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ABSTRACT

STUDY OF EM WAVE PROPAGATION

IN ELLIPTICAL CORE OPTICAL FIBERS

Euripides Georgantzos

University of Peloponnese

Although initially studied as a deviation from cylindrical optical fibers,
elliptical core fibers have evolved to become a basic component in numerous
applications. Increased ellipticity of the core section allows these fibers to sustain
polarization for long distances. Polarization, birefringence, simplicity to manufacture,
structural cohesion and azimuthal stability, are the key advantages of elliptical fibers.
As a result of their distinct properties, they are used in various applications including
optical sensors, interferometers, rare-earth-doped fiber sources, amplifiers and

communications applications.

The concept of EM wave propagation inside dielectric rods of elliptical section
has been studied initially for elliptical waveguides in general by researchers including
L.J. Chu, Lyubimov and Yeh; especially Yeh’s analysis has provided basic
mathematical tools and estimations regarding key propagation characteristics which
have proved essential for further research. The specific case of optical fibers with
elliptical core has also been studied initially by Dyott, Stern and Schlosser, and research
continues until today targeting specific characteristics like propagation modes,
dispersion, birefringence and eigenvalue equations among others. Most of the existing
studies are utilizing complicated mathematical methods and make critical assumptions
involving the refractive index profile, in order to achieve results of a certain level of

accuracy.



The current thesis introduces a novel method that, after conducting a
fundamental level of mathematical analysis, substitutes the subsequent, prevalent
Mathieu functions’ analysis, with the Resonant Transmission Line theory. As a result,
the presented technique estimates the key characteristics of propagating modes,
including the mode propagation constant g and birefringence in elliptical fibers, with
remarkable speed and accuracy. Among the advantages of the applied RTL method, is
the fact that it is based more on computational strength than mathematical complexity,
it converges fast, it avoids the unrealistic assumption of an infinite cladding, and allows

the investigation of arbitrary index profiles.

Regarding the structure of the thesis, chapter 1 starts with a detailed
presentation of the RTL technique and its application on cylindrical core optical fibers.
Beginning with a mathematical analysis based on Maxwell’s equations, the
presentation serves as a demonstration of the RTL technique as the key toolset that will
be used later in the thesis to describe propagation in elliptical fibers. In the same
chapter, a basic definition of birefringence is also given for cylindrical core fibers.
Chapter 2 presents the existing literature related to elliptical waveguides and elliptical
fibers in particular. It continues with the presentation of the prevailing mathematical
analysis for the estimation of mode propagation constant § and provides the related
formulas, focusing on Yeh’s approach and Dyott’s valuable research. Further on,
birefringence is defined and the major techniques are described towards its estimation.
This chapter also describes the elliptical fibers’ distinct property of retaining
polarization as well as their potential applications. In chapter 3, a fundamental
mathematical analysis is provided, applying Maxwell’s equations on elliptical
coordinates before proceeding with the RTL technique. The analysis involves the
appearance of harmonics which are included in the RTL method, hence the solutions
provided, all include different numbers of harmonics. The mode propagation constant
B is calculated and $-V diagrams are plotted. Comparisons are also presented of results
with different numbers of harmonics included. In chapter 4, the RTL method is applied
over a mathematical analysis that follows a different approach, utilizing conformal
mapping to obtain values of propagation properties. This chapter aims to provide basic
tools for the study of D fibers that combine characteristics of both eccentric cores and
elliptical cores. Chapter 5 provides yet another method for studying elliptical fibers,

following a top-down approach. The chapter defines unconventional fibers as a generic
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category of fibers with angular asymmetry and develops a method that can be used in
various specific cases including elliptical and holey fibers. The method omits the use
of harmonics and achieves significant accuracy in calculating g. The final chapter,
chapter 6, describes the advantages and contributions of the current thesis in the study

of elliptical fibers and presents suggestions for future research.
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Evpwriong I'emwpydvtlog

Hovemotquo [erlomrovvijoov

1. Ewayom

H elMewmtcég ontikég fveg apywd peilembnkav oto miaicto kabopiopol twv
EMNTOCEMV UETAROADV GTN YEOUETPIO TOV TLPNVA TG KLAVIPIKNG OTLTIKNG tvog Tov
YPNOUOTOIEITOL OG PHECH UETOPOPAS TANPOPOPIOG OTIG GUYYPOVES TNAETIKOIVOVIES.
Qoto6c0, Yapn oTIc EEXYWPIOTEG TOVS WOTNTEG, Ol EAAEWmTIKEG 1veg onuepa
xpnoonoovvior ce o TANBdpa gpappoyov. H diddoon mAekTpopoyvnTikdv
KOUOTOV € OMTIKEG 1veg Le TLPNVO EALEITTIKNG OLOTOUNG €XEL GLYVA OMOTEAECEL
AVTIKEIPEVO HEAETNG. AVAQPOPA € KLUATOONYOVS EAAEITTIKNG OLTOUNG YEVIKE, €lxe
yiver apyikad og perétn tov HM xopdtov péoa 6e EAAEITTIKOVS LETOAMKOVG COANVEG,
og épevva tov L.J. Chu, dpwc n mpd @opd mov dnbnke Adon 610 TPOPANUa TG
dadoong ,Atav and tovg Lyubimov k.a. Ewdwdtepa n mepintmon g eAAEWmTIKNG
omTIKNG tvag epevviinke apyikd ¢ TPOPANUOTIKY TEPIMTOON TAPAUOPPMOONS TNG
KLUAVOPIKNG tvag amd Tovg Dyott kan Stern ko a6 tov Schlosser. Ot épevveg kotéAnEay
OTO GUUTEPAGLLO OTL 1] YPNON LEYOAVTEPOL PaBoD EAAEMTIKOTNTAG, GE GLVOVAGUO pE
apKoOVTMG gvpeia. dopopd TV deikt®dv StbAacng, oonyel ce daywPoUd TV
otafepdv O1ad00ong TV POCIKOV TPOT®V O14000NG Kol EMITPEMEL OTIG veg  va
STNPoLV TNV TOA®GT) Y10l LEYOADTEPES 0mooTdoElS. H 181010 TG OA®ON G amoteAel
ONUOVTIKO oTOXEl0 Yo T viepeepOpeTpa. Ot iveg mov €yovv N dvvaTdOTNTO VO
JTNPOVV TOAMGN YPNCILOTOOVVTAV € APYNG OTO OMTIKA WWTEPPEPOUETPA, OUWOS M
péBodoc mov epaprdlovtay Yo To SWPICUO TOV OTTIKAOV S10dPOUDY HEGH TNV tval,
Bac1{otav otV anrocvuVIEST) TV OEIKTOV d1abAaonc epaprdlovtag ieon. Xe avtibeon

pe v mpoavapepOeica pEBodo, n xpNon EAMEIMTIKAOV VOV Yo TO S0 ®PIGUO TOL
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BepeMmdovg TpOTOL d1adooNS 68 OLO EexmPloTos, 0pHoydVIa TOAMUEVOVS PLOOVG

EXEL ONUOVTIKA TAEOVEKTILOLTOL:

o Ot eMemntikég tveg mopovctalovy HIKPOTEPT TEPTAOKOTNTU OTNV KATOCKELT

e  Me v amopLYN EPOPUOYNG TEOTG, LELOVETAL 1) ETAKOAOVON gvalcONGio TG

tvog otV mepatépm mieomn ko T Oepprokpacia.

e Ot vynAotepor puBuoi diddoong otig eAlemtikég tveg givor mo otabepol
alpovBlokd og oyxéon e TG tveg KOAVOPIKNG O1TOUNG, O1EVKOADVOVTAG KT

AT TOV TPOTTO TNV KATAGKELT] leONTp@V tvag [ mepLocoTEPOLS pLOLLOVC.

Xapn otig EexmpPIoTéG TOVG WOLOTNTES Ol EAAEMTIKEG (VEG YPNOUYLOTOLOVVTIOL GE £Vl
€0POG EQPUPUOYDV OV TEPAaPaveL aucONTpES, TVeS EVIGYVUEVES e GTAVIES YOUEC,
EVIOYVTES KAOMDGS KOl GTIG TNAEMKOWVOVIEG G LEGOV EE0VIETEPMOTG TG KABVLOTEPNONG

KULLOTOOLAOOG.

Meta&h tov mpoomabelidv mov €yovv yivel Yoo TNV £PELVO TOV EAAEUTTIKOV
KOUHOTOON YDV Kot ToV KaBopIopd Tov Pacik®dv 18tot)tev g dtddoong HM kopatog
070 £6MTEPIKO TOVG, Eeywpileln épevva Tov Yeh n onoia £0eote Tig podnuatikég Paoeig
ywo. T oyetikn aviilvon. H avédAivon tov Yeh kdaver yprion tov eéicdoewv Mathieu
Kol KOTOANYEL otov KoBopopd tov Pacikodv £lo®oemv  HETAOOONS KOl TOV
vroAoYIopd TG oTafepds d1idoons, AaPAvovTag LVIOYN KATOESG TAPUSOYESG CYETIKA
HE TO €DPOG NG O1POPAS TV OEIKTMOV O1dBAao™NG Kot 1o Pabud eAdemtikdTnTOog TOL
mopnva. Toco 1 péBodoc pe yprion e€lomoewv Mathieu 66o kot ot petayevéotepeg
pébodor mov Paciommkav o€ avTH, OVOYKAOTIKA TpobmoBétovy v  emiivon
LLOKPOCKEADY Kot TEPITAOK®V GEPDOV ponuatik®v oyécewv. Emiong ot Aboeig otig
omoieg KataAnyovv, Teplopilovial 6€ GUYKEKPIUEVEG TEPUMTAOCELS EAAEWTIKNG tvag. [
napaderypa n ovéAvon tov Yeh apopd og iva fabuwtov deiktn d1d0Aaong (Step index),

OOV HLAAIGTO 1] ETEVOLGT] YUP® OO TOV TLUPN VO EMEKTEIVETOL GTO ATELPO.

2KOTOG TG TOPOVCaG SOOKTOPIKNG dtatpiPng etvart ) dStopdpemon pog pebddov mov
Ba otmpiletor meplocOTEPO GE GVYPOVO VIOAOYICTIKA HEGH, YWOPIG VO VOTEPEL OF
axkpifela o cVYKpLoN HE TIG AVOAVTIKEG HEBOOOVG, emeKTEIVOVTOC TAPAAANAL TO EVPOC

TOV TEPUTTOCEMY Y10l TIG OTOIES EMTLYYAVETOL AVOT).

VIl



2. To mepiypoppo TS TPEYOVOUS EPEVVTIKNG EPYACIAG

210 TAOUG10 AVTNG TG EPEVVNTIKNG EPYOCIOG avVATTOXONKOV VEEG OTOTEAEGUATIKEG

péEBodOL Yoo TNV UEAETN EAAEWMTIKOV VOV Kol TOV okplpr] Kabopiopd onUovTIKOV

napaydvtov d1ddoonc. Ta avtikeipeva g EPELVOC LTOPOVV VO TEPTYPUPOVY LEGH OO

TIC TOPOKATO EMUEPOVS EVOTNTEG:

Kotd v apyikn tpocéyyion mpog ) dnpovpyio pog kavotopov pedddov yio
NV TEPLYPOP] TNG EAAEMTIKNG tvag, €ytve o pobnpotikn avédivon pe
epapuoyn tev kopatikeov eélomwcewv tov Maxwell oe eninedo elleumtikdv
cvvtetaypévov. H avélvon katénée otig Pacikés oxéoelg mov dEmTovV
ouadoon HM kopatog péca o€ Kopatoonyod EAAETTIKNG SLOTOUNG, Y10 LOVOUG
kot Cuyodg pvOpovg petdooons. XapokTnploTikd OTOWEID TOV TEAIKOV
eElomoemy, glval N LEPAVION ATEP®V TEMAEYUEVOV OPLOVIKOV HELOVUEVNG
Bapdrag. O vroAoyopndg péso and T oyEcels, g otabepds dwddoong B
npobmobétel T ypnom tpokabopiopuévov apBpov appovikav: 0, 1,2 ... 5 k.0.x.
H oamotedecpoticomta g pedddov eokpipdbnke péca amd tm cvykpilon
TILOV TOL S VTOAOYICUEVOV e TNV Tapovco pnefodo, Pe OvTIoTOLES TILES
VIOAOYIGUEVEG HE TN ovaALTIKy pébodo pe yprion eélomcewv Mathieu.
EminpocBeta, yio va peretnBel n enidpacn tov aptBpod TV appovIKOV TNV
axpifeio e nebddov, 1 TN TOL S VTOAOYIGTIKE SLOOOYIKA Y10 TIG TEPITTAOCELG
un  xpNong OpPUOVIKAOV, Kol opwopévav  aplBudv  avtov. Bdost tov
amotelecpdTov €ENXON T0 cvumépacua GTL N (PNON TEPICCOTEPMY APLOVIKDV
Bektidver v axpifeta g peBdo0v. Qo100 VD M dpopd otV axpifeia
peta&y koppiog kot pioag appuovikng ivor a&ioAoyn, 6o avéavetal o aptOudg
TOV OPUOVIK®V, TOGO 1M 01popd ovtn pelwvetat. 'Etol n ypnon dveo tov 5
APLOVIK®V OEV EXEL TAPOL ELAYLOTN O10.POPE GTNV OKPIPELD TV AMOTELEGUATOV.
AMo éva evdweépov coumépoopo givor ott 660 ov&avetor o Pabupodg
eEMEmTIKOTNTOS TOL TVPNVA, TOGO avEdvetor 0 aplBUdS TOV OTOUTOOUEVOV
OPLOVIKDV Y10 TNV EMTEVEN pEYaAVTEPTG aKpiPetag.

