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Abstract

Semantic indexing of biomedical literature is essential for plenty of the research

areas in the field of bioinformatics, such as data mining and knowledge retrieval.

Annotations of biomedical research publications with Medical Subject Headings

(MeSH) result in coarse grained indexing, due to the fact that the terms assigned

are the MeSH descriptors, which may correspond to various related but disparate

biomedical concepts. These semantic annotations may not provide adequate infor-

mation to professionals in need of extracting more specific domain knowledge. In

this Master’s thesis, we suggest a methodology, in which a training dataset is en-

riched with citations’ or/and references’ semantic features and then used to train an

available concept-level automatic annotator, so as to investigate possible changes in

its performance. This approach is evaluated on Alzheimer’s Disease MeSH related

narrower concepts. The results indicate that, under the proper choice of classi-

fiers and the appropriate definition of the input parameters, the performance of the

classifiers, trained on the enriched dataset can surpass that of the base classifiers.

The best classifier’s performance is obtained, when the training dataset contains

the semantic features from both citations and references.

Technical Key Words: MeSH, semantic indexing, biomedical literature,

weak supervision, citation, reference
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1 Introduction

1.1 Motivation

A considerable part of the immense amount of biomedical data, available nowa-

days, consists of plain text, such as explanations of clinical trials, electronic health

records, information on adverse events and research publications. Such texts are

written in scientific language, including definitions, expressions and terms, necessi-

tating the creation of a terminology to formalize and catalog these scientific terms

and concepts. The required terminology is also essential for the process of Informa-

tion Retrieval (IR), for example when indexing publications or making queries on

the text. Therefore, since the assignment of excerpting terms of a domain, by hand,

is time and cost consuming, researchers focus in designing automated methods to

aid know-how professionals to catalog the terms and concepts of a domain in the

form of a vocabulary and automatically annotate biomedical publications. This

allows users to retrieve information from a vast amount of biomedical text data

efficiently and effortlessly using semantic search.

Most often the assigned tags are broad concepts, which describe the general no-

tion of the biomedical terms, leaving out the more fine-grained concepts. This leads

to the nonexistence of an indexing with such a granularity to facilitate scientists to

explore more specific regions of biomedical literature. This tremendously affects the

branch of diseases, in which narrower concepts very often depicts different types of

a disease. The scientific community would benefit from an automated fine-grained

partitioning of the related literature as it can efficiently reveal variations between

the types of patients and provide accurate information for medicine applications.

This thesis belongs in the aforementioned field of biomedical semantic indexing,

and specifically the annotation of biomedical text data with fine-grained scientific

concepts. We are specifically interested in scientific literature annotation, thus

indexing of biomedical research publications. Publication indexing is a significant

part of knowledge extraction: researchers publish their work and results, which can

be studied by others, to gain knowledge of work on a specific field. Fine-grained



indexing will provide more specialised search results, saving researchers’ time and

effort.

1.2 Purpose and Research Questions

The goal of this thesis is to attempt to exploit the semantic information provided

by all articles that cite or are cited by a piece of biomedical literature to accomplish

its fine-grained semantic indexing with the relevant narrower concepts of a MeSH

descriptor. To this end, the preliminary work on fine-grained semantic indexing,

based on weak supervision [1] is further extended, to make use of such information

and the system is being tested on the case of Alzheimer’s Disease.

The research questions, this thesis attempts to address, are the following:

• Are the semantic features of citations and references being selected in the top

features for training of the models? Are they considered significant?

• Do the above semantic features help in the classification?

• Can the combination of both citations’ and references’ features make a differ-

ence to the performance of the classifiers?

1.3 Scope and Limitations

This study focuses on the effect of the semantic information, provided by cited

and referenced papers, on the performance of machine learning classification al-

gorithms. This piece of information is used to produce semantic features for the

enrichment of the features of the training dataset and not as labels.

1.4 Target group

The work of this thesis can be beneficial to several types of members of the

scientific community, including those involved in automated biomedical semantic



indexing, those in need to extract literature under terms of fine granularity level

and those in research of the effect of semantic features of citations and references

on a fine-grained biomedical indexing method.

1.5 Outline

This thesis incorporates ideas from information retrieval from document reposito-

ries, thus textual information, semantic indexing and distant learning. Following the

introductory chapter is Chapter 2, which sets the background and summarizes the

related work. Chapter 3 presents the experiment design and implementation, along

with the dataset development and the sub-activities of the experiment. Chapter 4

describes all the experiments performed and Chapter 5 demonstrates and evaluates

the experimental results. The findings achieved by the proposed method will be

compared against the ones achieved by the baseline method. Finally, in Chapter 6,

potential directions for future work are being discussed, a conclusion of this thesis

is provided and its contribution is outlined.



2 Background & Related work

2.1 Background

The biomedical concept catalog, developed and maintained by the National Li-

brary of Medicine (NLM) of the United States, called the Medical Subject Headings

(MeSH) thesaurus, is a controlled and hierarchically-organized vocabulary, used for

indexing, cataloging, and searching of biomedical and health-related information. It

includes the subject headings appearing in MEDLINE/PubMed, the NLM Catalog,

and other NLM databases1. So, each piece of biomedical literature is annotated

with a set of MeSH terms that best depicts its content.

MeSH headings, or descriptors, are grouped into 16 categories each divided

further into subcategories. Descriptors are hierarchically arrayed within each sub-

category in up to thirteen hierarchical levels, from the most generic to the most

specific. These lists are called trees because of the branching structure of the hi-

erarchies. Each MeSH descriptor appears in at least one position in the trees and

can appear in as many additional trees as it may fit.

MeSH descriptors contain one or more concepts, and each concept contains one

or more terms, which are synonymous, thus a concept is the shared meaning of

synonymous terms. A unique identifier (ConceptUI) is assigned to each concept, so

terms sharing the same ConceptUI are synonymous. Additionally, each descriptor

has a preferred concept - the name most often used to refer to the descriptor - and

each concept has a preferred term - being the name of the concept.

One of the most significant relationships in the produced Semantic Network is

the broader-narrower relationship. This relationship encapsulates the hierarchies

between the biomedical concepts. Narrower concepts may be viewed as sub-types.

For example (Fig.1) one concept in a descriptor may be narrower than the preferred

concept. It is essential to remember that granularity levels differ across the Network.

There are descriptors with many semantic types and other with little or none.

