnsnnnnnnsnnnnnnnsnnnnnnnnnnnnnnnnnnnnnnn 19
TABLE 4 - CORRELATION VALUES = TEMPERATUREuuuuuuuuuunuunsnsunnnnnnnnnnsnnnnnsnnnnnnnnnsnnnnnnnnnnnnnnnsnnnnnsnnnnnnnnnnnnnnnnnnnnnnn 36
TABLE 5 - CORRELATION VALUES = WIND VELOCITY ..vvvteeeeeeeieurrreeeeesesesunsreesessssssssssessessssssssssssesssssssssssssesssessnnnes 36
TABLE 6 - PRECIPITATION CORRELATION VALUESeuvvvrreeeeeeseerrreeesesesessussseesesssssssssessessssssnssssssesssssssnsssseesssesnnnnns 36
TABLE 7 - HUMIDITY CORRELATION VALUES .1veeeeeeiurrureeesesesasurreeesesssssussseesesssssssssssssessssssssssssesssssssssssseesssessases 37
TABLE 8 - BAROMETER CORRELATION VALUES.....ceuuvttreeeeeeeseurereeeeesssessnssseesesssessssssessessssssssssssesssssssnsssssesssessnnes 37
TABLE O — MIN IMAX VALUES «..vvtvteeeeeeesurtureeeseeesenssssseesesesassssssessesssesssssessessssssssssssesssssssssssssessssssnssessesssessnnnes 53

List of Figures

FIG. 1 RESEARCH OVERVIEW ...eveterererererereresenesesesesssssesssesssesesesseeesememememmmemmmmmmmm 11
FIG. 2 PURELY DATA-DRIVEN DL WEATHER FORECASTING SYSTEMeevetererererererereeeeeeeeeeeeeeeseseereseeeseeerermeemememmmemeeee 12
FIG. 3 SCRAPY FRAMEWORK LOGO ..vvvvertrerererererereresesesssesesssesessssssssssssssssssssssssssssssssteseseteeeeteeteteettmmmemmm. 14

FIG. 4 —SCRAPY ARCHITECTURE ...ccereuuuereneeeaennns15
FIG. 5 PYTHON PROGRAMMING LANGUAGE LOGO..

FIG. 6 ELASTICSEARCH LOGO......vvveeeeeerennrnnnns .23
FIG. 7 JAVA PROGRAMMING LANGUAGE LOGO24
FIG. 8- DATA REPRESENTATION INTO ELASTICSEARCH .. .25
FIG. O KIBANA VISUALIZATION EXAMPLE ...evvvvvvvsrsesesssesssesemessrmsemmmmm. 26
FIG. 1O KIBANA LOGO ..vvvvvrvrerureenressssssesssesssssssssssesssssesesssssessrersseserene 26
FIG. 11- JUPYTER NOTEBOOK LOGO...ueuvvverrerersresesessssessssssssssssssssssssssssssssssssssssssesssssesssssssssssesssesesesesmsssemsrmsmrmmen 27
FIG. 12 — SYSTEM ARCHITECTURE ...vvvvvvvrerssseessesesesssessssssssssseseseseserssmseserermrmrmmnn 28
FIG. 13 - DATA AGGREGATIONS ..veeteeeieuuerreeeesssesusrrereesssasassssseesssessssssssessssesansssssessesssanssssssssesssessssssnseesssessnnnes 29
FIG. 14 - WEATHER DATA PER STATION DISTRIBUTION ...vvvvvvvvrrrrrersssesssssesesssssssssssssssssssesssssssssesssesesesemmmemmmmmmmmm. 29
FIG. 15 MAXIMUM TEMPERATURE PER STATION AND YEAR ...vvvvtvtuurruesesesesesssesssesesesesssssesssssssesesssesemesemmmemmmmmmmmm. 30
FIG. 16 — MINIMUM TEMPERATURE PER STATION AND YEAR ..vvvtvttuttresssssesesesesssesssesssesesssssssssesesesesemesemmmemmmmmmmmmm. 30
FIG. 17 MAXIMUM PRECIPITATION PER STATION AND YEARvvvtvtuurrureeessesesssesssesssesssssssssssssssssesssesesesssmmemmmemmmmmm. 31
FIG. 18 — MINIMUM HUMIDITY PER STATION AND YEARevvvtturerererererererenenereeesesseeseseeemeseeesemmeeeeemmmemmmmmmmmmmm. 31
FIG. 19 — TEMPERATURE DISTRIBUTION ...etettrertrererereresenesesesesssesssesssssssssssssssssssssssessssssssssssesssssesememmmmmmmmmmmmmmm 32
FIG. 20 — HUMIDITY DISTRIBUTIONuuuuuvrteeeessensuunrreeeessssssssreneeesssssssnssneeesssssssussseesesssssssssssssesssessssssnseesssssssnes 32
FIG. 21 — WIND VELOCITY DISTRIBUTION ..ctettrtrtrerererereseneresesesssesssssssssssssssssssssesssssssssssssssssssssseeemememmmmmmmmmmmmmmm. 32
FIG. 22 — PRECIPITATION DISTRIBUTION ..1tttttvvrersssesesssesemesemmmmmm. 32
FIG. 23 — NEXT HOUR TEMPERATURE PREDICTION ..1vvvvvvtererssesssssesesessssssssssssssssssssesssssssssssssssssssssesesesssmsemmmemmmmmmm 33
FIG. 24 — NEXT SIX HOURS TEMPERATURE PREDICTION v.vvvvvvvvvrsssssesesssssssesesesssssssssesssssssssssssssssssssesesessmmmesmmmmmmmmeme 33
FIG. 25— TEMPERATURE HEATMAP CORRELATIONvvvvtrerereresesesessssssssssssssssssssssssesssssssssssssssssesesesesesssmmemmmmmmmmmm 34
FIG. 26 — BAROMETER HEATIMAP CORRELATION ...vvvvvtvrerersrssessesesssesesesssmmemmmmmmmmmm 34
FIG. 27 — PRECIPITATION HEATMAP CORRELATIONuvtttereessuerereeesesesonrnneeesessssssssseesesssssssssssssessssssssssnseesssesssnnns 35
FIG. 28 — WIND (VELOCITY) HEATMAP CORRELATIONeeeiuuvreeesurreeeesnseeesensneeesssessassesessnsssesssssessssssssessnssssessnseees 35
FIG. 29 - DATA DISTRIBUTION DASHBOARDccettiiiiiiiiiiiieeeieiciiiieteseeesssinreeeeesssssssseeesesssesssssssseessssssnnnes 38

FIG. 30 — CORRELATION DASHBOARD ..
FIG. 31 — DATASET DATA FRAME39

FIG. 32 - HIDDEN LAYERS OPTIMIZATION... .44
FIG. 33 — OPTIMIZER OPTIMIZATION.......45
FIG. 34 — UNITS OPTIMIZATION 11vtvtttututessesssesesesesemere.. 46
FIG. 35 — BATCH SIZE OPTIMIZATIONuuutiteeeeeeeeiustrereeeeeaasssssseesesesaassssssesssesaasssssessesssenssssssssesssesssssssssessseannnnes 47
FIG. 36 — ACTIVATION FUNCTION OPTIMIZATION ...uuvvveeeerseesuereeeeesssesenreneeesesssssssssseesesssssssssssssessssssssssnseesssesssnnes 48
FIG. 37 — LEARNING RATE OPTIMIZATION ...veetetsieuuerreeeessensnnrereeesessssssssnseesessssssssseesesssssssssssssesssessssssnseesssssssnes 49
FIG. 38 — HISTORICAL DATA VISUALIZATION eeteteeeuuerreeeessesseunreneeessssssssssneeesesssssssssseesesssssssssssssesssessssssnseesssssssnnes 50

file:///C:/Users/Dimitris/Desktop/dissertatio-Postgraduate%20Thesis%20.docx%23_Toc157961742
file:///C:/Users/Dimitris/Desktop/dissertatio-Postgraduate%20Thesis%20.docx%23_Toc157961743
file:///C:/Users/Dimitris/Desktop/dissertatio-Postgraduate%20Thesis%20.docx%23_Toc157961753
file:///C:/Users/Dimitris/Desktop/dissertatio-Postgraduate%20Thesis%20.docx%23_Toc157961767
file:///C:/Users/Dimitris/Desktop/dissertatio-Postgraduate%20Thesis%20.docx%23_Toc157961768
file:///C:/Users/Dimitris/Desktop/dissertatio-Postgraduate%20Thesis%20.docx%23_Toc157961771

FIG. 39 — LOSS DURING TRAINING PROCESS. .. .ceevvvuuunereerrerrrsnaeeeseessssuneeeeessssssssseeesssssssnsesessssssssnaeesesssssssmneeseens 51

FIG. 40 PRE-EVALUATION STATISTICS vvvvvtttuuresssssssesssesesssesssssssssssmsssersreresmmen 52
FIG. 41 — PREDICTION VISUALIZATION ON TRAINING DATA ...evvtrerererereseseresesesesesssssesssssssssssssssssesssesemessrmsessmss. 53
FIG. 42 — PREDICTION VISUALIZATION ON TEST DATA ..1ttteeeeeiurrreeeeseeessnrsneeesesssasssssseesesssssssssssssesssssssssssseesssesnsnnes 54
FIG. 43 — PREDICTION EVALUATIONuuuutveeeeeeseeiuerseeeesseasansssseeesesessnsssssessesssassssssessessssssssssssesssessssssnseesssessnnnns 55
FIG. 44 — CORRELATION HEATMAP FOR PREDICTED AND REAL TEMPERATURE VALUES.....cceeeeiriierrreeeeeesessnnrrnreesssessnnnns 56
FIG. 45 — OUTPUT FOR THE NEXT 12 TEMPERATURE SAMPLES ...vvvveeeeeeieururreesesesesnnnsreesesssssssssessesssesssssnseesssessnnnes 56
FIG. 46 — NEXT 12 SAMPLES PREDICTION ..vvvvvvversssesssssssssssssesssessssrsssmen 57
FIG. 47 — PREDICTION AND REAL VALUES HEATMAP CORRELATIONuvvvvrrrerererrseseseseresesssesssssssssssssssssssssssesemsmsrmmsmen 58
FIG. 48 — PREDICTION DASHBOARD NEXT TEMPERATURE VALUES ...vvvvvvverrererereseseeesereseseserssssssssessssssrerersresemememmmmme. 58
FIG. 49 — PREDICTION DASHBOARD DISTRIBUTION AND CORRELATIONvvvevrrrrrrerererererereserssssssesesssssesssssssssesssmresenen 58

file:///C:/Users/Dimitris/Desktop/dissertatio-Postgraduate%20Thesis%20.docx%23_Toc157961779
file:///C:/Users/Dimitris/Desktop/dissertatio-Postgraduate%20Thesis%20.docx%23_Toc157961780
file:///C:/Users/Dimitris/Desktop/dissertatio-Postgraduate%20Thesis%20.docx%23_Toc157961783

Chapter 1 — Introduction

1.1 Thesis Purpose

The initial purpose of this thesis is to examine the discrepancy between meteorological data,
obtained from different stations of the same geographical area. Although meteorology
vendors provide visualization and statistics tools for their data, there is no any known tool
that compares data of different providers regarding their discrepancies. The goal of the curent
work is to develop a tool that will visualize data from different meteorological sources in a
time series scale and detect differences of weather variables (such as temperature, rain,
atmospheric pressure, etc.) with quantitative and qualitative characteristics. The above tool
uses various existing software technologies regarding data collection and storage while proves
that there are clear differences on climate parameters between the different weather stations
of the region of Tripoli — Peloponnese — Greece.

The next aim of this thesis is to create a short term weather forecast model using the data of
the previous section applying machine learning methods. Related studies and literature
suggest deep learning models as a novel way of weather forecasting while a state of the art
artificial neural network which has been used is the Long short-term memory — LSTM. The
present work, by applying related studies confirms that deep learning models can provide
short-term weather forecasts with high accuracy and reliability.

It is worth noticing that it was given great emphasis on the architecture and application
development tools, both in terms of operation and data storage, providing the ability of
continuous and uninterrupted operation.

https://en.wikipedia.org/wiki/Long_short-term_memory
https://en.wikipedia.org/wiki/Long_short-term_memory
https://en.wikipedia.org/wiki/Long_short-term_memory
https://en.wikipedia.org/wiki/Long_short-term_memory

1.2 Existing Approach and Differentiation

Every weather data provider (websites, meteo stations) provides information about the
weather progress based on their measurements and data. Although this approach offers to
the public, plenty of weather data from different sources, it is difficult to examine if these
different measurements converge to each other. Therefore, comparison and aggregation is a
novel process for examining the convergence between data of different weather sources. The
differentiation of the current work is to collect, store, visualize and aggregate data from
different sources and stations for comparison and aggregation purposes.

Another important process that utilizes weather data is forecasting. The weather prediction
process has always been a major factor in the everyday human life. The first reference related
to the concept that the natural phenomena can be described by mathematical equations, was
formulated by Isaac Newton (Newton, 1680). By the year 1922, the English mathematician
Lewis Richardson describes at his work (Richardson, 1922) a weather forecast model using
differential equations. The problem at this time rather than the accuracy of the model was
the lack of computing power while the calculations were made by hand. At the decade of 1960
Edward Lorenz (Lorenz, 1963) introduce a model using chaotic differential equations in order
to describe weather data parameters with better accuracy. At this time, the first computer
systems were used also to solve the proposed weather model.

