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Abstract

Natural language inherently contains an interpretation of the world in the form of

vocabulary and the different meanings of words. Language changes can reflect so-

ciocultural evolution; therefore, their systematical exploration is a valuable tool to

social and humanities sciences researchers. In this thesis, we examine the detection

of semantic changes between two time periods t1, t2. For the empirical study, we

use datasets of four different languages (English, German, Latin, and Swedish) pro-

vided from the SemEval-2020 Task 1. The whole set of our experiments is evaluated

against a binary classification task, depending on whether a word’s sense changes or

not. For that purpose, we explore a set of different approaches including methods

that have not been previously submitted in the SemEval-2020 Task 1. Furthermore,

we create an extensible system which decouples each stage of the diachronic se-

mantic change detection workflow from the actual implementations. This approach

contributes to a quick and efficient reproduction of the experiments, aiming to fa-

cilitate research in the domain of semantic change. Based on the results of our

empirical study, we answer three different questions. The first is related to identi-

fying the most suitable alignment method for the word embeddings Wt1, Wt2. The

methods under investigation are the Orthogonal Procrustes, the Incremental Train-

ing, and the Temporal Word Embeddings with a Compass. The next question refers

to the performance of the Word2vec pre-trained embeddings compared to others

whose weights had not been prior initialized. Finally, through the application of

LDA2vec, we explore whether the LDA (Latent Dirichlet Allocation) topics improve

the performance of the SGNS (Skip-gram with Negative Sampling) or not.
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Chapter 1

Introduction

The work herein constitutes a comparative study of text representation methods

on the task of diachronic semantic change detection of words. Our objective is to

explore the related bibliography and apply or combine existing methods in order

to examine their respective performance. Moreover, through our implementation,

we aim to provide an adaptable system which incorporates the basic components

of diachronic semantic change detection and could be leveraged from the research

community in future works.

The work in [11] defines natural language as a discrete symbolic representation

of human knowledge. The combinations of these symbols create words, sequences

of the words form sentences, and sentences can lead to written or phonetic forms of

human knowledge. Language drifts refer to the changes in these components. The

different types can be classified into linguistic drifts and cultural shifts[18]. The

first involves changes in the true sense of words, and the latter considers emerging

cultural associations. A prominent example of linguistic drift is the word ”villain”,

with an initial meaning of a man who works on a farm and its contemporary sense

of a mean person or a criminal. On the other hand, an example of a cultural shift

is the word ”apple”. Although it is still used as a kind of fruit, in the last decades,

it also refers to the products of an international technology company.

Linguistic drifts can be further divided to lexical, where new words appear in the

lexicon, phonological, involving any sound change on words, spelling, that relates to

- 1 -



1.1 : Contributions

orthographic aspects, and semantic change. Focusing on semantic change, we have

the following classification:

• pejoration: negative meanings over positive

• amelioration: positive meanings over negative

• broadening: additional potential meanings

• narrowing: restricted potential meanings

• shift: original meaning is not available anymore

• differentiation: two meanings arise from a single original one

Semantic change detection provides the necessary tools to researchers from so-

cial and humanities sciences in order to identify shifts in language, and hence the

changes that occur in society. Furthermore, semantic similarity is utilized from

computational sciences in several other tasks. These kind of tasks include word

sense disambiguation[34], text classification[29], sentiment analysis[1, 22], machine

translation[55], question answering[24] and information retrieval[53].

1.1 Contributions

In this work, we deal with the task of diachronic semantic change detection be-

tween two different periods. The task is addressed as a binary classification problem

depending on the indication of meaning change (true/false) for specific words. We

examine the literature on the diachronic semantic change detection task, and we

highlight the key-point decisions that have to be considered to deal with it. After

that, we provide the methodology of our empirical study, which focuses on three

different layers. The first lay on the text representations, where we compare the

methods of Word2vec[25, 26] and LDA2vec[27] and we examine whether the ”injec-

tion” of LDA[6] topics into the Word2vec manages to capture the semantic similarity

of the words in a better way. Next, we explore pre-trained embeddings[30, 52, 50]

in combination with Word2vec. In this case, we examine whether the exploitation

of pre-trained embeddings leads to an increase in the average performance of the

system. The second layer is about the different approaches to the notion of time

representation of the word embeddings. We concentrate on the alignment methods

- 2 -



Chapter 1 : Introduction

of Orthogonal Procrustes[28], Incremental Training[17] and Temporal Embeddings

with a Compass[3], and we experimentally assess whether the alignment approach

of the word embeddings affects the performance of Word2vec. Finally, for the third

layer of similarity measures, we apply the cosine distance and the local neighbor-

hood measure[13] to all of the previously presented experiments. We investigate

whether the local neighborhood measure affects the performance of LDA2vec and

how it improves on the performance of the respective cosine distance measure.

1.2 Thesis Structure

The rest of the document is organized as follows. In Chapter 2 we present the

work that is closely related to the task of unsupervised lexical semantic change

detection. We present a workflow that is usually followed in this task and fit the

related work within this workflow. Chapter 3 presents the methodology that we

followed. We describe that data we used and the methods that we applied, leading

to a series of experiments. Then, in Chapter 4 we present the different experimental

results that emerged from the various settings of our system. We discuss how our

results compare to the best results of the SemEval 2020 Task-1, and we further

answer the research questions posed above. Finally, Chapter 5 concludes the thesis

and presents steps and ideas for future work.
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Chapter 2

Related Work

This chapter provides essential terms, background knowledge, and related work in

diachronic semantic change detection. Furthermore, we present the critical decisions

an individual has to take to handle the detection of diachronic semantic change

(DDSC) on specific words. We break down and present the important aspects of

the task, referring to the related literature respectively:

• Diachronic semantic change detection workflow [2.1]

• Time period and sources [2.2]

• Text representations [2.3]

• Similarity types [2.4]

• Time representation [2.5]

• Similarity measures [2.6]

2.1 Diachronic semantic change detection

The starting point of DDSC is to define the traits of the corpus/dataset under

investigation. Two critical components are the time period that the data came from

and the type of source that originated it. A corpus can be derived from literature,

newspapers, online communities (chats, social media), reports, and more. Such types

of sources have differences in the form of their language, the audience they refer to,

and hence the degree of semantic changes in a specific time period[7]. Next, there

is the choice of algorithm for the text representation. This decision lies on several
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2.2 : Time period and sources

factors such as the required training time of our model, the type of similarity it

captures[2.4], and the amount of the available data[10]. Given the diachronic nature

of the task, a comparison of at least two different text representations, one for each of

the earlier and later corpora, is needed. To obtain comparable word representations,

we need them either to be trained in a common space from the start [17, 3] or

to use an alignment method to map the independently trained representations in

that common space[28]. Finally, we need to identify the suitable measures [2.4] to

quantify the degree of change. The following sections is an elaboration on each of

the workflow steps of the figure [2.1].

