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Περίληψη

Τα τελευταία χρόνια, οι γράφοι και τα νευρωνικά δίκτυα γράφων έχουν προσελκύσει το
ενδιαφέρον στο χώρο της μηχανικής μάθησης και ειδικότερα σε βιολογικές εφαρμογές.
Χρησιμοποιώντας ως αφετηρία το Decagon, ένα νευρωνικό δίκτυο γράφων, μελετάμε το
πρόβλημα της πρόβλεψης παρενεργειών που προκύπτουν από την ταυτόχρονη χρήση
πολλαπλών φαρμάκων, υλοποιώντας μια σειρά από baseline μοντέλα με σκοπό να
εντοπίσουμε την κύρια πηγή της επιτυχίας του μοντέλου. Στη συνέχεια
επικεντρωνόμαστε σε ενα υποσύνολο των αρχικών δεδομένων που αφορούν τις πιο
σπάνιες παρενέργειες και δοκιμάζουμε γνωστά μοντέλα από τον χώρο των graph
embeddings. Επιπλέον, εξετάζουμε αν η κανονικοποίηση των διανυσμάτων με βάση μια
λογική tf-idf βελτιώνει την απόδοση. Τέλος, παραθέτουμε μια σειρά από patterns που
προκύπτουν από τη χρήση του AnyBURL, ενός rule based μοντέλου στα δεδομένα μας.



Abstract

In recent years graphs, graph neural networks and graph embedding techniques are
getting more attention in the area of machine learning in general, with biological
applications being a major drive. Using Decagon, a graph neural network that predicts
polypharmacy side-effects, as our starting point, we ιmplement a number of baseline
models in order to identify the aspects that play the bigger part in predicting side-effects
among pairs of drugs. Later, we focus on a subset of the initial dataset containing only
the rarest side-effects and experiment with well known models from the graph
embeddings area. We examine whether a normalization of the feature vectors in a tf-idf
fashion helps a message passing network improve its performance. Finally, we use
AnyBURL, a rule based model, to identify patterns in our data.
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1. Introduction
Polypharmacy is a term describing a situation where a patient receives more than one
medication at the same time, a situation quite common especially in cases of complex diseases
or co-existing conditions. However, a major consequence of polypharmacy is a much higher risk
of adverse side-effects for the patient, due to drug – drug interactions. The possible
combinations of all the known drugs are just too many and too expensive to test in clinical trials
while these complex relationships may be rare and hard to observe. (Bansal et al., 2014)
Finding a way to predict such adverse side-effects would be of great importance for the science
of pharmacology, pharmaceutical companies and most importantly, patients’ well being.

The project in hand is inspired by a recent paper on modeling polypharmacy side-effects with
graph convolutional networks (Zitnik et al., 2018). Previous approaches were limited in
predicting a single total score/probability of drug interaction for a given pair of drugs (Trouillon et
al., 2016). This could be an indication of the severity of side-effects that could appear but
without having any clue about what these side-effects would be in particular. Inspired by GCNs
and autoencoders, Decagon is a graph convolutional neural network for multi-relational
link prediction in multimodal networks, something that allows for predicting specific side-effects
for each pair of drugs.

Figure 1.1 An illustration of the full Decagon graph taken from the original paper (Zitnik et al.,
2018). The graph contains drugs and proteins as entities connected by polypharmacy
side-effects (d - d), interaction (p - p), target (d- p) which are represented as edges. Individual
drug side-effects are used as feature vectors for the drugs.
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The idea behind Decagon is to combine information from multiple sources and combine it
through an end to end encoder – decoder learning process based on neural networks. So they
construct a heterogeneous graph with proteins and drugs as entities. It includes protein–protein
interactions, drug–protein interactions and polypharmacy side-effects, which are represented as
drug–drug interactions, where each side-effect is an edge of a different type. Every drug node
also has a feature vector corresponding to its side-effects as extra information. The resulting
multi-relational graph can be seen in Figure 1.1.

1.1 Overview of this work

Starting this project there were a number of aspects in the polypharmacy problem that seem
interesting to investigate. First, we wanted to identify whether the structure of the network or the
additional featural information was the main contribution for a successful prediction model.
Regardless of the answer on the above question, experimenting with additional information
regarding polypharmacy problem, not included in the original dataset, that could be incorporated
in the form of features or networks would be of interest1. Another idea was to test whether
Decagon’s performance could be improved by replacing its neural network components with
other more recent types of neural networks2.

Since the original dataset is quite big and requires a lot of resources, focusing on a subpart of
the original data so that we could proceed more in depth was also an idea. We also believe
there is margin in improving the data fed on the model in order to improve the performance,
since, as an example, all side effect data are binary without any information about the intensity
or the frequency of a side-effect associated with each drug or pair of drugs.

Difficulties on reproducibility, literature review and implementation limitations reformed and
eventually shaped the scope of the project in hand as described in the next paragraphs.

To identify whether network structure or featural information is more influential in prediction of
polypharmacy side-effects we implemented a number of baseline models each one
incorporating different kinds of information. We were able to identify that for the particular
problem, structural information is more important than features containing individual side-effects
information.

Literature review and data exploration led us to focus on a subgraph of the original data
containing the rarest side-effects, on which we tried a number of well known models from the
area of graph embeddings and AnyBURL, a recently proposed rule based model to solve this
multi-relational link prediction task. AnyBURL, a light model in terms of training time and
computational requirements, outperformed the graph embedding models. It also provides some
sort of explainability through the rules it learns. Geometric models like TransE and RotatE

2 Specifically we had graph attention networks in mind
1 For example chemical footprint of the drugs or drug - disease network
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proved to be fast and good baselines while RESCAL and RGCN were inferior both in
performance and training time.

Continuing in the direction of identifying the relative importance of structure against featural
information, we used models that can handle features and compared their performance with
randomly initialized feature vectors as opposed to features containing individual side-effects
information. This additional information actually proved beneficial for the models. Taking a step
further, we also tried a tf-idf like way of normalizing our featural information as an attempt to
improve performance by providing more quality data. We did not observe any improvement on
the results by doing this.

Finally, we explore the performance of the models per side-effect and have a look at the
patterns discovered from the rule based model.

In the following chapter we have a brief overview of the related work on graphs and graph
embeddings as well as a few notes on the aspects of polypharmacy side-effects and previous
works on the issue.

In the third chapter we present an exploratory analysis of the dataset that we use both to give
an illustrative and clear image of the data to the reader, but also gain insights on the data that
helped us shape the direction of this project.

In the fourth chapter we present the methodology in detail. The models we tried, the ideas we
experimented on and our drives.

In the fifth chapter we present the experimental setup and the specifics of our implementation.
We extend on the way we handled this link prediction task on the different experiments, the
procedure we followed, but also we discuss things that worked and things that did not.

In the sixth chapter we present the results of the different experiments and comment on the
patterns that were identified from the rule based model.

Finally, In the seventh chapter we dedicate some space for retrospective view, contributions of
this project and thoughts on future work.
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2. Related Work

2.1 Graphs

Graphs are data structures able to model a set of objects (nodes) and their relationships
(edges). Graphs are the natural method of representation in areas where relation amongst
objects of interest is of high importance, like social networks, biological systems, knowledge
graphs, recommendation systems, citation networks etc.

There are multiple ways to categorize graphs based on different aspects. Graphs can be
undirected or directed. A typical example of an undirected edge is a friendship edge between
two facebook users while an example of directed edge is a follow edge in tweeter. Graphs may
contain a single type of nodes (homogeneous) or more (heterogeneous). A graph can contain a
single type of edges or more in which case it is called multi-relational. Additionally graphs can
contain auxiliary information like labels and features for nodes and/or for edges.

A special example of multi-relational and heterogeneous graphs are knowledge graphs or
knowledge bases. They represent knowledge in the form of triplets (subject, relation, object)
where subjects and objects are entities represented by nodes in the graph and relation are
edges that connect them. Typical examples of triples in a knowledge base could be (Athens, is
capital of Greece), (MSc Data Science, takes place in Athens) etc. While these relations are
asymmetrical there are also symmetric relations like (Hydrogen, interacts with, Oxygen).