From that, time on the main problem was the computer power. Beginning from 1980 the first
international centers for weather forecasting such as E.C.M.W.F. - European Center for
Mesoscale Weather Forecasts ! have been created using computers like CRAY 2and Cyber 205.
Still now, the scientific community utilizes classical weather forecasting models using
differential equations, combined with modern supercomputers and techniques in order to
improve the prediction process®.

However, a part of the scientific community tries to deploy novel techniques and methods for
weather forecasting, using machine learning models and algorithms overcoming the existing
approach using differential equations. Research centers and organizations such as ESA,
E.C.M.W.F,, (Schneider, Massimo, Geer, & Arcucci, 2022) and IEEE (Mishra & Joshi, 2021)
differentiate and take advantage of these new machine learning methods.

Our approach differs from the classical (through differential equations) weather forecasting
process since it uses LSTM (Long short-term memory), a state of the art deep machine learning
model and confirms alongside related studies, that deep learning models can provide reliable
short-term weather forecasts.

L https://www.ecmwf.int/en/forecasts/documentation-and-support
2 https://www.craysupercomputers.com/
3 Weather and Forecasting - American Meteorological Society (ametsoc.org)

9.

https://en.wikipedia.org/wiki/Differential_equation
https://en.wikipedia.org/wiki/Edward_Norton_Lorenz
https://en.wikipedia.org/wiki/Differential_equation
https://www.ametsoc.org/ams/index.cfm/publications/journals/weather-and-forecasting/

1.3 Organization and Presentation

In the following chapters are developed the sub-sectors of the current work. Chapter 2
presents the related work based on the mathematical approach to meteorology, while at
Chapter 3 we present the tools and technologies, which have been used at the present work.
The data collection, which is a major factor of our development, is presented in Chapter 4. In
Chapter 5 is analyzed the weather forecasting process based on deep learning model while at
Chapter 6, the reader can see the results of data analysis (aggregation) and forecasting using
the corresponding interactive graphs. Finally, Chapter 7 presents the results of aggregation
and forecasting and also, we suggest possible methods to improve the present work.

-10-

Chapter 2 — Related Work

In our days, the goal of high accuracy within existing models such as ECMWF, ICON, GFS, NAM,
and HRRR has been achieved®. However the challenge of scientific community is to rely
entirely on algorithms and machine learning tools in order to produce high accuracy, reliable
weather forecast models, which can been used in many sectors of everyday life such as
agricultural, sea transport and many others. Additionally, when using machine learning, the
selection of the algorithm/ technique is not at all a trivial task. The well-established weather
research and forecasting (WRF) that constitute the current state-of-the-art use algorithms
such as Standard Regression (SR) (Sharaff A, 2018), Support Vector Regression (SVR) (Voyant,
2017), Random Forest (RF) (Sanchez-Fernandez, de-Prado-Cumplido, Arenas-Garcia, & Perez-
Cruz, 2004), Autoregressive Integrated Moving Average (ARIMA) (M, Islam, Nadvi, & Rahman
, 2013), Vector Auto Regression (VAR) (Sun, Wang, & X-R, 2008), Arbitrage of Forecasting
Expert (AFE) (Cerqueira, Torgo, Pinto, & Soares, 2019).

There are also studies with novel lightweight data-driven weather forecasting models such as
long short-term memory (LSTM) (Behera, Keidel, & Debnath, 2018) , (Hewage, Behera, Trovati,
& Pereira, 2019) and Temporal convolutional networks (TCN) (Hewage P., 2020)

The challenge is to determine (through experiments) the most suitable machine learning
technique to use for weather forecasting. Figure 1 shows the overview of the process followed
to compare the performance of novel proposed machine learning algorithms with existing
classical forecasting models.

[Weather Prediction

Historical N Z > |

weather

Data Proposed ‘

Machine R
Learning * Weather Prediction

Model

FIG. 1 RESEARCH OVERVIEW

A recent related work (Pradeep, Marcello, Ella, & Ardhendu,, 2021) demonstrates that the
proposed lightweight deep model can be utilized for weather forecasting up to 12 hours for
10 surface weather parameters (TSK, PSFC, U10, V10, Q2, Rain, Snow, TSLB, and SMOIS). The
model outperformed the state-of-the-art WRF model. Furthermore, the proposed model was
able to overcome some challenges within the WRF model, such as the understanding of the
model and its installation, as well as its execution and portability. This process was highly
efficient compared to the WRF model.

4 https://weather.us/model-charts

-11-

At figure 2, the related work (Schult, et al.,, 2021) suggest a workflow for end-to-end
replacement of current classical methods with deep neural networks. This work suggest end-
to-end replacement with deep neural networks.

Current NWP workflow Hybrid NWP-ML/DL End-to-end DL workflow
{Operational) workflow (Suggested)
(Work in progress)

input
selection of observations selection of observations
pre-processing / for data assimilation foe daa assimilation. and feature engincering
data preparation and feature engineering
= S =
assimilation le Kalima | |
s | |
initial conditions | et |
: direct mapping from
) PAramMEEnsation deep neural network or . : 3 .
prediction dynamical (@ % CE e eoived ¢ observations to specific
coce hybrid NWP-DL model I forecats products |

. griddedforccastfikds ' i

evaluation

FIG. 2 PURELY DATA-DRIVEN DL WEATHER FORECASTING SYSTEM

Finally, the work, (Kreuzer & Munz, 2020) concludes that neural networks can be efficiently
trained for shorter forecasting horizons deep using GPGPUs and the applicability of convLSTM
networks is beneficial for temperature forecasting.

-12-

Chapter 3 — System Architecture

At this chapter, we thoroughly present the tools and technologies used at the present work
as well as the proposed architecture.

3.1 End to End Analysis development

Our attempt to manage, store and visualize meteorological data needs to be deconstructed
into corresponding programming tools where each one will fulfill its respective role. In
particular, the need to manage and compare meteorological data from various sources
initially requires a tool that will be able to communicate with these sources to extract the data
we need. Next, there should be a second programming tool, which can store these data
permanently. Finally, the stored data should be available and accessible from visualization
applications so that end users can manage charts and visualizations.

The main pillars of the system architecture are i) the communication with the various sources
for the extraction of meteorological data, ii) the data storage somewhere centralized and iii)
the visualization tools about this data for end users use.

The challenges in such an undertaking are enough. To end up having aggregations
visualizations we need to ensure that each variable of the weather data corresponds to
common units of measurement. As typical example is that, some sources may offer the
temperature in Celsius degrees, while others in Fahrenheit. This means, respectively, that
apart from the basic tools for extracting, storing and visualizing data, we need additional tools
that transform the variables of our data (temperature, wind direction and velocity, barometric
pressure, humidity, precipitation) into a common system.

Therefore, it is somewhat clear now, that we need a Core stack, which will be responsible for
communicating with the different meteorological sources and will transform the data into an
object-oriented format — where the weather variables (temperature, humidity, etc.) consist
the attributes of the object - as well as into a common system of measurement units.

Now our data are ready to be stored permanently in a structure -Persistence stack-, which
can support a large amount of data. It is also necessary for the storage subsystem to be able
to support the object-oriented nature of our data.

The third stack of our architecture is the View stack. This part is dedicated to end users. This
layer should in turn utilize the attributes of the data and provide diagrams and visualizations
so that the user can form conclusions about data aggregations.

At this point, we analyzed the basic parts, which consists our system architecture, namely the
interaction between different data sources, the storage of the data, the data visualization
while also other intermediate layers which has to normalize and transforms the data.

Below are presented, in more detail, the programming tools that were used for each part
as well, as how they work together.

-13-

3.2 Core stack — Data management

As mentioned previously, the core system is responsible for communicate with the different
sources of meteorological data, but also convert the data into a common reference. The
specific stack consists of two subsystems, the part that gathers the data while the
corresponding part that transforms and handles our data.

3.2.1 Gathering Data

The specific part should practically perform web calls periodically to the various
meteorological sources. This task - technique is widely used in data processing and is called
Web scraping. In our architecture, we choose “Scrapy®” (Scrapy Framework, n.d.) framework,
which performs exactly, that our project needs. Scrapy is a key axis in the present work, as it
is used to collect data from meteorological data sources from both sites and meteorological
stations.

Scrapy (see its logo in Figure 3) is a free and open-source web-crawling framework written in
Python. Originally designed for web scraping, it can also be used to extract data using APIs or
as a general-purpose web crawler.

Scrapy project architecture is built around "spiders", which are self-contained crawlers that
are given a set of instructions. Scrapy provides a web-crawling shell, which can be used by
developers to test their assumptions on a site’s behavior.

Scrapy f"

FIG. 3 SCRAPY FRAMEWORK LOGO

The following diagram at Figure 4 shows an overview of the Scrapy architecture with its
components and an outline of the data flow that takes place inside the system (shown by the
red arrows).

5 https://scrapy.org/

-14-

. . . MIDDLEWARE

REQUESTS
REQUESTS

SCHEDULER

FIG. 4 — SCRAPY ARCHITECTURE

The data flow in Scrapy is controlled by the execution engine, and follows the next steps:

e The Engine gets the initial Requests to crawl from the Spider.

e The Engine schedules the Requests in the Scheduler and asks for the next Requests to
crawl.

e The Scheduler returns the next Requests to the Engine.

e The Engine sends the Requests to the Downloader, passing through the Downloader
Middlewares.

e Once the page finishes downloading, the Downloader generates a Response (with that
page) and sends it to the Engine, passing through the Downloader Middlewares.

e The Engine receives the Response from the Downloader and sends it to the Spider for
processing, passing through the Spider Middleware

e The Spider processes the Response and returns scraped items and new Requests (to
follow) to the Engine, passing through the Spider Middleware.

e The Engine sends processed items to Item Pipelines, then send processed Requests to
the Scheduler and asks for possible next Requests to crawl.

-15-

3.2.2 Weather Data Sources

We mentioned that the Scrapy spiders are responsible for gather our data from various
metrological sources, periodically. We will examine here these sources and the reasons why
they were chosen.

A basic criterion for choosing a source, is that this source should provide weather data for the
area of Tripoli — Peloponnese — Greece, seat of the University of Peloponnese where the
present work try to clarify if the data from different sources converge. Another key reason is
that each selected source should own a weather station and all these weather stations are
different from each other. Some sources also may provide data from third-party weather
services. The reason is that we need to examine if the data from different stations of the same
area provide relative same values on their data.

A key characteristic also among the selected sources is that they should provide common
weather characteristics such as wind direction and velocity, temperature, barometric
pressure, relative humidity and precipitation. We remind, that our purpose is to create
aggregations visualization. For this reason, the data from different sources should have
common characteristics.

Another challenge we have to face is that some sources may not provide data to services such
as web scraping due to restrictions they place in their web site. Unfortunately, we cannot
receive data from these sources.

Finally, among the sources where we can collect data, there are differences regarding the way
of communication. Some sources have APIs where they provide data with a specific structure,
while others do not, rendering data management more difficult.

At table 1 are shown summary information about the chosen weather sources.

1 meteo.gr v v v v v v
2 hnms.gr v v v v v v
3 accuweather.com v v 4 v v v v
4 okairos.gr v v v v v

5 freemeteo.gr v v v v 4 v
6 xalazi.gr 4 v v v v

7 openweathermap.org v v v v v v

TABLE 1 — TABLE OF (STATION) DATA SOURCES

-16-

http://penteli.meteo.gr/stations/tripoli/
http://www.hnms.gr/emy/el/observation/sa_paratiriseis_stathmon?perifereia=Peloponnese
https://www.accuweather.com/el/gr/tripoli/182060/weather-forecast/182060
https://www.okairos.gr/%CF%84%CF%81%CE%AF%CF%80%CE%BF%CE%BB%CE%B7.html
https://freemeteo.gr/kairos/tripoli/imerisia-provlepsi/simera/?gid=252601&language=greek&country=greece
http://www.xalazi.gr/prognwsh-kairou/aithalomihli
openweathermap.org

As you can see from table 1, the chosen data sources provide common weather variables such
as wind direction and velocity, temperature, barometric pressure, relative humidity and
precipitation, so that the data comparison process to be meaningful. From the other hand,
some of the chosen sources have their own weather stations and others rely on third weather
services. The stations of the sources have some distance between them, but they concern the
area of Tripoli. At the Table 2 there are the weather stations coordinates of each source.

1 meteo.gr 22.3723 | 37.5135
2 hnms.gr 22.4 37.52
3 accuweather.com 22.373 37.511
4 freemeteo.gr 22.38 37.51
5 openweathermap.org 22.3794 37.5089

TABLE 2 - WEATHER STATIONS COORDINATES

Below we describe the reasons for choosing each of our selected sources.

«meteo.gr» belongs to the National Observatory of Athens ® (National Observatory of Athens,
n.d.) and provides weather data and forecasts for about 500 areas cities and areas of Greece.
For our interested area (Tripoli), meteo maintains a weather station of the center of the city.
The data of the station renewed every 15 minutes. Meteo does not have an API for our
integration, instead we use web crawlers to retrieve data from the page of the station ’
(Meteo Weather Station Page, n.d.). Meteo.gr provides the weather characteristics we need
while also constitutes a stable weather source.

