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ABSTRACT 

 

STUDY OF EM WAVE PROPAGATION 

IN ELLIPTICAL CORE OPTICAL FIBERS  

Euripides Georgantzos 

University of Peloponnese 

 

Although initially studied as a deviation from cylindrical optical fibers, 

elliptical core fibers have evolved to become a basic component in numerous 

applications. Increased ellipticity of the core section allows these fibers to sustain 

polarization for long distances. Polarization, birefringence, simplicity to manufacture, 

structural cohesion and azimuthal stability, are the key advantages of elliptical fibers. 

As a result of their distinct properties, they are used in various applications including 

optical sensors, interferometers, rare-earth-doped fiber sources, amplifiers and 

communications applications.  

The concept of EM wave propagation inside dielectric rods of elliptical section 

has been studied initially for elliptical waveguides in general by researchers including 

L.J. Chu, Lyubimov and Yeh; especially Yeh’s analysis has provided basic 

mathematical tools and estimations regarding key propagation characteristics which 

have proved essential for further research. The specific case of optical fibers with 

elliptical core has also been studied initially by Dyott, Stern and Schlosser, and research 

continues until today targeting specific characteristics like propagation modes, 

dispersion, birefringence and eigenvalue equations among others. Most of the existing 

studies are utilizing complicated mathematical methods and make critical assumptions 

involving the refractive index profile, in order to achieve results of a certain level of 

accuracy. 
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The current thesis introduces a novel method that, after conducting a 

fundamental level of mathematical analysis, substitutes the subsequent, prevalent 

Mathieu functions’ analysis, with the Resonant Transmission Line theory. As a result, 

the presented technique estimates the key characteristics of propagating modes, 

including the mode propagation constant 𝛽 and birefringence in elliptical fibers, with 

remarkable speed and accuracy. Among the advantages of the applied RTL method, is 

the fact that it is based more on computational strength than mathematical complexity, 

it converges fast, it avoids the unrealistic assumption of an infinite cladding, and allows 

the investigation of arbitrary index profiles.  

Regarding the structure of the thesis, chapter 1 starts with a detailed 

presentation of the RTL technique and its application on cylindrical core optical fibers. 

Beginning with a mathematical analysis based on Maxwell’s equations, the 

presentation serves as a demonstration of the RTL technique as the key toolset that will 

be used later in the thesis to describe propagation in elliptical fibers. In the same 

chapter, a basic definition of birefringence is also given for cylindrical core fibers. 

Chapter 2 presents the existing literature related to elliptical waveguides and elliptical 

fibers in particular. It continues with the presentation of the prevailing mathematical 

analysis for the estimation of mode propagation constant 𝛽 and provides the related 

formulas, focusing on Yeh’s approach and Dyott’s valuable research. Further on, 

birefringence is defined and the major techniques are described towards its estimation. 

This chapter also describes the elliptical fibers’ distinct property of retaining 

polarization as well as their potential applications. In chapter 3, a fundamental 

mathematical analysis is provided, applying Maxwell’s equations on elliptical 

coordinates before proceeding with the RTL technique. The analysis involves the 

appearance of harmonics which are included in the RTL method, hence the solutions 

provided, all include different numbers of harmonics. The mode propagation constant 

𝛽 is calculated and 𝛽-V diagrams are plotted. Comparisons are also presented of results 

with different numbers of harmonics included. In chapter 4, the RTL method is applied 

over a mathematical analysis that follows a different approach, utilizing conformal 

mapping to obtain values of propagation properties. This chapter aims to provide basic 

tools for the study of D fibers that combine characteristics of both eccentric cores and 

elliptical cores. Chapter 5 provides yet another method for studying elliptical fibers, 

following a top-down approach. The chapter defines unconventional fibers as a generic 
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category of fibers with angular asymmetry and develops a method that can be used in 

various specific cases including elliptical and holey fibers. The method omits the use 

of harmonics and achieves significant accuracy in calculating 𝛽. The final chapter, 

chapter 6, describes the advantages and contributions of the current thesis in the study 

of elliptical fibers and presents suggestions for future research.        
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ΠΕΡΙΛΗΨΗ 

ΜΕΛΕΤΗ ΔΙΑΔΟΣΗΣ ΗΜ ΚΥΜΑΤΩΝ ΣΕ ΟΠΤΙΚΕΣ 

ΙΝΕΣ ΕΛΛΕΙΠΤΙΚΟΥ ΠΥΡΗΝΑ  

Ευριπίδης Γεωργάντζος 

Πανεπιστήμιο Πελοποννήσου  

 

1. Εισαγωγή 

Η ελλειπτικές οπτικές ίνες αρχικά μελετήθηκαν στο πλαίσιο καθορισμού των 

επιπτώσεων μεταβολών στη γεωμετρία του πυρήνα της κυλινδρικής οπτικής ίνας που 

χρησιμοποιείται ως μέσω μεταφοράς πληροφορίας στις σύγχρονες τηλεπικοινωνίες. 

Ωστόσο, χάρη στις ξεχωριστές τους ιδιότητες, οι ελλειπτικές ίνες σήμερα 

χρησιμοποιούνται σε μια πληθώρα εφαρμογών. Η διάδοση ηλεκτρομαγνητικών 

κυμάτων σε οπτικές ίνες με πυρήνα ελλειπτικής διατομής έχει συχνά αποτελέσει 

αντικείμενο μελέτης. Αναφορά σε κυματοδηγούς ελλειπτικής διατομής γενικά, είχε 

γίνει αρχικά σε μελέτη των ΗΜ κυμάτων μέσα σε ελλειπτικούς μεταλλικούς σωλήνες, 

σε έρευνα του L.J. Chu, όμως η πρώτη φορά που δώθηκε λύση στο πρόβλημα της 

διάδοσης ,ήταν από τους Lyubimov κ.α. Ειδικότερα η περίπτωση της ελλειπτικής 

οπτικής ίνας ερευνήθηκε αρχικά ως προβληματική περίπτωση παραμόρφωσης της 

κυλινδρικής ίνας από τους Dyott και Stern και από τον Schlosser. Οι έρευνες κατέληξαν 

στο συμπέρασμα ότι η χρήση μεγαλύτερου βαθμού ελλειπτικότητας, σε συνδυασμό με 

αρκούντως ευρεία διαφορά των δεικτών διάθλασης, οδηγεί σε διαχωρισμό των 

σταθερών διάδοσης των βασικών τρόπων διάδοσης και επιτρέπει στις ίνες  να 

διατηρούν την πόλωση για μεγαλύτερες αποστάσεις. Η ιδιότητα της πόλωσης αποτελεί 

σημαντικό στοιχείο για τα ιντερφερόμετρα. Οι ίνες που έχουν τη δυνατότητα να 

διατηρούν πόλωση χρησιμοποιούνταν εξ αρχής στα οπτικά ιντερφερόμετρα, όμως η 

μέθοδος που εφαρμόζονταν για το διαχωρισμό των οπτικών διαδρομών μέσα στην ίνα, 

βασιζόταν στην αποσύνδεση των δεικτών διάθλασης εφαρμόζοντας πίεση. Σε αντίθεση 

με την προαναφερθείσα μέθοδο, η χρήση ελλειπτικών ινών  για το διαχωρισμό του 
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θεμελιώδους τρόπου διάδοσης σε δυο ξεχωριστούς, ορθογώνια πολωμένους ρυθμούς 

έχει σημαντικά πλεονεκτήματα: 

 Οι ελλειπτικές ίνες παρουσιάζουν μικρότερη περιπλοκότητα στην κατασκευή 

 Με την αποφυγή εφαρμογής πίεσης, μειώνεται η επακόλουθη ευαισθησία της 

ίνας στην περαιτέρω πίεση και τη θερμοκρασία.  

 Οι υψηλότεροι ρυθμοί διάδοσης στις ελλειπτικές ίνες είναι πιο σταθεροί 

αζιμουθιακά σε σχέση με τις ίνες κυλινδρικής διατομής, διευκολύνοντας κατ 

αυτό τον τρόπο την κατασκευή αισθητήρων ίνας με περισσότερους ρυθμούς.  

Χάρη στις ξεχωριστές τους ιδιότητες οι ελλειπτικές ίνες χρησιμοποιούνται σε ένα 

εύρος εφαρμογών που περιλαμβάνει αισθητήρες, ίνες ενισχυμένες με σπάνιες γαίες, 

ενισχυτές καθώς και στις τηλεπικοινωνίες ως μέσον εξουδετέρωσης της καθυστέρησης 

κυματοομάδας.  

Μεταξύ των προσπαθειών που έχουν γίνει για την έρευνα των ελλειπτικών 

κυματοδηγών και τον καθορισμό των βασικών ιδιοτήτων της  διάδοσης ΗΜ κύματος 

στο εσωτερικό τους, ξεχωρίζει η έρευνα του Yeh η οποία έθεσε τις μαθηματικές βάσεις 

για τη σχετική ανάλυση.   Η ανάλυση του Yeh κάνει χρήση των εξισώσεων Mathieu 

και καταλήγει στον καθορισμό των βασικών εξισώσεων μετάδοσης και τον 

υπολογισμό της σταθεράς διάδοσης, λαμβάνοντας υπόψη κάποιες παραδοχές σχετικά 

με το εύρος της διαφοράς των δεικτών διάθλασης και το βαθμό ελλειπτικότητας του 

πυρήνα. Τόσο η μέθοδος με χρήση εξισώσεων Mathieu όσο και οι μεταγενέστερες 

μέθοδοι που βασίστηκαν σε αυτή, αναγκαστικά προϋποθέτουν την επίλυση 

μακροσκελών και περίπλοκων σειρών μαθηματικών σχέσεων. Επίσης οι λύσεις στις 

οποίες καταλήγουν, περιορίζονται σε συγκεκριμένες περιπτώσεις ελλειπτικής ίνας. Για 

παράδειγμα η ανάλυση του Yeh αφορά σε ίνα βαθμωτού δείκτη διάθλασης (step index), 

όπου μάλιστα η επένδυση γύρω από τον πυρήνα επεκτείνεται στο άπειρο.  

Σκοπός της παρούσας διδακτορικής διατριβής είναι η διαμόρφωση μιας μεθόδου που 

θα στηρίζεται περισσότερο σε σύχρονα υπολογιστικά μέσα, χωρίς να υστερεί σε 

ακρίβεια σε σύγκριση με τις αναλυτικές μεθόδους, επεκτείνοντας παράλληλα το εύρος 

των περιπτώσεων για τις οποίες επιτυγχάνεται λύση. 
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2. Το περίγραμμα της τρέχουσας ερευνητικής εργασίας 

Στο πλαίσιο αυτής της ερευνητικής εργασίας  αναπτύχθηκαν νέες αποτελεσματικές 

μέθοδοι για την μελέτη ελλειπτικών ινών και τον ακριβή καθορισμό σημαντικών 

παραγόντων διάδοσης. Τα αντικείμενα της έρευνας μπορούν να περιγραφούν μέσα από 

τις παρακάτω επιμέρους ενότητες: 

 Κατά την αρχική προσέγγιση προς τη δημιουργία μιας καινοτόμου μεθόδου για 

την περιγραφή της ελλειπτικής ίνας, έγινε μια μαθηματική ανάλυση με 

εφαρμογή των κυματικών εξισώσεων του Maxwell σε επίπεδο ελλειπτικών 

συντεταγμένων. Η ανάλυση κατέληξε στις βασικές σχέσεις που διέπουν τη 

διάδοση ΗΜ κύματος μέσα σε κυματοδηγό ελλειπτικής διατομής, για μονούς 

και ζυγούς ρυθμούς μετάδοσης. Χαρακτηριστικό στοιχείο των τελικών 

εξισώσεων, είναι η εμφάνιση άπειρων πεπλεγμένων αρμονικών μειούμενης 

βαρύτητας. Ο υπολογισμός μέσα από τις σχέσεις, της σταθεράς διάδοσης 𝛽 

προϋποθέτει τη χρήση προκαθορισμένου αριθμού αρμονικών: 0, 1, 2 … 5 κ.ο.κ. 

Η αποτελεσματικότητα της μεθόδου εξακριβώθηκε μέσα από τη σύγκριση 

τιμών του 𝛽 υπολογισμένων με την παρούσα μεθοδο, με αντίστοιχες τιμές 

υπολογισμένες με τη αναλυτική μέθοδο με χρήση εξισώσεων Mathieu. 

Επιπρόσθετα, για να μελετηθεί η επίδραση του αριθμού των αρμονικών στην 

ακρίβεια της μεθόδου, η τιμή του 𝛽 υπολογίστηκε διαδοχικά για τις περιπτώσεις 

μη χρήσης αρμονικών, και ορισμένων αριθμών αυτών. Βάσει των 

αποτελεσμάτων εξήχθη το συμπέρασμα ότι η χρήση περισσότερων αρμονικών 

βελτιώνει την ακρίβεια της μεθόδου. Ωστόσο ενώ η διαφορά στην ακρίβεια 

μεταξύ καμμίας και μίας αρμονικής είναι αξιόλογη, όσο αυξάνεται ο αριθμός 

των αρμονικών, τόσο η διαφορά αυτή μειώνεται. Έτσι η χρήση άνω των 5 

αρμονικών δεν έχει παρα ελάχιστη διαφορά στην ακρίβεια των αποτελεσμάτων. 

Άλλο ένα ενδιαφέρον συμπέρασμα είναι οτι όσο αυξάνεται ο βαθμός 

ελλειπτικότητας του πυρήνα, τόσο αυξάνεται ο αριθμός των απαιτούμενων 

αρμονικών για την επίτευξη μεγαλύτερης ακρίβειας.  

 Η μέθοδος που αναπτύχθηκε με την πρώτη προσέγγιση, χρησιμοποιήθηκε 

επίσης για τον υπολογισμό της διπλοθλαστικότητας (birefringence). Η 

διπλοθλαστικότητα είναι μια σημαντική ιδιότητα, που εμφανίζεται πιο έντονα 

στις ελλειπτικές ίνες, χάρη στην οποία δύνανται να διατηρούν την πόλωση. 
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Ορίζεται ως το φαινόμενο κατά το οποίο όταν ένα ΗΜ κύμα διαδίδεται σε έναν 

κυματοδηγό ελλειπτικής διατομής, οι σταθερές διάδοσης των ρυθμών 0HE11 και 

eHE11 εμφανίζονται αποσυνδεδεμένες μεταξύ τους. Η τιμή της 

διπλοθλαστικότητας δίδεται ως η διαφορά μεταξύ των κανονικοποιημένων 

σταθερών διάδοσης 𝛥𝛽̅ = 𝛽̅0
 − 𝛽̅𝑒

 . Έχοντας λοιπόν ήδη υπολογίσει τις 

σταθερές διάδοσης και τα αντίστοιχα 𝛽-V διαγράμματα ο υπολογισμός της 

διπλοθλαστικότητας για διάφορες τιμές κανονικοποιημένης συχνότητας 𝑉 ήταν 

εύκολος χάρη στην απλότητα της μεθόδου και της επεκτασιμότητάς της. Με 

αρκετή ευκολία αναπτύχθηκαν προγράμματα για τη σύγκριση της 

διπλοθλαστικότητας για διαφορετικούς βαθμούς ελλειπτικότητας αλλά και τη 

σύγκριση μεταξύ διαφορετικών προφίλ δεικτών διάθλασης.    

 Στην παρούσα διατριβή παρουσιάζεται μια επιπλέον μέθοδος για τον 

υπολογισμό της σταθεράς 𝛽, εφαρμόζοντας τις εξισώσεις του Maxwell σε 

κυλινδρικές συντεταγμένες, με χρήση σύμμορφης απεικόνισης (conformal 

mapping). Απαλείφοντας τις προκύπτουσες αρμονικές, η μαθηματική ανάλυση 

καταλήγει στις σχέσεις που περιγράφουν γραμμή μετάφοράς, ισοδύναμων 

κυκλωμάτων. Η μέθοδος αυτή, αν και αρχικά περιγράφει οπτικές ίνες με 

έκκεντρο πυρήνα, μπορεί να χρησιμοποιηθεί για τον ακριβή υπολογισμό της 

σταθεράς 𝛽, και σε ελλειπτικές ίνες. Επιπλέον αποτελεί ιδανικό εργαλείο για τη 

μελέτη οπτικών ινών της κατηγορίας D fiber, που συνδυάζουν ελλειπτικό 

πυρήνα τοποθετημένο έκκεντρα σε σχέση με το περίβλημα και που είναι 

χρήσιμες σε πληθώρα εφαρμογών, οπτοηλεκτρονικών συσκευών κ.α. 

 Τέλος, παρουσιάζεται μια τρίτη προσέγγιση για τη μελέτη της ελλειπτικής ίνας, 

η οποία ξεκινά περιγράφοντας τη γενικότερη περίπτωση οπτικών ινών που 

εμφανίζουν γωνιακή ασυμμετρία και καταλήγει μεταξύ άλλων και στην 

περίπτωση της ελλειπτικής ίνας. Η γενικότερη περίπτωση οπτικών ινών 

καλείται μη-συμβατική ίνα και χαρακτηρίζεται από δείκτη διάθλασης του 

οποίου η τιμή είναι συνάρτηση τόσο της ακτίνας 𝑟 (απόσταση από τον άξονα 

𝑧), όσο κι από τη γωνία 𝜑 που διαγράφεται στο επίπεδο που είναι κάθετο στον 

άξονα 𝑧, n(r,φ). Κατ’ αυτό τον τρόπο αναπτύχθηκε μια νέα μέθοδος η οποία 

μπορεί με ακρίβεια να υπολογίσει την σταθερά 𝛽 και την διπλοθλαστικότητα, 

όχι μόνο σε ελλειπτικές ίνες αλλά και σε ίνες διαφόρων σχημάτων διατομής του 

πυρήνα, όπως ορθογώνιου ή και διάτριτου πυρήνα (PCFs).         
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3. Η δομή της διδακτορικής διατριβής 

Η διδακτορική αυτή διατριβή ερευνά τη διάδοση ΗΜ κύματος σε οπτικές ίνες με 

πυρήνα ελλειπτικής διατομής, με στόχο την ανάπτυξη μιας νέας μεθόδου για τον 

υπολογισμό βασικών ιδιοτήτων της διάδοσης. Στο πρώτο κεφάλαιο γίνεται μια 

λεπτομερής περιγραφή της τεχνικής γραμμών μεταφοράς σε συντονισμό (RTL), που 

αποτελεί και το βασικότερο εργαλείο στην ανάπτυξη των μεθόδων αυτής της διατριβής. 

Στο πλαίσιο της παρουσίασης της τεχνικής, γίνεται εφαρμογή της σε οπτικές ίνες 

κυλινδρικού πυρήνα. Έπειτα υπολογίζεται η μεταφορά διάδοσης 𝛽 αλλά και η 

διπλοθλαστικότητα. Στο κεφάλαιο 2 γίνεται αναφορά στην ιστορία της σχετικής 

έρευνας και τις πρώτες προσπάθειες μαθηματικής περιγραφής των βασικών σχέσεων 

της διάδοσης, γενικά σε ελλειπτικούς κυματοδηγούς. Ειδική αναφορά γίνεται στην 

ανάλυση του Yeh, που αποτέλεσε σημαντική βάση για τις μετέπειτα μελέτες. Αναφορά 

γίνεται επίσης και στην έρευνα του Dyott, ειδικότερα στη συνεισφορά του στη μελέτη 

της διατήρησης της πόλωσης που παρατηρείται στις ίνες ελλειπτικού πυρήνα. 

Επιπρόσθετα, δίνεται ο ορισμός της διπλοθλαστικότητας και αναφέρονται οι κυρίαρχες 

προσπάθειες υπολογισμού της. Στο τέλος του 2ου κεφαλαίου αναφέρονται οι 

σημαντικότερες εφαρμογές της ελλειπτικής ίνας. Στο κεφάλαιο 3 παρουσιάζεται η πιο 

ακριβής προσέγγιση αυτής της διατριβής για τον υπολογισμό της σταθεράς 𝛽 και της 

διπλοθλαστικότητας σε ελλειπτικές ίνες. Το κεφάλαιο αφού ξεκινάει με την εφαρμογή 

των εξισώσεων Maxwell σε ελλειπτικές συντεταγμένες, παρουσιάζει τις σχέσεις 

διάδοσης μονών και ζυγών ρυθμών, με παράλληλη εμφάνιση αρμονικών. Στη συνέχεια 

γίνεται μελέτη της ακρίβειας της μεθόδου, υπολογίζοντας τη σταθερά διάδοσης για 

διαφορετικούς αριθμούς συμπεριλαμβανόμενων αρμονικών. Οι τιμές που προκύπτουν 

συγκρίνονται μεταξύ τους αλλά και με τις τιμές που προέκυψαν μέσω της αναλυτικές 

μεθόδου με χρήση εξισώσεων Mathieu. Επιπρόσθετα υπολογίζονται οι τιμές της 

διπλοθλαστικότητας και παρουσιάζεται μελέτη της επίδρασης του βαθμού 

ελλειπτικότητας στην ακρίβεια των αποτελεσμάτων. Το κεφάλαιο 4 παρουσιάζει μια 

διαφορετική προσέγγιση στη μελέτη της ελλειπτικής ίνας, ξεκινώντας με την γενική 

περιγραφή οπτικών ινών με έκκεντρο πυρήνα. Η μαθηματική ανάλυση που ακολουθεί 

χρησιμοποιεί τη μέθοδο conformal mapping και οι τελικές σχέσεις οδηγούν 

περιγράφουν ισοδύναμα κυκλώματα. Ακολουθεί εφαρμογή της τεχνικής RTL και 

παρουσιάζεται ο τελικός αλγόριθμος. Η μέθοδος μπορεί να χρησιμοποιηθεί μελλοντικά 

για την περιγραφή της οπτικής ίνας D fiber. Στο κεφάλαιο 5 παρουσιάζεται η τρίτη 
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προσέγγιση στο πλαίσιο αυτής τη διατριβής, για τη μελέτη της ελλειπτικής ίνας. Σε 

αυτή την προσέγγιση περιγράφονται οπτικές ίνες που παρουσιάζουν γωνιακή 

ασυμμετρία. Με χρήση των εξισώσεων Maxwell σε κυλινδρικές συντεταγμένες και 

κατάλληλη εφαρμογή της τεχνικής των γραμμών μεταφοράς, αναπτύσσεται ένας νέος 

αλγόριθμος για τον υπολογισμό της σταθεράς 𝛽. Ο αλγόριθμος εμφανίζει 

αξιοσημείωτη ακρίβεια και δύναται να παρέχει αποτελέσματα για ελλειπτικές ίνες 

χωρίς την περιπλοκότητα της χρήσης αρμονικών. Η μέθοδος αυτή μπορεί να 

χρησιμοποιηθεί σαν εργαλείο για περαιτέρω μελέτη οπτικών ινών με οπές στον 

πυρήνα, γνωστές ως PCF fibers. Στο κεφάλαιο 6 παρουσιάζεται η συνεισφορά της 

παρούσας έρευνας στη μελέτη της διάδοσης σε ελλειτπικές ίνες. Επίσης παρέχονται 

προτάσεις για μελλοντική έρευνα που μπορεί να βασιστεί στις μεθόδους που 

αναπτύχθηκαν στο πλαίσιο αυτής της διατριβής.   
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1 CHAPTER 1 

Introduction: Fiber Optics and Resonant Transmission 

Line (RTL) theory 

1.1. Optical fibers in communications and other applications 

The use of optical fibers for the transmission of information has played a major role 

in the evolution of modern telecommunications. In order to better describe the potential 

of modern communication systems one can deploy the product of bit rate with the 

distance between the repeaters (BL) [1]; by 1970 the BL value of non-optical 

communications had reached approximately 100 (Mb/s)*Km, unable to go beyond [2]. 

Therefore, as the need for faster and broader communication increased, despite the 

advances in design and implementation, electrical systems reached their limits [3].  

In the second half of the 20th century it became prominent that the use of light as 

signal carrier would provide the BL product the necessary boost to carry 

communications to a higher level. The advent of laser and optical fibers provided the 

required light source and transmission medium for a complete optical communications 

system. Since their initial implementation optical communication systems have been 

continuously evolving and increasing the BL product.  

The understanding of structural and physical properties of optical fibers led to 

innovations that surpassed limitations for consecutive generations of light wave 

systems [2]. The introduction of single mode fibers overcame the 100 Mb/s rate 

limitation due to dispersion in multimode fibers that were primarily used until 1980s. 

Dispersion limitations in single mode fibers were dealt with anew with the use of 

dispersion-shifted fibers [3]. Later on, around 1990, the incorporation of fiber 

amplifiers in optical systems, further increased the repeater spacing; especially, erbium-

doped amplifiers helped compensate fiber losses in WDM systems [1], while the 

application of revolutionary techniques in transmission and system configuration lead 

to the implementation of trans-continental submarine optical systems that connect 

modern civilization (fig. 1.1).  

Despite the significant role of optical fibers as a carrier in the transmission of 

information, the spectrum of their applications is not limited to telecommunications. 

Optical fibers, depending on their physical properties, are used in a wide range of 

applications including medicine, defense systems and industrial uses [3]. The elliptical 
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fiber is a special type of optical fiber, whose distinct geometry renders it useful for 

many applications, including optical gyroscopes, higher-order sensors, D-fiber 

coupling via acoustic waves and the readjustment of dispersion in communication 

fibers. 

The main objective of the current thesis, is the study of EM wave propagation in 

elliptical fibers using an innovative approach, improved in relation to existing analytical 

methods, that utilizes the computational method of Transmission Lines. However, 

before proceeding with the description of the new, alternative method, it is necessary 

to have a solid grasp of the basic theory of EM propagation in optical fibers in general, 

and to familiarize with the  Transmission Line theory, that will be used as the basic tool 

in the current approach. For that reason, this chapter focuses on the analysis of 

cylindrical optical fibers and the use of Resonant Transmission line theory for the 

estimation of key properties of EM wave propagation within them.  

    

 

Figure 1-1  International undersea network of fiber-optic communication systems last updated 

on May 18 2020 [https://www.submarinecablemap.com/#] 

 

 

https://www.submarinecablemap.com/
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1.2. Physical aspects of optical fibers 

The fibers that will be dealt within the present work are composed of either a central 

core surrounded by cladding with two different dielectric constants, or by a periodic 

lattice making a photonic crystal. A particular class of graded dielectric index can be 

achieved either through successive layering from material of different optical density 

or with the use of a hexagonal lattice of smaller diameter boring cylindrical holes 

surrounding the core in which case they are referred as holey or, photonic crystal fibers. 

We first concentrate on the first case which is simpler.  

A more rigorous description can be given with the aid of a simple core-cladding 

model where 𝑛𝑖𝑛 and 𝑛𝑜𝑢𝑡 are the core and cladding dielectric indices respectively. 

From Snell's law, the condition 𝑛𝑖𝑛 > 𝑛𝑜𝑢𝑡 guarantees the total reflection on the 

cladding's surface for any light ray travelling inside the core. For a standard description 

based on the homogeneous wave equation similar to waveguides [4] we have a 

separation of transverse and longitudinal components as  

𝛻 = 𝛻⊥ + 𝒛̂
𝜕

𝜕𝑧
 which naturally leads to the separation of the propagating part of any 

mode when written in separable coordinates as 𝑒𝑥𝑝( − 𝛾𝑧) where 𝛾 = 𝛼 + 𝑗𝛽 is a 

generic propagation coefficient with α and β the corresponding attenuation and phase 

variation coefficients respectively, such that the wave operator can be reduced to the 

equivalent Helmholtz operator 𝛻2 = 𝛻⊥
2 + 𝛾2 with the remaining part concerning the 

mode profile in the fiber's cross section. 

 

Figure 1-2 3-D representation of a cylindrical core fiber and its layers 

[https://www.newport.com/t/fiber-optic-basics] 
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For the simple fiber model with translational invariance (no attenuation), the factor  

𝑒𝑥𝑝( − 𝑗𝛽𝑧) is common to the core and the cladding while for a free space wavelength 

taken as λ with a corresponding wavenumber 𝑘 = 2𝜋/𝜆 we get the associated wave 

vector norms  𝑛𝑖𝑛𝑘 and 𝑛𝑜𝑢𝑡𝑘 in the core and the cladding respectively. The condition 

for a beam getting trapped inside the core can then be given as  

𝑛𝑖𝑛 <
𝛽
𝑘0
⁄ < 𝑛𝑜𝑢𝑡      (1.1) 

A Perpendicular Wavenumber is often used for any local value of the 

refractive index n defined as 

𝑘⊥
2 + 𝛽2 = (𝑛𝑜𝑢𝑡𝑘0)

2     (1.2) 

The definition leads to a real 
k in the region where 𝛽 < nk0 and imaginary 

everywhere else. 

Since, for an ideal fiber the fields across any distance  𝛿𝑧 = 𝑧2 − 𝑧1 must differ only 

by a phasor 𝑒𝑥𝑝( − 𝑗𝛽𝛿𝑧) we conclude that any values of β and the associated 

transverse field must correspond to the eigenvalues and eigenvectors of the 

corresponding wave operator. Hence we are led to a resonance condition naturally 

associated with the (classical) quantization of the number of allowed modes. These 

become a countable set inside the interval  𝑛𝑖𝑛𝑘0 < 𝛽 < 𝑛𝑜𝑢𝑡𝑘0 . We shall refer to this 

set, as the set of Guided Modes. 

There will also be an unaccountable set of other solutions of the wave equation 

outside the total reflection range which can still propagate in the cladding which we 

shall call, the Radiative Modes. The number of guided modes is characterized by a 

specific index [5] given as 

𝑣 = 𝑘0𝑟√𝑛𝑖𝑛
2 − 𝑛𝑜𝑢𝑡

2     (1.3) 

There is a specific wavelength defined by the condition v < 2.405 for which the 

number of allowed modes falls to one, in which case we speak of a single mode fiber 

running on the Fundamental Mode. This is achieved in practice by a small difference 

of the two refractive indices and/or a small ratio of core radius to wavelength. On the 
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other hand, any fiber can become multi-mode for some sufficiently small wavelengths 

but there will always be a fundamental mode independently of the magnitude of the v 

parameter. 

1.3. Electromagnetic description of optical fibers 

Following standard EM theory [6], [7], [8], we consider the case of source-less 

Maxwell's equations (absent currents and charges) with linear constitutive relations for 

the associated macroscopic magnetic and electric fields μH = Β and D = εΕ 

respectively, which take the form 

{

𝛻 ⋅ 𝑬 = 𝛻 ⋅ 𝑩 = 0

𝛻 × 𝑬 = −
𝜕

𝜕𝑡
𝑩

𝛻 × 𝑩 = 𝜀𝜇𝜀0𝜇0
𝜕

𝜕𝑡
𝑬

   (1.4)  

A simple, monochromatic frequency dependence will be also assumed in what 

follows such that all time derivatives result in 𝜕𝑡 → −𝑗𝜔.  Under these assumptions, 

the equations for both the electric and magnetic field reduce to a compact Helmholtz 

operator of the form 

(𝛻2 + 𝑘 
2) {

𝑬
𝑩
} = 0    (1.5) 

where 𝑘 = 𝜔/𝑐 = 𝜔𝜀𝜇. Using the notation n for the refractive index we may also 

write 𝑐−2 = 𝑛2𝜀0𝜇0 = (𝑛/𝑐0)
2 to obtain 𝑘2 = (𝑛𝑘0)

2.  Using also the previously 

introduced separation of transverse and longitudinal (axial) parts we end up with the 

equivalent reduced Helmholtz operator 

(𝛻⊥
2 + 𝑘𝛽

2) {
𝑬
𝑩
} = 0     (1.6) 

where now 𝑘2 = 𝑛2𝑘0
2 + 𝛽2 , and the expression of the transverse derivative in 

cylindrical coordinates becomes  

𝛻⊥ = 𝒓̂
𝜕

𝜕𝑟
+ 𝜃

1

𝑟

𝜕

𝜕𝜃
⇒ 𝛻⊥

2 =
1

𝑟

𝜕2

𝜕𝑟2
+
1

𝑟2
𝜕2

𝜕𝜃2
 

Separation of variables for the transverse fields is given as   

{
𝑬
𝑩
} = {

𝐸⊥
𝐵⊥
} 𝑒𝑗(𝛽𝑘𝑧−𝜔𝑡

 ) 
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which leads to the equations 

(
1

𝑟

𝜕 
2

𝜕𝑟2
+

1

𝑟2
𝜕 
2

𝜕𝜃2
+ 𝑘2) {

𝐸⊥
𝐵⊥
} = 0   (1.7) 

Solutions of the last equations give rise in general to both Transverse Electric (TE) 

and, Transverse Magnetic (TM) waves as well as their linear combinations also called 

Hybrid modes (HE). A general procedure for obtaining those expresses first all 

transverse parts of the fields as functions of the axial parts in terms of the so called, 

Hertzian potentials [9] which only demands the solutions of a scalar Helmholtz 

operator.  

Such a general set of solutions for the case of graded dielectrics with purely radial 

dependence had already been prescribed in terms of linear combinations of modified 

Bessel functions. For the matching conditions between layers, a determinantal equation 

had to be solved containing the linear terminal conditions between layers. There is often 

a need for efficient numerical methods starting directly from the expressions of the 

original Maxwell's equations (1.4-6) in cylindrical coordinates. Methods used in the 

past include the Wentzel-Kramers-Brillouin (WKB) approximation, the Rayleigh-Ritz 

method, the series-expansion method and the Finite Elements method while a less 

complex but powerful method of Transverse Resonance shall be fully explained in later 

chapters. 

For uniform core fibers, the full expression of Maxwell equations in cylindrical 

coordinates leads to the set of both 1st order equations 

  

{
  
 

  
 𝛽

𝜕

𝜕𝑟
𝐸𝑧 +

𝜔𝜇

𝑟

𝜕

𝜕𝜃
𝐻𝑧 = 𝑗𝛽⊥

2𝐸𝑟
𝛽

𝑟

𝜕

𝜕𝑟
𝐸𝑧 − 𝜔𝜇

𝜕

𝜕𝑟
𝐻𝑧 = 𝑗𝛽⊥

2𝐸𝜃

𝛽
𝜕

𝜕𝑟
𝐻𝑧 −

𝜔𝜀

𝑟

𝜕

𝜕𝜃
𝐸𝑧 = 𝑗𝛽⊥

2𝐻𝑟
𝛽

𝑟

𝜕

𝜕𝜃
𝐻𝑧 + 𝜔𝜀

𝜕

𝜕𝑟
𝐸𝑧 = 𝑗𝛽⊥

2𝐻𝑟

    (1.8) 

as well as 2nd order ones 

(
𝜕2

𝜕𝑟2
+

1

𝑟 
𝜕

𝜕𝑟
+

1

𝑟2
𝜕2

𝜕𝜃2
+ 𝛽⊥

2) {
𝐸𝑧
𝐻𝑧
} = 0   (1.9) 
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For non-uniform core fibers, in cases of azimuthal symmetry with only a radial 

dependence of the refractive index profile n(r) we can extract the angular dependence 

via a substitution     

{
𝐸⊥
𝐵⊥
} → {

𝑒(𝑟)
𝑏(𝑟)

} 𝑒−jlθ 

From the last equations we end up with a standard Bessel ordinary differential 

equation of the general form 

𝑢″ + 𝑢′/𝑟 + [𝑘2(𝑛2(𝑟) − 𝛽2) − (𝑙/𝑟)2]𝑢 = 0  (1.10) 

After providing a maximal value for the refractive index as maxn  the following 

substitutions can take place 𝑚 = 𝑘2(𝑛0
2 − 𝛽2), 𝑞(𝑟) = 𝑘2(𝑛0

2 − 𝑛2(𝑟)); these 

substitutions, together with the redefinition of the unknown scalar as 𝑤(𝑟) = √𝑟𝑢(𝑟) 

lead to the self-adjoint eigenvalue problem 

𝑤″ + [𝑚2 − 𝑞(𝑟) − (𝑙2 − 1/4)/𝑟2]𝑤 = 0   (1.11) 

A set of general solutions for eigenvalues in 0 < m < d2 can then be given as linear 

combinations of two linearly independent functions given in terms of the modified 

Bessel functions [10] 

𝑤1(𝑟) = {
𝐾𝑙(𝑟√𝑑2 − 𝑙)

𝐼𝑙(𝑟√𝑑2 − 𝑙)
} , l < d2   (1.12) 

where 𝑑 = 𝑘√𝑛0
2 − 𝑛𝑜𝑢𝑡 and 

𝑤2(𝑟) = {
𝐽𝑙(𝑟√𝑑2 − 𝑙)

𝑌𝑙(𝑟√𝑑2 − 𝑙)
} , l >  d2   (1.13) 

the pair of the standard Bessel functions of the 1st and 2nd kind respectively. The 

upper index represents modes inside the core and the cladding respectively. 

From the longitudinal components we can then compute the transverse fields via (1.8) 

and apply the necessary boundary conditions which require from the tangential 

components of both the electric and the magnetic fields to be continuous along the core-

cladding boundary. This gives then rise to the characteristic mode equation. Since the 

tangential modes involve only the z and φ components we have 
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𝐸𝜃
1|
𝑟=𝑅

= 𝐸𝜃
1|
𝑟=𝛼

, 𝐸𝑧
1|𝑟=𝑅 = 𝐸𝑧

1|𝑟=𝛼 

𝐻𝜃
1|
𝑟=𝛼

= 𝐻𝜃
1|
𝑟=𝛼

, 𝐻𝑧
1|𝑟=𝛼 = 𝐻𝑧

1|𝑟=𝛼 

The above will result in four equations over four constants plus the mode phase 

constant β of which the solution results in a characteristic equation of the form 

[
𝐽𝑚

′ (𝑝𝑎)

𝑝𝐽𝑚(𝑝𝑎)
+

𝐾𝑚
′ (𝑞𝑎)

𝑎𝐾𝑚(𝑞𝑎)
] [
𝛽1
2𝐽𝑚

′ (𝑝𝑎)

𝑝𝐽𝑚(𝑝𝑎)
+
𝛽2
2𝐾𝑚

′ (𝑞𝑎)

𝑎𝐾𝑚(𝑞𝑎)
] =

𝛽2𝑣

𝛼
(𝑝−2 + 𝑞−2)2  (1.14) 

The remaining two unknown constants p and q can be eliminated with the aid of the 

auxiliary relations 

𝛽2 = 𝜔2𝑛1 − 𝑝
2 = 𝜔2𝑛2 + 𝑞

2   (1.15) 

Combined use of (1.14) and (1.15) allows determining the unknown phase constant 

β. Due to the transcendental character of the (1.14), only numerical methods allow a 

complete solution in which the resulting multiple branches prescribe different modes 

for any value of v and any core radius.  

1.4. Computational photonics 

Since nowadays computers allow very fast convergence, simulation has become a 

popular and efficient tool for engineering new solutions in the area of optical fibers and 

photonics in general. Provided there is good knowledge of material properties and the 

exactness and scale invariance of Maxwell’s equations, numerical predictions are in 

very close proximity to actual laboratory measurements. Electromagnetics simulation 

can be broadly separated in the following main classes. We generally distinguish 

between “Time-Domain” solvers attempting to simulate propagation of both electric 

and magnetic fields given an initial source distribution, and “Frequency-Domain” 

solvers. The latter can be further characterized as either eigen-solvers for finding 

dispersion relations ω(k) via some eigenvalue condition due to basis function 

expansion, and general solvers for the evolution of a harmonic source J(x)exp(jωt) 

again via reduction to a linear algebraic equation. 