Figure 2.1: Workflow of Diachronic Semantic Change Detection

2.2 Time period and sources

The authors in [7, 23] examine semantic change in a short-term period, where text

sources are discourses from online communities and news. Both types of sources are

rapidly affected by cultural changes. Therefore linguistic changes are adopted and

spread quicker. For example, words that refer to new emergent technologies or slang

words from a viral song (cultural changes) are most likely to exist in a magazine

or social media rather than in a book. On the other hand, in literature, there is a

need for more persistent changes in terms of time dimension for a semantic change

to be reflected in books. A substantial difficulty in short time periods is handling
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referential cases. Referential cases emerge from words that, in certain periods, are

closely related to specific facts, persons, etc. This might lead to high differences

in the context of the word before and after that certain period. In turn, this leads

to cases falsely recognized as semantic changes. It is, therefore, crucial to select an

appropriate measure that handles such cases efficiently [7, 23].

2.3 Text Representations

In this work, we are interested in DDSC of specific words between two periods of

time. Hence we create text representations (embeddings) at the word level. Embed-

dings can be derived from a document or a window of words; therefore, the word

representation depends on the choice of context and vocabulary size.

Text representations can be separated into sparse and dense. The former is calcu-

lated from co-occurrence matrices and is based on raw count frequency and their

relevant probabilities. Typical examples are the bag of words (BoW) model and the

term frequency-inverse document frequency (tf-idf) weighting scheme. BoW results

in a vector where rows stand for each different document and columns for the count

of each unique term occurrence in a document. This approach results in high values

for words with high frequency, such as conjunctions, even if they are not informative.

Tf-idf solves this problem by considering the frequency of a term in all documents.

The final vector contains low values for high-frequency words and high values for

rare words.

Further calculations can be applied to the raw count frequency to avoid skewed

distribution and retrieve the degree of information in each context-target word com-

bination. This can be achieved with the usage of Pointwise Mutual Information

(PMI) and its various forms (Positive PMI, Weighting PMI).

Dense or distributed representations aim to describe the meaning of words and

sentences, solving the problem of the high number of features caused by sparse

representations due to the vocabulary size. Dense representations are usually de-

rived from either the application of dimensionality reduction techniques or a neural

network (NN) architecture[30, 26].
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2.3.1 Dimensionality reduction techniques

Among the most representative methods in dimensionality reduction are Principal

Component Analysis (PCA), an application of Singular Value Decomposition (SVD)

[47], and Random Indexing(RI) [40]. PCA is an unsupervised algorithm seeking a

lower-dimensional space that maximizes the variance in a dataset. It first samples

the data in a standard co-occurrence matrix and then transforms it into a much

smaller and denser representation. RI is a random projection technique that lies

on the Johnson-Lindenstrauss lemma [16]. The lemma states that high dimensional

spaces can be approximately projected into lower dimensions preserving the dis-

tances between points. RI, compared to PCA, is computationally cheaper and more

flexible in cases of newly appeared data [40].

2.3.2 Neural network approaches

NN approaches can be further divided into pre-trained contextual and non-

contextual embeddings. Two prominent examples of the first case are the state-

of-the-art ELMo[31] and the later method of Bidirectional Encoder Representations

from Transformers (BERT) [8]. Both are pre-trained in massive volumes of textual

data. BERT has two layers for the training phase. The first is where the model un-

derstands the language. The second is fine-tuning the model’s last layers to manage

a specific task, such as sentiment analysis, question answering, or machine trans-

lation. It learns the language model by simultaneously solving two unsupervised

tasks, Masked Language Model (MLM) and Next Sentence Prediction (NSP). In

MLM the input is a sentence with certain masked words, and the output is the

prediction of that words. In NSP the input is two sentences A and B, and the model

predicts whether sentence B is followed by sentence A or not. The input sentence in

both cases is represented as word embeddings calculated from the addition of three

different embeddings; the token pre-trained embeddings from WordPiece[49], the

segment embeddings which encode the number of the sentence, and the positional

embeddings that express the position of a token in a sentence. BERT learns the

context of a word based on all of its surroundings and can represent different senses
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of the same word, e.g., ”get”, which might indicate the verb of ”procure”, ”become”,

or ”understand”.

The well-known word embeddings that do not capture contextual information are

the predictive model of Word2vec[26, 25], the count-based model of Glove[30] and

FastText[2]. Word2vec learns to predict the context words from a pivot word (Skip-

gram) or a pivot word from a given context (Continuous Bag of Words) using local

window-based methods. Word2vec is a one hidden layer neural network that utilizes

the methods of backpropagation and stochastic gradient descent to optimize the

relevant weights. The input is a one-hot encoding vector, and the output is the

probabilities distribution of a softmax function. The output layer is useful only for

the training process since the method’s purpose is to create word embeddings. The

final word embeddings are represented by the weights of the hidden layer. On the

other hand, Glove is based on leveraging the global word-to-word co-occurrences

and the application of matrix factorization to obtain a dense representation of the

words. Finally, FastText only differs from the Skip-gram method in the elements

it considers as the context. Skip-gram uses the word n-gram as the context, while

FastText utilizes character n-grams.

Being able to choose between the different distributional representation of words, the

next step for the DDSC is to identify the type of similarity we want to capture, if any

specific, and then choose the corresponding algorithm for the text representation.