«hnms.gr» is the Hellenic national meteorological service®. The mission of the National
Meteorological Service is to provide meteorological support for the benefit of the National
Defense, the National Economy and the Social whole of our country (Hellenic National
Meteorological Service, n.d.). The service maintain a weather station at the center of the city
of Tripoli. The station provides the characteristics we need in our study and refresh the
weather data every 30 minutes on their station page® .

«accuweather.com» ¥ is a known worldwide weather service. The service collect data from
third party stations around the world. There is no official information about the origin —
position- of the stations, but when we collect data through the API of the service, there are
information about the location of the station, as we have listed in Table 2. The service provide
the characteristics we need in our work while allows data derivation every 1 hour.

5 https://www.noa.gr/

7 https://penteli.meteo.gr/stations/tripoli/

8 http://www.emy.gr/
Shttp://www.emy.gr/emy/el/observation/sa_teleytaies_paratiriseis_stathmou?perifereia=Peloponne
se&poli=Tripoli

10 https://www.accuweather.com/

-17-

http://penteli.meteo.gr/stations/tripoli/
http://www.hnms.gr/emy/el/observation/sa_paratiriseis_stathmon?perifereia=Peloponnese
https://www.accuweather.com/el/gr/tripoli/182060/weather-forecast/182060
https://freemeteo.gr/kairos/tripoli/imerisia-provlepsi/simera/?gid=252601&language=greek&country=greece
openweathermap.org

«okairos.gr»!! is a weather service, which provide the data with the relative characteristics we
need.The website presents the weather for more than 3,000 cities and airports in Greece.
Forecasts are based on data from the most global sources (Okairos.gr - About Us, n.d.). It is
more of a weather forecast site and does not provide information regarding the existence of
a weather station. We derive data from this source because it provides an detailed hourly
forecast (Okairos.gr - Hourly ForeCast, n.d.).

«freemeteo.gr» 1 is a Greek weather internet service. The service maintain its own weather
station for the city of Tripoli (freemeteo.gr station information, n.d.) and provides the needed
characteristics of our data while the data are refresh every 3 hours.

«xalazi.gr»'? it is also another Greek weather internet service. The service does not have its
own station and based on third party sources for historical data and forecasting. The service
provide data for the city of Tripoli with the characteristic we need every 3 hours (Xalazi.gr -
Weather Data, n.d.).

«openweathermap.org»'* provides hyperlocal minutely forecast, historical data, current
state, and from short-term to annual forecasted weather data. All data is available via industry
standard APIs (OpenWeathermap.org - About Us, n.d.). The service maintain its own weather
stations while allows to anyone to connect their weather station to the service. This source
provide us the weather characteristics we need though API calls hourly.

3.2.3 Forming and Transforming Data

In the previous sections, we saw the weather sources we have chosen with the characteristics
of each one, as well as the data collection process through Scrapy framework. We concluded
that the object-oriented structure is more suitable to represent the data. We could think that
each weather data is an object that will have specific characteristics. These characteristics are
essentially the characteristics of the weather.

The item shown below constitutes a typical example of an (python) object representation that
will be provided the Scrapy engine.

class MeteolItem(scrapy.Iltem):

id = scrapy.Field()
source = scrapy.Field()
time = scrapy.Field()
timecrawl = scrapy.Field()
temperature = scrapy.Field()
humidity = scrapy.Field()
wind = scrapy.Field()
barometer = scrapy.Field()
yetos = scrapy.Field()
direction = scrapy.Field()
city = scrapy.Field()

1 https://www.okairos.gr/

12 https://freemeteo.gr/

13 http://www.xalazi.gr/

4 https://openweathermap.org/

-18-

Essentially, we ended up with a class where every weather object belonging to this class is
required to use these attributes. Our goal is to end up with data with common structure and
measurement units, to be permanently stored later into persistence stack.

The id field is a unique identifier of each element. The Id field consist of the concatenation of
the date stamp and the region (source site) of the weather station. The source field
represents, the weather station’s name, the time field is the time which the weather station
refers to each sample, while the timecrawl fields refers to the actual time stamp when the
data was crawled.

The temperature field is the degree of heat measured at the weather station at the time field.
The temperature field uses the Celsius scale. Respectively the humidity field is the humidity
percentage in the atmosphere measured at the time it is reported by the weather station and
it is expressed as a percentage. The wind field is the actual wind intensity measured at the
reported time (time field) by the weather station. The unit of measurement for the specific
field is kilometers per hour (km/h).

The barometer field refers the atmospheric pressure recorded by the weather station and
uses bars as unit of measure. The yetos field includes rain, snow, sleet, hail, and any other
weather phenomenon that causes water (in any form) to fall from the atmosphere to the earth
and it is measured in Millimeters (mm). Finally, the direction field refers to the direction of
the wind calculated in degrees. The scale of degrees ranges between 0 and 360. Zero degrees
points to North direction on the wind while the measurement is done clockwise. For example
90 degrees points to East direction, 180 degrees points to South direction and 270 degrees
points to West direction.

The table 2 shows the fields of the actual weather data, along with details concerning each of
the fields.

. Absolute Zero —
1 temperature C
N/A

2 humidity % 0-100

3 Wind km/h b

4 barometer bars 0- N/A

5 Yetos mm 0-N/A Precipitation in any form
6 direction degrees 0-360

TABLE 3 WEATHER OBJECT FIELDS

-19-

So far, we have seen a more abstract description of the object that describes the data from
the weather stations, as well as the properties of each attribute. The Spider will use the above
generic object, which is responsible for the respective weather station. A typical example of
the code, which crawl the data from a site (weather station), is given below.

class MeteoSpiderSpider (scrapy.Spider) :

name = 'meteo spider'

allowed domains =
start urls =

['http://penteli.meteo.gr/stations/tripoli/ "]
["http://penteli.meteo.gr/stations/tripoli/"]

def parse(self, response):
i=0
table = response.xpath('//*[@id="tablel"]")
rows = table.xpath('//tr")
source = 'meteo.gr'
city = '"Tripoli’
crawldate = datetime.datetime.now ()
timestr = rows[2] .xpath('td//text () ") [3].extract ()
datepart = timestr[-9:].strip()
timepart = timestr[2:-9].strip()
datetimep = datepart+' '+timepart
temperature = float(rows[3].xpath('td//text()"')[4].extract()[0:-2])
humidity = float (rows[4].xpath('td//text()"') [4].extract() [:-1])
windends = (rows[6].xpath('td//text () ") [4].extract()).find(" ")
winddire = (rows[6].xpath('td//text()"') [4].extract()).find("at")
wind = float (rows[6].xpath('td//text()"') [4].extract () [0:windends])
barends = rows[7].xpath('td//text () ') [4] .extract().find(" ")
barometer = float(rows[7].xpath('td//text()"') [4].extract() [:barends])
yetos = float (rows[8].xpath('td//text () ") [3].extract() [:-3])
direction = rows[6].xpath('td//text()"') [4] .extract () [winddire+3:]
id = source+' '+datetimep
item = MeteoItem/()
item["id"] = id
item["source"] = source
item["time"] = time
item["timecrawl"] = crawldate
item["temperature"] = temperature
item["humidity"] = humidity
item["wind"] = wind
item["barometer"] = barometer
item["yetos"] = yetos
item["direction"] = direction
item["city"] = city

yield item

The data is usually stored into HTML data tables and this is the reason why we see markings

in the code like @id="table1", which refer to the actual html table, and markings like rows,
which refer to the respective row of the table. The example above concerns the integration
with «meteo.gr» weather source.

-20-

The example given below concern the Scrapy spider for hnms.gr weather source. You can
notice that in the wind field there is a multiplication with the constant term 1.852. This
particular weather source provide the wind velocity into knots. This is the reason why we
transform the specific value into kilometers per hour, such as we describe in the previous
section.

class HnmsSpiderSpider (scrapy.Spider) :

name = 'hnms spider'
def parse(self, response):
i=0
crawldate = datetime.datetime.now ()
table = response.xpath('//*[Q@class="table table-condensed table-
striped table-hover small"]')
rows = table.xpath('//tr")

try:
source = 'Hnms.gr'
city = 'Tripoli'
timestr = rows[l].xpath('td//text () ") [1l].extract()
time = datetime.datetime (int (timestr[6:10]), int(timestr([3:5])
temperature = float (rows[1l].xpath('td//text()"')[6].extract())
humidity = float(rows[1l].xpath('td//text () ") [13].extract () [:-11])
wind = float (((rows[1l].xpath('td//text()") [27].extract())*1.852
barometer =0
yetos =0
direction = (rows[1l].xpath('td//text() ') [20].extract()
id = source +' '+timestr
item = HnmsItem()
item["id"] = id
item["source"] = source
item["time"] = time
item["timecrawl"] = crawldate
item["temperature"] = temperature
item["humidity"] = humidity
item["wind"] = wind
item["barometer"] = barometer
item["yetos"] = yetos
item["direction"] = direction
item["city"] = city

yield item

-21-

We mentioned previously that the Scrapy framework is based on Python, as we also saw that
the spiders for each weather station are implemented in Python. Python is an integral part of
our core stack.

Python (Python Official Page, n.d.) (see in Figure 5 its logo) is an interpreted high-level general-
purpose programming language. Its design philosophy emphasizes code readability with its
use of significant indentation. Its language constructs as well as its object-oriented approach
aim to help programmers write clear, logical code for small and large-scale projects.

Python is dynamically-typed and garbage-collected. It supports multiple programming
paradigms, including structured (particularly, procedural), object-oriented and functional
programming. It is often described as a "batteries included" language due to its
comprehensive standard library.

Python consistently ranks as one of the most popular programming languages.

FIG. 5 PYTHON PROGRAMMING LANGUAGE LOGO

Rather than having all of its functionality built into its core, Python was designed to be highly
extensible (with modules). This compact modularity has made it particularly popular as a
means of adding programmable interfaces to existing applications

-22-

3.2 Persistence stack — Data Storage

In the Data Management section, we described the characteristics of the data we have to
manage as well as the sources, which will provide the data. In this section, we will see the
permanent storage of our data. The choice of the tool that will be responsible for storing our
data is very important. We should take into account factors such as the transfer of our data
from Scrapy and the scale up, i.e. the increase rate of our data volume.

The data storage framework should also take into consideration the object-oriented nature of
our data while it should be relative easy for the view stack (or third services and users) connect
to the data storage.

We initially rejected relational databases mostly for the reason of scale up. While relational
databases are very stable tools, we need tools that work in distributed environments and are
designed to respond to huge data volume.

For the above reasons, we end up that a suitable choice for our work is Elasticsearch.
Elasticsearch (Figure 6 Shown its logo) is a search engine based on the Lucene library. It
provides a distributed, multitenant-capable full-text search engine with an HTTP web interface
and schema-free JSON documents. Elasticsearch is developed in Java and is dual-licensed
under the source-available Server Side Public License and the Elastic license, while other parts
fall under the proprietary (source-available) Elastic License. Official clients are available in
Java, .NET (C#), PHP, Python, Apache Groovy, Ruby and many other languages. According to
the DB-Engines ranking, Elasticsearch is the most popular enterprise search engine (DB-
Engines Ranking of Search Engines, n.d.).

Elastic NV was founded in 2012 to provide commercial services and products around
Elasticsearch and related software. In March 2015, the company Elasticsearch changed their
name to Elastic.

LI
v

elasticsearch

F1G. 6 ELASTICSEARCH LOGO

Elasticsearch can be used to search all kinds of documents. It provides scalable search, has
near real-time search, and supports multitenancy. "Elasticsearch is distributed, which means
that indices can be divided into shards and each shard can have zero or more replicas. Each
node hosts one or more shards, and acts as a coordinator to delegate operations to the correct
shard(s). Rebalancing and routing are done automatically" (ElasticSearch official Page, n.d.).
Related data is often stored in the same index, which consists of one or more primary shards,
and zero or more replica shards. Once an index has been created, the number of primary
shards cannot be changed.

-23-

Elasticsearch is developed alongside a data collection and log-parsing engine called Logstash,
an analytics and visualization platform called Kibana, and Beats, a collection of lightweight
data shippers. The four products are designed for use as an integrated solution, referred to as
the "Elastic Stack" (formerly the "ELK stack").

Elasticsearch uses Lucene and tries to make all its features available through the JSON and
Java APIL. It supports faceting and percolating, which can be useful for notifying if new
documents match for registered queries. Another feature is called "gateway" and handles the
long-term persistence of the index; for example, an index can be recovered from the gateway
in the event of a server crash. Elasticsearch supports real-time GET requests, which makes it
suitable as a NoSQL data store, but it lacks distributed transactions.

On 20 May 2019, Elastic made the core security features of the Elastic Stack available free of
charge, including TLS for encrypted communications, file and native realm for creating and
managing users, and role-based access control for controlling user access to cluster APIs and
indexes. The corresponding source code is available under the “Elastic License”, a source-
available license. In addition, Elasticsearch now offers SIEM and Machine Learning as part of
its offered services.

We should also mention that the entire infrastructure of Elasticsearch is based on the java
programming language.

Java (Figure 7 shown its logo) is a high-level, class-based, object-oriented programming
language that is designed to have as few implementation dependencies as possible. It is a
general-purpose programming language intended to let application developers write once,
run anywhere meaning that compiled Java code can run on all platforms that support Java
without the need for recompilation.