2.1.1 Graph tasks

Node classification is one of the most common tasks in a graph. Most of the time, it is a form
of semi-supervised learning, where labels are only available for a small proportion of nodes,
with the goal being to label the full graph based only on this small initial set. Classifying
documents, web pages, or individuals in a social network into different categories are some
examples.

Link prediction has important applications in a wide range of subjects and tasks, from
recommendation systems to biological interaction graphs and from knowledge graphs to social
media. The goal is to predict missing edges, or edges that are likely to form in the future.
Predicting missing friendship links in social networks, affinities between users and movies, or
missing relationships in noisy, incomplete knowledge graphs are typical examples. As in our
case, predicting links in knowledge graphs is a method for recommending new directions for lab
research.

A special case of link prediction is knowledge graph completion. Real world knowledge graphs
tend to be large, complex and noisy. And of course, incomplete. There is limited value in
creating such a base by hand, with strict rules or from a single source. In most of the cases it is
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just a way to put some order in vast amounts of information, from various sources. So having
such a graph, the next, natural step, is to try to predict missing links. Triplets that should (or
could) be in the graph but are currently missing. This could either improve the completeness of
the graph (and if not trivial links) improve our knowledge about the system we study, or even act
as a recommendation tool that would suggest movies likely to entertain the user, friends to
connect with in a social platform or even possible directions for further survey in a scientific field.

Community detection or clustering is another common task that has countless applications
from computational biology to marketing (related products, client segmentation etc). In contrast
with classification, here the labels are not known in advance and we rely on the graph data to
give a good way to categorize data based on similarity.

Node embeddings can also be useful for visualization purposes, when combined with
techniques such as t-SNE or principal components analysis (PCA) in order to generate 2D
visualizations of graphs.

Graph classification is another task where entities are represented as whole graphs.
Classifying graphs that correspond to different molecules is the most prominent application
domain.

2.1.2 Representation learning - Graph embeddings

Graphs, aside from being useful as structured knowledge repositories, are also growing popular
in modern machine learning. Classifying the role of a protein in a biological graph,
recommending a new connection in social media or repositioning an existing drug for a new
disease are typical examples.

Traditional machine learning algorithms require data to be in a more or less tabular form with
every instance described by a set of features. Therefore It is not feasible to pass a graph
structure into a, for example, logistic regression or SVM model as is. We first need to transform
the components of the graphs into vectors that will represent them meaningfully.

The first attempts to extract structural information in the form of features were based on
summary statistics and hand feature engineering (Liben-Nowell & Kleinberg, 2007). It is obvious
that these methods are very limited in a sense that the process is expensive and specific for
each task but also the features are static and fixed throughout the learning process.

The idea behind representation learning approaches is to learn a mapping that embeds nodes,
or entire graphs, as points in a low-dimensional vector space. The goal is to optimize this
mapping so that geometric relationships in the embedding space reflect the structure of the
original graph. Feature engineering is not a preprocessing step anymore, but a machine
learning task itself where the features need to be learned. In other words, graph embeddings
are low-dimensional vectors that capture the essence of a graph's nodes (or edges or
subgraphs) and can be used as features in a consequent machine learning task.
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To evaluate an embedding we can either use a distance metric (or basically any kind of metric,
like reconstruction error) in the vector space or use the performance in a specific downstream
task. We would like similar nodes to be closer together. However, defining what we mean by
“similar” is also a matter of choice. Depending on the task and the specifics of the graph we can
consider two nodes to be similar when they share a lot of common neighbors or when they have
a similar structural role in the graph.

First attempts to learn embeddings were based on matrix factorization approaches, using the
adjacency matrix of the graph, Laplacian eigenmaps and inner product methods (like GraRep
(Cao et al., 2015) , and HOPE (Ou et al., 2016)) The basic idea is that the dot product of a pair
of embeddings should reflect the similarity (as defined) of those two nodes in the graph, for
example if they are connected or not.

Other methods like DeepWalk (Perozzi et al., 2014) and node2vec (Grover & Leskovec, 2016)
used the concept of random walks. Their key innovation is optimizing the node embeddings so
that nodes have similar embeddings if they tend to co-occur on short random walks over the
graph. While Deepwalk uses simple random walks, node2vec introduces two random walk
hyperparameters that bias the random walk The one controls the likelihood of the walk
immediately revisiting a node, while the other controls the likelihood of the walk revisiting a
node’s one-hop neighborhood. By introducing these hyperparameters, node2vec is able to
smoothly interpolate between walks that are more akin to breadth-first or depth-first search,
capturing the right blend of neighborhood similarity and structural role.

Models described so far have a number of limitations. No parameters are shared between
nodes in the encoder. Shallow embedding also fails to leverage node attributes during encoding.
Shallow embedding methods are inherently transductive. They can only generate embeddings
for nodes that were present during the training phase, and they cannot generate embeddings for
previously unseen nodes. (Zhou et al., 2020)

A third and most recent approach is representation learning through neural networks. Inspired
by CNN’s performance and interpretability, GNNs took off recently. Key ingredients of CNNs are
local connection, shared weights and use of multiple layers. We can see how these things relate
on graphs and why GNNs are a generalization of CNN to solve their limitations to only operate
on regular Euclidean data like images or text to be applied on grids.

6



Figure 2.1 CNNs are operating on text or images which can be seen as grids on the euclidean
space (left). These structures can be considered as a special instance of graphs that in the
general case live on non-euclidean spaces (right) In that base GNNs are generalization of the
CNNs. Image from (Zhou et al., 2020)

The first paper that introduced a graph neural network was (Scarselli et al., 2009). After that
there are a number of GNN models proposed in the course of the last few years. Apart from the
individual models there have been proposed several unifying frameworks aiming to integrate
different models under a general umbrella. Most famous framework is the MPNN, i.e. message
passing neural networks proposed by (Gilmer et al., 2017).

The model consists of the message passing phase and the read out phase. These phases can
have different settings and thus express a number of different models. In the message passing
phase each node starts with a feature vector. For each node we aggregate all neighboring
nodes’ vectors (message) with itself and update its vector. We repeat this process a number of
times. Finally, In the read out phase we can create a final feature vector that represents the
whole graph. A notable example of message passing neural networks are GCN (Kipf & Welling,
2016) and R-GCN (Schlichtkrull et al., 2018), its counterpart for multi-relational graphs.

2.1.2.1 Knowledge graph models taxonomy

If we follow the taxonomy of knowledge graph models in a multi-relational setting proposed in
(Rossi et al., 2021) we can group them into three major categories, tensor decomposition
models, geometric models and deep learning models.

Tensor decomposition models consider the KG as a 3D adjacency matrix which is partly
observable due to incompleteness of the graph. The tensor is decomposed into a combination
of low-dimensional vectors that are used as representations of entities and relations. The
embeddings are learned as usual by optimizing the scoring function for all training triplets.
These models tend to employ few or no shared parameters at all, something that makes them
easy to train but without the benefits that come from knowledge transfer. Typical models of this
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type are DistMult (Yang et al., 2014), Rescal (Nickel et al., 2011) and TuckER (Balazevic et al.,
2019)

Geometric models interpret relations as geometric transformations in the latent space. Given a
triplet, the head embedding undergoes a spatial transformation 𝜏 that uses the values of the
relation embedding as parameters. We measure the plausibility of a triplet by the distance
between the vectors after the transformation based on a distance function 𝛿.

Shared parameters are usually not used in these models and they can be further divided into
three subcategories. Pure translational models like TransE (Bordes et al., 2013) where the
relation vector is just added to the head vector, and we expect to land in a position close to the
tail vector. Roto-translational models like RotatE (Sun et al., 2019) that instead of or additionally
to the pure translations use rotation-like transformations to the embedding vectors. Finally,
models like CrossE (Zhang et al., 2019) may use more than one embedding for each element of
the graph, something that yields of course a larger number of parameters to learn.