1https://www.nlm.nih.gov/mesh/meshhome.html

https://www.nlm.nih.gov/mesh/meshhome.html


Figure 1: Preferred and narrower concepts of Alzheimer Disease descriptor

The manual annotation of publications has become very challenging for indexers

due to the increasingly vast amount being published and indexed each year (Fig.2

[2]). To overcome the difficulties, NLM created the Medical Text Indexer (MTI), an

automated tool, which identifies the relevant MeSH terms in the text of publications

and returns them to the indexers, thus being extremely helpful and overall very

accurate [3]. The above information extraction task of recognizing biomedical terms

in natural language text, includes identification and mapping of each extracted

entity to a concept through biomedical named entity recognition.

Figure 2: Number of indexed papers in Medline.



2.1.1 Semantic Scholar

In 2015, Semantic Scholar, founded by the nonprofit Allen Institute for Artificial

Intelligence (AI2), began as a search engine for computer science, geoscience and

neuroscience. It is an example of artificial intelligence-enabled search engine to

respond to the inability of researchers to keep pace with all the publications in

their disciplines. The project’s goal is to automate text-based learning to cope

with the increasing amount of scientific documents published each year [4]. By

October 2019, its number of included papers had grown to more than 175 million,

expanding to all research areas. But its success is that it eliminates the long tail of

search results, allowing scientists to get up to speed on their disciplines easily, by

showing only directly relevant publication.

Semantic Scholar’s document representation contains all the necessary informa-

tion about the citation and the references that this work want to exploit. There are

two choices for accessing Semantic Scholar database. Either through its download-

able files or its RESTful API one can link to Semantic Scholar items and pull infor-

mation about individual records on demand 2. The ”Paper Lookup” API method

returns returns a JSON structure, that describes the specific paper, including the

ids of the papers that have cited it and the ones it referenced (Fig.3).

Figure 3: Snapshot of JSON structure for the paper with PMID:24802362

2http://s2-public-api-prod.us-west-2.elasticbeanstalk.com/

http://s2-public-api-prod.us-west-2.elasticbeanstalk.com/


2.2 Related Work

The areas relating to this thesis can be split up in three main areas; biomedical

semantic indexing, distant supervision learning and citation-based classification of

literature.

2.2.1 Biomedical Semantic Indexing

Domain-based information retrieval uses predefined concepts that provide a valid

source of information for indexing documents by attenuating the problem of term

mismatch that IR systems encounter [5]. Document indexing can be performed

manually or automatically. Human annotators with expert knowledge of termi-

nologies, which are highly experienced on the domain, conduct manual indexing. A

method less costly and time-consuming is automatic indexing and could be an assis-

tance to or a full substitute of the manual process. Automatic indexing is basically

assigning a number of terms to a document, which terms denote some concepts.

A unique preferred term, used for indexing and one or more non-preferred terms,

used for retrieval, represents each concept. As mentioned in the introduction, the

Medical Text Indexer (MTI) is the main component of the NLM Indexing Initiative

and has been used in both semi-automated and fully automated indexing based on

MeSH concepts [6].

Concept extraction is the pillar for automatic document indexing and retrieval

and constitutes an essential technique for identifying concepts of specified termi-

nologies in NLP [7]. For many reasons, automatic concept extraction from medical

text is a challenging task. First, terms which represent biomedical concepts usually

consist of multiple words, that as a whole, lead to a more specific concept. For

example, the word ”Disease” alone can mean any type of disease, whereas the term

”Alzheimer’s Disease” may mean any type of this specific disease and the term

”Familial Alzheimer’s Disease” is the degenerative disease of the brain, caused by

a single genetic mutation that is transmitted through families. Second, the same

concept applies to many interchangeable terms. Phrases such as ”Senile Dementia”,

”Dementia of Alzheimer Type” and ”Alzheimer Syndrome”, for example, can be



used to refer to the definition of ”Alzheimer’s Disease”, as defined in MeSH.

Studies on the extraction of biomedical concepts have been conducted exten-

sively in the literature [8, 9]. Biomedical concept extraction approaches can be

classified into four categories: dictionary-based, statistical, rule-based and machine

learning methods.

Dictionary-based concept extraction methods use existing terminologies to map

free text to dictionary entries. A system, using an estimated string matching to

identify protein and gene names and their variations, have been proposed [10], where

protein terminology and text are both encoded using the four letter (A,C,G,T)

nucleotide code.

Several statistical approaches have been suggested to identify general terms. For

instance, a method called ”C/NC value for recognizing technical terms” is used to

extract technical terms from literature, in digital libraries [11], but also has been

used to identify concepts in biomedical literature [12]. Frequency is their most

common measure, with term frequency (tf) that counts the frequency of a term

in a document and inverse document frequency (idf), that decreases the weight of

terms that occur very often in the corpus and increases the weight of terms that

rarely occur. Multiplying those two, gives the tf-idf weight that shows how relevant

a word is to a document in a coprus.

Rule-based methods typically contain the creation of patterns, that use lexical

and morphological properties, to assign structures to specific concepts [13]. Such

methods are considered to be very time-consuming, and are typically difficult to

be applied to other more general tasks. The Catalog and Index of Online Health

Resources in French (CISMeF) system, developed at Rouen University Hospital,

categorizes text according to Metaterm (MT), using rules. [14].

Machine learning (ML) supervised methods use an annotated set of documents

to train classifiers, that attempt to learn how to match free text with the prede-

fined concepts (classes). Hidden Markov models (HMM) and specific orthographic

features have been used to identify terms of a set of ten classes [15]. An essen-

tial method for supervised ML is the support vector machines (SVM). Multi-class



SVMs have been trained on manually annotated GENIA corpus for the purpose of

named entity recognition (NER) [9]. More specifically, the method aims to predict

tags, identifying named entities based on ”position” features (e.g., POS, prefix, suf-

fix), as well as pattern similarities and HMM state features to fix data sparseness.

An ML method, submitted to the BioASQ challenge [16], uses dense word vectors,

which results in significant dimensionality reduction (compared to the BOW rep-

resentation), reducing the training time, without affecting the performance of the

classifiers [17]. Another work, also submitted to the BioASQ challenge, that uses

a MUlti-Label Ensemble method (MULE) giving very positive results [18]. More

recent work includes the use of deep learning methods, such as convolutional neural

networks and deep multi-tasking models, to achieve even better performance in the

task of biomedical literature indexing [19, 20]. Supervised learning algorithms, how-

ever, demand for a significant amount of annotated training examples, thus facing

difficulties when such training set is not available.

2.2.2 Weakly Supervised Learning

Supervised ML methods, such as classification, require a significant amount of

training examples with ground-truth labels. However, in many tasks such infor-

mation can be difficult to obtain, due to the high cost of data labeling process.

So, it is required for the aforementioned ML methods to be able to perform under

weak supervision, thus using instances annotated with weak labels. These labels

can be incomplete, inexact or inaccurate [21]. Weak labelling technique often uses

a heuristic or a set of heuristics to assign labels to the unlabeled instances of the

dataset or to abstain.