E{) Java

<

ORACLE

FIG. 7 JAVA PROGRAMMING LANGUAGE LOGO

-24-

Count

Since we mentioned the tools for the persistence stack, it is interesting to see how our data
transfer from Scrapy to Elasticsearch. The data transfer is achieved through Scrapy engine
pipelines. A typical configuration of settings.py file concerning the pipelines is the following.

At the above part of the code, we declare the parameters of the Elasticsearch engine, such as
the index name and the unique identifier of our data. The source code for the custom process,
which is responsible for the data input into Elasticsearch, is open source, under the Apache
License (Scrapy - ElasticSearch, n.d.).

After the configuration, the data successfully stored into Elasticsearch. Figure 8 shows data
representation into Elasticsearch. At the upper part, we see the count (hits) of our data in the
scale of time while at the lower part the see the details (weather attributes) of each record.

172 hits
Sep 6, 2021 @ 06:27:51.035 - Sep 6, 2021 @ 21:27:51.035 Auto

07:00

Time »

Sep 6, 2621 @ 21:12:56.662

Sep 6, 2821 @ 21:12:48.388

Sep 6, 2621 @ 21:10:08.680

20:00

time per 10 minutes

_source

id: openweathermap.org 86/69/2821, 21:12 source: openweathermap.org time: Sep 6, 2821 @ 21:12:56.662 timecrawl: 2021-89-86721:12:56.662656 temperature: 21.71 humidity: 66
wind: 12.896 barometer: 1,828 yetos: @ direction: 42 city: Tripoli _id: 919fd236bf7f48de3684081698be1f1a3adf2a5e _type: items _index: weather _score: -

id: accuweather.com 86/69/2621, 21:12 source: accuweather.com time: Sep 6, 2021 @ 21:12:48.300 timecrawl: 2621-89-86T21:12:48.306934 temperature: 18 humidity: 68 wind: 13
barometer: 1,818.3 yetos: 8 direction: NE city: Tripoli _id: 2d86a63d7313ff824b4c9d1ffe57fc54f9c79de8 _type: items _index: weather _score:

id: meteoPrediction B6/89/2821, 21:1@ source: meteoPrediction time: Sep 6, 2821 @ 21:10:80.000 timecrawl: 2621-89-86T21:05:22.758427 temperature: 17.428 humidity: @ wind: @
barometer: @ yetos: @ direction: 8 city: Tripoli _id: d9b6bc28ebb45c761fb17a2cd1f1d21e239d3b48 _type: items _index: weather _score:

FIG. 8- DATA REPRESENTATION INTO ELASTICSEARCH

-25-

3.3 View stack — Data View

The final part of our architecture is the View stack. It is responsible for the visualizations and
diagrams. Theses visualization through aggregations will examine if the data from the various
weather data sources coverage or not. Elasticsearch has a built in analytics and visualization
platform called Kibana (Kibana Official Site, n.d.).

Kibana (in Figure 10 you may find its logo) is a proprietary data visualization dashboard
software for Elasticsearch, whose open source successor in OpenSearch is OpenSearch
Dashboards.

It provides visualization capabilities on top of the content indexed on an Elasticsearch cluster.
Users can create bar, line and scatter plots, or pie charts and maps on top of large volumes of
data. Please find a Kibana visualization example in Figure 9. Kibana also provides a
presentation tool, referred to as Canvas that allows users to create slide decks that pull live
data directly from Elasticsearch.

The combination of Elasticsearch, Logstash, and Kibana, referred to as the "Elastic Stack"
(formerly the "ELK stack"), is available as a product or service. Logstash provides an input
stream to Elasticsearch for storage and search, and Kibana accesses the data for visualizations
such as dashboards. Elastic also provides "Beats" packages which can be configured to provide
pre-made Kibana visualizations and dashboards about various database and application
technologies.

In May 2021, OpenSearch released the first beta of OpenSearch Dashboards, the Apache-
licensed fork of Kibana sponsored by Amazon Web Services after Elastic discontinued the open
source project and switched to proprietary software development.

. kibana

FiG. 9 KIBANA VISUALIZATION EXAMPLE FiG. 10 KIBANA LOGO

-26-

3.4 Other Tools — Jupyter Notebook

During the implementation process of core stack, we used a very helpful tool called Jupyter
notebook.

Project Jupyter is a project, whole community goal is to develop open-source software, open-
standards, and services. Project Jupyter's name is a reference to the three core programming
languages supported by Jupyter, which are Julia, Python and R, and also a homage to Galileo's
notebooks recording the discovery of the moons of Jupiter. Project Jupyter has developed and
supported the interactive computing products Jupyter Notebook (find its logo in Figure 11),
JupyterHub, and JupyterlLab.

Project Jupyter's operating philosophy is to support interactive data science and scientific
computing across all programming languages via the development of open-source software.
According to the Project Jupyter website, "Jupyter will always be 100% open-source software,
free for all to use and released under the liberal terms of the modified BSD license

Jupyter Notebook (formerly IPython Notebooks) is a web-based interactive computational
environment for creating notebook documents.

jupyter

FIG. 11- JUPYTER NOTEBOOK LOGO

-27-

https://en.wikipedia.org/wiki/Open-source_software
https://en.wikipedia.org/wiki/Open_standard
https://en.wikipedia.org/wiki/Open_standard
https://en.wikipedia.org/wiki/Julia_(programming_language)
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/R_(programming_language)
https://en.wikipedia.org/wiki/Homage_(arts)
https://en.wikipedia.org/wiki/Galileo_Galilei
https://en.wikipedia.org/wiki/Moons_of_Jupiter
https://en.wikipedia.org/wiki/Data_science
https://en.wikipedia.org/wiki/Computational_science
https://en.wikipedia.org/wiki/Computational_science
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Open-source_software
https://en.wikipedia.org/wiki/Web_application
https://en.wikipedia.org/wiki/Notebook_interface

Closing Chapter 3, we described and analyzed the architecture of our system, the nature and
characteristics of our data, the sources we choose to receive our data while the tools we used
for each layer of our architecture. At Figure 12, you may find a visual representation of our
system architecture.

AT
PiAEl SPYDER
E'

sl

i)

.

Fig. 12 — System architecture

-28-

Chapter 4 — Data Analysis and Visualization

4.1 Visualizations

At this section, we visualize the dataset in order to understand data distribution and to
highlight the differences among the values given by different weather station. Figure 13 is
capture the general data distribution for temperature with respect to time (define by the
user), while at Figure 14 we can see in percentage of the temperature data obtained per
weather station. Figure 15 and 16 visualize the maximum and minimum values respectively of
the temperature per station and per year.

“ @ source : "Hnms.gr*
@ source: “meteo.gr*
@ source: "accuweath...
@ source : “freemeteo..
@ source : “okairos.gr
@ source:"deltiokairou...
@ source:"openweath...
@ source:"xalazigr

Ml @ source"meteoPredi...

Average temperature

2021-03-01 2021-04-01 2021-05-01 2021-06-01 2021-07-01
time per day

FIG. 13 - DATA AGGREGATIONS

@ meteo.gr

@ openweathermap.org
@ accuweather.com

@ meteoPrediction

@ Hnmsgr

deltiokairou.gr (2.66%)
@ okairos.gr

@ openweathermapPr.

@ deltickairou.gr

@ freemeteo.gr
meteo.gr (31.62%) ® xalazigr

openweathermapPrediction (6.04%)

okalres.gr (6.9%)

Hnms.gr (6.25%) .

meteoPrediction (10.43%)

openweathermap.org (14.75%)

accuweather.com (13.78%)

FIG. 14 - WEATHER DATA PER STATION DISTRIBUTION

-29-

45 @ openweathermap.org

@ openweathermappr...

meteo.gr
20 L] g
@ freemeteo.gr
@ okairos.gr
3 @ Hnmsgr
@ metzoPrediction
- @ xalazigr
@ accuweathercom
@ @ deltiokairou.gr
22
5
e
x 20
3
=
15
m II II
5
[
= 5 5 5 5 5 5 5 £ 5 2 g 5 5 5 5 5 B £ 5
] £ g g F a 2 = g E 5 £ g g a 3 £ = H 3
g 2 g £ g E 2 2 b g g 2 $ g g E 3 = 5 g
E 1 g 2 2 I 3 2 £ e} E & g g 2 S 3 El £ E
i & £ 3 & 3 g = & 5 3 & 5 z
2 T 2 T g] 2 3 2 s g 2
] 2 2 8 H 5 £ 8 £ g H 3
H £ © 5 K
g H g
H
Sources Sources
= 2021: Year 2020: Year
8 @ Min temperature
6
4
2
-
2 0 [
|- -]
g
£
s
R
H
-4
il
-8
-10
5 5 5 5 5 E g 5 5 5 5 5) 5 5 E -4 5 8 8
2 £ 2 2 4 g g 3 3 3 8 g g 2 g 8 g 3 3 3
H £ £ 2 £ 5 & 2 = = H £ g H £ 5 g £ = =
= g El 2 T S = 2 E 2 S =
] = H 3 2 :] = H E H =
g g 2 2 H 2
H £ H £
g 5 g
3 H
] @
A g
g s
Sources Sources
2020: Year 2021: Year

FIG. 16 — MINIMUM TEMPERATURE PER STATION AND YEAR

We could say that Figureo 15,16,17,18 capture the actual data so that the user can form some
initial conclusions, for the distribution of temperature data, the percentage of participation of
each meteorological station, as well as for the maximum and minimum temperature values
for the region we are studying, in the corresponding date range selected by the user.

-30-

@ Max yetos
Hnms.gr

deltiokairou.gr
okairos.gr
fraemeteo. gr

meteo.gr

Sources

accuweather.com

2020: Year

meteoPrediction

openweathermap.org

apenweathermapPrediction

walazi.gr

Hnms.gr

deltiokairou.gr

okairos.gr

freemeteo.gr

meteo.or

Sources

accuweather.com

2021: Year

meteoPrediction

openweathermap.org

openweathermapPrediction

xalazi.gr

25
30
3s
a

e
Max yetos

FIG. 17 MAXIMUM PRECIPITATION PER STATION AND YEAR

In Figure 17 the maximum value of the precipitation (any form) per station per year is given,
while Figure 18 capture the minimum values observed for humidity per station and year.

@ Min humidity
deltiokairou.gr

accuweather.com
Hnms.gr
freemeteo.gr
okairos.gr

meteo.gr

Sources

2020: Year

meteoPrediction

openweathermapPrediction

openweathermap.org

xalazigr

deltiokairou gr

accuweather.com

Hnms.gr

freemeten.gr

okairos.gr

2021 Year
Sources

meteo.gr

meteoPrediction

openweathermapPrediction

openweathermap.org

xalazigr
@ e o ° o) - o w) -
~ - ~ o~ L o v = v i

= Min humidity

FIG. 18 — MINIMUM HUMIDITY PER STATION AND YEAR

Figure 17 shows the maximum value for precipitation since the minimum value is zero, while
correspondingly, Figure 18 shows the minimum value for humidity since the maximum value
is 100%.

-31-

Figures 19, 20, 21 and 22 visualize the actual (mouse interactive) data distributions for
temperature, humidity, wind (velocity) and precipitation respectively.

2s0000 2000

2106300000
par 12 hours.

FIG. 19 — TEMPERATURE DISTRIBUTION

pec 12 hours

FIG. 20 — HUMIDITY DISTRIBUTION

per 12 hours

FIG. 21 — WIND VELOCITY DISTRIBUTION

per 3 hours

FIG. 22 — PRECIPITATION DISTRIBUTION

The specific Figures are quite important as they achieve the purpose of aggregation. Here the
user can compare the data reported by the meteorological sources, for each weather variable
(temperature, humidity, wind velocity and precipitation) for a selected date range.

-32-

Figures 23 and 24 show the next hour and the next six hours temperature prediction
respectively.

@®0-50
50-75
@ 75-100
source.keyword : "meteoPrediction”
15.004
B Next Hour Prediction
FIG. 23 — NEXT HOUR TEMPERATURE PREDICTION
22 []
18
14
£
8
4
2

2021-09-07 00:00 2021-08-07 03:00 2021-09-07 0&:00 2021-09-07 09:00 2021-09-07 12:00 2021-09-07 15:00 2021-09-07 18:00
Next 6 Hour Prediction

FIG. 24 — NEXT SIX HOURS TEMPERATURE PREDICTION

-33-

A qualitative way of visualizing the similarity coefficient is the heatmap visualization. We took
advantage of Kibana vega visualization, an open source example that was used in our work to
extract the following visualizations.?

A heatmap showing the correlation of Temperature Sources

Correlation
1000
karoz
0.006
0.090
rem—
0.085
metecPredition 0880
0s7s
freemeteo 0870
0.056
salszi-
0.000
et
penwesthermspPradicion
0.850
0845
metes
0.040
0838
homs
0830
upenweatnenman ez
0820

R — J— [———— P— karos meteoPresicton

FIG. 25 — TEMPERATURE HEATMAP CORRELATION

A heatmap showing the correlation of barometer Sources

Correlation
1.000
karos 0008
0.008
0.004
0.002
sccuwsstier
0.300
068
0588
p— |
084
0062
0.000
mates
0s7s
o070
0574
cpsruesthermsn
0s72
0sm0

acanweather

FIG. 26 — BAROMETER HEATMAP CORRELATION

5 https://discuss.elastic.co/t/vega-heatmap-chart-for-matrix-stats-correlation/226099

-34-

Figures 25, 26, 27 and 28 show the correlation matrix through heatmaps for the temperature,
humidity, precipitation and wind velocity respectively between the different weather stations.