2.4 Types of similarity

Relevant studies in the literature are grouped into two main categories: those that

focus on topical similarity [19, 39, 15, 6] and those on attributional [17, 13, 14, 37,

36, 12]. Moreover, there are also works that have managed to leverage both types

of similarity [27, 29].

The topical similarity is based on the assumption that words co-existing in similar

topics tend to be more similar. Topic modeling is the suite of algorithms that

aim to deal with the extraction from documents by the mathematical inspection

of relationships between words and documents containing them. It interprets the

textual world on the assumption that a document can refer to several topics and
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each of these topics as a distribution over some vocabulary words.

On the other hand, attributional similarity [46] is about the degree of the shared

features between the properties of two words. Words with the same properties can

be considered synonymous. A way to represent these properties from a given corpus

is by leveraging contextual similarity and dense representations[2.3.2].

2.4.1 Topical similarity

Latent Semantic Analysis (LSA)[19] is a foundational method in the field of distri-

butional semantics and probably constitutes the beginning of topic modeling. It can

be used to capture the topical similarity of target words. It is designed to learn in

an unsupervised way term-term, term-document, and document-document concepts

by leveraging tf-idf weights in combination with SVD. The result of LSA1 is the

production of term-topic and document-topic representations.

The authors in [39] moved one step beyond, adding the concept of context vectors[44]

and assuming that these representations can capture the topic of a target word. In

this case, Infomap[45] is used to initialize the vocabulary and discover terms.

Other approaches are Probabilistic Latent Semantic Analysis (pLSA)[15], which im-

proves on SVD by adopting a probabilistic approach. An additional improvement

relaxing the assumption of whether a document refers to a single topic or multiple

topics was introduced by the generative probabilistic model of Latent Dirichlet Al-

location (LDA)[6]. This approach was the Bayesian version of the pLSA. The final

output of LDA is a document weight vector that contains the probabilities for the

mixture of topics in each document and the probabilities of words that characterize

each topic.

2.4.2 Attributional similarity

In the context of attributional similarity, much work applies a Skip-Gram model

with negative sampling (SGNS) of more distant words [17, 13, 14]. Skip-gram is

an NN approach, so the word embeddings result from training, comparing with the

1A detailed explanation of LSA can be found at ’Handbook of Latent Semantic Analy-
sis’,Thomas K. Landauer, Danielle S. McNamara, Simon Dennis, Walter Kintsch, 2007
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”truth” (labeled data), and updating the weights. The negative sampling of more

distant words is a technique with which, instead of updating all of the weights of

the NN, it updates only those that positively affect the prediction of our target

word/sentence and just a small percentage of the negative words. This technique

optimizes the number of weights calculation and hence the overall need for resources.

The authors in [17] managed to build one of the first approaches to automatic

detection of semantic shifts across different periods by utilizing embeddings from

SGNS. Moreover, the work in [14] used SGNS as one of the baselines in a work that

introduced the empirical statistical laws of conformity and innovation. Conformity

states that frequently used words change at slower rates, and innovation means that

polysemous words change faster.

The combination of the time continuity concept with SGNS is the result of [37],

in which instead of creating term-context embeddings, the authors created differ-

entiable functions that return term-context embeddings at time t. BERT has been

considered a baseline model in NLP works [36], including semantic similarity de-

tection. Interesting approaches to further leveraging its performance have been

proposed. The work in [29] proposes tBERT, a combination of BERT with LDA

and Gibbs Sampling Dirichlet Multinomial Mixture (GSDMM), for the task of sen-

tence pair classification. Topics improved overall BERT performance, especially on

datasets with domain-specific words. Furthermore, the proposed model performed

better than the longer fine-tuned BERT.

Finally, the authors in [12] provide an insight into detecting different usage types of

words. They applied clustering to different words’ senses and usages using BERT

representations. According to the empirical study, this model can efficiently capture

diachronic (narrowing, broadening) and synchronic (metaphor, polysemy, syntactic

functionalities) linguistic phenomena.

2.5 Time representation

The detection of diachronic semantic change inherently carries the concept of com-

parison, and to make any comparison, we need comparable objects. This section

presents some of the most common approaches to creating comparable objects in
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the text representation. These depend either on transformations or methodologi-

cal core assumptions. Dense representations of a target word in different periods,

specifically those derived from sophisticated approaches such as SGNS and SVD, are

not in the same semantic spaces. This happens due to the stochastic nature of these

approaches. In this context, the work in [14] handles the problem of comparable

objects creation with the usage of the Orthogonal Procrustes (OP) technique[43] for

the alignment of different word embeddings. Procrustes solves the problem of the

mapping between two different sets of points, e.g., s1 and s2, by adjusting vectors to

fit the same coordinate axes. After applying this technique, two representations of

the same word can be subject to comparison. For example, Wt for word embedding

in time period t and Wt+1 for time period t+1.

There are cases, however, where the alignment is not applicable. In simple text

representations such as BoW or PMI, where the degree of interpretability is much

higher, different representations of the same word are inherently aligned. In other

works, the idea of a common shared ground (weights initialization) upon training

effectively manages to produce vector embeddings that lie in a common semantic

space. Such examples are [17] and [3].

In particular, the authors in [17] followed an approach of incremental training

through different time periods to achieve comparable text representation objects.

With this approach, word embeddings of each time step t initialize the weights for

calculating the word embeddings in time step t+1.

In the second example, the work in [3] proposed the entity of a compass, which

reflects the embeddings derived from the training procedure on the whole corpus.

These word vectors are then used to initialize the weights of each time period’s

vectors before their corresponding training. The concept of a compass lies in the

shared vector initialization step among vectors of different time periods.

Other cases with no need for semantic space alignment are embeddings derived from

context words; neighbor words within a predefined window. In [21], the authors used

CBOW to create the context embeddings of each word for time windows of 20 years

duration. The assumption here is that a word is represented by its neighbors. Hence

for the task of DDSC they do not contrast word embeddings in different time periods,
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but they compare the overlap of the neighbor words across time.

Finally, the work in [23] used another technique in which, for each token, time-

specific representations were created by averaging all contextual embeddings within

specific periods using BERT. This simplified the vector creation process for each

word since BERT captures a different vector representation for any occurrence of

the same word if this appears in different contexts.