Deep learning models like ConvE (Dettmers et al., 2018) use neural networks. A great variety of
layers have been proposed, applying quite different operations to the data. Depending on the
task, different types might be more appropriate, for example convolutional layers, that learn
convolution kernels, or recurrent layers, that handle sequential inputs in a recursive fashion. In
these models KG embeddings are usually learned jointly with the parameters of the layers and
these shared parameters make these models more expressive, but also potentially heavier,
harder to train, and more prone to overfitting.

2.2 Polypharmacy side-effects prediction

2.2.1 First attempts

Polypharmacy treatment - treatment of a patient with a combination of drugs- is a powerful tool
in our medical arsenal when it comes to diseases that are caused by complex processes and
single drug treatments are inefficient. However, it poses a higher risk of side-effects due to the
interaction of the drugs (Tatonetti et al., 2012). Beside the obvious effect on the patients’
wellbeing it also has a noticeable economical impact (Kantor et al., 2015).

Identifying polypharmacy side-effects through clinical trials for all the possible drug pairs (let
alone all higher order combinations) is challenging and expensive3 (Bansal et al., 2014). In the
past, computational methods have been developed to help with this issue based on various
concepts, like (Lewis et al., 2015) and (Chen et al., 2016) just to name a few. All these
approaches have in common is that they predict a single score for each drug pair that
represents the possibility or/and strength of the interaction, giving no further clue for the type or
the specific side-effects that may arise. Decagon (Zitnik et al., 2018) comes to fill this gap and
predict specific side-effects for any given pair of drugs4.

4 More details about this were given in the first chapter
3 For any n drugs there are ~n2 durg pairs that should be put into test.
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2.2.2 Decagon inspired approaches

Due to the complexity of the model and the relationships in polypharmacy the way Decagon is
implemented has a really high cost both in space and in time efficiency. In (Xu et al., 2020) a
different approach is used based on the same BioSNAP Decagon datasets. Although they use
the same end-to-end training approach and the same preprocessing as in the original paper,
instead of building a single multi-relational and heterogeneous graph here the authors take a
gradual approach.

First the model learns the embeddings for the proteins based on the PPI network. Then they
propagate such embeddings to the drug – drug graph via the protein – drug graph. Learn the
final drug embeddings and predict side-effects in the drug – drug graph. The drug
representation is produced by combining protein embedding and other available drug
information.

Figure 2.2 Information propagation in TIP encoder (Xu et al., 2020)

We can still consider this process as a combination of an encoder and a decoder., where
encoder is a sequence of different message passing neural networks. A GCN module that
learns p-p embeddings, a graph-to-graph information propagation module consisting of a single
layer message passing network and a linear transformation followed by an activation function,
and a d-d graph embedding module that is actually an R-GCN encoder with a
basis-decomposition regularization.

Another approach was presented in (Malone et al., 2018). The authors use the same datasets
and preprocessing but use a quite different approach, based on rule based features and KBLRN
(Garcia-Duran & Niepert, 2017), an end to end knowledge graph embeddings learning
framework.
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3. Data

3.1 Overview of the dataset

The Decagon full network comprises of four separate datasets. A PPI network, a mono
pharmacy drug side-effect, a polypharmacy drug side-effect and drug - protein targets. The
datasets are fully described in the original paper. Here we just summarize some basic aspects
of them.

Table 3.1 A summary of Decagon full dataset specifications. Taken from (Malone et al., 2018)

The human protein–protein interaction (PPI) network as created by (Chatr-Aryamontri et al.,
2015) and (Menche et al., 2015) and extended by (Rolland et al., 2014) and (Szklarczyk et al.,
2017) contains physical interactions experimentally documented in humans, such as metabolic
enzyme-coupled interactions and signaling interactions. The network is unweighted and
undirected with 19 085 proteins and 719 402 physical interactions. The dataset consists of
triples in the form protein - interacts_with - protein.

Drug-targeted proteins were taken from the STITCH (Search Tool for InTeractions of
CHemicals) database (Szklarczyk et al., 2016). Only interactions between drugs and target
proteins that had been experimentally verified were considered. The dataset consists of triples
in the form drug - targets - protein.

Regarding the mono side-effect data, the SIDER (side-effect Resource) (Kuhn et al., 2016) was
used which was obtained by mining adverse events from the drug label text, integrated with the
OFFSIDES database. The OFFSIDES database (Tatonetti et al., 2012) was generated using
adverse event reporting systems that collect reports from doctors, patients and drug companies.
The dataset consists of triples in the form drug - causes - side_effect.

For polypharmacy side-effects, the TWOSIDES was used, which details 1318 side-effects types
across over 63K drug combinations, which are greater than expected given the effects of either
drug in the combination individually. Like OFFSIDES, TWOSIDES was generated from adverse
event reporting systems (Tatonetti et al., 2012).

The final network after linking entity vocabularies used by different databases has 645 drug and
approximately 19 thousands protein nodes connected by approximately 715 thousand protein –
protein, 4.5 million drug–drug and 19 thousand drug – protein edges. Side-effect synonyms
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were eliminated and one side-effect vocabulary was used to construct all datasets. The
aggregated statistics of the dataset are shown in Table 3.1

3.2 Distribution of entities and edges

3.2.1 Protein - protein interaction dataset

The Decagon protein - protein interaction dataset contains 19,085 proteins and 719,402 known
and experimentally documented physical interactions among them in the human body. As
shown in Figure 3.1, the distribution of the edges per node follows the power-law distribution,
with most of the nodes having a few or a few dozens of neighbors, some of them having more
and only in rare cases we see some having as much as three or four hundreds of interactions.

Figure 3.1 Distribution of protein interactions with other proteins. Most of them are interacting
with a few dozens of other proteins, while a few are interacting with more than 200 proteins.

3.2.2 Drug - protein interaction dataset

Regarding the amount of drugs that actually target some protein, only 284 of the 645 do target
at least one (~44%) and we can see the distribution in Figure 3.2. Here we have a bimodal
distribution with almost half of them targeting less than ten proteins and a non-negligible number
of drugs targeting 150-200 proteins.
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Figure 3.2 Distribution of drugs targeting proteins. We can see drugs being separated into two
main groups. Drugs that target a few proteins up to 40 and drugs that target 150 to 200 distinct
proteins. From the histogram we completely removed drugs that do not target specific proteins.

The total number of drug - protein edges is small compared to the total number of edges in the
dataset. Most drugs don’t even have protein targets, but even for those that have multiple
connections, this information could be buried under the volume of polypharmacy edges,
especially for the drugs in the first mode of the distribution having a few targets. This is one of
our motivations for focusing on the rare side-effects subgraph, as we'll discuss later.

3.2.3 Individual drugs side-effects

The dataset that contains the individual drug side-effects has also some interesting aspects.
The distribution roughly resembles a binomial with most of the drugs being associated with a
few hundred mono side-effects (Figure 3.3). Plotting the inverse diagram (Figure 3.4) in order to
explore the frequency of appearance of each side-effect, we note three things. The first is that
almost half of the mono side-effects included in the dataset (approximately five thousand) are
associated with five or less drugs. Another thing is that there are some of them that are
associated with more than a hundred drugs (we remind here that we examine a total of 645
drugs) and a few that reach up to 200-300 associations.
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Figure 3.3 Distribution of individual side-effects per drug. The number of individual side-effects
each drug is associated with varies widely. In addition to the side effects extracted from drug
label text, the information is integrated with information from adverse event reporting systems.

Figure 3.4 There are many side-effects that are only associated with a handful of drugs. Almost
half of the total 10000 side-effects are only associated with less than five drugs. Frequent
side-effects are associated with hundreds of drugs (this diagram is trimmed from the right
excluding these extreme cases)
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The frequency of appearance of the individual side-effects is of some importance since they are
used as features for the drugs in order to improve performance. The side-effect datasets are
partly based on adverse event reporting systems. The other, main, source for the mono
side-effect dataset is the text descriptions that come with the drugs. What this means is that the
datasets are possibly dirty and incomplete. Lack of any quantitative measure about frequency of
a drug - side-effect association or its severity, leaves plenty room for improvement on the quality
of the dataset.