Several studies have been conducted on text classification using weak labelling.

One of these, uses a rule-based NLP algorithm to produce weak labels for the

training data and then uses these pre-trained word embeddings as representation

features for classification algorithms in clinical text [22]. Another work, in order

to automatically distinguish multiple meanings of the same word and construct a

labelled contextualized corpus, uses representations of word occurrences and user-

provided seed words [23].



Last but not least, the work extended by this thesis focuses on training a fine-

grained concept annotator on literature published about a specific disease. More

specifically, fine-grained concept tags are assigned heuristically to abstracts, based

upon those concept occurrence in the text [1]. This work will be further described

on the next chapter as it is the pillar of this thesis.

2.2.3 Citation-based Methods

The most common citation-based method is citation context analysis, which

refers to the analysis of the text surrounding the citation mark. This analysis can

provide a useful source of concepts, that are not found in the text itself, and a

richer feature representation, thus improving information retrieval [24]. Likewise,

cited references are used as a query expansion method, extending the information of

a piece of literature, for the retrieval of related biomedical documents [25]. Further-

more, citation context analysis gives the possibility to identify significantly related

articles in a context-sensitive way [26] and can provide different kind of informa-

tion, giving access to alternative biomedical literature search results than traditional

search engines [27].

An alternative method to use is frequency citation analysis, which ranks doc-

uments based on their co-citation frequency with an article, and the frequency of

all citations that cite or are cited by this article [28]. Another approach is based

on identifying all the references cited in the document and, using the classification

metadata of extracted references from existing libraries and a weighting algorithm,

infers the most likely class for the document [29].



3 Method Design

The method design section aims to provide an appropriate framework for the

study, determining the choices made, regarding the study approach.

3.1 Baseline Method

The pillar work, which this thesis extends [1], is based on weak supervision la-

belling to achieve fine-grained semantic indexing of biomedical literature, thus as-

sign narrower MeSH concepts to documents. As mentioned in the previous chapter,

classification models need labelled data for training. To overcome the difficulty of

the absence of fine-grained indexed datasets, this method makes use of weak labels,

generated automatically, as well as the broader-narrower relationship of concepts

in MeSH descriptors. For each of the MeSH descriptors, a predefined collection of

fine-grained labels is specified, based on its broader-narrower relationships.

The first stage of this method is to generate and assign weak labels to a collection

of selected documents (Fig.4). The collection is obtained through Medline/Pubmed

3, using the Entrez Programming Utilities, an interface into the Entrez query and

database system at the National Center for Biotechnology Information (NCBI) 4.

The abstracts and the titles of all the documents, annotated with the desired MeSH

descriptor, are included in the collection. For the purpose of the weak labelling,

MetaMap [30], an inclusive biomedical NLP tool for effective mapping of biomedical

text to the UMLS Metathesaurus 5, is used. So, an article is given a corresponding

weak label for any narrower of the preferred concept, that occurs in its text, thus

the instances are multi-labelled with the probability of these labels to be noisy.

3https://pubmed.ncbi.nlm.nih.gov/
4https://www.ncbi.nlm.nih.gov/books/NBK25497/
5https://uts.nlm.nih.gov/home.html/

https://pubmed.ncbi.nlm.nih.gov/
https://www.ncbi.nlm.nih.gov/books/NBK25497/
https://uts.nlm.nih.gov/home.html/


Figure 4: Weak Labelling Process

The second stage comprises of all the steps needed for the model development

(Fig.5). During the data pre-processing step several useful structures are created

using the documents’ text along with the weak labels. The dataset is defined to be

multi-labelled and it is also split into train and test. Also several transformations

take place, like binarizing the multi-labels, tokenizing the text, adding the CUI in-

formation to the matrix and producing the tf-idf representation [31]. Both lexical

and semantic features are produced, using the documents’ titles and abstracts, as

well as the concept information from MetaMap, creating the feature-label matrix.

The instances of this matrix represent the documents, thus the title combined with

the abstract for each document. The features consist of the lexical tokens of the

documents and the added CUI features from MetaMap. The values of the matrix

are the tf-idf representation for the token features and binary (0/1) or absolute fre-

quency values for the added MetaMap features. For each instance the corresponding

weak labels are assigned (Fig. 6).

Figure 5: Suggested Model Development Process



In the feature pre-processing and selection step, an analysis defines the weights

of each feature and finds the features that are most useful for predicting the fine-

grained labels. Furthermore, the top (k) features are chosen, according to the

number of (k) the system receives.

Figure 6: Baseline Method Features

Four models are trained for this multi-label classification task: a Decision Tree

Classifier (DTC), a Random Forest Classifier (RFC), a Linear Support Vector Clas-

sifier (LSVC) and a Logistic Regression Classifier (LRC). For testing purposes two

small sets of documents, one with random samples and one with balanced samples,

were manually annotated with fine-grained concepts by experts.

Several experiments with different configurations showed that models trained

with weak labels created by fine-grained concept occurrence can give better results

than the heuristic of the concept occurrence alone, under certain conditions. The

iterative model training on the predicted weak labels did not showed any signs of

improvement. For a more detailed explanation of this method and the way to make

use of it, please refer to: https://github.com/tasosnent/BeyondMeSH.

3.2 Proposed Method

The work of this thesis relies upon the baseline method and extends it in a

way, that it exploits citations and references information. For each document of

https://github.com/tasosnent/BeyondMeSH


the dataset the relevant citations and references information is downloaded as ids,

through Semantic Scholar. Following the baseline method, in the proposed method,

the pre-processing step is enriched by adding the concepts that are present in the

citations as features (Fig.7). These features can take either binary values (exis-

tence/non existence), or the absolute frequency of the concept occurrence. A piece

of publication might not have citations or references that correspond to those of the

pool of publications of the specific dataset. In this case, the corresponding features

are left empty and do not take part in the models’ training.

Figure 7: New Model Development Process - Added citations / references

But what do we consider as references and what as citations? These two concepts

are substantially the two sides of the same coin. References are those articles which

the specific article cited and citations are those articles that cited the specific paper

(Fig 8).

Figure 8: What are the references of an article (left) & what the citations (right)?



3.2.1 Enriched Dataset Development

As a preliminary step to further enrich the existing WS dataset and due to the

fact that at the time this task was undergoing, the API did not accept the PMID

information as keyword search for the database, the version of 2019-10-01 semantic

scholar corpus was downloaded6. It consists of 178 zipped files of about a million

JSON structures each, with every structure corresponding to a piece of literature.

An example of the representation of a document, as well as the explanation of

each of JSON’s item fields can be found in http://s2-public-api-prod.us-west-2.

elasticbeanstalk.com/corpus/.