H pébodoc mov avamthybnke pe v mpdT TPOCEYYIoN, YPNCLLOTOONKE
emiong Yy Tov vmoloyopod tng Suthobhactikotntag (birefringence). H
dumhoBraoTiKOTNTO £fvat pior GNUOVTIKY 1010TNTa, Tov gpeaviletal To Eviovo

OTIG EALEMTIKEG TvEG, XApM oTNV omoia dvvavVToL Vo O TPOovV TNV TOAMGT).
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Opiletarl o¢ 10 pavopevo katd o omoio 6tav Eva HM kdpa dadidetar og Evov
KOULOTOON YO EAAEWTTIKNG S1aTOUNG, 01 6TafEPES d1adoong TV puOumy oHE 11 Ko
eHE11  epoaviovtor  amoocvvdedepéveg peta&d tovg. H  tunq g
dumhoBraoTtikoTnTag dideTanr ®g 1M Sopopd peTAEh TOV KOVOVIKOTOUEV®V
otafepdv d16doong AL = off — .f. 'Eyoviag Aowmdv ®dn vmooyicer Tig
otabepég d1ddoonc kot ta avtiotoyyo S-V Saypappato 0 VTOAOYIGHOG TNG
SmA0OAAGTIKOTNTOG Y10 S1APOPES TIUEG KAVOVIKOTOMUEVNG GuyvoTnTOS V fTay
€0KOAOG Yap1 otV amrkotnTa g HeBdSoL Kol TG EMEKTACIUOTNTAC TNG. Me
OPKETN €VKOAlD avomtoyOnkav 7wpoypdupato  ywoo T  GOYKPIoN NG
SmA0OAAGTIKOTNTOG Y10 SLAPOPETIKOVS PaBUOVG EAALEIMTIKOTNTAG AL Kol TN
GLYKPLON HETOED SL0POPETIKAOV TPOPIA dEIKTMV dtabAaoNG.

Xmv mapovoo OwtpPn mapovotdletor pio emmAéov péBodoc Yo Tov
voAoyloud g otabepdg B, epapuolovtag tic eElodoelg tov Maxwell ce
KOMVOPIKEG GUVTETAYUEVEC, LE XPNON COUUOPENG omekoviong (conformal
mapping). AmoAeipovTtag Tig TPOKVTTOVGES UPLOVIKES, 1| LOONUATIKT avaAvon
KATOANYEL OTIG GYEGES OV TEPLYPAPOLY YPAUUY] UETAPOPES, 1GOIVVOL®V
KukAopdtov. H pébodog avtn, av kot apyikd meptypdest OnTikég tveg pe
EKKEVTPO TLPNVA, UTOPEL VO xpNoionomel yio tov akpiPn vIorloyisud g
otabepdg B, ko og eAdentikég tveg. EmmAéov amotedel 18avikd epyoaireio yia
UEAETN omTik®V wvodv ¢ katnyopiog D fiber, mov cvvévalovv elheurtiko
mopnva Tomofetnuévo £KKEVTPO GE GYEOTN LE TO TEPIPANUO ko mov eivon
YPNOES GE TANODPO EQPUPLOYDV, OTTONAEKTPOVIKDOV GLGKELMV K.(L.

Téhog, mapovctdleTot pia TPiTN TPOGEYYIOT Y1 T LEAETN TG EAAEWTTIKNG tvag,
N omoia EEKVA TEPLYPAPOVTOG TN YEVIKOTEPT MEPIMTMOY| OMTIKOV WAV TOL
epneaviCouy ymVIOKN OCULUUETPIOL Kol KATOANYEL HETAED GAA®V KOl GTNV
nepinmton g eAlewmtikng ivag. H yevikdtepn mepintmon ontik®dv wvav
KoAgitor pn-ovpPatikn iva ko yapoktnpiletor omd deiktn ddOlaong tov
omoiov M TN €ivan cuvaptnomn 1060 G axtivag r (andotacn amd Tov Aova
Z), 660 KL amd TN Yovia @ Tov SlypAPETAL 6TO EMIMEDO OV gival kdBETO GTOV
a&ova z, n(r,p). Kat’ avtd tov tpoémo avartoydnke po véa pébodoc n omoial
umopei pe akpipeia va vroroyioel v otabepd B kot v dSmAobracTikOTNTA,
OY1 LOVO G€ EAMEITTIKES Tveg AL KOl G€ TVEG O10PpOP MOV GYNUAT®V SLOTOUNG TOV

TVpNva, O6TmS opboydviov 1 Ko didtprrov wuprve (PCFS).

IX



3. H dopn ¢ S180KTOPIKIG SraTpipnc

H 6waktopikn avtn dwatpiPr] epevva ) dtdoon HM xodpotog o ontikég iveg e
TUPNVO. EAMAEITTIKNG O10TOUNG, ME OTOYO TNV avdamtuén pog véag pebdoov yia tov
VTOAOYIoUO PACIKAOV 1010THTOV NG S1AO00NG. XTO TPMOTO KEPAANO YiveTol o
AEMTOUEPNG TTEPLYPAPT] TNG TEYVIKNG YPOUUUDV HETAPOPAS o€ cuvioviopud (RTL), mov
amotelel Kot 10 BactkdTePo epyareio otV avarnTLEN TV HEBOOWV W TAG TNG dtaTpIPNg.
210 TAA{C10 TNG TOPOLGINONG TNG TEXVIKNG, YIVETOL EQPOPULOYN TNG O OMTIKEG tveg
KOAVOpoy mupnva. ‘Emeita vroloyiletoar m petapopd dddoong S oAl kol 1
dmAoOrLaoTIKOTNTA. XTO KEPAAAIO 2 YiveTol OVOQOPA TNV 10TOPIO TNG GYETIKNG
EPELVOG KO TIG TPMTEG TPOOSTADELES LOONUATIKNG TEPLYPAPNG TV PACIKOV GYEGEDV
™G 014000MG, YEVIKA 6€ EAAEWMTIKOVS Kupatodnyovs. Ewdwm avaeopd yivetor oty
avdlvon tov Yeh, mov amotédece onuavtikn Baon yio i HETENELTA LEAETEG. AVapopa.
yivetal emiong kot oty €pevva tov DYyott, e1duodtepa 6T GLVEIGPOPE TOVL GTN HEAETT
™G dlTnPENoNg ™G TOAWGONG 7OV TOPOTNPEITAL OTIC 1veg EAAEITTIKOD TLPNVAL.
Emumpdobeta, divetar o opiopdg g SmAoOLasTIKOTNTOS KO VOQEPOVTOL OL KUPIOPYES
TPOCTAOEIEG VTOAOYIGUOV 1TNG. XTO TEAOG TOL 2°° KepaAaiov avoaeEpovtal ot
ONUOVTIKOTEPES EPAPULOYES TG EAMAEMTIKNG vag. 1o KepdAao 3 mapovstaletal 1 wo
aKpIPNg TPocEyyIon avTnHg TG dotpiPrg Yo ToV VTOAOYIoUd TG oTabepdc f Kot NG
dumAoOAaoTIKOTNTOG G€ EAAEWTIKEG tveg. To Ke@AAO10 0ol EeKIVAEL LE TNV EQPAPLOYT
tov eélodoeny Maxwell oe edlewmtikéc cvvietoyuéves, mopovcotdlel TIG GYECELS
dtadoomg Hovav kot Luy®dv puludv, e ToapdAANAN ELEAVION OPULOVIKMV. LT CUVEXELL
yiveton pedétn g axpipelag e pnebddov, vroroyilovtag ) otabepd drddoong Yo
StapopeTikong aptBpovg cuumepAapPavopevmy appovikav. Ot TIHéEG Tov TPOKVTTOVV
ovykpivovTon pHeta&h TOVg OAAG Kot LE TIG TIEG TOV TPOEKLYAV LEGM TNG AVOAVTIKEG
uebodov pe ypnon efwodoewv Mathieu. Emmpocbeta vroloyilovror ot Tipég g
dmlobrlaocTikOTNTOG Kot TopovotdleTon  peAétn g emidpaong Tov  Pobuod
elMemTikOTTo 6TV akpifela Tov amotedespatwv. To kepdioto 4 mapovctdlel pio
OLLPOPETIKT TPOCEYYIOT OTN UEAETN TNG EAMAEWTIKNG VoG, EEKIVAVTAG LE TNV YEVIKT
TEPLYPOUPT] OTTIKMOV VOV LE EKKEVTPO Tupnva. H pabnuatikn avaivon mov akolovOel
ypnowonotel T péBodo conformal mapping kot ot TeMkEG oYEoES 0ONYOLV
TEPLYPAPoLVY 16000vVap KukAmpato. AkoilovBel spappoyn e texvikng RTL won
mapovotdletal o TEMKOC alyopifpog. H pébodog pmopet va ypnoipomon el peilovikd

Yo TV weptypaen g ontikng ivag D fiber. Xto kepdhato 5 mapovsidletor n tpit
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TPOGEYYION 6TO TANUGIO OVTNG TN STPIPNG, Yo T UEAETN TG EAMAETIKNG Tvag. Ze
0TI TNV TPOGEYYION TEPLYPAPOVTAL ONMTIKEC 1VEG MOV TOPOLGLALOLV YOVIOKY|
acvupetpio. Me ypnomn tov eéicbvcewv Maxwell oe KoAMVIpIKéEG cuvTETOYUEVEG KOt
KOTAAANAN QOPUOYN TNG TEYVIKNG TOV YPOUUDV HETOPOPES, AVOTTOCCETOL EVOG VEOS
alyopifpog vy tov vmoAoywopud g otabepds L. O odyopiOuoc eppavilel
a&loonueiont akpifelo Kot SOvatol vo, ToPEXEL AMOTEAEGLOTO, Y10, EALEWTTIKEG Tveg
Yopig TV mepmAokOTTOL TG YPNonS apuovikwv. H pébodog avt pmopel va
ypnowonomOel cav epyoreio yio mEPUITEP® WEAETN] OMTIKOV VAV UE OMEC GTOV
mopnva, yvootég og PCF fibers. 1o kepdhato 6 mopovctdleTol 1 GUVEICQOPE TNG
TapoVcag £peuvag oTn HEAETN TG duddoomg o ehdertmikésg tveg. Emiong mapéyovton
TPOTACELS Yoo HEAAOVTIKY €pevva mov pmopel vo Paciotel otig pebddovg mov

avantOoyOnkav 6to TAaicto avtng TS daTpPrc.
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CHAPTER 1

Introduction: Fiber Optics and Resonant Transmission
Line (RTL) theory

1.1.  Optical fibers in communications and other applications

The use of optical fibers for the transmission of information has played a major role
in the evolution of modern telecommunications. In order to better describe the potential
of modern communication systems one can deploy the product of bit rate with the
distance between the repeaters (BL) [1]; by 1970 the BL value of non-optical
communications had reached approximately 100 (Mb/s)*Km, unable to go beyond [2].
Therefore, as the need for faster and broader communication increased, despite the
advances in design and implementation, electrical systems reached their limits [3].

In the second half of the 20" century it became prominent that the use of light as
signal carrier would provide the BL product the necessary boost to carry
communications to a higher level. The advent of laser and optical fibers provided the
required light source and transmission medium for a complete optical communications
system. Since their initial implementation optical communication systems have been
continuously evolving and increasing the BL product.

The understanding of structural and physical properties of optical fibers led to
innovations that surpassed limitations for consecutive generations of light wave
systems [2]. The introduction of single mode fibers overcame the 100 Mb/s rate
limitation due to dispersion in multimode fibers that were primarily used until 1980s.
Dispersion limitations in single mode fibers were dealt with anew with the use of
dispersion-shifted fibers [3]. Later on, around 1990, the incorporation of fiber
amplifiers in optical systems, further increased the repeater spacing; especially, erbium-
doped amplifiers helped compensate fiber losses in WDM systems [1], while the
application of revolutionary techniques in transmission and system configuration lead
to the implementation of trans-continental submarine optical systems that connect
modern civilization (fig. 1.1).