Another consideration is that the side-effects that are included in the polypharmacy side effects
are removed from the mono side-effect dataset as a conservative approach from the authors of
Decagon in an attempt to avoid any leakage and reliably assess the model performance,
leading to many of the expected common symptoms to be missing from the mono side-effects
dataset. We will come back to this but for now we just include Table 3.3 with some more detailed
stats about mono side-effect dataset distribution and Table 3.4 with the most frequent
side-effects in the dataset.

side-effects Drugs associated

32 > 200

116 > 150

289 > 100

5026 <= 5

3175 <= 2

2032 = 1

Table 3.2 Statistics on the frequency of individual side-effects. Around two thousand side-effects
are only associated with one drug. Almost half are associated with five or less drugs while on
the other hand, some are associated with almost one third of the drugs
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side-effect appearances

general physical health deterioration 301

hypoaesthesia 279

mental status changes 278

tooth extraction 276

emotional distress 275

alanine aminotransferase increased 273

condition aggravated 270

pollakiuria 267

staphylococcal infection 266

blood creatinine increased 263

spinal osteoarthritis 263

bone disorder 263

dysgeusia 257

anhedonia 249

osteopenia 243

congenital mitral valve incompetence 242

impaired healing 238

congenital tricuspid valve incompetence 238

disorder of globe 231

blood alkaline phosphatase increased 231

Table 3.3 Most common side-effects in our dataset. Some of those that we might expect to see
here are missing since any side-effect that appears on the polypharmacy dataset is removed
from this one, for information leakage issues. See (Zitnik et al., 2018) for more details.
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3.2.3 Polypharmacy side-effects

After removing rarely documented side-effects with less than five hundred appearances in the
original data5, the polypharmacy side-effect dataset contains 645 drugs, 963 polypharmacy
side-effects and approximately 4.5 million triples (drug – side-effect - drug) in total. The first
interesting thing is that from the 645 x 645 = 416025 possible drug pairs, we have at least one
documented polypharmacy side-effect for 63472 of them in our dataset (approximately 15% of
total). Along with all these pairs that we know not a single side-effect that appears when taken
together, It comes as no surprise that for many of the drug pairs we have multiple documented
side-effects. The exact distribution can be seen in the figure 3.3.

Figure 3.5 Of all the possible drug pairs, around fifteen percent manifest at least one known
polypharmacy side-effect additionally to the individual side-effects of each drug. Some of them
are associated with hundreds of additional side-effects. In this graph we only include pairs with
at least one known polypharmacy side-effect.

Regarding the polypharmacy side-effects, obviously they also don’t appear with the same
frequency in our dataset. In the list with the most frequent ones (Table 3.2), there are usual
suspects like arterial pressure decrease, pain, fatigue, difficulty in breathing and nausea. In the
next section we will examine how these common side-effects affect the prediction task.

5 Same as the preprocessing that is followed in the decagon paper
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Table 3.4 (left) Top polypharmacy side-effects that appear among pairs of drugs. (right) The
worst performing side-effects in Decagon. We observe many common side-effects existing on
both lists.

3.3 Rare side-effects subgraph

3.3.1 Why rare side-effects

Predicting a specific side-effect does not always bring the same added value. Since exhaustive
clinical research is expensive and practically impossible, the motivation of predicting
polypharmacy side-effects through machine learning methods is to identify good candidate
side-effects and/or drug pairs in order to help clinical trials focus on these candidates so that
resources can be saved or be better distributed and the research can proceed further and faster
(Tatonetti et al., 2012). Rare side-effects are more difficult to spot and hence of more special
interest in this context.

The original dataset contains more than a thousand polypharmacy side-effects. The most
frequent of them appear in almost half of the drug pairs, as we’ve seen. This can lead to two
separate issues. According to the original paper, the worst predicted side-effects tend to be
common side-effects and/or have non molecular origins (see Table 3.4). These side-effects, due
to their commonality, are easy to be associated with a large number of drug pairs without us
being in a position to model them based on our data which mainly carry pharmacogenomic
information.
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In addition, due to their numbers, they can act as a kind of noise that lessens the general
performance of the model and make modeling of the rare relations of the graph more difficult as
rare side-effects are less represented in the full graph. Protein related edges could also be
benefited from removing common side effects as they are also few compared to polypharmacy
edges and focusing on rare side-effects will make them more dense in the graph..

3.3.2 Subgraph characteristics

After creating some subsets of the original combo dataset by setting different thresholds on
side-effects to keep, we examined the graph statistics on Table 3.5. We wanted to experiment in
a smaller graph that at the same time retained the qualitative characteristics of the full graph.
Limited to the rarest 50 side-effects we can keep more than 80% of the drugs but there are a lot
of nodes with one or few edges, unlike the initial graph. By increasing the threshold to 300
rarest side-effects, the graph has ten times more edges (while 10 times less than the full
dataset) includes more than 95% of the drugs and the pairs of drugs with only one side-effect
are sparse, meaning that the graph is strongly multirelational again.

# of
side-effects
to keep

drugs edges Unique drug
pairs

50 559 27,815 15,563

100 598 62,202 24,602

200 626 152,565 36,442

300 631 283,585 45,596

963 (full) 645 4,649,441 63,472

Table 3.5 Polypharmacy dataset stats depending on the number of side-effects to keep.

We decided this was a balanced trade off among similarity to the original graph and size
reduction, so we used the mini graph with 50 side-effects for initial testing and tuning and later
proceeded to experiment on the bigger subgraph of 300 hundred rarest side-effects on which
we report our results. On Figure 3.6 we see a comparison of side-effect frequency distribution.
On the rare subgraph all side-effects are more balanced in terms of frequency, unlike the
original graph where some side-effects (types of relations) were dominant and possibly make
modeling of the less numerous side-effects challenging.
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Figure 3.6 Frequency of appearance of polypharmacy side-effects on the full dataset (left), on
the rare side-effects subset (right). On the full dataset we have side-effects that dominate the
dataset merely by their number with some associated with more than 10 K drug pairs. On the
rare subset, the situation is much more balanced.
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4. Methodology
Our experimentation is focusing on trying different models and identifying behaviors, interesting
points and patterns that could give some insight about the Decagon dataset or the models
themselves. The experiments we performed can be divided into two main categories.

There are many ways to deal with a link prediction task in a multi-relational setting. What we
choose has a major impact on the process that we follow during the training but most
importantly in the evaluation. We will shortly introduce two ways that are of interest for our
project. In both scenarios, we split the dataset triplets into train and test sets and we create
negative samples (if not already included in the data) for the train set to allow the model to
learn. Things are getting more interesting in the valuation phase.

For the first scenario the creation of negative samples in the test set is required so that the
model is expected to predict (for each relation) whether each specific edge is positive or
negative. This setting is often used in single-relational graphs and has many similarities with a
binary classification problem and it is no surprise that similar metrics are used to evaluate the
performance. AUROC curve, precision-recall, f1-score, and even accuracy can be used in this
case.

In multi-relational graphs, a different setting is usually the way to go. For every triplet in the test
set, the model is evaluated in its ability to assign high probability on the correct tail, given the
head and the relation6. The task can be described as (h, r, ?). The performance is typically
evaluated with some rank based metric. For every triplet in the test set, the model assigns a
score for every possible tail, trying to assign the correct one a high score so that it is ranked in
the highest place. In this case there is no need for negative samples in the test set.

Coming back to our project, the first half (section 4.1) includes experiments that were
implemented and performed in the full dataset in a way that the results would be comparable
with the results from the original Decagon paper. That means that we treated the link prediction
problem the first way we described, like the authors did, and we used the same metrics to
evaluate the models.

For the rest of the experiments we used a trimmed down version of the dataset containing only
the rarest side-effects.The motivation for this choice is presented in the previous chapter. Since
the results would by default not be comparable with the previous results, we chose to also
switch the task to the second scenario we described above which is more typical for
multi-relational graphs.

The main advantage of the second approach is the lack of need for negative samples in the test
set. The choice of the test set can already have an impact on the performance of the model.