2.6 Measures of similarity

Measuring similarity in text, or in other words, calculating the difference between

two or more representations of a word, can be performed with either intuitive or

more complicated metrics, and it depends on the assumptions of each experiment.

Cosine distance is by far the most widespread of those measures. It is used in

cases of vectors’ comparison, and it is a way to measure the degree of proximity in

multidimensional spaces. The formula for the cosine similarity of two vectors is:

Cosine(x, y) =
x · y
|x||y|

(2.1)

In this formula, the dot product of x and y vectors is divided by the product of their

relevant magnitudes. Conceptually, it is the cosine of the angle between two different

vectors, and this angle indicates, in a quantifiable way, their degree of similarity. We

can use the cosine similarity measure to compare sentences, words in different time

periods, or pairs of words.

The Jaccard coefficient, another measure, counts the similarity between two different

sets, U and V. The formula is:

Jaccard(U, V ) =
|U ∩ V |

|U |+ |V | − |U ∩ V |
(2.2)

The Jaccard coefficient divides the number of shared members among two different

sets with the number of the total distinct members of the sets. The authors in

[21] used the Jaccard coefficient to detect diachronic semantic drift. They proposed

that the consistency of words’ meaning can be reflected in the changes of their top

k neighbor words across different periods. Diachronic semantic drift detection is

- 13 -



2.6 : Measures of similarity

achieved by comparison on top neighbor words in time t and t+1.

An interesting finding from the work of [7] was that the cosine distance could not

capture referential cases efficiently. Their proposed method to deal with referential

cases is the measure of contextual variability. This measure is calculated by the

average pairwise cosine distance between context vectors of targeted words. The

context is a window of five words around the word of interest, and the relevant

vectors were computed by averaging their respective embeddings. The model used

in that work was from [17].

Moreover, the authors in [13] proposed the local neighborhood measure (LNM) for

the detection of meaning change due to cultural factors and the indication of the

relevant period of shift. The intuition of this measure is that meaning shift can be

reflected in the changes of the most similar words. In order to calculate it, we need

to obtain a set SN with the N most similar words of a pivot word wi in time periods

t and t+1. After that, we create two vectors Vt, Vt+1 with the cosine similarity of wi

and the respective set words of S at each time period. Finally, we compute the cosine

distance between the vectors of the different time periods. The local neighborhood

measure can be expressed by the following formulas:

V (wi)t = cos− sim(wi, wj)∀wj ∈ SN (2.3)

LNM = cos− dist(V (w)i, V (w)i+1) (2.4)

In a different direction, the work in [41] utilized word entropy as a metric of

metaphoric change detection in different time periods. This measure was applied

to the respective normalized co-occurrence matrices. The normalization step was

necessary to obtain the conditional probability distributions of context words given

the target word.

Finally, the authors in [12] leveraged Jensen-Shannon Divergence (JSD) as a tool

to indicate a semantic change in sense narrowing and broadening. For each

word of interest they created a usage matrix Uw= (w1,...,wN) which contained a
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set of their corresponding N usage representations. Each wi representation con-

sisted of the context of the word, a 128-token window, and a label tw, which

indicated the time period of the representation. The standardized values of Uw

constituted the input in a K-Means model, and the number of clusters was de-

termined with the usage of silhouette score [38]. The number of clusters for

the usage matrix contents was the number of different types of usages for a

target word. Below there is a depiction of the clusters of the word ”atom”.

Figure 2.2: PCA visualisation of the usage representations of the word ”atom”. [12]

From the counts of cluster occurrences, they obtained frequency distributions for

each time period that they transformed into probability distributions by nor-

malization. At that point, JSD was an applicable measure since it is a way

to compare different distributions. High JSD values implied a significant differ-

ence between distributions (increase-decrease in the number of clusters), while

low values (same number of clusters) implied slight changes across time periods.

The following figure depicts the probability distributions across different periods.
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Figure 2.3: Probability-based usage type distributions of word ”atom” across different

decades [12]
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Chapter 3

Materials and Methods

This chapter describes the core components of our methodology, the pipeline we

follow, and the scientific questions we aim to answer through our experimental set-

ting. We have experimented with various approaches with different parameters

to examine their performance on the classification subtask of SemEval-2020 Task

1[42]. SemEval-2020 Task 1 concerns unsupervised lexical semantic change detec-

tion. Given subcorpora from two different time periods, participants are asked to

submit their proposals on the subtasks of binary classification and ranking. In this

work, we focus on binary classification and, in particular, whether a word’s initial

sense changed drastically or not between the two time periods.

In [2.5] we saw that the creation of comparable embeddings is a necessary step in

DDSC. Hence, our first interest is to examine the different alignment methods and

whether there is a method that improves the performance of our system. In our setup

we examine the methods of Orthogonal Procrustes (OP) from [14], the incremental

training (INCR) approach from [17], and the temporal word embeddings with a

compass (TWEC) from [3].

The second question is related to pre-trained embeddings and whether the prior

weights’ initialization of a model manages to increase the overall performance. We

used pre-trained embeddings which where calculated with the methods of Glove[30],

Word2vec[26] and Wikipedia2Vec[50]. Finally, we investigated LDA2vec[27], which

produces a different type of embeddings encapsulating topical and attributional

similarity, to check if it overwhelms the widely adopted approach of Word2vec or
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not.

Both the training and test datasets are provided from SemEval-2020 Task 1. The

training data consist of four sets (earlier-later) of a corpus, one for each of the

English, German, Swedish and Latin languages. The respective test data is a gold

standard dataset for each language. The following sections provide the details of

the core components of our methodology.

3.1 Data

As mentioned above, the training data are provided from SemEval-2020 Task 1.

There are data for four different languages: English, German, Latin, and Swedish.

For each language, the data are split into two distinct time periods (C1 and C2 ).