As the baseline dataset already contains the PMID, the title and the abstract

of the documents, the extra fields of interest are the ”id”, ”inCitations”, ”outCita-

tions” and ”doi” fields. Because the inCitations (list of paper IDs which cited this

specific paper) and outCitations (List of paper IDs which this specific paper cited)

sections of a JSON object, are lists with Semantic Scholar IDs, it is important to

keep and match each document with its Semantic Scholar ID. Furthermore, there

are JSON items that do not contain the PMID of the document, so a workaround to

find these documents on Semantic Scholar corpus is to convert the PMID to DOI.

From the downloaded files, an initial selection of JSON structures, containing

the word ”Alzheimer” in their abstract, was performed to reduce the volume of the

data in search. This led to the extraction of 133.073 JSON items. Then, a second

selection according to the PMID was performed, leading to the extraction of another

40.537 items. The rest of the baseline dataset’s PMIDs, not found, were transformed

into DOIs, by accessing https://www.ncbi.nlm.nih.gov/pubmed/?term=%PMID,

for each PMID and then using the BeautifulSoup, a Python library for pulling data

out of HTML and XML files, the field of DOI is extracted from the HTML page and

matched to its corresponding PMID. Then, a complementary selection on Semantic

Scholar items led to the extraction of another 25.482 items. As a last effort to

obtain all the documents of WS dataset, a title matching was performed against

6http://s2-public-api-prod.us-west-2.elasticbeanstalk.com/corpus/

download/

http://s2-public-api-prod.us-west-2.elasticbeanstalk.com/corpus/
http://s2-public-api-prod.us-west-2.elasticbeanstalk.com/corpus/
http://s2-public-api-prod.us-west-2.elasticbeanstalk.com/corpus/download/
http://s2-public-api-prod.us-west-2.elasticbeanstalk.com/corpus/download/


the undetected documents and the JSON items, reaching a total of 66.184 items

detected.

The decision to ultimately use the under-sampled version of WS dataset (WSund),

led to the selection of its 4.362 documents. By the time this decision was taken,

the RESTful API of Semantic Scholar was updated to have the feature of using the

PMID to access its JSON files, so the process was simplified. So, for each PMID the

JSON item of Semantic Scholar database is accessed and therefore, all the necessary

values from ”id”, ”inCitations” (aka citations), and ”outCitations” (aka references)

fields are extracted.

Two files are created, one for the ”citations” field and one for the ”references”

field. The aforementioned files contain the corresponding PMID, the Semantic

Scholar id and the list of citation and references for each document, respectively.

The need to use MetaMap extracted concepts, led to the preservation only of those

citations’ and references’ PMIDs, that already exist in the dataset. After the exclu-

sion of the articles not contained in the dataset, in the citation file there are 2.005

articles that have citations and in the reference file there are 2.160 articles, having

references. When these files are combined the articles that have both citations and

references count to 1.141 (Fig.9).

Figure 9: Number of articles in WS(und) for each category

Then, the two aforementioned files are converted into concept representation

files, utilizing the concept file, which contains the results of MetaMap weak indexing,

concluding in files with the PMID and a list of strings with the frequency of concepts

of each document’s citations or references.



But how are the new semantic features integrated into the existing dataset? The

concepts of MetaMap are obtained for each reference of an article and then all these

concepts from each category, are aggregated in one representation creating the new

semantic features which are then appended to the already existing features. The

aggregation method is the append of each concept to a list and then the assignment

of the binary (0/1) or the frequency value of a specific concept to all the citations

together (Fig. 10). The same procedure is followed in the citation and combination

cases.

Figure 10: Integration of the new References features



4 Experiments

4.1 Experiment Settings

This section describes the settings of the experiments conducted, to assess whether

the proposed method can help improving the classification accuracy. Three different

settings were examined: (a) use of citations, (b) use of references, and (c) combina-

tion of both citations and references. For the purpose of evaluating the new method,

the case of Alzheimer’s Disease is chosen along with the under-sampled version of

the WS Alzheimer’s Disease training dataset (WSund), as it is reduced in size and

deals with the over-representation of the preferred concept-label (”Alzheimer Dis-

ease”).

Only the citations and references that already belong to the dataset are of

interest, because the results of MetaMap are needed. Not all papers’ citation and

reference information is available through the selected source. The documents that

do not have citations or references respectfully are left in the training dataset, but

omitted from the test datasets, because this research aims to discover whether the

classifiers are giving better predictions exactly when the aforementioned information

is available.

”Alzheimer Disease” MeSH descriptor, on which the proposed new method is

tested, comprises of the preferred concept ”Alzheimer Disease” and six more nar-

rower concepts: ”Acute Confusional Senile Dementia (ACSD)”, ”Dementia, Prese-

nile (PD)”, ”Alzheimer Disease, Late Onset (LOAD)”, ”Alzheimer’s Disease, Focal

Onset (FOAD)”, ”Familial Alzheimer Disease (FAD) and ”Alzheimer Disease, Early

Onset (EOAD)”.

The WS(und) dataset, (under-sampled version of the initial Alzheimer Disease

dataset) contains 4,362 papers annotated with the Alzheimer Disease descriptor,

obtained from PubMed. For the purposes of this work, as far as textual infor-

mation is concerned, only the abstract and title of papers is used. Based on the

occurrence of the narrower concepts found by MetaMap, the weak labelling method



heuristically assigned fine-grained labels of narrower concepts’ type to 1,923 of the

articles, labels of the preferred concept’s type to 3.000 articles (752 of them, also is

annotated with at least one fine-grained narrower label), leaving the remaining 191

articles without any label, summing up to 5.004 MetaMap annotations. Two of the

aforementioned narrower concepts, ”Acute Confusional Senile Dementia (ACSD)”

and ”Alzheimer’s Disease, Focal Onset (FOAD)” do not occur in any of the articles,

according to MetaMap, thus these two labels are excluded from the experiments.

The distribution of fine-grained labels in the annotations above, is shown in Fig.11.

Figure 11: Distribution of fine-grained MetaMap annotations

A total of 12 experiments, with different kind of parameters, were conducted.

Each of these experiments include the training of all 4 classifiers (DTC, RFC, LSVC,

LRC) with 7 different set of features (5,10,20,50,100,500,1000), concluding to 336

trained models. The exact same experiments were conducted, using the baseline

method, for comparison reasons. The flow of the different versions of the experiment

is shown in Fig.12. We also experimented with both binary and frequency as feature

values. Lastly, for the feature selection process, where all features are weighted

according to their relevance to the target outcome, two approaches were used, one

based on the analysis of variance (ANOVA) and one based on chi-square.