Despite the significant role of optical fibers as a carrier in the transmission of
information, the spectrum of their applications is not limited to telecommunications.
Optical fibers, depending on their physical properties, are used in a wide range of

applications including medicine, defense systems and industrial uses [3]. The elliptical

1



fiber is a special type of optical fiber, whose distinct geometry renders it useful for
many applications, including optical gyroscopes, higher-order sensors, D-fiber
coupling via acoustic waves and the readjustment of dispersion in communication
fibers.

The main objective of the current thesis, is the study of EM wave propagation in
elliptical fibers using an innovative approach, improved in relation to existing analytical
methods, that utilizes the computational method of Transmission Lines. However,
before proceeding with the description of the new, alternative method, it is necessary
to have a solid grasp of the basic theory of EM propagation in optical fibers in general,
and to familiarize with the Transmission Line theory, that will be used as the basic tool
in the current approach. For that reason, this chapter focuses on the analysis of
cylindrical optical fibers and the use of Resonant Transmission line theory for the

estimation of key properties of EM wave propagation within them.

Souther
Ocea

Figure 1-1 International undersea network of fiber-optic communication systems last updated

on May 18 2020 [https://www.submarinecablemap.com/#]



https://www.submarinecablemap.com/

1.2.  Physical aspects of optical fibers

The fibers that will be dealt within the present work are composed of either a central
core surrounded by cladding with two different dielectric constants, or by a periodic
lattice making a photonic crystal. A particular class of graded dielectric index can be
achieved either through successive layering from material of different optical density
or with the use of a hexagonal lattice of smaller diameter boring cylindrical holes
surrounding the core in which case they are referred as holey or, photonic crystal fibers.

We first concentrate on the first case which is simpler.

A more rigorous description can be given with the aid of a simple core-cladding
model where n;, and n,,; are the core and cladding dielectric indices respectively.
From Snell's law, the condition n;, > n,,; guarantees the total reflection on the
cladding's surface for any light ray travelling inside the core. For a standard description
based on the homogeneous wave equation similar to waveguides [4] we have a

separation of transverse and longitudinal components as
V=r, + 2;—2 which naturally leads to the separation of the propagating part of any

mode when written in separable coordinates as exp( —yz) where y = a +jB is a
generic propagation coefficient with a and $ the corresponding attenuation and phase
variation coefficients respectively, such that the wave operator can be reduced to the
equivalent Helmholtz operator V2 = VZ + y2 with the remaining part concerning the

mode profile in the fiber's cross section.

OPTICAL FIBER

COATING

CORE

CLADDING

Figure 1-2 3-D representation of a cylindrical core fiber and its layers

[https://www.newport.com/t/fiber-optic-basics]



For the simple fiber model with translational invariance (no attenuation), the factor
exp( — jfz) is common to the core and the cladding while for a free space wavelength
taken as A with a corresponding wavenumber k = 2w /A we get the associated wave
vector norms n;,k and n,,.k in the core and the cladding respectively. The condition

for a beam getting trapped inside the core can then be given as

Nin < ﬁ/ko < Moye (1.1)

A Perpendicular Wavenumber is often used for any local value of the

refractive index n defined as

kJZ_ + .32 = (noutko)z (1.2)

The definition leads to a real k in the region where f < nk, and imaginary

everywhere else.

Since, for an ideal fiber the fields across any distance 6z = z, — z; must differ only
by a phasor exp(—jfd6z) we conclude that any values of g and the associated
transverse field must correspond to the eigenvalues and eigenvectors of the
corresponding wave operator. Hence we are led to a resonance condition naturally
associated with the (classical) quantization of the number of allowed modes. These
become a countable set inside the interval n;,ky < B < ny,:ko - We shall refer to this
set, as the set of Guided Modes.

There will also be an unaccountable set of other solutions of the wave equation
outside the total reflection range which can still propagate in the cladding which we
shall call, the Radiative Modes. The number of guided modes is characterized by a

v = kor [, = 2y, (13)

There is a specific wavelength defined by the condition v < 2.405 for which the

specific index [5] given as

number of allowed modes falls to one, in which case we speak of a single mode fiber
running on the Fundamental Mode. This is achieved in practice by a small difference

of the two refractive indices and/or a small ratio of core radius to wavelength. On the



other hand, any fiber can become multi-mode for some sufficiently small wavelengths
but there will always be a fundamental mode independently of the magnitude of the v

parameter.
1.3.  Electromagnetic description of optical fibers

Following standard EM theory [6], [7], [8], we consider the case of source-less
Maxwell's equations (absent currents and charges) with linear constitutive relations for
the associated macroscopic magnetic and electric fields uH = B and D = ¢E

respectively, which take the form
V-E=V-B=0
a
VxB= e,uso,uO%E

A simple, monochromatic frequency dependence will be also assumed in what
follows such that all time derivatives result in d; - —jw. Under these assumptions,
the equations for both the electric and magnetic field reduce to a compact Helmholtz
operator of the form

2 +k){p} =0 (15)

where k = w/c = weu. Using the notation n for the refractive index we may also
write ¢ 72 = n2gquy = (n/cy)? to obtain k? = (nky)?2. Using also the previously
introduced separation of transverse and longitudinal (axial) parts we end up with the

equivalent reduced Helmholtz operator

(7.2 +12) {g} =0 (1.6)

where now k2 = n2k2 + B2, and the expression of the transverse derivative in

cylindrical coordinates becomes

9 .10 102 1 9°

=rarz T 72302

Separation of variables for the transverse fields is given as

(£} = {gﬂei(ﬁkz-wf)

5



which leads to the equations
(zi+ia_2+kz){El} — 0 (1.7)

Solutions of the last equations give rise in general to both Transverse Electric (TE)
and, Transverse Magnetic (TM) waves as well as their linear combinations also called
Hybrid modes (HE). A general procedure for obtaining those expresses first all
transverse parts of the fields as functions of the axial parts in terms of the so called,
Hertzian potentials [9] which only demands the solutions of a scalar Helmholtz

operator.

Such a general set of solutions for the case of graded dielectrics with purely radial
dependence had already been prescribed in terms of linear combinations of modified
Bessel functions. For the matching conditions between layers, a determinantal equation
had to be solved containing the linear terminal conditions between layers. There is often
a need for efficient numerical methods starting directly from the expressions of the
original Maxwell's equations (1.4-6) in cylindrical coordinates. Methods used in the
past include the Wentzel-Kramers-Brillouin (WKB) approximation, the Rayleigh-Ritz
method, the series-expansion method and the Finite Elements method while a less
complex but powerful method of Transverse Resonance shall be fully explained in later

chapters.

For uniform core fibers, the full expression of Maxwell equations in cylindrical

coordinates leads to the set of both 1st order equations

(BZE, + 22 H, = jBIE,
a
g;Ez—wua = jBIE
< 0 we 0 _ (18)
ﬁgHz—TﬁE = jBiH
KE—H +we— ],6’l .
as well as 2nd order ones
02 10
Gmtistimg &){ } 0 (1.9)



For non-uniform core fibers, in cases of azimuthal symmetry with only a radial
dependence of the refractive index profile n(r) we can extract the angular dependence

via a substitution

E, e(r) —jlo
&J_{Mﬂ%
From the last equations we end up with a standard Bessel ordinary differential

equation of the general form
u' +u'/r+ [k2m%(r) =% — (/) u=0 (1.10)

After providing a maximal value for the refractive index as N, the following
substitutions can take place m = k?(n3 — B2), q(r) = k?(n3 — n?(r)); these
substitutions, together with the redefinition of the unknown scalar as w(r) = vru(r)

lead to the self-adjoint eigenvalue problem
w' +[m?—q@)—(*>-1/4)/r*lw=0 (1.11)

A set of general solutions for eigenvalues in 0 < m < d? can then be given as linear
combinations of two linearly independent functions given in terms of the modified

Bessel functions [10]

(1.12)

W%m={m“”p‘”}1<y

LVaz=1)

where d = ky'n3 — n,y: and

MNﬂ—ﬂl>d2

we(r) = {Yl (VT (1.13)

the pair of the standard Bessel functions of the 1st and 2nd kind respectively. The

upper index represents modes inside the core and the cladding respectively.

From the longitudinal components we can then compute the transverse fields via (1.8)
and apply the necessary boundary conditions which require from the tangential
components of both the electric and the magnetic fields to be continuous along the core-
cladding boundary. This gives then rise to the characteristic mode equation. Since the

tangential modes involve only the z and ¢ components we have

7



1 — 1 —
E9|r=R - E9|r=a' E21|r=R - Ezllr=a

1 — gyl 1 — yl
H9|r=a - H9|r=a’ Hz |r=a - Hz |r=a

The above will result in four equations over four constants plus the mode phase

constant £ of which the solution results in a characteristic equation of the form

Jm®a) | Km@a) | [Bim®a) | Bikm@D)] _ B*v, _2 | _2\2
PIm(Pa) aKm<qa)] [P]m(Pa) akm@a] = @ @47 (1.14)
The remaining two unknown constants p and g can be eliminated with the aid of the

auxiliary relations
f? = w?n, —p? = w?n, + g (1.15)

Combined use of (1.14) and (1.15) allows determining the unknown phase constant
/. Due to the transcendental character of the (1.14), only numerical methods allow a
complete solution in which the resulting multiple branches prescribe different modes

for any value of v and any core radius.
1.4.  Computational photonics

Since nowadays computers allow very fast convergence, simulation has become a
popular and efficient tool for engineering new solutions in the area of optical fibers and
photonics in general. Provided there is good knowledge of material properties and the
exactness and scale invariance of Maxwell’s equations, numerical predictions are in
very close proximity to actual laboratory measurements. Electromagnetics simulation
can be broadly separated in the following main classes. We generally distinguish
between “Time-Domain” solvers attempting to simulate propagation of both electric
and magnetic fields given an initial source distribution, and “Frequency-Domain”
solvers. The latter can be further characterized as either eigen-solvers for finding
dispersion relations (k) via some eigenvalue condition due to basis function
expansion, and general solvers for the evolution of a harmonic source J(X)exp(jwt)

again via reduction to a linear algebraic equation.

Methods used to approximate solutions inside complicated spatial structures require
discretization of the spatial and also, temporal domain if propagation is to be studied.
Such methods can be classified according to the discretization method used. These

include



1. “Finite-Differences ”(FD) or “Finite-Difference-Time Domain”’(FDTD)

methods, where derivatives are approximated as Df (U) = (f,,, — f,)/(2d).

2. “Finite Elements” where some form of usually triangular or tetrahedral mesh is
projected on the surface and polynomial interpolation of relatively low order is

used over them for the unknown functions over each element.

3. “Spectral Methods” representing unknowns as a series expansion, the simplest
one being that of a plane wave expansion resulting in Fourier series or other

appropriate bases adapted to non-periodic boundary conditions.

4. “Boundary-Elements” which avoids discretization apart from the boundaries
between inhomogeneities while the interiors are approximated analytically.
These methods include the “Multipole” approach as well as “Coupled Wave”
or “Transfer Matrix” approaches which propagate the information through

separate uniform regions.

The last case is the closest possible to the approach presented in the current thesis for

the study of EM propagation in elliptical core fibers.
1.5.  The resonant transmission line (RTL) method

An alternative numerical method for multilayered dielectrics was already in use in
the middle of the previous century, based on appropriate discretizations of the partial
differential extension of the telegrapher's equation. In such a method, one generally
exchanges Maxwell's equations with an infinity of ordinary differential equations [11]-
[14], using an analogy between electric and magnetic field components and their
voltage and current equivalents. This is justified in terms of capacitive and inductive
parts of a reactive field where the first are linked with electric field components via
associated voltage elements and their associated admittances as well as magnetic ones
via their respective inductances and their current elements. It then becomes possible to
effectively describe a succession of dielectric variations via appropriate matching
conditions between successive admittances and inductances. In early uses of such
models, TM and TE modes corresponded to a sequence of successive admittances (E-
Line) and successive impedances (H-Line) respectively, while hybrid modes required



an additional inductive coupling given as an abstract transformer matching lines
between successive angular sectors. Successive applications of the appropriate
boundary conditions between layers for the electric and magnetic field components lead
to some linear algebraic systems from which the field variation across the material

could be obtained.

An essential step of progress towards further simplification and one of the first direct
solvers for optical fibers appeared in 1982 with two papers of Papageorgiou and
Boucouvalas [15], [16], where the Transverse Resonance condition for the successive
impedances was successfully adapted and applied in a recursive formula using
Continued Fraction Expansion giving rise to a much more direct and fast numerical
method. In later work it was shown how to associate this method with any eigenvalue

problem in the so called, Sturm-Liouville class [17] and even for inverse problems [18].