The provided datasets derived from an extraction on the original sources, for each

of the different time periods. The range of the time periods was a choice based only

on the data size and the availability of target words. All sentences with less than 10

tokens were removed, however, for the Latin the applied threshold was the number

of 2 tokens. A downsampling technique was applied in corpora of C2 of German

and English, in order to meet the data size of C1. For that purpose all sentences

with target lemmas were kept and combined with a similar size of random sentences

that did not contain any of them. The final form of the C1, C2 subcorpora was

a result of lemmatization on the tokens, removal of the punctuation and at last

random shuffling of the sentences. Table 3.1 provides an analysis of the corpora,

which contains their sources, the period of their publication, the number of tokens,

the number of distinct occurrences of the tokens (types), and finally, the type-token

ratio (TTR) (number of types/number of tokens * 1000). The analysis table came

from [42].

C1 C2

corpus period token types TTR corpus period token types TTR

English CCOHA 1810–1860 6.5M 87k 13.38 CCOHA 1960–2010 6.7M 150k 22.38

German DTA 1800–1899 70.2M 1.0M 14.25 BZ+ND 1946–1990 72.3M 2.3M 31.81

Latin LatinISE -200–0 1.7M 65k 38.24 LatinISE 0–2000 9.4M 253k 26.91

Swedish Kubhist 1790–1830 71.0M 1.9M 47.88 Kubhist 1895–1903 110.0M 3.4M 17.27

Table 3.1: Corpus pair analysis [42].
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3.2 Methods

The structure of our work consists of five different approaches. Four of them share

common ground as they utilize CBoW and SGNS in the context of the Word2vec

model. They either deal with the semantic space alignment task [3.2.1], or the

embeddings initialization technique [3.2.2], [3.2.3] which in our cases lead to common

semantic space representations. The last approach is a combinatory method which

leverages the capabilities of Word2vec at capturing attributional similarity[2.4.2]

and LDA at capturing topical similarity[2.4.1].

In the sections below, we discuss these aspects. We start with the alignment method

of orthogonal procrustes for word embeddings [3.2.1]. Then, we continue with the

alternative method of incremental training that does not require alignment in a

common space [3.2.2]. In the same spirit, [3.2.3] discusses temporal embeddings

that also do not require an additional alignment. [3.2.4] discusses the use of pre-

trained embeddings, and finally section [3.2.5] provides information about LDA2Vec

for jointly learning word embeddings and topic representations.

3.2.1 Orthogonal Procrustes

Orthogonal Procrustes (OP), which has already been presented in [2.5], is a mathe-

matical approach that we use on different embeddings when they are trained inde-

pendently in a stochastic way and therefore cannot be compared directly. Therefore,

we need such a method to bring them into a common space and transform them into

comparable objects. This transformation is obtained by either rotating or resizing

one of the embeddings to match the points of the other. Figure [3.1] presents a plot

of two different sets of points on x and y-axis. We can think of them as values of

different embeddings. For demonstration purposes of the OP method, the points

are not random, and it is obvious that each set forms the same shape in different

coordinates. After applying OP on these two sets, the result is presented in Figure

[3.2] where the set A is rotated and resized, producing an orthogonal matrix RA,

in such a way to minimize the distance from the points of set B. At this point,

we can apply algebraic operations to calculate the distances of target words across
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embeddings.

Figure 3.1: A and B sets of points in x-y axis, before the application of OP [28].

Figure 3.2: Points of orthogonal matrix RA and B after the application of OP [28].
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3.2.2 Incremental Training

Incremental Training has been proposed in [17]. The goal is to create word

embeddings in a common semantic space without needing an alignment tool, such

as OP, presented in the previous section. To achieve this, we can initialize the word

vectors in the second period with the weight learned during the training phase

of the first period. The following Figure provides a visual representation of the

approach and how we applied it in our case.

Figure 3.3: Incremental training

We train word embeddings on corpus C1 using the Word2vec method. The word

embeddings of corpus C2 are initialized from the weights of C1. Then, the embed-

dings are updated during the training phase on C2. The incremental concept lies in

the fact of the weights’ update through the passage of time.

3.2.3 Temporal Word Embeddings with a Compass

Temporal Word Embeddings with a Compass (TWEC) is another technique,

introduced in [3], for the creation of word embeddings in a common semantic space.

It is very similar to the incremental training of [17] since they share the notion of

creating word embeddings by prior weights initialization. The main difference is

that in [17] the training procedure reflects the time passage from Wt1 to Wt2 and

Wti , where Wt is the word embeddings of each time period, while in [3] the word

embeddings emerged from a single starting point, compass, which is the calculated

embeddings from the corpora across different periods. In TWEC, each time period’s
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word vectors are the result of Word2vec training on the corresponding part of

corpora (corpus i) and their vectors’ initialization from compass. The following

figure presents the high-level architecture of the TWEC training process.

Figure 3.4: TWEC training.

3.2.4 Pretrained Embeddings

Pre-trained embeddings result from training on large-scale corpora. They offer

a tool to individuals and researchers to perform algebraic operations on word

vectors and finally deal with semantic similarity tasks. In our case, we used the

following pre-trained vectors to examine how they affect the performance of the

classification task. We used embeddings from three different sources, Glove [30]

for English, Wikipedia2Vec [50] for German, CoNLL17 [52] for Latin and Swedish.

The following table summarizes the information regarding the pre-trained vectors

we used.

name corpus dim window vocab method

English Glove Wikipedia 2014, Gigaword 5 100 10 400K Glove

German Wikipedia2Vec Wikipedia 2018 100 5 3.6B Wikipedia2Vec

Latin CoNLL17 CommonCrawl 2008-2017 100 10 555K Word2Vec

Swedish CoNLL17 CommonCrawl 2008-2017 100 10 3M Word2Vec

Table 3.2: Pretrained embeddings.
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3.2.5 LDA2vec

LDA2vec is a model proposed in [27] that leverages Word2vec ability to capture

word associations based on a local window and LDA topics which capture global

associations of words from a set of documents. The final word representations of the

LDA2vec method are the result of the sum between the word embeddings, which are

extracted with the SGNS method, and a document vector. The document vector,

in accordance with LDA, consists of a document weight vector which contains the

proportion of each topic in a document and a topic matrix. The topic matrix

is a distributed representation of the topics that have been trained in a common

space with the word vectors. LDA2vec produces jointly learned word embeddings,

document representations, and topic representations. In our experiment, we utilized

LDA2vec to create the embeddings of the two different periods.