Methods used to approximate solutions inside complicated spatial structures require 

discretization of the spatial and also, temporal domain if propagation is to be studied. 

Such methods can be classified according to the discretization method used. These 

include  
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1. “Finite-Differences”(FD) or “Finite-Difference-Time Domain”(FDTD) 

methods, where derivatives are approximated as )2/()()( 1 uffuDf nn   . 

 

2. “Finite Elements” where some form of usually triangular or tetrahedral mesh is 

projected on the surface and polynomial interpolation of relatively low order is 

used over them for the unknown functions over each element. 

 

3. “Spectral Methods” representing unknowns as a series expansion, the simplest 

one being that of a plane wave expansion resulting in Fourier series or other 

appropriate bases adapted to non-periodic boundary conditions. 

 

4. “Boundary-Elements” which avoids discretization apart from the boundaries 

between inhomogeneities while the interiors are approximated analytically. 

These methods include the “Multipole” approach as well as “Coupled Wave” 

or “Transfer Matrix” approaches which propagate the information through 

separate uniform regions. 

The last case is the closest possible to the approach presented in the current thesis for 

the study of EM propagation in elliptical core fibers. 

1.5. The resonant transmission line (RTL) method  

An alternative numerical method for multilayered dielectrics was already in use in 

the middle of the previous century, based on appropriate discretizations of the partial 

differential extension of the telegrapher's equation. In such a method, one generally 

exchanges Maxwell's equations with an infinity of ordinary differential equations [11]-

[14], using an analogy between electric and magnetic field components and their 

voltage and current equivalents. This is justified in terms of capacitive and inductive 

parts of a reactive field where the first are linked with electric field components via 

associated voltage elements and their associated admittances as well as magnetic ones 

via their respective inductances and their current elements. It then becomes possible to 

effectively describe a succession of dielectric variations via appropriate matching 

conditions between successive admittances and inductances. In early uses of such 

models, TM and TE modes corresponded to a sequence of successive admittances (E-

Line) and successive impedances (H-Line) respectively, while hybrid modes required 
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an additional inductive coupling given as an abstract transformer matching lines 

between successive angular sectors. Successive applications of the appropriate 

boundary conditions between layers for the electric and magnetic field components lead 

to some linear algebraic systems from which the field variation across the material 

could be obtained.  

An essential step of progress towards further simplification and one of the first direct 

solvers for optical fibers appeared in 1982 with two papers of Papageorgiou and 

Boucouvalas [15], [16], where the Transverse Resonance condition for the successive 

impedances was successfully adapted and applied in a recursive formula using 

Continued Fraction Expansion giving rise to a much more direct and fast numerical 

method. In later work it was shown how to associate this method with any eigenvalue 

problem in the so called, Sturm-Liouville class [17] and even for inverse problems [18].  

A radial index profile is assumed for simplicity at first, while the study of more 

complex profiles will be presented in later chapters. A variable separation is adopted 

and a finite discretization is assumed for both the core and cladding in a radial 

succession of thin circular layers in which case each field component may be written as 

{
𝒆𝑖(𝑟, 𝜃, 𝑧, 𝑡)
𝒃𝑖(𝑟, 𝜃, 𝑧, 𝑡)

} = {
𝐸𝑖(𝑟)
𝐻𝑖(𝑟)

} 𝑒−𝑗(𝜔𝑡+𝑙𝜃+𝛽𝑧) 

In the above relation, l is taken as the azimuthal number and β as the propagation 

constant. The presence of a conductivity σ is also assumed with electric and magnetic 

constants being denoted as usual via ε and μ, respectively. Using the auxiliary notations 

𝛽− = 𝜔𝜀 − 𝑗𝜎 and 𝛽+ = 𝜎 + 𝑗𝜔𝜀 together with 𝛾2 = 𝛽2 − 𝜇𝜔𝛽− + (𝑙/𝑟)
2, the 

resulting Maxwell equations for each layer have been obtained in [15] as 

{
 
 
 
 

 
 
 
 

𝛽𝑟𝐸𝜃 − 𝑙𝐸𝑧 = 𝜔𝜇𝑟𝐻𝑟
𝑙𝐻𝑧 − 𝛽𝑟𝐻𝜃 = 𝛽−𝑟𝐸𝑟

𝜕

𝜕𝑟
(𝜔𝜇𝑟𝐻𝑟) = −𝑗𝜔𝜇(𝑙𝐻𝜃 + 𝛽𝑟𝐻𝑧)

𝜕

𝜕𝑟
(𝛽−𝑟𝐻𝑟) = −𝛽+(𝑙𝐸𝜃 + 𝛽𝑟𝐸𝑧)

𝜕

𝜕𝑟
(𝑙𝐻𝜃 + 𝛽𝑟𝐻𝑧) = 𝑗𝛾𝑟

2𝐻𝑟 + 𝛽𝐻𝑧 − (𝑙/𝑟)𝐻𝜃
𝜕

𝜕𝑟
(𝑙𝐸𝜃 + 𝛽𝑟𝐸𝑧) = −𝛾

2 (
𝛽−

𝛽+
) 𝑟𝐸𝑟 + 𝛽𝐸𝑧 − (𝑙/𝑟)𝐸𝜃

  (1.16) 
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It is then possible to put them in a direct correspondence with the equations for an 

equivalent local pair of coupled transmission lines using the redefinitions of a pair of 

electric and magnetic voltages and currents given as 

𝑉± =
1

√𝑛
(
𝑙𝐻𝜃+𝛽𝑟𝐻𝑧

𝑗𝐹
±
𝑙𝐸𝜃+𝛽𝑟𝐸𝑧

𝐹
)   (1.17) 

𝐼± =
1

√𝑛
(
𝜔𝜇𝑟𝐻𝑟

𝑗𝑍0
± 𝛽−𝑟𝐸𝑟)      (1.18) 

where Z0 the vacuum impedance ( 120π ) and 𝐹 = 𝛽2 + (𝑙/𝑟)2. For the case of a 

fiber with zero conductivity σ, μ = μ0 and ε = ε0n
2.  This reduces the original system in 

the form 

{

𝜕

𝜕𝑟
𝑉+ = −𝛿+𝐼+

𝜕

𝜕𝑟
𝐼+ = −𝑗𝜔𝜀0𝑛𝐹𝑉+

   (1.19) 

{

𝜕

𝜕𝑟
𝑉− = −𝛿−𝐼−

𝜕

𝜕𝑟
𝐼− = −𝑗𝜔𝜀0𝑛𝐹𝑉−

   (1.20) 

where  

{
𝛿± =

𝛾2

𝑗𝜔𝜀0𝑛𝐹
± 𝑗𝑀

𝑀 =
2𝛽𝑙𝑍0

𝑟𝐹2

    (1.21) 

The above system describes a pair of coupled transmission lines with M the mutual 

reactance, constant specific impedance per unit length  𝑗𝜀0𝑛𝐹 = 𝑗𝑛𝑘0𝐹/𝑍0 and two 

different propagation constants given as 

𝛾±
2 = 𝛽2 − (𝑛𝑘0)

2 ∓ 2𝑛𝑘0
𝛽𝑙

(𝛽𝑟)2+𝑙2
+ (

𝑙

𝑟
)
2

   (1.22) 

where 𝑘0 = 2𝜋/𝜆0 is the free space propagation constant. We can then introduce a 

cutoff limit for the wavelengths allowed as a new 𝑘𝑐 = 2𝜋/𝜆𝑐 for which β = n2kc such 

that eq. (1.22) becomes 

𝛾𝑐±
2 = 𝛽2 − (𝑛2𝑘𝑐)

2 ∓ 2𝑛
𝑛2𝑘𝑐

2𝑙

(𝑛2𝑘𝑐𝑟)2+𝑙2
+ (

𝑙

𝑟
)
2

  (1.23) 
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The characteristic impedances are then given by 𝑍𝑐± =
𝛾±

𝑗𝜔0𝜀0𝑛𝐹
. The fundamental 

TE and TM modes can be found for the l = 0 case from the simplified pair of 

transmission lines with the same constant propagation factor  𝛾𝑐 = (𝑛2
2 − 𝑛2)𝑘𝑐

2  and  

𝐹𝑐 = (𝑙/𝑟)2 + (𝑛2𝑘𝑐)
2 but different characteristic impedances 𝑍𝑀 =

𝛾𝑐

𝑗𝜔𝑐𝜀0𝑛𝐹𝑐
 and  

𝑍𝐸 =
𝑍𝑀

𝑛2
. From the solutions of the generic telegrapher's equation [19] for the 

transmission function one obtains the equivalent terminal impedances as 

{
𝑍𝐵 = 𝑍 𝑡𝑎𝑛ℎ( 𝛾𝑐𝛿𝑟/2)

𝑍𝑝 =
𝑍

𝑠𝑖𝑛ℎ(𝛾𝑐𝛿𝑟/2)

    (1.24) 

An equivalent 4-port T-circuit for this model is shown in fig. 1.3  

 

Figure 1-3 T-circuit equivalent for an optical fiber cylindrical thin layer [29]. 

 

Next, the limiting case may be considered, of δr << 1 for which one has the 

approximations 

{
𝛧𝛣 = (𝛿𝑟𝑘𝑐)

2𝛾𝑐
′𝑍𝑝

′ /2

𝑍𝑝 =
𝑍0

𝛿𝑟𝑘𝑐
2𝑛(𝑛2

2+(𝑙/𝑟𝑘𝑐)2)

    (1.25) 

where now 

𝛾𝑐
′ = 𝑛2

2 − 𝑛2 +
𝑙

(𝑟𝑘𝑐)2
±

2𝑛𝑛2𝑙

𝑙2+(𝑟𝑛𝑘𝑐)2
   (1.26) 

The original characteristic impedances have the corresponding limits 
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{
𝐹𝑜𝑟  𝑙 ≠ 0, 𝑟 = 0, 𝑍0 =

1

𝑗𝜔𝑐𝜀0𝑛|𝑙|
, 𝑟 → ∞, 𝑍∞ = 0

𝐹𝑜𝑟   𝑙 = 0, 𝑟 = 0, 𝑍𝑀 = 𝑍𝐸 → ∞, 𝑟 → ∞, 𝑍𝑀 = 𝑍𝐸 = 0
 (1.27) 

With the above definitions, the cutoff behavior of any homogeneous dielectric layer 

of width δ can be approximated with the use of two equivalent, independent T-circuits. 

A long series of such layers constituting the cross section of a radially inhomogeneous 

fiber can then be approximated with the synthesis of a series of such cutoff circuits in 

tandem. Complete solution of the problem then can be given with two such series with 

total impedances Ζin and Zout, the first starting from a large radius towards the core-

cladding boundary and the second from r = 0 to the same boundary respectively. The 

transverse resonance condition is then directly given from the roots of 

𝑍𝑖𝑛 + 𝑍𝑜𝑢𝑡 = 0    (1.28) 

The respective values for the total impedances can be found from the general theory 

of network synthesis which has been described by a well-known set of theorems due to 

Thevenin, Norton and Foster [20], and it is guaranteed that any such series will have a 

total impedance given as a continued fraction expansion of the form 

𝛧{𝑖𝑛,𝑜𝑢𝑡} = 𝑍𝑏(𝑎 ± 1) + (𝑍𝑝(𝑎 ± 1) + (𝑍𝐵(𝑎 ± 1) + 𝑍𝐵(𝑎 ± 2)+. . . (𝑍𝑁 + 𝑍𝐵(𝑁 −

1))−1)1)
−1

      (1.29) 

where ZN, is the characteristic impedance at infinity for the positive sign or at 0 for 

the negative sign and a the core-cladding interface. The advantage of this method is the 

very low programming complexity of which the efficiency depends solely on the 

particular root finding algorithm to be used. Application of the above prescribed 

algorithm gives a series of roots and poles with the roots corresponding to the set of 

eigenvalues for the fundamental and higher modes. A method for the computation of 

the E fields for each mode is given in the later chapters. 

1.6. Accuracy of the estimated roots 

In the Transmission-Line technique the fiber is divided into concentric layers, each 

represented by a T-circuit. The allocation of the circuits is vital for the program’s 

accuracy and dependent on the distance r of each layer from the fiber’s center. That 

distance is determined within the algorithm by two parameters, ‘w’ and ’Ν’ where, ‘w’ 
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expresses a constant δr/r ratio denoting the analogy between distance r and thickness 

of each layer. The ‘Ν’ parameter on the other hand expresses the number of layers that 

make up the required distances from the core center. The resonance frequency of the 

cascade of the series of equivalent electric circuits for a fixed wavelength represents the 

mode propagation constants β of the related waveguide with certain refractive index 

profile.  

In order to determine the accuracy of the technique the mode propagation constants 

have been calculated via the Bessel functions; moreover any results from the T-Line 

technique are compared to the Bessel results. After thorough experimentation with the 

‘w’ and ‘N’ parameters it appears that beyond certain values, the accuracy of the 

algorithm’s estimations deteriorates rapidly. Specifically, existing algorithms 

calculating the mode propagation constant have been altered in order to correlate the 

change in the ‘w’ and ‘N’ parameters, with a varying error on the results. In an effort 

to “fine tune” the current technique, a considerable part of the initial research was 

dedicated to estimating an optimal combination of these two parameters and optimizing 

the accuracy of the solutions reached by the method. 

Every time the algorithm is run (to calculate the mode propagation constants) it 

reaches a predefined distance inside (towards the core center) and outside the core-

cladding interface. The outer distance is related to the inner distance in a way that, the 

further we reach externally, the closer we get to the fiber core. The ‘w’ and ‘N’ 

parameters play a significant role in the calculation of the distance and are closely 

connected to one another. That means that we cannot change one without changing the 

other in order to reach a predefined distance. The exact connection between the two can 

be described as follows: we mentioned earlier that the algorithm has to reach a 

predefined distance which is shown as a ratio of the outer distance over the core radius 

let there be 𝑟𝑁 = 𝑎𝑟1 whereas  𝑟1 is the core radius and 𝑟𝑁 the outer distance after N 

steps. Using the definitions 

𝑟𝑜𝑢𝑡 = 𝑟 +
𝛥𝑟

2
, 𝑟𝑖𝑛 = 𝑟 −

𝛥𝑟

2
, 𝑟𝑜𝑢𝑡−𝑟𝑖𝑛 = 𝛥𝑟, 𝑟 =

𝑟𝑜𝑢𝑡+𝑟𝑖𝑛

2
, 
𝛥𝑟

𝑟
= 𝑤 
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we get by substitution 𝑟𝑖𝑛 (1 +
𝑤

2
) = 𝑟𝑜𝑢𝑡(1 −

𝑤

2
) and 

𝑟𝑜𝑢𝑡

𝑟𝑖𝑛
=

1+
𝑤

2

1−
𝑤

2

= 𝜉 whereas 
𝑟2

𝑟1
=

𝜉,
𝑟3

𝑟2
= 𝜉,

𝑟4

𝑟3
= 𝜉,… ,

𝑟𝛮

𝑟𝛮−1
= 𝜉. By sidewise multiplication we obtain 

𝑟𝑁

𝑟1
= 𝜉𝑁−1 and 

finally 

 𝑁 = 1 +
log (

𝑟𝑁
𝑟1
)

log (𝜉)
                                                                             (1.30) 

We must predetermine a safe RN/r1=a ratio to make sure that the algorithm will reach 

a distance covering the most of the electromagnetic field around and into the fiber core. 

In order to evaluate the accuracy of the resonance technique, Bessel functions have 

been used as a point of reference for the estimation of mode propagation constants and 

the results were then compared to those from the resonance technique. Since the Bessel 

functions were used as a measure of accuracy, it was important to retain the eigenvalue 

equations in their original analytical form as given in (1.29).  

Firstly, the transverse resonance method of (1.28) was iterated for both the core and 

the cladding for a step index profile with relative difference δn/n ~0.05 and for a varying 

number of layers, and the differences in the propagation factor values were plotted as 

shown in figure 1.4. Secondly, the fundamental modes for the same profile were also 

computed with the aid of the transfer matrix technique given the correct number of 

eigenvalues for a number of 200 steps and the difference from the accurate form as 

given via Bessel functions was also plotted as shown in figure 1.5. As is evident these 

get saturated for V > 3.5. It can be safely concluded that a 𝑁 ≥ 200 number of layers 

is sufficient to produce a level of accuracy with error < 10−5. 
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Figure 1-4 Error in the propagation factor estimates between transverse resonance method 

and analytical solutions with number of layers.  

 

Figure 1-5 Differences of RT method from analytical expressions for N = 200 and varying V 

parameter.  
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The importance of the presented accuracy analysis lays in the provision of 

optimal parameters for the estimation of mode propagation constants, not merely for 

step index profiles but also for more complicated profiles including graded-index, 

triangular and parabolic among others. 

 

Figure 1-6 Cylindrical fiber cross sections and their corresponding index profiles [3] 

1.7.  RTL method for the precise analysis of a cylindrical fiber including 

the birefringence effect 

A more recent analysis of the same problem examined in section 1.3 was based on a 

partial Fourier transform of the reduced Maxwell equations [21] which we present in 

this section as it will be useful in the study of the unconventional fibers in following 

chapters.  

The basis for the application of the previously introduced RTL method is the radial 

discretization of all cylindrical fibers via a separation into a succession of thin 

cylindrical layers, each one with its own constant refractive index n. These layers can 

be made to extend outside of the cladding in order to take into consideration the effect 

of the surrounding air (n = 1). Each thin cylindrical layer could have thickness δr 

proportional to each average radius r which means that given discrete steps as 𝛿𝑟 =

 𝑟2 − 𝑟1 with 𝑟 =  
𝑟1 + 𝑟2

2
 one obtains 
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𝑟2−𝑟1

𝑟2 + 𝑟1
 =  

𝑐

2
 = > {

1 + 𝑐 2⁄

1−𝑐 2⁄
𝑟1  =  𝑟2 (𝑜𝑢𝑡)

1−𝑐 2⁄

1 + 𝑐 2⁄
𝑟2  =  𝑟1(𝑖𝑛)

   (1.31) 

For any such circular cylindrical layer Maxwell equations (for a constant 

wavelength, i.e., constant frequency “ω”) can be written in their standard form as 

{
∇𝑋𝐸⃗  =  −𝑗𝜔𝜇0𝐻⃗⃗ 

∇𝑋𝐻⃗⃗  =  𝑗𝜔𝜀0𝑛
2(𝑟)𝐸⃗ 

                                       (1.32) 
 

Taking into consideration the relations 𝜔𝜇0  =  𝑘0𝑧0 and 𝜔𝜀0  =  
𝑘0

𝑧0
 where 𝑘0  =

 
𝜔

𝑐
, 𝑧0  =  120𝜋 and replacing 𝑧0𝐻⃗⃗  with 𝐻⃗⃗  in order 𝐸⃗  and 𝐻⃗⃗  to have the same units 

(V/m), Maxwell equations become then 

{
∇𝑋𝐸⃗  =  −𝑗𝑘0𝐻⃗⃗ 

∇𝑋𝐻⃗⃗  =  𝑗𝑘0𝑛
2(𝑟)𝐸⃗ 

                                              (1.33) 

In circular cylindrical geometry of coordinates (r, φ, z) the following set of three 

partial differential equations can be derived by the first vector Maxwell equation as  

{
 
 

 
 

1

𝑟

𝜕𝐸𝑧

𝜕𝜑
−
𝜕𝐸𝜑

𝜕𝑧
 =  −𝑗𝑘0𝐻𝑟

𝜕𝐸𝑟

𝜕𝑧
−
𝜕𝐸𝑧

𝜕𝑟
 =  −𝑗𝑘0𝐻𝜑

1

𝑟

𝜕(𝑟𝐸𝜑)

𝜕𝑟
−
1

𝑟

𝜕𝐸𝑟

𝜕𝜑
 =  −𝑗𝑘0𝐻𝑧

                                   (1.34) 

Applying a Fourier Transform along “z” and “φ” with wave numbers “β” and “l”, 

where 𝑙 is integer (because along “φ” we have Fourier series of period 2π), the set 

(1.34) becomes:  

{
 
 

 
 

𝑗𝑙

𝑟
𝐸𝑧̅̅ ̅ − 𝑗𝛽𝐸𝜑̅̅̅̅  =  −𝑗𝑘0𝐻𝑟̅̅̅̅

𝑗𝛽𝐸𝑟̅̅ ̅ −
𝜕𝐸𝑧̅̅ ̅

𝜕𝑟
 =  −𝑗𝑘0𝐻𝜑̅̅ ̅̅

1

𝑟

𝜕(𝑟𝐸𝜑̅̅ ̅̅ )

𝜕𝑟
−
𝑗𝑙

𝑟
𝐸𝑟̅̅ ̅  =  −𝑗𝑘0𝐻𝑧̅̅̅̅

                                  (1.35) 
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In (1.35) we use new variables 𝐸𝑟̅̅ ̅, 𝐸𝜑̅̅̅̅ , 𝐸𝑧̅̅ ̅, 𝐻𝑟̅̅̅̅ , 𝐻𝜑̅̅ ̅̅ , 𝐻𝑧̅̅̅̅  to denote the Fourier 

Transforms of the respective electromagnetic field components. Furthermore, 

replacing β and r by their reduced variables according to the following relations: 

{

𝛽

𝑘0
 = > 𝛽 

𝑟𝑘0  = > 𝑟

 

 

then (1.35) takes the form  

{
 
 

 
 

𝑗𝑙

𝑟
𝐸𝑧̅̅ ̅ − 𝑗𝛽𝐸𝜑̅̅̅̅  =  −𝑗𝐻𝑟̅̅̅̅

𝑗𝛽𝐸𝑟̅̅ ̅ −
𝜕𝐸𝑧̅̅ ̅

𝜕𝑟
 =  −𝑗𝐻𝜑̅̅ ̅̅

1

𝑟

𝜕(𝑟𝐸𝜑̅̅ ̅̅ )

𝜕𝑟
−
𝑗𝑙

𝑟
𝐸𝑟̅̅ ̅  =  −𝑗𝐻𝑧̅̅̅̅

                                     (1.36) 

Following a similar approach, the second Maxwell vector equation (1.33) can be 

written in the form 

{
 
 

 
 

𝑗𝑙

𝑟
𝐻𝑧̅̅̅̅ − 𝑗𝛽𝐻𝜑̅̅ ̅̅  =  𝑗𝑛2(𝑟)𝐸𝑟̅̅ ̅

𝑗𝛽𝐻𝑟̅̅̅̅ −
𝜕𝐻𝑧̅̅ ̅̅

𝜕𝑟
 =  𝑗𝑛2(𝑟)𝐸𝜑̅̅̅̅

1

𝑟

𝜕(𝑟𝐻𝜑̅̅ ̅̅ )

𝜕𝑟
−
𝑗𝑙

𝑟
𝐻𝑟̅̅̅̅  =  𝑗𝑛2(𝑟) 𝐸𝑧̅̅ ̅̅

                             (1.37) 

Furthermore, following a cumbersome analysis as shown in Appendix A, it is possible 

to prove that the system of Equations (1.36) and (1.37) can be transformed in a set of 

four differential equations (1.38), relating the equivalent “voltage’ and “current” 

functions 𝑉𝑀, 𝐼𝑀, 𝑉𝐸 , 𝐼𝐸 defined as follows: 

𝑉𝑀  =  
𝑙𝐻𝜑̅̅ ̅̅  +  𝛽𝑟𝐻𝑧̅̅̅̅

𝑗𝐹
 

𝐼𝑀  =  
𝑟𝐻𝑟̅̅̅̅

𝑗
 =  

𝛽𝑟𝛦𝜑̅̅̅̅ − 𝑙𝛦𝑧̅̅ ̅

𝑗
 

𝑉𝐸  =  
𝑙𝛦𝜑̅̅̅̅  +  𝛽𝑟𝐸𝑧̅̅ ̅

𝐹
 

𝐼𝐸  =  𝑛
2𝑟𝐸𝑟̅̅ ̅  =  𝑙𝐻𝑧̅̅̅̅ − 𝛽𝑟𝐻𝜑̅̅ ̅̅  
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where we use the notation 𝐹 =  
(𝛽𝑟)2 + 𝑙2

𝑟
 

 

{
  
 

  
 

𝜕𝑉𝑀

𝜕𝑟
 =  −

𝛾2

𝑗𝐹
𝐼𝑀 − 𝑗𝑀𝐼𝐸

𝜕𝐼𝑀

𝜕𝑟
 =  −𝑗𝐹𝑉𝑀

𝜕𝑉𝐸

𝜕𝑟
 =  −

𝛾2

𝑗𝑛2𝐹
𝐼𝐸 − 𝑗𝑀𝐼𝑀

𝜕𝐼𝐸

𝜕𝑟
 =  −𝑗𝑛2𝐹𝑉𝐸

                                  (1.38) 

In (1.38) we introduced the total propagation factor 𝛾2  =  
𝑙2

𝑟2
 +  𝛽2 − 𝑛2 and the 

auxiliary function 𝑀 =  
2𝑙𝛽

[(𝛽𝑟)2 + 𝑙2]𝐹
. 

At this point it is noticed that 𝑉𝑀, 𝐼𝑀, 𝑉𝐸 , 𝐼𝐸 are continuous functions at the boundaries 

because the tangential components of electric and magnetic fields 𝐻𝜑⃗⃗ ⃗⃗  ⃗  𝐻𝑧⃗⃗ ⃗⃗  ⃗ and 𝐸𝜑 ⃗⃗⃗⃗⃗⃗  𝐸𝑧⃗⃗⃗⃗  

on the cylindrical surface are continuous functions passing the boundaries of the 

cylindrical layer. Using the previous relations, the Fourier Transforms of the 

electromagnetic field components along (r,𝑙,β) can be expressed as functions of their 

equivalent “voltages” and “currents” functions with the auxiliary relations 

𝐻𝑟̅̅̅̅  =  
𝑗𝐼𝑀

𝑟⁄ , 𝐸𝑟̅̅ ̅  =  
𝐼𝐸
𝑛2𝑟

 

𝐻𝜑̅̅ ̅̅  =  𝑗𝑙𝑉𝑀 /𝑟 −
𝛽

𝐹
𝐼𝐸 

𝐸𝜑̅̅̅̅  =  𝑙𝑉𝐸/𝑟 +  𝑗
𝛽

𝐹
𝐼𝛭 

𝐻𝑧̅̅̅̅  =  
𝑙

𝐹𝑟
𝐼𝐸  +  𝑗𝛽𝑉𝑀 

𝛦𝑧̅̅ ̅  =  −𝑗
𝑙

𝐹𝑟
𝐼𝑀  +  𝛽𝑉𝐸 

 

It becomes evident by inspection that the final equation (1.38) represents two 

coupled electric transmission lines. 
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1.8. Decoupling the Transmission Line Equations 

The prescribed set of equations (1.38) constitutes a homogeneous set of ordinary 

differential equations of r . Moreover all the vectors [𝑉𝑀, 𝐼𝑀, 𝑉𝐸 , 𝐼𝐸] can be turned into 

exponential functions of r given by 𝑉𝑀  =  𝑉𝑀𝑒
𝜉𝑟 , 𝐼𝑀  =  𝐼𝑀𝑒

𝜉𝑟 , 𝑉𝐸  =  𝑉𝐸𝑒
𝜉𝑟 , 𝐼𝐸  =

 𝐼𝐸𝑒
𝜉𝑟, where 𝑉𝑀, 𝐼𝑀 , 𝑉𝐸 , 𝐼𝐸  are constants, i.e., not functions of r. Thus, the system (1.38) 

can be transformed in an algebraic set of the following four equations 

{
 
 

 
 𝜉𝑉𝑀  =  −

𝛾2

𝑗𝐹
𝐼𝑀 − 𝑗𝑀𝐼𝐸

𝜉𝐼𝑀  =  −𝑗𝐹𝑉𝑀

𝜉𝑉𝐸  =  −
𝛾2

𝑗𝑛2𝐹
𝐼𝐸 − 𝑗𝑀𝐼𝑀

𝜉𝐼𝐸  =  −𝑗𝑛
2𝐹𝑉𝐸

                                   (1.39) 

Replacing 𝐼𝑀  =  −
𝑗𝐹

𝜉
𝑉𝑀, 𝐼𝐸  =  −

𝑗𝑛2𝐹

𝜉
𝑉𝐸, we obtain a set of two homogeneous 

equations 

{

𝜉𝑉𝑀  =  
𝛾2

𝜉
𝑉𝑀 −𝑀

𝑛2𝐹

𝜉
𝑉𝐸

𝜉𝑉𝐸  =  
𝛾2

𝑛2𝜉
𝑉𝐸 −𝑀

𝐹

𝜉
𝑉𝑀

 

 or {
𝜉2𝑉𝑀  =  𝛾

2𝑉𝑀 − 𝑛
2𝑀𝐹𝑉𝐸

𝜉2𝑉𝐸  =  𝛾
2𝑉𝐸 −𝑀𝐹
 

 

 

This then leads to the eigenvalue equations  

{
(𝜉2 − 𝛾2)𝑉𝑀  +  𝑛

2𝑀𝐹𝑉𝐸  =  0

𝑀𝐹𝑉𝛭  +  (𝜉
2 − 𝛾2)𝑉𝛦  =  0

 
 

From the standard form of the eigenvalue problem we obtain through the 

determinant differential equations as follows 

(𝜉2 − 𝛾2)2 − 𝑛2𝑀2𝐹2  =  0, or 𝜉2  =  𝛾2 ± 𝑛𝑀𝐹                  (1.40) 

Hence the system has two eigenvalues and two mutually excluded or “normal” 

eigenvectors. The eigenvectors will be found by replacing 𝜉2 by its value. Thus, 

for 𝜉2  =  𝛾2 − 𝑛𝑀𝐹 it follows that 𝑛2𝑀𝐹𝑉𝐸 − 𝑛𝑀𝐹𝑉𝑀  =  0 = > 𝑉𝑀  =  𝑛𝑉𝐸 and the 

eigenvector is 𝑉𝑆  =  𝑉𝑀  +  𝑛𝑉𝐸. For 𝜉2  =  𝛾2  +  𝑛𝑀𝐹 it follows that 𝑉𝑀  =  −𝑛𝑉𝐸 

and the eigenvector becomes 𝑉𝑑  =  𝑉𝑀 − 𝑛𝑉𝐸. Their respective “current” eigenvectors 
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are related as 
𝐼𝑀

𝐼𝐸
 =  

𝑉𝑀

𝑛2𝑉𝐸
 =  

1

𝑛
, thus 𝐼𝑀  =  

𝐼𝐸

𝑛
 and 𝐼𝑠  =  𝐼𝑀  +  

𝐼𝐸

𝑛
, 𝐼𝑑  =  𝐼𝑀 −

𝐼𝐸

𝑛
. Since 

the auxiliary M function has the sign of l, the set (𝑉𝑠, 𝐼𝑠), for 𝑙 =  −𝑙 becomes equal to 

the set (𝑉𝑑, 𝐼𝑑). Thus, we can consider as a unique solution for the set (𝑉𝑠, 𝐼𝑠) and for 

integer ‘𝑙 ’that varies from −∞ 𝑡𝑜 +  ∞, and of course for 𝜉2  =  𝛾2 − 𝑛𝑀𝐹:  

 

{

𝜕𝑉𝑠

𝜕𝑟
 =  −

𝜉2

𝑗𝐹
𝐼𝑠

𝜕𝐼𝑠

𝜕𝑟
 =  −𝑗𝐹𝐼𝑠

     (1.41) 

Furthermore, 𝑉𝑠, 𝐼𝑠 should be continuous functions at their boundaries although n(r) 

varies from layer to layer. This is achieved via the adjustment 𝑉𝑠  =  𝑉𝑀  +  𝑛𝑉𝐸  =

 2𝑉𝑀 and 𝐼𝑠  =  𝐼𝑀  +  
𝐼𝐸

𝑛
 =  2𝐼𝑀, which are continuous functions of r by definition. 

{

𝜕𝑉𝑀

𝜕𝑟
 =  −

𝜉2

𝑗𝐹
𝐼𝑀

𝜕𝐼𝑀

𝜕𝑟
 =  −𝑗𝐹𝐼𝑀

    (1.42) 

Another option for achieving continuity is to consider the functions 𝑉𝑠𝑠  =  
𝑉𝑀

𝑛
 +  𝑉𝐸 

and 𝐼𝑠𝑠  =  𝑛𝐼𝑀  +  𝐼𝐸. In this case, 𝑉𝑠𝑠  =  2𝑉𝐸 and 𝐼𝑠𝑠  =  2𝐼𝐸 are also continuous, 

leading to: 

{

𝜕𝑉𝐸

𝜕𝑟
 =  −

𝜉2

𝑗𝑛2𝐹
𝐼𝐸

𝜕𝐼𝐸

𝜕𝑟
 =  −𝑗𝐹𝑛2𝐼𝐸

    (1.43) 

Thus, the set of two coupled transmission lines (1.39) is equivalent to two 

independent transmission lines (1.42) and (1.43). 

The two waves represented by the equations of transmission lines (1.42) and (1.43), 

are geometrically normal because the first is related to the magnetic field and the second 

to the electric field that are geometrically normal for transmitted EM waves. This 

property is an inherent property of EM modes in optical fibers related to birefringence 

phenomena. However, the β respective values, for any mode, are always found to be 

very close and can be considered as practically equal. 
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1.9. Equivalent Circuits for Cylindrical Layers, Boundary Conditions, 

and Birefringence 

Taking into consideration the transmission line theory, it can be proved that each 

layer of infinitesimal thickness δr is equivalent to a T-circuit as the one shown in 

Figure 1.7  

 

Figure 1-7 The equivalent quadrupole for each cylindrical sector [29]. 

 

{
 
 

 
 𝑍𝐵  =  

𝜉

𝑗𝐹
tanh [

(𝜉𝛿𝑟)
2
⁄ ]

𝑍𝑝  =  
𝜉

𝑗𝐹 sinh(𝜉𝛿𝑟)

 

 

For 𝜉𝛿𝑟 ≪ 1 the impedances can be approximated by the equivalent relations  

{
𝑍𝐵  =  

𝜉2(𝛿𝑟 2⁄ ) 

𝑗𝐹

𝑍𝑝  =  
1

𝑗𝐹𝛿𝑟

    (1.44) 

If 𝜉2 > 0, both 𝑍𝐵 , 𝑍𝑝 are “capacitive” reactances. For 𝜉2 < 0 however, 𝑍𝐵 becomes 

“inductive” reactance. For (𝑉𝐸 , 𝐼𝐸) the approximate respective impedances of the T-

circuit are given as 

{
𝑍′𝐵  =  

𝜉2(𝛿𝑟 2⁄ ) 

𝑗𝑛2𝐹

𝑍′𝑝  =  
1

𝑗𝑛2𝐹𝛿𝑟

    (1.45) 
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As previously stated, the functions (𝑉𝑀, 𝐼𝑀) of each layer are continuous at the 

cylindrical boundaries of the layer, thus if we divide the fiber (including a sufficient 

number of air layers) in successive thin layers and replace them by their equivalent T-

circuits, an overall lossless transmission line is formed with only reactive elements. For 

given “l”, the “β” values that lead to the resonance of the overall transmission line are 

the eigenvalues of the whole optical fiber.  

When a transmission line is in resonance, at any arbitrary point 𝑟0 of the line, the sum 

of reactive impedances arising from the successive T-circuits on the left and right sides 

of 𝑟0 should be equal to zero, thus the equation giving the eigenvalues of the 

transmission line is the following: 

𝑍̇𝐿.𝑟0  +   𝑍̇𝑅.𝑟0  =  0    (1.46) 

Equation (1.46) provides the eigenvalues “β” for a given “l”, where 𝑍̇𝐿.𝑟0 ,  𝑍̇𝑅.𝑟0 are 

the overall reactive impedances of successive T-circuits on the left and right of 𝑟0, using 

equations (1.44) or (1.45). The value of 𝑟0 is usually given by the core radius. For the 

same “𝑙” the equations (1.44) and (1.45) give usually slightly different values of ‘β’. 

This phenomenon is called “Birefringence”. For circular step index fibers, the 

birefringence is negligible; however, for elliptic fibers and fibers of any other non-

circular cores, the birefringence phenomenon could be not negligible.  

In order to calculate the overall reactive impedances on the left and right of 𝑟0 one 

should find the impedances for 𝑟 → 0 and for 𝑟 → ∞. As we proceed to 0 or to ∞, the 

remaining piece of transmission line becomes “homogeneous”, i.e., its overall reactive 

impedance is equal to its characteristic impedance given by 𝑍 =  
𝜉

𝑗𝐹
 (𝑜𝑟 

𝜉

𝑗𝑛2𝐹
). Then 

we must have 

𝑟 → ∞: 𝐹 → 𝛽2𝑟,𝑀𝐹 → 0, 𝜉 → √𝛽2 − 𝑛2  𝑍𝑟→∞  =  0 

𝑟 → 0: 𝐹 →
𝑙2

𝑟
       

Taking into consideration that 𝐸𝑟0, the equation ∇𝑋𝐸⃗  =  −𝑗𝐻⃗⃗  is giving 

 2𝜋𝑟𝐸𝜑(0) = −𝑗𝜋𝑟
2𝐻𝑧(0)                                 (1.47)  
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For TE modes the analysis proceeds as follows: 

𝐸𝜑(0) = −𝑗
𝑟

2
𝐻𝑧(0)                                      (1.48) 

𝐼𝑀

𝐹
= −𝑗

𝑟

2
𝑉𝑀 =>

𝑉𝑀

𝐼𝑀
= −

2𝑗

𝑟𝐹(𝑟=0)
                           (1.49) 

Where 

 𝑟𝐹 = (𝛽𝑟)2 + 𝑙2                                         (1.50) 

For 𝑟 = 0 (1.49) becomes 

𝑉𝑀

𝐼𝑀
= −

2𝑗

𝑙2
=> 𝑍𝑀(𝑟=0) = −

2𝑗

𝑙2
                                (1.51) 

In a similar way, for TM modes, it can be proved that  

𝑍𝐸(𝑟=0) = −
2𝑗

𝑛2𝑙2
                                          (1.52)         

For l = 0  𝑍𝑟→0  =  ∞  (open circuit at the center of the equivalent transmission line) It is 

useful to notice that there is an equivalence between our formulation and the classic 

formulation modes of optical fibers. In particular, for 𝑙 = 0, the modes (VM,IM) are the TE 

modes, while the modes (VE,IE) are the TM modes. For 𝑙 > 0, the modes (VM,IM) are the 

HE modes, while the modes (VE,IE) are their HE birefringence modes. For 𝑙 <0 the modes 

(VM,IM) are the EH modes, while the modes (VE,IE) are their EH birefringence modes. For 

any given 𝑙, using the resonance technique the β values of the two birefringence modes can 

be calculated.  

 

Figure 1-8  Polarization inside a birefringent fiber where the input beam is linearly polarized 

at 45o related to the slow and fast axis [3] 
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Let us consider for example a step-index fiber of 𝑛1 = 1.54, 𝑛2 = 1.47, 𝑛1 being the 

refractive index in the core and 𝑛2 being the refractive index in the cladding. The VM, 

VE, fundamental modes for normalized frequency V = 3.3, can be calculated and their 

β/k0 values are respectively 1.518934962534846 and 1.518340184686295, hence their 

birefringence is equal to 0.0004947 or 0.0391%. The β/k0 value for the equivalent mode 

Veq was also calculated and was equal to 1.518638548412019 (that is approximately 

equal to the mean value of the previous β/k0 values), while the β/k0 value calculated 

conventionally by Bessel functions is equal to 1.518642063686336. These β values are 

very close differing only by 0.0002315%. 