A radial index profile is assumed for simplicity at first, while the study of more
complex profiles will be presented in later chapters. A variable separation is adopted
and a finite discretization is assumed for both the core and cladding in a radial
succession of thin circular layers in which case each field component may be written as

{ei(r, 0,z, t)} _ {Ei(r)}e—j(wt+le+ﬁz)

b;(r,0,z,t))  (H;(1)

In the above relation, | is taken as the azimuthal number and f as the propagation
constant. The presence of a conductivity ¢ is also assumed with electric and magnetic
constants being denoted as usual via ¢ and g, respectively. Using the auxiliary notations
f- = we—jo and B, = o+ jwe together with y? = B2 — uwp_ + (I/r)?, the
resulting Maxwell equations for each layer have been obtained in [15] as
( PrEg — lE, = wurH,

lH, — frHy = B_TE,
2 (wprHy) = —jou(Hy + rH,)
< 5 (B-rHy) = B, (IEq + rE,) (L.16)
2 (IHg + BrH,) = jyr®H, + BH, — (I/T)Hg

57 (o +BTE) = —v* (52) rE, + BE, — (1/r)Eq
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It is then possible to put them in a direct correspondence with the equations for an
equivalent local pair of coupled transmission lines using the redefinitions of a pair of

electric and magnetic voltages and currents given as

_i lHg+pBTrH, lEg+BTE;,

Ve _x/ﬁ( JF = ) (1.17)
_i wurHy

’fnﬂ?{iﬂﬁﬁ (1.18)

where Zo the vacuum impedance ( 120z ) and F = 82 + (I/r)?. For the case of a

fiber with zero conductivity o, u = 1o and & = eon?. This reduces the original system in

the form
d
—V, =—-6,1
St (1.19)
;IJF = —jweynFV,
2y =-5.I
3 r _ (1.20)
a_rl— = —jweynFV_
where
__7r ;
6i - jweEgnF ]M (1 21)
2B1Z, '
M =
TF2

The above system describes a pair of coupled transmission lines with M the mutual
reactance, constant specific impedance per unit length je,nF = jnkyF/Z, and two

different propagation constants given as

2 _ p2 2T Bl y?
vi = B7 = (nko)? F 2nko i+ (7) (1.22)

where k, = 2w/, is the free space propagation constant. We can then introduce a
cutoff limit for the wavelengths allowed as a new k. = 2 /A, for which £ = nakc such
that eq. (1.22) becomes

— k21 1\?
vl =B = (ko) F 2n s+ (1) (L.23)

(nykcer)2+12 r

11



Y+

j(l)ogonF.

The characteristic impedances are then given by Z., =

TE and TM modes can be found for the | = 0 case from the simplified pair of

The fundamental

transmission lines with the same constant propagation factor y, = (n5 — n?)k2 and

Yc
JwcgonFe

E, = (I/1)?* + (nyk,)? but different characteristic impedances Z,, =

Zg = i—": From the solutions of the generic telegrapher's equation [19] for the

transmission function one obtains the equivalent terminal impedances as

VA

{ZB = Z tanh(y.6r/2)
Zy = sinh(ye6r/2)

An equivalent 4-port T-circuit for this model is shown in fig. 1.3

— . —
I{r+dr) Iir)
Zn P, . . Zn-l
Fir+dr) Zp(r) Fir)
S ¥ | —
0 —}_
r+or r

Figure 1-3 T-circuit equivalent for an optical fiber cylindrical thin layer [29].

Next, the limiting case may be considered, of 6r << 1 for which one has the
approximations
Zp = (8rkc)*VeZp 2

7, = Zo
P srkZn(m2+(1/rke)?)

where now

l 2nn,l
(rko)? = 12+ (rnk;)?

Ye=n3—n’+
The original characteristic impedances have the corresponding limits

12

and

(1.24)

(1.25)

(1.26)



joceonlll’ (1.27)

{ForliO,rzO,Zoz  _ r>w®Z,=0
Forl=0,r=0,Zy=Zg >0, 1r—>xZy=2Zr=0

With the above definitions, the cutoff behavior of any homogeneous dielectric layer

of width ¢ can be approximated with the use of two equivalent, independent T-circuits.

A long series of such layers constituting the cross section of a radially inhomogeneous
fiber can then be approximated with the synthesis of a series of such cutoff circuits in
tandem. Complete solution of the problem then can be given with two such series with
total impedances Zin and Zou, the first starting from a large radius towards the core-
cladding boundary and the second from r = 0 to the same boundary respectively. The

transverse resonance condition is then directly given from the roots of
Zin+Zoye =0 (1.28)

The respective values for the total impedances can be found from the general theory
of network synthesis which has been described by a well-known set of theorems due to
Thevenin, Norton and Foster [20], and it is guaranteed that any such series will have a

total impedance given as a continued fraction expansion of the form

Zinousy = Zp(a+ 1)+ (Zy(ax 1) + (Zg(a £ 1) + Zg(a £ 2)+... (Zy + Zg(N —
1)"H)" (1.29)

where Zy, is the characteristic impedance at infinity for the positive sign or at 0 for
the negative sign and a the core-cladding interface. The advantage of this method is the
very low programming complexity of which the efficiency depends solely on the
particular root finding algorithm to be used. Application of the above prescribed
algorithm gives a series of roots and poles with the roots corresponding to the set of
eigenvalues for the fundamental and higher modes. A method for the computation of

the E fields for each mode is given in the later chapters.
1.6.  Accuracy of the estimated roots

In the Transmission-Line technique the fiber is divided into concentric layers, each
represented by a T-circuit. The allocation of the circuits is vital for the program’s
accuracy and dependent on the distance r of each layer from the fiber’s center. That

distance is determined within the algorithm by two parameters, ‘W’ and *’N” where, ‘W’

13



expresses a constant or/r ratio denoting the analogy between distance r and thickness
of each layer. The ‘N’ parameter on the other hand expresses the number of layers that
make up the required distances from the core center. The resonance frequency of the
cascade of the series of equivalent electric circuits for a fixed wavelength represents the
mode propagation constants S of the related waveguide with certain refractive index

profile.

In order to determine the accuracy of the technique the mode propagation constants
have been calculated via the Bessel functions; moreover any results from the T-Line
technique are compared to the Bessel results. After thorough experimentation with the
‘w” and ‘N’ parameters it appears that beyond certain values, the accuracy of the
algorithm’s estimations deteriorates rapidly. Specifically, existing algorithms
calculating the mode propagation constant have been altered in order to correlate the
change in the ‘w” and ‘N’ parameters, with a varying error on the results. In an effort
to “fine tune” the current technique, a considerable part of the initial research was
dedicated to estimating an optimal combination of these two parameters and optimizing

the accuracy of the solutions reached by the method.

Every time the algorithm is run (to calculate the mode propagation constants) it
reaches a predefined distance inside (towards the core center) and outside the core-
cladding interface. The outer distance is related to the inner distance in a way that, the
further we reach externally, the closer we get to the fiber core. The ‘w’ and ‘N’
parameters play a significant role in the calculation of the distance and are closely
connected to one another. That means that we cannot change one without changing the
other in order to reach a predefined distance. The exact connection between the two can
be described as follows: we mentioned earlier that the algorithm has to reach a
predefined distance which is shown as a ratio of the outer distance over the core radius
let there be ry = ar; whereas r; is the core radius and ry the outer distance after N

steps. Using the definitions

Toutt7in ﬂ _
-1 =

_ Ar _ Ar = A _
Tout =T + 71 Tin =7 — 71 Tout—Tin = 47,7 = 5 r

14



. . 1+—
we get by substitution 7;, (1 + %) = Tou(1 = =) and —rr"“t = —% = ¢ whereas :—2 =
in Y 1

,2=¢ 2=¢ . TN = ¢ Bysidewise multiplication we obtain :—” = &N-1 gnd
1

T2 3 ’TN—1
finally
N =14 1.30
=1+ log(¢) (1.30)

We must predetermine a safe Rn/r1=a ratio to make sure that the algorithm will reach
a distance covering the most of the electromagnetic field around and into the fiber core.
In order to evaluate the accuracy of the resonance technique, Bessel functions have
been used as a point of reference for the estimation of mode propagation constants and
the results were then compared to those from the resonance technique. Since the Bessel
functions were used as a measure of accuracy, it was important to retain the eigenvalue

equations in their original analytical form as given in (1.29).

Firstly, the transverse resonance method of (1.28) was iterated for both the core and
the cladding for a step index profile with relative difference on/n ~0.05 and for a varying
number of layers, and the differences in the propagation factor values were plotted as
shown in figure 1.4. Secondly, the fundamental modes for the same profile were also
computed with the aid of the transfer matrix technique given the correct number of
eigenvalues for a number of 200 steps and the difference from the accurate form as
given via Bessel functions was also plotted as shown in figure 1.5. As is evident these
get saturated for VV > 3.5. It can be safely concluded that a N > 200 number of layers

is sufficient to produce a level of accuracy with error < 107>,

15
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Figure 1-4 Error in the propagation factor estimates between transverse resonance method
and analytical solutions with number of layers.

x 10° step index fiber n1/n2=1.05, fundamental mode differences

Number of layers N=200 for RT method

AR (Bessel-RT) method

-4

Figure 1-5 Differences of RT method from analytical expressions for N = 200 and varying V

parameter.
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The importance of the presented accuracy analysis lays in the provision of
optimal parameters for the estimation of mode propagation constants, not merely for
step index profiles but also for more complicated profiles including graded-index,

triangular and parabolic among others.

Step-incex hiber

Radial dstance Racial cistance

Figure 1-6 Cylindrical fiber cross sections and their corresponding index profiles [3]

1.7. RTL method for the precise analysis of a cylindrical fiber including

the birefringence effect

A more recent analysis of the same problem examined in section 1.3 was based on a
partial Fourier transform of the reduced Maxwell equations [21] which we present in
this section as it will be useful in the study of the unconventional fibers in following

chapters.

The basis for the application of the previously introduced RTL method is the radial
discretization of all cylindrical fibers via a separation into a succession of thin
cylindrical layers, each one with its own constant refractive index n. These layers can
be made to extend outside of the cladding in order to take into consideration the effect
of the surrounding air (n = 1). Each thin cylindrical layer could have thickness Jr

proportional to each average radius r which means that given discrete steps as dr =

. + .
r, —r, Withr = % one obtains

17



14/,
rn = 1, (out
271 c 1_C/Z 1 2 ( )

S (1.31)

n+7 2 1_6/2 _ .
1+C/27'2 = r(in)

For any such circular cylindrical layer Maxwell equations (for a constant

wavelength, i.e., constant frequency “®”’) can be written in their standard form as

{ VXE = —jowuH (1.32)

VXH = jweyn?(r)E

Taking into consideration the relations wu, = kyz, and we, = ?Where ko =
0

%,zo = 120w and replacing 2017 with H in order E and H to have the same units

(V/m), Maxwell equations become then

—

{ VXE = —jkoH

° R (1.33)
VXH = jkon?(r)E

In circular cylindrical geometry of coordinates (r, ¢, z) the following set of three

partial differential equations can be derived by the first vector Maxwell equation as

(1 0E; 0Eyp

vop oz ol
dE, OE, .
! >, " o = “JkoH, (1.34)
19(rE 1 9E, .
10(rEp) _ 19Er _ —jkoH,

r or r dQ

Applying a Fourier Transform along “z” and “p” with wave numbers “f#” and “1”,
¢c 9

where [ is integer (because along “p” we have Fourier series of period 2x), the set

(1.34) becomes:

jl — . T
(? Ez_]ﬁEq) = —jkoH,

-
.= O0E, .o

! JBE, ——= = —jkoH, (1.35)

10(TE, il

O
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In (1.35) we use new variables E.., E,, E,, Hy, H,, H, to denote the Fourier
Transforms of the respective electromagnetic field components. Furthermore,

replacing  and r by their reduced variables according to the following relations:

F_
P
rkg =>7r
then (1.35) takes the form
il .o o
(]7 Z_]ﬁE(p = —jH,
e 0E; o
4 JBE, — == = —jH, (1.36)
10(rE, l—= T
L‘ (6r¢) Jr ro _]HZ

Following a similar approach, the second Maxwell vector equation (1.33) can be

written in the form

jl —— T . -
( H,—jBH, = jn*(n)E,

.5~ OHy , -

! JBH; 2= = jn?(n)E, (137)
10(rH, il —— . —_

10 g = jn2(r)E,

Furthermore, following a cumbersome analysis as shown in Appendix A, it is possible
to prove that the system of Equations (1.36) and (1.37) can be transformed in a set of
four differential equations (1.38), relating the equivalent “voltage’ and “current”

functions Vy,, I, Vi, I defined as follows:

IH, + prH,
M= ——p
JjF
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2 2
where we use the notation F = )+

av
(%5 = Sy
2 =
<aVE )2 . (1.38)
or _jnZFIE ]MIM
olg 2
>, = —InFVg

. . 1?
In (1.38) we introduced the total propagation factor y2 = =+ p? —n? and the

218

auxiliary function M = Br + IF

At this point it is noticed that Vy, I, Vg, Iz are continuous functions at the boundaries
because the tangential components of electric and magnetic fields E,,’FZ and EFZ’
on the cylindrical surface are continuous functions passing the boundaries of the
cylindrical layer. Using the previous relations, the Fourier Transforms of the
electromagnetic field components along (r,l,8) can be expressed as functions of their

equivalent “voltages” and “currents” functions with the auxiliary relations

B
E(p = lVE/r + _]FIM
o ,
H, = EIE + ].BVM

o
E, = _]ﬁIM + BVg

It becomes evident by inspection that the final equation (1.38) represents two

coupled electric transmission lines.