For the evaluation of the proposed method, two small sets for each category were

used, one with random samples (MA1) and one with a selection of samples such that

there is no over-representation of the label that represents the broader meaning, i.e.

AD (MA2). Articles selected for each category contain the corresponding additional

information. These sets have been golden-labeled, with their true fine-grained labels

by expert scientists. The baseline method is tested again for all the experiments



Figure 12: Flow of experiments

separately, with the corresponding test sets.

An analysis of the fine-grained weak labels in each training and each test set

is shown in the following table (Fig. 13). The first column contains the fine-

grained labels of the entire dataset. In the next three columns the distribution of

the fine-grained labels in the training datasets are shown, but only for the articles

that actually contain the corresponding additional information. The rest of the

columns show the number of the fine-grained labels for the test sets of each category

respectively.



Figure 13: Analysis of the fine-grained weak labels contained in the training and in the test set

4.2 Evaluation Method

The proposed approach is evaluated in two levels. The first one concerns the

feature selection approaches, while the second one concerns the overall accuracy of

the approach. For the later, the macro-F1-score is used as a comparison metric

between the results derived from the proposed and the baseline methods. For each

experiment setting the aforementioned two approaches are being presented in the

next chapter.



5 Results & Discussion

5.1 Results

This section aims to present an analysis of the feature selection results, for each

category of experiments described in the previous chapter, as well as the comparison

of the models’ performance with that of the corresponding models of the baseline

method and is divided into two subsections. The subsections are both further split

into three parts, each corresponding to the experiments using the semantic features

of a specific modality (citations, references, combination) for model training.

5.1.1 Feature Selection Analysis

The enriched datasets contain more than 45.000 features and only about 4.362

instances, making it necessary to select the features that have direct effect on the

target values. Thus, just like in the baseline method, two statistical techniques

are used, chi-Squared test and ANOVA correlation coefficient, as mentioned in the

previous chapter. The maximum number of features selected is 1.000, enabling the

algorithms to train faster and reducing the complexity of the models, making them

easier to interpret. The results of the feature selection step can provide valuable

insight on whether the new added features are important, playing a significant role

in the training of the models.

Citations’ Semantic Features

The enrichment of the dataset with extra citation semantic features leads to the

addition of 10.308 new features, that correspond to the CUIs assigned by Metamap

to the citation articles. Therefore, the proportion of these new features in a total

of 48.032 features is 21.46%. Using the feature selection method for dimensionality

reduction to 1.000 features, the proportion of the newly added features slightly in-

creases in the case of chi-square statistic, but becomes more than tripled in the case



of ANOVA-F. The choice of binary or frequency values does not seem to play any

role in the aforementioned proportion during the feature selection process (Fig.14).

For cases where the number of selected features is small, the proportion changes, so

the performance of the models might explain which proportion is best for training.

Figure 14: Proportions of selected top features using Citations - k=1000

Even though the choice of binary or frequency values does not seem to affect

the amount of the selected new features, it surely has an influence on the position

in which the first citation feature appears, combined with the statistical feature

selection method used. As presented, in Fig.15, in the case of chi-square statistic

there is a large gap between the position of the first citation feature. whereas in

the AVONA-F case, no significant change is made in the aforementioned position.

Figure 15: Position of the first Citation feature in the top features

The position of the first new feature is important as it shows whether the sta-

tistical methods find that the new features are significant enough to be used in

the models’ training. For example, in the case of using the chi-square statistic and

frequency values for the citation semantic features, the first citation feature ap-

pears in position number 5, having two semantic and two lexical features preceding.

This first citation semantic feature represents the CUI of the term ”psen1 gene”

(C1418985). The corresponding identified lexical term ”ps1” appears in position



number 17, showing that the citation semantic feature is considered more important

for training than the actual lexical term. The same applies to the second citation

semantic feature, representing the CUI of the term ”mutations” (C0026882), for

which the citation semantic feature lies in position number 9, whereas the lexical

feature is found in position number 36 (Fig.16).

Figure 16: Features’ Weights (chi2/frequency) - Citations Case

In some cases, where a small number of features (e.g. 5, 10 or even 20 features)

are chosen by the user to be selected, the new features are not even present in

the training dataset, but they seem to indirectly affect the ranking and, therefore,

the selection of the top features. This happens because the occurrence of the new

citation features have an impact on the weights assigned to all features, during the

feature selection step.

The examination of the top 100 features selected, reveals the changes caused by

the addition of the citations’ semantic features. Fig.17 shows the features removed

and the ones added to the 100-feature dataset of the baseline method. As observed,

the dataset is enriched with 32 new citation semantic features, that represent several

concepts, like ”19q13” (C1520855) and others, not occurring in the features of the

baseline method. Furthermore, for some CUIs, like ”gamma-Secretase” (C0379528)

and ”Exons” (C0015295), the feature selection process prefers to choose the citation



semantic representation and not the article’s itself. As expected, the features repre-

senting concepts that are actually the fine-grained concepts of AD, like ”Alzheimer

Disease, Early Onset” (C0750901), are being chosen in both the citation and the

initial semantic form.

Figure 17: Removed & Added Features (k=100, chi-square/frequency values) - Citations. The

removed highlighted features on the left column represent the same concepts as the highlighted

ones on the right column that were added.

References’ Semantic Features

The enrichment of the dataset with extra reference semantic features leads to the

addition of 8.956 new features, that correspond to the CUIs assigned by Metamap

to the reference articles. Therefore, the proportion of these new features in a total

of 46.680 features is 19.19%. Using the feature selection method for dimensionality

reduction to 1.000 features, the proportion of the newly added features increases

in both cases (chi-square & ANOVA-F) with the increase in the ANOVA-F case

being more dramatic. Again, the choice of binary or frequency values seem to not

play any role in the aforementioned proportion during the feature selection process

(Fig.18).



Figure 18: Proportions of selected top features using References - k=1000

As far as the effect of binary/frequency value on the position, in which the

first reference feature appears, the results are very similar to those of the citations’

features, with the difference being more profoundly in the case of chi-square statistic

and not significant in the case of ANOVA-F (Fig.19). This could lead us to the

conclusion that the source of the extra semantic features does not matter for the

method to decide whether they are important.

Figure 19: Position of the first Reference feature in the top features

In the references case, the same first two concept CUIs, representing the terms

”psen1 gene” (C1418985) and ”mutations” (C0026882), are in positions 4 and 10,

with their lexical corresponding features again being further down the list. In the

chi-square statistic and frequency values case, more CUIs similar to the first are

recognized as important, like ”presenilin-1” (C0299212) and ”mutant” (C0596988).

The corresponding initial semantic features of these CUIs are found later on the

list, showing that the references features might be more significant (Fig.20).