A heatmap showing the correlation of Yetos Sources

Correlation
100
0.5
kairos
0.0
085
050
aocumesther-
075
a70 I
005
freemetes
L)
055
as0
meteo—
a5
L
scouwesther freemateo metzo airos

FIG. 27 — PRECIPITATION HEATMAP CORRELATION

A heatmap showing the correlation of Wind Sources
Correlation

1.00
005
000
05
050
LES I
CE)

: 050

metes kairos

xalazi sccuwesther

FIG. 28 — WIND (VELOCITY) HEATMAP CORRELATION

In a correlation heatmap, values can range from -1 to 1, and they represent the strength of
the linear relationship between two distributions (Moore, McCabe, & Craig, 2016). Correlation
closer to 1 represent a strong positive correlation while values close to 0 represent no
correlation and values close to -1 represent a strong negative correlation. Heatmap
visualizations are Figures where the user can qualitatively compare the way, weather variables
converge or not, across our weather stations. User can be informed which meteorological
sources provide similar or not weather data distributions.

-35-

Temperature kairos | accuweather | freemeteo | xalazi | meteo | hnms | openweathermap
Correlation Values
kairos 1 0.98 0.98 | 0.99 0.98 0.98 0.98
accuweather 0.98 1 0.97 | 0.97 0.98 0.97 0.97
freemeteo 0.98 0.97 1| 0.98 0.97 0.98 0.98
xalazi 0.99 0.97 0.98 1 0.97 0.97 0.98
meteo 0.98 0.98 0.97 | 0.97 1 0.98 0.97
hnms 0.98 0.98 0.97 | 0.97 0.98 1 0.96
openweathermap 0.984 0.977 098 | 098 | 0971 | 0.968 1
TABLE 4 - CORRELATION VALUES - TEMPERATURE
Wind Velocity | kairos | accuweather | freemeteo | xalazi | meteo | hmns | openweathermap
Correlation Values
kairos 1 0.72 0.87 | 0.83 0.81| 0.78 0.86
accuweather 0.72 1 0.69 0.7 0.68 | 0.77 0.71
freemeteo 0.87 0.69 1| 0.79 0.81| 0.73 0.91
xalazi 0.89 0.7 0.79 1 0.68 | 0.78 0.81
meteo 0.81 0.68 0.81| 0.68 1| 0.78 0.8
hnms 0.78 0.77 0.73| 0.78 0.78 1 0.77
openweathermap 0.86 0.71 091 | 0.81 0.80 | 0.77 1
TABLE 5 - CORRELATION VALUES - WIND VELOCITY
Precipitation | accuweather | freemeteo | meteo kairos
Correlation
Values
kairos 0.7 0.75 61 1
accuweather 1 0.96 0.58 0.7
freemeteo 0.63 1 0.74 0.75
meteo 0.58 0.74 1 0.61

TABLE 6 - PRECIPITATION CORRELATION VALUES

-36-

Humidity kairos | accuweather | freemeteo | xalazi | meteo hmns openweathermap
Correlation Values
kairos 1 0.91 0.91 0.9 0.9 0.84 0.93
accuweather 0.91 1 0.87 0.84 0.94 0.91 0.89
freemeteo 0.91 0.87 1 0.9 0.87 0.83 0.96
xalazi 0.9 0.84 0.9 1 0.86 0.81 0.9
meteo 0.9 0.94 0.87 0.86 1 0.94 0.89
hnms 0.84 0.91 0.83 0.81 0.94 1 0.84
openweathermap 0.89 0.89 0.96 0.9 0.89 0.84 1
TABLE 7 - HUMIDITY CORRELATION VALUES
Barometer kairos | accuweather | freemeteo | meteo | openweathermap
Correlation Values
kairos 1 0.99 0.99 0.8 0.99
accuweather 0.99 1 0.98 0.8 0.99
freemeteo 0.99 0.98 1 80 0.99
meteo 0.8 0.8 0.8 1 0.8
openweathermap 0.99 0.99 0.99 0.8 1

TABLE 8 - BAROMETER CORRELATION VALUES

Tables 4, 5, 6, 7 and 8 show the actual correlation values between different sources for each
weather variable for all historical data. We can see that the temperature and barometer
variables present a strong correlation coefficient while wind velocity, precipitation and
humidity variables present less strong correlation coefficient.

-37-

4.2 Dashboards

Below, we present dashboards as a way to provide a bigger picture of the used dataset. Figure
29 shows the data distribution in terms of temperature, wind, humidity and precipitation.

BV Search KoL @V Feb7,2021@22:4122.42 5 Aug4, 20216 03:42:49.13

@+ Add fiter

Tempesature_TSVE Yetos_TSVE

per 24 hours per 24 hours

Wind_TSVE HumidityTSV8. -

‘or 24 hours pec 24 bours

FIG. 29 - DATA DISTRIBUTION DASHBOARD

Figure 30 presents the data correlation among the different weather stations in terms of
temperature, wind, humidity and precipitation. Our Dashboards practically unify and group
multiple visualizations on a single page, making visualizations more user-friendly.

A heatmap showing the carrelation of Temprature Saurces

Comsiation
)
oos
s
&
nos

e e e b o cemPeoe e

A heatmap showing the correlation of Wind Sources

A hoatmap showing the comrelation of Yetos Sources

Corretation Comelation
re [120
os

fose
e
o
- Jose
- . -
o7
s e an
vseraie
ey Fremen = - [ra— v [o— Feerem o = -

FIG. 30 — CORRELATION DASHBOARD

A heatmap showing the correkation of humidity Sources

-38-

Chapter 5 — Weather Data Forecasting

In this chapter, we discuss the analysis performed on model training process and the
parameters optimization. Our aim is to create a short term temperature forecast model using
the data we have already collect. The model we choose for this task is the Long short-term
memory — LSTM artificial neural network. The reasons why we choose the LSTM for this task
are plenty. LSTM is consider one of the state of the art weather forecast model. It is a
specialized form of Recurrent Neural Network (RNN) and it is widely applied to handle
temporal data. The key concepts of the LSTM include layers of nodes that allows the passing
of data through a multistep process to enable the recognition of the right pattern (Hinton G.
E., 2006). RNNs and LSTMs in particular vary from other neural networks in that they have a
temporal dimension and take time and sequence into account. In fact, they are considered to
be the most effective and well-known subgroup of RNNs. they belong to a class of artificial
neural networks made to identify patterns in data sequences, including numerical times series
data. Long Short Term Memory (LSTM) networks are frequently used in sequence prediction
problems. These recurrent neural networks have the capacity to learn sequence dependency.
The output from the prior step is utilized as the upcoming step's input in the RNN. It
was Hochreiter and Schmidhuber (Hochreiter & Schmidhu, 1997) who originally created the
Long-Short Term Memory architecture. It addressed the problem of "long-term reliance" in
RNNs. This is where RNNs can predict variables based on information in the current data, but
cannot predict variables held in long-term memory. By design, LSTMs are known to store data
for a long time. This method is employed when analyzing time-series data, making predictions,
and categorizing data.

The dataset consist of historical data coming from region of Peloponnese (Tripoli) between
the years 2014 and 2019. This dataset is made available by Dr. Lagouvardos Kostas, research
director of National Observatory of Athens. 1® The data frame, shown at Figure 31, has 87604
rows of data. Each row declares the actual temperature at the respective time column. Each
measurement differs from the next one by 30 minutes.

temperature time

0 1.8 2014-12-31 22:10:00

1 1.8 2014-12-31 22:40:00

2 1.8 2014-12-31 23:10:00

3 1.8 2014-12-31 23:40:00

4 2.0 201501401 00:10:00
87599 36 2018-12-3D 21:40:00
87600 3.4 2018-12-30 22:10:00
8760 38 2018-12-3D 22:40:00
BT602 31 2018-12-30 23:10:00
87603 3.0 2018-12-3D 23:40:00

Fig. 31 — Dataset Data Frame

16 https://www.iersd.noa.gr/en/staff/researchers/dr-lagouvardos-kostas/

-39-

https://www.researchgate.net/publication/13853244_Long_Short-term_Memory?ref=blog.paperspace.com

Before starting the training process of our model, we should first investigate its hyper-
parameters. Hyperparameters are parameters whose values control the learning process and
determine the values of model parameters that a learning algorithm ends up learning. The
prefix ‘hyper_’ suggests that they are ‘top-level’ parameters that control the learning process
and the model parameters that result from it.

Train-test split ratio
We have choose to split our dataset at 80% for train data and 20% for test data. This train-test

split ratio is a typical choice. Bigger percentage for the train dataset may cause overfitting
where the learning model gives accurate predictions for training data but not for new data.
From the other hand, small percentage of train dataset may cause underfitting, where the
model has not learned the patterns in the training data well and is unable to generalize well
on the new data.

Hidden Layers of the Model

The layers between the input and output layers are called hidden layers. There is no final
number on how many nodes (hidden neurons) or hidden layers one should use. Hidden layers
are the ones that are actually responsible for the excellent performance and complexity of
neural networks. They perform multiple functions at the same time such as data
transformation, automatic feature creation, etc.

Optimizer

An optimizer refers to an algorithm or method used to minimize or optimize the loss function
during the training of the network. Optimizers play a crucial role in the training process by
adjusting the model parameters in a way that reduces the value of the loss function. They use
various optimization techniques to find the minimum of the loss function, which corresponds
to a well-performing set of model parameters. The choice of optimizer can affect the training
speed, convergence, and final performance of a neural network.

Common optimizers used in neural networks include:

1. Stochastic Gradient Descent (SGD): A variation of gradient descent that uses a
randomly selected subset of the training data (mini-batch) to compute the gradient,
making it computationally more efficient (Robbins, 1951).

2. Adam (Adaptive Moment Estimation): An adaptive learning rate optimization
algorithm that combines ideas from RMSprop and Momentum. It adjusts the learning
rates for each parameter based on their historical gradients (Diederik P. Kingma,
2015).

3. RMSprop (Root Mean Square Propagation): An optimizer that adapts the learning
rates of each parameter by dividing the learning rate by the moving average of the
squared gradients (Hinton G., 2012).

4. Adagrad (Adaptive Gradient Algorithm): An optimizer that adapts the learning rates
for each parameter based on the historical gradients, giving larger updates to
infrequently occurring parameters (Duchi, Hazan, & Singer, 2010).

-40-

Units

Units are also commonly known as neurons or nodes. Each unit receives one or more inputs,
performs a computation based on those inputs (often involving weights and biases), and
produces an output. The number of units in a layer is a design choice and is determined by
the architecture of the neural network. The number of units in the input layer is usually equal
to the number of features in the input data. Units in a neural network are the individual
computational entities within each layer, and the configuration of these units across layers
defines the architecture of the neural network. Many units may cause overfitting to our model
as well as the need for computational power is increasing. Small number of units may cause
overfitting while the model is unable to learn and generalize the core function, which governs
the data.

Batch Size

This hyperparameter defines the number of samples to work on before the internal
parameters of the model are updated. Large sizes make large gradient steps compared to
smaller ones for the same number of samples “seen”. Batch size refers to the number of
training examples utilized in one iteration. During each iteration, the neural network
processes a batch of training samples and updates the model's weights. The training dataset
is divided into batches, and the optimization algorithm updates the model based on the loss
calculated for each batch.

Activation function(s)

An activation function is a mathematical operation applied to the output of a neuron (or node)
in a neural network. It introduces non-linearity to the network, allowing it to learn complex
patterns in the data. Without activation functions, the neural network would essentially be a
linear model, incapable of learning from non-linear relationships in the data. The choice of
activation function can affect the model's capacity to learn, training speed, and the ability to
generalize to new data. Some commonly used activation functions in neural networks:

1. Sigmoid Function (Logistic Function): The sigmoid function, also known as the logistic
function, is a mathematical function that maps any real-valued number to a value
between 0 and 1. It is commonly used in machine learning and statistics, particularly
in binary classification problems, where the goal is to assign an input to one of two
possible categories. The sigmoid function has an S-shaped curve, which makes it
suitable for tasks where the output needs to be in the range of 0 to 1. This function is
particularly used in logistic regression and artificial neural networks (Nair & Hinton,
2010).

2. Rectified Linear Unit (ReLU): RelU replaces all negative values with zero and is widely
used in hidden layers. It helps with computational efficiency and has been found to
work well in practice (Hastie, Tibshirani, & J, 2009).

3. Hard sigmoid: The hard sigmoid function is a modified version of the sigmoid function
that provides a faster and computationally less expensive approximation while
maintaining a piecewise-linear shape (Aggarwal).

4. Swish: Swish over other activation functions like ReLU tends to preserve more
information in the network, potentially leading to improved performance. Swish has
been observed to perform well in deep neural networks, and its smoothness allows
for better optimization during training (Ramachandran, Zoph, & V., 2018).

-41-

Learning rate.

The learning rate is a hyperparameter that determines the size of the steps taken during the
optimization process of training a neural network. It influences how much the model's
parameters are adjusted with respect to the gradient of the loss function. In other words, the
learning rate controls the step size in the optimization algorithm as it searches for the
minimum of the loss function. If the learning rate is too high, the optimization algorithm might
overshoot the minimum of the loss function, causing it to oscillate or diverge. Large steps may
prevent the algorithm from converging to the optimal solution. If the learning rate is too low,
the optimization process may take a very long time to converge or may be stuck in a local
minimum.