20



1.8.  Decoupling the Transmission Line Equations

The prescribed set of equations (1.38) constitutes a homogeneous set of ordinary
differential equations of r . Moreover all the vectors [Vy,, I, Vg, Ig] can be turned into
exponential functions of r given by Vi, = Vyeé" Iy = Iyet , Ve = Vel I =
Izes", where Vi, Iy, Vi, I are constants, i.e., not functions of r. Thus, the system (1.38)

can be transformed in an algebraic set of the following four equations

2
Vi = =TIy =Ml
Iy = —jFV,
{ $Iy g JEVm (1.39)
|EVE = _jnzFIE — JMIy
\ Elp = —jn®FVg
; in2
Replacing I, = — %VM, I = — %VE, we obtain a set of two homogeneous
equations
2 2F
SV = V=M=V {EZVM = y2Vy — n2MFVy
y? F., Oy &2y, = y2V, — MF
§Vp = anVE_MEVM E F
This then leads to the eigenvalue equations
{(52 - .}/Z)VM + TLZMFVE = O
MFVy + (62 —y*)Vy = 0
From the standard form of the eigenvalue problem we obtain through the
determinant differential equations as follows
(62 —y?2 —n2M?F? = 0,0ré? = y2 + nMF (1.40)

Hence the system has two eigenvalues and two mutually excluded or “normal”
eigenvectors. The eigenvectors will be found by replacing &2 by its value. Thus,
for &2 = y2 — nMF itfollows that n?MFVy; — nMFV,, = 0 =>V,, = nVyandthe
eigenvector is Vg = Vy + nVg. For £2 = y? + nMF it follows that V,, = —nlj

and the eigenvector becomes V; = V,, — nVy. Their respective “current” eigenvectors
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m _ Vu _ 1 - — e, _ _IE g;
are related as v s thus I, = — and Iy = Iy + n’Id = Iy n.Smce
the auxiliary M function has the sign of I, the set (1, I;), for [ = —I becomes equal to

the set (V4 1;). Thus, we can consider as a unique solution for the set (V;, I5) and for

integer ‘[ ’that varies from —o to + oo, and of course for é2 = y2 — nMF:

s _ _§
glr r * (1.41)
E = —]FIS

Furthermore, V, I; should be continuous functions at their boundaries although n(r)

varies from layer to layer. This is achieved via the adjustment V;, = Vy, + nlp =

2V and Iy = I, + %E = 21, which are continuous functions of r by definition.

oVum 52

= -2y

;Ir JF (1.42)
M _

5, = “JFlu

Another option for achieving continuity is to consider the functions V;; = VTM + Vg

and Iys = nly + Ig. Inthiscase, V;; = 2Vgand Iy = 21 are also continuous,

leading to:
Vg _ fz I
ZE = |
6612 .JnZI; (1.43)
0_1” = —]Fn IE

Thus, the set of two coupled transmission lines (1.39) is equivalent to two

independent transmission lines (1.42) and (1.43).

The two waves represented by the equations of transmission lines (1.42) and (1.43),
are geometrically normal because the first is related to the magnetic field and the second
to the electric field that are geometrically normal for transmitted EM waves. This
property is an inherent property of EM modes in optical fibers related to birefringence
phenomena. However, the f respective values, for any mode, are always found to be

very close and can be considered as practically equal.
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1.9.  Equivalent Circuits for Cylindrical Layers, Boundary Conditions,

and Birefringence

Taking into consideration the transmission line theory, it can be proved that each
layer of infinitesimal thickness o7 is equivalent to a T-circuit as the one shown in

Figure 1.7

Zp Zp
'—D L___—=*
Vin Vout
’m Iout
Zp

Figure 1-7 The equivalent quadrupole for each cylindrical sector [29].

|(ZB = i tanh [(E&)/Z]

|l
p §

L P - jF sinh(&67)

For £6r « 1 the impedances can be approximated by the equivalent relations

52(57*/2)
JF (1.44)

_ 1
p JjFér

If £2 > 0, both Zg, Z,, are “capacitive” reactances. For £ < 0 however, Zz becomes
“inductive” reactance. For (Vj, Ir) the approximate respective impedances of the T-

circuit are given as

) 52(67’/2)
Z B — >
ntr (1.45)
4 p = Jn2F&r
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As previously stated, the functions (Vy,,I,) of each layer are continuous at the
cylindrical boundaries of the layer, thus if we divide the fiber (including a sufficient
number of air layers) in successive thin layers and replace them by their equivalent T-
circuits, an overall lossless transmission line is formed with only reactive elements. For
given “I”, the “f” values that lead to the resonance of the overall transmission line are

the eigenvalues of the whole optical fiber.

When a transmission line is in resonance, at any arbitrary point r, of the line, the sum
of reactive impedances arising from the successive T-circuits on the left and right sides
of r, should be equal to zero, thus the equation giving the eigenvalues of the

transmission line is the following:
Zyyy + Zpy, = 0 (1.46)

Equation (1.46) provides the eigenvalues “4” for a given “I”, where Z Lros Z R, Qre
the overall reactive impedances of successive T-circuits on the left and right of r, using
equations (1.44) or (1.45). The value of r is usually given by the core radius. For the
same “[” the equations (1.44) and (1.45) give usually slightly different values of 4’
This phenomenon is called “Birefringence”. For circular step index fibers, the
birefringence is negligible; however, for elliptic fibers and fibers of any other non-

circular cores, the birefringence phenomenon could be not negligible.

In order to calculate the overall reactive impedances on the left and right of r, one
should find the impedances for r — 0 and for r — co. As we proceed to 0 or to oo, the

remaining piece of transmission line becomes “homogeneous”, i.e., its overall reactive

impedance is equal to its characteristic impedance given by Z = ]iF (or jnip

). Then

we must have

roo:F - B%r,MF - 0,§ > /f2-n?2>7Z_, =0
2

r—>O:F—>l79

Taking into consideration that E,-=>0, the equation VXE = —jﬁ IS giving

21rE ) = —jmr?Hy( (1.47)
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For TE modes the analysis proceeds as follows:

. T
Ep0) = =J5Ha0)

’ﬂz_-CVM _~VYm _ 2
F 2 Iy TF (r=0)
Where
rF = (Br)? + 2
For r = 0 (1.49) becomes
‘1/_: = —?—zj => Zm(r=0) = _%

In a similar way, for TM modes, it can be proved that

_ 2
ZE(T'=0) I

Forl=0 Z,_, = oo (open circuit at the center of the equivalent transmission line) It is
useful to notice that there is an equivalence between our formulation and the classic
formulation modes of optical fibers. In particular, for [ = 0, the modes (Vi,Im) are the TE
modes, while the modes (Vg,lg) are the TM modes. For [ > 0, the modes (Vm,lm) are the
HE modes, while the modes (Vg,lg) are their HE birefringence modes. For [ <0 the modes
(Vm,Iwv) are the EH modes, while the modes (VE, Ig) are their EH birefringence modes. For

any given [, using the resonance technique the S values of the two birefringence modes can

be calculated.

Figure 1-8 Polarization inside a birefringent fiber where the input beam is linearly polarized

at 45° related to the slow and fast axis [3]
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Let us consider for example a step-index fiber of n, = 1.54, n, = 1.47, n, being the
refractive index in the core and n, being the refractive index in the cladding. The Vw,
VE, fundamental modes for normalized frequency V = 3.3, can be calculated and their
P/ko values are respectively 1.518934962534846 and 1.518340184686295, hence their
birefringence is equal to 0.0004947 or 0.0391%. The f/ko value for the equivalent mode
Veq Was also calculated and was equal to 1.518638548412019 (that is approximately
equal to the mean value of the previous f/ko values), while the f/ko value calculated
conventionally by Bessel functions is equal to 1.518642063686336. These £ values are
very close differing only by 0.0002315%.

In the following Figure 1.9, the normalized birefringence of the step-index fibers for

ni1=1.54, n, = 1.47, and of ny = 1.475, n, = 1.47 as functions of V are shown.

Birefringences of the fundamentals of step index fibers

0.18

0.17
N n1=1.54,n2=1.47

0.16

0.15

AB/(n1-n2¢
A

0.14

0.13

0.12
n1=1.475, n2=1.47

0.11
2 2.5 3 3.5

Figure 1-9 Normalized birefringence of two step-index fibers with different refractive

indexes as functions of their parameters V.

We notice that for any V, the normalized birefringence is almost proportional to An?
= (n1 — n2)?, thus the birefringence of step-index fibers of very small 4n is negligible.

For instance, for a value of V = 2.4, and 4n = 1.54 — 1.47 = 0.07, the birefringence is
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found to be 0.168 x 0.0049 = 0.0008232 or ~0.055% on the average S, while for An =
1.475 — 1.47 = 0.005, the birefringence becomes 0.168 x 0.000025 = 0.000042 or
~0.0028% on the average S. The presented RTL method is accurate enough to calculate
it.

1.10. Calculating “Voltages” VM, VE and “Currents” IM, IE and
Resulting Fields

For any given [, using the resonance technique the S values of the two birefringence
modes can be calculated. These g values are practically the same, thus we can consider
them as equal or we can consider as the proper value of  the mean value of the two
modes. Taking Vim = 1 at the center point of the fiber (r = 0), the respective value of Iu
at the same point can be calculated by the respective terminal impedance. Using the
matrix relations between input—output for the equivalent successive T-circuits, the
values of V,, and I, at the rest of the thin cylindrical layers can be calculated. In fact,
from the general theory of the telegrapher’s equation we know that the inputs and

outputs are associated via a transfer matrix as follows
Wancloa) = EC) o) 2)-Sinh(E ) ) V]
out®outl = \sinh(&(r) - 61)/Z(r) cosh(&(r) - 8r) Iin] ™~
- ( 1 Z(r) - (§(r)- 6r>) [vm] _
&(r)-6r)/Z(r) 1 lin
_ ( 1 &2(r)-6r/jF (r)) [Vin]
JjE(r) - or 1 Iin

(1.53)

In equation (1.47), the characteristic impedance should be taken as Z(r) =
&(r)/jF (r) to comply with the previous analysis. Using the relations nV; = V,, and
nly, = Ig the respective values of their birefringence partners can also be calculated

for every thin cylindrical layer ri. Finally, we obtain the actual fields via the relations

1 E, = We/r + jEu, (1.54)




The field components H,,, E,, H,, E, are made of two independent parts due to TM
and TE fields. Due to birefringence these parts have different mode propagation
constants along the z axis. Thus the parts have variating phase differences along z.

Moreover, in certain points along z the parts have the same phase and their maximum

values are
(171 = |/ 1B = |22
7] =[5 + [F 1
Bl = We/rl +| 1| (1.55)
| = | 1e| +1 8Vl
(1Bl = || + 18Vs

A very useful field component for optical fibers is the value of the overall electric
field at any thin cylindrical layer of average radius r that can be calculated by the

formula:
- 2 _ _ _
|E (M| = 1B + |Epl? + |E,|? (1.56)
1.11. Calculation of EM Field Components

By the formulae (1.54) we can calculate, for a given B, the EM field components.
Taking into consideration that the birefringence is extremely low (e*107-4), it can be

assumed that Vy , I, become
Vm

Finally the set of equations (1.54) become:

T F
— l .B
9 E(p = ;VM + ];IM (1.57)
-— l .
H, = — Iy + jBVu
! B
\E, —#IM + =Vy

And the set of equations (1.55) become
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Im
m

(181 = [/ 1B =

Wy

r

JIEG| = 1Wu/n/rl +| 5|
| = = d| + 18Vl
| = [ iu] + |52

n

ol =[]+

g
Tl

(1.58)

The set of equations in (1.58) can be used to create programs for the estimation and
plotting of the EM field components for a given mode propagation constant, ie for the

fundamental mode.