In the following Figure 1.9, the normalized birefringence of the step-index fibers for 

n1 = 1.54, n2 = 1.47, and of n1 = 1.475, n2 = 1.47 as functions of V are shown. 

 

Figure 1-9 Normalized birefringence of two step-index fibers with different refractive 

indexes as functions of their parameters V. 

We notice that for any V, the normalized birefringence is almost proportional to Δn2 

= (n1 − n2)
2, thus the birefringence of step-index fibers of very small Δn is negligible. 

For instance, for a value of V = 2.4, and Δn = 1.54 − 1.47 = 0.07, the birefringence is 
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found to be 0.168 × 0.0049 = 0.0008232 or ~0.055% on the average β, while for Δn = 

1.475 − 1.47 = 0.005, the birefringence becomes 0.168 × 0.000025 = 0.000042 or 

~0.0028% on the average β. The presented RTL method is accurate enough to calculate 

it. 

1.10. Calculating “Voltages” VM, VE and “Currents” IM, IE and 

Resulting Fields 

For any given 𝑙, using the resonance technique the β values of the two birefringence 

modes can be calculated. These β values are practically the same, thus we can consider 

them as equal or we can consider as the proper value of β the mean value of the two 

modes. Taking VM = 1 at the center point of the fiber (r = 0), the respective value of IM 

at the same point can be calculated by the respective terminal impedance. Using the 

matrix relations between input–output for the equivalent successive T-circuits, the 

values of 𝑉𝑀 and 𝐼𝑀 at the rest of the thin cylindrical layers can be calculated. In fact, 

from the general theory of the telegrapher’s equation we know that the inputs and 

outputs are associated via a transfer matrix as follows 

{
  
 

  
 [𝑉𝑜𝑢𝑡𝐼𝑜𝑢𝑡] = (

cosh(𝜉(𝑟) ∙ 𝛿𝑟) 𝑍(𝑟) ∙ sinh(𝜉(𝑟) ∙ 𝛿𝑟)

sinh(𝜉(𝑟) ∙ 𝛿𝑟) 𝑍(𝑟)⁄ cosh(𝜉(𝑟) ∙ 𝛿𝑟)
) [
𝑉𝑖𝑛
𝐼𝑖𝑛
] ≈

≈ (
1 𝑍(𝑟) ∙ (𝜉(𝑟) ∙ 𝛿𝑟)

(𝜉(𝑟) ∙ 𝛿𝑟) 𝑍(𝑟)⁄ 1
) [
𝑉𝑖𝑛
𝐼𝑖𝑛
] =

= (
1 𝜉2(𝑟) ∙ 𝛿𝑟 𝑗𝐹(𝑟)⁄

𝑗𝐹(𝑟) ∙ 𝛿𝑟 1
) [
𝑉𝑖𝑛
𝐼𝑖𝑛
]

 (1.53) 

In equation (1.47), the characteristic impedance should be taken as 𝑍(𝑟)  =

 𝜉(𝑟)/𝑗𝐹(𝑟) to comply with the previous analysis. Using the relations 𝑛𝑉𝐸  =  𝑉𝑀 and 

𝑛𝐼𝑀  =  𝐼𝐸 the respective values of their birefringence partners can also be calculated 

for every thin cylindrical layer ri. Finally, we obtain the actual fields via the relations 

 

{
 
 
 

 
 
 𝐻𝑟̅̅̅̅  =  

𝑗𝐼𝑀
𝑟⁄ , 𝐸𝑟̅̅ ̅  =  

𝐼𝐸

𝑛2𝑟

𝐻𝜑̅̅ ̅̅  =  𝑗𝑙𝑉𝑀 /𝑟 −
𝛽

𝐹
𝐼𝐸

𝐸𝜑̅̅̅̅  =  𝑙𝑉𝐸/𝑟 +  𝑗
𝛽

𝐹
𝐼𝛭

𝐻𝑧̅̅̅̅  =  
𝑙

𝐹𝑟
𝐼𝐸  +  𝑗𝛽𝑉𝑀

𝛦𝑧̅̅ ̅  =  −𝑗
𝑙

𝐹𝑟
𝐼𝑀  +  𝛽𝑉𝐸

    (1.54) 
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The field components 𝐻𝜑 , 𝐸𝜑 , 𝐻𝑧 , 𝐸𝑧 are made of two independent parts due to 𝑇𝑀 

and 𝑇𝐸 fields. Due to birefringence these parts have different mode propagation 

constants along the 𝑧 axis. Thus the parts have variating phase differences along 𝑧. 

Moreover, in certain points along 𝑧 the parts have the same phase and their maximum 

values are 

{
 
 
 
 

 
 
 
 |𝐻𝑟̅̅̅̅ |  =  |

𝐼𝑀
𝑟⁄ | , |𝐸𝑟̅̅ ̅|  =  |

𝐼𝐸

𝑛2𝑟
|

|𝐻𝜑̅̅ ̅̅ |  = |
𝑙𝑉𝑀 

𝑟
| + |

𝛽

𝐹
𝐼𝐸|

|𝐸𝜑̅̅̅̅ |  =  |𝑙𝑉𝐸/𝑟|  + | 
𝛽

𝐹
𝐼𝛭|

|𝐻𝑧̅̅̅̅ |  =  |
𝑙

𝐹𝑟
𝐼𝐸|  + | 𝛽𝑉𝑀|

|𝛦𝑧̅̅ ̅|  =  |
𝑙

𝐹𝑟
𝐼𝑀|  +  |𝛽𝑉𝐸|

          (1.55) 

A very useful field component for optical fibers is the value of the overall electric 

field at any thin cylindrical layer of average radius r that can be calculated by the 

formula: 

|𝐸⃗  (𝑟)|
2
= |𝐸̄𝑟|

2 + |𝐸̄𝜙|
2 + |𝐸̄𝑧|

2    (1.56) 

1.11. Calculation of EM Field Components 

By the formulae (1.54) we can calculate, for a given β, the EM field components. 

Taking into consideration that the birefringence is extremely low (e*10^-4), it can be 

assumed that 𝑉𝐸 , 𝐼𝐸, become 

𝑉𝐸 =
𝑉𝑀

𝑛
 and 𝐼𝐸 = 𝑛𝐼𝑀.  

Finally the set of equations (1.54) become: 

{
 
 
 

 
 
 𝐻𝑟
̅̅̅̅  =  

𝑗

𝑟
𝐼𝑀 , 𝐸𝑟̅̅ ̅  =  

𝐼𝑀

𝑛𝑟

𝐻𝜑̅̅ ̅̅  =  
𝑗𝑙

𝑟
𝑉𝑀 −

𝑛𝛽

𝐹
𝐼𝑀

𝐸𝜑̅̅̅̅  =  
𝑙

𝑛𝑟
𝑉𝑀  +  𝑗

𝛽

𝐹
𝐼𝛭

𝐻𝑧̅̅̅̅  =  
𝑛𝑙

𝐹𝑟
𝐼𝑀  +  𝑗𝛽𝑉𝑀

𝛦𝑧̅̅ ̅  =  −
𝑗𝑙

𝐹𝑟
𝐼𝑀  + 

𝛽

𝑛
𝑉𝑀

                                         (1.57) 

And the set of equations (1.55) become  
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{
 
 
 
 

 
 
 
 |𝐻𝑟̅̅̅̅ |  =  |

𝐼𝑀
𝑟⁄ | , |𝐸𝑟̅̅ ̅|  =  |

𝐼𝑀

𝑟𝑛
|

|𝐻𝜑̅̅ ̅̅ |  = |
𝑙𝑉𝑀 

𝑟
| + |

𝑛𝛽

𝐹
𝐼𝑀|

|𝐸𝜑̅̅̅̅ |  =  |𝑙𝑉𝑀/𝑛/𝑟|  + | 
𝛽

𝐹
𝐼𝛭|

|𝐻𝑧̅̅̅̅ |  =  |
𝑛𝑙

𝐹𝑟
𝐼𝑀|  + | 𝛽𝑉𝑀|

|𝛦𝑧̅̅ ̅|  =  |
𝑙

𝐹𝑟
𝐼𝑀|  +  |

𝛽𝑉𝑀

𝑛
|

 
 

   (1.58) 

The set of equations in (1.58) can be used to create programs for the estimation and 

plotting of the EM field components for a given mode propagation constant, ie for the 

fundamental mode. 

The preceding analysis describes the basis of the methodology used to investigate 

fundamental propagation characteristics in cylindrical optical fibers. The successful 

implementation of the method in cylindrical fibers, the gradual refinement of the 

method through research and the proven accuracy in result estimation have provided a 

powerful tool for the investigation of additional types of optical fibers; specifically 

fibers with elliptical core cross-section that constitute the main subject of study in the 

current thesis. Below follows a brief enumeration of the main topics that are addressed 

within the scope of our research, presented per chapter. 

1.12. Main goal of the present thesis 

The main goal of this thesis is the numerical investigation of the propagation 

characteristics of EM modes inside elliptical optical fibers, using the Transmission Line 

theory. Chapter 1, serves as a necessary introduction to the EM theory behind the 

cylindrical fibers and the theory of Transmission Lines. Before applying the 

Transmission Line theory on elliptical fibers, this chapter presents the application of 

the theory on cylindrical fibers. The obtained method can be transformed into an 

algorithm for the estimation of mode propagation constants in cylindrical fibers. A case 

study is further provided regarding the optimization of the algorithm, aiming to achieve 

maximum accuracy in the estimation of mode propagation constants. The results of the 

case study are presented in section 1.6. Chapter 1 also provides a secondary algebraic 

analysis of EM propagation in cylindrical fibers, focusing on the definition and 

estimation of birefringence. The analysis concludes with the calculation of EM field 

components for cylindrical core fibers.   
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Chapter 2 includes a presentation of existing literature on the issue of EM wave 

propagation inside elliptical waveguides. Initial approaches to the problem, are 

mentioned, while the most important studies are presented in more depth. Especially 

the related researches of C. Yeh and R.B. Dyott are mentioned in detail since they 

provide the theoretical basis for the problem this thesis seeks to address. Yeh provides 

the analytical solution for EM wave propagation on a dielectric medium of elliptical 

cross-section while Dyott uses this solution to further investigate the properties of 

elliptical fibers. In this chapter, the property of birefringence is also defined with 

regards to elliptical fibers as well as their distinct ability to retain polarization. Finally, 

the conclusion is reached related to the elliptical fibers’ potential usability and 

applications.   

Chapter 3 contains a basic theoretical analysis of EM wave propagation inside 

elliptical optical fibers, applying Maxwell’s equations in the case elliptical coordinates. 

It continues with the adaptation of the Resonant Transmission Line method over the 

subsequent analysis in order to estimate the mode propagation constant 𝛽. As the 

analysis results to the appearance of harmonics which constitute critical components 

for the calculation of 𝛽, the chapter presents several approaches based on harmonics’ 

use cases, to produce the corresponding results. The RTL method is also used for the 

estimation of the mode propagation constant for cases of arbitrary index profiles. The 

chapter concludes with the presentation of the estimation of field components for the 

elliptical fiber.    

 Chapter 4 deals with the eccentricity problem and eccentric core fibers are defined. 

Eccentric core fibers are studied as a case that could be used for the analysis of the D-

fiber, whose core is of elliptical cross section. After the theoretical analysis involving 

the adaptation of Maxwell’s equations on the fiber’s geometry, the RTL method is 

applied in order to estimate the mode propagation constant 𝛽 in the case of eccentric 

fibers. The chapter concludes with result comparison for several cases of eccentricities.  

Chapter 5 presents a definition of the generic unconventional fiber and describes a 

method for the calculation of EM wave propagation properties. A different approach is 

presented that can be used for the estimation of various cases of ellipticity and/or 

eccentricity in the fiber core. The method described can be used instead of the 

harmonics’ inclusion method presented in chapter 3 for the study of elliptical core 
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fibers. Results are further presented calculating the mode propagation constant 𝛽 and 

are then compared to corresponding results using the method from chapter 3. Results 

from the calculation of birefringence using both methods are also compared.     

 In chapter 6, a review is presented, of the benefits of the described numerical 

methods compared with the existing theoretical/analytical methods, towards the 

estimation of key propagation properties for the elliptical fiber. Recommendations are 

made regarding future studies that could arise based on the described methods. 

Finally, a list is presented with applications based on elliptical fibers.  
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2 CHAPTER 2 

History and Theory of Elliptical Core Fibers  

 

2.1. Elliptical fibers history and usage 

In chapter one we referred to the application of optical fibers as a solution in the ever 

increasing need to transfer significant amounts of information across higher distances. 

The success of optical fibers communication systems lays in their effectiveness to 

achieve minimum loss combined with greater bandwidth while along wider repeater 

spacing. Throughout the evolution of the optical fibers with circular core, and under the 

efforts made to optimize their performance, studies were conducted to monitor the 

effect of alterations from circularity on the bandwidth of the system. One of the cases 

investigated was that of the elliptical fiber. Ironically, one of the main concerns in 

studying the elliptical fiber was not related to its properties and potential applications 

but rather to the effects of ellipticity as a deviation from cylindrical fibers’ circular 

section.  

Elliptical waveguides where initially studied in a research related to EM waves 

propagation inside elliptical metal pipes, by L.J. Chu[22] in "Electromagnetic waves in 

elliptic hollow pipes of metal.", 1938, but the first attempt to estimate the dispersion 

relation of an EM wave propagating inside an elliptical cylinder structure was made by 

Karbowiak [23] in 1954. In order to formulate the wave equation in elliptical 

coordinates, Karbowiak examined the elliptical cross-section Geubau line and 

Sommerfeld line. However, the solutions were obtained with boundary conditions 

matching merely at a single point on the surface, which was insufficient. Therefore the 

solutions could be treated only as an approximation for the case of low eccentricity. A 

similar research was presented by Lyubimov, et al. [24] in 1961 providing solutions 

over the properties of EM wave propagation, based on Mathieu functions. Despite the 

fact that the pre mentioned studies did not provide generic solutions for the boundary 

conditions on dielectric waveguides of elliptical cross section, they set the basis of the 

electromagnetic theoretical analysis, with Mathieu and modified Mathieu functions as 

the key tools for future research. In that context, C. Yeh [25], managed to utilize and 

expand the existing theoretical basis and provide updated and effective solutions over 
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the full boundary problem of a dielectric rod of elliptical cross section, using Mathieu 

Functions. Among the studies that followed, the specific case of an elliptical optical 

waveguide was investigated as a problematic malformation in cylindrical fibers by 

Dyott and Stern [26] and by Schlosser [27]. It was further concluded that using a broad 

ellipticity and an adequately high difference in the refractive index, leaded to separation 

of the fundamental modes’ propagation constants and allowed fibers to sustain 

polarization over significant distances [28], [29]. As an important feature in the study 

of propagation, the mode cutoff frequencies have also been studied [30, 31] and 

experimentally also in [32]. In the following sections of this chapter, works of Yeh and 

Dyott will be presented in detail, supporting a comprehensive analysis of the related 

EM theory. 

2.2. Study of EM Wave Propagation Within Dielectric Waveguides of 

Elliptical Cross-Section - Yeh’s analysis 

The properties and the characteristics of EM wave propagation within a dielectric rod 

of elliptical cross-section are associated to its’ distinct geometry. The Bessel functions 

that are used to describe propagation in cylindrical core fibers cannot be used in the 

case of the elliptical core. C. Yeh was not the first to use Mathieu functions to describe 

propagation in such a dielectric environment, but he was the first to provide the 

necessary terms under which boundary conditions can be fulfilled permitting further 

analysis [33].    

In Yeh’s analysis the problem is formulated on a properly defined (infinitely long, 

straight, isotropic and homogeneous) dielectric cylinder of elliptical cross section, 

situated inside an infinite dielectric medium. The medium’s properties are given: 

 dielectric constant 𝜀0 

 magnetic permeability 𝜇0 

The properties of the cylinder are also given: 

 dielectric constant 𝜀1 > 𝜀0 

 magnetic permeability 𝜇1 = 𝜇0 

Conductivity in the whole system is considered zero 
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Figure 2-1 Elliptical coordinate system  

In accordance to the geometrical nature of the problem, the elliptical cylinder 

coordinates (fig. 2.1) are introduced as follows: 

 𝜉 is the radial coordinate that describes a set of confocal ellipses 

 𝜂 is the azimuth coordinate that describes a set of hyperbolae, orthogonal to the 

ellipses.  

 𝑧 is the coordinate corresponding to the axis, parallel to the cylinder, to the 

direction of propagation.  

 𝑞 is the semifocal length of the ellipse.   

In terms of the Cartesian coordinates, the elliptical coordinates are defined as follows: 

{
𝑥 = 𝑞 cosh 𝜉 cos 𝜂
𝑦 = 𝑞 sinh 𝜉 sin 𝜂

𝑧 = 𝑧

                                                 (2.1) 

The boundary of the core is defined as 𝜉 = 𝜉0 while the semi-major and semi-minor 

axes of the core ellipse are defined as 𝑎 = 𝑞 cosh 𝜉0 and 𝑏 = 𝑞 sinh 𝜉0 respectively. 

Eccentricity e is given by 

𝑒 = [1 − (
𝑏

𝑎
)
2

]

1

2

=
1

cosh𝜉0
                                                  (2.2) 

Yeh proceeds to solve Maxwell’s equations in elliptical cylindrical coordinates. The 

initial equations in a source-free medium with properties of 𝜀 and 𝜇, are given by: 

∇ × 𝐸 = 𝑖𝜔𝜇𝐻     (2.3.a) 
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∇ × 𝐻 = −𝑖𝜔𝜀𝐸    (2.3.b) 

∇ ∙ 𝐻 = 0     (2.3.c) 

∇ ∙ 𝐸 = 0     (2.3.d) 

With 𝐸 and 𝐻 representing the electric and magnetic field vectors respectively. Using 

the elliptical coordinates, the field components are obtained: 

𝐸𝜉 =
1

(𝑘2−𝛽2)𝑝
{𝑖𝛽

𝜕𝐸𝑧

𝜕𝜉
+ 𝑖𝜔𝜇

𝜕𝐻𝑧

𝜕𝜂
}   (2.4.a) 

𝐸𝜂 =
1

(𝑘2−𝛽2)𝑝
{𝑖𝛽

𝜕𝐸𝑧

𝜕𝜂
+ 𝑖𝜔𝜇

𝜕𝐻𝑧

𝜕𝜉
}   (2.4.b) 

𝐻𝜉 =
1

(𝑘2−𝛽2)𝑝
{−𝑖𝜔𝜀

𝜕𝐸𝑧

𝜕𝜂
+ 𝑖𝛽

𝜕𝐻𝑧

𝜕𝜉
}   (2.4.c) 

𝐻𝜂 =
1

(𝑘2−𝛽2)𝑝
{−𝑖𝜔𝜀

𝜕𝐸𝑧

𝜕𝜉
+ 𝑖𝛽

𝜕𝐻𝑧

𝜕𝜂
}   (2.4.d) 

where, 𝑝 = 𝑞(sinh2 𝜉 + sinh2 𝜂)1 2⁄ ; while wave equations take the form:   

𝜕2𝐸𝑧

𝜕𝜉2
+
𝜕2𝐸𝑧

𝜕𝜂2
+ [𝑞2(𝑘2 − 𝛽2)(sinh2 𝜉 + sin2 𝜂)]𝐸𝑧 = 0                  (2.5) 

𝜕2𝐻𝑧

𝜕𝜉2
+
𝜕2𝐻𝑧

𝜕𝜂2
+ [𝑞2(𝑘2 − 𝛽2)(sinh2 𝜉 + sin2 𝜂)]𝐻𝑧 = 0                  (2.6) 

Where 𝑘2 = 𝜔2𝜇𝜀 and 𝛽 is the mode propagation constant  

Solving only one of the equations (2.5) and (2.6), is sufficient since they are both in 

the same form. Under the condition of 𝐻𝑧 = 0 or 𝐸𝑧 = 0, TM or TE waves result 

respectively.  

2.2.1. Obtaining Solutions for the Wave Equations 

Before introducing the Mathieu functions, the wave equation is slightly modified by 

substituting 𝐸𝑧 or 𝐻𝑧 with a generic factor 𝛬, thus leading to the following partial 

differential equation: 

 
𝜕2𝛬

𝜕𝜉2
+
𝜕2𝛬

𝜕𝜂2
+ [𝑞2(𝑘2 − 𝛽2)(sinh2 𝜉 + sin2 𝜂)]𝛬 = 0  (2.7) 

The solution of (2.7) is obtained by setting  
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𝛬(𝜉, 𝜂) = 𝑅(𝜉)𝛩(𝜂)     (2.8) 

Incorporating (2.8) in (2.7) and following separation of variables, equation (2.7) can 

be further split into two ordinary differential equations: 

𝑑2𝛩(𝜂)

𝑑𝜂2
+ (𝑐 − 2𝛾2 cos 2𝜂)𝛩(𝜂) = 0   (2.9) 

and 

𝑑2𝑅(𝜉)

𝑑𝜉2
+ (𝑐 − 2𝛾2 cosh 2𝜉)𝑅(𝜉) = 0  (2.10) 

Where 𝑐 is the separation constant and 𝛾2 = (𝑘2 − 𝛽2)𝑞2 4⁄  

The above relations (2.9), (2.10) are the Mathieu and modified Mathieu differential 

equations respectively and the later is formed from the former through the 

transformation 𝜂 = ±𝑖𝜉. It is noted that in the case of physically acceptable single-

valued EM fields, 𝛬(𝜉, 𝜂) must be a periodic function of 𝜂, with a period of 𝜋 or 2𝜋. 𝑐 

is the separation constant and a function of 𝛾2. When  𝛾2 ≠ 0, a 𝑐 value leads to 

merely a single periodic solution with 𝜂 being either even or odd. 

 The periodic solutions of the Mathieu and modified Mathieu differential equations 

are restricted by the boundary conditions and the characteristics of the regions on 

either side of the boundary, since in Yeh’s analysis, they represent the EM field of an 

elliptical dielectric cylinder. Region 1 is the area inside the dielectric cylinder where 

field components are finite. Region 0 is the area outside the dielectric cylinder where 

field components should approach zero. Consequently, the relations (2.5), (2.6) for 

each region become: 

Inside the cylinder 0 ≤ 𝜉 ≤ 𝜉0 (region 1) 

𝐻𝑧1(𝜉, 𝜂, 𝑧, 𝑡) = ∑ 𝐴𝑛𝐶𝑒𝑛(𝜉, 𝛾1
2)𝑐𝑒𝑛(𝜂, 𝛾1

2)∞
𝑛=0 𝑒−𝑖𝜔𝑡𝑒𝑖𝛽1𝑧 +

∑ 𝐴𝑛
′ 𝑆𝑒𝑛(𝜉, 𝛾1

2)𝑠𝑒𝑛(𝜂, 𝛾1
2)∞

𝑛=1 𝑒−𝑖𝜔𝑡𝑒𝑗𝛽1𝑧  (2.11) 

𝐸𝑧1(𝜉, 𝜂, 𝑧, 𝑡) = ∑ 𝐵𝑛
′𝐶𝑒𝑛(𝜉, 𝛾1

2)𝑐𝑒𝑛(𝜂, 𝛾1
2)∞

𝑛=0 𝑒−𝑖𝜔𝑡𝑒𝑖𝛽1𝑧 +

∑ 𝐵𝑛𝑆𝑒𝑛(𝜉, 𝛾1
2)𝑠𝑒𝑛(𝜂, 𝛾1

2)∞
𝑛=1 𝑒−𝑖𝜔𝑡𝑒𝑖𝛽1𝑧                    (2.12) 
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Outside the cylinder 𝜉0 ≤ 𝜉 ≤ ∞ (region 0)  

𝐻𝑧0(𝜉, 𝜂, 𝑧, 𝑡) = ∑ 𝐿𝑛𝐹𝑒𝑘𝑛(𝜉, |𝛾0
2|)𝑐𝑒𝑛

∗(𝜂, |𝛾0
2|)𝑒−𝑖𝜔𝑡∞

𝑛=0 𝑒𝑖𝛽0𝑧 +

∑ 𝐿𝑛
′ 𝐺𝑒𝑘𝑛(𝜉, |𝛾0

2|)𝑠𝑒𝑛
∗(𝜂, |𝛾0

2|)𝑒−𝑖𝜔𝑡∞
𝑛=1 𝑒𝑖𝛽0𝑧                     (2.13) 

𝐸𝑧0(𝜉, 𝜂, 𝑧, 𝑡) = ∑ 𝑃𝑛
′𝐹𝑒𝑘𝑛(𝜉, |𝛾0

2|)𝑐𝑒𝑛
∗(𝜂, |𝛾0

2|)𝑒−𝑖𝜔𝑡∞
𝑛=0 𝑒𝑖𝛽0𝑧 +

∑ 𝑃𝑛𝐺𝑒𝑘𝑛(𝜉, |𝛾0
2|)𝑠𝑒𝑛

∗(𝜂, |𝛾0
2|)𝑒−𝑖𝜔𝑡∞

𝑛=1 𝑒𝑖𝛽0𝑧                     (2.14) 

𝐴𝑛, 𝐴𝑛
′ , 𝐵𝑛, 𝐵𝑛

′ , 𝐿𝑛, 𝐿𝑛
′ , 𝑃𝑛, 𝑃𝑛

′ are coefficients associated with the boundary conditions 

and constitute functions of  𝑛,𝜔, 𝛾1
2, |𝛾0

2|. These coefficients are also related to the 

nature of the exciting source and are independent of the coordinates. 

𝛾1
2, |𝛾0

2| are given by 𝛾1
2 = (𝑘1

2 − 𝛽1
2)𝑞2 4⁄  and 𝛾0

2 = |(𝑘0
2 − 𝛽0

2)𝑞2 4⁄ |.  

𝑘1
2 = 𝜔2𝜇𝜀1 and 𝑘0

2 = 𝜔2𝜇𝜀0 

𝜀1 is the dielectric constant of the cylinder. 

𝜀0 is the dielectric constant of the surrounding medium. 

𝜉 = 𝜉0 is the surface of the elliptic cylinder 

2.2.2. Simplification of Boundary Conditions with Mathieu Functions 

Boundary conditions in EM wave theory provide the necessary relations for solving the 

wave propagation problem. Solutions must be single valued and finite while satisfying 

the free of source Maxwell’s equations and the boundary conditions. According to the 

boundary conditions, the tangential components of the electric and magnetic fields are 

continuous through any surface, which in the current case of elliptical cylindrical 

coordinates, this translates to the following set of relations: 

 𝐸𝑧1 = 𝐸𝑧0     (2.15) 

𝐻𝑧1 = 𝐻𝑧0     (2.16) 

𝐸𝜂1 = 𝐸𝜂0     (2.17) 

𝐻𝜂1 = 𝐻𝜂0     (2.18) 
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In order to demonstrate the complexity and the difficulties arising from satisfying the 

boundary conditions, Yeh proceeds with applying the predefined wave equations 

(2.12), (2.14) on the first continuity condition 𝐸𝑧1 = 𝐸𝑧0, in the elliptical cylindrical 

coordinates. 

∑𝐵𝑛
′𝐶𝑒𝑛(𝜉, 𝛾1

2)𝑐𝑒𝑛(𝜂, 𝛾1
2)

∞

𝑛=0

𝑒𝑖𝛽1𝑧 +∑𝐵𝑛𝑆𝑒𝑛(𝜉, 𝛾1
2)𝑠𝑒𝑛(𝜂, 𝛾1

2)

∞

𝑛=1

𝑒𝑖𝛽1𝑧

=∑𝑃𝑟
′𝐹𝑒𝑘𝑟(𝜉, |𝛾0

2|)𝑐𝑒𝑟
∗(𝜂, |𝛾0

2|)

∞

𝑛=0

𝑒𝑖𝛽0𝑧

+∑𝑃𝑟𝐺𝑒𝑘𝑟(𝜉, |𝛾0
2|)𝑠𝑒𝑟

∗(𝜂, |𝛾0
2|)

∞

𝑛=1

𝑒𝑖𝛽0𝑧 

(2.19) 

The analysis reaches a point where the equations involved, include an infinite number 

of arbitrary constants, requiring a corresponding number of linear algebraic relations. 

Consequently, it is apparent that satisfying the boundary conditions, would require and 

infinite number of Mathieu functions in order to describe the fields in the areas in either 

side of the boundary – inside and outside of the cylinder.  

In order to overcome the difficulty involved with the analysis, Yeh proposed the 

assumption that the field configurations in one medium can be expressed by one single 

term of the Mathieu function, while the field configurations in the other medium could 

be expressed by an infinite series of Mathieu functions, [34]. The exact method 

proposed shall be presented analytically later, in the section referring to the calculation 

of the field components of the principal modes.  

2.2.3. Mode classifications for elliptical waveguides 

Unlike in circularly symmetrical waves (where the field is a function of the angular 

coordinates), in the case of the elliptical waveguide, 𝐸 and 𝑀 waves must both exist in 

order for the boundary conditions to be satisfied. In that context, the asymmetrical 

waves inside an elliptical waveguide are expressed by 𝐻𝐸𝑚𝑛 and 𝐸𝐻𝑚𝑛 depending on 

whether the cross-section field pattern resembles that of an 𝐻 or a 𝐸 wave respectively. 

At this point it should be noted that modes must all be hybrid, in the sense that no pure 

𝑇𝐸 or 𝑇𝑀 waves can exist inside and elliptical waveguide. Yeh’s analysis is further 
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restricted to the study of principal modes, defined as the modes that, when eccentricity 

approaches zero, they gradually degenerate to the hybrid 𝐻𝐸𝑚𝑛. In their final form, the 

principal modes’ notation will be 𝐻𝐸𝑒
 

𝑚𝑛
(1,0)

 and 𝐻𝐸𝑜
 

𝑚𝑛
(1,0)

 for even and odd modes 

respectively. When a mode is even, the axial magnetic and electric fields within, are 

expressed by an even and odd Mathieu function respectively. Similarly, for an odd 

mode, the axial magnetic and electric fields within, are expressed by an odd and even 

Mathieu function respectively [33]. 𝑚 denotes the order of the Mathieu function 

representing the single product term, while 𝑛 denotes the nth root of the characteristic 

equation. The 0,1 superscripts indicate the region inside or outside, related to, within 

what region a single product term was used to express the field configuration.  

 

Figure 2-2 Visual representation of even 𝑯𝑬𝒆
 

𝟏𝟏
(𝟏)

 and odd 𝑯𝑬𝒐
 

𝟏𝟏
(𝟏)

 modes and the course of the 

electric lines, left and right respectively [33] 

The above visual representation (Figure 2-2) helps understand the geometrical 

differences between even and odd variations of the fundamental mode in 3 dimensions.  

2.2.4. Derivation of principal modes’ field components and 

characteristic equations 

Defining the field components and applying the boundary conditions will lead to the 

necessary characteristic equations for the principal modes which in turn provide the 

values of the propagation constants. The methods and assumptions required to simplify 

the problem to a point of feasibility are already presented in Yeh’s analysis and are 
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applied in the following section to obtain the solutions. Initially, Mathieu and modified 

Mathieu function notations are simplified as follows: 

𝐶𝑒𝑚(𝜉) = 𝐶𝑒𝑚(𝜉, 𝛾1
2)    𝑐𝑒𝑚(𝜂) = 𝑐𝑒𝑚(𝜂, 𝛾1

2) 

𝑆𝑒𝑚(𝜉) = 𝑆𝑒𝑚(𝜉, 𝛾1
2)   𝑠𝑒𝑚(𝜂) = 𝑠𝑒𝑚(𝜂, 𝛾1

2) 

𝐹𝑒𝑘𝑟(𝜉) = 𝐹𝑒𝑘𝑟(𝜉, |𝛾0
2|)   𝑐𝑒𝑟

∗(𝜂) = 𝑐𝑒𝑟
∗(𝜂, |𝛾0

2|) 

𝐺𝑒𝑘𝑟(𝜉) = 𝐺𝑒𝑘𝑟(𝜉, |𝛾0
2|)   𝑠𝑒𝑟

∗(𝜂) = 𝑠𝑒𝑟
∗(𝜂, |𝛾0

2|) 

The following four types of principal modes are considered, according to the notation 

described in section 2.2.3:  

𝐻𝐸𝑒
 

𝑚𝑛
(1)

 

𝐻𝐸𝑒
 

𝑚𝑛
(0)

 

𝐻𝐸𝑜
 

𝑚𝑛
(1)

 

𝐻𝐸𝑜
 

𝑚𝑛
(0)

 

Beginning with the 𝐻𝐸𝑒
 

𝑚𝑛
(1)
  mode, the magnetic and electric fields’ axial components 

for region 1, are given by: 

{
𝐻𝑧1 = 𝐴𝑚𝐶𝑒𝑚(𝜉)𝑐𝑒𝑚(𝜂)𝑒

𝑖𝛽1𝑧

𝐸𝑧1 = 𝐵𝑚𝑆𝑒𝑚(𝜉)𝑠𝑒𝑚(𝜂)𝑒
𝑖𝛽1𝑧

  (0 ≤ 𝜉 ≤ 𝜉0)   (2.20) 

and for region 0 by 

{
𝐻𝑧0 = ∑ 𝐿𝑟𝐹𝑒𝑘𝑟(𝜉)𝑐𝑒𝑟

∗(𝜂)∞
𝑟=0 𝑒𝑖𝛽0𝑧

𝐸𝑧0 = ∑ 𝑃𝑟𝐺𝑒𝑘𝑟(𝜉)𝑠𝑒𝑟
∗(𝜂)∞

𝑟=1 𝑒𝑖𝛽0𝑧
  (𝜉0 ≤ 𝜉 ≤ ∞)  (2.21)  

where 𝐴𝑚, 𝐵𝑚, 𝐿𝑚, 𝑃𝑚, are arbitrary constants. In the above relations the harmonic time 

dependence 𝑒−𝑖𝜔𝑡 is implied and so are the related expressions for the field intensities 

[33]. The pair of equations (2.20), combined with the four equations (2.4.a - d), produce 

(after the differentiation is performed) the transverse field components for region 1: 

𝐻𝜉1 =
𝑖𝛽

(𝑘1
2−𝛽2)𝑝

{𝐴𝑚𝐶𝑒
′
𝑚(𝜉)𝑐𝑒𝑚(𝜂) −

𝜔𝜀1

𝛽
𝐵𝑚𝑆𝑒𝑚(𝜉)𝑠𝑒

′
𝑚(𝜂)} 𝑒

𝑖𝛽1𝑧 (2.22) 
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𝐻𝜂1 =
𝑖𝛽

(𝑘1
2−𝛽2)𝑝

{𝐴𝑚𝐶𝑒𝑚(𝜉)𝑐𝑒
′
𝑚(𝜂) +

𝜔𝜀1

𝛽
𝐵𝑚𝑆𝑒

′
𝑚(𝜉)𝑠𝑒𝑚(𝜂)} 𝑒

𝑖𝛽1𝑧 (2.23) 

𝐸𝜉1 =
𝑖𝛽

(𝑘1
2−𝛽2)𝑝

{
𝜔𝜇

𝛽
𝐴𝑚𝐶𝑒𝑚(𝜉)𝑐𝑒

′
𝑚(𝜂) + 𝐵𝑚𝑆𝑒

′
𝑚(𝜉)𝑠𝑒𝑚(𝜂)} 𝑒

𝑖𝛽1𝑧 (2.24) 

𝐸𝜂1 =
𝑖𝛽

(𝑘1
2−𝛽2)𝑝

{−
𝜔𝜇

𝛽
𝐴𝑚𝐶𝑒

′
𝑚(𝜉)𝑐𝑒𝑚(𝜂) + 𝐵𝑚𝑆𝑒𝑚(𝜉)𝑠𝑒

′
𝑚(𝜂)} 𝑒

−𝛽1𝑧 (2.25) 

where 𝑘1
2 = 𝜔2𝜇𝜀1 and 𝑝 = 𝑞(sinh2 𝜉 + sinh2 𝜂)1 2⁄ . 

In a similar way, substituting the pair of equations (2.21) into the group (2.4.a - d), 

leads to the field components of region 0: 

𝐻𝜉0 =
𝑖𝛽

(𝑘0
2−𝛽2)𝑝

∑ [𝐿𝑟𝐹𝑒𝑘
′
𝑟(𝜉)𝑐𝑒𝑟

∗(𝜂) −
𝜔𝜀0

𝛽
𝑃𝑟𝐺𝑒𝑘𝑟(𝜉)𝑠𝑒𝑟

∗′(𝜂)]∞
𝑟=0 𝑒𝑖𝛽0𝑧 (2.26) 

𝐻𝜂0 =
𝑖𝛽

(𝑘0
2−𝛽2)𝑝

∑ [𝐿𝑟𝐹𝑒𝑘𝑟(𝜉)𝑐𝑒𝑟
∗′(𝜂) +

𝜔𝜀0

𝛽
𝑃𝑟𝐺𝑒𝑘

′
𝑟(𝜉)𝑠𝑒𝑟

∗(𝜂)]∞
𝑟=1 𝑒𝑖𝛽0𝑧 (2.27) 

𝐸𝜉0 =
𝑖𝛽

(𝑘0
2−𝛽2)𝑝

∑ [
𝜔𝜀0

𝛽
𝐿𝑟𝐹𝑒𝑘𝑟(𝜉)𝑐𝑒𝑟

∗′(𝜂) + 𝑃𝑟𝐺𝑒𝑘
′
𝑟(𝜉)𝑠𝑒𝑟

∗(𝜂)]∞
𝑟=1 𝑒𝑖𝛽0𝑧 (2.28) 

𝐸𝜂0 =
𝑖𝛽

(𝑘0
2−𝛽2)𝑝

∑ [−
𝜔𝜀0

𝛽
𝐿𝑟𝐹𝑒𝑘

′
𝑟(𝜉)𝑐𝑒𝑟

∗(𝜂) + 𝑃𝑟𝐺𝑒𝑘𝑟(𝜉)𝑠𝑒𝑟
∗′(𝜂)]∞

𝑟=0 𝑒𝑖𝛽0𝑧 (2.29) 

where 𝑘0
2 = 𝜔2𝜇𝜀0. It is noted that as the orthogonality of Mathieu functions dictates 

[34], when 𝑚 is odd, then so must be 𝑟. This means that for 𝑚 odd, the series are 

summed over all the odd values of 𝑟 [33].  