3.3 Evaluation

Our evaluation setting for the models and the system we implemented is based on

the gold standard dataset of SemEval-2020 Task 1. For each language, a different set

of target words is provided with their relevant binary classification label. The label

is a result of approximately 100k human judgments on whether a word meaning

changed or not across the two different time periods C1, C2.

In the following table, we present an overview of the evaluation data, including the

target words and their corresponding labels.

C1 C2

token token changed stable total changed ratio

English 6M 6M 16 21 37 0.432

German 70M 72M 17 31 48 0.354

Latin 1.7M 9.4M 26 14 40 0.65

Swedish 111M 71M 8 23 31 0.258

Table 3.3: Evaluation data overview
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Binary Classification Rule

For the indication of the meaning change we have a applied a rule based on the

notion of the standard error. In more detail, after obtaining our comparable text

representations, we calculate cosine distances for all of the common vocabulary

words in the different time periods. Hence, using that list of distances we compute

the mean cosine distance and the respective standard error. Finally, we label a

prediction as semantic change only if the cosine distance of a target word is greater

than the sum of the mean cosine distance and the standard error. Given a common

vocabulary Vcommon for two different time periods t and t+1, we can define the

threshold distance as

dist− list = cos− dist(wt, wt+1)∀w ∈ Vcommon (3.1)

dist− threshold = mean(dist− list) + stde(dist− list) (3.2)
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Experimental Results

This chapter describes the experimental setup, the conducted experiments, and the

results based on the methodology we followed. We have adopted a decoupled ap-

proach, separating the algorithmic implementations of the models, the evaluation

measures, and the actions that can be chosen in our pipeline. This approach con-

tributes to a quick and efficient reproduction of the experiments via bash scripts. It

allows easy adaptations and extensions with new models for calculating word em-

beddings and new evaluation measures. In other words, we have created a pool of

methods and steps that can be combined into a single pipeline of actions. These

actions depend on whether we want to train embeddings, use pre-trained ones, use

alignment methods, or use a different approach that learns representations in a

common semantic space. Our system and implementations are publicly available1,

aiming to facilitate research in the field and provide a baseline implementation in

an easy-to-use and understandable way to the research community. The following

diagram describes the pipeline of our experiments.

1https://github.com/ichristod/language-drift
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Figure 4.1: Pipeline of the experiments for each different language.

Common ground across executions

Our experiments comprise some common aspects. These are the datasets used,

the settings of the Word2vec training process, the pre-processing steps, the align-

ment method, and the applied similarity measures. We have experimented in four

languages: English, German, Latin, and Swedish. The creation of Word2vec rep-

resentations is based on the wordvec model of the Gensim python library [35], and

they share the same parameter settings. In more detail, for the Word2vec, we used:

• training algorithms : CBoW, Skip-gram

• embeddings size: 100

• window size: 10

• minimum occurrence of words : 3

• negative sampling : 3

• sub-sampling threshold : 1× 10−3

• epochs : 5

We have not performed an exhaustive search in the parameter space. However,

the parameters above appeared good fits after grid searching. Moreover, before the
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alignment, mean centering and normalization to unit length (L2 normalization) were

applied to all trained embeddings according to [14, 20].

Conceptually, we are interested in the relations of words’ embeddings, e.g., similarity,

hence the direction of the vectors, and not the actual values[48]. Finally, we evaluate

results against the gold standard dataset using two different similarity measures:

cosine distance and local neighborhood measure.

Executions Results

The following table presents the results of all the experiments conducted, given all

combinations of methods, embeddings, and measures. We have grouped the distinct

executions based on the representation method, the alignment approach, the usage

of pre-trained embeddings and the similarity measure. The applied performance

measure is F1 score, which is expressed by the harmonic mean of precision and

recall. In our case, precision is the number of the correctly predicted word with a

change of meaning (true positives), divided by the total number of the words that

were indicated as semantic change (true positives + false positives). On the other

hand, recall, is defined by the fraction of the correctly predicted words that were

labeled as a change (true positives), and, the number of the words that should be

flagged as a meaning change (true positives + false negatives). Finally F1 score is

calculated from the following formula:

F1score = 2 ∗ Precision ∗Recall

Precision + Recall
(4.1)
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Embeddings method Alignment Pre-trained Similarity measure LAT EN DE SWE Avg.

Skip-gram Procrustes true Cosine distance 0.769 0.604 0.683 0.480 0.634

Cbow Procrustes true Cosine distance 0.780 0.604 0.500 0.500 0.596

Skip-gram Incremental true Cosine distance 0.788 0.604 0.548 0.410 0.588

Lda2vec Procrustes false Local neighborhood 0.609 0.556 - - 0.583

Cbow Incremental true Cosine distance 0.800 0.604 0.523 0.353 0.570

Skip-gram Procrustes false Local neighborhood 0.612 0.421 0.612 0.438 0.521

Skip-gram Procrustes true Local neighborhood 0.680 0.444 0.578 0.370 0.518

Skip-gram Incremental true Local neighborhood 0.667 0.526 0.542 0.333 0.517

Cbow Twec false Cosine distance 0.679 0.500 0.389 0.485 0.513

Skip-gram Twec false Cosine distance 0.625 0.615 0.468 0.312 0.505

Skip-gram Incremental false Local neighborhood 0.667 0.595 0.444 0.296 0.501

Cbow Procrustes true Local neighborhood 0.612 0.526 0.512 0.333 0.496

Cbow Twec false Local neighborhood 0.681 0.438 0.522 0.333 0.494

Skip-gram Procrustes false Cosine distance 0.667 0.457 0.449 0.370 0.486

Cbow Incremental false Cosine distance 0.625 0.591 0.523 0.200 0.485

Skip-gram Twec false Local neighborhood 0.571 0.500 0.565 0.296 0.483

Cbow Procrustes false Cosine distance 0.604 0.410 0.524 0.387 0.481

Cbow Procrustes false Local neighborhood 0.615 0.400 0.478 0.424 0.479

Cbow Incremental true Local neighborhood 0.600 0.564 0.468 0.167 0.450

Cbow Incremental false Local neighborhood 0.627 0.421 0.400 0.345 0.448

Skip-gram Incremental false Cosine distance 0.356 0.512 0.523 0.387 0.445

Lda2vec Procrustes false Cosine distance 0.200 0.222 - - 0.211

Table 4.1: Results of the utilized models across different languages.