Small steps may lead to slow convergence, especially in deep or complex neural networks. The
learning rate is a critical hyperparameter, and choosing an appropriate value is crucial for
successful training. It is common practice to start with a moderate learning rate and adjust it
based on the observed training behavior.

DROPOUT

Every LSTM layer should be accompanied by a dropout layer. Such a layer helps avoid
overfitting in training by bypassing randomly selected neurons, thereby reducing the
sensitivity to specific weights of the individual neurons. While dropout layers can be used with
input layers, they should not be used with output layers as that may mess up the output from
the model and the calculation of error. While adding more complexity may risk overfitting (by
increasing nodes in dense layers or adding more number of dense layers and have poor
validation accuracy), this can be addressed by adding dropout. The 20% value is widely
accepted as the best compromise between preventing model overfitting and retaining model
accuracy.

The method for the appropriate hyperparameters selection of our model has been carried out
with Grid Search method. Grid search is a hyperparameter tuning technique used in machine
learning to find the optimal hyperparameter values for a model. In grid search, we can define
a set of hyperparameter values for try, and the algorithm trains and evaluates the model for
all possible combinations of these hyperparameter values. The combination that yields the
best performance metric (such as accuracy, precision, or recall) is then selected as the optimal
set of hyperparameters.

The parameter that guides us to choose the suitable hyper-parameter is the metric mean
squared error. Mean Squared Error (MSE) is a measure of the average squared difference
between predicted and actual values. It is commonly used in statistics and machine learning
to assess the performance of a predictive model. MSE provides a way to quantify the accuracy
of predictions and is particularly useful in regression analysis. The smaller the MSE, the better
the model's predictions align with the actual data. In other words, a lower MSE indicates a
better fit of the model to the observed data. MSE is widely used as a loss function during the
training of regression models, and minimizing it is a common objective in model optimization.

To the next subsections, there is available the fine-tuning process for each hyperparameter of
our model.

-42-

5.1 - Hidden Layer

Firstly, we had to decide about the interval structure of the model concerning the hidden
layers. We therefore tested three different models, using one, two and three layers
respectively, in order to choose the structure resulting in the best performance. Figure 32
shows the code we used to come up with the best choice. At the end of Figure 32, you may
find the result of the training process. You may observed that the lower value of MSE has the
model with three hidden layers. This is why we choose the three hidden layer option for our
model.

x_train = [1

y_train = [J

train_split= 0.8

split_idx = int(len(temperature_df) * 0.8)
training set = temperature_df[:split_idx].values
test_set = temperature_df [split_idx:].values

n_future = 12 #Neri observations temperature forecast
n_past = 64 #Past observations

sc = MinMaxScaler(feature_range = (0, 1))
#training_set = sc.fit_transform(training_set)
#test_set = sc. fit_transform(testi_set)

for i in range(0, len(training set) - n_past - n_future + 1):
¥_train.append(training set[i : i + n_past, 0])

y_train.append(training set[i + n_past : i + n_past + n_future, 01)

x_train , y_train = np.array(x_train), np.array(y_train)
¥_train = np.reshape(x_train, (x_train.shapel0] , z_train.shapelil, 1))

-43-

loss = []
historytbl = []
UNITS = n_past
EPOCHS =18
BATCH_SIZE= 32
optimizer ='Adam’

regressorl = Sequential()

regressorl.add(Bidirectional (LSTM{units=UNITS,return_sequences=True, input_shape = (x_train.shape[1],1) } }))
regressorl.add(Dropout(©.2))

regressorl.add((LSTM(units= UNITS }))

regressorl.add(Dropout(©.2))
regressorl.add(Dense(units = n_future,activation="1linzar"))
regressorl.compile(optimizer=optimizer, loss="mean squared_error’,metrics=['mse'])
regressorl.fit(x_train, y_train, epochs=EPOCHS,batch_size=BATCH_SIZE)
loss_metrics = regressorl.evaluate(x_train, y_train, verbose=8)

loss.append(['1 hidden Layer',loss_metrics[e],loss_metrics[1]])

regrassor = Sequential()

regressor2.add(Bidirectional (LSTM{units=UNITS, return_sequences=True, input_shape = (x_train.shape[1],1) }))
regressor2.add(Dropout(©.2))

regressor2.add((LSTM(units= UNITS , return_sequences=True)})

regressor2.add(Dropout(©.2))

regressor.add((LSTM(units= UNITS }))

regressor2.add(Dropout(©.2))
regressor.add(Dense(units = n_future,activation="1linzar"))
regressor2.compile(optimizer=optimizer, loss="mean squared_error’,metrics=['mse’'])
regressor2.fit(x_train, y_train, epochs=EPOCHS,batch_size=BATCH_SIZE)
loss_metrics = regressor2.evaluate(x_train, y_train, verbose=8)

loss.append(['2 hidden Layers',loss_metrics[@],loss_metrics[1]])

regressor3 = Sequential()

regressor3.add(Bidirectional (LSTM(units=UNITS, return_sequences=True, input_shape = (x_train.shape[1],1) }))
regressor3.add(Dropout(@.2))

regressor3.add((LSTM(units= UNITS , return_sequences=True)))

regressor3.add(Dropout(e.2))

regressor3.add((LSTM(units= UNITS , return_sequences=True)))

regressor3.add(Dropout(©.2))

regressor3.add((LSTM(units= UNITS }))

regressor3.add(Dropout(©.2))

regressor3.add(Dense(units = n_future,activation="'linear'))
regressor3.compile(optimizer=optimizer, loss="mean_squared_error’,metrics=['mse’])
regressor3.fit(x_train, y_train, epochs=EPOCHS,batch_size=BATCH_SIZE)
loss_metrics = regressor3.evaluate(x_train, y_train, verbose=8)

loss.append(['3 hidden Layers',loss_metrics[@],loss_metrics[1]])

['1 hidden Layer' loss: 2.786162029534012 ,mse: 2.786162020534912],
['2 hidden Layers ,loss: 2.6748121841438664 ,Mse: 2.674612134143@664],
['3 hidden Layers ,loss: 2.6096272468566895 ,mse: 2.6896272468566895]]

FIG. 32 - HIDDEN LAYERS OPTIMIZATION

-44-

5.2 - Optimizer

Keeping the structure with the three hidden layers, the next stage is to fine-tune the model
optimizer. We experimented with optimizers such as Adam, Stochastic Gradient descent
(SGD), RMSprop and Adagrad. Running the test shown in Figure 33, Adam optimizer concluded
the best in results, since it manages to give the lowest loss values when compared to the other
optimizers.

loss = []
UNITS = n_past
EPOCHS =5

BATCH_SIZE-= 32

optimizers = ['Adam', 'SGD', 'RMSprop', 'Adagrad'l

for optimizer in optimizers:
regressor = Sequential()
regressor.add(Bidirectional (LSTM(units=UNITS, return_sequences=True,,,

—input_shape = (x_train.shapel[1],1))))

regressor.add(Dropout(0.2))
regressor.add ((LSTM(units= UNITS , return_sequences=True)))
regressor.add (Dropout(0.2))
regressor.add ((LSTM(units= UNITS , return_sequences=True)))
regressor.add(Dropout(0.2))
regressor.add ((LSTM(units= UNITS)))
regressor.add (Dropout(0.2))

regressor.add(Dense (units = n_future,activation='linear'))

regressor.compile (optimizer=optimizer,,,

. 1oss='mean_squared_error',metrics=['acc'])
regressor.fit(x_train, y_train, epochs=EPOCHS,batch_size=BATCH_SIZE)
loss_metrics = regressor.evaluate(x_train, y_train, verbose=0)
loss.append([optimizer,loss_metrics[0],loss_metrics[11]1)

for 1 in range(len(loss}):

print(‘'Optimizer: °,loss[1l][@], '\t ,loss:',loss[1][1], '\t,mse:",loss[1][2])
Optimizer: RMSprop ,loss: 3.2166@8542488R05814 ,mse: 3.21668542488895814
Optimizer: SGD sloss: 3.6969220535275146 ,mse: 3.6969220638275146
Optimizer: Adam sloss: 2.9892845153805594 ,mse: 2.98928451538885%4
Optimizer: Adagrad sloss: 42,635870E0873125 smse: 42,63507230875125

FIG. 33 — OPTIMIZER OPTIMIZATION

-45-

5.3 - Units

Units consist of the internal structure (capacity) of each Layer, which means that they are the
neurons of each layer. Units receives one or more inputs, performs a computation based on
those inputs (often involving weights and biases), and produces an output. The idea behind
the units-parameter selection has to do with the decision of “how back we should search in
order to predict future values”. Notice that our constant, taking into consideration the
specifics of our dataset, making a prediction of 12 future samples results in covering weather
data for the next 6 hours, since the weather station provide two samples of data per hour. As
also shown in Figure 34, we used 64, 96 or 128 past observations to make our future
predictions, the case with the 64 samples resulted the best values in term of loss.

overal = []
n_future = 12 #Next # observaiions femperature forecast
n_past_list = [64, 96, 128] #Past # of observations
for n_past in n_past_list:
x_train =[]
y_train =[]

for i in range(0, len(training set) - n_past - n_future + 1):
¥_train.append(training set[i : i + n_past, 01)
y_train.append(training_set[i + n_past : i + n_past + n_future, 0])

¥x_train , y_train = np.array(x_train), np.array(y_train)
x_train = np.reshape(x_train, (x_train.shapel[0] , x_train.shape[1], 1})

EPOCHS =5

BATCH_SIZE- 32 #len(z_irain) #1024
UNITS = n_past

optimizer = 'Adam'

regressor = Sequential ()

regressor.add(Bidirectional (L3STM(units=UNITS, return_sequences=True,
.input_shape = (x_train.shapeli],1))))

regressor.add (Dropout (0.2))

regressor.add ((LSTM(units= UNITS , return_sequences=True)))

regressor.add(Dropout (0.2))

regressor.add ((LSTM(units= UNITS , return_sequences=True)))

regressor.add(Dropout (0.2))

regressor.add((LSTM(units= UNITS)))

regressor.add (Dropout (0.2))

regressor.add(Dense (units = n_future,activation='linear'))

regressor.compile (optimizer=optimizer,, .
.loss='mean_squared_error',metrics=['acc'])

regressor.fit(x_train, y_train, epochs=EPOCHS,batch_size=BATCH_SIZE)

Train_loss, train_acc = regressor.evaluate(x_train, y_train, verbose=0)

overal .append([n_past,Train_loss, train_acc])

for o in range(len{overal))

print(‘'n_past: *,overal[o][@]," ‘t ,loss:",overal[o][1], \t,Acc: "’ ,overal[o][2])
n_past: &4 sloss: 3.2412593364715576 smse: 3,2412593364715576
n_past: 98 sloss: 3.529353389203247 ,mse: 3.529353388283247
n_past: 123 ,loss: 3.2818715572357178 smse: 3, 2B18715572357178

FIG. 34 — UNITS OPTIMIZATION

-46-

5.4 — Batch Size

The size of the batch (split) of our dataset is another hyperparameter, which should be
considered. We tested with 32, 64 and 128 for batch size, as also shown in Figure 35. The best
results in terms of loss were achieved when the batch size was 32.

overal = [
n_future = 12 #Next # observations temperature forecast
n_past = 64 #Past # of observations
BATCH_SIZE_LIST = [32, 64 ,128]
for BATCH_SIZE in BATCH_SIZE_LIST :
x_train =[]
y_train =[]

for i in range(0, len(training set) - n_past - n_future + 1):
¥_train.append(training_set[i : i + n_past, 01)
y_train.append(training_set[i + n_past : i + n_past + n_future, 0])

¥_train , y_train = np.array(x_train), np.array(y_train)
¥_train = np.reshape(x_train, (x_train.shapel[0] , x_train.shape[1], 1))

EPOCHS =5

#BATCH_SIZE= 32 #len(r_train) #1024
UNITS = n_past

optimizer = 'Adam'

regressor = Sequential()

regressor.add(Bidirectional (LSTM(units=UNITS, return_sequences=True,,,
-.input_shape = (x_train.shape[1],1))))

regressor.add(Dropout (0.2))

regressor.add ((LSTM(units= UNITS , return_sequences=True)))

regressor.add (Dropout (0.2))

regressor.add ((LSTM(units= UNITS , return_sequences=True)))

regressor.add (Dropout (0.2))

regressor.add ((LSTM(units= UNITS)))

regressor.add (Dropout(0.2))

regressor.add(Dense (units = n_future,activation='linear'))

regressor.compile (optimizer=optimizer,,.
-»1oss='mean_squared_error',metrics=['acc'])

regressor.fit(x_train, y_train, epochs=EPOCHS,batch_size=BATCH_SIZE)

Train_loss, train_acc = regressor.evaluate(x_train, y_train, verbose=0)

overal .append([BATCH_SIZE,Train_loss, train_accl)

for o in range(len{overal)):
print('Batch Size: ',overal[o][@].' “t ,less:',overal[o][1],'\t,mse:",overal[oc][2])

Batch 5ize: 32 ,loss: 3.2588484287261963 ,mse: 3,2588484287261963
Batch Size: b4 ,loss: 3.436892138329@4853 ,mse: 3.4368921352084853
Batch 5ize: 128 Jloss: 3.7178285121917725 ,mse: 3.7178285121917725