What is notable here is that the new semantic features (CUIs), corresponding

to the fine-grained annotations of Alzheimer Disease, like ”Presenile dementia”

(C0011265), ”Alzheimer Disease, Late Onset” (C0494463) and ”Alzheimer Disease,

Early Onset” (C0750901) are not found in the first 50 positions as one would expect,

but they are found in the dataset, when 1.000 features are selected.



Figure 20: Features’ Weights (chi2/frequency) - References Case

Observing the first 50 features, a difference in the proportion of the new fea-

tures chosen arises. References features represent the 36% of the features, whereas

citations features represent a lower portion of them, just 28%. This comes in contra-

diction to the percentages of the chi-square, frequency value case, concerning 1.000

features. References semantic features seem to affect more the chi-square statistic,

biasing it towards the new references features.

Examining the top 20 features selected, the changes caused by the addition of the

references’ semantic features is being obvious. Fig.21 shows the features removed

and the ones added to the 20-feature dataset of the baseline method. As observed,

the dataset is enriched with 6 new references semantic features, that represent

several concepts, like ”Presenilin-1” (C0299212) and others, not occurring in the

features of the baseline method. Furthermore, for some CUIs, like ”Mutation”

(C0026882), the feature selection process prefers to choose the reference semantic

representation and not the article’s itself. Even though important lexical features,

like ”early” and ”onset” have been removed, the model improves its performance

by using the new semantic features.



Figure 21: Removed & Added Features (k=20, chi-square/frequency values - References. The

removed highlighted features on the left column represent the same concepts as the highlighted

ones on the right column that were added.

Citations & References Semantic Features

Accordingly to the previous modalities, enriching the dataset with both semantic

citation and reference features, leads to the addition of 19.264 new features, that

correspond to the CUIs assigned by Metamap to both the citation and reference

articles. Therefore, the proportion of these new features in a total of 56.988 features

is 33.80%. The feature selection method for dimensionality reduction to 1.000

features, rises the sum of proportions of the newly added features in both statistical

cases (chi-square & ANOVA-F) with again the ANOVA-F case having a major

increase. Again, the choice of binary or frequency values does not seem to play any

major role in the aforementioned proportions (Fig.22).

Figure 22: Proportions of selected top features using Citations & References - k=1000

Equivalently to the behavior of the feature selection process in the two separate



modalities (citations or references), the same principles seem to apply when using

the two modalities combined. So, the positions, that the first new features appear

in the dataset follow the same rules as before. In chi-square with binary values case,

the new either citations or references features do not seem to be very significant

for training, something that does not occur in any other combination of parameters

(Fig.23).

Figure 23: Position of the first Citation & Reference features in the top features

The same semantic features are recognized as important in the case of combined

modalities. Thus, the CUIs of the terms ”psen1 gene” (C1418985) and ”mutations”

(C0026882) are high in the weight list, with the corresponding lexical terms being

further down or not even in the first 50 features (Fig.24). Again, CUIs corresponding

to similar terms are being recognized as significant, like ”presenilin-1” (C0299212)

and ”mutant” (C0596988). Most of the CUIs of citations or references, representing

the fine-grained annotations are not in the first 50 features, with the exception of

”Familial Alzheimer Disease (FAD)” (C0276496), being in the top 50 features for

all three categories of semantic features (initial, citation, reference).

The chi-square statistic with frequency values case shows that out of the first

50 features, 22 are citations or references features, thus 46% of them, divided in

16% for the citations features and 30% for the references features. This is another

indication that references features are considered more significant for the predicted

outcome than the citations features, by the feature selection method. This is further

examined in the next subsection, where the performance of the models are being

compared.



Figure 24: Features’ Weights (chi2/frequency) - Citations & References Case

In the top 50 features selected, the changes caused by the addition of the new

semantic features is being observed. Fig.25 shows the features removed and the

ones added to the 50-feature dataset of the baseline method. The dataset in this

case is not enriched with any semantic features of the new kind (citations or refer-

ences) but 5 of them have changed, because the new features affect the assignment

of the weights and thus the ranking of the features. Here, the concept ”Mutation”

(C0026882) is removed along with some lexical features, that do not seem very im-

portant, and other more significant lexical features are added, like ”apolipoprotein”

and ”hakola” (Nasu-Hakola disease - early onset dementia disease).

Figure 25: Removed & Added Features (k=50, chi-square/binary values - Citations & Refer-

ences. The dataset is not enriched with any citations or references semantic features.



5.1.2 Models’ Performance

This subsection aims is to compare the models’ performance with the correspond-

ing models’ performance of the baseline method. The number of trained models,

obtained from the conducted experiments, sum up to 336 as described in the Exper-

iments section. This total is divided into 112 models for each modality and further

into 56 models for each category of values (binary/frequency). The aforementioned

models are evaluated on the two tests sets (MA1, MA2) and a total of 672 scores is

produced. Another 672 scores are produced by the baseline method models, used for

the comparison of the two methods. As a comparison metric, the macro-averaged

F1-measure is used.

Citations Feature Models

As a first step to evaluate the results of the models using citations’ semantic

features, compared to the baseline ones, is to detect the high level changes in the

macro-averaged F1-measure scores. If there is not even one model that improves

the aforementioned score in the proposed method, further analysis and research on

its results would not be useful.

Figure 26: Number of models changing the F1-score - Citations

Fig.26 shows that in both the results on MA1 & MA2 test datasets, there are

more than ten models that improve the macro-averaged F1-scores. Thus, is it worth

further researching the results.

Due to the fact that the total number of the scores is large, a mean-based

approach is followed to discover if there is a classifier that improves the scores in all

or at least in most of the cases. For each test dataset, the scores of the classifiers

that have difference between the proposed and the baseline method are kept and



the mean value of the scores of each classifier has been calculated.

For MA1 test dataset and the same experiment setting, only LinearSVC and

Logistic Regression classifiers, for both features selection methods, produced scores

that differ between the proposed and the baseline method. LinearSVC classifier,

trained on the enriched with binary citations semantic features dataset, generates

higher score when the feature selection method is performed with chi-square statis-

tic, but lower score when performed with ANOVA-F. The exact opposite occurs,

when the values of the new features are the corresponding frequencies. Logistic

Regression classifier exhibits exactly the same behavior as LinearSVC (Fig.27).

Figure 27: Mean values of classifiers for MA1 - Citations

For MA2 test dataset, in addition to LinearSVC and Logistic Regression, also

Random Forest classifier, for both features selection methods, produced scores that

differ between the proposed and the baseline method. LinearSVC classifier, trained

on the enriched with binary citations semantic features dataset, generates higher

score no matter what feature selection method is used. When the values of the new

features are the corresponding frequencies, lower scores are generated in almost all

models. Logistic Regression generates lower score in all cases and Random Forest

generates higher score only in the case of binary values and chi-square feature

selection method (Fig.28).