Initially, by examining the overall experimental results, we observe the following:

• On average, the use of skip-gram pre-trained embeddings that are further

tuned separately on each time period and then aligned by the OP method

seems to perform better than the rest of the methods when the cosine distance

is used to assess the similarity between word vectors. This setup achieved an

F1 score of 0.634.

• By looking separately at each dataset, we observe that on the Latin dataset,

the use of CBOW pre-trained embeddings that are tuned in a common seman-

tic space performs best, achieving an F1 score of 0.8. Regarding the English

dataset, the method with the best results is TWEC, relying on Skip-gram

embeddings that are trained from scratch directly on the used dataset. For
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the German dataset, the best setting is that of using Skip-gram pre-trained

embeddings that are further tuned and aligned with the OP method. This par-

ticular setting scores 0.683 in terms of F1. Finally, for the Swedish dataset,

the best results are reached when using CBOW pre-trained embeddings that

are further tuned and aligned with the use of the OP method.

Besides the aforementioned initial observations, we aimed at comparing the best

systems submitted in SemEval 2020 to the ones proposed in this work. The table

below presents the top five results achieved by the systems that were submitted

in the SemEval 2020 Task-1. Comparing our results with those, our best model

(SGNS+PRE-TRAINED+OP+CD, F1=0.634) is ranked at the second place. The

best system from the submitted efforts was from [54], which achieved an F1-score

of 0.646. Their approach was a combination of SGNS, Temporal Referencing[9] for

the alignment of the embeddings, and finally the use of Gamma Quantile Threshold

on the cosine distances as the classification rule.

Furthermore, comparing the results of SemEval 2020 Task-1 with our best system

that did not utilize pretrained embeddings (SGNS+OP+LNM, F1=0.521), we ob-

serve that it would be ranked in the fifth place.

An important observation is that two of our system variations, the one us-

ing LDA2vec representations and the one using TWEC as the alignment

method, were not explored in the context of SemEval. The best settings

of TWEC (CBOW+TWEC+CD, F1=0.513) and LDA2vec(LDA2vec+OP+LNM,

F1=0.583)2 approach would also be ranked in the fifth place.

Finally, what we overall observe, despite the absolute ranks in the context of

SemEval, is that all results, including the ones produced in this work, are very close

and comparable. In some cases, variations of our system achieved better scores in

specific datasets. For instance, the best F1-score for the Latin dataset that our

system reached was 0.8, while the best system in SemEval scored 0.769. Similarly,

for English our best result was 0.615, while the best SemEval result was 0.58.

The differences in the resuslts among datasets, both in our case and in SemEval

2For the verification of the results, LDA2vec needs also to be applied in German and Swedish
languages. Preliminary experiments show that the results are close to the ones reported for other
languages. However, due to hardware limitations, extensive experimentation is left for future work.
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submissions, indicate that we probably need different methods for each language

and suggest further experimentation.

Team LAT EN DE SWE Avg.

Jiaxin-Jinan[54] 0.769 0.58 0.683 0.552 0.646

Skurt[5] 0.735 0.556 0.588 0.64 0.63

UWB[33] 0.727 0.588 0.7 0.5 0.629

UG Student Intern[32] 0.608 0.529 0.683 0.609 0.607

IMS[51] 0.608 0.514 0.634 0.710 0.5

Table 4.2: Top 5 teams from SemEval 2020 Task-1.

Besides the above initial observations, we further examine whether a particular

alignment method performs significantly better, whether pre-trained embeddings

improve the performance, and whether LDA2vec and Word2vec word representations

perform the same. We aim to answer these questions in the following sections.

4.1 Alignment methods

Which vectors’ alignment method performs better?

The first question we aim to answer is whether there is an alignment method out

of those considered in our arsenal that performs better. Thus, our first experiment

compared different alignment methods according to their respective model’s perfor-

mance. For the comparison, we used the three methods of OP, INCR and TWEC.

The embeddings in each case were calculated after training with the Word2vec

method. The null hypothesis was that all under investigation methods perform

equally on the same datasets and parameter settings. To examine that, we ran 12

different executions for each alignment method and applied the two measures of

similarity to them. Given the four different datasets, this approach resulted in 48

samples of F1 scores.
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Number of samples︷ ︸︸ ︷
4︸︷︷︸

languages

× 2︸︷︷︸
training algorithms

× 3︸︷︷︸
alignment methods

× 2︸︷︷︸
measures

= 48

The figure below presents the evaluation results in terms of the F1 scores of the

three alignment methods using box plots, showing average, minimum and maximum

values achieved, as well as outliers.

Figure 4.2: Box-plot of F1 scores per alignment method

To statistically test the differences, we applied the normality test of Shapiro-Wilk.

Since OP didn’t meet the criteria of normality, we continued with the non-parametric

test of Kruskal Wallis. We failed to reject the null hypothesis, with a p-value of 0.81,

indicating that the sets of samples had the same distribution. Next, we conducted

the Wilcoxon Signed-Rank test for each pair (OP-INCR, INCR-TWEC, etc.). The

latter is a non-parametric test for paired samples of two populations. We consider

our samples as paired since the only variable that alternates is the one under in-

vestigation, i.e., the alignment method. Again, the null hypothesis was not rejected

for all of the combinations. We, therefore, conclude that there are no significant

differences between the alignment methods we explored on the parameter setting

and the datasets we used, although it seems that TWEC performs better on average.
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4.2 Pre-trained Embeddings

Do pre-trained embeddings improve performance?

The second research question we investigate is whether using pre-trained embed-

dings on massive corpora improves the performance of the system. Thus, in this

experiment, we test the performance of the models initialized with pre-trained em-

beddings compared to those whose embeddings’ weights were initialized in a stochas-

tic way. We chose the pre-trained embeddings independently from their training

method, even though we have used three different methods, Glove, Word2vec, and

Wikipedia2Vec. For the alignment of the embeddings, we used the methods of OP

and INCR. These combinations resulted in a total number of 64 experiments.