The next step of Yeh’s analysis follows with the application of the boundary 

conditions on the surface of the cylinder where 𝜉 = 𝜉0. Equation of the tangential 

electric and magnetic fields 𝐻𝑧 , 𝐸𝑧 , 𝐻𝜂 , 𝐸𝜂, leads to:  

𝐴𝑚𝐶𝑒𝑚(𝜉0)𝑐𝑒𝑚(𝜂)𝑒
𝑖𝛽1𝑧 = ∑ 𝐿𝑟𝐹𝑒𝑘𝑟(𝜉0)𝑐𝑒𝑟

∗(𝜂)∞
𝑟=1
𝑜𝑑𝑑

𝑒𝑖𝛽0𝑧 (2.30) 

𝐵𝑚𝑆𝑒𝑚(𝜉0)𝑠𝑒𝑚(𝜂)𝑒
𝑖𝛽1𝑧 = ∑ 𝑃𝑟𝐺𝑒𝑘𝑟(𝜉0)𝑠𝑒𝑟

∗(𝜂)∞
𝑟=1
𝑜𝑑𝑑

𝑒𝑖𝛽0𝑧 (2.31) 

𝛽1

(𝑘1
2−𝛽1

2)𝑝
[𝐴𝑚𝐶𝑒𝑚(𝜉0)𝑐𝑒

′
𝑚(𝜂) +

𝜔𝜀1

𝛽1
𝐵𝑚𝑆𝑒

′
𝑚(𝜉0)𝑠𝑒𝑚(𝜂)] 𝑒

𝑖𝛽1𝑧 =

𝛽0

(𝑘0
2−𝛽0

2)𝑝
∑ [𝐿𝑟𝐹𝑒𝑘𝑟(𝜉0)𝑐𝑒𝑟

∗′(𝜂) +
𝜔𝜀0

𝛽0
𝑃𝑟𝐺𝑒𝑘

′
𝑟(𝜉0)𝑠𝑒𝑟

∗(𝜂)]∞
𝑟=1
𝑜𝑑𝑑

𝑒𝑖𝛽0𝑧 (2.32) 
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𝛽1

(𝑘1
2−𝛽1

2)𝑝
[−𝐴𝑚

𝜔𝜇

𝛽1
𝐶𝑒′𝑚(𝜉0)𝑐𝑒𝑚(𝜂) + 𝐵𝑚𝑆𝑒𝑚(𝜉0)𝑠𝑒

′
𝑚(𝜂)] 𝑒

𝑖𝛽1𝑧 =

𝛽0

(𝑘0
2−𝛽0

2)𝑝
∑ [−𝐿𝑟

𝜔𝜇

𝛽0
𝐹𝑒𝑘′𝑟(𝜉0)𝑐𝑒𝑟

∗(𝜂) + 𝑃𝑟𝐺𝑒𝑘𝑟(𝜉0)𝑠𝑒𝑟
∗′(𝜂)]∞

𝑟=1
𝑜𝑑𝑑

𝑒𝑖𝛽0𝑧 (2.33) 

At this point the following operations take place: 

 𝛽 = 𝛽0 = 𝛽1 

 elimination of 𝑐𝑒𝑟
∗′(𝜂) and 𝑠𝑒𝑟

∗′(𝜂) via relations (2.30), (2.31) 

 elimination of dependence in 𝜂  

 multiplication of relations (2.30), (2.33) with 𝑐𝑒𝑠(𝜂) 

 multiplication of relations (2.31), (2.32) with 𝑠𝑒𝑠(𝜂) 

 integration as per 𝜂 from 0 to 2π 

which eventually lead to  

𝐴𝑚𝐶𝑒𝑚(𝜉0)𝑒𝑚𝑠𝐶𝑚 = ∑ 𝐿𝑟𝐹𝑒𝑘𝑟(𝜉0)
∞
𝑟=1
𝑜𝑑𝑑

𝛼𝑟𝑠  (2.34) 

𝐵𝑚𝑆𝑒𝑚(𝜉0)𝑒𝑚𝑠𝑆𝑚 = ∑ 𝑃𝑟𝐺𝑒𝑘𝑟(𝜉0)
∞
𝑟=1
𝑜𝑑𝑑

𝛽𝑟𝑠  (2.35) 

𝐴𝑚 [1 −
𝑘1

2−𝛽2

𝑘0
2−𝛽2

] 𝐶𝑒𝑚(𝜉0)𝛸𝑚𝑠 +
𝜔𝜀1

𝛽
𝐵𝑚𝑆𝑒

′
𝑚(𝜉0)𝑒𝑚𝑠𝑆𝑚 =

(
𝑘1

2−𝛽2

𝑘0
2−𝛽2

)
𝜔𝜀1

𝛽
∑ 𝑃𝑟𝐺𝑒𝑘

′
𝑟(𝜉0)

∞
𝑟=1
𝑜𝑑𝑑

𝛽𝑟𝑠   (2.36) 

𝐴𝑚
𝜔𝜇

𝛽
 𝐶𝑒′𝑚(𝜉0)𝑒𝑚𝑠𝐶𝑚 − 𝛣𝑚 [1 −

𝑘1
2−𝛽2

𝑘0
2−𝛽2

]  𝑆𝑒𝑚(𝜉0)𝛿𝑚𝑠 =

(
𝑘1

2−𝛽2

𝑘0
2−𝛽2

)
𝜔𝜇

𝛽
∑ 𝐿𝑟𝐹𝑒𝑘

′
𝑟(𝜉0)

∞
𝑟=1
𝑜𝑑𝑑

𝛼𝑟𝑠   (2.37) 

where 𝑠 = 1,3,5,7,9, … , 𝑒𝑚𝑠, 𝐶𝑚, 𝑆𝑚, 𝛼𝑟𝑠, 𝛽𝑟𝑠, 𝛿𝑚𝑠, 𝛸𝑚𝑠,  are given by: 

𝑒𝑚𝑠 = 1 for 𝑚 = 𝑠 

𝑒𝑚𝑠 = 0 for 𝑚 ≠ 𝑠 

𝐶𝑚 = ∫ 𝑐𝑒𝑚
2 (𝜂)𝑑𝑛

2𝜋

0

 

𝑆𝑚 = ∫ 𝑠𝑒𝑚
2 (𝜂)𝑑𝑛

2𝜋

0
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𝛼𝑟𝑠 = ∫ 𝑐𝑒𝑟
∗(𝜂)𝑐𝑒𝑠(𝜂)𝑑𝑛

2𝜋

0

 

 𝛽𝑟𝑠 = ∫ 𝑠𝑒𝑟
∗(𝜂)𝑠𝑒𝑠(𝜂)𝑑𝑛

2𝜋

0

 

𝛿𝑚𝑠 = ∫ 𝑠𝑒𝑚
′ (𝜂)𝑐𝑒𝑠(𝜂)𝑑𝑛

2𝜋

0

 

𝛸𝑚𝑠 = ∫ 𝑐𝑒𝑟
′(𝜂)𝑠𝑒𝑠(𝜂)𝑑𝑛

2𝜋

0

 

Further information about the above integrals is given in Appendix B. In Yeh’s analysis, 

it is also noted that every value of 𝑚 corresponds to four infinite series of linear 

algebraic relations whose combination provides the following relations:  

𝐴𝑚𝐶𝑒𝑚(𝜉0) = 𝐿𝑚𝐹𝑒𝑘𝑚(𝜉0)𝑀𝑚(𝛼𝑟𝑠)   (2.38) 

𝐵𝑚𝑆𝑒𝑚(𝜉0) = 𝑃𝑚𝐺𝑒𝑘𝑚(𝜉0)𝑁𝑚(𝛽𝑟𝑠)   (2.39) 

𝐴𝑚 [1 −
𝑘1

2−𝛽2

𝑘0
2−𝛽2

] 𝐶𝑒𝑚(𝜉0) 𝑄𝑚(𝛽𝑟𝑠, 𝛸𝑚𝑠) +
𝜔𝜀1

𝛽
𝐵𝑚𝑆𝑒

′
𝑚(𝜉0) =

(
𝑘1

2−𝛽2

𝑘0
2−𝛽2

)
𝜔𝜀0

𝛽
𝑃𝑚𝐺𝑒𝑘

′
𝑚(𝜉0)𝑁𝑚(𝛽𝑟𝑠)   (2.40) 

𝐴𝑚
𝜔𝜇

𝛽
 𝐶𝑒′𝑚(𝜉0) − 𝛣𝑚 [1 −

𝑘1
2−𝛽2

𝑘0
2−𝛽2

]  𝑆𝑒𝑚(𝜉0)𝑅𝑚(𝛼𝑟𝑠, 𝛿𝑚𝑠) =

(
𝑘1

2−𝛽2

𝑘0
2−𝛽2

)
𝜔𝜇

𝛽
𝐿𝑚𝐹𝑒𝑘

′
𝑚(𝜉0)𝑀𝑚(𝛼𝑟𝑠)   (2.41) 

𝐴𝑚, 𝐵𝑚, 𝐿𝑚, 𝑃𝑚, are coefficients and only their ratios can be obtained, to provide 

coupling factors between them. The constants 

𝑀𝑚(𝛼𝑟𝑠),𝑁𝑚(𝛽𝑟𝑠), 𝑄𝑚(𝛽𝑟𝑠, 𝛸𝑚𝑠), 𝑅𝑚(𝛼𝑟𝑠, 𝛿𝑚𝑠), are obtained through a method that is 

demonstrated in the following example: 

Let the mode 𝑚 = 1. The constants are defined as 
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𝑀1(𝛼𝑟𝑠) =

|
𝛼33 𝛼53 ⋯
𝛼35 𝛼55 ⋯
⋯ ⋯ ⋯

|

|

𝛼11 𝛼31 𝛼51 ⋯

𝛼13 𝛼33 𝛼53 ⋯
𝛼15
⋯

𝛼35
⋯

𝛼55
⋯

⋯
⋯

|

 ∙  
1

𝐶1
 

𝑁1(𝛽𝑟𝑠) =

|
𝛽33 𝛽53 ⋯
𝛽35 𝛽55 ⋯
⋯ ⋯ ⋯

|

|

𝛽11 𝛽31 𝛽51 ⋯

𝛽13 𝛽33 𝛽53 ⋯

𝛽15
⋯

𝛽35
⋯

𝛽55
⋯

⋯
⋯

|

∙  
1

𝑆1
 

𝑄1(𝛽𝑟𝑠, 𝑋1𝑠) =

{
 
 
 

 
 
 

𝑋11 − 𝑋13

|
𝛽31 𝛽51 ⋯
𝛽35 𝛽55 ⋯
⋯ ⋯ ⋯

|

|
𝛽33 𝛽53 ⋯
𝛽35 𝛽55 ⋯
⋯ ⋯ ⋯

|

+ 𝑋15

|

𝛽31 𝛽51 ⋯
𝛽33 𝛽53 ⋯
𝛽37
⋯

𝛽57
⋯

⋯
⋯

|

|
𝛽33 𝛽53 ⋯
𝛽35 𝛽55 ⋯
⋯ ⋯ ⋯

|

+⋯

}
 
 
 

 
 
 

∙  
1

𝑆1
 

𝑅1(𝛼𝑟𝑠, 𝛿1𝑠) =

{
  
 

  
 

𝛿11 − 𝛿13

|
𝛼31 𝛼51 ⋯
𝛼35 𝛼55 ⋯
⋯ ⋯ ⋯

|

|
𝛼33 𝛼53 ⋯
𝛼35 𝛼55 ⋯
⋯ ⋯ ⋯

|

+ 𝛿15

|

𝛼31 𝛼51 ⋯
𝛼33 𝛼53 ⋯
𝛼37
⋯

𝛼57
⋯

⋯
⋯

|

|
𝛼33 𝛼53 ⋯
𝛼35 𝛼55 ⋯
⋯ ⋯ ⋯

|

+⋯

}
  
 

  
 

∙  
1

𝐶1
 

In the above relations 𝐶1 = ∫ 𝑐𝑒1
2(𝜂)𝑑𝑛

2𝜋

0
 and 𝑆1 = ∫ 𝑠𝑒1

2(𝜂)𝑑𝑛
2𝜋

0
. The infinite 

determinants involved, can be solved by the method of successive approximations. In 

order to reach a non-trivial solution, the determinant of the set of equations (2.38)-

(2.41) must equal to zero: 

|

𝐹11 0 𝐹13 0

0 𝐹22 0 𝐹24
𝐹31
𝐹41

𝐹32
𝐹42

0
𝐹43

𝐹34
0

| = 0    (2.42) 

where  

𝐹11 = 𝐶𝑒𝑚(𝜉0) 
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𝐹13 = −𝐹𝑒𝑘𝑚(𝜉0)𝑀𝑚(𝛼𝑟𝑠) 

𝐹22 = 𝑆𝑒𝑚(𝜉0) 

𝐹24 = −𝐺𝑒𝑘𝑚(𝜉0)𝑁𝑚(𝛽𝑟𝑠) 

𝐹31 = [1 −
𝑘1

2 − 𝛽2

𝑘0
2 − 𝛽2

] 𝐶𝑒𝑚(𝜉0) 𝑄𝑚(𝛽𝑟𝑠, 𝛸𝑚𝑠) 

𝐹32 =
𝜔𝜀1
𝛽
𝑆𝑒′𝑚(𝜉0) 

𝐹34 = (
𝑘1

2 − 𝛽2

𝑘0
2 − 𝛽2

)
𝜔𝜀0
𝛽
𝐺𝑒𝑘′𝑚(𝜉0) 𝑁𝑚(𝛽𝑟𝑠) 

𝐹41 =
𝜔𝜇

𝛽
 𝐶𝑒′𝑚(𝜉0) 

𝐹42 = − [1 −
𝑘1

2 − 𝛽2

𝑘0
2 − 𝛽2

]  𝑆𝑒𝑚(𝜉0)𝑅𝑚(𝛼𝑟𝑠, 𝛿𝑚𝑠) 

𝐹43 = (
𝑘1

2 − 𝛽2

𝑘0
2 − 𝛽2

)
𝜔𝜇

𝛽
𝐹𝑒𝑘′𝑚(𝜉0)𝑀𝑚(𝛼𝑟𝑠) 

From (2.42) and after setting  

𝑥2 = 𝑞2 cosh2 𝜉0 (𝑘1
2 − 𝛽2) 

𝑦2 = −𝑞2 cosh2 𝜉0 (𝑘0
2 − 𝛽2) 

the transcendental characteristic equation of mode 𝐻𝐸𝑒
 

𝑚𝑛
(1)

can be obtained: 

[
1

𝑥2
𝐶𝑒′𝑚(𝜉0)

𝐶𝑒𝑚(𝜉0)
+

1

𝑦2
𝐹𝑒𝑘′𝑚(𝜉0)

𝐹𝑒𝑘𝑚(𝜉0)
] [

1

𝑥2
𝑆𝑒′𝑚(𝜉0)

𝑆𝑒𝑚(𝜉0)
+

1

𝑦2
𝜀0

𝜀1

𝐺𝑒𝑘′𝑚(𝜉0)

𝐺𝑒𝑘𝑚(𝜉0)
] +

(𝑥2+𝑦2)(𝑥2
𝜀0
𝜀1
+𝑦2)

𝑥4𝑦4
𝑅𝑚(𝛼𝑟𝑠, 𝛿𝑚𝑠)𝑄𝑚(𝛽𝑟𝑠, 𝑋𝑚𝑠) = 0 (2.43) 

Also by 𝛽0 = 𝛽1 the following relation is obtained: 

𝑥2 + 𝑦2 = 𝑘0
2𝑞2 cosh2 𝜉0 (

𝜀1

𝜀0
− 1)    (2.44) 
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The transcendental characteristic equation can be used together with relation (2.44) to 

calculate the propagation constant 𝛽 depending on the frequency, the dimensions of the 

waveguide, the eccentricity, the EM constants of the subsequent media and the order of 

the subsequent mode [33]. The pair of relations (2.43) and (2.44) are also referred to as 

the dispersion relations for the propagation constant. Also, the pre-mentioned ratios 

among the arbitrary constants are used to indicate the coupling between amplitude and 

phase in various field components [33].  

Similar to the above analysis, the solutions for the remaining principal modes can be 

obtained.  

For 𝐻𝐸𝑒
 

𝑚𝑛
(0)

 the transcendental characteristic equation is  

[
1

𝑥2
𝐶𝑒′𝑚(𝜉0)

𝐶𝑒𝑚(𝜉0)
+

1

𝑦2
𝐹𝑒𝑘′𝑚(𝜉0)

𝐹𝑒𝑘𝑚(𝜉0)
] [

1

𝑥2
𝑆𝑒′𝑚(𝜉0)

𝑆𝑒𝑚(𝜉0)
+

1

𝑦2
𝜀0

𝜀1

𝐺𝑒𝑘′𝑚(𝜉0)

𝐺𝑒𝑘𝑚(𝜉0)
] +

(𝑥2+𝑦2)(𝑥2
𝜀0
𝜀1
+𝑦2)

𝑥4𝑦4
𝑅∗𝑚(𝛼

∗
𝑟𝑠, 𝛿

∗
𝑚𝑠)𝑄

∗
𝑚(𝛽

∗
𝑟𝑠
, 𝑋∗𝑚𝑠) = 0 (2.45) 

where 𝑅∗𝑚(𝛼
∗
𝑟𝑠, 𝛿

∗
𝑚𝑠), 𝑄

∗
𝑚(𝛽

∗
𝑟𝑠
, 𝑋∗𝑚𝑠) are calculated similarly to 

𝑅𝑚(𝛼𝑟𝑠, 𝛿𝑚𝑠), 𝑄𝑚(𝛽𝑟𝑠, 𝛸𝑚𝑠) which were evaluated previously for 𝐻𝐸𝑒
 

𝑚𝑛
(1)

 

For 𝐻𝐸𝑜
 

𝑚𝑛
(1)

 the transcendental characteristic equation is  

[
1

𝑥2
𝑆𝑒′𝑚(𝜉0)

𝑆𝑒𝑚(𝜉0)
+

1

𝑦2
𝐺𝑒𝑘′𝑚(𝜉0)

𝐺𝑒𝑘𝑚(𝜉0)
] [

1

𝑥2
𝐶𝑒′𝑚(𝜉0)

𝐶𝑒𝑚(𝜉0)
+

1

𝑦2
𝜀0

𝜀1

𝐹𝑒𝑘′𝑚(𝜉0)

𝐹𝑒𝑘𝑚(𝜉0)
] +

(𝑥2+𝑦2)(𝑥2
𝜀0
𝜀1
+𝑦2)

𝑥4𝑦4
𝑅𝑚(𝛼𝑟𝑠, 𝛿𝑚𝑠)𝑄𝑚(𝛽𝑟𝑠, 𝑋𝑚𝑠) = 0 (2.46) 

For 𝐻𝐸𝑜
 

𝑚𝑛
(0)

 the transcendental characteristic equation is  

[
1

𝑥2
𝑆𝑒′𝑚(𝜉0)

𝑆𝑒𝑚(𝜉0)
+

1

𝑦2
𝐺𝑒𝑘′𝑚(𝜉0)

𝐺𝑒𝑘𝑚(𝜉0)
] [

1

𝑥2
𝐶𝑒′𝑚(𝜉0)

𝐶𝑒𝑚(𝜉0)
+

1

𝑦2
𝜀0

𝜀1

𝐹𝑒𝑘′𝑚(𝜉0)

𝐹𝑒𝑘𝑚(𝜉0)
] +

(𝑥2+𝑦2)(𝑥2
𝜀0
𝜀1
+𝑦2)

𝑥4𝑦4
𝑅∗𝑚(𝛼

∗
𝑟𝑠, 𝛿

∗
𝑚𝑠)𝑄

∗
𝑚(𝛽

∗
𝑟𝑠
, 𝑋∗𝑚𝑠) = 0 (2.47) 

2.2.5. Important notes in Yeh’s analysis 

Comparing the dispersion relations between the modes 𝐻𝐸𝑒
 

𝑚𝑛
(1)

 and 𝐻𝐸𝑒
 

𝑚𝑛
(0)

 and 

between 𝐻𝐸𝑜
 

𝑚𝑛
(1)

 and 𝐻𝐸𝑜
 

𝑚𝑛
(0)

, it can be noticed that the only difference lays in the 

products 𝑅𝑚(𝛼𝑟𝑠, 𝛿𝑚𝑠)𝑄𝑚(𝛽𝑟𝑠, 𝑋𝑚𝑠) and 𝑅∗𝑚(𝛼
∗
𝑟𝑠, 𝛿

∗
𝑚𝑠)𝑄

∗
𝑚(𝛽

∗
𝑟𝑠
, 𝑋∗𝑚𝑠). Except 
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for the case when 𝜉0 = ∞, these products do not coincide numerically. Nevertheless, 

there is a region when 𝑚 = 1 and 𝑛 = 1, where the two products’ values are almost 

identical. In that region the modes 𝐻𝐸𝑒
 

𝑚𝑛
(1)

 - 𝐻𝐸𝑒
 

𝑚𝑛
(0)

, and 𝐻𝐸𝑜
 

𝑚𝑛
(1)

 - 𝐻𝐸𝑜
 

𝑚𝑛
(0)

 could be 

considered degenerate, sharing the same propagation constant.  

When it comes to the numerical analysis of the dominant modes, and especially the 

solutions of the characteristic equations, it has been shown that the constants (i.e. 

𝑄𝑚(𝛽𝑟𝑠, 𝛸𝑚𝑠), 𝑅𝑚(𝛼𝑟𝑠, 𝛿𝑚𝑠) for 𝐻𝐸𝑒
 

𝑚𝑛
(1)

) involved in the solutions are given by sets of 

infinite determinants. For these determinants, the method of successive approximations 

is used. For a value of 𝜉0 close to 3, eccentricity is reduced and the rod becomes more 

similar to a cylinder of circular cross section. It has been numerically estimated that for 

such a case of small eccentricity, less terms of expansions are needed to determine the 

value of constants 𝑄𝑚(𝛽𝑟𝑠, 𝛸𝑚𝑠), 𝑅𝑚(𝛼𝑟𝑠, 𝛿𝑚𝑠) (for 𝐻𝐸𝑒
 

𝑚𝑛
(1)

) and the problem becomes 

simplified by using a “3-term approximation” [33]. However, for eccentricity values 

equivalent to a flatter elliptical cross-section, then the constants’ product becomes 

significantly prevalent requiring the involvement of more computations and the 3-level 

approximation is no longer sufficient in terms of accuracy. The method proposed and 

used in Yeh’s analysis is limited to values of ∞ ≤ 𝜉0 ≤ 0.5.  

C. Yeh in his analysis proceeds to determine the cutoff frequencies of the dominant 

modes, even and odd alike. The analysis concludes that in the case of the elliptical 

waveguide, the modes 𝐻𝐸𝑒
 

𝑚𝑛
(1)

 and 𝐻𝐸𝑜
 

𝑚𝑛
(1)

 constitute the only non-degenerate modes 

and have no cutoff frequencies [33]. As the ellipticity of the dielectric rod’s cross-

section increases (the elliptical cross-section becomes flatter), 𝑥 moves towards zero 

with a slower pace. In relation to the rest of the modes, the cutoff frequencies become 

higher as the elliptical cross-section of the rod flattens.  

2.3. Elliptical fibers’ preservation of polarization 

R.B. Dyott’s contribution to the study of elliptical fibers is substantial while his 

analysis on their properties has been often used as a basis for many recent related 

studies. Dyott’s theoretical analysis is highly based on Yeh’s analysis for the derivation 

of the wave equations and through the boundary conditions, the estimation of the  

𝐻𝐸𝑒
 

𝑚𝑛
  and 𝐻𝐸𝑜

 
𝑚𝑛
  modes. Dyott’s research was expanded to the investigation and 

definition of significant properties of elliptical core fibers; among those, the current 
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chapter will focus on the presentation of birefringence and the preservation of 

polarization.  

 Elliptical fibers’ ability to retain polarization constitutes a key feature that renders 

them an important tool for optical interferometers and other applications. In Dyott’s 

research on polarization preservation in elliptical fibers [29], it is noted that in fibers 

with broad core-cladding index differences around 7*10-2  and with ellipticity 𝑎/𝑏 ratio 

above the middle range (𝑎/𝑏 ≥ 2.5), the polarization retaining properties are 

formidable. In waveguides with similar characteristics it is estimated that intermodal 

coupling is also reduced to values below -40 dB (for a full turn in a dielectric rod of 

2mm diameter). A small pitch of 0.75mm, in a presented beat pattern amongst 

fundamental modes, is demonstrated as an indicator of successful preservation of 

polarization.   

It must be noted that in order to obtain the characteristics of the mode propagation in 

elliptical fibers, Dyott et al. have constructed a computer based solution of Yeh’s 

analysis. This solution is used to determine the specific conditions under which 

elliptical fibers with the pre-mentioned characteristics (𝛥𝛽, 𝑎/𝑏) manage to preserve 

polarization. An interesting result was obtained from plotting the difference in group 

velocities between the two modes, where group velocity is given by 𝑣𝑔 =
𝑐
𝑛𝑔⁄ , c 

expressing the speed of light in free space and 𝑛𝑔 being a group index (Figure 2-2). 

 

Figure 2-3 Difference in the group indices of the two fundamental modes [29] 

It was found that there exists a critical value of ellipticity for which the group velocity 

difference becomes zero at the higher-mode cutoff point. In another plot where the 
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elliptical fiber normalized frequency 𝑉 is plotted against ellipticity 𝑎/𝑏 at 𝛥𝑛𝑔 = 0 

(Figure 2-3), it is evident that the critical point is found at 𝑎/𝑏 = 1.8.  

 

Figure 2-4 Propagation relationships in elliptically cored fiber [29] 

It is therefore expected that an elliptical waveguide could be designed with ellipticity 

higher than 1.8 and be operated at a 𝑉 value where the group velocities coincide but the 

difference in phase velocities is sufficient to preserve polarization [29]. Dyott proposed 

that such a single-mode elliptical core fiber might even be used for telecommunications, 

which eventually became impossible due to increased attenuation. Nevertheless, 

elliptical fibers with these characteristics found immediate use in fiber sensors.  

2.4. Birefringence 

Given a wave propagating inside an elliptical fiber, the propagation constants of the 

0HE11 and eHE11 modes are decoupled and this phenomenon is called Birefringence. 

Birefringence is numerically described as the difference between the normalized 

propagation constants 𝛥𝛽̅ = 𝛽̅0
 − 𝛽̅𝑒

 . Its’ value is therefore dependent on the 

normalized frequency 𝑉 and on the difference 𝛥𝑛 between the refractive indices in the 
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core and the cladding. Initially all efforts to estimate birefringence in elliptical fibers 

were focused on determining the effects of fiber cores whose cross section was 

deviating from circularity. Such were the cases of fiber systems where differential 

group delay had a negative effect on bandwidth, and of sensor applications requiring 

complete absence of birefringence (i.e. in sensors based on Faraday rotation). Adams 

et al. [35] provides a brief listing of relevant works including Ramaswamy et al. [28], 

Schlosser [27], Marcuse [36], Snyder and Young [37], using a simplification of Yeh’s 

analysis [33]. Calculations of birefringence based on each of the above analyses exhibit 

wide variation both in terms of magnitude and in the point where birefringence is 

maximum. In all analyses, birefringence appears to be proportional to the square of the 

index difference (𝛥𝑛)2. This leads to the conclusion that, for elliptical fiber applications 

requiring high birefringence to maintain polarization, a broad index difference between 

core and cladding is necessary. 

2.5. Usability and Applications of Elliptical Fibers 

During the early developments in elliptical fibers it was considered that the 

polarization maintenance property of the propagating modes in birefringent optical 

fibers might be useful for coherent optical systems which were intensely studied in the 

1990s. High birefringence fibers were therefore manufactured either using elliptical 

shaped core, or using stress elements around the core creating inherent birefringence 

due to stress, (PANDA fibers).  It was generally accepted later, that the relatively high 

losses of birefringent fibers, when compared to ordinary circular core optical fibers, led 

researchers to direct the focus of research on birefringent optical fibers for sensor 

applications and fiber optic devices; therefore circular core fibers progressed to lead on 

the telecommunications market. Elliptical core optical fibers find themselves today in 

navigation systems, as part of gyroscopes, and other military and sensor applications. 

Specifically, polarization-holding fibers have been long used in optical interferometers 

but the method used for decoupling the light paths within, was based on shifting the 

index through application of stress.  

The use of elliptical fibers as a means to split the fundamental mode in to two distinct 

orthogonally polarized modes has significant advantages over the stress-induced 

method:   

1. Elliptical fibers are less complicated to manufacture 
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2. Avoiding stress reduces pressure and heat sensitivity 

3. Higher order modes propagating in elliptical fibers are azimuthally more 

stable than those inside cylindrical fibers, facilitating the creation of over-

moded fiber sensors [27]. 

Basic applications of the elliptical fiber will be presented in the following section. 

2.6. Applications of elliptical core fibers 

As mentioned in chapter 1, optical fibers with elliptical core hold distinct properties 

compared to their cylindrical siblings; these properties include polarization retaining 

ability and increased birefringence, reduced complexity in manufacturing, reduced 

pressure and heat sensitivity and enhanced azimuthal stability for higher order modes. 

Thanks to these properties elliptical fibers are being used in various applications mostly 

related to fiber sensors but also to optical communication systems. Further, the list of 

applications is presented beginning with a communication related application.  

2.6.1. Dispersion readjustment in communication fibers 

Elliptical fibers can be used as a means for fixing dispersion in fiber waveguides. As 

described in the introduction, the BL product is an essential measure of efficiency in 

communication systems, and optical systems have achieved considerably high BL by 

increasing repeater spacing. The distance between repeaters though has come with a 

toll, since, as the distance increases, so does the effect of dispersion. Nevertheless, the 

effect of dispersion can be counterbalanced with a negative dispersion produced by 

increasing group velocity via increasing wavelength of an interposed over-moded 

elliptical fiber. The sequence producing the counterbalancing dispersion can be 

described as follows: while moving closer to the cutoff, the evanescent field becomes 

broader and the power shifts to the part of the cladding with lower refractive index. At 

this point, rising wavelength is coupled with rising group velocity of the primary higher 

order modes. This procedure has been described experimentally and proposed as an 

application by Poole et al. [38]. A schematic representation is shown in fig. 6.1 
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Figure 2-5 Schematic representation of correcting dispersion via overmoded elliptical fiber 

[39] 

2.6.2. Optical Gyroscopes 

In Fiber-Optic Gyroscopes (FOGs) a single light path is split into a couple of paths 

propagating in opposite directions following a circular loop before they reunite back 

into a single path. A rotation of the loop around its axis causes a phase shift between 

the split paths of opposite directions. In gyroscope implementations using single mode 

fibers there are two prominent problems: unwanted azimuthal changes dependent on 

polarization, caused by bending stress of the fiber, and unwanted temperature changes 

affecting birefringence. The fact that optical gyroscopes are practically functioning in 

a wide range of temperatures from -55˚C to 85 ˚C makes it even more difficult to 

stabilize polarization and birefringence [39]. These problems are tackled with the use 

of polarizers that suppress unwanted polarization along with polarization-retaining 

fibers used together with couplers and splices. At this point the use of elliptical core 

fibers offers significant advantages. Most importantly the effect of temperature changes 

on birefringence is reduced to 1/7 compared to the effect in stress-induced fibers. 

Moreover, the use of an elliptical core D-fiber provides the ability to avoid the use of 

splices further reducing losses.  
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Figure 2-6 Schematic representation of fiber-optic gyroscope [39]. 

2.6.3. Higher-order-based sensors 

Elliptical fibers can be used to create sensing interferometers. Such an application 

would utilize either of the fundamental even and odd elliptical modes 𝐻𝐸11𝑜
 , 𝐻𝐸11𝑒

 , 

together with the first 𝐿𝑃11, in a way that the modes interfere when a source is applied. 

Therefore, changes in pressure, caused by fiber stress or acoustic waves, as well as 

variations in temperature result in variations of the difference between mode 

propagation constant [40]. The application of a remote voltage sensor has also been 

proposed based on double-mode elliptical fibers [41].  

 

Figure 2-7 Fiber sensor with overmoded elliptical fiber [39] 

2.6.4. E-fiber gratings 

Gratings are periodical variations in fiber properties (i.e. refractive index). Such 

variations can be applied on fibers through various methods including applied pressure 

and exposure to radiation. Elliptical fibers with gratings can be used as sensors or laser 

tuners.  
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Figure 2-8 Technical representation of grating formation [39] 

2.6.5. Acoustic wave coupling 

In elliptical core D-fibers, acoustic waves can be used to facilitate mode coupling. It 

has been experimentally proved [42] that acoustic waves travelling along the D-fiber, 

interact with the even and odd fundamental modes in a way that the modes are coupled 

with each other. The frequency, the direction of the wave and the angle of the applied 

stress over the axis of core’s ellipsis, play a significant role on optimizing the mode 

coupling.  

 

Figure 2-9 D-fiber coupling with surface acoustic wave [39] 
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2.6.6. Optical Kerr effect 

In the optical Kerr effect, an intense optical-electrical field [39] causes a shift in the 

refractive index which in turn results to a change in the birefringence of the fiber. The 

Kerr effect can be used in elliptical fibers to locate occurrences of mode coupling along 

the fibers, as anomalies caused by external factors (i.e. pressure). In such cases, a 

combination of a high-power pulse and a probe signal travelling the opposite direction, 

is applied. The resulting changes in couplings on the probe signal and the local anomaly 

are used together with the timing of the pulse to estimate the position of the anomalies 

[43]. The optical Kerr effect applied on double mode elliptical fibers can be used as a 

switch implementation [44]. Another optical Kerr implementation is that of an optical 

amplifier where a polarizer is used along with a birefringent elliptical fiber, in order to 

convert a rotation of polarization into amplitude modulation. The modulation is further 

translated to amplification and change in frequency [45].    

  

Figure 2-10 Optical switch utilizing Kerr effect [39] 

2.6.7. Current sensors 

Single mode fibers whose polarization has been rotated have been proposed as means 

to measure current in conductors. The problem with such implementations is the 
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inability to achieve the required conditions for coupling the 𝐻𝐸11mode due to 

imperfections of the circular core structure. A solution has been proposed [46] 

involving an elliptical fiber with strong birefringence that can produce a periodical field 

with transverse modes in phase. A technique known as Broadbanding can be then used 

to synchronize the periodical field with the beat length of the fiber in order to achieve 

polarization rotation. 
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3 CHAPTER 3 

Elliptical core fibers analysis using RTL method – the 

harmonics method 

3.1 The elliptical fiber problem 

Yeh’s analysis of the propagation phenomena in elliptical waveguides focused on the 

simple step refractive index profiles. The transcendental equations and the mode field 

component solutions derived are known to involve Mathieu Functions. Computation of 

Mathieu Functions used to be a hard task ensuring convergence, but naturally this is 

easier to achieve with the computing processing power available, today. However, 

when we consider realistic and non-step index refractive index profiles in the fiber core, 

the numerical problem is far more complex, and efficient numerical techniques are 

sought after. Dealing with complexity was the first incentive, and in this aspect the 

contribution of this study has strong advantages. Through consistent research of the 

now established technique of transverse resonance [8][10], based on transmission line 

principles, for circular core fibers, it has been proved that this approach to solving 

electromagnetic problems is not only intuitive and based on well understood electrical 

engineering principles, but also very powerful and capable of dealing with many hard  

problems; not only forward, but also inverse [10]. The other incentive for the analysis 

in the current chapter was to apply and test the same principles using the elliptical 

coordinate system.  In [47], a first attempt was made towards solving this problem using 

transmission lines in elliptical coordinates, but the solution was not general. The 

research presented in the current thesis provides a general solution and expands earlier 

work by presenting numerical examples of graded index profiles and mode cutoffs. 

This chapter describes the analysis and development of a method for solving the 

optical properties of elliptical core optical fibers of arbitrary refractive index profile 

using Transmission Line Principles without employing Mathieu Functions. The chapter 

is organized as follows: it starts with the introduction of the elliptic cylindrical system, 

followed by an analysis of the EM waves in the elliptical fibers. The mathematical 

solution to the problem leads to the appearance of factors referred to as harmonics. The 

chapter continues with the examination of the problem, first, considering no harmonics 

and then with the full consideration of harmonic analysis. Then follows the examination 
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of the boundary impedance of elliptical fibers. Example computations are further 

provided for comparison.  

3.2. Maxwell’s equations in elliptical coordinate system 

The following elliptic coordinate system is used matching the cross section of the 

elliptical fiber. We use  

𝑾 = 𝜃 + 𝑗𝜑, 𝒁 = 𝑐 cosh(𝑾) = 𝑥 + 𝑗𝑦 = 𝑐 cosh 𝜃 cos𝜑 + 𝑗 sinh 𝜃 sin𝜑 

where Z and W are complex variables on the plane (x, y) and c is the semi focal 

distance of the ellipses

 

Thus  {
𝑥 = 𝑐 sinh 𝜃 cos𝜑
𝑦 = 𝑐 cosh 𝜃 sin𝜑

     (3.1) 

The function derives from the conformal mapping transformation: 

ℎ(𝜃,𝜑) = |
𝜕𝑤

𝜕𝑧
| = |𝑐 sinℎ𝜃cos𝜑+ 𝑗𝑐 cosℎ𝜃sin𝜑|  

From the above relation, we obtain 

 ℎ(𝜃,𝜑)
2 =

𝑐2

2
(cosh 2𝜃 − 𝑐𝑜𝑠2𝜑) 

In the elliptic cylindrical system, Figure 3-1, each θ constant describes an ellipse, with 

semimajor axis 𝑐 cosh 𝜃 and semiminor axis 𝑐 sinh 𝜃 matching the fiber’s cross section 

and for φ constant a hyperbola, of the same foci define any point at some complex point  

Z. The ellipses of constant θ are normal to the hyperbolae of constant φ [47]. 
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Figure 3-1 Elliptic coordinate system θ+jφ  

 

From Figure 3-1 it is clear that coordinate θ, traces the ellipse of the waveguide and 

φ deals with the angular degree of freedom of the elliptical coordinate system. As the 

ellipticity increases, θ tends to zero, and circular cross section fibers have θ tending to 

infinity, as in Figure 3-1. 

Maxwell’s equations (for 
𝜕

𝜕𝑡
= 𝑗𝜔) expressed on a set of elliptic cylindrical 

coordinates (θ, φ,z), can be written for an infinitesimal small layer of thickness Δθ, for 

which it can be safely assumed that the refractive index n can be considered constant 

[47]. 

∇ × 𝐸⃗ = −𝑗𝜔𝜇0𝛨⃗⃗ 

{
 
 

 
 

𝜕𝐸𝑧

𝜕𝜑
−
𝜕(ℎ𝐸𝜑)

𝜕𝑧
= −𝑗𝜇0𝜔(ℎ𝛨𝜃)

𝜕(ℎ𝐸𝜃)

𝜕𝑧
−
𝜕𝐸𝑧

𝜕𝜃
= −𝑗𝜇0𝜔(ℎ𝛨𝜑)

𝜕(ℎ𝐸𝜑)

𝜕𝜃
−
𝜕(ℎ𝐸𝜃)

𝜕𝜑
= −𝑗𝜇0𝜔(ℎ

2𝐻𝑧)

       (3.2) 

∇ × 𝐻⃗⃗ = 𝑗𝑛2𝜀0𝜔𝐸⃗ 

{
 
 

 
 

𝜕𝐻𝑧

𝜕𝜑
−
𝜕(ℎ𝐻𝜑)

𝜕𝑧
=  𝑗𝑛2𝜀0𝜔(ℎ𝐸𝜃)

𝜕(ℎ𝐻𝜑)

𝜕𝑧
−
𝜕𝐻𝑧

𝜕𝜃
=  𝑗𝑛2𝜀0𝜔(ℎ𝐸𝜑)

𝜕(ℎ𝛨𝜑)

𝜕𝜃
−
𝜕(ℎ𝛨𝜃)

𝜕𝜑
=  𝑗𝑛2𝜀0𝜔(ℎ

2𝛦𝑧)

      (3.3) 

Where in elliptic cylindrical coordinate systems, the scale factor h, is 
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ℎ = √   ℎ 2(𝜃, 𝜑)  𝑎𝑛𝑑    ℎ 
2(𝜃, 𝜑) =

𝑐2

2
(cosh2𝜃 − 𝑐𝑜𝑠2𝜑). The mean value of 

   ℎ 
2(𝜃, 𝜑) along φ is given by: ℎ0

2(𝜃) =
𝑐2

2
cosh 2𝜃, thus 

𝜕ℎ0
2(𝜃)

𝜕𝜃
= 𝑐2 sinh 2𝜃. Thus  

ℎ2 (𝜑, 𝜃) = ℎ0
2(𝜃) −

𝑐2

2
( 𝑐𝑜𝑠2𝜑) = ℎ0

2(𝜃) −
𝑐2

4
(𝑒𝑗2𝜑 + 𝑒−𝑗2𝜑). 