FIG. 35 — BATCH SIZE OPTIMIZATION

-47-

5.5 — Activation Function

The activation function of a node defines the output of that node given an input or set of
inputs and it is a major hyperparameter of the training model. We experimented with
activation functions such swish, relu, sigmoid and hard sigmoid and as shown at Figure 36,
relu manages highest score having the lowest loss value.

overal = []
n_future = 12 #Next # observations temperature forecast
n_past = 64 #Past # of observations
activations_list = ['swish', 'relu', 'sigmoid', 'hard_sigmoid'l
for activs in activations_list:
x_train =[]
y_train =[]

for i in range(0, len(training_set) - n_past - n_future + 1):
x_train.append(training_set[i : i + n_past, 01)
y_train.append(training set[i + n_past : i + n_past + n_future, 0])

¥_train , y_train = np.array(x_train), np.array(y_train)
x_train = np.reshape(x_train, (x_train.shapel[0] , x_train.shape[i], 1))

optimizer = 'Adam'
regressor = Sequential()
regressor.add(Bidirectional (LSTM(units=UNITS , return_sequences=True,,
input_shape = (x_train.shape[1],1})))
regressor.add(Dropout(0.2))
regressor.add((LSTM(units= UNITS , return_sequences=True)))
regressor.add(Dropout(0.2))
regressor.add((LSTM(units= UNITS , return_sequences=True)))
regressor.add(Dropout(0.2))
regressor.add((LSTM(units= UNITS)))
regressor.add(Dropout(0.2))
regressor.add(Dense (units = n_future,activation='linear'))
regressor.add(layers.Activation(activs))
regressor. compile (optimizer=optimizer, .
-~ 1oss='mean_squared_error' ,metrics=['acc'])
regressor.fit{x_train, y_train, epochs=EPOCHS,batch_size=BATCH_SIZE)
Train_loss, train_acc = regressor.evaluate(x_train, y_traim, verbose=0)
overal .append([activs,Train_loss, train_acc])

for o in range(len{overal)):
print('Activation:’,overal[o][©], '\t ,loss:’,overal[e][1], '\t,mse:",overal[o][2])

Activation: swish ,1loss: 3.458183521347046 ,mse: 3.4561835213470848
Activation: relu Jloss: 3.429973629885683 ,mse: 3.429973509885083
Activation: sigmoid ,loss: 226.702879848527344 ,mse: 226.703708408527344
Activation: hard_sigmoid sloss: 226.7087984@527344 ,mse: 226.7887964@527344

FIG. 36 — ACTIVATION FUNCTION OPTIMIZATION

-48-

5.6 - Learning Rate

Learning rate is one of the most critical hyperparameter since it affects the most the learning
process. A good learning rate would mean a more complete understanding of the cost
function, which the model should define. . We tested with 0.0001, 0.001, 0.01 and 0.1 for the
learning rate, as also shown in Figure 37. The best results in terms of loss were achieved when
the learning rate was 0.01.

n_future = 12 #Nert # observations temperature forecast

n_past = 48 #Past # of observations

¥_train = []

y_train = [1

for 1 in range(0, len(training set) - n_past - n_future + 1):
¥_train.append(training set[i : i + n_past, 0])
y_train.append(training set[i + n_past : i + n_past + n_future, 0])

¥_train , y_train = np.array(x_train), np.array(y_train)

¥_train = np.reshape(x_train, (x_train.shape[0] , x_train.shapelll, 1))

acc_list = [1

EPOCHS =10
BATCH_SIZE= 64 #len(z_irain) #1024
UNITS = 48

1r_LIST = [0.0001, 0.001, 0.01, 0.1]
for 1r in 1r_LIST:
print('learning rate:',1r)
regressor = Sequential()
regressor.add(Bidirectional (LSTM(units=UNITS, activation='elu',
~return_sequences=True, input_shape = (x_train.shapelll, 1))))
regressor.add (LSTM(units= UNITS,activation='elu'))

regressor.add(Dense (units = n_future, activation='elu'))

regressor.compile (optimizer=tf.optimizers.Adam(), loss='mean_squared_error',,
—metrics=['accuracy'l)

regressor.fit(x_train, y_train, epochs=EPOCHS, batch_size=BATCH_SIZE)

Train_loss, acc = regressor.evaluate(x_train, y_train, verbose=0)

acc_list.append(acc)

for o in range(len{overal)):
print(’'Learning Rate:',overal[o][®], '\t ,loss:',overal[o][1], \t,mse:’,overal[o][2])

Learning Rate: 2.8881 ,loss: 270.40130424296875 Jmse: 279.49139484296875
Learning Rate: 2.8091 ,loss: 137.3489008234275 ,mse: 137.3489098234375
Learning Rate: @.81 ,loss: 3.5898293652648526 ,mse: 3.,5800298652648826
Learning Rate: 8.1 ,loss: 326.1465750277344 ,mse: 326.1465759277344

FIG. 37 — LEARNING RATE OPTIMIZATION

-49-

5.7 - Training and Evaluation Process

Now, after having complete the hyperparameter (fine) tuning process, we can analyze the
train and evaluation process. At Figure 38, we can see the code used for the visualization of
the dataset. The visualization shows the temperature values along with the increment number
of each data sample. We saw at chapter four that our dataset consist of 87604 records of data.
Figure 39 shows the loss during the training process of the model, take into consideration that
we used the best value accrued in the previous stage for each one of the parameters.

¥x_axis = range(len(temperature_df.values))
plt.figure ()
plt.plot(x_axis, temperature_df .values, "b", label="Data Visualization")

plt.title("Data Visualization")
plt.xlabel ("TimeLine")
plt.ylabel ("Temperature™)
plt.legend ()

plt.show()
Data Visualization
40 A1 = [ata Visualization
30 i}
v
5 20 A
o
]
E
8 10 A1
D -
_1G -
0 20000 40000 60000 80000
TimeLine

FIG. 38 — HISTORICAL DATA VISUALIZATION

-50-

UNITS = n_past
EPOCHS =20
BATCH_SIZE- 32
def get_lr_metric(optimizer):
def 1r(y_true, y_pred):
return optimizer.lr
return 1r

optimizer = tf.keras.optimizers.Adam()

1r_metric = get_lr_metric(optimizer)

regressor = Sequential()

regressor.add(Bidirectional (LSTM(units=UNITS,activation ='elu',,
.:return_sequences=True, input_shape = (x_train.shape(1],1))))

regressor.add(Dropout(0.2))

regressor.add((LSTM(units= UNITS , return_sequences=True)))

regressor.add(Dropout (0.2))

regressor.add ((LSTM(units= UNITS, return_sequences=True)))

regressor.add(Dropout (0.2))

regressor.add ((LSTM(units= UNITS)))

regressor.add(Dropout(0.2))

regressor.add(Dense(units = n_future,activation='linear'))

regressor.compile(optimizer-optimizer, loss='mean_squared_error',metrics=['acc'])
regressor.fit(x_train, y_train, epochs=EPOCHS,batvch_size=BATCH_SIZE)

Training Loss

22.5 1 —— Taining loss

17.5 +

15.0 1

Loss
=
L

10.0 +
7-5 _ \—_\
50 ~

T T T ! I

T T T
0.0 25 50 15 100 125 150 175
Epochs

F1G. 39 — LOSS DURING TRAINING PROCESS
Train_loss = regressor.evaluate(x_train, y_train, verbose=0)
print("Loss:",Train_loss)

Loss: [2.508274555206299, 0.6153011322021484]

-51-

#Mean difference between train,test and real data
import statistics
from numpy import mean

predicted_train_temperature = regressor.predict(x_train)
predicted_test_temperature = regressor.predict(x_test)

min_train = y_train.min()
min_test = y_test.min()
max_train = y_train.max()
max_test = y_test.max()

min_pred_train = predicted_train_temperature.min()
max_pred_train = predicted_train_temperature.max()
min_pred_test predicted_test_temperature.min()

max_pred_test = predicted_test_temperature.max()
mtrain = mean(predicted_train_temperature - y_train)
mtest = mean(predicted_test_temperature - y_test)

print('The mean difference between train and real data is:',mtrain)
print('The mean difference between test and real data is:',mtest)
print('Min value of real(train) Data:',min_train ,'Predicted Min:
!, min_pred_train)
print('Min value of real(test) Data:',min_test ,'Predicted Min:',min pred_test)

print('Max value of real(train) Data:',max_train ,'Predicted Min:
!, max_pred_train)
print('Max value of real(test) Data:',max_test ,'Predicted Min:',max_pred_test)

The mean difference between train and real data is: -0.20162443163668223
The mean difference between test and real data is: -1.1455204407374062
Min value of real(train) Data: -10.2 Predicted Min: -10.035056

Min value of real(test) Data: 3.3 Predicted Min: 3.450125

Max value of real(train) Data: 40.3 Predicted Min: 38.35743

Max value of real(test) Data: 6.4 Predicted Min: 4.0550685

FIG. 40 PRE-EVALUATION STATISTICS

We explain in the previous section that we have split our dataset into 80% for train process
and 20% for the evaluation process. We need to compare the predicted values of our model
both for the train and evaluation process. Figure 40 shows the code, which help us to check
the mentioned comparison. The results show that during the train process, the temperature
values predicted by our model have a mean difference of minus 0.201 Celsius degrees
compared to the actual temperature values. The minimum temperature value of our dataset
into train process was minus 10.2-Celsius degrees while the minimum temperature value,
which our model predicted, was minus 10.035 Celsius degrees. Correspondingly, the
maximum temperature value of our dataset into train process was 40.3-Celsius degrees while
the maximum temperature value, which our model predicted, was 38.35-Celsius degrees.

Respectively, during the evaluation process, the temperature values predicted by our model
have a mean difference of minus 1.1455-Celsius degrees compared to the actual temperature
values. The minimum temperature value of our dataset into evaluation process was 3.3-
Celsius degrees while the minimum temperature value, which our model predicted, was 3.45-
Celsius degrees. Correspondingly, the maximum temperature value of our dataset into
evaluation process was 6.4-Celsius degrees while the maximum temperature value, which our

-52-

model predicted, was 4.055-Celsius degrees. Table 4 shows the min and max values of train
and evaluation data as long as the values, which our model predicted based on train and test
dataset.

Min -10.2 |-10.35 3.3]3.45
Max 40.3 | 38.35 6.4 | 4.05
TABLE 9 — MIN MAX VALUES

Figure 41 and 42 visualize the prediction over 600 samples of the dataset when using then
training and the evaluation data respectively, compared to the real temperature distribution
of these data samples.

pre_values = []
real_values= []
look_back =50
for i in range(look_back-1,-1,-1):
last_observations =np.array(training set[len(training_set)-n_past-n_future,,
~.-n_future*i : len(training set) -n_future -n_futurexi])
last_observations = np.reshape(last_observations, (1, last_observations.
,shape[0], 1))
pre_values.append(regressor.predict(last_observations) [0])
pre_values = np.reshape(pre_values , n_future*look_back)

visualize_temerature_trend(pre_values,training_set[-n_future*look_back:
-] ,n_future*look_back, "Prediction Vs Real Distribution On Training Data")

Prediction Vs Real Distribution On Training Data

10 -

Eemperature
(52l

0 -
= Prediction Distribution
5] — Real Temperature Distribution
0 100 200 300 400 500 600
samples

FIG. 41 — PREDICTION VISUALIZATION ON TRAINING DATA

-53-

pre_values = []

real values= []

look_back =50

for i in range(look back-1,-1,-1):

last_observations =np.array(test_set[len(test_set)-n_past-n_future,
—-n_future*i : len(test_set) -n_future -n_future*i])

last_observations = np.reshape(last_observations, (1, last_observations.
-.shape[0], 1))

pre_values.append(regressor.predict(last_observations)[0])
pre_values = np.reshape(pre_values , n_future*lock back)

visualize_temerature_trend(pre_values,test_set[-n_future*look_back:
-] ,n_future*look_back, "Prediction Vs Real Distribution On Test Data")

Prediction Vs Real Distrnibution On Test Data

15 A

| ﬁ

TEemperature
LN

0 p
= Prediction Distribution
-5 {4 = Real Temperature Distribution
T T T T T T T
0 100 200 300 400 500 600
samples

FIG. 42 — PREDICTION VISUALIZATION ON TEST DATA

-54-

Finally, we tested the proposed prediction model over future data. Specifically, our model
predicted 120 temperature values, which were then compared to the current observations as
arriving by the weather station. Figure 43 presents the predicted and the real temperature
values; it is clear that our model managed to predict what the temperature would be in the
specific resign.

pre_values = []
real_values= []
look_back =10
for i in range(look_back-1,-1,-1):
last_observations =np.array(dataset_predict["temperaturs"].
—values[len(dataset_predict ["temperature"].values)-n_past-n_future -n_future*i :
- len(dataset_predict["temperature"].values) -n_future -n_future#il)
last_observations = np.reshape(last_observations, (1, last_observations.
—.shapel[0], 1))
pre_values.append(regressor.predict(last_observations) [0])
pre_values = np.reshape(pre_values , n_future*lcok_back)

visnalize_temerature_trend(pre_values,dataset_predict["temperature"].
—.values [-n_future*look_back:] ,n_future*look_back, "Prediction Vs Real,,
~Distribution on Current Data")