The preceding analysis describes the basis of the methodology used to investigate
fundamental propagation characteristics in cylindrical optical fibers. The successful
implementation of the method in cylindrical fibers, the gradual refinement of the
method through research and the proven accuracy in result estimation have provided a
powerful tool for the investigation of additional types of optical fibers; specifically
fibers with elliptical core cross-section that constitute the main subject of study in the
current thesis. Below follows a brief enumeration of the main topics that are addressed

within the scope of our research, presented per chapter.
1.12. Main goal of the present thesis

The main goal of this thesis is the numerical investigation of the propagation
characteristics of EM modes inside elliptical optical fibers, using the Transmission Line
theory. Chapter 1, serves as a necessary introduction to the EM theory behind the
cylindrical fibers and the theory of Transmission Lines. Before applying the
Transmission Line theory on elliptical fibers, this chapter presents the application of
the theory on cylindrical fibers. The obtained method can be transformed into an
algorithm for the estimation of mode propagation constants in cylindrical fibers. A case
study is further provided regarding the optimization of the algorithm, aiming to achieve
maximum accuracy in the estimation of mode propagation constants. The results of the
case study are presented in section 1.6. Chapter 1 also provides a secondary algebraic
analysis of EM propagation in cylindrical fibers, focusing on the definition and
estimation of birefringence. The analysis concludes with the calculation of EM field

components for cylindrical core fibers.
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Chapter 2 includes a presentation of existing literature on the issue of EM wave
propagation inside elliptical waveguides. Initial approaches to the problem, are
mentioned, while the most important studies are presented in more depth. Especially
the related researches of C. Yeh and R.B. Dyott are mentioned in detail since they
provide the theoretical basis for the problem this thesis seeks to address. Yeh provides
the analytical solution for EM wave propagation on a dielectric medium of elliptical
cross-section while Dyott uses this solution to further investigate the properties of
elliptical fibers. In this chapter, the property of birefringence is also defined with
regards to elliptical fibers as well as their distinct ability to retain polarization. Finally,
the conclusion is reached related to the elliptical fibers’ potential usability and

applications.

Chapter 3 contains a basic theoretical analysis of EM wave propagation inside
elliptical optical fibers, applying Maxwell’s equations in the case elliptical coordinates.
It continues with the adaptation of the Resonant Transmission Line method over the
subsequent analysis in order to estimate the mode propagation constant . As the
analysis results to the appearance of harmonics which constitute critical components
for the calculation of B, the chapter presents several approaches based on harmonics’
use cases, to produce the corresponding results. The RTL method is also used for the
estimation of the mode propagation constant for cases of arbitrary index profiles. The
chapter concludes with the presentation of the estimation of field components for the

elliptical fiber.

Chapter 4 deals with the eccentricity problem and eccentric core fibers are defined.
Eccentric core fibers are studied as a case that could be used for the analysis of the D-
fiber, whose core is of elliptical cross section. After the theoretical analysis involving
the adaptation of Maxwell’s equations on the fiber’s geometry, the RTL method is
applied in order to estimate the mode propagation constant £ in the case of eccentric

fibers. The chapter concludes with result comparison for several cases of eccentricities.

Chapter 5 presents a definition of the generic unconventional fiber and describes a
method for the calculation of EM wave propagation properties. A different approach is
presented that can be used for the estimation of various cases of ellipticity and/or
eccentricity in the fiber core. The method described can be used instead of the

harmonics’ inclusion method presented in chapter 3 for the study of elliptical core
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fibers. Results are further presented calculating the mode propagation constant £ and
are then compared to corresponding results using the method from chapter 3. Results

from the calculation of birefringence using both methods are also compared.

In chapter 6, a review is presented, of the benefits of the described numerical
methods compared with the existing theoretical/analytical methods, towards the
estimation of key propagation properties for the elliptical fiber. Recommendations are
made regarding future studies that could arise based on the described methods.

Finally, a list is presented with applications based on elliptical fibers.
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2 CHAPTER?2

History and Theory of Elliptical Core Fibers

2.1.  Elliptical fibers history and usage

In chapter one we referred to the application of optical fibers as a solution in the ever
increasing need to transfer significant amounts of information across higher distances.
The success of optical fibers communication systems lays in their effectiveness to
achieve minimum loss combined with greater bandwidth while along wider repeater
spacing. Throughout the evolution of the optical fibers with circular core, and under the
efforts made to optimize their performance, studies were conducted to monitor the
effect of alterations from circularity on the bandwidth of the system. One of the cases
investigated was that of the elliptical fiber. Ironically, one of the main concerns in
studying the elliptical fiber was not related to its properties and potential applications
but rather to the effects of ellipticity as a deviation from cylindrical fibers’ circular

section.

Elliptical waveguides where initially studied in a research related to EM waves
propagation inside elliptical metal pipes, by L.J. Chu[22] in "Electromagnetic waves in
elliptic hollow pipes of metal.”, 1938, but the first attempt to estimate the dispersion
relation of an EM wave propagating inside an elliptical cylinder structure was made by
Karbowiak [23] in 1954. In order to formulate the wave equation in elliptical
coordinates, Karbowiak examined the elliptical cross-section Geubau line and
Sommerfeld line. However, the solutions were obtained with boundary conditions
matching merely at a single point on the surface, which was insufficient. Therefore the
solutions could be treated only as an approximation for the case of low eccentricity. A
similar research was presented by Lyubimov, et al. [24] in 1961 providing solutions
over the properties of EM wave propagation, based on Mathieu functions. Despite the
fact that the pre mentioned studies did not provide generic solutions for the boundary
conditions on dielectric waveguides of elliptical cross section, they set the basis of the
electromagnetic theoretical analysis, with Mathieu and modified Mathieu functions as
the key tools for future research. In that context, C. Yeh [25], managed to utilize and

expand the existing theoretical basis and provide updated and effective solutions over
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the full boundary problem of a dielectric rod of elliptical cross section, using Mathieu
Functions. Among the studies that followed, the specific case of an elliptical optical
waveguide was investigated as a problematic malformation in cylindrical fibers by
Dyott and Stern [26] and by Schlosser [27]. It was further concluded that using a broad
ellipticity and an adequately high difference in the refractive index, leaded to separation
of the fundamental modes’ propagation constants and allowed fibers to sustain
polarization over significant distances [28], [29]. As an important feature in the study
of propagation, the mode cutoff frequencies have also been studied [30, 31] and
experimentally also in [32]. In the following sections of this chapter, works of Yeh and
Dyott will be presented in detail, supporting a comprehensive analysis of the related
EM theory.

2.2.  Study of EM Wave Propagation Within Dielectric Waveguides of

Elliptical Cross-Section - Yeh’s analysis

The properties and the characteristics of EM wave propagation within a dielectric rod
of elliptical cross-section are associated to its’ distinct geometry. The Bessel functions
that are used to describe propagation in cylindrical core fibers cannot be used in the
case of the elliptical core. C. Yeh was not the first to use Mathieu functions to describe
propagation in such a dielectric environment, but he was the first to provide the
necessary terms under which boundary conditions can be fulfilled permitting further

analysis [33].

In Yeh’s analysis the problem is formulated on a properly defined (infinitely long,
straight, isotropic and homogeneous) dielectric cylinder of elliptical cross section,

situated inside an infinite dielectric medium. The medium’s properties are given:

e dielectric constant ¢,
e magnetic permeability u,

The properties of the cylinder are also given:

e dielectric constant &; > ¢,
e magnetic permeability u; = uo

Conductivity in the whole system is considered zero
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Figure 2-1 Elliptical coordinate system

In accordance to the geometrical nature of the problem, the elliptical cylinder

coordinates (fig. 2.1) are introduced as follows:

e ¢ is the radial coordinate that describes a set of confocal ellipses

e 7 isthe azimuth coordinate that describes a set of hyperbolae, orthogonal to the
ellipses.

e z is the coordinate corresponding to the axis, parallel to the cylinder, to the
direction of propagation.

e g is the semifocal length of the ellipse.

In terms of the Cartesian coordinates, the elliptical coordinates are defined as follows:

y = qsinh¢sinn (2.1)

{x = g coshé cosn
z=2z

The boundary of the core is defined as ¢ = &, while the semi-major and semi-minor
axes of the core ellipse are defined as a = q cosh &, and b = g sinh &, respectively.

Eccentricity e is given by

1
2 1

e=[1-0)] =g @2

Yeh proceeds to solve Maxwell’s equations in elliptical cylindrical coordinates. The

initial equations in a source-free medium with properties of € and u, are given by:

VXE =iwuH (2.3.3)
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VX H=—iweE (2.3.b)
V-H=0 (2.3.c)

V-E

0 (2.3.d)

With E and H representing the electric and magnetic field vectors respectively. Using

the elliptical coordinates, the field components are obtained:

Eg = mgmy {18 52 + lon 52 (24.0)
Ey = Gy (18 52 + ionSE (2.4.0)

= /mp{ iwe e+ if ) @49
Hy = Gy {—iwe 52 + 1852 (2.4.0)

where, p = g(sinh? ¢ + sinh? n)'/2; while wave equations take the form:

0°E; , 9°E; | 2 p2\(cinh2 . 2 _

a5 +— o + [q?(k? — B?)(sinh? & + sin?n)]E, = 0 (2.5)
0°H, | 0°H, . .

a; + = B+ [q%(k? — B?)(sinh? € + sin?y)]H, = 0 (2.6)

Where k% = w?ue and f is the mode propagation constant

Solving only one of the equations (2.5) and (2.6), is sufficient since they are both in
the same form. Under the condition of H, = 0 or E, = 0, TM or TE waves result

respectively.
2.2.1. Obtaining Solutions for the Wave Equations

Before introducing the Mathieu functions, the wave equation is slightly modified by
substituting E, or H, with a generic factor A, thus leading to the following partial

differential equation:
LEY)\ azA 2 2 . 2 .2
7% += + [q%(k? — B?)(sinh? & + sin?n)]A =0 (2.7)

The solution of (2.7) is obtained by setting
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A€, m) = RO (2.8)

Incorporating (2.8) in (2.7) and following separation of variables, equation (2.7) can
be further split into two ordinary differential equations:

% + (¢ — 2y%cos2n)O(n) =0 (2.9)
and
df;(f) + (c — 2y%cosh28)R(§) =0 (2.10)

Where c is the separation constant and y2 = (k? — ?)q?/4

The above relations (2.9), (2.10) are the Mathieu and modified Mathieu differential
equations respectively and the later is formed from the former through the
transformation n = +i&. It is noted that in the case of physically acceptable single-
valued EM fields, A(&,n) must be a periodic function of n, with a period of  or 2. ¢
is the separation constant and a function of y2. When y?2 # 0, a ¢ value leads to

merely a single periodic solution with n being either even or odd.

The periodic solutions of the Mathieu and modified Mathieu differential equations
are restricted by the boundary conditions and the characteristics of the regions on
either side of the boundary, since in Yeh’s analysis, they represent the EM field of an
elliptical dielectric cylinder. Region 1 is the area inside the dielectric cylinder where
field components are finite. Region 0 is the area outside the dielectric cylinder where
field components should approach zero. Consequently, the relations (2.5), (2.6) for

each region become:

Inside the cylinder 0 < & < &, (region 1)

H 1 (§1,2,8) = Xioo AnCen (&, 1) cen(n, v7) e tetFr” +
Yne1 AnSen(§, yi)sen(n,yi) et elFre (2.11)

En(§n,2,t) = Xio BaCen (€, ¥ cen(n, yi) et F1” +
Yr=1BuSen(§,vD)sen(n, vi) et et (2.12)

36



Outside the cylinder {, < & < oo (region 0)

Hy0(&,1,2,t) = Yoo LnFek, (&, lyécen(n, lyZ e~ i@t ethoz 4
Y1 LnGeky (8, vG Dsen(n, lyg De ™'t etfo (2.13)

E,o(6,m,2,t) = Yo_o PaFek, (&, lyécen(n, [yé e i@t gthoz 4+
Y1 PGeky (&, lyEDsen(n, ly2|)e i@t gthoz (2.14)

A,, Ay, By, By, Ly, Ly, By, B, are coefficients associated with the boundary conditions
and constitute functions of n, w,yZ, |y2|. These coefficients are also related to the

nature of the exciting source and are independent of the coordinates.
vt lvglaregivenby yf = (ki — p)q?/4 and y§ = |(k§ — B3)q*/4l.
k? = w?ue; and kZ = w?ue,
&, is the dielectric constant of the cylinder.
&o IS the dielectric constant of the surrounding medium.
& = &, is the surface of the elliptic cylinder
2.2.2. Simplification of Boundary Conditions with Mathieu Functions

Boundary conditions in EM wave theory provide the necessary relations for solving the
wave propagation problem. Solutions must be single valued and finite while satisfying
the free of source Maxwell’s equations and the boundary conditions. According to the
boundary conditions, the tangential components of the electric and magnetic fields are
continuous through any surface, which in the current case of elliptical cylindrical

coordinates, this translates to the following set of relations:

E, =E,, (2.15)
H, = Hy, (2.16)
E,, =Ep, (2.17)
H,, = Hy,, (2.18)

37



In order to demonstrate the complexity and the difficulties arising from satisfying the
boundary conditions, Yeh proceeds with applying the predefined wave equations

(2.12), (2.14) on the first continuity condition E, = E, , in the elliptical cylindrical

coordinates.

> BiCen(§,yDcennvd) €17 + 3 BySen(§,vP)sen(n i) eif?
n=0

n=1

= ) BFeler (€ Iy cei Iy D et
n=0

+ ) PGek, (5, yZDser(n lv3 1) eif
n=1

(2.19)

The analysis reaches a point where the equations involved, include an infinite number
of arbitrary constants, requiring a corresponding number of linear algebraic relations.
Consequently, it is apparent that satisfying the boundary conditions, would require and
infinite number of Mathieu functions in order to describe the fields in the areas in either

side of the boundary — inside and outside of the cylinder.