From this point on we define  ℎ0
2(𝜃) =  ℎ0

2 

Considering an exponential dependence along the propagation axis z, the field 

components will be expressed in terms of 𝐴𝑗𝛽𝑧. Using the Fourier Transform along   φ 

with integer wave numbers l, the following is obtained: 

{
 
 

 
 𝑗𝑙𝐸𝑧 −  𝑗𝛽(ℎ𝐸𝜑) =  −𝑗𝜇0𝜔(ℎ𝐻𝜃)

𝑗𝛽(ℎ𝐸
𝜃
) − 

𝜕𝛦𝑧

𝜕𝜃
= −𝑗𝜇0𝜔(ℎ𝐻𝜑)

𝜕(ℎ𝛦𝜑)

𝜕𝜃
−  𝑗𝑙(ℎ𝛦𝜃) =  −𝑗𝜇0𝜔(ℎ

2Hz)

                           (3.4) 

{
 
 

 
 𝑗𝑙𝐻𝑧 −  𝑗𝛽(ℎ𝐻𝜑) =  𝑗𝑛

2𝜀0𝜔(ℎ𝐸𝜃)

𝑗𝛽(ℎ𝐻
𝜃
) − 

𝜕𝐻𝑧

𝜕𝜃
=  𝑗𝑛2𝜀0𝜔(ℎ𝐸𝜑)

𝜕(ℎ𝐻𝜑)

𝜕𝜃
−  𝑗𝑙(ℎ𝐻𝜃) =  𝑗𝑛

2𝜀0𝜔(ℎ
2Ez)

                          (3.5) 

The functions {𝐸𝑧  , (ℎ𝐸𝜑) , (ℎ𝐸𝜃), 𝐻𝑧 , (ℎ𝐻𝜑) , (ℎ𝐻𝜃)} are the (partial) Fourier 

Transforms of the respective functions over 𝜑 with an integer wave number 𝑙. The 

Fourier Transform of the function product ℎ2𝛦𝑧, represents a convolution ℎ2Ez 

which is calculated as follows 

(ℎ2𝐸𝑧) =  ∫
ℎ2(𝜃, 𝜑)𝐸𝑧(𝜃, 𝜑) exp(𝑗𝑙𝜑)𝑑𝜑

∞

−∞

= ℎ0
2(𝜃)𝐸

𝑧

− 
𝑐2

4
∫ 𝐸𝑧(𝜃, 𝜑, 𝛽) exp(𝑗(𝑙 + 2)𝜑) 𝑑𝜑

∞

−∞

− 
𝑐2

4
∫ 𝐸𝑧(𝜃, 𝜑, 𝛽) exp(𝑗(𝑙 − 2)𝜑) 𝑑𝜑 

∞

−∞
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              = ℎ0
2(𝜃)𝐸

𝑧
− 
𝑐2

4
[𝐸𝑧(𝑙 + 2) + 𝐸𝑧(𝑙 − 2)] 

                           = ℎ0
2(𝜃)𝐸

𝑧
− 

𝑐2

4
[𝛷2]                   (3.6)                                                

where 𝛷2 = 𝐸𝑧(𝑙 + 2) + 𝐸𝑧(𝑙 − 2) 

In the same way 

(ℎ2𝐻𝑧) = ℎ0
2(𝜃)𝐻𝑧 − 

𝑐2

4
[𝐻𝑧(𝑙 + 2) + 𝐻𝑧(𝑙 − 2)] 

                                    = ℎ0
2(𝜃)𝐻𝑧 − 

𝑐2

4
[𝛷1]                   (3.7)  

Where 𝛷1 = 𝐻𝑧(𝑙 + 2) + 𝐻𝑧(𝑙 − 2) 

Taking into consideration that: 𝜔𝜇0 = 𝑧0𝑘0and 𝜔𝜀0 = 𝑘0/𝑧0, where 𝑧0 = √
𝜇0

𝜀0
=

120𝜋 and 𝑘0 = 𝜔√𝜇0𝜀0 =
2𝜋

𝜆
, we begin the transformation into transmission lines 

using the following set of four functions 𝐼𝑀, 𝐼𝐸 , 𝑉𝑀, 𝑉𝐸 defined: 

  

{
 
 
 

 
 
 𝛪𝛭 = −𝑗(ℎ𝛨𝜃) = 𝑗 (𝑙𝐸𝑧 −  𝛽(ℎ𝐸𝜑))

𝛪𝛦 = 𝑛
2(ℎ𝐸𝜃) = (𝑙𝐻𝑧 −  𝛽(ℎ𝐻𝜑))

𝑉𝑀 =
𝑙(ℎ𝐸𝜑)+ 𝛽ℎ0

2(𝜃)𝛦𝑧

𝑗𝐹

𝑉𝛦 =
𝑙(ℎ𝐸𝜑)+ 𝛽ℎ0

2(𝜃)𝛦𝑧

𝐹

                         (3.8)                     

where 𝐹 = 𝐹𝑙 = 𝑙
2 + 𝛽2ℎ0

2
 

All the magnetic field components have been multiplied by 𝑧0 in order for the couples 

𝑉𝑀 , 𝑉𝛦𝑎𝑛𝑑𝛪𝛭 , 𝛪𝛦 to have the same units in MKSA. Also the symbol of wave number 

β in (3.8) and for the rest of the analysis is normalized and represents the ratio 𝛽 𝑘0⁄  

The symbol of the semi axis of the ellipses 𝑐 represents the product  𝑘0𝑐, thus 

𝛽 𝑎𝑛𝑑 ℎ0
2(𝜃) are numbers without units [47].  

Using the new functions 𝐼𝑀 , 𝐼𝐸 , 𝑉𝑀, 𝑉𝐸 it can be proved through algebraic analysis (see 

Appendix B)  that the differential equations (3.4), (3.5) derived by the Maxwell 

equations are equivalent to the following two sets of differential equations representing 
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two interlinked transmission lines of infinitesimal length Δθ [47].  

{

𝜕𝑉𝑀

𝜕𝜃
= −

𝛾2

𝑗𝐹
𝐼𝑀 − 𝑗𝑀𝐼𝐸 −

𝑛2𝑙

𝐹

𝑐2

4
[𝛷2]

𝜕𝐼𝑀

𝜕𝜃
= −𝑗𝐹𝑉𝑀 + 𝛽

𝑐2

4
[𝛷1]

                                (3.9) 

{

𝜕𝑉𝐸

𝜕𝜃
= −

𝛾2

𝑗𝑛2𝐹
𝐼𝐸 − 𝑗𝑀𝐼𝑀 + 𝑗𝑙

𝑐2

4𝐹
[𝛷1]

𝜕𝐼𝐸

𝜕𝜃
= −𝑗𝑛2𝐹𝑉𝐸 + 𝑗𝑛

2𝛽
𝑐2

4
[𝛷2]

                              (3.10)  

with 

 

{
 
 
 

 
 
 

𝛾2 = 𝑙2 + (𝛽2 − 𝑛2)ℎ0
2

ℎ0
2 =

𝑐2

2
cosh 2𝜃

𝜕ℎ0
2

𝜕𝜃
= 𝑐2 sinh 2𝜃

𝐹 = 𝐹𝑙 = 𝑙
2 + 𝛽2ℎ0

2 = 𝛾2 + 𝑛2ℎ0
2

𝑀 = 𝛽𝑙
𝜕ℎ0

2

𝜕𝜃
/𝐹2

                                   (3.11)  

Using algebraic relations (3.8) it can be easily proved that the Fourier Transforms of 

the Electro Magnetic field components, along z and φ axis, can be calculated by the 

formulae 

 {
𝐻𝑧 =

𝑙𝐼𝐸
𝐹⁄ + 𝑗𝛽𝑉𝑀
 

𝐸𝑧 =
−𝑗𝑙𝐼𝑀

𝐹⁄ + 𝛽𝑉𝐸

    (3.12a)                                

{

ℎ𝐻𝜑 = 𝑗𝑙𝑉𝑀 +
𝛽ℎ0

2

𝐹𝑙
𝐼𝐸

 

ℎ𝐸𝜑 =
𝑗𝛽ℎ0

2

𝐹𝑙
𝐼𝑀 + 𝑙𝑉𝐸

    (3.12b)                                

3.3. Even and odd modes 

Beginning with the analysis of even modes we define a new  𝑈𝑆 = 𝑉𝑀 +

𝑛𝑉𝐸      𝑎𝑛𝑑      𝐼𝑆 = 𝐼𝑀 +
𝐼𝐸

𝑛
 . It can be proved that the above two interlinked 

transmission lines differential equations (3.9) and (3.10) will become a set of two 

differential equations representing one new transmission line as follows 
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{

𝜕𝑈𝑆

𝜕𝜃
= −

𝛾2−𝑛𝑀𝐹

𝑗𝐹
𝛪𝑆 +

𝑛𝑙𝑐2

4𝐹
[𝑗𝛷1 − 𝑛𝛷2]

 
𝜕𝛪𝑆

𝜕𝜃
= −𝑗𝐹𝑉𝑆 −

𝑗𝛽𝑐2

4
[𝑗𝛷1 − 𝑛𝛷2]

   (3.13)  

where 

 {

𝛷1 = 𝐻𝑧
𝑙−2 + 𝐻𝑧

𝑙+2 =
𝑙−2

𝐹𝑙−2
𝐼𝐸
𝑙−2 + 𝑗𝛽𝑉𝑀

𝑙−2 +
𝑙+2

𝐹𝑙+2
𝐼𝐸
𝑙+2 + 𝑗𝛽𝑉𝑀

𝑙+2

 

𝛷2 = 𝐸𝑧
𝑙−2 + 𝐸𝑧

𝑙+2 = −𝑗
(𝑙−2)

𝐹𝑙−2
𝐼𝑀
𝑙−2 + 𝛽𝑉𝐸

𝑙−2 − 𝑗
(𝑙+2)

𝐹𝑙+2
𝐼𝑀
𝑙+2 + 𝛽𝑉𝐸

𝑙+2
 (3.14) 

The final terms in the equations (3.9) represent the entanglement of the 𝑙th harmonic 

with the (𝑙 + 2)𝑡ℎ and (𝑙 − 2)𝑡ℎ harmonics (along the angular direction 𝜑). Due to the 

fact that M takes the sign of 𝑙 because all the remaining factors are positive, it turns out 

that positive 𝑙 instances are representing the HE modes while negative 𝑙 instances are 

representing the EH modes. 

We can now consider the more general case where the effect of harmonics cannot be 

ignored. This is the case where either the refractive index difference 𝛥𝑛 is high (higher 

than 1/1000) or the elliptic eccentricity is high (higher than 1.5). In order to examine 

this case, we calculate Φ1 and Φ2 using eqn. (3.14). Again, we define 𝑉𝑆 = 𝑗𝑈𝑆 ,    𝐼𝑆 =

𝐼𝑆 (all the Vs are defined as imaginary functions in order to have real coefficients in the 

equations).  We then derive the following equations 

{
 
 
 

 
 
 

𝜕𝑉𝑠
𝑙

𝜕𝜃
= −

𝛾2−𝑛𝑀𝐹

𝐹
𝐼𝑠
𝑙 −

𝑙𝑞𝑛

𝐹
[
(𝑙−2)

𝐹𝑙−2
𝐼𝑠
𝑙−2 +

(𝑙+2)

𝐹𝑙+2
𝐼𝑠
𝑙+2] −

𝑞𝛽𝑙

𝐹
[𝑉𝑠

𝑙−2 + 𝑉𝑠
𝑙+2]

 
𝜕𝐼𝑠
𝑙

 𝜕𝜃
 =  −𝐹𝑉𝑠

𝑙 + 𝑞𝛽 [
(𝑙−2)

𝐹𝑙−2
𝐼𝑠
𝑙−2 +

(𝑙+2)

𝐹𝑙+2
𝐼𝑠
𝑙+2]

+
𝑞𝛽2

𝑛
[𝑉𝑠

𝑙−2 + 𝑉𝑠
𝑙+2]

             (3.15)  

where 𝑞 = 𝑛𝑐2/4. It becomes clear that every mode order 𝑙, is entangled with orders 

𝑙 + 2 and 𝑙 − 2. From the equation set (3.15) we can generate an infinite set of equations 

by replacing 𝑙  with 𝑙 ± 2. Consequently, we can write (3.15) as a general matrix 

equation via a parameter which takes care of the order of harmonics and the coefficients 

of the harmonic values and becomes 𝑙 = 𝑙 ± 𝑘, 𝑘 = 2, 4, 6, …  

𝑑

𝑑𝜃
𝑉𝑠
𝑙+𝑘 = [𝑋𝑙,𝑘][𝑉𝑠

𝑙+𝑘, 𝑉𝑠
𝑙+2+𝑘, 𝑉𝑠

𝑙−2+𝑘]   (3.16a) 
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𝑑

𝑑𝜃
𝐼𝑠
𝑙+𝑘 = [𝑌𝑙,𝑘][𝐼𝑠

𝑙+𝑘, 𝐼𝑠
𝑙+2+𝑘, 𝐼𝑠

𝑙−2+𝑘]    (3.16b) 

When considering the effect of higher harmonics around the harmonic 𝑙, i.e. the 

harmonics …𝑙 + 2, 𝑙 + 4, 𝑙 + 6 𝑎𝑛𝑑  𝑙 − 2, 𝑙 − 4, 𝑙 − 6… they result in a set of 

homogeneous differential equations for the functions 

... 𝑉𝑠
𝑙+6, 𝐼𝑠

𝑙+6, 𝑉𝑠
𝑙+4, 𝐼𝑠

𝑙+4, 𝑉𝑠
𝑙+2, 𝐼𝑠

𝑙+2, 𝑉𝑠
𝑙 , 𝐼𝑠

𝑙 ,    𝑉𝑠
𝑙−2, 𝐼𝑠

𝑙−2,    𝑉𝑠
𝑙−4, 𝐼𝑠

𝑙−4,    𝑉𝑠
𝑙−6, 𝐼𝑠

𝑙−6… . The 

number of the equation coefficients involved in the computation depends on the 

accuracy required from the system and the number of harmonics involved.  

The general matrix [𝐴𝑙,𝑘] of coefficients from the equations (3.16) … 𝑙 + 2, 𝑙 + 4, 𝑙 +

6 𝑎𝑛𝑑  𝑙 − 2, 𝑙 − 4, 𝑙 − 6… , holds dimensions 14 × 14 and its elements are in the order 

shown in Table 3-1. We observe that the diagonal elements of the matrix, all equal to 

zero. Furthermore, as seen in the table, the parameters k=0, ± 2, ± 4, ± 6… determine 

the horizontal location of the elements of the matrix. 𝑘 combined with 𝑙, give the 

general form of [𝐴(𝑙, 𝑘) ] with coefficients as follows 

Θk = −
γl+k
2 −𝑛𝑀𝑙+𝑘𝐹𝑙+𝑘

𝐹𝑙+𝑘
,    Λk= −𝐹𝑙+𝑘,    

Λ1k  =
−𝑞𝛽(𝑙+𝑘)

𝐹𝑙+𝑘
, Λ2k   =

−𝑞𝑛(𝑙+𝑘)(𝑙+2+𝑘)

𝐹𝑙+2+𝑘𝐹𝑙+𝑘
,          

Λ3k =
𝑞𝛽2

𝑛
,            Λ4k =

𝛽𝑞(𝑙+2+𝑘)

𝐹𝑙+2+𝑘
. 

Λ5k=
−𝑞𝑛(𝑙+𝑘)(𝑙−2+𝑘)

𝐹𝑙−2+𝑘𝐹𝑙+𝑘
   

 Λ6k   =
𝛽𝑞(𝑙−2+𝑘)

𝐹𝑙−2+𝑘
 

We also notice that 

 𝐹𝑙+2+𝑘 = (𝑙 + 2 + 𝑘)
2 + 𝛽2ℎ0

2
 , 𝛾𝑙+2+𝑘

2 = (𝑙 + 2 + 𝑘)2 + (𝛽2 − 𝑛2)ℎ0
2  

𝑀𝑙+2+𝑘 = 𝛽(𝑙 + 2 + 𝑘)
𝜕ℎ0

2

𝜕𝜃
/ Fl+2+k

2  , q=𝑛𝑐2/4.  

Similar relations for 𝐹,𝑀, 𝛾  can be written for 𝑙 𝑎𝑛𝑑 𝑙 − 2. Using the above 

coefficients, we can compute the eigenvalues of matrix [𝐴𝑙,𝑘] for the elliptical layer 

𝜕𝜃.  
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Table 3-1 Even Mode Characteristic Matrix [A_(l, k) ]for Elliptical Fiber Layers. (Coefficients of (15, 16)) 

The squares of the eigenvalues of the set of the simultaneous equations give the 

respective transmission line characteristics 𝛾𝑙
2. The minimum squared eigenvalue 𝛾𝑙

2 

can be used for determining the fundamental HE and EH respective elliptical modes 

for 𝑙 = 1 as well as the 𝑇𝑀, 𝑇𝐸, respective modes for 𝑙 = 0.  

Using the layer eigenvalues, the resulting T-circuits for even modes can be formed 

using 𝛾𝑙
2 for the corresponding elliptical layer as shown in Figure 3-2, with 

𝛾𝑙
2and j𝐹𝑙 = 𝑗(𝑙

2 + 𝛽2ℎ0
2) 
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Figure 3-2 Equivalent transmission line circuit of element layer Δθ 

{
𝑍𝐵 = 𝛾𝑙

2𝛥𝜃/(2𝑗𝐹)
 

𝑍𝑃 = 1/(𝑗𝐹𝛥𝜃)
      (3.17) 

Having represented the elliptical thin layer as a T-circuit the series cascade represents 

successive elliptical thin layers, and we can compute the propagation constants by 

employing resonance of the assembly. 

It is known that elliptical fibers also support odd modes orthogonal to even. This can 

be derived in a similar manner. From equations (3.9) and (3.10) alternatively we can 

define parameters 

𝑉𝑆𝑆 = 𝑗 (
𝑉𝑀
𝑛
+ 𝑉𝐸)         𝐼𝑆𝑆 = 𝑛𝐼𝑀 + 𝐼𝐸    𝑖. 𝑒.    𝐼𝑆𝑆 = 𝐼𝑆𝑛          𝑉𝑆𝑆 = 𝑗

𝑉𝑆
𝑛

 

We can in a similar manner as with even modes derive the relations 

{
 
 
 

 
 
 

𝜕𝑉𝑆𝑆
𝑙

𝜕𝜃
= −

𝛾𝑙
2−𝑛𝑀𝑙𝐹𝑙

𝑛2𝐹𝑙
𝛪𝑆𝑆

𝑙 −

𝑞𝑙

𝑛𝐹𝑙
[
(𝑙−2)

𝐹𝑙−2
𝐼𝑆𝑆
𝑙−2 −

(𝑙+2)

𝐹𝑙+2
𝐼𝑆𝑆
𝑙+2] −

𝑞𝑙𝛽

𝐹𝑙
[𝑉𝑆𝑆

𝑙−2+𝑉𝑆𝑆
𝑙+2]

𝜕𝐼𝑆𝑆
𝑙

𝜕𝜃
= −𝐹𝑙𝑛

2𝑉𝑆𝑆
𝑙 + 𝑞𝛽[

(𝑙−2)

𝐹𝑙−2
𝐼𝑆𝑆
𝑙−2

+
(𝑙+2)

𝐹𝑙+2
𝐼𝑆𝑆
𝑙+2] + 𝛽2𝑞𝑛[𝑉𝑆𝑆

𝑙−2+𝑉𝑆𝑆
𝑙+2]

   (3.18) 

We can show that eqns. (3.18) and (3.15) are equivalent if we multiply both sides of 

(3.18) by 𝑛2 and substituting  𝑉𝑆𝑆𝑛
2 = 𝑊𝑆𝑆

𝑙   𝑎𝑛𝑑 𝐼𝑆𝑆 = 𝐼𝑆𝑆. Then the same equations 

are obtained as (3.15) with respect to 𝑊𝑆𝑆
𝑙   𝑎𝑛𝑑 𝐼𝑆𝑆. A homogeneous system of 

equations can thus be formed again using (3.18) as with even modes. 

Similarly to the case of even modes as described before, one can now consider the 
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effect of higher harmonics, for odd modes, around the harmonic 𝑙 ,  i.e. the harmonics 

… 𝑙 + 2, 𝑙 + 4, 𝑙 + 6 𝑎𝑛𝑑  𝑙 − 2, 𝑙 − 4, 𝑙 − 6… which result in a set of homogeneous 

differential equations for the functions 

𝑉𝑆𝑆
𝑙+6, 𝑉𝑆𝑆

𝑙+4, 𝑉𝑆𝑆
𝑙+2, 𝑉𝑆𝑆

𝑙 , 𝑉𝑆𝑆
𝑙−2, 𝑉𝑆𝑆

𝑙−4, 𝑉𝑆𝑆
𝑙−6, 𝐼𝑆𝑆

𝑙+6, 𝐼𝑆𝑆
𝑙+4, 𝐼𝑆𝑆

𝑙+2, 𝐼𝑆𝑆
𝑙 , 𝐼𝑆𝑆

𝑙−2, 𝐼𝑆𝑆
𝑙−4, 𝐼𝑆𝑆

𝑙−6. We observe 

that the eigenvalues of the respective system of equations here representing odd modes 

are the same as the respective eigenvalues of the system of the previous equations (3.15) 

for the eigenfunctions shown in Table 3.1. The respective resulting quadrupole however 

differs and should be formed with the same respective transmission characteristic 𝛾𝑙
2 

but different admitances 𝑛2𝐹 = 𝑗𝑛2(𝑙2 + 𝛽2ℎ0
2). Thus, in general the overall 

transmission characteristics β of the odd modes are different to those for even modes, 

(birefringence effect). Therefore, both quadrupoles representing the odd HE and EH 

modes, will use the same transmission characteristic 𝛾𝑙
2 and different 

admittances  𝑗𝑛2 𝐹. The characteristic impedances for odd modes of the T-circuit are 

given by the equations 

{
𝑍𝐵 = 𝛾𝑙

2𝛥𝜃/(2𝑗𝐹𝑛2)
𝑎𝑛𝑑

𝑍𝑃 = 1/(𝑗𝐹𝑛
2𝛥𝜃)

   (3.19) 

The previous equations were considered for 𝑙 ≥ 0. Considering that 𝑀 is proportional 

to 𝑙 we can form sets of similar equations for HE (l positive integer) and for EH (l 

negative integer). The resonance “frequencies” of the derived “total transmission line 

of successive layers” are equal to the transmission wave numbers “β” of the respective 

elliptic fibers’ odd modes. The terminal impedances for 𝜃 = ∞ 𝑎𝑛𝑑 𝜃 = 0, are the 

boundary conditions for the transmission line behavior. The full mathematical analysis 

for the derivation of Maxwell’s equations in elliptical coordinate system and the 

subsequent Transmission Line relations, is given in Appendix B. 

3.4. Boundary terminal impedance calculation and resonant solutions 

Calculation of terminal impedance at 𝜃 = ∞ has been based on the fact that as θ tends 

to infinity the ellipse becomes a circle, thus the harmonics effect is negligible. Thus the 

terminal impedance is the limit of the characteristic impedance of the quadruple given 

by   𝑧(∞) =
𝛾
𝑗𝐹𝑙
⁄ . For θ = ∞ it can be shown that  𝑧(∞) = 0. 
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The terminal impedance for 𝜃 = 0 can similarly be calculated taking into 

consideration that the field components 𝐸𝑧 𝑎𝑛𝑑 𝐻𝑧 are symmetric for the  𝑦 axis. This 

results from the property that only polarized EM waves are stably transmitted in elliptic 

fibers. This property means finally that the EM field components are periodic along 𝜑 

with period π. Thus for 𝜃 = 0, the following relations can be written:  

𝐸𝑧(𝜑) =  𝐸𝑧(𝜑 − 𝜋) 𝑎𝑛𝑑 𝐻𝑧  (𝜑) =  𝐻𝑧(𝜑 − 𝜋).  

Hence the Fourier Transform of  𝐸𝑧 along φ can be given as  

𝐸𝑧 = ∫  𝐸𝑧(𝜑)𝑒
−𝑗𝑙𝜑𝑑𝜑

𝜋

−𝜋
    (3.20) 

It is then easy to prove that 

  𝐸𝑧 = ∫  𝐸𝑧(𝜑
𝜋

0
)𝑒−𝑗𝑙𝜑[1 + 𝑒−𝑗𝑙𝜋]𝑑𝜑   (3.21) 

Then for 𝑙 = 𝑒𝑣𝑒𝑛 (𝑜𝑟 𝑧𝑒𝑟𝑜), 𝐸𝑧≠ 0 and for 𝑙 = 𝑜𝑑𝑑 , 𝐸𝑧= 0.  

In the same way it can be proved that for 𝑙 = 𝑒𝑣𝑒𝑛(𝑜𝑟 𝑧𝑒𝑟𝑜),𝐻𝑧≠ 0 and for 𝑙 =

𝑜𝑑𝑑 , 𝐻𝑧= 0. Thus for 𝑙 = 𝑜𝑑𝑑 , 𝑉𝑀 =
ℎ𝐻𝜑𝑙

𝑗𝐹
⁄  𝑎𝑛𝑑 𝐼𝑀 =

𝛽 ℎ𝐸𝜑
𝑗
⁄ . But for  𝜃 =

0 and  𝑙 ≠ 0,𝑤ℎ𝑒𝑟𝑒 𝑗 𝐻𝜑 = 𝑛𝐸𝜑, 
𝑉𝑀

𝐼𝑀
⁄ =  𝑍𝑀(0) =

𝑛𝑙
𝑗𝛽𝐹⁄ . Thus 𝑍𝐻𝐸(0) =

𝑛𝑙
𝑗𝛽𝐹⁄  and 𝑍𝐸𝐻(0) =

𝑙
𝑗𝛽𝐹𝑛⁄ . For 𝑙 = 𝑒𝑣𝑒𝑛 (𝑜𝑟 𝑧𝑒𝑟𝑜) and 𝜃 = 0, { 𝐻𝑧 ≠ 0 and 𝐸𝑧 ≠

0}  𝑡ℎ𝑢𝑠  𝑉𝑀 ≠ 0 𝑎𝑛𝑑 𝑉𝐸 ≠ 0 while 𝐼𝐸 = 𝑛2ℎ𝐸𝜃 = 0 𝑎𝑛𝑑   𝐼𝑀 =
ℎ𝐻𝜃

𝑗
⁄ = 0, because 

𝐸𝜃 = 0 𝑎𝑛𝑑   𝐻𝜃 = 0. Thus for l = 𝑒𝑣𝑒𝑛 (𝑜𝑟 𝑧𝑒𝑟𝑜) , 𝑍𝑀(0) = ∞, 𝑍𝐸(0) = ∞,  

𝑍𝐻𝐸(0) = ∞, 𝑍𝐸𝐻(0) = ∞.   

For each of the successive layers of Δθ, length can be represented by a quadrupole 

like the one shown in Figure 3-2, where 

{

𝑍𝐵 = (𝛾2 − 𝑛𝑀𝑙𝐹𝑙)𝛿𝜃/(2𝑗𝐹𝑙𝑛𝑡𝑚)
 

𝑍𝑃 =
1

𝑗𝐹𝑙𝑛
𝑡𝑚𝛿𝜃

, 𝑡𝑚 = {
0
2
  (3.22) 

The  quadrupoles representing the successive layers can be connected in series,  

because the equivalent “voltages” and “currents” on their boundaries are continuous 

due to the fact that 𝑉𝑀, 𝐼𝑀, 𝑉𝐸 , 𝐼𝐸 are also continuous functions of 𝜃, following the 
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normal and tangential Magnetic and Electric fields being continuous. Therefore, the set 

of the successive layers is forming an overall “Transmission Line” with pure imaginary 

impedances. 

Then the fiber mode normalized (/k0 as defined in section 3.2, the paragraph after eq. 

3.8) propagation constants “𝛽” are calculated from the resonant “frequencies” of the 

line. The terminal impedances for 𝜃 = ∞ 𝑎𝑛𝑑 𝜃 = 0 , are the boundary conditions for 

the transmission line behavior. The terminal impedances should be calculated using 

transmission line properties. In the case of elliptic fibers, there are symmetry properties 

arising from the fact that wave transmission is polarized. The mode cutoff wavelengths 

can also be computed by setting for 𝛽 = 𝑛2 the cutoff condition, i.e. the minimum 

reduced wave number with which a mode may exist in the fiber. Due to the significance 

of the harmonics in the calculation of mode propagation constants, and in order to 

differentiate the current method from other TL methods presented in this thesis, the 

current method will be henceforth referred to as the harmonics method.  

A specific case related to the value of eccentricity is that of small elliptic eccentricity 

for l = 0 or  1 where the effect of harmonics can be ignored (this case is not applicable 

for higher harmonics). As a result of small elliptic eccentricity, the effect of harmonics 

in equations (3.9) becomes negligible and the coefficients of [Φ1] and [Φ2] are zero. In 

this case the equations (3.9) collapse to 

{

𝜕𝑉𝑆

𝜕𝜃
= −

𝛾2−𝑛𝑀𝐹

𝑗𝐹
𝛪𝑆

 
𝜕𝛪𝑆

𝜕𝜃
= −𝑗𝐹𝑉𝑆

                                            (3.23)  

Furthermore we can define 𝑉𝑆𝑆 =
𝑉𝑀

𝑛
+ 𝑉𝐸      𝐼𝑆𝑆 = 𝑛𝐼𝑀 + 𝐼𝐸  . It can then be proved 

that 

{

𝜕𝑉𝑆𝑆

𝜕𝜃
= −

𝛾2−𝑛𝑀𝐹

𝑗𝐹𝑛2
𝛪𝑆𝑆

 
𝜕𝛪𝑆𝑆

𝜕𝜃
= −𝑗𝐹𝑛2𝑉𝑆𝑆

                                                 (3.24)  

The set of equations (3.23) and (3.24) can be written in the following compact form 
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{

𝜕𝑉𝐻

𝜕𝜃
= −

(𝛾2−𝑛𝑀𝐹)

𝑗𝐹𝑛𝑡𝑚
𝐼𝐻

 
𝜕𝐼𝐻

𝜕𝜃
= −𝑗𝐹𝑛𝑡𝑚𝑉𝐻

 for 𝑡𝑚 = {
0
2

                          (3.25) 

where 𝑉𝐻, 𝐼𝐻 stand for even and odd modes respectively, or the two independent 

hybrid modes with the same transmission coefficient γ2-nMF and different 

admittances jF and 𝑗𝐹𝑛2. The two modes are related to the birefringence property in 

elliptic fibres.  This method maybe of use, in the case where there is interest in 

approximate but fast computation of the mode behavior. 

3.5. Estimation of the EM Field Components for Elliptical Core Fibers 

Taking into consideration the set of equations in (3.12) and due to the fact that the 

values of the estimated birefringence are very small, it can be assumed that: 

𝑉𝐸 ≅
𝑉𝑀

𝑛
 and 𝐼𝐸 ≅ 𝑛𝐼𝑀 

Thus 𝑉𝑀 =
𝑉𝑆

2
 and 𝐼𝑀 =

𝐼𝑆

2
  and 𝑉𝐸 ≅

𝑉𝑆

2𝑛
 and 𝐼𝐸 ≅ 𝑛

𝐼𝑆

2
 

Taking into consideration that ℎ0
2 =

𝑐2

2
cosh 2𝜃 the set (3.12) transforms as follows 

 {
𝐻𝑧 =

𝑙𝐼𝐸
𝐹⁄ + 𝑗𝛽𝑉𝑀
 

𝐸𝑧 =
−𝑗𝑙𝐼𝑀

𝐹⁄ + 𝛽𝑉𝐸

                                        (3.26)     

{
 
 

 
 
𝐻𝜑 ≅

(𝑗𝑙𝑉𝑀 +
𝛽ℎ0

2

𝐹𝑙
𝐼𝐸)

ℎ0
⁄

 

𝐸𝜑 ≅
(
𝑗𝛽ℎ0

2

𝐹𝑙
𝐼𝑀 + 𝑙𝑉𝐸)

ℎ0
⁄

                             (3.27)                            

Having calculated β, 𝑉𝑆, 𝐼𝑆 for each θ, or, for each 𝑏𝑏(𝜃) = sinh𝜃, the equations in 

(3.26) and (3.27) can be used for the calculation and plotting the values of the EM 

field components for the elliptical core fiber for TM (E) and TE (M) modes 

separately. 
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3.6. Results 

Using the relations of the impedances in section 3.4, for the quadrupoles that make 

up the Transmission Line, an algorithm can be developed that calculates the mode 

propagation constant 𝛽 at the point of resonance. Using the corresponding algorithm, 

the 𝑏̅ − 𝑉 diagram has been computed for a number of low order modes with ellipticity 

b/a=0.5, versus V defined as 𝑉 =
2𝜋𝑏

𝜆
√𝑛1

2 − 𝑛2
2, b defined as the semiminor axis of the 

ellipse and a, is the semi major axis 𝑏̅ =
(
𝛽

𝑘0
)2−𝑛2

2

𝑛1
2−𝑛2

2 . The wave number β represents the 

ratio 𝛽 𝑘0⁄ .  

The results shown in Figure 3-3, agree within the 3rd or 4th decimal place compared 

to other published results in the literature. The curves in the figures were generated 

using 5 harmonics. Using only 3 or 4 harmonics the fundamental HE11 produces 

acceptable accuracy in the value of ‘β’, but the higher order modes require more 

harmonics to become more accurate, as shown in Figure 3-4.  

 

Figure 3-3 The first six normalized modes versus V, of Step Index Elliptical fiber of 𝐧𝟏 =

𝟏. 𝟓𝟒,  𝐧𝟐 = 𝟏. 𝟒𝟕,
𝐚
𝐛⁄ = 𝟐, 𝐥 = 𝟏 𝐚𝐧𝐝 𝐥 = 𝟎. 
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Figure 3-4 The first three normalized modes versus V, of Step Index Elliptical fiber of 𝐧𝟏 =

𝟏. 𝟓𝟒,  𝐧𝟐 = 𝟏. 𝟒𝟕,
𝐚
𝐛⁄ = 𝟐, 𝐥 = 𝟏 calculated with 3, 4 and 5 harmonics. (The wave number β is 

normalized by ko) 

Table 3-2 presents a comparison of calculated normalized step index core mode 

propagation constants using only 2x2 matrix Mathieu functions and the Transmission 

Line method.  

a/b=1.3 Mathieu TR 

V b11, Ne b11, Ne 

1.5 1,4907763 1,4907020 

2.1 1,5061120 1,5057200 

2.5 1,5131290 1,5126423 

3.1 1,5203294 1,5198141 

a/b=1.3 Mathieu TR 

V b11, No b11, No 

1.5 1,4911885 1,4910277 
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2.1 1,5064715 1,5063359 

2.5 1,5134235 1,5131960 

3.1 1,5205393 1,5202285 

a/b=1.5 Mathieu TR 

V b11, Ne b11, Ne 

1.5 1,4936200 1,4933413 

2.1 1,5085150 1,5078138 

2.5 1,5150727 1,5143015 

3.1 1,5217244 1,5209683 

a/b=1.5 Mathieu TR 

V b11, No b11, No 

1.5 1,4942506 1,4936368 

2.1 1,5090391 1,5083152 

2.5 1,5154931 1,5147457 

3.1 1,522019120000000 1,521299532774000 

Table 3-2 Comparison of normalized mode propagation constants calculated using Mathieu 

functions method and Transmission Line method 

The comparison is made for two basic cases of elliptic eccentricity, namely a/b=1.3 

and a/b=1.5, for the fundamental modes, both even and odd and for selected numbers 

of normalized frequency V. The small differences are due to the truncation of the Matrix 

using Mathieu Functions. The appearance and consideration of more harmonic terms 

leads to significant accuracy for the TR method; accuracy is the harmonics method’s 

competitive advantage against other existing methods. 
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3.6.1. Evaluation of the method for different number of harmonics 

At this point it would be interesting to investigate the effect of using different 

numbers of harmonics under various ellipticities. To this end, 4 cases of elliptical fibers 

are considered, with corresponding ellipticities of ab = 1.5, ab = 2, ab = 3 and ab = 5. 

For each of these cases, the mode propagation constants are estimated in β-V diagrams 

for the fundamental mode; the calculations in each case take place using 1, 3 and 5 

harmonics and the results are presented below. 

 

Figure 3-5 β-V diagram of the fundamental mode for varying number of harmonics. 

Ellipticity: 1.5 
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Figure 3-6 Zoomed β-V diagram of the fundamental mode for varying number of harmonics. 

Ellipticity: 1.5 

In the diagram of Figure 3-5, the difference between the β values calculated by 1 

harmonic and those calculated by 3 and 5 is very notable and varying between 2 × 10−3 

and 6 × 10−3. In Figure 3-5 however, the difference between the β values calculated 

by 3 and 5 harmonics is so restricted that the two lines appear as one. In order to better 

visualize the difference (between 3 and 5), a second figure is deployed, Figure 3-6, 

which presents a zoomed area of the same diagram where the lines of 3 and 5 harmonics 

appear distinct. The difference in β is around 8 × 10−5. The conclusion drawn from the 

above figure, is that using more than 3 harmonics for the estimation of the β-V diagram, 

shifts the resulting line merely by a minimum, while beyond 5 harmonics the difference 

is negligible and the line is stabilized.  
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Figure 3-7 β-V diagram of the fundamental mode for varying number of harmonics. 

Ellipticity: 2 

 

Figure 3-8 Zoomed β-V diagram of the fundamental mode for varying number of harmonics. 

Ellipticity: 2   

In the diagram of Figure 3-7, the value of ellipticity has been increased to 2. The 

difference between the β values calculated by 1 harmonic and those calculated by 3 and 
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5 is again quite evident and varying between 6 × 10−3 and 10−2. In Figure 3-7, the 

difference between the β values calculated by 3 and 5 harmonics is restricted as in 

Figure 3-5 and the two lines again appear as one. In order to better visualize the 

difference (between 3 and 5), Figure 3-8 is utilized, presenting a zoomed area of the 

same diagram where the lines of 3 and 5 harmonics appear distinct. The difference in β 

for the lines of 3 and 5 harmonics, is around 3 × 10−4. The conclusion drawn from the 

above figure, is that using more that 3 harmonics for the estimation of the β-V diagram 

shifts the resulting line by a difference in β that reaches 3 × 10−4. The corresponding 

maximum difference in β under ellipticity 1.5 is 8 × 10−5. This means that for an 

ellipticity of 2, using 3 harmonics is less adequate than in the case of ellipticity of 1.5. 

Still, beyond 5 harmonics the difference is negligible and the line is stabilized.  

 

Figure 3-9 β-V diagram of the fundamental mode for varying number of harmonics. 