Prediction Vs Real Distribution on Current Data

25 0 - - Prediction Distribution
' - Real Temperature Distribution
22.5
w 20.0 1
8
]
& 17.5 1
a
£
W 150 |
12.5 A
10.0 A
0 20 40 60 80 100 120
samples

FIG. 43 — PREDICTION EVALUATION

-55-

Figure 44 shows on the prediction process our model achieve a 0.98 correlation Coefficient

between the predicted values and the actual values which the weather station report on
future time

A heatmap showing the correlation of predicted and real Temperature

Camatation

meteo_ - meteoPrediction: 0.989 e

meteoPrediction

meten

FIG. 44 — CORRELATION HEATMAP FOR PREDICTED AND REAL TEMPERATURE VALUES

At Figure 45, we can see the output of our model, predicting the next 12 temperature samples
based on the last 64 observations. Figure 46 shows, in a common plot for the last 120 samples,
the actual temperature values, the temperature values predicted by the model for the
corresponding timestamp as well as the next 12 values which our model predict based on the
last 64 samples.

last_observations =np.array(dataset_predict["temperature"].values[-n_past:])
last_observations = np.reshape(last_observations, (1, last_observations.
—shape[01, 1))

predicted_temperature = regressor.predict(last_observations)
print('Next 12 Predicted temperature {}'.format(predicted_temperature))

Next 12 Predicted temperature [[13.275452 12.9748955 12.690847 12.413246
12.1568142 11.900476

11.635497 11.427635 11.2411656 11.083024 10.989482 10.937527 11

FIG. 45 — OUTPUT FOR THE NEXT 12 TEMPERATURE SAMPLES

-56-

predicted = np.append(pre_values,np.zeros(n_future))

real np.append(dataset_predict ["temperature"] .values[-n_future+look_back:
-.],np.zeros(n_future))

zeros = np.zeros(n_future+*look_back)

next_pred = np.append(zeros,predicted_temperature)

visualize_temerature_trend2(predicted,real,next_pred, (n_future+look_back)+n_future
"Next Temperature values Prediction")

Next Temperature values Prediction

= Predicted Distribution
25 4 = Real Temperature Distribution
- Next Prediction Values
20 1
5 15 -
e
&
&
F 10 4
5 -
o -
0 20 a0 60 80 100 120
samples

FIG. 46 — NEXT 12 SAMPLES PREDICTION

-57-

Figure 47 is visualized the correlation between the prediction and real values from weather
station of meteo.gr and openweathermap.org. Figure 48 is a dashboard concerning the
prediction process. The left Gauge visualization shows the temperature at according the next
hour while the right histogram shows the next 12 predicted values for the temperature.

A heatmap showing the correlation of Temperature Sources

Correlation

1.000
0.005
0.000
0.985
0.020
0.075
0.070
0.065

mateoPradiction-—
meteo|
openweathemmapPradicion

spemwzaeman

oemwestneman openwestemapFresiction metes meteoPrediction

FIG. 47 — PREDICTION AND REAL VALUES HEATMAP CORRELATION

Heat Hour Prediction ean Mot 6 hour Prediction

Average temperature

19.228

)

FIG. 48 — PREDICTION DASHBOARD NEXT TEMPERATURE VALUES

Next Hour Prediction Next 6 Hour prediction

Figure 49 is also a dashboard, which tries to assess the correlation between the actual
reported values of the weather stations with the coresponding, which the forecast models
had predicted for the same time. Our model create the predicted values for meteo.gr while
the prediction values for the openweathermap.org are gathered from the openweathermap
api for the weather forecasting.

Predictions Prediction_Correlation

Aheatmap showing the correlation of Temperature Sources
. Correlation
® openweathermaporg 25.305 oo
® meteo.gr mateotreccton -
00ss
0020
oses
0080

® meteoPradiction 37.258

s @ openwesthermapPredicti.. 25.8

‘openwethermapPredicton

Spenwesthermag

20210501 000 202100010000 2021-07-01 00:00
per 60 minutes

meieo metaoPredicton

FIG. 49 — PREDICTION DASHBOARD DISTRIBUTION AND CORRELATION

-58-

Closing chapter 5 we saw how we chose the parameters of our model. We used the Grid
Search technique to select the optimal options for the corresponding parameter. We
concluded that our model using 3 hidden layers, adam optimizer, 64 units, 32 as batch size,
relu as activation function and 0.01 value for learning rate achieves the best performance in
terms of loss. We saw that during train process, the temperature values predicted by our
model had a mean difference of minus 0.201 Celsius degrees compared to the actual
temperature values while the respective value during evaluation process was about minus
1.1455-Celsius degree. The above results indicated that in the worst-case scenario our
prediction might deviate by one degree Celsius less. The above mean difference shows the
expected outcome, that our model achieved better results during train than the evaluation
process.

We could also conclude that our model is sufficient in the short-term forecast, achieving a
0.98 correlation coefficient between the predicted values and the actual values which the
weather station report on future time.

Finally, we end up that our model observing the last 64 pasts can satisfactorily predict the next
12 observations. We could not know how our model would respond to extreme changes and
fluctuations in temperature within the last measurements. This particular issue is possibly a
good example for further research.

-59-

Chapter 6 — Conclusions and Future Extensions

6.1 Conclusion

The purpose of the current work was to try to identify, if there are differences between the
meteorological data reported by the different sources. The main tool to identify any
differences is the visualizations through the kibana platform. The difficulties we had to
overcome were that, we had to scrape our data from different sources with the particularities
of each one, as well as we had to transform our data into a common format and units of
measurement.

We can conclude from our results coming from our correlation coefficients that the
temperature and barometer variables present a strong correlation coefficient while wind
velocity, precipitation and humidity variables present less strong correlation coefficient. User
can also see the actual values for each source and weather variable at a specific time range.

The visualizations, which have been developed at the current work, consist an effective and
useful tool in order to locate climate data aggregation between different weather stations and
sources while it can also be used efficiently for short-term temperature prediction. User can
use these two modules independently, once for values and distributions of weather
(historical) data and the other one for the corresponding future values of our proposed
prediction model. Itis worth noting that with the given technologies and processes with which
the work has been developed, it is relatively easy to add even more meteorological stations
and weather parameters, while kibana provides the ability to create new default and custom
visualizations and dashboard.

Regarding the temperature prediction process, the problems we had to face were the huge
amount of data, as well as the lack of computing resources. For this reason, our model was
limited to a short-term prediction process of 6-hour prediction (12 prediction temperature
values). However, on the prediction process our model achieve a 0.98 correlation Coefficient
between the predicted values and the actual values, which the weather station report on
future time.

As afinal presumption, the work proves that there are clear differences on climate parameters
(temperature, humidity, wind, precipitation, etc.) between the different stations in the Tripoli
— Peloponnese — Greece- area, even though these stations are very close to each other, while
itis possible to predict short term temperature values through the model we developed, using
Long Short-Term Memory (LSTM) neural network.

-60-

6.2 Future Work

The present work is a remarkable introduction to the meteorological prediction process. The
proposed model can be used for short term forecasting. A future extension, could be the
training, for medium-term forecast which however requires advance computing power and
memory capacity. Greater computing power could enable the model to use more past
temperature values to create predictions.

This work is limited to meteorological data of a specific geographical area — Tripoli,
Peloponnese, Greece. It would be very interesting if this work were carried out for other
regions of the country, to see if we have similar results

An extension would be the use of the model in sectors such as agriculture to predict
impending diseases in related crops.

Finally, an interesting extension for our model would be the prediction of all-weather
parameters such as temperature, humidity, precipitation, barometer, wind velocity and
direction.

-61-

References
Aggarwal, C. (n.d.). Neural Networks and Deep Learning.

Behera, Keidel, & Debnath. (2018). Context-driven multi-stream LSTM (M-LSTM) for
recognizing fine-grained activity of drivers.

Cerqueira, Torgo, Pinto, & Soares. (2019). Arbitrage of forecasting experts.

DB-Engines Ranking of Search Engines. (n.d.). Retrieved from https://db-
engines.com/en/ranking/search+engine

Diederik P. Kingma, J. B. (2015). Adam: A Method for Stochastic Optimization. International
Conference on Learning Representations (ICLR).

Duchi, J., Hazan, E., & Singer, Y. (2010). Adaptive Subgradient Methods for Online Learning
and Stochastic Optimization. Neural Information Processing Systems (NeurlPS).

ElasticSearch official Page. (n.d.). Retrieved from https://www.elastic.co/elasticsearch/

freemeteo.gr station information. (n.d.). Retrieved from
https://freemeteo.gr/kairos/tripoli/o-kairos-
tora/simeio/?gid=252601&language=greek&country=greece

Hastie, T., Tibshirani, R., & J, J. F. (2009). The Elements of Statistical Learning: Data Mining,
Inference, and Prediction (2nd ed.).

Hellenic National Meteorological Service. (n.d.). Retrieved from http://www.emy.gr/

Hewage, Behera, Trovati, & Pereira. (2019). Long-short term memory for an effective short-
term weather forecasting model using surface weather data.

Hewage, P. (2020). Temporal convolutional neural (TCN) network for an effective weather
forecasting using time-series data from the local weather station.

Hewage, P., Trovati, M., Pereira, E., & Behera, A. (2021). Deep learning-based effective fine-
grained weather forecasting model.

Hinton, G. (2012). Neural Networks for Machine Learning. In G. Hinton.

Hinton, G. E. (2006, July). Reducing the Dimensionality of Data with Neural Networks.
Science, pp. 504-507.

Hochreiter, S., & Schmidhu, J. (1997). Long Short-term Memory.
Kibana Official Site. (n.d.). Retrieved from https://www.elastic.co/kibana

Kreuzer, D., & Munz, M. S. (2020). Short-term temperature forecasts using a convolutional
neural network — An application to different weather stations in Germany.

Lorenz, E. N. (1963). Journal of the Atmospheric Sciences, pp. 130 - 141.

M, R., Islam, A., Nadvi, S., & Rahman, R. (2013). Comparative study of ANFIS and ARIMA
model for weather forecasting in Dhaka.

Meteo Weather Station Page. (n.d.). Retrieved from
https://penteli.meteo.gr/stations/tripoli/

-62-

Mishra, D., & Joshi, P. (2021). A Comprehensive Study on Weather Forecasting using Machine
Learning. Retrieved from
https://ieeexplore.ieee.org/document/9596117/authors#tauthors

Nair, V., & Hinton, G. E. (2010). Rectified Linear Units Improve Restricted Boltzmann
Machines. In Proceedings of the 27th International Conference on Machine Learning
(ICML-10), (pp. 807-814).

National Observatory of Athens. (n.d.). Retrieved from https://www.noa.gr/
Newton, I. (1680). Philosophiae Naturalis Principia Mathematica .
Okairos.gr - About Us. (n.d.). Retrieved from https://www.okairos.gr/fag.html

Okairos.gr - Hourly ForeCast. (n.d.). Retrieved from
https://www.okairos.gr/%CF%84%CF%81%CE%AF%CF%80%CE%BF%CE%BB%CE%B7
.htmI?v=%CF%89%CF%81%CE%B9%CE%B1%CE%AF%CE%B1

OpenWeathermap.org - About Us. (n.d.). Retrieved from https://openweathermap.org/faq

Pradeep, H., Marcello, T., Ella, P., & A. B. (2021). Deep learning-based effective fine-grained
weather forecasting model.

Python Official Page. (n.d.). Retrieved from https://www.python.org/
Ramachandran, P., Zoph, B., & V., L. Q. (2018). Searching for Activation Functions.
Richardson, L. F. (1922). Weather forecasting with numerical methods .

Robbins, H. (1951). A Stochastic Approximation Method. Retrieved from
https://www.semanticscholar.org/paper/A-Stochastic-Approximation-Method-
Robbins/34ddd8865569c2c32dec9bf7ffc817ff42faaa01?p2df.

Sanchez-Fernandez, M., de-Prado-Cumplido, M., Arenas-Garcia, J., & Perez-Cruz, F. (2004).
SVM multiregression for nonlinear channel estimation in multiple-input multiple-
output.

Schneider, R., Massimo, B., Geer, A., & Arcucci, R. (2022). ESA-ECMWF Report on recent
progress and research directions in machine learning for Earth System observation
and prediction. Nature. Retrieved from https://www.nature.com/articles/s41612-
022-00269-z

Schult, M., Betancourt, B. G., Kleinert, F., Langguth, M., L. H., L., Mozaffari, & Stadtler, S.
(2021). Can deep learning beat numerical weather prediction?

Scrapy - ElasticSearch. (n.d.). Retrieved from https://github.com/jayzeng/scrapy-
elasticsearch

Scrapy Framework. (n.d.). Retrieved from https://scrapy.org/: https://scrapy.org/

Sharaff A, R. (2018). SR Comparative analysis of temperature prediction using regression
methods and back propagation neural network., (pp. 739—742). Retrieved from
https://doi.org/10.1109/icoei.2018.8553803

Sun, C.-S., Wang, & X-R, L. (2008). A vector autoregression model of hourly wind speed and
its applications in hourly wind speed forecasting.

-63-

Voyant, C. (2017). Machine learning methods for solar radiation forecasting: a review.
Retrieved from https://doi.org/10.1016/j.renene.2016.12.095

Xalazi.gr - Weather Data. (n.d.). Retrieved from http://www.xalazi.gr/prognwsh-
kairou/prognosi-5-imeron?type=FiveDays&city=1178#

-64-