6 The task can be the other way around, predicting the head given the relation and the tail. In our case all
the triplets are symmetric so we don’t have to worry about this. There is an easy to follow explanation on
the variations of this task on the Pykeen documentation.
https://pykeen.readthedocs.io/en/stable/tutorial/understanding_evaluation.html

20



Unlike a dataset with independent observations, removing edges from a graph can have more
complicated ramifications on the training. The creation of the negative samples, being a problem
with high degrees of freedom, it introduces variance on the evaluation process that
consequently leads to reliability and reproducibility issues as described in (Yang et al., 2015)

4.1 Baseline approaches on full dataset

The main idea here is that instead of running and expanding an effective and novel, but really
heavy and costly model like Decagon or TIP, we could try various simpler and lighter models to
see how they perform. Starting from simple and gradually growing complex we would try to
identify what aspect of the problem has the greater impact in the prediction performance. We
began with a model focusing only on the network information and gradually added more
information in the form of feature vectors. The last model was designed to be like one of the
baseline models described in the original paper (referred to as ‘concatenated features’).

In all three models, entities were depicted as n-dimensional vectors that were eventually
concatenated or merged to form the representation of each drug pair. What differentiates each
model is the information reflected on these feature vectors and the way it is constructed as
depicted in Figure 4.1. These representations are fed to n individual classifiers, one for every
relation, who predict whether the particular pair of drugs should be associated with the
respective side-effect. For the training and evaluation we used negative samples that were
created by uniformly replacing the tail of each triplet with another entity.

4.1.1 Network only

For the first model we focus on the network and add no extra feature information, so each drug
is represented by its one-hot encoded index. For each pair of drugs we merge the
representations of each drug so we end up with a vector of number_of_drugs length, with two
aces indicating the two drugs of the pair.
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Figure 4.1 Construction of drug pairs representations in each model. Afterwards, these
representations are passed to n individual classifiers, one for each polypharmacy side-effect to
predict the probability of each association.

4.1.2 Drug mono side-effects as features

In this model, each drug is represented by a multi-hot-encoded feature vector of the side-effects
it is known to cause when taken on its own. Due to the great dimensionality of the vectors
(around 10K) we had to apply PCA on the input. The PCA representations of each drug were
concatenated to represent the drug pair.

4.1.3 Include target protein information

This model is like an improvement on the previous one, as we include protein related
information in the feature vectors in addition to the mono side-effects. Once again we applied
PCA to the protein related features (independently) and concatenated them with mono
side-effect features.

This model was supposedly identical to a baseline model from the original paper7. However, the
performance of the model was not close to the one on the original study, as we will see in the
results section. We tried to identify the root of this divergence, by adjusting a number of

7 mentioned as “concatenated features” model
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parameters, especially aspects that were not clearly specified in the paper. We tried different
splits in the dataset and different ways to implement the negative sampling, even different ways
of transforming our data through pca. Another consideration is whether the classifiers are
independent or if there is some transfer of knowledge among them. Our tries were not enough
to spot the root for this divergence. We tried to come in touch with the authors, more than once,
for extra specifications and clarifications, without, unfortunately, getting any response.

4.1.4 Confine to drugs with protein interactions

On (Malone et al., 2018) it is suggested that limiting the dataset to contain only drugs that are
interacting with proteins will make protein related information more relevant and dense and
hence improve the performance of the model. Upon this ground we trained the previous model
on this limited version of the dataset, to see if it actually yields better results.

4.2 Experiments on the rare side-effects subgraph

As we saw in the third chapter there is some interest in limiting our research in the rare
side-effects graph. This way we gain more insight into side-effects that are hard to identify
clinically, through making rare side-effect information more dense in the data.

4.2.1 Graph embedding models
Our dataset can be seen as a multi-relational, heterogeneous graph or even a pretty particular
knowledge graph, where our entities are proteins and drugs and the relations are mainly
side-effects that can arise from the combinations of drugs. So we wanted to experiment with
some well-known models for graph embeddings.
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Figure 4.2 Generalizing the notion of the adjacency matrix of a graph, a multi-relational graph
can be represented as a three dimensional tensor. Every slice of the tensor is the adjacency
matrix among entities E for the specific relation R (Nickel et al., 2011)

Rescal (Nickel et al., 2011) is a tensor factorization method. Tensor factorization models treat
graphs as three-way vectors that they decompose into a combination of low-dimensional
vectors that are eventually used as feature vectors for the entities and relations. (see Figure 4.2)
The learned embeddings should be able to generalize, and associate high scores to unseen
valid triplets in the graph.

In multi-relational settings, beside direct correlations among entities or relations there can also
exist across interconnections of different entities and relations. Detecting these types of
correlations can be of great importance depending on the task. Rescal employs the following
rank-r factorization where each slice of the multi-relational graph is factorized as

where A is an n x r matrix that contains the latent-component representation of the entities in the
domain and Rk is an asymmetric r x r matrix that models the interactions of the latent
components in the k-th predicate.

Something to keep in mind and differentiates this method from other factorization methods is
that it has the same representation for the entities whether they appear as the head or the tail of
a triplet.

In TransE (Bordes et al., 2013), relationships are represented (for the first time) as translations
in the embedding space, requiring that If a triplet (h, r, t) holds, then adding the embedding of
the relation to the embedding of the head should yield a vector that lies close to the vector of the
tail. While the main motivation behind this model was capturing hierarchical relationships,
inversion and composition patterns in the form of translations, and despite its simplicity, this
model proved to be powerful on most kinds of relationships. One-to-many and many-to-one as
well as symmetric and transitive relations are the weak spot of the model.
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Figure 4.3 (left)Visual representation of the idea behind TransE. Adding head and relation
vectors must yield a vector close to the vector of the tail of the triplet
(right) Visual representation of the RotatE concept. Relations are represented as rotation in the
complex panel. When performed on the head should yield a vector close to the tail. The
distance of the two vectors is the quantity the model tries to minimize.

The optimization is carried out by stochastic gradient descent in mini batches. The embeddings
are randomly initialized - the embedding vector is the same whether the entity appears as the
head or as the tail of a triplet. A small set of triplets is sampled from the training set, and serve
as the training triplets of the minibatch. For each such triplet, we then sample a single corrupted
triplet, with either the head or tail replaced by a random entity. The parameters are then updated
by taking a gradient step with constant learning rate.

RotatE model (Sun et al., 2019) defines each relation as a rotation from the source entity to the
target entity in the complex vector space. In order to understand the reason behind RotatE as
an improvement to TransE we should first briefly examine some types of relations. With the
words of the authors “..some relations are symmetric (e.g., marriage) while others are
antisymmetric (e.g., filiation); some relations are the inverse of other relations (e.g., hypernym
and hyponym); and some relations may be composed by others (e.g., my mother’s husband is
my father)”.

Modeling these types of relations is crucial in predicting missing links.RotatE was proposed as
the first model to infer all the above patterns. We have seen for example that symmetric and
antisymmetric relations are the weak spots of TransE.

Given a triplet (h, r, t), RotatE expects that the embeddings will satisfy

where ◦ denotes the Hadamard (element-wise) product (see Figure 4.3).
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RGCN (Schlichtkrull et al., 2018) comes as a generalization of GCN (Kipf & Welling, 2016), to
be able to handle multi-relational and heterogeneous graphs. GCN is in turn a generalization of
convolutional neural networks in the notion that the data can have a variable number of
neighbors instead of being fixed on a grid like in the case of an image. The basic steps to
update the embedding of a node in a message passing network is to collect the information from
the neighbors, aggregate it and pass it through a neural network layer. The formula for RGCN is
the following

where σ is the activation function, N is the neighbors for the node i in the relation r and c is a
regularization term, for example the number of neighbors in the case we chose average as the
aggregation function.

Compared to GCN, we have one weight matrix for each relation, so that we don’t aggregate
“apples with oranges”. This of course multiplies the number of trainable parameters, something
that may be a concern especially for graphs with a large number of relations like in our dataset.
The authors of RGCN propose ways to address this issue. The Decagon encoder is built based
on this model.