Figure 28: Mean values of classifiers for MA2 - Citations

As observed and according to the mean value, the classifier in the proposed

method that generate the higher scores, is LinearSVC.

Irrespective of the general conclusion, to which the mean values of classifiers

led, a closer look to the scores of the models trained under specific parameters gives

a better understanding of whether the new enriched feature set can be useful for

the improvement of classification and thus of the fine-grained semantic indexing. In

Fig.29 some of the best F1-scores generated from models under specific parameters,

both for the citations and the baseline method, are presented. Each sub-figure

represents the best resulting scores for each of the test datasets (MA1 & MA2).

For MA1 test dataset, LinearSVC classifier improves the F1-score when the chi-

square feature selection method along with binary values, as well as the ANOVA-F

feature selection method along with frequency values are used. This observation is

consistent with the observation made on the mean values of classifiers. Logistic Re-

gression classifier’s behavior, on the other hand, is not consistent with the previous

results, as it improves the scores in the combination chi-square/frequency values

and ANOVA-F/binary values cases.

The most important observation is that Logistic Regression classifier, with a

combination of chi-square/frequency values as parameters and the use of 100 top



Figure 29: Best F1-scores for Citations & baseline methods - MA1 & MA2

features generates the highest F1-score of all the models of the baseline method,

as well as all the other models of the enriched method (F1-score of this model =

0.484, next best F1-score = 0.460 from proposed method - LogisticRegression f 100-

frequency values).

For MA2 test dataset, LinearSVC classifier improves the F1-score when the chi-

square feature selection method along with binary values, as well as the ANOVA-F

feature selection method along with frequency values are used, exactly like the

case of MA1 dataset. Logistic Regression classifier, with chi-square/binary values

combination, has almost the same performance as its corresponding baseline model.

Lastly, Random Forest Classifier improves its performance under the combination

of chi-square and both the cases of binary or frequency values.

The most important observation is that LinearSVC classifier, with a combination

of chi-square/binary values as parameters and the use of 50 top features generates

the highest F1-score of all the models of the baseline method, as well as all the other

models of the enriched method (F1-score of this model = 0.918, next best F1-score

= 0.915 from proposed method - LinearSVC chi2 50-frequency values).



References Features Models

The same first level check for changes in the macro-averaged F1-measure scores

between the proposed and the baseline method, this time using references’ semantic

features, is being conducted.

Figure 30: Number of models changing the F1-score - References

Fig.30 shows that in both the results on MA1 & MA2 test datasets, there is

a set of models that actually improve the macro-averaged F1-scores. The same

comparison of mean values of the classifiers is performed to gain insight whether

there is a pattern, like in the case of the models trained with the extra citations’

semantic features.

For MA1 test dataset, again LinearSVC and Logistic Regression classifiers, for

both features selection methods, produced different scores. LinearSVC classifier,

trained on the enriched with binary citations semantic features dataset, generates

lower score, for chi-square feature selection method, but higher score for ANOVA-F

method. The same behavior arises, when the values of the new features are the

corresponding frequencies. Logistic Regression classifier exhibits almost the same

behavior as LinearSVC, with the difference being in the ANOVA-F / frequency

values case where it generates lower score, instead of higher. (Fig.31).

For MA2 test dataset, again LinearSVC and Logistic Regression produced scores

that differ between the proposed and the baseline method, for both features selec-

tion methods. LinearSVC classifier, trained on the enriched with binary citations

semantic features dataset, generates higher score no matter what feature selection

method is used. When the values of the new features are the corresponding frequen-

cies, chi-square method generates lower scores and ANOVA-F method generates

higher score. Logistic Regression generates lower score in all cases (Fig.32).



Figure 31: Mean values of classifiers for MA1 - References

Figure 32: Mean values of classifiers for MA2 - References

In the case of the enriched with the references’ semantic features dataset, the

only pattern observed is that the score gets lower for every classifier, when the

combination of chi-square feature selection method and frequencies as values for

the semantic features is used.



The same closer look to the models that improve the F1-scores is conducted

for the method using the enriched with references’ semantic features dataset. In

Fig.33 some of the best F1-scores generated from models under specific parameters,

both for the references and the baseline method, are presented. Each sub-figure

represents the best resulting scores for each of the test datasets (MA1 & MA2).

Figure 33: Best F1-scores for References & baseline methods - MA1 & MA2

For MA1 test dataset, LinearSVC classifier has the same performance when the

chi-square feature selection method along with binary values is used, but improved

performance, when the ANOVA-F feature selection method along with frequency

values is used. Logistic Regression classifier improves the scores in the combination

chi-square/frequency values and ANOVA-F/binary values cases, just like in the

citation’s method.

The most important observation is that, even though some of the models’ per-

formance is improved individually, there is no overall improvement, as the best

F1-score of the enriched method is the same as the best one of the baseline method.

For MA2 test dataset, the LinearSVC classifier improves the F1-score in cases of

all combinations of parameters, except when the ANOVA-F along with binary values

is used. Logistic Regression classifier, with chi-square/binary values combination,

has almost the same performance as its corresponding baseline model, just like in

the citation’s method.

The most important observation is that LinearSVC classifier, with a combination



of chi-square/frequency values as parameters and the use of 20 top features generates

the highest F1-score of all the models of the baseline method, as well as all the other

models of the enriched method (F1-score of this model = 0.911, next best F1-score

= 0.905 from proposed method - LinearSVC chi2 100-binary values).

Citations & References Features Models

For the third category of experiments, where both the semantic features of the

citations and references are used, the first level check for changes in the macro-

averaged F1-measure scores is shown in Fig.34. Both the results on MA1 & MA2

test datasets, showed a number of models that improve the macro-averaged F1-

scores.

Figure 34: Number of models changing the F1-score - Citations & References

The observations of the comparison showed that for MA1 test dataset, again

LinearSVC and Logistic Regression classifiers produced different scores. LinearSVC

classifier generates higher score in cases with every possible combination of parame-

ters. Logistic Regression exhibits the exact opposite behavior, thus generates lower

score in all cases (Fig.35).

For MA2 test dataset, similarly to the citations case, LinearSVC, Logistic Re-

gression and Random Forest classifiers produced scores that differ between the

proposed and the baseline method. LinearSVC classifier, trained on the enriched

with binary citations semantic features dataset, generates higher score no matter

what feature selection method is used. When the values of the new features are the

corresponding frequencies, LinearSVC produces lower score for both feature selec-

tion methods. Logistic Regression generates lower score in all cases and Random

Forest generates higher score only in the case of binary values and chi-square feature

selection method (Fig.36).