Number of samples︷ ︸︸ ︷
4︸︷︷︸

languages

× 2︸︷︷︸
usage of pretrained

× 2︸︷︷︸
training algorithms

× 2︸︷︷︸
alignment methods

× 2︸︷︷︸
measures

= 64

The box plots below present the F1 scores of the experiments above, comparing

the models with pre-trained embeddings to those without. Evidently, when

using pre-trained embeddings, the system performs better on average. Next, we

investigate whether this performance is significantly better.

Figure 4.3: Box-plot of F1 scores per type of embeddings’ initialization

In this case, the Shapiro-Wilk test indicated that both samples of the pre-trained
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and non-pre-trained meet the criteria of normality. The paired t-test was our choice

to check if there were differences between the distributions. One of the assumptions

of this test is the absence of outliers. For the outlier detection, we applied the rule

of the interquartile range (IQR). Therefore, we excluded samples located outside

the range of 1.5xIQR. We identified two outliers on the Swedish dataset with this

approach. The first was an execution of pre-trained embeddings, and the other

was an execution without pre-trained. After removing outliers, we ended up with 62

samples in total. The null hypothesis of the paired t-test was rejected with a p-value

of 0.02. Hence, we conclude that the populations had statistically significant

differences. Comparing the means from pre-trained and non-pre-trained executions

indicated an increase of 16% at the F1 scores when models are prior initialized with

pre-trained embeddings.

4.3 Lda2vec and Wordvec

Do the representations of LDA2vec and Word2vec perform the same?

The last research question concerns the application of different methods for creating

word embeddings. In this last experiment, we explore the different types of word

embeddings produced by LDA2vec to determine whether incorporating topical sim-

ilarity in word embeddings could outperform our initial approach of Word2vec. For

this experiment, we use executions that do not exploit pre-trained embeddings since

LDA2vec is not applied in combination with pre-trained embeddings. Furthermore,

the alignment method we used was the OP. The settings of the LDA2vec model are:

• embeddings size: 100

• window size: 10

• minimum occurrence of words : 3

• negative sampling : 3

• topics : 20

• sub-sampling threshold : 1× 10−3

• epochs : 5

The total number of the different LDA2vec samples was 4, since we tested one align-

ment method over the two different languages (English, Latin) and we used the two
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measures of cosine distance and local neighborhood measure. We also managed to

train two more models for German and Swedish, however, the respective aligned rep-

resentations of the embeddings were not obtainable due to computational resources

limitation3.

Number of samples︷ ︸︸ ︷
2︸︷︷︸

languages

× 3︸︷︷︸
training algorithm

× 1︸︷︷︸
alignment method

× 2︸︷︷︸
measures

= 12

Again, the box-plots of the F1 scores or the grouped executions of each representa-

tion method are presented below.

Figure 4.4: Box-plot of F1 scores per representation method

For the statistical tests, we followed the same steps as the previous experiments. We

found that our distributions meet the criteria of normality through the Shapiro-Wilk

test. Consequently, we moved on with the parametric test of paired t-test. The final

results did not indicate differences between the LDA2vec and the pairs of SGNS

and CBoW. However, through this experiment, we were able to identify that the

local neighborhood measure seems more suitable for the LDA2vec since it resulted

3Memory requirements exceeded the capacity of our servers. However, preliminary results does
not show any particular deviation from the values that are observed in the English and Latin
datasets. Further experimentation to the much larger German and Swedish datasets is left for
future work.
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in an average F1 score of 0.583. In contrast, for the same setup, the cosine distance

measure achieved an average F1 score of 0.211.

In summary, we investigated LDA2vec representation in comparison to the different

methods of Word2vec and via our empirical evaluation we concluded that :

1. There are not significant differences between the performance of LDA2vec and

Word2vec methods

2. Local neighborhood measure[13] seems more effective than cosine distance

measure at capturing semantic similarity in LDA2vec representations.

3. LDA2vec in combination with local neighborhood measure, attained the high-

est average score between the models that utilized orthogonal procrustes with-

out the usage of pre-trained embeddings.
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4.3 : Lda2vec and Wordvec
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Chapter 5

Conclusion and Future Work

In this thesis, we empirically studied the essential components of the workflow of di-

achronic semantic change detection. We presented a pipeline of steps and placed the

related literature in this perspective, allowing a comprehensive understanding of the

methods and techniques that are usually applied in the field under an unsupervised

classification setting.

Moreover, via our comparative experimental setting, we explored different alignment

methods and whether there is one that systematically achieves higher performance

than the others. We concluded that there are no significant differences between the

alignment methods of Orthogonal Procrustes, incremental training, and temporal

word embeddings with a compass.

Aiming to explore the impact of different word representations, we also experimented

with pre-trained embeddings versus embeddings trained directly in our datasets.

We saw that the models with prior initialization of their embeddings perform better

than those trained in our corpora from scratch. The increase in the F1 scores of the

system when using pre-trained embeddings was at a percentage of 16%.

Finally, we also compared two different methods of text representation, Word2vec,

and LDA2vec. LDA2vec combines both attributional and topical similarities. Our

purpose here was to investigate whether a text representation, which incorporates

LDA topics, was able to dominate the performance of the Word2vec. The results

indicated that although Word2vec seems to perform better on average over all our

datasets, there are no significant differences compared to LDA2vec. However, an
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interesting finding is that in LDA2vec representations, the local neighborhood mea-

sure captures the semantic change in a better way than cosine distance manages

to. This observation indicates that a model that considers topical similarities and

neighboring words to create embeddings should be combined with a corresponding

similarity measure that captures local similarities.

Future steps should focus on the application of our system in more datasets to

ensure the robustness of the final results. Additional directions include approaching

the task in a supervised learning way by training a system to classify word pairs

with either similar meanings or not. Towards this direction, we aim to explore the

application of supervised methods, such as K-nearest neighbors, as well as more

sophisticated techniques, such as Siamese neural networks[4], that have the ability

to learn from little data, and inherently, their goal is to learn a similarity function.

Thus, they can be trained to see if two pairs of words are the same or not and

therefore constitute a good fit for this task.
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