4.2.2 AnyBURL

AnyBURL is a bottom-up, rule based model proposed by (Meilicke et al., 2020) as an alternative
to the representational techniques which are, so far, dominant in the areas of link prediction and
graph completion as opposed to symbolic ones. A bottom-up approach is based on the idea that
a data point is a representation of a specific rule that can be generalized to capture a
comprehensive subset of all data points. The rule does not need to be certain, only to include
some positives and usually also negative examples
Along with competitive performance to the current state of the art, it offers low computational
resources, fast training and evaluation time and it also provides, to an extent, explainable
results coming from the rules mined.

4.3 Mono side-effect feature weighting

After some time of exploration and familiarizing with the dataset there was one particular aspect
of it that striked us. There is no quantitative measure of whether a side-effect is severe or mild
and how frequent it is as well. Both severity and frequency are major aspects for assessing a
side-effect impact (Villars et al., 2007). In both side-effect datasets we examine, the existence of
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a side-effect is depicted as a binary yes or no, although, especially the mono side-effects,
datasets come partly from drug label text that normally contains this kind of information. This
leaves plenty of room for improvement in the quality of the data fed on the model.

Regarding the polypharmacy side-effects, having a model predict the existence of each one
separately is already a major improvement over the previous approaches that were basically
limited on the severity of the side-effects (without specifying what they could be) from a drug
combination. However the mono side-effects are used as complementary features so we
thought that it could be interesting to find a way to scale them, to weigh the importance of each
one.

If we recall the stats from the exploration of the datasets, there were a couple of thousand
side-effects that were only associated with a single drug, and a few more thousand, associated
with a handful of drugs. We believe that such extremely rare features are not beneficial for the
training of a model and can only contribute to overfitting. In a similar concept there are few
side-effects associated with more than a third of the drugs. These could also act as noise and
deteriorate the training of a model.

Taking inspiration from the NLP area, we thought that a tf - idf like calibration (Luhn, 1957)
(Jones, 1972) would make perfect sense in this context. We just need to think of drugs as
documents and side-effects as words and this concept will become apparent. Common
side-effects that appear in a large number of drugs should have lesser importance (inverse
document frequency) than side-effects that are bound to just a few cases. And also, side-effects
in drugs with few associated side-effects in total are more representative of the drug than they
would be in a drug with a lot of side-effects (term frequency). A visual representation of how this
concept was implemented is presented in Figure 4.4.
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Figure 4.4 A visual explanation of the tf-idf normalization process. The tf factor normalizes the
importance of each side-effect for each drug (horizontal normalization). Unlike words in
documents, side-effects can only appear once in our dataset and hence the relative importance
is just inverse to the total side-effects associated with each drug. Idf factor normalizes vertically,
with side-effects associated with few drugs being important and on the other side, side-effects
associated with each and every drug bear no power to discriminate among them and are zeroed
by the process.
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Let’s explain a bit further. Term frequency as an absolute number cannot really apply in our case
since every side-effect can only appear once in our dataset. However, relative term frequency
can. The total number of side-effects each drug is associated with, can act as a regularization
parameter. In a sense, a side-effect, let’s say nausea, in a drug associated with a total of five
side-effects is more representative of the drug compared to nausea as a side-effect of a drug
associated with one hundred side-effects. Let’s give an example from the area of text in order to
be more clear. Imagine a document containing only the phrase “King is dead”. And now think of
another long length document referring to matrices, in which the word “king” also appears once
(king size). Obviously ‘king’ is more important, more representative of the first document,
compared to the second one.

Inverse document frequency is easier to understand. Common words like “the”, “and”, “is” are
less useful in search queries. They are present in more or less every document and have little, if
any, representative importance about each document. In our case, these common words would
be common side-effects like “pain” or “nausea”. As opposed to more specific terms/side-effects
like “hair loss” or “increased blood viscosity”.
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5. Experimental Setup

5.1 Initial idea

Our initial idea for this project was to achieve a reimplementation of the Decagon model in
Pytorch framework (the original is in TensorFlow) and after that, further experiment in two basic
axes. The first was to replace components of the original model with different ones, for example,
try different types of neural networks as encoders and decoders in the model. The second idea
was to incorporate extra information in the model so that it could capture more aspects of the
problem in the form of extra features for the graph entities on top of the existing or/and add
extra graph networks on top of the original dataset. Some examples of extra features that were
considered and searched upon in the literature were textual information about the drugs and
molecular structure of drugs and proteins (Vilar et al., 2012) (Li et al., 2017). An example of an
additional network that was considered was drug - disease network as in (Xuan et al., 2019).

Although not clearly stated in the original paper, Decagon is a really heavy model to train.
According to (Xu et al., 2020) Decagon requires more than 28GB peak GPU memory usage
and approximately 2.5 hours of training per epoch. These heavy requirements in conjunction
with the difficulty in reimplementing such a complex model made us abandon the initial idea as
not feasible in the context of a postgraduate thesis. However, this initial phase of the project was
not a waste of time as parts of the code were later reused and the familiarity that was earned
through this process on libraries and the domain in general turned out really helpful later on.

5.2 Reproduce TIP results

TIP (Xu et al., 2020) is an alternative model proposed as a lighter and more effective alternative
to Decagon. With this model they achieve a 7 percent extra accuracy in terms of AUPRC and an
astonishing 83x faster training and evaluation performance. We tried to reproduce the results of
TIP, hoping that later we could experiment further on improving the model. Although the code is
open and available on github, we had difficulties running it and reproducing the results. We tried
various python environments and set ups. We also tried to dive deep into the code and
overcome what seemed to be a bug caused by version conflicts in python packages by
ourselves, without success.We also asked for the help of the authors and while eventually got
an answer from them, this was not able to resolve the problem. 8

8 see https://github.com/NYXFLOWER/TIP/issues/15
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5.3 Baseline approaches

In these experiments we use simple baseline models in the full polypharmacy dataset consisting
of triplets in the form (d,se,d) and we treat the link prediction task the way the authors on the
original do for comparability reasons, as described in chapter 4. Drugs are represented as
feature vectors that are concatenated to form the representation of each pair and one
independent classifier is trained for each polypharmacy side-effect.

We split the dataset into 80% training and 20% test (approximately 50K training and 12.5K test
drug pairs). We stratified our samples so that each label appears in equal percentages in train
and test sets. To train and evaluate the models we created negative samples. To achieve this,
for every triplet (h, r, t) we created a corrupted one (h, r, t’) where the new tail was chosen
uniformly at random among all the entities, making sure that the negative triplet does not
already exist in our dataset as positive.

We chose logistic regression as our base classifier due to its simplicity, performance efficiency
and the lack of crucial hyperparameters that make it ideal for a baseline. Later we tried a
number of different simple classifiers like naive bayes and decision trees.

For each model what is different is the information reflected and the dimension of the feature
vectors.

For the first model we have an embedding of length 645 (number of drugs) with two aces
indicating the two drugs of the pair. For the second model we use PCA representations of the
mono side effects of each drug that we eventually concatenate in a vector with size 600. With an
initial length of 10,084 side effects, we decided on an embedding of size 300 that keeps
approximately 80% of variance. For the third model we additionally construct a PCA
representation of the protein targets of each drug. With 50 features we are able to capture 95%
of the variance. We concatenate these vectors for a total embedding with size 700.

5.4 Knowledge graph embeddings on rare side-effects subgraph

In these experiments we focus on the rarest side-effects of the dataset. After creating some
subsets of the original combo dataset by setting different thresholds on side-effects to keep, we
examined the graph statistics. We wanted to experiment in a smaller graph that at the same
time retained the characteristics of the whole. Limited to the rarest 50 side-effects we can keep
more than 80% of the drugs but there are a lot of nodes with one or few edges, unlike the initial
graph. By increasing the threshold to 300 rarest side-effects, the graph has ten times more
edges (while 10 times less than the full dataset) includes more than 95% of the drugs and the
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pairs of drugs with only one side-effect are sparse, meaning that the graph is strongly
multirelational again.

We decided this was a balanced trade off among similarity to the original graph and size
reduction, so we only used the mini graph for initial testing and tuning and later proceeded to
experiment on the bigger subgraph of 300 hundred rarest side-effects on which we report our
results.