Ellipticity: 3 

In the diagram of Figure 3-9, β-V lines have been plotted for ellipticity of 3 and for 

various numbers of harmonics. The difference between the β values calculated by 1 

harmonic and those calculated by 3 and 5 is evident and varying between 5 × 10−3 and 

1.3 × 10−2. In Figure 3-9, the difference between the β values calculated by 3 and 5 

harmonics is evident and the corresponding lines appear separate without the need of a 

zoom; the value of this difference reaches its maximum around 10−3. The conclusion 

drawn from the above figure, is that the use of 3 harmonics may be not enough since 
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there is an error of 10−3 between 3 and 5 harmonics and for V around 2.5. Using 5 

harmonics on the other hand is adequate and the line beyond that number of harmonics 

will not shift. 

 

Figure 3-10 β-V diagram of the fundamental mode for varying number of harmonics. 

Ellipticity: 5 

Finally, on Figure 3-10, a diagram is presented with the β-V plots for ellipticity of 5 

and for various numbers of harmonics. The difference between the β values calculated 

by 1 harmonic and 3 is varying between 5 × 10−3 and 1.8 × 10−2; even wider 

compared to Figure 3-9. In Figure 3-10, the difference between the β values calculated 

by 3 and 5 harmonics is again evident and the corresponding lines appear separate 

without the need of a zoom; the value of this difference reaches its maximum around 

2 × 10−3. The conclusion drawn from the above figure, is that the use of 3 harmonics 

may be not enough since there is an error of 10−3 between 3 and 5 harmonics and for 

V around 2. Using 5 harmonics even for this value of ellipticity (5) is adequate and the 

line beyond that number of harmonics will not shift. 

Concluding, as the value of ellipticity increases, the difference in 𝛽 increases 

significantly. It is therefore concluded that as ellipticity increases, a higher number of 

harmonics need to be included in order for the results to converge on an accurate 𝛽 

value. However, for all the cases of ellipticity presented above (1.5, 2, 3 and 5), the 
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use of 5 harmonics has been found adequate to produce results with significant 

accuracy. 

3.6.2. Obtaining Results for Elliptical Fibers with Arbitrary Index 

Profiles 

The power of the Resonant Transmission Line method is not limited to the accurate 

calculation of mode propagation constants. Perhaps its most powerful feature is the 

ability to produce results for index profiles, other than the typical step index, such as 

graded. Graded index fibers do not have a constant refractive index in the core, but a 

decreasing core index 𝑛(𝑟), with radial distance from a maximum value of 1n  at the 

axis, to a constant value 2n  beyond the core radius ‘a’ in the cladding. This refractive 

index variation may be represented as: 
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where  

𝛥 ≡ (𝑛1 − 𝑛2)/𝑛1,  

𝑛1 is the refractive index at the axis of the optical fiber,  

𝛼 controls the decay or growth of the profile envelope,  

𝑎̄ is the normalized core radius.  

A variety of profiles can be generated by varying 𝛼, as shown in Fig. 3-11 

below 

 

 

 

 

 

 



 80  

 

 

 

 

                              

  𝛼 = 1                  

                      

 

 

 

 

Linear and parabolic index profiles are often used in the industry as methods for 

dispersion manipulation. Results for arbitrary index profiles like the ones mentioned 

above, cannot be easily produced using the Mathieu functions analytical method. 

 

Figure 3-12 (a) Step index profile (b) Linear index profile (c) Parabolic index profile (d) 4th 

power parabolic index profile 

Refractive index (n(r)) 

α=2 

 Radial distance (r) 

 

C

𝛼 = 1  Triangular index profile 

𝛼 = 2  Parabolic index profile 

Figure 3-11 Possible fibre refractive index profiles for different values of α 
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[https://www.osapublishing.org/getImage.cfm?img=LmxhcmdlLG9lLTI1LTExLTEyOTg0LWcwMDI

] 

Further follows a demonstration of the calculation of mode propagation constants in 

elliptical core fibers of arbitrary index profiles, starting with the case of linear index 

profile. For a linearly varying core index profile, the distribution of the index value in 

relevance to the core radius can be seen in case (b) of Figure 3-12. Specifically in the 

case of an elliptical core fiber, let us consider the following case where the variation of 

the core index starts from Θ = 0 at the core center, from a typical value of n1 = 1.54 

down to n2 = 1.47 at the outer core ellipse where Θ = tanh-1(1/ab). The values of mode 

propagation constants under varying normalized frequency V for the fundamental mode 

in an elliptical core fiber of ellipticity ab=2 have been plotted in Figure 3.13.  

 

Figure 3-13 The β-V diagram for a linearly varying core index profile, ab=2 

Figure 3-14 presents a comparative plot between step and linear index profiles. The 

upper curve is the standard curve for a constant index value n1 while the lower curve 

corresponds to the linearly varying index profile. As one might expect, the curve 

representing the linear index profile lays below that of the step index, since the core in 

its entirety is characterized by lower refractive index. 
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Figure 3-14 β-v diagram comparing β values between a linearly varying core index profile 

and a typical step index profile. 

The demonstration continues with the analysis of the case of a parabolic index profile. 

For a parabolically varying core index profile, the distribution of the index value in 

relevance to the core radius can be seen in case (c) and (d) of Figure 3-12. Index values 

variate from n1 = 1. 54 at the core center (Θ = 0), decreasing to n2 = 1. 47 at the outer 

core where Θ = tanh-1(1/ab), in a parabolic manner, under a power of two as per case 

(c) of figure 3.12.  The values of mode propagation constants under varying normalized 

frequency V for the fundamental mode in an elliptical core fiber of ellipticity ab=2 have 

been plotted in figure 3-15. 
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Figure 3-15 β-v diagram for a parabolically varying core index profile 

Figure 3-16 presents a comparative plot between step parabolic and linear index 

profiles. The upper curve is the standard curve for a constant index value n1 while the 

middle curve corresponds to the parabolically varying index profile and the lower curve 

corresponds to the linearly varying index profile. As one might expect, the curve 

representing the parabolic index profile lays in between those of the step and linear 

index profiles, since the area covered by a larger index value is lesser than step and 

greater than the linear profile cases. 
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Figure 3-16 β-v diagram comparing β values between a typical step index profile, a 

parabolic and a linear index profile 

3.6.3. Calculation of Birefringence and Mode Cutoffs 

 The current method can be used for the calculation of birefringence and mode cutoffs, 

with significant accuracy. In Figure 3-17, we study the fundamental mode birefringence 

for the step index case and for l=1, a/b=3 while we use 3, 4 and 5 harmonics in order to 

highlight the convergence using higher order harmonics between them. It can be 

observed that 5 harmonics provide adequate level of accuracy for most applications.  
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Figure 3-17 Birefringence related to V, of Elliptical Graded Index Core fibers for n1=1.54 and 

n2=1.47, for a/b=3 

In the same figure we also calculate the birefringence of graded index elliptical 

waveguides, using the general refractive index profile formula n(θ)=n1+(n2-n1)(θ/θ0)
α 

where n1 is the maximum core refractive index, n2 is the cladding refractive index and 

θ0 is defined by the dimensions of the elliptic core(θ0=atanh(b/a)). Figure 3-17 also 

presents two typical birefringence curves for α=2 (parabolic), and α=6. It is evident that 

birefringence is higher for step index fibers compared to other graded profiles. 

Figure 3-18, shows the normalized birefringence versus v-curves, using the ellipticity 

a/b, as a parameter. The results are identical to the ones presented in the literature.  
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Figure 3-18 Birefringence versus V, of Elliptical Step Index Core fibers forn_1=1.54, 

n_2=1.47 for a/b=1.5,2,2.5, 3, 3.5 and infinity (slab). 

 

Figure 3-19 Mode cutoff frequencies Vc versus ellipticity b/a for a few low order modes of 

Step Index Elliptical Waveguides for n1=1.46 and n2=1.34 and l=1 and l=0. 
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A direct computation is also presented, of the mode cutoff frequencies for specific 

low order modes in step index elliptical core fibers, in Figure 3-19. The agreement is 

quite satisfying, considering that all published work take only the minimum size for the 

transcendental matrix, using Mathieu Functions, while in the method presented, one 

can simply increase the harmonic terms and reach higher accuracy. 

We conclude this chapter by noticing that the harmonics method is computationally 

exact, producing equivalent results with certain analytical solutions based on Mathieu 

functions, without using them explicitly. Unlike existing analytical methods, it can be 

applied to arbitrary refractive index profiles exhibiting remarkable simplicity, accuracy 

and fast convergence. Additionally, analytical methods such as, Bessel and Mathieu 

functions based methods are mostly limited to analysing cases where a finite radius core 

is covered by an infinitely expanded cladding which is unrealistic since optical fibers 

are covered with more layers of different materials or air. Unlike the complexity 

limitations of analytical methods, the RTL calculative method can be used for the 

analysis of more complexed realistic cases that examine mode propagation within 

multiple layers. 
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4 CHAPTER 4 

 

A study of Eccentric Core Optical Fibers 

4.1 Reasoning and methods for studying eccentricity 

In several cases optical fibers for telecommunication applications have cores of non-

circular geometry. Fiber optic deformations appear in optical fibers for a variety of 

reasons.  Optical fiber core ellipticity where the fiber optic core is not perfectly circular 

due to fiber optic manufacturing tolerances is measured and it often becomes a problem. 

Optical fiber core eccentricity, is defined by the fiber core being not on the axis of the 

fiber, but is offset by a certain length. This is another very important issue for ensuring 

performance with low loss splices and connector losses. Both ellipticity and eccentricity 

are specified in accordance with international standards for fiber optic manufacturing 

telecommunications grade fibers. 

The present chapter studies ellipticity combined with core eccentricity specifically 

and presents a new method for analyzing their effect. We present an extension of the 

transmission line technique as a means of studying such fibers and deriving necessary 

parameters. Conformal mapping on the other hand is a simple mathematical tool by 

which one can generate sets of orthogonal two-dimensional coordinate systems. Shortly 

a conformal map of Cartesian two-dimensional space is defined by any analytical 

function 𝑤(𝑧) where z, w, are:  𝑧 = 𝑥 + 𝑗𝑦  , 𝑤 = 𝜃 + 𝑗𝜑.  
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Figure 4-1 Typical eccentric core optical fiber. The core has refractive index n1 and the 

cladding n2 

The function deriving by the conformal mapping transformation ℎ(𝜃,𝜑) = |
𝜕𝑤

𝜕𝑧
| =

1
|
𝜕𝑧

𝜕𝑤
|⁄   ,can be used in order to define ∇ 𝐴  and ∇ × 𝐴  where 𝐴  is the magnetic or electric 

field in the derived orthogonal coordinate system. Useful conformal maps for fiber 

optics applications should have the property that the equation 𝜃(𝑥, 𝑦)= constant, forms 

closed curves in a Cartesian two-dimensional space (x,y). 

 The choice of a  𝜃(𝑥, 𝑦)  representing a set of co-eccentric circles, leads to the normal 

case of conventional fibers with circular cores. In case of  𝜃(𝑥, 𝑦) representing a set of 

ellipses, we have the case of elliptic core optical fibers. The case of 𝜃(𝑥, 𝑦) representing 

a set of eccentric circles corresponds to optical fibers with eccentric core. The method 

presented in the current chapter uses the transmission line technique together with 

conformal mapping as tools for the study of various shaped optical fiber cores and the 

effect of eccentricity on the fundamental modes of eccentric core fibers.   

Orthogonal Curvilinear Coordinates can be generated using a conformal map [48] of 

Cartesian coordinates (x,y) represented by the complex number z=x+jy. Of current 

interest are orthogonal coordinate systems where the z coordinate remains Cartesian (as 

in standard cylindrical coordinates) and furthermore for θ = constant, closed curves are 

formed on (x,y) plane. Thus, in general a Fourier Transformation along φ has integer 
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values ‘𝑙’. Any function of A(θ,φ,z) can be transformed along z and φ and the derived 

transformation will be a function of A(θ,l,β)𝑒𝑗𝛽𝑧 · 𝑒𝑗𝑙𝜑 such that   
𝜕𝐴

𝜕𝑧
= 𝑗𝛽𝐴,   

𝜕𝐴

𝜕𝜑
=

𝑗𝑙𝐴   (𝑙 = 𝑖𝑛𝑡𝑒𝑔𝑒𝑟). The Fourier Transform along 𝜑 of the product of 

𝐶′(𝜑)𝛢′(𝜃, 𝜑)𝑒𝑗𝛽𝑧
 
becomes the convolution  

𝑒𝑗𝛽𝑧[𝐶(𝑙) ⊕ 𝐴(𝜃, 𝑙)] ≅ 𝐶0𝐴(𝜃, 𝑙) + 𝐶1𝐴(𝜃, 𝑙 ∓ 1) + 𝐶2𝐴(𝜃, 𝑙 ∓ 2) + ⋯ 

where 

 𝐶0 =
1

2𝜋
∫ 𝐶(𝜑)𝑑𝜑
2𝜋

0
,   𝐶𝑛 =

1

2𝜋
∫ 𝐶(𝜑)𝑒𝑗𝑛𝜑𝑑𝜑
2𝜋

0
 

In general, Fourier Transforming Maxwell equations, expressed in general orthogonal 

cylindrical coordinate systems leads to the appearance of certain harmonics. In most 

cases related to optical fibers the harmonics can be omitted in practical calculations, 

with a negligible error due to the fact that 𝛥𝑛 = 𝑛1 − 𝑛2 is very small in comparison 

with 𝑛1. In this chapter these harmonics will be ignored.  

4.2. Fourier representation and resonance analysis 

Maxwell’s equations (see appendix B, for 
𝜕

𝜕𝑡
= 𝑗𝜔 ) expressed on a set of 

orthogonal cylindrical coordinates (𝜃, 𝜑, 𝑧) arising from a conformal mapping 𝑤 =

𝑤(𝑧) ,can be written for an infinitesimal layer of very small thickness 𝛥𝜃 where 

refractive index n can be considered constant as follows 

   

{
 
 

 
 

𝜕𝐸𝑧

𝜕𝜑
− 

𝜕(ℎ𝐸𝜑)

𝜕𝑧
= −𝑗𝜇0𝜔(ℎ𝛨𝜃)

𝜕(ℎ𝐸𝜃)

𝜕𝑧
−
𝜕𝐸𝑧

𝜕𝜃
= −𝑗𝜇0𝜔(ℎ𝛨𝜃)

𝜕(ℎ𝐸𝜑)

𝜕𝜃
− 

𝜕(ℎ𝐸𝜃)

𝜕𝜑
= −𝑗𝜇0𝜔(ℎ

2𝐻𝑧)

       (4.1) 

 

{
 
 

 
 

𝜕𝐻𝑧

𝜕𝜑
− 

𝜕(ℎ𝐻𝜑)

𝜕𝑧
=  𝑗𝑛2𝜀0𝜔(ℎ𝐸𝜃)

 
𝜕(ℎ𝐻𝜑)

𝜕𝑧
−
𝜕𝐻𝑧

𝜕𝜃
=  𝑗𝑛2𝜀0𝜔(ℎ𝐸𝜃)

𝜕(ℎ𝛨𝜑)

𝜕𝜃
− 

𝜕(ℎ𝛨𝜃)

𝜕𝜑
=  𝑗𝑛2𝜀0𝜔(ℎ

2𝛦𝑧)

        (4.2) 

 

Where ℎ2(𝜑,𝜃) = |
𝜕𝑤

𝜕𝑧
|
2

=
1

|
𝜕𝑧

𝜕𝑤
|
2
      
, ℎ = √|ℎ2(𝜑,𝜃)| 
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Fourier Transforming along z and φ gives 𝐹𝑇(  ℎ2(𝜃,𝜑)𝐸𝑧(𝜃,𝜑)
′ ) = ℎ2(𝜃,𝑙)⊕𝐸𝑧(𝜃,𝑙)  

and omitting the harmonics arising by the F.T. of the product we obtain 

𝐹𝑇(  ℎ2(𝜃,𝜑)𝐸𝑧(𝜃,𝜑)
′ ) ≅ ℎ0

2(𝜃)𝐸𝑧 (𝜃, 𝑙) where ℎ0
2(𝜃) = ∫ ℎ(𝜑,𝜃)

22𝜋

0
𝑑𝜑. Substituting    

𝜕

𝜕𝑧
 𝑏𝑦 𝑗𝛽 and  

𝜕

𝜕𝜑
 𝑏𝑦 𝑗𝑙, where  𝑙 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 the set of six partial differential Maxwell 

equations, becomes a set of four ordinary differential equations (for the remaining 

variable) and two algebraic ones as follows 

  

{
  
 

  
 

𝜕𝛦̇𝑧

𝜕𝜃
− 𝑗𝛽𝛦̇𝜃 = 𝑗𝐻̇𝜑

𝜕𝛦̇𝜑

𝜕𝜃
− 𝑗𝑙𝛦̇𝜃 = −𝑗(ℎ2⊕ 𝐻̇𝑧) ≅ −𝑗(ℎ0

2𝐻̇𝑧)

𝜕𝐻̇𝑧

𝜕𝜃
− 𝑗𝛽𝐻̇𝜃 = −𝑗𝑛

2𝛦̇𝜑
𝜕𝐻̇𝜑

𝜕𝜃
− 𝑗𝑙𝐻̇𝜃 = 𝑗𝑛

2(ℎ2⊕ 𝐸̇𝑧 ≅ 𝑗𝑛2ℎ0
2
𝐸̇𝑧

   (4.3) 

 {
𝛽𝛦̇𝜑 − 𝜆𝛦̇𝑧 = 𝐻̇𝜃

𝜆𝐻̇𝑧 − 𝛽𝐻̇𝜑 = 𝑛2𝛦̇𝜃
    (4.4) 

where as before  𝜔𝜇0 = 𝑧0𝑘0   and   𝜔𝜀0 = 𝑘0/𝑧0 as well as  𝑧0 = √
𝜇0

𝜀0
 =120π   and  

𝑘0 = 𝜔√𝜇0𝜀0 = 2𝜋/𝜆.  Symbols on the above equations represent the Fourier 

Transforms along z and 𝜑 of the electromagnetic field functions via the 

correspondences ℎ𝐸𝜃 → 𝛦̇𝜃𝑧0 , ℎ𝐸𝜑 → 𝛦̇𝜑𝑧0, ℎ𝛨𝜃 → 
𝛨𝜃

𝑧0

̇

 
 , ℎ𝛨𝜑 → 

𝛨𝜑

𝑧0

̇

 
, 𝐸𝑧 →

 𝛦̇𝑧𝑧0 𝑎𝑛𝑑  𝛨𝑧 → 
𝛨𝑧 

𝑧0

̇

 
. The wave number β was also replaced by β/k0 and h was 

replaced by hk0 as well as h0 with h0k0. 

We again define a set of four new functions 𝐼𝑀, 𝐼𝐸 , 𝑉𝑀, 𝑉𝐸  in the two algebraic 

equations (4.4) as 

{
 
 

 
 𝐼𝑀 =

𝐻̇𝜃

𝑗
= 

𝛽𝛦̇𝜑−𝑙𝛦̇𝑧

𝑗
   𝐼𝐸 = 𝑛

2𝛦̇𝜃 = (𝑙𝐻̇𝑧 − 𝛽𝐻̇𝜑)

𝑉𝑀 =
𝑙𝐻̇𝜑+𝛽ℎ0

2𝐻̇𝑧

𝑗𝐹
      𝑉𝐸 =

𝑙𝐸̇𝜑+𝛽ℎ0
2𝐸̇𝑧

𝐹

𝐹 = 𝑙2 + 𝛽2ℎ0
2

  (4.5) 
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Using the new functions 𝐼𝑀 , 𝐼𝐸 , 𝑉𝑀, 𝑉𝐸 it can be proved as in previous chapters 

through simple algebraic analysis that the four differential equations (4.3) are 

equivalent to the following two sets representing two interconnected transmission 

lines of length Δθ.   

{

𝜕𝑉𝑀

𝜕𝜃
= −

𝛾2𝐼𝑀

𝑗𝐹
− 𝑗𝑀𝐼𝐸

𝜕𝐼𝑀

𝜕𝜃
= −𝑗𝐹𝑉𝑀

                                               (4.6) 

{

𝜕𝑉𝐸

𝜕𝜃
= −

𝛾2𝐼𝐸

𝑗𝑛2𝐹
− 𝑗𝑀𝐼𝑀

 
𝜕𝐼𝐸

𝜕𝜃
= −𝑗𝑛2𝐹𝑉𝐸

     (4.7) 

 

together with the auxiliary algebraic relations  

          

 {

𝛾2 = 𝑙2 + (𝛽2 − ℎ2)ℎ0
2

𝐹 = 𝑙2 + 𝛽2ℎ0
2

𝑀 = 𝛽𝑙
𝜕ℎ0

2

𝜕𝜃
/𝐹2

                                          (4.8) 

 

Using (4.6) it can be proven that the Fourier Transforms of the Electric and 

Magnetic field components can be calculated from  

{
 
 

 
 𝐻̇𝜃 = 𝑗𝐼𝑀,   𝐸̇𝜃 =

1

𝑛2
𝐼𝐸

𝐻̇𝑧 =
𝑙

𝜑
𝐼𝐸 + 𝑗𝛽𝑉𝑀,   𝛦̇𝑧 =

𝑗𝑙𝐼𝑀

𝐹
+ 𝛽𝑉𝐸

𝐻̇𝜑 = 𝑗𝑙𝑉𝑀 −
𝛽ℎ0

2

𝐹
𝐼𝐸 ,   𝐸̇𝜑 = 𝑙𝑉𝐸 +

𝑗ℎ0
2

𝐹
𝐼𝑀

                          (4.9) 

For 𝑙 = 0  we also have M = 0 so that the set of equations (4.6) and (4.7) are 

independent and the corresponding transmission lines standing for the Transverse 

Magnetic  and Transverse Electric modes (TM and TE) become decoupled. For 𝑙 ≠ 0, 

the transmission lines are coupled thus each of them represents two modes of 

transmission (two eigenmodes with eigenvalues 𝛾2 ± 𝑛𝑀𝐹 ), with different 

transmission parameters. These eigenmodes are “normal” between each other. That 

means that if the one mode is non-zero, the other is zero. Finally it can be proved that 
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for  𝑙 ≠ 0  the Magnetic field (𝐻⃗⃗ ) is related to the respective Electric field (𝐸⃗ ) with the 

relation 𝐻⃗⃗ = ±𝑗𝑛𝐸⃗ /𝑧0 in every cylindrical layer. 

We shall use symbols M (Magnetic or TE modes) and Ε (Electric or TM modes) for 

these modes which can now be written as follows: 

{

𝜕𝑉𝑀

𝜕𝜃
= −

(𝛾2−𝑛𝑀𝐹)

𝑗𝐹𝑛𝑡𝑚
𝐼𝑀

𝜕𝐼𝑀

𝜕𝜃
= −𝑗𝐹𝑛𝑡𝑚𝑉𝑀

    (4.10) 

For 𝑡𝑚 = {
0
2

 there are two independent modes 𝑀 

 {

𝜕𝑉𝐸

𝜕𝜃
= −

(𝛾2+𝑛𝑀𝐹)

𝑗𝐹𝑛𝑡𝑚
𝐼𝐸

𝜕𝐼𝐸

𝜕𝜃
= −𝑗𝐹𝑛𝑡𝑚𝑉𝐸

       (4.11) 

For 𝑡𝑚 = {
0
2

  there are two independent modes 𝐸 

To apply the resonance technique, we assume again a set of successive layers of 

length δθ in all cases that can be represented by a quadrupole as that of Figure 3.2. 

We also define impedances as  

{
𝑍𝐵 =

1

2
 
𝛾𝐻𝐸
2 𝛥𝜃

𝑗𝐹𝑛𝑡𝑚

𝑍𝑃 =
1

𝑗𝐹𝑛𝑡𝑚𝛥𝜃

    (4.12)  

for  𝑡𝑚 = {
0
2

. The  quadrupoles representing the successive layers can be connected 

in series,  because the equivalent “voltages” and “currents” on their boundaries are 

continuous due to the fact that 𝑉𝑀, 𝐼𝑀, 𝑉𝐸 , 𝐼𝐸 are continuous functions of  𝜃  following 

the normal and tangential Magnetic and Electric fields that are continuous at the 

boundaries. Thus, the set of the successive layers is forming an overall “Transmission 

Line” with pure imaginary impedances. The resonance “frequencies” of the line are the 

transmission wave numbers “𝛽” of the fibers. The terminal impedances for 𝜃 =

∞ 𝑎𝑛𝑑 𝜃 = 0 ,  are the boundary conditions for the transmission line behavior. These 

terminal impedances should be calculated using transmission line properties or 

symmetry properties. Furthermore for 𝑏 = 𝑛2 we can calculate the cutoff condition, i.e. 

the minimum wave number 𝑘0 with which a mode may exist in the fiber. For 
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monomode transmission, the interesting region for monomode transmission is the 

region between cutoff wave numbers of the fundamental mode 𝐿𝑃11 and  𝐿𝑃01 .  

4.3. Applications in distinct coordinate systems 

The method of conformal mapping for derivation of orthogonal cylindrical 

coordinate systems will be applied in the following cases of (a) Elliptic Cylindrical 

System (ECS), (b) Bipolar Cylindrical System (BCS). Which are examined separately 

in what follows. 

4.3.1. Elliptical Cylindrical System case  

We again set 𝑤 = 𝜃 + 𝑗𝜑 , 𝑧 = 𝑐 sin(𝑤) = 𝑥 + 𝑗𝑦 = 𝑐 sinh 𝜃 cos𝜑 +

𝑗𝑐 cosh𝛩 sin𝜑 so that 

{
𝑥 = 𝑐 sinh 𝜃 cos𝜑
𝑦 = 𝑐 cosh 𝜃 sin𝜑

 

These relations prescribe an elliptic coordinate system. In the elliptic cylindrical 

system for 𝜃 constant on the plane (x,y) ellipses (of  two foci in distance 2c) are 

generated, while for  𝜑 constant, hyperbolae (of the same foci) are generated that are 

normal to the previous ellipses. The elliptic system can be used for the study of fibers 

with an elliptic core [9].  The transmission line technique has already been used for the 

study of elliptic core fibers. Step index elliptic fibers can be also tackled using the 

(complicated) Mathieu functions. 

In elliptic cylindrical coordinate systems  ℎ(𝜃,𝜑)
2 =

𝑐2

2
(cosh2𝜃 − 𝑐𝑜𝑠2𝜑) and thus 

omitting the harmonics we can use the previous equations via the relation ℎ0(𝜃)
2 =

𝑐2

2
cosh 2𝜃 which now gives 

𝜕ℎ0
2

𝜕𝜃
= 𝑐2 sinh 2𝜃   resulting in the system 

    

      {

𝐹=𝑙2+𝛽2ℎ0
2

𝛾2=𝑙2+(𝛽2−𝑛2)ℎ0
2

𝑀=𝛽𝑙
𝜕ℎ0
2

𝜕𝜃
𝐹2⁄

𝛾𝛨𝛦
2 =𝛾2−𝑛𝑀𝐹 𝑎𝑛𝑑 𝛾𝛦𝛨

2 =𝛾2+𝑛𝑀𝐹 

    (4.15) 
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Each couple of modes HE or EH will be then represented by T-quadrupoles with: 

     {
𝑍𝐵 =

1

2
 
𝛾𝛨𝛦
2 𝛥𝜃

𝑗𝐹𝑛𝑡𝑚
  𝑜𝑟 𝑍𝐵 =

1

2
 
𝛾𝛦𝛨
2 𝛥𝜃

𝑗𝐹𝑛𝑡𝑚 

  𝑎𝑛𝑑  𝑍𝑃 =
1

𝑗𝐹𝑛𝑡𝑚𝛥𝜃

      (4.16) 

for  𝑡𝑚 = {
0
2

. Thus, the resonance technique can be applied assuming that 𝑧𝑖𝑛(0) and 

𝑧𝑜𝑢𝑡(∞) will be defined. 

  

4.3.2. Bipolar Cylindrical fiber analysis 

From 𝑧 = 𝑥 + 𝑗𝑦  𝑎𝑛𝑑 𝑤 = 𝜃 + 𝑗𝜑 = 𝑐 • 𝑙𝑛 [
𝑧−𝑐

𝑧+𝑐
] or, equivalently 𝑧 = 𝑐 tanh(𝑤 2⁄ ) we 

get a representation of a bipolar orthogonal cylindrical coordinate system.  

Furthermore, it can be proven that 

𝑥 =
𝑐 sinh𝜃

cosh𝜃−cos𝜑
   and  𝑦 =

𝑐 sin𝜑

cosh𝜃−cos𝜑
 

           The previous relations for θ constant represent eccentric circles οn (x,y) plane. 

Every eccentric circle has a radius    𝑟0 =
𝑐

sinh𝜃
   centered on (x) axis at  𝑥0 =

𝑐·cosh𝜃

sinh𝜃
  

so that 𝑥0 = 𝑟0 · cosh 𝜃. The relations for φ constant represent circles οn (x,y) plane, 

normal to the previous circles. Every such circle has a radius   𝑟0 =
𝑐

sin𝜑
   centered at 

(y) axis at 𝑦0 =
𝑐 ·cos𝜑

sin𝜑
 or 𝑦0 = 𝑟0 · cos 𝜑.  Via the auxiliary relation 

𝜕𝑤

𝜕𝑧
=

1

𝑧 − 𝑐
−

1

𝑧 + 𝑐
=

2𝑐

𝑧2 − 𝑐2   
 

it can be shown that 

ℎ2 = |
𝜕𝑤

𝜕𝑧
|
2

=[
𝑐

cosh𝜃−cos𝜑
]2 ,   𝑜𝑟  ℎ =

𝑐

cosh𝜃−cos𝜑
 

Furthermore we can show that 

ℎ0(𝜃)
2 =

1

2𝜋
∫ ℎ2𝑑𝜑
2𝜋

0
=

𝑐2 cosh𝜃

sinh3 𝜃 
 . 

from which we derive  
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𝜕ℎ0
2

𝜕𝜃
= −𝑐2 [

2

sinh2 𝜃
+

3

sinh4 𝜃
] 

Using the previous we arrive at the system  

           {

𝐹=𝑙2+𝛽2ℎ0
2

𝛾2=𝑙2+(𝛽2−𝑛2)ℎ0
2

𝑀=𝛽𝑙
𝜕ℎ0
2

𝜕𝜃
𝐹2⁄

𝛾𝛨𝛦
2 =𝛾2+𝑛𝑀𝐹 𝑎𝑛𝑑  𝛾𝛦𝛨

2  =𝛾2−𝑛𝑀𝐹 

                                        (4.17) 

For each couple of modes HE and EH we use their equivalent representations via  

T-quadrupoles with impedances as 

{
 
 

 
 𝑍𝐵 =

1

2
 
𝛾𝛨𝛦
2 𝛥𝜃

𝑗𝐹𝑛𝑡𝑚
          𝑜𝑟           𝑍𝐵 =

1

2
 
𝛾𝛦𝛨
2 𝛥𝜃

𝑗𝐹𝑛𝑡𝑚 

  𝑎𝑛𝑑  𝑍𝑃 =
1

𝑗𝐹𝑛𝑡𝑚𝛥𝜃

 

for  𝑡𝑚 = {
0
2

. At this point it must be noted that transmission in eccentric optical 

fibers has been studied before in several cases [49], [50], [51], yet without the use of 

the RTL technique. In this chapter it is proved that the transmission modes of the 

equivalent transmission line of the eccentric fibers can be computed using the RTL 

technique, with remarkably accurate results. 

It can be proven that given eccentric core fiber defined by 𝑟1, 𝑟2, 𝑎𝑛𝑑 𝛿 as in figure,  

𝜃1, 𝜃2  of the eccentric core and gladding can be calculated by the following relations: 

cosh 𝜃1 =
1

2𝑟1
(
𝑟2
2 − 𝑟1

2

𝛿
− 𝛿) 

cosh 𝜃2 =
1

2𝑟2
(
𝑟2
2 − 𝑟1

2

𝛿
+ 𝛿) 

Also in order to apply the resonance technique method, 𝛧𝑖𝑛 𝑎𝑛𝑑 𝑍𝑜𝑢𝑡 must be 

calculated on the periphery of the core circle defined by 𝜃1. The starting value for the 

calculation of  𝛧𝑖𝑛 𝑖. 𝑒. 𝑖𝑡𝑠 𝑣𝑎𝑙𝑢𝑒 𝑓𝑜𝑟 𝜃 = 0 𝑖𝑠  𝛧𝑖𝑛(0) = 0 (derived using the limit 

ℎ0(0)
2 → ∞) and we proceed up to 𝜃1 with a constant refractive index  𝑛 = 𝑛1. The 

starting value for the computation of 𝑍𝑜𝑢𝑡  𝑓𝑜𝑟 𝜃 = ∞ (where n=1 for air), can be 
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estimated considering that  ℎ0
2 = 0,𝑀 = 0 , 𝛾 = 𝑙  and 𝐹 = 𝑙2    thus  𝑍𝑜𝑢𝑡(∞) =

𝛾

𝑗𝐹
=

𝑙

𝑗𝑙2
=

1

𝑗𝑙
.  

Proceeding towards 𝜃1 , 𝑓𝑜𝑟 𝜃 >   𝜃2𝑛 = 1,while in the gladding i.e. in the 

region 𝜃1 ≤ 𝜃 ≤ 𝜃2. The recursive relations within (or outside) are derived by the T-

quadrupole as follows 

𝛧𝑖𝑛,𝑛+1 =
(𝛧𝑖𝑛,𝑛 + 𝛧𝐵,𝑛)𝑍𝑝,𝑛

𝛧𝑖𝑛,𝑛 + 𝛧𝐵,𝑛 + 𝑍𝑝,𝑛
+ 𝛧𝐵,𝑛 

Finally the resonance condition is given by: 

𝑍𝑖𝑛(𝜃=𝜃1) + 𝑍𝑜𝑢𝑡(𝜃=𝜃1) = 0 

The fundamental mode 𝐿𝑃11 was calculated for 𝑟2=5•𝑟1, 𝑛11=1.54, 𝑛22=1.47 and 

various eccentricities  δ=𝑟1, 2•𝑟1, 3•𝑟1.  

4.4 Numerical results for a Bipolar Cylindrical fiber  

With reference to figure 4-2 it becomes clear that for fixed 𝑉 values the propagation 

constant is reduced as the fiber becomes more eccentric. Depending on the level of 

eccentricity this could cause the field to reach the outer cladding boundary and increase 

losses. This also translates to a decreased value of W (
2

2

2

01 nbkrW  ) which in 

effect would broaden the mode field into the cladding.  
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Figure 4-2 Fundamental mode normalized propagation constant, (LP11), for various 

normalized eccentricities δ  for  δ/r1 = 1.0 , 2.0 , 3.0 (n1=1.54, n2=1.47) 

The fundamental mode LP11 can be calculated with a similar procedure as previously 

for given values of the c/r1 ratio taking into account that 𝜃1 = arctanh (
𝑐

𝑟1
), 𝜃2 = ∞. 

Initial impedance values are respectively 𝛧𝑖𝑛(0) = 0 and 𝑍𝑜𝑢𝑡(∞) =
1

𝑗𝑙
 , for air refractive 

index 𝑛 = 1 . If instead of air another gas of refractive index 𝑛 = 𝑟𝑒𝑓 was present than 

the outer terminal initial impedance should be 𝑍𝑜𝑢𝑡(∞) =
1

𝑗𝑙(𝑟𝑒𝑓)
.  
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Fundamental mode LP11 for r2/r1=5 and various eccentricies ecc/r1= 1.0, 2.0, 3.0
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Figure 4-3 Fundamental mode (LP11), for various normalized constants c for c/r1= 2.0 , 2.5 , 

3.0 . n1=1.54, n2=1.47. 

The fundamental mode LP11 wave numbers were calculated for ratio values 

c/r1=2, 2.5 and 3, as functions of  𝑉 = 𝑟1𝑘0 √𝑛1
2 − 𝑛2

2  as shown in figure 4-3. 

4.5 The D Fiber  

The analysis that takes place in the current chapter is of special interest due to its 

potential application to the case of the D-shaped fiber. The D-fiber is a specific type of 

optical fiber that combines ellipticity and eccentricity, its name deriving from the shape 

of its section which is shown in Figure 4-4. When it comes to fibers that retain 

polarization, the D fiber has two important benefits: an accurate location of the 

birefringence axes and an efficient way to form power splitters or directional couplers. 

D fiber achieves both goals by having a guiding domain that is easy to reach and a cross 

section that facilitates the locating of the birefringent axes. In the cross section of the D 

fiber, the straight part of the D is parallel to the major axis of the elliptical core.  
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β
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LP11 mode for three c/r1 values 2.0 , 2.5 and 3.0
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Figure 4-4 Image of a section of a D fiber [39].  

The D fiber can be used in various fabrications including the loop mirror which can be 

applied for monitoring coupling coefficients, Indium-coated polarizers, and 

optoelectronic devices.  

4.6 Conclusions  

Conclusively, this chapter presents the combined use of Fourier Transforms, 

Orthogonal Curvilinear Transforms, Conformal Mapping and their application into 

Maxwell’s Equations towards deriving Transmission Line Models of Optical Fibers 

with ellipticity or eccentricity in the core. The analysis reveals the modal perturbation 

of the perfectly circular and non-eccentric fibers. This novel method has wide range 

applications in D-shape optical Fiber sensing where the core is on purpose located near 

the surface of the flat of the D in order to increase sensitivity of the surroundings. It can 

be applied to fiber optic device and component manufacturing and for the study of 

connector losses, as well as fiber to device losses. 
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5 CHAPTER 5 

Study of Optical Fibers with Angular Asymmetry 

5.1 The case of angular dependency 

This chapter presents a new approach towards the study of special types of optical 

fibers with altered geometry which can be characterized as unconventional fibers. At 

first, we shall define as conventional optical fibers all the cylindrical fibers that can be 

separated in a set of very thin successive cylindrical layers of average radius r of 

uniform refractive indexes η. The refractive indexes of the successive thin cylindrical 

layers in general are different for instance when the refractive index profile is solely a 

function of r. This profile variation from the center of the fiber up to the outer air limit, 

uniquely specifies the properties of each fiber.   

At this point we can define as unconventional fibers the ones in which at least in some 

of its successive thin cylindrical layers the refractive index is varying also along its 

radial coordinate in general as η(r,φ). This includes all fibers in which their cores are 

non-circular as are for example the elliptic core fibers, non-symmetric or eccentric core 

fibers. In these fibers all the cylindrical layers that include parts of core and parts of 

gladding, they have varying refractive indexes along (φ).  Specifically, there will be 

three main aspects of altered geometry of the cross section of such fibers including 

eccentricity of the central hole, asymmetry, and elliptic boundary. 

All the cylindrical optical fibers shall therefore be referred to as the class of 

conventional optical fibers (COF) for as long as they can be separated in a set of n very 

thin successive cylindrical layers of average radius r of uniform refractive index values 

ηi. Indices of successive layers will be allowed in general to be different for each step 

as say, η(ri). The resulting, total index profile η(r) variation from the center of the fiber 

up to the limit outer air medium, completely defines the propagation properties inside 

the fiber.   