In order to overcome the difficulty involved with the analysis, Yeh proposed the
assumption that the field configurations in one medium can be expressed by one single
term of the Mathieu function, while the field configurations in the other medium could
be expressed by an infinite series of Mathieu functions, [34]. The exact method
proposed shall be presented analytically later, in the section referring to the calculation

of the field components of the principal modes.
2.2.3. Mode classifications for elliptical waveguides

Unlike in circularly symmetrical waves (where the field is a function of the angular
coordinates), in the case of the elliptical waveguide, E and M waves must both exist in
order for the boundary conditions to be satisfied. In that context, the asymmetrical
waves inside an elliptical waveguide are expressed by HE,,,, and EH,,,, depending on
whether the cross-section field pattern resembles that of an H or a E wave respectively.
At this point it should be noted that modes must all be hybrid, in the sense that no pure

TE or TM waves can exist inside and elliptical waveguide. Yeh’s analysis is further
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restricted to the study of principal modes, defined as the modes that, when eccentricity

approaches zero, they gradually degenerate to the hybrid HE,,,,,. In their final form, the

principal modes’ notation will be eHE,(nl;lO) and OHE,(,;’IO) for even and odd modes
respectively. When a mode is even, the axial magnetic and electric fields within, are
expressed by an even and odd Mathieu function respectively. Similarly, for an odd
mode, the axial magnetic and electric fields within, are expressed by an odd and even
Mathieu function respectively [33]. m denotes the order of the Mathieu function
representing the single product term, while n denotes the nth root of the characteristic
equation. The 0,1 superscripts indicate the region inside or outside, related to, within

what region a single product term was used to express the field configuration.

Figure 2-2 Visual representation of even eHEgll) and odd 0HE§11> modes and the course of the

electric lines, left and right respectively [33]

The above visual representation (Figure 2-2) helps understand the geometrical

differences between even and odd variations of the fundamental mode in 3 dimensions.

2.2.4. Derivation of principal modes’ field components and

characteristic equations

Defining the field components and applying the boundary conditions will lead to the
necessary characteristic equations for the principal modes which in turn provide the
values of the propagation constants. The methods and assumptions required to simplify

the problem to a point of feasibility are already presented in Yeh’s analysis and are
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applied in the following section to obtain the solutions. Initially, Mathieu and modified

Mathieu function notations are simplified as follows:

Cepn(§) = Cen(&,v2) cem(n) = cem(n, 1)
Sem(§) = Sem(§,v1) sem(m) = sem(,v1)
Fek,(§) = Fek.(§, lvgD ce; () = ce; (n, lygD
Gek,(§) = Gek.(§, Y51 ser(m) = se;(n, lv§ )

The following four types of principal modes are considered, according to the notation

described in section 2.2.3:
HEf)
eHEpm
oHE
oHEm

Beginning with the .H Er(m)l mode, the magnetic and electric fields’ axial components

for region 1, are given by:

{H21 = AmCep(&)ce, (n)ehr?

E,, = BnSen(@sen(meits (=4 =50) (2.20)

and for region 0 by

_ oo * ifoz
{Hzo Zr:o LrFekr(f)Cer(n)e (fo < f < OO) (221)

Esy = X721 PGek, (§)ser (n) e'Fo?

where A,,,, By, L, Py, are arbitrary constants. In the above relations the harmonic time
dependence e~* is implied and so are the related expressions for the field intensities
[33]. The pair of equations (2.20), combined with the four equations (2.4.a - d), produce
(after the differentiation is performed) the transverse field components for region 1:

B
RO

He, = {AmCe' m(©cen(n) =% BuSenm@se'mm}es  (222)
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Hy, = G { AnCen(©)ce () + 22 BuSel@senm) e (229)
By, = gy (o2 AnCem(§)ce m() + BpSe'm(Osenm)}etfr  (224)
En, = gy |~ 5 AmCe m(§)cen®) + BpSen(§)se'm(m}e ™z (2.25)

where k? = w?pe; and p = q(sinh? & + sinh? ) /2,

In a similar way, substituting the pair of equations (2.21) into the group (2.4.a - d),

leads to the field components of region 0:

He, = fzgay, Lo | LrFek' y(§)cer (m) — 2 P.Gek, (§)se; ()| o (2.26)

Hy, = Gzgmy, St | LrFeky(§)cer’ () + S50 BGel (E)se; ()| etfor - (2.27)

S0 L, Fek.(§)ce; (n) + PGek',()ser ()| etPo?  (2.28)

Be, = =gy o=t [ 5

Eno (k lﬁﬁz)p ?‘ozo [_%%LrFek,r(f)Ce;(T]) + PrGekr(E)Se;’(T])] eiﬁoz (229)

where k2 = w?pue,. It is noted that as the orthogonality of Mathieu functions dictates
[34], when m is odd, then so must be r. This means that for m odd, the series are

summed over all the odd values of r [33].

The next step of Yeh’s analysis follows with the application of the boundary
conditions on the surface of the cylinder where & = &,. Equation of the tangential
electric and magnetic fields H,, E,, H,, E,,, leads to:

ApCen(&o)cen(mefr? = 372, L Fek,(&)cer(n) eFo?  (2.30)
odd

BpSem(§o)sen(me'F? = Y711 P.Gek, (&)ser(n) eFo?  (2.31)
odd

wEq

sy [ AmCem Eo)ce () + 5 BuSe'm(§o)sem(n) | e =

i B Ly Feler Go)cer (n) + 52 Gek'r(fo)serm)] B (232)

(ko ‘50 odd
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(kf—)p [—4m %5 Ce'm(E)cem(m) + BSem(§o)se )] 1% =

gy S [ L G Fek' - Godeer () + RGeky (§0)ser )] e (239)

At this point the following operations take place:

e B=By=p1

e elimination of ce;"(n) and se;"(n) via relations (2.30), (2.31)
e elimination of dependence in n

e multiplication of relations (2.30), (2.33) with ce,(n)

e multiplication of relations (2.31), (2.32) with se,(n)

e integration as per n from 0 to 2n

which eventually lead to

A Cem(fo)ems Zr 1L Fek (EO) Ays (2-34)
odd
BpSem(§o)emsSm = Zf‘ozcli P.Gek, (&) Brs (2.35)

k.%-p2 ’
An [1 - klz_ﬁz] Cem(fO)Xms + %ngmse m(fo)emssm

k12 (1)81 !
( 2_p2 Zrdép Gek r(EO) Brs (2-36)
)

, k 2_p2
A 2 €' (§0)emsCom — B [1 = 52| Sem(§0)8ims =

( L )"’“zrdéL Fek'(£,) ars (2.37)

where s = 1,3,5,7,9, ..., ems, Con» S Xrsy Brs) Oms» Xms, are given by:
ems = 1 form=s

ems = 0 form #s

21

Cn = | cetnan
0

2T

S = j seZ ()dn

0
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27T

Ayps = f cer(m)ces(n)dn

0

21

Brs :f ser(m)ses(m)dn

0

21

By = f sel(n)ces(n)dn

0

21

Ko = j cel(n)ses(mdn
0

Further information about the above integrals is given in Appendix B. In Yeh’s analysis,
it is also noted that every value of m corresponds to four infinite series of linear

algebraic relations whose combination provides the following relations:
Amcem(fo) = LmFekm(EO)Mm(ars) (2.38)

Bmsem(fo) = PmGekm(EO)Nm(ﬁrs) (2-39)

Am [1 - %} Cem(fo) Qm(ﬁrs' Xms) + %Bmse,m(fo) =

k.2

() 22 PGk sy (50) N (Brs) (2.40)

Am 22 Ce,m(fo) - Bm [1 - %} Sem(EO)Rm(arsr 6ms) =
( 2 ) L Fe k,m(fO)Mm(ars) (241)

Ay, B, L, By, are coefficients and only their ratios can be obtained, to provide
coupling factors between them. The constants

M, (ars), Ny (Brs)) Qm (Brsy Xms), Rm (s, Oms), are obtained through a method that is
demonstrated in the following example:

Let the mode m = 1. The constants are defined as
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33 g3
U35 Uss
M . ‘ 1
1(ars) = a;; Qz; st C_1
Qi3 Qzz @s3
15 O35 OQAss
B3z Bss -
,335 ﬁss . 1
Ny(B,o) = 1
1ATrs P11 Bz1 Bs1 A
ﬁ13 ﬁ33 1853
Bis Bss Pss
p P31 PBs1 )
P31 PBsi B3z Pss
Bss  PBss Bs7  PBs7 1
,Xi5) =3X11— X 1+ X S
Ql(ﬁrs 15) 11 13 '333 ﬁ53 . 15 ﬂ33 ﬁ53 51
Bzs  PBss Bss  Bss
\ J
. 31 sy )
31 sy 33 Us3
Q35  Ass | @37 Qg7 1
Ri (@, 615) = { 611 — 013 — + 015 " c,
rs» O1s Q33 Qg3 33 Qs3 C1
A3z dgs 035 Usg
J

T ce2(m)dn and S; = [T se2(n)dn. The infinite

In the above relations C; = [ 0

0
determinants involved, can be solved by the method of successive approximations. In

order to reach a non-trivial solution, the determinant of the set of equations (2.38)-

(2.41) must equal to zero:

Fi O Fi; O
0 Fp 0 Fy
F3;, F3, 0 Fyy
Fpu Fip Fiz 0

=0 (2.42)

where

Fi1 = Cepn(&o)

44



Fi3 = —Feky(§o) My (ays)
Fy; = Sepm (&)

Fyy = _Gekm(EO)Nm(ﬁrs)

k 2
F3 = [1 - [;2] Cem(&o) Qm(ﬁrsr Xins)

F3, = ﬁ Se "m(&o)
ki’ —p* w
F34 = (k 32)76 ek’ (&o) Ny (Brs)
0
Fyp = % Ce'm(&o)
k* — B2
Fhp = — [1 - ml Sem(§o)Rm(ars, Ons)
32
F43 _( ﬁz)?F klm(éO)M (ars)

From (2.42) and after setting
x% = q? cosh? &, (k,* — ?)
¥* = —q” cosh? & (ko* — )

the transcendental characteristic equation of mode eHE,(nl%can be obtained:

[i Cerm(§o) | 1 Fekim(§o) [ise’m(fo) is_oGek’m(fo)]
x2 Cem(&o) — ¥? Fekm(§o) I Lx2 Sen(8o)  ¥2 &1 Gekpm($o)

(x2+y2)(x2i—‘1)+y2)

x4-y4-

R (s, 6ims) Qm (Brs) Xms) = 0 (2.43)
Also by B, = [, the following relation is obtained:

x* +y* = k§q* cosh? & (= — 1) (2.44)
0
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The transcendental characteristic equation can be used together with relation (2.44) to
calculate the propagation constant 8 depending on the frequency, the dimensions of the
waveguide, the eccentricity, the EM constants of the subsequent media and the order of
the subsequent mode [33]. The pair of relations (2.43) and (2.44) are also referred to as
the dispersion relations for the propagation constant. Also, the pre-mentioned ratios
among the arbitrary constants are used to indicate the coupling between amplitude and

phase in various field components [33].

Similar to the above analysis, the solutions for the remaining principal modes can be

obtained.

For HE(O) the transcendental characteristic equation is

[ice’m(fo) 1 Fek’m(fo)] [1 Se'm(§o) | 1 g0 Gek'm (o)
X% Cem(£)) ' ¥? Fekm(§o) | Lx? Sem(£0) yz &1 Gekm($o)

(x2+y2)(xzz—i+y2)

x4y4

R*m(a*rs»5*ms)Q*m(ﬁ*rs'X*ms) =0 (2.45)

where  R*p (@5, 8" ms), Q" (B*, X" ms)  are  calculated  similarly  to

m (@Xrs, Oms), Om (Brs, Xms) Which were evaluated previously for eHE,(,f,)l

For OHE,(nl,)l the transcendental characteristic equation is

ise’m(fo) iGek’m(fo) [iCe'm(Eo) 1 80F3k’m(fo)] +
x2 Sem (o) v? Gekm(§o) 1 Lx? Cep(8o) y? &1 Fekm(&o)

(x2+y2)(x2§—‘1)+y2)

x4-y4-

Ry (ars' Sms)Qm(.Brs' Xms) =0 (2.46)

For OHE,(,?BL the transcendental characteristic equation is

ise’m(fo) iGek’m(fo) [iCe'm(Eo) 1 80F3k’m(fo)] +
x2 Sem(&o) ¥? Gekpm(§o) 1 Lx? Cep(§o) y? &1 Fekm(&o)

(x2+y2)( 2€o+y )

x4yt

*m(a*rs:6*ms)Q*m(ﬁ*rS:X*ms) =0 (2.47)

2.2.5. Important notes in Yeh’s analysis

Comparing the dispersion relations between the modes HE,(,f,)l and HE(O) nd

between HE(l) and HE,(m)l it can be noticed that the only difference lays in the
pI’OdUCtS Rm(arsr 5ms)Qm(ﬁrs'Xms) and R*m(a*rSf6*ms)Q*m(ﬁ*rS:X*ms)- Except
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for the case when &, = oo, these products do not coincide numerically. Nevertheless,

there is a region when m = 1 and n = 1, where the two products’ values are almost
identical. In that region the modes eHE,(nl% - eHE,(r?,)l, and OHE,%% - OHE,(nO% could be

considered degenerate, sharing the same propagation constant.