On this trimmed down dataset we trained a number graph embedding models and evaluated
their performance in the typical link prediction task, where for every pair (h,r) we want our model
to assign high probability to the correct tail. We tried Rescal as an example of a tensor
decomposition model, TransE and and RotatE as translational and roto-translational models,
RGCN as a deep learning model and AnyBURL a rule based model.

5.4.1 Features reduction and normalization
Regarding the RGCN model we trained and evaluated three variations of it. Taking advantage of
its ability to handle additional features we created a model with randomly initialized vectors, one
with vectors capturing the information about individual side-effects of each drug, and one model
where this information has been normalized in a tf-idf way, as described in the fourth chapter.

By comparing the performance of the model under these three variations we wanted to test
whether the additional info coming from individual side-effects adds value to the model
(compared to the random initialization of the features) and whether normalizing the features
have any further positive effect.

5.5 Technical aspects and hyperparameter optimization

Due to the concept of this project, which was rather an exploratory and qualitative research of
different methodologies in a particular dataset and not a proposal for a new methodology,
hyperparameter tuning in order to achieve the best possible result was not our main focus. For
most of the experiments and models, only a basic, manual optimization took place on the most
basic parameters of each model, most of the time, the embedding size and the number of
layers.

After some initial, manual experimentation in order to get an insight on the learning behavior, for
the graph embedding models on the rare subgraph, we used an early stopper with a frequency
of 5 epochs, patience 39 and threshold 0.002 in the hits@50 metric. For AnyBURL we manually
set the duration it would require to train in 1000 seconds.

All the experiments were performed in a personal laptop running Windows 10 on 8GB RAM.
Python is the main language used across the project with some scripts (mainly for

9 a model achieving its best performance on the 100th epoch would stop on epoch 115
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preprocessing purposes)written in R. For the graph embedding models we used the
implementations provided by Pykeen.

5.6 Performance Metrics

Decagon authors use three metrics for reporting on the performance of their model. AUROC,
AUPRC and AP@50. For reasons of comparability we also use the same metrics on the full
dataset experiments10.

These metrics have different strengths and weaknesses allowing them to identify different
aspects of the performance of a model. AUROC and AUPRC have many common
characteristics. The thing that distinguishes them the most is the ability of AUPRC to handle
imbalanced datasets, with a rare positive class and a majority of less important negative
samples. In such settings AUROC tends to flatter the model, while AUPRC is a more meaningful
metric based on the concepts of precision and recall.

Average precision at k is a bit different as a concept as it is a measure of how accurate the
model is in its top guesses. So we take the top k guesses of our model ordered (those with
possibilities closest to one) and match them with their actual value. The more true positives and
the higher they are in our list the biggest is the score. The exact formula is the following

where N(k) is the min(k, actual positives)11.

In our case, since every side-effect appears at least 500 times and we keep 10% as a test,
every side-effect appears at least 50 times in the test set. Possibly that was the reason decagon
authors chose 50 as k in the first place.

For the experiments on the rare side-effects subgraph we use hits@k a typical metric for the link
prediction task approached this way. Given a pair of entity-relation, the hits@k metric evaluates
the ability of the model to assign high enough probability to the correct missing entity so that it is
listed among the first k most probable results.

Generally, when rank based metrics are used and like in our case a pair of head-relation can
have multiple correct tails, there must be some extra consideration. For example let us consider

11 For an insightful explanation look here
https://medium.com/@misty.mok/how-mean-average-precision-at-k-map-k-can-be-more-useful-t
han-other-evaluation-metrics-6881e0ee21a9

10 For the different tasks dealt with in our experiments, please refer to section 4.

33



the case when a (h,r) pair has five alternative true tails. Then even if the model perfectly assigns
the best probabilities to these five entities, the fifth will have a lower rank. In the extreme where
we use a metric like hits@3 we evaluate the model as failed for the specific prediction,
something not fair at all. As proposed in (Bordes et al., 2013) and implemented by Pykeen
library we exclude other true triplets from the evaluation12.

5.7 Negative sampling for training

The dataset that runs through this project is a multi-relational graph that contains only the
polypharmacy side-effects we are aware of and does not contain any information about
combinations of drugs not causing a specific side-effect. All the components of our system use
supervised machine learning methods to fit classifiers, which can compute the probability of a
triple being true. So we need a strategy to generate negative samples for our classifiers. There
are different methods one can consider.

Skipping OWA and CWA (open and closed world assumptions) that are clearly poor choices to
train a model (Nickel et al., 2016) , we followed sLCWA (stochastic local closed world
assumption) to train our model. For symmetrical relations like the ones in our case, this
approach converges to LCWA (Dong et al., 2014). Refer to Figure 5.1 for an insightful
explanation.

In the original paper, although they don’t name it explicitly, they also use the sLCWA method
and create one negative sample for each positive edge randomly chosen from all the possible
triplets by replacing the tail with another entity. We followed a similar procedure where we
replaced the tail of each triplet with a different entity, uniformly at random, making sure that the
produced triplet is not corresponding to any existing positive one.

12 For more specifics on the pykeen implementations of this feature check
https://pykeen.readthedocs.io/en/stable/tutorial/understanding_evaluation.html
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Figure 5.1 An illustrative example for the difference among the local closed world and
stochastic local closed world assumption when it comes to picking negative samples for a
dataset. In case of symmetrical relations both approaches converge.(Ali et al., 2021)
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6. Results

6.1 Results on full dataset

In table 6.1 we present the results of the baseline models tried on the whole graph. The models
were tested with a number of simple base classifiers and here we report the best performance.
The values are average performance for all the different relations.

The main take away from this series of experiments is that the best performing model is the one
that uses solely network structure information, without including any extra featural information, a
clear indication that the structure of the polypharmacy graph is of more importance in this
problem compared to the featural information coming from individual drugs’ side-effects and
protein related information. Perhaps the benefit from the extra information in the form of features
is not enough to counterbalance the added complexity that it brings into the model.

Limiting the dataset on drugs that interact with proteins was a way of increasing the relative
importance of the protein related information as proposed by (Malone et al., 2018). However, we
did not observe a noticeable difference in our model.

model AUROC AUPRC AP@50 # features

Structure 0.884 0.861 0.838 645

Side-effects 0.861 0.847 0.836 600

Side-effects + protein info 0.857 0.839 0.831 700

Side-effects + protein info
Limit to protein targeting drugs

0.859 0.836 0.832 700

Decagon *
(from original work)

0.872 0.832 0.803 --

Concatenated features *
(from original work)

0.793 0.764 0.712 --

Table 6.1 Baseline results on the full dataset. Decagon performance is included for
completeness, but should not be considered comparable to the rest of the results.

In table 6.1, along with our results we present the performance of the Decagon and one of its
baselines that it is equivalent with our third baseline, the one containing featural information
about side-effects and proteins. Seemingly, our simple baseline models perform better than a
complex neural network, let alone the respective baseline. However, we should not consider
these results comparable by default. Evaluation of link prediction can be quite tricky, especially
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the way the decagon’s authors dealt with this task. As mentioned in the literature and discussed
in the methodology chapter, even small differentiation in the specifics of the implementation,
splits and negative sampling technique may have a disproportionate effect on the results. Failing
to come in touch with the authors in order to clarify these specifics and reproduce their results
reliably, we can only assume that the divergence is mainly due to the factors we just
mentioned.13

6.2 Results on rare side-effects subgraph

In the following experiments we limited to the subgraph containing only the rarest side-effects
but also changed the evaluation to be the typical evaluation of link prediction in a multi-relational
setting as explained in the fourth chapter.

On Table 6.2 we present the results on the rare side-effects subgraph. Rescal was two orders of
magnitude slower than TransE, the fastest of the graph embedding models, and also had
inferior performance. RGCN performance was also low in comparison to the geometrical models
and approximately an order of magnitude slower to train per epoch than TransE. TransE and
RotatE both achieved high performance with RotatE performing slightly better but TransE being
significantly faster. AnyBURL seems to yield the best performance of all and also in the fastest
time14.

Performance in the two different metrics captures different aspects of the model. Hits@50 is a
quite forgiving metric indicative of the general performance of a model while hits@10 is more
meaningful in an actual setting where we want to have reliable predictions15. We can see
AnyBURL outperform the other models in both metrics but significantly more in the hits@10
making its superiority more evident.