Figure 35: Mean values of classifiers for MA1 - Citations & References

As observed, the only classifier that shows consistency in the changes it causes,

is Logistic Regression, which generates lower score in every case.

Figure 36: Mean values of classifiers for MA2 - Citations & References

Again, the same closer look to the models that improve the F1-scores is con-

ducted for the method using the enriched, with both citations’ and references’ se-

mantic features, dataset.



Figure 37: Best F1-scores for both Citations & References & baseline methods - MA1 &

MA2

In Fig.37 some of the best F1-scores generated from models under specific pa-

rameters, both for the enriched and the baseline method, are presented. Each

sub-figure represents the best resulting scores for each of the test datasets (MA1 &

MA2).

For MA1 test dataset, LinearSVC classifier improves the F1-score for the cases

with all combination of parameters, except when the ANOVA-F feature selection

method along with frequency values is used. Logistic Regression classifier slightly

improves the scores for the cases with the combination chi-square/binary values and

chi-square/frequency values.

The most important observation is that Logistic Regression classifier, with a

combination of chi-square/binary values as parameters and the use of 100 top fea-

tures generates the highest F1-score of all the models of the baseline method, as

well as all the other models of the enriched method (F1-score of this model = 0.629,

next best F1-score = 0.625 from proposed method - LogisticRegression chi2 100-

frequency values).

For MA2 test dataset, LinearSVC classifier improves the F1-score when the chi-

square feature selection method along with binary values, as well as the ANOVA-F



feature selection method along with frequency values are used. Logistic Regres-

sion classifier, with ANOVA-F/binary values combination, has almost the same

performance as its corresponding baseline model. Lastly, Random Forest Classifier

improves its performance under the combination of chi-square/frequency values.

The most important observation here is that LinearSVC classifier, with a com-

bination of chi-square/binary values as parameters and the use of 50 top features

generates the highest F1-score of all the models of the baseline method, as well as

all the other models of the enriched method (F1-score of this model = 0.927, next

best F1-score = 0.922 from proposed method - LinearSVC f 50-frequency values).

5.2 Discussion

The combination of the results, produced by the three categories of experiments,

can lead to some interesting conclusions. The proportions of the features in the

enriched datasets, after the feature selection step, show that the proportions of the

features are almost the same in the cases of citations and references. Combined with

the fact that both modalities provide the approximately same amount of features

to the dataset, the actual type of modality seem to not affect the feature selection

process. In the case where both modalities are used, the amount of the new features

is doubled and the proportion is a bit higher than in the other two cases. In any

case, with 1.000 top feature selection, the combination of ANOVA-F statistics with

binary values seem to produce the results with the largest number of new features.

Concerning the position of the first new feature selected, it is observed that in

all three categories of experiments the results are very similar. ANOVA-F always

selects the first new feature within the top 20 features, something that occurs only

when the chi2-square statistic is combined with frequency values. The fact that

both the feature selection methods, choose the new features to be among the top,

as well as the proportion of them in the top 1.000 features, indicates that these

new semantic features are considered significant by statistics as most contributing

to the prediction variable.

According to the analysis of the performance of the models, there are noteworthy



signs that the semantic information of the articles that cites a paper, as well as of the

articles that a paper references, can improve its automated fine-grained indexing.

There is a significant amount of models that do better when provided this kind of

information, with the improvement in the category of citations to be more noteable.

The most prominent performance improvement occurs in the experiments where

both the citations’ and references’ semantic features are used. For both MA1 and

MA2 test datasets, this category of experiments may have the lowest amount of

models, which improve their scores, but it also produces the highest macro-averaged

F1-score of all, as shown in Fig.38 and Fig.39.

Figure 38: Best F1-scores for MA1 test set

Figure 39: Best F1-scores for MA2 test set



A closer examination to the models that produced the best results for MA1

test dataset, reveals two very interesting patterns. Out of 6 best scores, each for

a modality along with a category of value, 5 are produced by Logistic Regression

Classifier and also 5 are produced by models that use chi-square statistic for the

feature selection process. The best score, compared to all others, is produced by

Logistic Regression with chi-square feature selection method, using binary values

and the top 100 features (Fig. 40).

Figure 40: Models of Best F1-scores for MA1 test set

Last, but not least, for MA2 test dataset holds that out of 6 best scores, each

for a modality along with a category of value, all 6 are produced by LinearSVC

Classifier and also 5 are produced by models that use chi-square statistic for the

feature selection process. The best score, compared to all others, is produced by

LinearSVC with chi-square feature selection method, using binary values and the

top 50 features (Fig. 41).

Figure 41: Models of Best F1-scores for MA2 test set



6 Future Work & Conclusion

6.1 Future Work

Future investigations are necessary to validate the conclusions that can be drawn

from this work. Studies should aim to replicate the results in a larger scale and

apply this method to other datasets, such as the WS dataset of Alzheimer Dis-

ease or datasets concerning other biomedical subjects, for which there are a lot of

publications.

Furthermore, an extension of this method could use the concept occurrence in-

formation of citations and/or references as weak labelling instead of features, to

investigate whether ”extra labels” from this kind of sources can give better classi-

fication results. Another idea would be to completely exclude lexical features from

the model training procedure and investigate whether training with just semantic

features is enough to get the same or better performance.

Additionally, the enrichment of the dataset with extra features could include

only the CUIs that represent the fine-grained annotations that we want to predict

and not all the CUIs found in an article.

Last but not least, the concept occurrence information, not only from the ar-

ticles that already exist in the dataset, but from all the citations/references of a

publication could be used, to test if the prediction results are improved. Never-

theless, this would require the extraction of MeSH fine-grained concepts, through

MetaMap, from the text of all this articles, a procedure rather time and resource

consuming.



6.2 Conclusion

In this work we investigated if the inclusion of semantic features from citations and

references articles in a dataset for fine-grained semantic indexing, can potentially

help classification algorithms.

The new semantic features play a significant role in the classifiers’ ability to

predict the correct fine-grained labels, something that is backed by the fact that

more than one statistical methods select them as important features. There is also

strong evidence that models using these new, extra semantic features can outper-

form the baseline models. Classifiers with specific input parameters are found to

be more accurate for balanced and unbalanced test datasets. On this basis, more

classifier-targeted research can further improve the results.

Although this research is preliminary on this specific branch of the field and

further studies should be conducted for the validation of the initial results, it may

be considered a promising aspect of fine-grained biomedical semantic indexing, as

the scientific community requires more specialized information, as well as the ability

to retrieve it effortlessly.
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