The class of unconventional optical fibers (UOF) will additionally be  defined as 

including fibers in which at least in some of their successive thin cylindrical layers 

present an additional variation of the total index profile along the radial coordinate φ in 

the form η(r,φ). Such cases include elliptic core, non-symmetric or eccentric core fibers 
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and in general, all cases of not strictly circular core fibers. In these cases, any 

discretization into thin cylindrical layers that “cuts” through the core and cladding, 

results in a variation of the refractive index along φ. In figure 5-1 a related case is 

presented, of a thin circular cylindrical layer cutting an elliptic core fiber. As is evident 

in the schematic representation, the variation is analogous to the arc length of the 

circular sector cut by the ellipse for each discretization step. 

 

Figure 5-1 Example of the alternating character of the local index value from a thin shell 

radial discretization. 

Additionally, photonic fibers made of silica with a set of small air holes around their 

centers will have many cylindrical layers of varying refractive indexes along θ. In figure 

5-2, an example is shown, of a PCF with a hexagonal lattice of seven rows of air holes. 
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Figure 5-2 Schematic depiction of the alternating step index resulting from radial 

discretization in PCF. 

Again, radial discretization with thin circular cylindrical layers results in alternatively 

cutting through air holes and silica of a PCF as depicted in the schematic. As part of the 

main research, this chapter presents the development of an RTL-based method aiming 

to include all such UOF cases via an appropriate transformation to mathematically 

equivalent COF cases. 

5.2 Mathematical equivalence of homogeneous circular cylindrical layers to 

electric transmission lines 

The basis for the application of the previously introduced RTL is the radial 

discretization of all cylindrical fibers via a separation into a succession of thin 

cylindrical layers each one with its own constant refractive index η. These layers can 

be extended outside of the cladding in order to take into consideration the effect of the 

surrounding air (η=1).  

Following the analysis presented in chapter 2 section 6, the Maxwell equations take 

the forms: 
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{
 
 

 
 

𝑗𝑙

𝑟
𝐸𝑧̅̅ ̅ − 𝑗𝛽𝐸𝜑̅̅̅̅ = −𝑗𝐻𝑟̅̅̅̅

𝑗𝛽𝐸𝑟̅̅ ̅ −
𝜕𝐸𝑧̅̅ ̅

𝜕𝑟
= −𝑗𝐻𝜑̅̅ ̅̅

1

𝑟

𝜕(𝑟𝐸𝜑̅̅ ̅̅ )

𝜕𝑟
−
𝑗𝑙

𝑟
𝐸𝑟̅̅ ̅ = −𝑗𝐻𝑧̅̅̅̅

      (5.1) 

and  

{
 
 

 
 

𝑗𝑙

𝑟
𝐻𝑧̅̅̅̅ − 𝑗𝛽𝐻𝜑̅̅ ̅̅ = 𝑗𝑛

2(𝑟)𝐸𝑟̅̅ ̅

𝑗𝛽𝐻𝑟̅̅̅̅ −
𝜕𝐻𝑧̅̅ ̅̅

𝜕𝑟
= 𝑗𝑛2(𝑟)𝐸𝜑̅̅̅̅

1

𝑟

𝜕(𝑟𝐻𝜑̅̅ ̅̅ )

𝜕𝑟
−
𝑗𝑙

𝑟
𝐻𝑟̅̅̅̅ = 𝑗𝑛

2(𝑟) 𝐸𝑧̅̅ ̅̅

      (5.2) 

Finally it is possible to prove that the system of equations (5.1) and (5.2) can be 

transformed in a set of four differential equations (5.4), relating the equivalent “voltage’ 

and “current” functions  𝑉𝑀, 𝐼𝑀, 𝑉𝐸 , 𝐼𝐸  defined as follows: 

𝑉𝑀 =
𝑙𝐻𝜑̅̅ ̅̅ +𝛽𝑟𝐻𝑧̅̅ ̅̅

𝑗𝐹
      

𝐼𝑀 =
𝑟𝐻𝑟̅̅ ̅̅

𝑗
=

𝛽𝑟𝛦𝜑̅̅ ̅̅
̅̅ ̅̅ ̅̅ ̅−𝑙𝛦𝑧̅̅̅̅

𝑗
      (5.3) 

𝑉𝐸 =
𝑙𝛦𝜑̅̅ ̅̅ +𝛽𝑟𝐸𝑧̅̅ ̅

𝐹
      

𝐼𝐸 = 𝑛
2𝑟𝐸𝑟̅̅ ̅ = 𝑙𝐻𝑧̅̅̅̅ − 𝛽𝑟𝐻𝜑̅̅ ̅̅       

where we use the notation 𝐹 =
(𝛽𝑟)2+𝑙2

𝑟
 

 

{
  
 

  
 

𝜕𝑉𝑀

𝜕𝑟
= −

𝛾2

𝑗𝐹
𝐼𝑀 − 𝑗𝑀𝐼𝐸

𝜕𝐼𝑀

𝜕𝑟
= −𝑗𝐹𝑉𝑀

𝜕𝑉𝐸

𝜕𝑟
= −

𝛾2

𝑗𝑛2𝐹
𝐼𝐸 − 𝑗𝑀𝐼𝑀

𝜕𝐼𝐸

𝜕𝑟
= −𝑗𝑛2𝐹𝑉𝐸

     (5.4)  

In (5.4) we introduced the total propagation factor 𝛾2 =
𝑙2

𝑟2
+ 𝛽2 − 𝑛2 and the 

auxiliary function  𝑀 =
2𝑙𝛽

[(𝛽𝑟)2+𝑙2]𝐹
. 
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At this point it is noticed that 𝑉𝑀, 𝐼𝑀, 𝑉𝐸 , 𝐼𝐸  are continuous functions at the boundaries 

because the tangential components of electric and magnetic fields  𝐻𝜑⃗⃗ ⃗⃗  ⃗  𝐻𝑧⃗⃗ ⃗⃗  ⃗ and 𝐸𝜑  ⃗⃗ ⃗⃗ ⃗⃗  ⃗ 𝐸𝑧⃗⃗⃗⃗  

on the cylindrical surface are continuous functions passing the boundaries of the 

cylindrical layer. Using the previous relations, the Fourier Transforms of the Electro-

Magnetic field components along (r, 𝑙, β ) can be expressed as functions of their 

equivalent “voltages” and “currents” functions with the auxiliary relations 

𝐻𝑟̅̅̅̅ =
𝑗𝐼𝑀

𝑟⁄ , 𝐸𝑟̅̅ ̅ =
𝐼𝐸
𝑛2𝑟

 

𝐻𝜑̅̅ ̅̅ = 𝑗𝑙𝑉𝑀  /𝑟 −
𝛽

𝐹
𝐼𝐸 

𝐸𝜑̅̅̅̅ = 𝑙𝑉𝐸/𝑟 + 𝑗
𝛽

𝐹
𝐼𝛭 

𝐻𝑧̅̅̅̅ =
𝑙

𝐹𝑟
𝐼𝐸 + 𝑗𝛽𝑉𝑀 

𝛦𝑧̅̅ ̅ = −𝑗
𝑙

𝐹𝑟
𝐼𝑀 + 𝛽𝑉𝐸 

It becomes evident by inspection that the final equations (5.4) represent two coupled 

electric transmission lines. 

5.3 Decoupling the transmission line equations 

Following the analysis from chapter 2.7  

{

𝜕𝑉𝑀

𝜕𝑟
= −

𝜉2

𝑗𝐹
𝐼𝑀

𝜕𝐼𝑀

𝜕𝑟
= −𝑗𝐹𝐼𝑀

     (5.5) 

{

𝜕𝑉𝐸

𝜕𝑟
= −

𝜉2

𝑗𝑛2𝐹
𝐼𝐸

𝜕𝐼𝐸

𝜕𝑟
= −𝑗𝐹𝑛2𝐼𝐸

    (5.6) 

Thus the set of two coupled transmission lines (5.4) is equivalent to two independent 

transmission lines (5.5) and (5.6). 

The two waves represented by the equations of transmission lines (5.5) and (5.6), are 

geometrically normal because the first is related to Magnetic field and the second to 
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Electric field that are geometrically normal for transmitted EM waves. This property is 

an inherent property of EM modes in optical fibers related to birefringence phenomena. 

However, the β respective values, for any mode, are always found to be very close and 

can be considered as practically equal. 

5.4. Equivalent circuits for cylindrical layers, boundary conditions and 

birefringence 

Taking into consideration the transmission line theory, it can be proved that each 

layer of infinitesimal thickness δr is equivalent to a T-circuit as the one shown in 

Figure 3  

 

Figure 5-3 The equivalent quadrupole for each cylindrical sector. 

{
 
 

 
 𝑍𝐵 =

𝜉

𝑗𝐹
tanh [

(𝜉δ𝑟)
2
⁄ ]

𝑍𝑝 =
𝜉

𝑗𝐹 sinh(𝜉δ𝑟)

 

For 𝜉𝛿𝑟 ≪ 1  the impedances can be approximated by the equivalent relations  

{
𝑍𝐵 =

𝜉2(𝛿𝑟 2⁄ ) 

𝑗𝐹

𝑍𝑝 =
1

𝑗𝐹𝛿𝑟

     (5.7) 

 

If 𝜉2 > 0, both 𝑍𝐵 , 𝑍𝑝 are “capacitive” reactances, for 𝜉2 < 0 however 𝑍𝐵 becomes 

“inductive” reactance.  For (𝑉𝐸 , 𝐼𝐸) the approximate respective impedances of the T-

circuit are given as 
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{
𝑍′𝐵 =

𝜉2(δ𝑟 2⁄ ) 

𝑗𝑛2𝐹

𝑍′𝑝 =
1

𝑗𝑛2𝐹δ𝑟

      (5.8) 

As previously stated the functions  (𝑉𝑀, 𝐼𝑀) of each layer are continuous at the 

cylindrical boundaries of the layer, thus if we divide the fiber (including a sufficient 

number of air layers) in successive thin layers and replace them by their equivalent T-

circuits, an overall lossless transmission line is formed with only reactive elements. For 

given ‘𝑙’, the ‘β’’ values that lead to the resonance of the overall transmission line are 

the eigenvalues of the whole optical fiber.  

When a transmission line is in resonance, at any arbitrary point 𝑟0 of the line, the sum 

of reactive impedances arising from the successive T-circuits on the left and right sides 

of 𝑟0 should be equal to zero, thus the equation giving the eigenvalues of the 

transmission line is the following : 

{𝑍̇𝐿.𝑟0 +  𝑍̇𝑅.𝑟0 = 0      (5.9) 

Equation (5.9) provides the eigen-values ‘β ‘ for a given ‘𝑙’ , where 𝑍̇𝐿.𝑟0 ,  𝑍̇𝑅.𝑟0 are 

the overall reactive impedances of successive T-circuits on the left and right of 𝑟0, using 

(5.7) or (5.8). The value of  𝑟0 is usually given by the core radius. For the same ‘𝑙’ the 

equations (5.7) and (5.8) give usually slightly different values of ‘β’, this phenomenon 

has already been defined as “Birefringence”.  For circular step index fibers the 

birefringence is negligible, however for elliptic fibers and fibers of any other non-

circular cores the birefringence phenomenon could be significant.  

In order to calculate the overall reactive impedances on the left and right of 𝑟0 we 

should find the impedances for 𝑟 → 0 and for 𝑟 → ∞.  As we proceed to 0 or to ∞ the 

remaining piece of transmission line becomes “homogeneous” i.e. its overall reactive 

impedance is equal to its characteristic impedance given by 𝑍 =
𝜉

𝑗𝐹
 (𝑜𝑟 

𝜉

𝑗𝑛2𝐹
). Then 

we must have 

𝑟 → ∞: 𝐹 → 𝛽2𝑟,𝑀𝐹 → 0, 𝜉 → √𝛽2 − 𝑛2  𝑍𝑟→∞ = 0 

𝑟 → 0: 𝐹 →
𝑙2

𝑟
, 𝜉 →

𝑙

𝑟
  𝑍𝑟→0 =

1

𝑗|𝑙|
 (𝑜𝑟 

1

𝑗𝑛2|𝑙|
) 
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For l=0  𝑍𝑟→0 = ∞  (open circuit at the center of the equivalent transmission line) It 

is useful to notice that there is an equivalence between our formulation and the classic 

formulation modes of optical fibers. In particular, for 𝑙 =0, the modes (VM,IM)  are the 

TM modes ,while the modes  (VE,IE)  are the TE modes. For 𝑙 >0 , the modes (VM,IM )  

are the HE modes ,while the modes  (VE,IE)  are their HE  birefringence modes. For 𝑙 

<0  the modes (VM,IM )  are the EH modes ,while the modes  (VE,IE)  are their EH  

birefringence modes. 

5.5. Calculating “Voltages” VM  , VE  and “Currents” IM , IE  and 

resulting fields 

For any given  𝑙, using the resonance technique the β  values  of the two birefringence 

modes can be calculated. These β  values are practically the same, thus we can consider 

them as equal or we can consider as the proper value of β  the mean value of the two 

modes. 

Taking VM  = 1 at the center point of the fiber(r=0) , the respective value of IM  at the 

same point can be calculated by the respective terminal impedance.  Using the matrix 

relations between input-output for the equivalent successive T-circuits, the values of  

𝑉𝑀  and 𝐼𝑀 at the rest thin cylindrical layers can be calculated. In fact from the general 

theory of the telegrapher’s equation we know that the inputs and outputs are associated 

via a transfer matrix as follows 

{
  
 

  
 [𝑉𝑜𝑢𝑡𝐼𝑜𝑢𝑡] = (

cosh(𝜉(𝑟) ∙ 𝛿𝑟) 𝑍(𝑟) ∙ sinh(𝜉(𝑟) ∙ 𝛿𝑟)

sinh(𝜉(𝑟) ∙ 𝛿𝑟) 𝑍(𝑟)⁄ cosh(𝜉(𝑟) ∙ 𝛿𝑟)
) [
𝑉𝑖𝑛
𝐼𝑖𝑛
] ≈

≈ (
1 𝑍(𝑟) ∙ (𝜉(𝑟) ∙ 𝛿𝑟)

(𝜉(𝑟) ∙ 𝛿𝑟) 𝑍(𝑟)⁄ 1
) [
𝑉𝑖𝑛
𝐼𝑖𝑛
] =

= (
1 𝜉2(𝑟) ∙ 𝛿𝑟 𝑗𝐹(𝑟)⁄

𝑗𝐹(𝑟) ∙ 𝛿𝑟 1
) [
𝑉𝑖𝑛
𝐼𝑖𝑛
]

 (5.10) 

In (5.10), the characteristic impedance should be taken as  𝑍(𝑟) = 𝜉(𝑟)/𝑗𝐹(𝑟) to fit 

with the previous analysis. Using the relations 𝑛𝑉𝐸 = 𝑉𝑀  and 𝑛𝐼𝑀 = 𝐼𝐸  the respective 

values of their birefringence equivalents can also be calculated for every thin 

cylindrical layer ri. 
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5.6. Unconventional fibers 

The refractive index n(r,φ) of the fiber with a UOF profile in general can be described 

as a function of  both r and φ. Each cylindrical layer of an average radius r  is considered 

to have a local value η (φ)  for  𝑟 =
𝑟1+𝑟2

2
 . Again, we make use of the generic form of 

Maxwell equations as in the previous section. Fourier Transforming the first vector 

equation gives the same set of equations as in (5.1), since there is no difference with 

the UOF case, however the second Maxwell vector equation due to presence of the 

general n function should now be written as  

 

{
 
 

 
 

𝑗𝑙

𝑟
𝐻𝑧̅̅̅̅ − 𝑗𝛽𝐻𝜑̅̅ ̅̅ = 𝑗𝑛(𝜑)

2⊗𝐸𝑟̅̅ ̅

𝑗𝛽𝐻𝑟̅̅̅̅ −
𝜕𝐻𝑧̅̅ ̅̅

𝜕𝑟
= 𝑗𝑛(𝜑)2⊗𝐸𝜑̅̅̅̅

1

𝑟

𝜕(𝑟𝐻𝜑̅̅ ̅̅ )

𝜕𝑟
−
𝑗𝑙

𝑟
𝐻𝑟̅̅̅̅ = 𝑗𝑛(𝜑)

2⊗  𝐸𝑧̅̅ ̅̅

      (5.11) 

The symbol ⊗ means convolution arising by the product of two functions of the 

variable φ. In the following paragraphs it will be shown how to escape this 

mathematical difficulty for the usual unconventional optical fibers. 

5.7. UOF with non-circular, non-symmetric or eccentric cores 

For unconventional fibers of non-circular cores there are a set of circular layers where 

the refractive index varies between the inner and outer core and cladding values 

respectively. In any such case, the function 𝑛(𝜑)2 is a sum of a steady component 𝑛2  

and a periodic function of φ of period 2π thus can be written as a Fourier series 𝑛(𝜑)2 =

𝑛2 + ∑ 𝑁𝑘
+∞
−∞ exp (𝑗𝑘𝜑). Thus < 𝑛(𝜑)2 >= 𝑛2. 

Taking into consideration that the convolution of the product of an exponential 

function  exp (𝑗𝑘𝜑) with any function A(𝜑) of a Fourier Transform 𝐴(𝑙) is equal to 

𝐴(𝑙 + 𝑘), i.e. the convolution  generates “harmonics”. The function 𝑛(𝜑)2 is in a set of 

cylindrical thin layers, a sum of step functions alternating between the values 

𝑛1
2 𝑎𝑛𝑑 𝑛2

2  , where 𝑛1  𝑎𝑛𝑑  𝑛2 are refractive indexes of core and gladding. Considering 

that in optical fibers the refractive indices of core and cladding are very close, it can be 

effectively assumed that (𝑛1 − 𝑛2)/𝑛1 ≪ 1. As a result, any harmonic factors Nk of 



 110  

the function 𝑛(𝜑)2 are negligible in comparison to its steady component 𝑛2 and can be 

omitted.  

As an example, the harmonics become maximal for equal alternation steps. In this 

case the first harmonic, that has the maximum value among all other harmonics, is 

equal to 𝛢1 =
2(𝑛1

2− 𝑛2
2)

𝜋
, while the steady component 𝑛2 equals (𝑛1

2 + 𝑛2
2 )/2   and we 

can make an approximation as  𝛢1/𝑛
2 ≃ (4/𝜋)(𝑛1 − 𝑛2)/𝑛1 ≪ 1.   

Thus, for optical fibers we can always assume that < 𝑛(𝜑)2 >= 𝑛2. Then the 

system (5.11) will become equivalent to the following 

{
 
 

 
 

𝑗𝑙

𝑟
𝐻𝑧̅̅̅̅ − 𝑗𝛽𝐻𝜑̅̅ ̅̅ = 𝑗𝑛

2𝐸𝑟̅̅ ̅

𝑗𝛽𝐻𝑟̅̅̅̅ −
𝜕𝐻𝑧̅̅ ̅̅

𝜕𝑟
= 𝑗𝑛2𝐸𝜑̅̅̅̅

1

𝑟

𝜕(𝑟𝐻𝜑̅̅ ̅̅ )

𝜕𝑟
−
𝑗𝑙

𝑟
𝐻𝑟̅̅̅̅ = 𝑗𝑛

2 𝐸𝑧̅̅ ̅̅

      (5.12) 

We can then follow the analysis that we did with the conventional fibers, where 𝑛2 

is the average value of the η2(φ) of each layer along φ in the [0, 2π] interval. 

5.8. Application to elliptic core fibers 

The method was applied to the calculation of fundamental modes of a fiber of elliptic 

core of a and b  major and minor semi-axis respectively with refractive index n1=1.54, 

and a cladding value of n2=1.47 (figure 5-1) for various wavelengths (defined by 

various V factor values  𝑉 = 𝑏 ∗ 2 ∗ 𝜋√𝑛1
2 − 𝑛2

2 ) and four ratios a/b=1.1,1.3,1.5,2.0. 

Results are compared with previous results calculated with Mathieu functions with the 

results differing only by 0.01÷ 0.123 %. 

The steady component of the refractive index for the calculations for each radius r is 

defined as n1 for r<b, n2 for r>a and as (𝑛1 ∗ 𝜑1+ 𝑛2 ∗ 𝜑2 )/𝜋 when b<r<b, where φ1 

,φ2 are the arcs of the circle of radius r, inside and outside the ellipse in the upper semi 

ellipse.   
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COMPARISON OF ELLIPSE FOR THE FUNDAMENTAL MODES 

a/b=1.3 Mathieu TR 
   

V b11, Nο b11, Νο 
 

DIFF relDIFF(0/00) 

1.5 1,491188512000000 1,491027765079550 
 

0,000160746920450 0,107797853 

1.7 1,497028990000000 1,496897637511800 
 

0,000131352488200 0,087742114 

1.9 1,502119714000000 1,501986592174880 
 

0,000133121825120 0,088622647 

2.1 1,506471523000000 1,506335918376860 
 

0,000135604623140 0,090014727 

2.3 1,510205927000000 1,510039049600890 
 

0,000166877399110 0,110499764 

2.5 1,513423500000000 1,513196002523000 
 

0,000227497477000 0,150319773 

2.7 1,516170122000000 1,515897403413190 
 

0,000272718586810 0,179873342 

2.9 1,518513480000000 1,518220317018870 
 

0,000293162981130 0,193059189 

3.1 1,520539300000000 1,520228501721160 
 

0,000310798278840 0,204400030 

3.3 1,522298190000000 1,521974104375010 
 

0,000324085624990 0,212892341 

Table 5-2 Elliptic fiber with three indicative  elliptic thin layers. Inside the ellipse r<b(n=n1), 

outside the ellipse r>a(n=n2) and partly outside b<r<a (n1>n>n2). Ellipticity: 1.3 

COMPARISON OF ELLIPSE FOR THE FUNDAMENTAL MODES 

a/b=1.1 Mathieu TR 
   

V b11, Nο b11, Νο 
 

DIFF relDIFF(0/00) 

1.5 1,487454917000000 1,487538376725580 
 

-0,000083459725580 0,056109079 

1.7 1,493245000000000 1,493450986151880 
 

-0,000205986151880 0,137945315 

1.9 1,498457700000000 1,498722795582640 
 

-0,000265095582640 0,17691229 

2.1 1,503029750000000 1,503312465850780 
 

-0,000282715850780 0,188097309 

2.3 1,506994250000000 1,507270533663140 
 

-0,000276283663140 0,183334252 

2.5 1,510418500000000 1,510675880979590 
 

-0,000257380979590 0,170403752 

2.7 1,513376830000000 1,513609496242670 
 

-0,000232666242670 0,153739794 

2.9 1,515936970000000 1,516144774928280 
 

-0,000207804928280 0,13708019 

3.1 1,518160870000000 1,518344840727660 
 

-0,000183970727660 0,121179996 

3.3 1,520101500000000 1,520262686679180 
 

-0,000161186679180 0,106036787 

Table 5-1 Elliptic fiber with three indicative  elliptic thin layers. Inside the ellipse r<b(n=n1), 

outside the ellipse r>a(n=n2) and partly outside b<r<a (n1>n>n2). Ellipticity: 1.1 
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COMPARISON OF ELLIPSE FOR THE FUNDAMENTAL MODES 
 

a/b=1.5 Mathieu TR 
   

V b11, Nο b11, Νο 
 

DIFF relDIFF(0/00) 

1.5 1,494250610000000 1,493636836360350 
 

0,000613773639650 0,410756827 

1.7 1,499922346000000 1,499340905733040 
 

0,000581440266960 0,387646913 

1.9 1,504818670000000 1,504203108321470 
 

0,000615561678530 0,409060368 

2.1 1,509039170000000 1,508315227121150 
 

0,000723942878850 0,479737633 

2.3 1,512533150000000 1,511793195339390 
 

0,000739954660610 0,489215500 

2.5 1,515493100000000 1,514745797603970 
 

0,000747302396030 0,493108412 

2.7 1,518011570000000 1,517265908951310 
 

0,000745661048690 0,491209068 

2.9 1,520166130000000 1,519429880525980 
 

0,000736249474020 0,48432172 

3.1 1,522019120000000 1,521299532774000 
 

0,000719587226000 0,472784617 

3.3 1,523620800000000 1,522924688766490 
 

0,000696111233510 0,456879582 

Table 5-3 Elliptic fiber with three indicative  elliptic thin layers. Inside the ellipse r<b(n=n1), 

outside the ellipse r>a(n=n2) and partly outside b<r<a (n1>n>n2). Ellipticity: 1.5 

COMPARISON OF ELLIPSE FOR THE FUNDAMENTAL MODES 

a/b=2 Mathieu TR 
   

V b11, Nο b11, Νο 
 

DIFF relDIFF(0/00) 

1.5 1,499390500000000 1,497675992184210 
 

0,001714507815790 1,143469840 

1.7 1,504727250000000 1,502885066432660 
 

0,001842183567340 1,224264110 

1.9 1,509110880000000 1,507251064452310 
 

0,001859815547690 1,232391584 

2.1 1,512712190000000 1,510915134944720 
 

0,001797055055280 1,187968913 

2.3 1,515667864000000 1,514006539095880 
 

0,001661324904120 1,096100896 

2.5 1,518085750000000 1,516632675098700 
 

0,001453074901300 0,957175773 

2.7 1,520047200000000 1,518879733445780 
 

0,001167466554220 0,768046252 

2.9 1,521631209000000 1,520816115931370 
 

0,000815093068630 0,535670578 

3.1 1,522869900000000 1,522496060692140 
 

0,000373839307860 0,245483418 

3.3 1,523799100000000 1,523962746538420 
 

0,000163646538420 0,107393775 

Table 5-4 Elliptic fiber with three indicative  elliptic thin layers. Inside the ellipse r<b(n=n1), 

outside the ellipse r>a(n=n2) and partly outside b<r<a (n1>n>n2). Ellipticity: 2.0 
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In the following figure 5-4 the β diagram of the fundamental even mode of an 

elliptic fiber with semi axis ratio aa/bb=2, n1=1.54 and  n2=1.47   and variable factor  

defined by : 𝑉 = 𝑏𝑏 ∙ 𝑘0 ∙ √𝑛1
2 − 𝑛2

2 ) is shown  

 

Figure 5-4 β-V diagram of the even fundamental mode an elliptic fiber of semi axis ratio 

aa/bb=2 and core refractive index 1.54 and gladding index 1.47 

5.9. Application to rectangular core fiber 

The method was applied also in the calculation of fundamental modes of a fiber with 

an rectangular core (see figure 5-5 ) of aa and bb semi sides, with refractive  index 

n1=1.54, and a gladding of refractive index n2=1.47, for various wavelengths, defined 

by various V factor values 𝑉 = 𝑏𝑏 ∙ 𝑘0 ∙ √𝑛1
2 − 𝑛2

2 and four ratios a/b=1.1,1.3,1.5,2.0.  
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Figure 5-5 Rectangular core fiber of semi sides aa and bb , for r<bb, n=n1, for r>aa,  n=n2 , 

for bb<r<aa, n2<n<n1 

The birefringence results are compared with the birefringence results of the elliptic 

core fiber with equal semi axis. The steady component of the refractive index for the 

calculations for each radius r is defined as n1 for r<b, n2 for r>a and as 

(𝑛1 ∗ 𝜑1+ 𝑛2 ∗ 𝜑2 )/𝜋 when b<r<b, where φ1 ,φ2 are the arcs of the circle of radius r, 

inside the orthogonal and outside the orthogonal  in the upper semi orthogonal.  
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COMPARISON OF BIREFRINGENCE FOR ELLIPTICAL AND ORTHOGONAL CORE FIBERS 

 Rectangular core Elliptic core  

a/b=1.1 

                                               
Fundamental Mode 
Values Birefringence (TR) Birefringence (TR)   

V       
1.5 1,492539945916010 0,000346704531850 0,000303585935370   
1.7 1,498357447022790 0,000513384576600 0,000575417316090   
1.9 1,503350570368440 0,000576764589930 0,000712035787010   
2.1 1,507590076049970 0,000580793732230 0,000757892695190   
2.3 1,511183551577450 0,000554099561380 0,000750121835720   
2.5 1,514237341469060 0,000513428535340 0,000713597265680   
2.7 1,516844499544290 0,000468033918970 0,000663528284040   
2.9 1,519082616576080 0,000422786387590 0,000608733773240   
3.1 1,521015087494710 0,000380083447450 0,000554096605350   
3.3 1,522693317372840 0,000340959781570 0,000502161305990   

Table 5-5 Comparison of birefringence values between fibers of rectangular and elliptical 

core. Ellipticity 1.1  

 

COMPARISON OF BIREFRINGENCE FOR ELLIPTICAL AND ORTHOGONAL CORE FIBERS 

 Rectangular core Elliptic core  

a/b=1.3 
Fundamental Mode 
Values Birefringence (TR) Birefringence (TR)   

V       
1.5 1,495847758922450 0,000344065006270 0,000325722889410   
1.7 1,501459058153440 0,000451639480470 0,000520210503450   
1.9 1,506179273220210 0,000480411129310 0,000601842058430   
2.1 1,510134432440230 0,000468166987430 0,000615857816190   
2.3 1,513456882268610 0,000436878544030 0,000593498171210   
2.5 1,516262818410440 0,000398422704380 0,000553682765940   
2.7 1,518648025192190 0,000358904227450 0,000507155757960   
2.9 1,520689537973830 0,000321272665480 0,000459732120240   
3.1 1,522448794667530 0,000286796641510 0,000414381305640   
3.3 1,523974761485380 0,000255871394240 0,000372472456950   

Table 5-6 Comparison of birefringence values between fibers of rectangular and elliptical 

core. Ellipticity 1.3  
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COMPARISON OF BIREFRINGENCE FOR ELLIPTICAL AND ORTHOGONAL CORE FIBERS 

 Rectangular core Elliptic core  

a/b=1.5 
Fundamental Mode 
Values Birefringence  Birefringence (TR)   

V       
1.5 1,498120450723510 0,000278361237480 0,000295449461120   
1.7 1,503463400911670 0,000357573590440 0,000442306154260   
1.9 1,507908503417930 0,000376605061620 0,000497613358440   
2.1 1,511610102671980 0,000365648210230 0,000501375052490   
2.3 1,514709614765410 0,000341283334480 0,000478771792790   
2.5 1,517324041962060 0,000312143747180 0,000444266137270   
2.7 1,519546684126380 0,000282536889750 0,000405759261530   
2.9 1,521451022056960 0,000254483058070 0,000367378187930   
3.1 1,523094834995030 0,000228815613970 0,000331142666700   
3.3 1,524523718254910 0,000205765806060 0,000297919827130   

Table 5-7 Comparison of birefringence values between fibers of rectangular and elliptical 

core. Ellipticity 1.5 

 

COMPARISON OF BIREFRINGENCE FOR ELLIPTICAL AND ORTHOGONAL CORE FIBERS 

 Rectangular core Elliptic core 

a/b=2 
Fundamental  Mode 
Values Birefringence (TR) Birefringence (TR)  

V      
1.5 1,501154370588750 0,000115100455570 0.00017851280204  
1.7 1,505905455821760 0,000185956233950 0.00028097261437  
1.9 1,509839664490200 0,000217496051150 0.00032331073887  
2.1 1,513123501262850 0,000227441962700 0.00033221109868  
2.3 1,515890438928040 0,000225620967080 0.00033221109868  
2.5 1,518243818452060 0,000217498908240 0.00030589412246  
2.7 1,520263082984900 0,000206163759050 0.00028459934024  
2.9 1,522009559228890 0,000193389032200 0.00026227629912  
3.1 1,523531014266760 0,000180203858540 0.00024038749997  
3.3 1,524865056067340 0,000167204354840 0.00021967555642  
     

Table 5-8 Comparison of birefringence values between fibers of rectangular and elliptical 

core. Ellipticity 2.0 

 

 

For comparison reasons the average refractive indexes as functions of r, for an 

elliptic core fiber and for a rectangular core fiber of the same aa and bb and aa/bb=2,  

are shown in figure 5-6.  
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Figure 5-6 Average refractive indexes of circular thin layers of elliptic and 

rectangular core fibers 

 

5.10. The PCF case 

Ιn case of a holey fiber, we separate the whole fiber circular cross-section into a set 

of thin cylindrical layers variable η along φ extending beyond the cladding to take into 

account the surrounding air with η=1. Each layer’s thickness is δr = r1 - r2. We can then 

approximate n(r,φ) as n(φ) for the average r <r> =r+ δr/2. The refractive index can be 

written as a Fourier series i.e. as 𝑛(𝜑)2 =< 𝑛 >2+ ∑ 𝑁𝑘
+∞
−∞ exp (𝑗𝑙𝜑).  Taking into 

account the properties of the Fourier transform we see that 

(exp( ) ( )) ( )FT jl f f l l      so that the expressions in the second terms of 

equation (5.11) spread around a spectrum of harmonics. This is also to be understood 

as a result of successive scatterings from the bored air holes. We can now use the natural 

geometry of the usual hexagonal lattice to see that for each set of holes we can have 

either 6k harmonics. For the fundamental harmonic of l=1 the derived harmonics 

passing through a layer of 6k holes should be 6k+1. Thus the fundamental wave 

crossing the successive layers, “sees” a different set of periodic rectangle functions that 

will be shown rigorously to contribute a different number of harmonics (7,13,19, etc.).  
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For a common harmonic to pass through, an integer product must be considered 

which leads to higher and higher harmonics thus cutting out the entire spectrum apart 

from the last highest frequency. We conclude that for holey optical fibers the 

approximation for any of its cylindrical thin layers, 
2 2 2( , ) ( )r l r    suffices for 

further analysis of the resulting equations. Thus the original system (5.11) becomes 

 

{
 
 

 
 

𝑗𝑙

𝑟
𝐻𝑧̅̅̅̅ − 𝑗𝛽𝐻𝜑̅̅ ̅̅ = 𝑗𝑛

2𝐸𝑟̅̅ ̅

𝑗𝛽𝐻𝑟̅̅̅̅ −
𝜕𝐻𝑧̅̅ ̅̅

𝜕𝑟
= 𝑗𝑛2𝐸𝜑̅̅̅̅

1

𝑟

𝜕(𝑟𝐻𝜑̅̅ ̅̅ )

𝜕𝑟
−
𝑗𝑙

𝑟
𝐻𝑟̅̅̅̅ = 𝑗𝑛

2 𝐸𝑧̅̅ ̅̅

      (5.13) 

For the usual hexagonal pattern of holes we may utilize elementary analytical 

geometry to derive the two separate regions where the refractive index alternates 

between the air refractive index η=1 value and the higher value of the crystal material. 

We assume that along each separate layer a large circle corresponding to each 

cylindrical shell of radius r from the center of the fiber to the center of a smaller hole 

of radius r << r0 is cut while moving clockwise along the large circle.   

Prescribing a set of circles of successive radii 𝑟, for each of which we can find the 

air holes (in 1/6 angle of the PCF) which are cut by the corresponding radius each 

time. Each arc is computed inside its respective air hole and the total sum of them 

divided by π/3 expresses the average squared refractive index. As a matter of fact, the 

square of the refractive index in this sum is equal to one, while the refractive index in 

the rest arc is the square of the silica refractive index. Hence the average refractive 

index can be easily calculated along r. Figures 5-7, 5-8 and 5-9, present the average 

refractive index and the Electric field of a hexagonal PCF, of η=1.46 with a twelve 

layers lattice,  as functions of the reduced distance from the center of the fiber for the 

fundamental mode. The figures were generated by a MATLAB code for air-hole 

diameter equal to 0.8 of the air-hole distance and the air hole diameter was 3.87 times 

the transmitted wavelength. We also notice the parametrization used as = (𝛬 −

𝑑/2) ∗ 2 ∗ 𝜋√𝑛1
2 − 𝑛2

2 ), n1 for the silica refractive index , n2 ≃minimum refractive 

index=1.123, Λ for the reduced air hole distance, d for the reduced air hole diameter 

and,  𝛬 − 𝑑/2=reduced inner core of PCF. 
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Figure 5-7 Average refractive index for fundamental mode β= 1.343357214454637 

 

 

Figure 5-8 Relative Electric Field distribution for Hexagonal PCF 
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Figure 5-9 b-V diagram for fundamental mode in Hexagonal PCF 

5.11 Conclusion 

The  presented resonance technique can be used for the study of unconventional fibers 

i.e. fibers with  cores of any shape, as long as the difference between core and cladding 

refractive indices is sufficiently small which holds true for almost all the monomode 

and holey fibers. The unconventional case is proven reducible to the same technique of 

conventional fibers, where for each l  we can approximate by a set of two, independent 

and non-homogeneous, Resonant Transmission Lines (RTLs), each one representing 

one mode of the birefringence.  

The simulation of unconventional fibers with RTLs, gives a new, simple and effective 

method for computing the eigenvalues of the RTLs representing elliptical core fibers. 

The current method can also be utilized to compute the eigenvalues for various modes 

of the holey fibers. Furthermore, for each eigenvalue, the average values of E.M. fields 

for every thin cylindrical layer of radius r of the unconventional fiber is directly 

computable from the relevant eigenfunctions of the RTLs. 
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6 CHAPTER 6 

Conclusions, applications and suggestions for further 

research 

6.1. Conclusions 

In the process of this thesis, the development of a non-analytical technique for the 

study and determination of key propagation characteristics of elliptical fibers, has been 

successful. This thesis’ specific contributions to the study of elliptical fibers are listed 

below: 

6.1.1. Development of an innovative method for the study of elliptical 

fibers 

The development of a new improved method has been the main objective of the current 

thesis. The harmonics method is based on RTL and estimates the mode propagation 

constant 𝛽 with significant accuracy. It avoids the cumbersome and complex theoretical 

analysis including Yeh’s infinite matrices and avoids the use of Mathieu functions. As 

a result, the presented method does not use the simplifications and limitations (∞ ≤

𝜉0 ≤ 0.5) [33] that are necessary in Yeh’s analysis. The harmonics method is based on 

valid mathematical analysis, applying Maxwell’s equations on elliptical coordinates, 

yet proceeds with the adaptation of Transmission Lines which are utilized for the 

estimation of the requested value 𝛽. The resulting relations can be easily transformed 

into computational programs using tools like Matlab or Octave that calculate the results 

with significant accuracy and speed of convergence.  

6.1.2. Simplified calculation of birefringence and cutoffs  

Using the already existing programs that estimate the mode propagation constant, the 

calculation of birefringence becomes simple and fast. A demonstration is presented in 

chapter 3, comparing the estimated birefringence for different numbers of harmonics 

and different values of ellipticity. Birefringence is a major feature of elliptical fibers 

that renders them important for a series of applications including optical sensors. In a 

similar manner, the presented method has simplified the procedure of calculating the 

mode cutoff frequencies and investigating correlations with factors of interest like 

ellipticity. 
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6.1.3. Design and study of elliptical fibers with arbitrary index profiles 

Up to now, the investigation of elliptical fibers with index profile other than step-index 

was based on analytical methods and was significantly complex. The harmonics method 

provides the tools for a much simplified and accurate estimation of the mode 

propagations constant 𝛽 in elliptical fibers with arbitrary index profiles including 

triangular, parabolic, and tubular. Another advantage of the current method is its 

potential application on pragmatic cases of a finite cladding surrounded by air, other 

substances of a given index, and even multiple layers surrounding the core.  

6.1.4. Development of two additional methods for the study of elliptical, 

eccentric, and fibers with angular asymmetry 

Throughout the process of investigating new ways for estimating key properties of 

elliptical core fibers, 3 different methods are described and presented throughout this 

thesis. The first method presented in chapter 3, with the resulting harmonics, has the 

advantage of increased accuracy in the calculation of propagation constants and 

estimation of birefringence. The second method presented in chapter 4, follows a 

different analysis resulting in the estimation of 𝛽 in eccentric core fibers and addresses 

the cases under which the fiber core is positioned asymmetrically within the cladding. 