With the experiments we presented in the previous section we saw that structural information
was the most important element in predicting polypharmacy side-effects. Using RGCN, a much
more elaborate model, we will be able to go further and identify whether extra features add any
value to the models and whether improving the quality of this data will make any difference.

Comparing the performance of RGCN under the three different settings we can actually see an
improvement on the performance of the model when featural information is included, meaning

15 We remind here the discussion in 5.6 section for the way we excluded other positive triplets from the candidate’s
set so that the correct candidate can always be ranked first no matter if a head-relation pair has many correct tails.

* Decagon and baseline performance is included for completeness, but should not be considered comparable to the
rest of the results.

14 The amount of time to spend on training and evaluating is a hyperparameter for this model. 1000 seconds is a
typical value that the authors also use in their paper

13 We focus on the negative sampling method since it is essentially a way of drastically subsampling the dataset and
hence can have a major effect on the evaluation of a model (Yang et al., 2015).
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that the individual side-effect information is actually adding value on the model. On the other
hand, trying to improve the quality of this extra information by normalizing the features does not
seem to add any extra value. At least that seems to be the case for the way we implemented it.
Perhaps due to the way message passing models work,with consecutive aggregations of
neighboring vectors, these small adjustments on the initial vectors were not that important to
show.

Once more we need to to point out that these results are not comparable to the ones on the full
graph, and not merely from the fact that they are experiments on a different dataset. The actual
task is slightly different in each case as described in the fourth chapter.

Algorithm Hits@50 Hits@10 Epochs Embedding
size

TransE 0.689 0.245 140 300

Rescal 0.599 0.204 60 300

RotatE 0.708 0.291 60 500

AnyBURL 0.737 0.427 1000 (sec) --

RGCN 0.621 0.226 120 500

RGCN (mono se features) 0.628 0.232 120 500

RGCN (normalized features) 0.626 0.229 120 500

Random baseline 0.079 0.016 -- --

Dummy predicting top 50 drugs 0.354 0.096 -- --

Table 6.2 Results on the subgraph containing 300 rarest side-effects. Geometrical models seem
to perform best with RotatE being the best, followed closely from TransE.

6.3 Discussion

6.3.1 Performance per side-effect

We have already seen in the third chapter that some of the most common side-effects are
among the worst performers in Decagon. Conversely, all the best performers are included in our
rare side-effect subgraph. Unfortunately we are not able to compare our results with the ones
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from Decagon in order to decide on whether pruning common side-effects from the graph
helped to predict the rare ones with better accuracy.
However as a sanity check we present on Table 6.3 the best performers for TransE and RotatE
in terms of hits@10. We can see many of the best performers in Decagon to also make the top
ranks here both in RotatE and TransE.

Table 6.3 Side effects with the best performance in terms of hits@10 for RotatE compared to
the respective ranking in TransE.(left) Best performing side-effects in Decagon (right). Many of
the best performers overlap in all three models.

6.3.2 Patterns from AnyBURL

Apart from general performance in terms of hits@k and other ranking metrics, AnyBURL can
identify specific patterns that appear in the data and compliment the results with a note of
explainability as to why for example a side-effect is to be expected among a pair of drugs..
Some of the most recurring patterns are the ones in Figure 6.1. Obviously these patterns do not
express certainty. They are accompanied with their respective head, body and head over body
ratio, where the body is the absolute frequency of the left side in the dataset and head is the
number of times this rule holds true.
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Figure 6.1 The most recurring patterns identified by AnyBURL. The model is able to capture
simple correlation patterns as well as more complex patterns.

If we try to express these patterns in words, the first rule is a simple correlation among
side-effects. The second one is denoting a correlation among two side-effects in the presence
of a drug. The third rule implies that two drugs have similar behavior when it comes to a specific
side-effect.The fourth rule is similar to the previous one, only now whenever one drug causes
one side-effect the other causes a different one. The fifth rule resembles the transitive property
where if two drugs are associated with a side-effect when taken with a specific drug then they
will be associated with the same side-effect when taken together. As you may imagine, the sixth
pattern is a challenge to put in words and we will not attempt it. In reality we included this
specific pattern as a placeholder for the more complex patterns that the model is able to identify.

Perhaps it is easier to understand the above rules if we name drug A to be paracetamol, drug B
omeprazole, se1 will be nausea and se2will be emesis.
In that case, the second rule denotes that if you take paracetamol and another drug and get
nausea, you will probably also get emesis.
The third rule implies that if you used paracetamol with a drug and got nausea, you will probably
get nausea if you take omeprazole with that same drug as well. And so on for the rest of them.
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7. Conclusion

This project revolves around the problem of predicting polypharmacy side-effects based on the
Decagon dataset. The dataset contains information about individual drugs, as well as
polypharmacy, side-effects and protein related interactions of drugs and proteins.

The initial idea was to reimplement the Decagon model and experiment with graph neural
networks in the specific issue as well as incorporate extra information on the dataset. However,
difficulties on reproducibility, literature review and implementation limitations reformed the scope
of the project. The above difficulties in conjunction with our exploratory analysis led us to move
in two basic directions.

On one hand, we tried a number of baseline models on the full dataset. In these models every
pair of drugs is represented by a feature vector that, for each model, utilizes different sources of
information. We report that the model that solely contains the structural information achieves the
best performance implying that extra information in the form of features regarding mono
pharmacy side-effects and protein interaction information is of secondary importance, while
network information regarding polypharmacy side-effects is the main driver for the success in
the specific task.

On the other hand, we focused on a part of the graph, containing only the rarest polypharmacy
side-effects. The main reasons for this choice were three. First, the special interest
rare-side-effects carry due to their sparsity. Secondly, the information included in the dataset is
not well suited for common side-effects with no molecular basis. As reported in the original
paper many of the more common side-effects are amongst the worst performers. And thirdly,
simply by their number, common-side-effects dominate the dataset acting like a noise for the
other relations of the graph that end up really sparse.

On this subgraph we tried some representative models for graph embedding but also a rule
based model. Rule based model AnyBURL achieved the best performance among them
followed by RotatE and TransE. Aside from achieving the best performance, AnyBURL was also
really fast to train but also, since it is rule based, its results come with the extra benefit of
explainability. As presented in the results section, there are useful patterns that arise from the
data and could be really useful for a medical oriented researcher helping in gaining more insight
and building trust on the results as opposed to a mere number, suggesting probability for an
association, without any extra explanation.

On the same subgraph we also trained three versions of RGCN. One with randomly initialized
vectors, one with mono pharmacy side-effects as features and one where the features had also
been normalized in a tf-idf way in an attempt to increase the quality of the data fed on the
model. We report an improvement when side-effects features were taken into account, denoting
that drugs’ individual side effects bare useful information for predicting polypharmacy
side-effects. Normalizing the vectors, on the other hand, does not seem to add any value.

41



7.1 Future work

There are things that we would like to try on another iteration of this project. We note these
ideas here as possible future work.

Following what we tried with the weighting of each side-effect, we believe that an improved
dataset that would quantify the frequency and the severity of each mono and/or poly side-effects
could be a possible way to improve the predictive power and the performance of the candidate
models.

From the literature and the small experimentation with AnyBURL we saw that rule based models
lift off a lot of weight and complexity, thus training much lighter and competitive models. We
would like to further explore the potential of these models. Rule based models are also
interpretable, which is an important virtue for a model especially in this particular area of
interest.

Meta classifiers would also be an interesting idea. For example we could use the predictions of
our baseline models, that trained independent classifiers for each side-effect, as input to a meta
classifier, so effectively, we would transfer knowledge from all the different side-effects and see
how these models perform.

Having trained different models in the same splits and evaluated per relation it would be a good
opportunity to take a step further and explore the reason for different models capturing some
side-effects better than other models do. Perhaps with the contribution of a rule based model
like AnyBURL we could gain some explainability over this issue and eventually some insight into
the dataset but also the models themselves.

Finally, adding more data is always something tempting, so we could combine more information
in the graph by including extra datasets, like drug - disease data or chemical fingerprints of the
drugs.
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