This method lays the basis for approaching the D-shaped fiber which is a subcategory 

of elliptical core fibers. The third and final method, presented in chapter 5, defines 

unconventional fibers and approaches the study of elliptical fibers from a broader-to-

narrower perspective. In estimating 𝛽, this method, although not significantly inferior 

in accuracy, has the advantage of speed and simplicity while avoiding the complexity 

of harmonics.  

  

6.2 Suggestions for further study 

The resulting methods and algorithms developed in the course of the study throughout 

this thesis can be used as tools for further study not only of elliptical optical fibers but 

also of other fiber categories including the D-shaped fiber and the PCF, also known as 

holey fibers.   

6.2.1 Analysis of field components in elliptical fibers 

Basic definitions of EM field components are given throughout this thesis for 

cylindrical and elliptical core fibers alike. However, the exact course of the field’s 
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angular and radial components, as well as the resultant total field measure in the 

direction 𝑧 of propagation, need to be investigated. Relevant studies have already been 

conducted as for example in Li Hui-Rong et al. [52] where field components are 

numerically calculated and analyzed for the case of elliptical dielectric hollow fiber. An 

innovative approach using the RTL method would surpass existing analytical methods 

in simplicity and converging speed, but it would also be easily expandable to various 

categories of elliptical fibers, simply by changing the index profile of the fiber.  

Another suggestion for further study would be the reconstruction of an elliptical core 

fiber from the mode electric field. Reconstruction of cylindrical core fibers has already 

been successfully analyzed using the RTL method in AC Boucouvalas, CA Thraskias 

[53], [54]. A relevant study for elliptical fibers would be innovative and would provide 

significant design tools to manufacturers supplying fibers for a series of applications 

that require specific propagation characteristics such as birefringence mode 

propagation constants.   

6.2.1 Estimation of propagation characteristics of the D-shaped 

fiber 

D-shaped fiber is a specific type of fiber used primarily in pressure and temperature 

sensors. It has an estimated high dependence on cut off wavelength upon polarization 

and low intrinsic birefringence. An efficient study of their propagation properties can 

be based on analyses provided in this thesis, either as a combination of the harmonic-

based method with the eccentric fiber analyses or using the unconventional-fiber 

method presented in chapter 5. For a study that focuses more on birefringence, the 

harmonic-based method should be preferred as it provides more accurate results in 

relation to mode decoupling.   

6.2.2 Estimation of propagation characteristics of PCFs 

In chapter 5 of the current thesis, the unconventional fibers are defined as a generic 

super-category that includes elliptical fibers. Photonic-Crystal fibers or PCFs are a 

category on their own, yet they fall into the defined super-category of unconventional 

fibers. An innovative approach could utilize the RTL technique as modified in chapter 

5 in order to study and calculate propagation characteristics of holey fibers.  
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7 APPENDICES 

Appendix A. Mathematical Analysis for the Derivation of 

Propagation Relations in Cylindrical Core Fibers  

 

∇ × 𝐸⃗ = −𝑗𝐻⃗⃗  

∇ ∙ 𝐻⃗⃗ = 0 

𝐹 =
(𝛽𝑟)2 + 𝑙2

𝑟
 

𝜕(𝑟𝐻 𝑟)

𝜕𝑟
+ 𝑗𝑙𝐻𝜑 + 𝑗𝛽𝑟𝐻𝑧 = 0     (A.1) 

𝑟𝐻 𝑟 = 𝑗𝐼𝑀 => −𝑗𝑟𝐻 𝑟 = 𝐼𝑀    (A.2) 

From the above, we obtain 

𝜕𝐼𝑀
𝜕𝑟

= −𝑗(𝑙𝐻𝜑 + 𝛽𝑟𝐻𝑧) 

𝜕(𝑟𝐻 𝑟)

𝜕𝑟
= −𝑗𝐹

(𝑙𝐻𝜑 + 𝛽𝑟𝐻𝑧)

𝑗𝐹
 

Further we define 

 𝑉𝑀 =
𝑙𝐻𝜑+𝛽𝑟𝐻𝑧

𝑗𝐹
     (A.3) 

Thus  

𝜕𝐼𝑀

𝜕𝑟
= −𝑗𝐹𝑉𝑀     (A.4) 

By the relation  ∇ × 𝐸⃗ = −𝑗𝐻⃗⃗ , the following equations are obtained 

{
 
 

 
 𝑗𝑙

𝐸𝑧

𝑟
− 𝑗𝛽E𝜑 = −𝑗𝐻𝑟   (A. 5.1)

𝑗𝛽𝐸𝑟 −
𝜕E𝑧

𝜕𝑟
= −𝑗𝐻𝜑     (A. 5.2)

𝜕(𝑟E𝜑)

𝜕𝑟
− 𝑗𝑙𝐸𝑟 = −𝑗𝑟𝐻𝑧 (A. 5.3)

    (A.5) 

https://en.wikipedia.org/wiki/E%CC%8A
https://en.wikipedia.org/wiki/E%CC%8A
https://en.wikipedia.org/wiki/E%CC%8A


 131  

From (A.5.1) it is derived that 

−𝑗(𝑟𝐻𝑟) = 𝑗𝑙𝐸𝑧 − 𝑗𝛽𝑟E𝜑 

Thus  

𝐼𝑀 = 𝑗(𝑙𝐸𝑧 − 𝛽𝑟E𝜑)     (A.6) 

In the same way, by ∇ × 𝐻⃗⃗ = −𝑗𝑛2𝐸⃗ , it can be proved that  

∇(𝑛2𝐸⃗ ) = 0 

Defining 

𝐼𝐸 = 𝑛2𝑟𝐸𝑟     (A.7) 

we obtain 

𝜕(𝑛2𝑟E𝑟)

𝜕𝑟
+ 𝑗𝑙𝑛2𝐸𝜑 + 𝑗𝛽𝑟𝑛

2𝐸𝑧 = 0 

Additionally defining  

𝑉𝐸 =
𝑙𝛦𝜑+𝛽𝑟𝛦𝑧

𝐹
      (A.8) 

 

𝜕𝐼𝐸

𝜕𝑟
= −𝑗𝑛2𝐹 (

𝑙𝐸𝜑+𝛽𝑟𝐸𝑧

𝐹
) = −𝑗𝑛2𝐹𝑉𝐸    (A.9) 

Again, by ∇ × 𝐻⃗⃗ = −𝑗𝑛2𝐸⃗ , we get 

{
 
 

 
 𝑗𝑙

𝐻𝑧

𝑟
− 𝑗𝛽H𝜑 = 𝑗𝑛

2𝐸𝑟   (A. 10.1)

𝑗𝛽𝐻𝑟 −
𝜕H𝑧

𝜕𝑟
= 𝑗𝑛2𝐸𝜑     (A. 10.2)

𝜕(𝑟H𝜑)

𝜕𝑟
− 𝑗𝑙𝐻𝑟 = −𝑗𝑛2𝑟𝐸𝑧 (A. 10.3)

   (A.10) 

From (A.10.1), it results  

𝑛2𝑟𝐸𝑟 = 𝑙𝐻𝑧 − 𝛽𝑟𝐻𝜑 

Thus  

https://en.wikipedia.org/wiki/E%CC%8A
https://en.wikipedia.org/wiki/E%CC%8A
https://en.wikipedia.org/wiki/E%CC%8A
https://en.wikipedia.org/wiki/E%CC%8A
https://en.wikipedia.org/wiki/E%CC%8A
https://en.wikipedia.org/wiki/E%CC%8A
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𝐼𝐸 = 𝑙𝐻𝑧 − 𝛽𝑟𝐻𝜑     (A.11) 

Furthermore (A.2) and (A.7) define 𝐻𝑟 =
𝑗𝐼𝑀

𝑟
, 𝐸𝑟 =

𝐼𝐸

𝑛2𝑟
 

And (A.3), (A.6), (A.8), (A.11), in order to express 𝐻𝜑 , 𝐻𝑧 , 𝐸𝜑 , 𝐻𝑧 by 

𝐼𝑀, 𝐼𝐸 , 𝑉𝑀, 𝑉𝐸 as follows:    

{
𝑗𝐹𝑉𝑀 = 𝑙𝐻𝜑 + 𝛽𝑟𝐻𝑧
 𝐼𝐸 = −𝛽𝑟𝐻𝜑 + 𝑙𝐻𝑧

 

With  𝐹𝑟 = 𝑙2 + (𝛽𝑟)2 

𝐻𝜑 =
|
𝑗𝐹𝑉𝑀 𝛽𝑟
𝐼𝐸 𝑙

|

𝐹𝑟
=
𝑗𝐹𝑙𝑉𝑀 − 𝛽𝑟𝐼𝐸

𝐹𝑟
=
𝑗𝑙𝑉𝑀
𝑟

−
𝛽

𝐹
𝐼𝐸 

=> 𝐻𝜑 =
𝑗𝑙𝑉𝑀
𝑟

−
𝛽

𝐹
𝐼𝐸 

𝐻𝑧 =
|
𝑙 𝑗𝐹𝑉𝑀

−𝛽𝑟 𝐼𝐸
|

𝐹𝑟
=

𝑙

𝐹𝑟
𝐼𝐸 + 𝑗𝛽𝑉𝑀 

=> 𝐻𝑧 =
𝑙

𝐹𝑟
𝐼𝐸 + 𝑗𝛽𝑉𝑀 

And  

𝐻𝑟 = 𝑗
𝐼𝑀
𝑟

 

Furthermore 

{
𝐹𝑉𝐸 = 𝑙𝐸𝜑 + 𝛽𝑟𝐸𝑧
 𝐼𝑀 = −𝛽𝑟𝐸𝜑 + 𝑙𝐸𝑧

 

With  𝐹𝑟 = 𝑙2 + (𝛽𝑟)2 

𝐸𝜑 =
|
𝐹𝑉𝐸 𝛽𝑟
−𝑗𝐼𝑀 𝑙

|

𝐹𝑟
=
(𝐹𝑙𝑉𝐸)

𝐹𝑟
+
𝑗𝛽𝑟

𝐹𝑟
𝐼𝑀 

=> 𝐸𝜑 =
𝑙

𝑟
𝑉𝐸 + 𝑗

𝛽

𝐹
𝐼𝑀 
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𝐸𝑧 =
|
𝑙 𝐹𝑉𝐸

−𝛽𝑟 −𝑗𝐼𝑀
|

𝐹𝑟
=
𝛽𝑟𝐹

𝐹𝑟
𝑉𝐸 −

𝑗𝑙𝐼𝑀
𝐹𝑟

 

=> 𝐸𝑧 = 𝛽𝑉𝐸 −
𝑗𝑙

𝐹𝑟
𝐼𝑀 

And  

𝐸𝑟 =
𝐼𝐸
𝑛2𝑟

 

Further follows the calculation of the relation 
𝜕𝑉𝑀

𝜕𝑟
 

𝑗
𝜕(𝐹𝑉𝑀)

𝜕𝑟
= 𝑗𝐹

𝜕𝑉𝑀

𝜕𝑟
+ 𝑗𝑉𝑀

𝜕𝐹

𝜕𝑟
       

 

𝑗
𝜕(𝐹𝑉𝑀)

𝜕𝑟
= 𝑙

𝜕𝐻𝜑

𝜕𝑟
+ 𝛽𝑟

𝜕𝐻𝑧

𝜕𝑟
+ 𝛽𝐻𝑧     (A.12) 

𝜕(𝑟𝐻𝜑)

𝜕𝑟
= 𝑗𝑙𝐻𝑟 + 𝑗𝑟𝑛

2𝐸𝑧 

𝑟
𝜕𝐻𝜑

𝜕𝑟
= 𝑗𝑙𝐻𝑟 + 𝑗𝑟𝑛

2𝐸𝑧 − 𝐻𝜑 

𝜕𝐻𝜑

𝜕𝑟
=

𝑗𝑙2𝐻𝑟

𝑟
+ 𝑗𝑙𝑛2𝐸𝑧 −

𝑙𝐻𝜑

𝑟
     (A.13) 

𝜕𝐻𝑧
𝜕𝑟

= 𝑗𝛽𝐻𝑟 − 𝑗𝑛
2𝐸𝜑 

𝛽𝑟
𝜕𝐻𝑧

𝜕𝑟
= 𝑗𝛽2𝑟𝐻𝑟 − 𝑗𝛽𝑟𝑛

2𝐸𝜑     (A.14) 

Combining (A.12), (A.13) and (A.14), results in 

𝑗
𝜕(𝐹𝑉𝑀)

𝜕𝑟
= 𝑗𝑛2(𝑙𝐸𝑧 − 𝛽𝑟𝐸𝜑) + 𝑗𝐹𝐻𝑟 −

𝑙𝐻𝜑

𝑟
+ 𝛽𝐻𝑧 

=> 𝑗
𝜕(𝐹𝑉𝑀)

𝜕𝑟
= 𝑛2𝐼𝑀 +

𝑗𝐹

𝑟
(𝑟𝐻𝑟) −

𝑙𝐻𝜑

𝑟
+ 𝛽𝐻𝑧 

=> 𝑗
𝜕(𝐹𝑉𝑀)

𝜕𝑟
= 𝑛2𝐼𝑀 −

𝐹

𝑟
𝐼𝑀 −

𝑙𝐻𝜑

𝑟
+ 𝛽𝐻𝑧 
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𝑗
𝜕(𝐹𝑉𝑀)

𝜕𝑟
= −𝛾2𝐼𝑀 −

𝑙𝐻𝜑

𝑟
+ 𝛽𝐻𝑧   (A.15) 

Where 𝛾2 = 𝛽2 − 𝑛2 +
𝑙2

𝑟2
 

Combining (A.1) and (A.5) the following relation is obtained 

𝑗𝐹
𝜕𝑉𝑀

𝜕𝑟
+ 𝑗

𝜕𝐹

𝜕𝑟
𝑉𝑀 = −𝛾2𝐼𝑀 −

𝑙𝐻𝜑

𝑟
+ 𝛽𝐻𝑧  (A.16) 

 

{
𝐻𝜑 =

𝑗𝑙𝑉𝑀
𝑟

−
𝛽

𝐹
𝐼𝐸

𝐻𝑧 =
𝑙

𝐹𝑟
𝐼𝐸 + 𝑗𝛽𝑉𝑀

 

−
𝑙𝐻𝜑

𝑟
= −

𝑗𝑙2

𝑟2
𝑉𝑀 +

𝛽𝑙

𝐹𝑟
𝐼𝐸 

𝛽𝐻𝑧 =
𝛽𝑙

𝐹𝑟
𝐼𝐸 + 𝑗𝛽

2𝑉𝑀 

−𝑗
𝜕𝐹

𝜕𝑟
𝑉𝑀 = 𝑗 (𝛽

2 −
𝑙2

𝑟2
)𝑉𝑀 

=> 𝑗𝐹
𝜕𝑉𝑀
𝜕𝑟

=
2𝛽𝑙

𝐹𝑟
𝐼𝐸−𝛾

2𝐼𝑀 

2𝛽𝑙

𝐹𝑟
=

2𝛽𝑙

(𝛽𝑟)2 + 𝑙2
= 𝑀𝐹 

𝑀 =
2𝛽𝑙

((𝛽𝑟)2 + 𝑙2)𝐹
 

Thus 

𝜕𝑉𝑀
𝜕𝑟

= −
𝛾2

𝑗𝐹
𝐼𝑀 − 𝑗𝑀𝐼𝐸  

Following a similar approach, we obtain: 

𝜕𝑉𝐸
𝜕𝑟

= −
𝛾2

𝑗𝑛2𝐹
𝐼𝐸 − 𝑗𝑀𝐼𝑀 
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Appendix B: Mathematical analysis for elliptical waveguides 

Orthogonality Relations of Mathieu Functions: 

a. For all γ2 

∫ 𝑐𝑒𝑚
 (𝜂, 𝛾2)𝑐𝑒𝑝

 (𝜂, 𝛾2)𝑑𝜂

2𝜋

0

= 0        𝑚 ≠ 𝑝 

∫ 𝑠𝑒𝑚
 (𝜂, 𝛾2)𝑠𝑒𝑝

 (𝜂, 𝛾2)𝑑𝜂

2𝜋

0

= 0        𝑚 ≠ 𝑝 

∫ 𝑐𝑒𝑚
 (𝜂, 𝛾2)𝑠𝑒𝑝

 (𝜂, 𝛾2)𝑑𝜂

2𝜋

0

= 0        𝑚 ≠ 𝑝 

b. For γ2 ≥ 0 

 

∫ 𝑐𝑒22𝑛
 
(𝜂, 𝛾2)𝑑𝜂 = 2𝜋[𝐴𝑜

(2𝑛)
]
2

+ 𝜋∑[𝐴2𝑟
(2𝑛)

]
2

∞

𝑟=1

2𝜋

0

 

∫ 𝑐𝑒22𝑛+1
 

(𝜂, 𝛾2)𝑑𝜂 = 𝜋∑[𝐴2𝑟+1
(2𝑛+1)]

2
∞

𝑟=0

2𝜋

0

 

∫ 𝑠𝑒22𝑛+1
 

(𝜂, 𝛾2)𝑑𝜂 = 𝜋∑[𝐵2𝑟+1
(2𝑛+1)]

2
∞

𝑟=0

2𝜋

0

 

∫ 𝑠𝑒22𝑛+2
 

(𝜂, 𝛾2)𝑑𝜂 = 𝜋∑[𝐵2𝑟+2
(2𝑛+2)

]
2

∞

𝑟=0

2𝜋

0

 

c. For γ2 ≤ 0 

∫ 𝑐𝑒22𝑛
 
(𝜂, | 𝛾2|)𝑑𝜂 = 2𝜋[𝐴𝑜

(2𝑛)]
2

+ 𝜋∑[𝐴2𝑟
(2𝑛)]

2
∞

𝑟=1

2𝜋

0
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∫ 𝑐𝑒22𝑛+1
 

(𝜂, | 𝛾2|)𝑑𝜂 = 𝜋∑[𝐵2𝑟+1
(2𝑛+1)]

2
∞

𝑟=0

2𝜋

0

 

∫ 𝑠𝑒22𝑛+1
 

(𝜂, | 𝛾2|)𝑑𝜂 = 𝜋∑[𝐴2𝑟+1
(2𝑛+1)]

2
∞

𝑟=0

2𝜋

0

 

∫ 𝑠𝑒22𝑛+2
 

(𝜂, | 𝛾2|)𝑑𝜂 = 𝜋∑[𝐵2𝑟+2
(2𝑛+2)]

2
∞

𝑟=0

2𝜋

0

 

Derivation of Maxwell equations in elliptical coordinate system 

Using the definitions of equations (3.8) we proceed in the analysis as follows: 

Using the so called second couple of Maxwell equations (3.5) and (3.6) we can 

facilitate the derivation.  

∇ • 𝐻⃗⃗ = 0     (B.1) 

∇ • 𝐸⃗ = 0     (B.2) 

Equations (B.1) and (B.2) are not independent from the six equations arising from 

(3.2) and (3.3) as they can be derived from them, however they are useful in order to 

have the first set of the differential equations relating the equivalent currents and 

voltages 𝐼𝑀, 𝐼𝐸 , 𝑉𝑀, 𝑉𝐸. 

Writing the equations (B.1) and (B.2) in an elliptic coordinate system  the following 

partial differential equations we arrive at 

 

𝜕(ℎ𝐻𝜃)

𝜕𝜃
+ 
𝜕(ℎ𝐻𝜑)

𝜕𝜑
+
𝜕(ℎ2𝐻𝑧)

𝜕𝑧
= 0 

𝜕(ℎ𝐸𝜃)

𝜕𝜃
+ 
𝜕(ℎ𝐸𝜑)

𝜕𝜑
+
𝜕(ℎ2𝐸𝑧)

𝜕𝑧
= 0 

 

Fourier transforming the above equations as along 

𝜑𝑎𝑛𝑑𝑧𝑤𝑖𝑡ℎ 𝑤𝑎𝑣𝑒𝑛𝑢𝑚𝑏𝑒𝑟𝑠𝛽𝑎𝑛𝑑 𝑙 𝑎𝑛 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 and using the previous convolution 

relations, the following ordinary differential equations are derived 
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𝜕(ℎ𝐻𝜃)

𝜕𝜃
+ 𝑙(ℎ𝐻𝜑) + ℎ0

2𝛽𝐻𝑧 − 𝛽
𝑐2

4
[𝛷1] = 0 

𝜕(ℎ𝐸𝜃)

𝜕𝜃
+ 𝑙 (ℎ𝐸𝜑)+ ℎ0

2𝛽𝐸𝑧 − 𝛽
𝑐2

4
[𝛷2] = 0 

 

𝛷1and 𝛷2 are defined in (3.6) and (3.7) respectively. Thus the previous relations can 

be written in terms of the defined functional parameters (B.7) as follows 

  
𝜕𝐼𝑀
𝜕𝜃
= −𝑗𝐹𝑉𝑀 +

𝛽𝑐2

4
[𝛷1]    (B.3.1) 

𝜕𝐼𝐸
𝜕𝜃
= −𝑗𝐹𝑛2𝑉𝐸 +

𝑗𝑛2𝛽𝑐2

4
[𝛷2]     

Using the definitions of 𝑉𝑀, 𝑉𝐸  , 𝐼𝑀 , 𝐼𝐸  

{
  
 

  
 𝛪𝛭 = −𝑗(ℎ𝛨𝜃) = 𝑗 (𝑙𝐸𝑧 −  𝛽(ℎ𝐸𝜑))

𝛪𝛦 = 𝑛
2(ℎ𝐸𝜃) = (𝑙𝐻𝑧 −  𝛽(ℎ𝐻𝜑))

𝑉𝑀 =
𝑙(ℎ𝐸𝜑)+ 𝛽ℎ0

2(𝜃)𝛦𝑧

𝑗𝐹

𝑉𝛦 =
𝑙(ℎ𝐸𝜑)+ 𝛽ℎ0

2(𝜃)𝛦𝑧

𝐹

 

And following a cumbersome procedure another set of two differential equations 

can be derived  

𝜕𝑉𝑀

𝜕𝜃
= −

𝛾2

𝑗𝐹
𝛪𝛭 − 𝑗𝑀𝐼𝐸 −

𝑛2𝑙𝑐2

4𝐹
[𝛷2]        (B.3.2) 

𝜕𝑉𝐸

𝜕𝜃
= −

𝛾2

ឨ𝑛2𝐹
𝛪𝐸 − 𝑗𝑀𝐼𝑀 + 𝑗

𝑙𝑐2

4𝐹
[𝛷1]  

 

These four differential equations (B 3.1 & B3.2) along 𝜃  are representing two 

interlinked transmission lines, where furthermore their values for a wave number 𝑙 are 

related with their values for the wave numbers 𝑙 + 2 and 𝑙 − 2. We call them 

“harmonics” appearing because of the relation ℎ2(𝜑,𝜃) = ℎ0(𝜃)
2 −

𝑐2

4
(𝑒𝑗2𝜑  + 𝑒−𝑗2𝜑) 

being a function of 𝜑. In the case where the circular layers ℎ2 is independent of  φ, 

there are no “harmonics” and the analysis becomes much simpler. 

The proof for B 3.2 relations is shown below: 

 By the intermediate relations: 
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              ℎ2𝐻z
̅̅ ̅̅̅ = ℎ0

2𝐻z
̅̅ ̅̅̅ −

𝑐2

4
[𝛷1] 

              ℎ2𝛦z
̅̅ ̅̅ = ℎ0

2𝛦z
̅̅ ̅̅ −

𝑐2

4
[𝛷2] 

ℎ0
2 =

𝑐2

2
cosh 2𝜃        𝐹 = 𝑙2 + 𝛽2ℎ0

2                    
𝜕𝐹

𝜕𝜃
= 𝛽2

𝜕ℎ0
2

𝜕𝜃
 

 

{
𝜕(𝑗𝐹𝑉𝑀)

𝜕𝜃
= 𝑗𝐹

𝜕𝑉𝑀

𝜕𝜃
+ 𝑗

𝜕𝐹

𝜕𝜃
𝑉𝑀 = 𝑗𝐹

𝜕𝑉𝑀

𝜕𝜃
+ 𝑗𝛽2

𝜕ℎ0
2

𝜕𝜃
𝑉𝑀  (B.4) 

 

𝑏𝑢ឨ      𝑗𝐹𝑉𝑀 = 𝑙(ℎ𝐻𝜑̅̅ ̅̅ ̅̅ ) + 𝛽ℎ0
2(𝐻𝑧̅̅̅̅ )      so that finally: 

 

𝜕(𝑗𝐹𝑉𝑀)

𝜕𝜃
= 𝑙

𝜕(ℎ𝐻𝜑̅̅ ̅̅ ̅̅ )

𝜕𝜃
+ 𝛽

𝜕ℎ0
2

𝜕𝜃
(𝐻𝑧̅̅̅̅ ) + 𝛽

2ℎ0
2
𝜕(𝐻𝑧̅̅̅̅ )

𝜕𝜃
 

Taking into consideration that𝐻𝑧̅̅̅̅ = 𝑙
𝛪𝛦

𝐹
+ 𝑗𝛽𝑉𝑀we also derive 

𝜕(𝑗𝐹𝑉𝑀)

𝜕𝜃
= 𝑙

𝜕(ℎ𝐻𝜑̅̅ ̅̅ ̅̅ )

𝜕𝜃
+ 𝛽ℎ0

2 𝜕(𝐻𝑧̅̅ ̅̅ )

𝜕𝜃
+
𝛽𝑙

𝐹

𝜕ℎ0
2

𝜕𝜃
𝐼𝐸 + 𝑗𝛽

2 𝜕ℎ0
2

𝜕𝜃
𝑉𝑀  (B.5) 

 

Thus we obtain 

 

𝑗𝐹
𝜕𝑉𝑀

𝜕𝜃
= 𝑙

𝜕(ℎ𝐻𝜑̅̅ ̅̅ ̅̅ )

𝜕𝜃
+ 𝛽ℎ0

2 𝜕(𝐻𝑧̅̅ ̅̅ )

𝜕𝜃
+
𝛽𝑙

𝐹

𝜕ℎ0
2

𝜕𝜃
𝐼𝐸    (B.6) 

 

Using  the differential relations  of the previous paragraph we also obtain 

 

𝑙
𝜕(ℎ𝐻𝜑̅̅ ̅̅ ̅̅ )

𝜕𝜃
= 𝑗𝑙2(ℎ𝐻𝜃̅̅ ̅̅ ̅) + 𝑗𝑛2𝑙ℎ0

2𝐸𝑧̅̅ ̅ −
𝑗𝑛2𝑙𝑐2

4
[𝛷2]   (B.7) 

𝛽ℎ0
2 𝜕(𝐻𝑧̅̅ ̅̅ )

𝜕𝜃
= 𝑗𝛽2ℎ0

2(ℎ𝐻𝜃̅̅ ̅̅ ̅) − 𝑗𝑛2𝛽ℎ0
2(ℎ𝛦𝜑̅̅ ̅̅ ̅)   (B.8) 
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Thus 

𝑗𝐹
𝜕𝑉𝑀
𝜕𝜃

= 𝑗(𝑙2 + 𝛽2ℎ0
2)(ℎ𝐻𝜃̅̅ ̅̅ ̅) + 𝑗𝑛2𝑙ℎ0

2(𝐸𝑧̅̅ ̅) +
𝛽𝑙

𝐹

𝜕ℎ0
2

𝜕𝜃
𝐼𝐸 − 𝑗𝑛

2𝛽ℎ0
2(ℎ𝛦𝜑̅̅ ̅̅ ̅)

−
𝑗𝑛2𝑙𝑐2

4
[𝛷2] 

We also know that 

𝑙(𝐸𝑧̅̅ ̅) − 𝛽(ℎ𝛦𝜑̅̅ ̅̅ ̅) = −(ℎ𝐻𝜃̅̅ ̅̅ ̅) 

 

Thus 

 

𝑗𝐹
𝜕𝑉𝑀

𝜕𝜃
= 𝑗(𝑙2 + 𝛽2ℎ0

2 − 𝑛2ℎ0
2)(ℎ𝐻𝜃̅̅ ̅̅ ̅) +

𝛽𝑙

𝐹

𝜕ℎ0
2

𝜕𝜃
𝐼𝐸 −

𝑗𝑛2𝑙𝑐2

4
[𝛷2] (B.9) 

This is simplified as 

𝑗𝐹
𝜕𝑉𝑀

𝜕𝜃
= 𝑗𝛾2(ℎ𝐻𝜃̅̅ ̅̅ ̅) + 𝑀𝐹𝐼𝐸 −

𝑗𝑛2𝑙𝑐2

4
[𝛷2]  (B.10) 

 

with the introduction of the auxiliary variable 

 

𝛾2 = 𝑙2 + ℎ0
2(𝛽2 − 𝑛2),       𝑀 =

𝛽𝑙

𝐹2
𝜕ℎ0

2

𝜕𝜃
 

 

Taking into account that (ℎ𝐻𝜃̅̅ ̅̅ ̅) = 𝑗𝐼𝑀 we further get 

 

𝑗𝐹
𝜕𝑉𝑀
𝜕𝜃

= −𝛾2𝛪𝛭 +𝑀𝐹𝐼𝐸 −
𝑗𝑛2𝑙𝑐2

4
[𝛷2] 

and finally  

 

𝜕𝑉𝑀

𝜕𝜃
= −

𝛾2

𝑗𝐹
𝛪𝛭 − 𝑗𝑀𝐼𝐸 −

𝑛2𝑙𝑐2

4𝐹
[𝛷2]   (B.11) 
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Following a similar approach we can prove that 

 

   
𝜕𝑉𝐸

𝜕𝜃
= −

𝛾2

𝑗𝑛2𝐹
𝛪𝐸 − 𝑗𝑀𝐼𝑀 + 𝑗

𝑙𝑐2

4𝐹
[𝛷1]   (B.12) 

 

Where: 𝛾2 = 𝑙2 + (𝛽2 − 𝑛2)ℎ0
2 ,    𝑀 = 𝛽𝑙

𝜕ℎ0
2

𝜕𝜃
/𝐹2,𝐹 = 𝑙2 + 𝛽2ℎ0

2
 

A useful remark is that along θ the “Currents” are continuous because 

ℎ𝛨𝜃𝑎𝑛𝑑𝑛
2(ℎ𝐸𝜃) as (i.e. the F.T. of the normal induction field components 

𝜇0𝐻𝜃𝑎𝑛𝑑𝑛
2𝜀0𝐸𝜃) on the surface (𝜑, 𝑧) are continuous. The “Voltages” are also 

continuous because the tangential field components 𝐻𝜑𝐻𝑧𝐸𝜑𝐸𝑧along θ and the 

function ℎ  are continuous “passing” the surface(𝜑, 𝑧) and every linear combination 

of them is continuous on the surface(𝜑, 𝑧). 

Finally to derive an equivalent transmission line of the two interlinked transmission 

lines we  

we define a new “voltage”𝑉𝑆 and a new “current”𝐼𝑆 by the relations 

𝑉𝑆 = 𝑉𝑀 + 𝑛𝑉𝐸𝐼𝑆 = 𝐼𝑀 +
𝐼𝐸

𝑛
  representing even modes. 

Using relations (B.18) we get 

 

{
 
 

 
 𝜕𝑉𝑀

𝜕𝜃
= −

𝛾2

𝑗𝐹
𝛪𝛭 − 𝑗𝑀

𝐼𝐸
𝑛
−
𝑛𝑙𝑐2

4𝐹
[𝑛𝛷2]

𝜕(𝑛𝑉𝐸)

𝜕𝜃
= −

𝛾2

𝑗𝐹

𝛪𝐸
𝑛
− 𝑗𝑛𝑀𝐼𝑀 +

𝑛𝑙𝑐2

4𝐹
[𝑗𝛷1]

 

Thus we also obtain 

 

𝜕𝑉𝑆

𝜕𝜃
= −

𝛾2−𝑛𝑀𝐹

𝑗𝐹
𝛪𝑆 +

𝑛𝑙𝑐2

4𝐹
[𝑗𝛷1 − 𝑛𝛷2]   (B.13) 

 

Using also (B.3.1 & B 3.2)  



 141  

{

𝜕𝛪𝑀

𝜕𝜃
= −𝑗𝐹𝑉𝑀 −

𝛽𝑐2

4
[𝑗𝛷1]

𝜕(
𝛪𝐸

𝑛⁄ )

𝜕𝜃
= −𝑗𝐹𝑛𝑉𝐸 + 𝑗

𝛽𝑐2

4
[𝑛𝛷2]

thus:    

      
𝜕𝛪𝑆

𝜕𝜃
= −𝑗𝐹𝑉𝑆 −

𝑗𝛽𝑐2

4
[𝑗𝛷1 − 𝑛𝛷2]   (B.14) 

We also have that 

{
 
 

 
 [𝛷1] =

𝑙 − 2

𝐹𝑙−2
𝐼𝐸
𝑙−2 + 𝑗𝛽𝑉𝑀

𝑙−2 +
𝑙 + 2

𝐹𝑙+2
𝐼𝐸
𝑙+2 + 𝑗𝛽𝑉𝑀

𝑙+2

[𝛷2] = −
𝑗(𝑙 − 2)

𝐹𝑙−2
𝐼𝑀
𝑙−2 + 𝛽𝑉𝐸

𝑙−2 −
𝑗(𝑙 + 2)

𝐹𝑙+2
𝐼𝑀
𝑙+2 + 𝛽𝑉𝐸

𝑙+2

 

 

Thus we obtain 

[𝑗𝛷1 − 𝑛𝛷2] =
𝑗(𝑙 − 2)𝑛

𝐹𝑙−2
[[
𝐼𝐸
𝑙−2

𝑛
+ 𝐼𝑀

𝑙−2] + 𝑗 [
𝐼𝐸
𝑙+2

𝑛
+ 𝐼𝑀

𝑙+2]]

− 𝛽 [[𝑉𝑀
𝑙−2 + 𝑛𝑉𝐸

𝑙−2] + [𝑉𝑀
𝑙+2 + 𝑛𝑉𝐸

𝑙+2]] 

 

[𝑗𝛷1 − 𝑛𝛷2] =
𝑗(𝑙−2)𝑛

𝐹𝑙−2
𝐼𝑆
𝑙−2 +

𝑗(𝑙+2)𝑛

𝐹𝑙+2
𝐼𝑆
𝑙+2 − 𝛽[𝑉𝑆

𝑙−2+𝑉𝑆
𝑙+2] (B.15) 

 

Thus for            𝑞 =
𝑛𝑐2

4
 , 𝑎𝑛𝑑𝐴 =

𝑞𝑙

𝐹𝑙
𝑎𝑛𝑑𝐵 =

𝛽𝑞

𝑛
 we will get 

𝜕𝑉𝑆
𝑙

𝜕𝜃
= −

𝛾𝑙
2−𝑛𝑀𝑙𝐹𝑙

𝑗𝐹𝑙
𝐼𝑆
𝑙 + 𝑗𝐴

(𝑙−2)𝑛

𝐹𝑙−2
𝐼𝑆
𝑙−2 + 𝑗𝐴

(𝑙+2)𝑛

𝐹𝑙+2
𝐼𝑆
𝑙+2 − 𝐴𝛽[𝑉𝑆

𝑙−2+𝑉𝑆
𝑙+2] (B.16) 

 

𝜕𝐼𝑆
𝑙

𝜕𝜃
= −𝑗𝐹𝑙𝑉𝑆

𝑙 + 𝐵
(𝑙−2)𝑛

𝐹𝑙−2
𝐼𝑆
𝑙−2 + 𝐵

(𝑙+2)𝑛

𝐹𝑙+2
𝐼𝑆
𝑙+2 + 𝑗𝐵𝛽[𝑉𝑆

𝑙−2+𝑉𝑆
𝑙+2]  (B.17) 

 

where  

𝐹𝑙+2 = (𝑙 + 2)
2 + 𝛽2ℎ0

2
, 𝐹𝑙−2 = (𝑙 − 2)

2 + 𝛽2ℎ0
2
 , 𝐹𝑙 = 𝑙

2 + 𝛽2ℎ0
2
, 

𝛾𝑙
2 = 𝑙2 + (𝛽2 − 𝑛2)ℎ0

2 , 𝑀𝑙 = 𝛽𝑙
𝜕ℎ0

2

𝜕𝜃
/ Fl

2
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Equations (B.16) and (B.17) represent a transmission line with “harmonics”. The 

exponents in the relations (B.16) and (B.17) on 𝑉𝑆and 𝐼𝑆are giving the harmonic order.  

In order to have real coefficients we can set 𝑈𝑆 = 𝑗𝑉𝑆 so that (B.16) and (B.17) 

become 

 

{
𝜕𝑈𝑆

𝑙

𝜕𝜃
= −

𝛾𝑙
2−𝑛𝑀𝑙𝐹𝑙

𝐹𝑙
𝐼𝑆
𝑙 − 𝐴

(𝑙−2)𝑛

𝐹𝑙−2
𝐼𝑆
𝑙−2 − 𝐴

(𝑙+2)𝑛

𝐹𝑙+2
𝐼𝑆
𝑙+2

−𝐴𝛽[𝑈𝑆
𝑙−2+𝑈𝑆

𝑙+2]

{
𝜕𝐼𝑆
𝑙

𝜕𝜃
= −𝐹𝑙𝑈𝑆

𝑙 + 𝐵
(𝑙−2)𝑛

𝐹𝑙−2
𝐼𝑆
𝑙−2 + 𝐵

(𝑙+2)𝑛

𝐹𝑙+2
𝐼𝑆
𝑙+2 + 𝐵𝛽[𝑈𝑆

𝑙−2+𝑈𝑆
𝑙+2]

             Using also 

𝐴 =
𝑞𝑙

𝐹𝑙
𝐵 =

𝛽𝑞

𝑛
  we get  

{
 
 

 
 
𝜕𝑈𝑠

𝑙

𝜕𝜃
= −

𝛾2−𝑛𝑀𝐹

𝐹
𝐼𝑠
𝑙 −

𝑙𝑞𝑛

𝐹
[
(𝑙−2)

𝐹𝑙−2
𝐼𝑠
𝑙−2 +

(𝑙+2)

𝐹𝑙+2
𝐼𝑠
𝑙+2] −

𝑞𝛽𝑙

𝐹
[𝑈𝑠

𝑙−2 + 𝑈𝑠
𝑙+2]

𝜕𝐼𝑠
𝑙

𝜕𝜃
 =  −𝐹𝑈𝑠

𝑙 + 𝑞𝛽 [
(𝑙−2)

𝐹𝑙−2
𝐼𝑠
𝑙−2 +

(𝑙+2)

𝐹𝑙+2
𝐼𝑠
𝑙+2] +

𝑞𝛽2

𝑛
[𝑈𝑠

𝑙−2 + 𝑈𝑠
𝑙+2]

 (B.18) 

We can follow the same procedure defining  

𝑉𝑆𝑆 =
𝑉𝑀
𝑛
+ 𝑉𝐸𝐼𝑆𝑆 = 𝑛𝐼𝑀 + 𝐼𝐸  (𝐼𝑆𝑆 = 𝐼𝑆𝑛 , 𝑉𝑆𝑆 =

𝑉𝑆
𝑛
) 

for the odd modes. 
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