When it comes to the numerical analysis of the dominant modes, and especially the

solutions of the characteristic equations, it has been shown that the constants (i.e.

QmBrs, Xms), R (s, 8ys) TOr eHE,(,f,)l) involved in the solutions are given by sets of
infinite determinants. For these determinants, the method of successive approximations
is used. For a value of &, close to 3, eccentricity is reduced and the rod becomes more
similar to a cylinder of circular cross section. It has been numerically estimated that for

such a case of small eccentricity, less terms of expansions are needed to determine the

value of constants Q,,,(Brs, Xms)» Rm (s, Ons) (fOr eHE,(rf,)l) and the problem becomes
simplified by using a “3-term approximation” [33]. However, for eccentricity values
equivalent to a flatter elliptical cross-section, then the constants’ product becomes
significantly prevalent requiring the involvement of more computations and the 3-level
approximation is no longer sufficient in terms of accuracy. The method proposed and

used in Yeh’s analysis is limited to values of oo < &, < 0.5.

C. Yeh in his analysis proceeds to determine the cutoff frequencies of the dominant

modes, even and odd alike. The analysis concludes that in the case of the elliptical

waveguide, the modes eHE,Sll,)l and OHE,Sll,)l

constitute the only non-degenerate modes
and have no cutoff frequencies [33]. As the ellipticity of the dielectric rod’s cross-
section increases (the elliptical cross-section becomes flatter), x moves towards zero
with a slower pace. In relation to the rest of the modes, the cutoff frequencies become

higher as the elliptical cross-section of the rod flattens.
2.3.  Elliptical fibers’ preservation of polarization

R.B. Dyott’s contribution to the study of elliptical fibers is substantial while his
analysis on their properties has been often used as a basis for many recent related
studies. Dyott’s theoretical analysis is highly based on Yeh’s analysis for the derivation
of the wave equations and through the boundary conditions, the estimation of the
eHE, and ,HE,,, modes. Dyott’s research was expanded to the investigation and

definition of significant properties of elliptical core fibers; among those, the current
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chapter will focus on the presentation of birefringence and the preservation of

polarization.

Elliptical fibers’ ability to retain polarization constitutes a key feature that renders
them an important tool for optical interferometers and other applications. In Dyott’s
research on polarization preservation in elliptical fibers [29], it is noted that in fibers
with broad core-cladding index differences around 7*107 and with ellipticity a/b ratio
above the middle range (a/b = 2.5), the polarization retaining properties are
formidable. In waveguides with similar characteristics it is estimated that intermodal
coupling is also reduced to values below -40 dB (for a full turn in a dielectric rod of
2mm diameter). A small pitch of 0.75mm, in a presented beat pattern amongst
fundamental modes, is demonstrated as an indicator of successful preservation of

polarization.

It must be noted that in order to obtain the characteristics of the mode propagation in
elliptical fibers, Dyott et al. have constructed a computer based solution of Yeh’s
analysis. This solution is used to determine the specific conditions under which
elliptical fibers with the pre-mentioned characteristics (45, a/b) manage to preserve
polarization. An interesting result was obtained from plotting the difference in group

velocities between the two modes, where group velocity is given by v, = C/ng, c

expressing the speed of light in free space and n, being a group index (Figure 2-2).

0 05 70 75l 20 i2's

hmco hmco
v slab cire

Figure 2-3 Difference in the group indices of the two fundamental modes [29]

It was found that there exists a critical value of ellipticity for which the group velocity

difference becomes zero at the higher-mode cutoff point. In another plot where the
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elliptical fiber normalized frequency V is plotted against ellipticity a/b at Ang, = 0

(Figure 2-3), it is evident that the critical point is found at a/b = 1.8.
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Figure 2-4 Propagation relationships in elliptically cored fiber [29]

It is therefore expected that an elliptical waveguide could be designed with ellipticity
higher than 1.8 and be operated at a IV value where the group velocities coincide but the
difference in phase velocities is sufficient to preserve polarization [29]. Dyott proposed
that such a single-mode elliptical core fiber might even be used for telecommunications,
which eventually became impossible due to increased attenuation. Nevertheless,

elliptical fibers with these characteristics found immediate use in fiber sensors.
2.4.  Birefringence

Given a wave propagating inside an elliptical fiber, the propagation constants of the
oHE11 and ¢HE11 modes are decoupled and this phenomenon is called Birefringence.
Birefringence is numerically described as the difference between the normalized
propagation constants Af = o8 — 8. Its’ value is therefore dependent on the

normalized frequency V and on the difference An between the refractive indices in the
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core and the cladding. Initially all efforts to estimate birefringence in elliptical fibers
were focused on determining the effects of fiber cores whose cross section was
deviating from circularity. Such were the cases of fiber systems where differential
group delay had a negative effect on bandwidth, and of sensor applications requiring
complete absence of birefringence (i.e. in sensors based on Faraday rotation). Adams
et al. [35] provides a brief listing of relevant works including Ramaswamy et al. [28],
Schlosser [27], Marcuse [36], Snyder and Young [37], using a simplification of Yeh’s
analysis [33]. Calculations of birefringence based on each of the above analyses exhibit
wide variation both in terms of magnitude and in the point where birefringence is
maximum. In all analyses, birefringence appears to be proportional to the square of the
index difference (4n)2. This leads to the conclusion that, for elliptical fiber applications
requiring high birefringence to maintain polarization, a broad index difference between

core and cladding is necessary.
2.5.  Usability and Applications of Elliptical Fibers

During the early developments in elliptical fibers it was considered that the
polarization maintenance property of the propagating modes in birefringent optical
fibers might be useful for coherent optical systems which were intensely studied in the
1990s. High birefringence fibers were therefore manufactured either using elliptical
shaped core, or using stress elements around the core creating inherent birefringence
due to stress, (PANDA fibers). It was generally accepted later, that the relatively high
losses of birefringent fibers, when compared to ordinary circular core optical fibers, led
researchers to direct the focus of research on birefringent optical fibers for sensor
applications and fiber optic devices; therefore circular core fibers progressed to lead on
the telecommunications market. Elliptical core optical fibers find themselves today in
navigation systems, as part of gyroscopes, and other military and sensor applications.
Specifically, polarization-holding fibers have been long used in optical interferometers
but the method used for decoupling the light paths within, was based on shifting the
index through application of stress.

The use of elliptical fibers as a means to split the fundamental mode in to two distinct
orthogonally polarized modes has significant advantages over the stress-induced

method:

1. Elliptical fibers are less complicated to manufacture
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2. Avoiding stress reduces pressure and heat sensitivity
3. Higher order modes propagating in elliptical fibers are azimuthally more
stable than those inside cylindrical fibers, facilitating the creation of over-

moded fiber sensors [27].

Basic applications of the elliptical fiber will be presented in the following section.

2.6.  Applications of elliptical core fibers

As mentioned in chapter 1, optical fibers with elliptical core hold distinct properties
compared to their cylindrical siblings; these properties include polarization retaining
ability and increased birefringence, reduced complexity in manufacturing, reduced
pressure and heat sensitivity and enhanced azimuthal stability for higher order modes.
Thanks to these properties elliptical fibers are being used in various applications mostly
related to fiber sensors but also to optical communication systems. Further, the list of

applications is presented beginning with a communication related application.

2.6.1. Dispersion readjustment in communication fibers

Elliptical fibers can be used as a means for fixing dispersion in fiber waveguides. As
described in the introduction, the BL product is an essential measure of efficiency in
communication systems, and optical systems have achieved considerably high BL by
increasing repeater spacing. The distance between repeaters though has come with a
toll, since, as the distance increases, so does the effect of dispersion. Nevertheless, the
effect of dispersion can be counterbalanced with a negative dispersion produced by
increasing group velocity via increasing wavelength of an interposed over-moded
elliptical fiber. The sequence producing the counterbalancing dispersion can be
described as follows: while moving closer to the cutoff, the evanescent field becomes
broader and the power shifts to the part of the cladding with lower refractive index. At
this point, rising wavelength is coupled with rising group velocity of the primary higher
order modes. This procedure has been described experimentally and proposed as an

application by Poole et al. [38]. A schematic representation is shown in fig. 6.1
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Figure 2-5 Schematic representation of correcting dispersion via overmoded elliptical fiber
[39]

2.6.2. Optical Gyroscopes

In Fiber-Optic Gyroscopes (FOGSs) a single light path is split into a couple of paths
propagating in opposite directions following a circular loop before they reunite back
into a single path. A rotation of the loop around its axis causes a phase shift between
the split paths of opposite directions. In gyroscope implementations using single mode
fibers there are two prominent problems: unwanted azimuthal changes dependent on
polarization, caused by bending stress of the fiber, and unwanted temperature changes
affecting birefringence. The fact that optical gyroscopes are practically functioning in
a wide range of temperatures from -55°C to 85 °C makes it even more difficult to
stabilize polarization and birefringence [39]. These problems are tackled with the use
of polarizers that suppress unwanted polarization along with polarization-retaining
fibers used together with couplers and splices. At this point the use of elliptical core
fibers offers significant advantages. Most importantly the effect of temperature changes
on birefringence is reduced to 1/7 compared to the effect in stress-induced fibers.
Moreover, the use of an elliptical core D-fiber provides the ability to avoid the use of

splices further reducing losses.
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Figure 2-6 Schematic representation of fiber-optic gyroscope [39].

2.6.3. Higher-order-based sensors

Elliptical fibers can be used to create sensing interferometers. Such an application
would utilize either of the fundamental even and odd elliptical modes ,HE;;, .HE 1,
together with the first LP; 4, in a way that the modes interfere when a source is applied.
Therefore, changes in pressure, caused by fiber stress or acoustic waves, as well as
variations in temperature result in variations of the difference between mode
propagation constant [40]. The application of a remote voltage sensor has also been

proposed based on double-mode elliptical fibers [41].

.
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Figure 2-7 Fiber sensor with overmoded elliptical fiber [39]

2.6.4. E-fiber gratings

Gratings are periodical variations in fiber properties (i.e. refractive index). Such
variations can be applied on fibers through various methods including applied pressure
and exposure to radiation. Elliptical fibers with gratings can be used as sensors or laser

tuners.
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Figure 2-8 Technical representation of grating formation [39]

2.6.5. Acoustic wave coupling

In elliptical core D-fibers, acoustic waves can be used to facilitate mode coupling. It
has been experimentally proved [42] that acoustic waves travelling along the D-fiber,
interact with the even and odd fundamental modes in a way that the modes are coupled
with each other. The frequency, the direction of the wave and the angle of the applied
stress over the axis of core’s ellipsis, play a significant role on optimizing the mode

coupling.

Si BLOCK

Figure 2-9 D-fiber coupling with surface acoustic wave [39]
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2.6.6. Optical Kerr effect

In the optical Kerr effect, an intense optical-electrical field [39] causes a shift in the
refractive index which in turn results to a change in the birefringence of the fiber. The
Kerr effect can be used in elliptical fibers to locate occurrences of mode coupling along
the fibers, as anomalies caused by external factors (i.e. pressure). In such cases, a
combination of a high-power pulse and a probe signal travelling the opposite direction,
is applied. The resulting changes in couplings on the probe signal and the local anomaly
are used together with the timing of the pulse to estimate the position of the anomalies
[43]. The optical Kerr effect applied on double mode elliptical fibers can be used as a
switch implementation [44]. Another optical Kerr implementation is that of an optical
amplifier where a polarizer is used along with a birefringent elliptical fiber, in order to
convert a rotation of polarization into amplitude modulation. The modulation is further

translated to amplification and change in frequency [45].
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Figure 2-10 Optical switch utilizing Kerr effect [39]

2.6.7. Current sensors

Single mode fibers whose polarization has been rotated have been proposed as means

to measure current in conductors. The problem with such implementations is the
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inability to achieve the required conditions for coupling the HE;;mode due to
imperfections of the circular core structure. A solution has been proposed [46]
involving an elliptical fiber with strong birefringence that can produce a periodical field
with transverse modes in phase. A technique known as Broadbanding can be then used
to synchronize the periodical field with the beat length of the fiber in order to achieve

polarization rotation.
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3 CHAPTERS3

Elliptical core fibers analysis using RTL method — the

harmonics method

3.1  Theelliptical fiber problem

Yeh’s analysis of the propagation phenomena in elliptical waveguides focused on the
simple step refractive index profiles. The transcendental equations and the mode field
component solutions derived are known to involve Mathieu Functions. Computation of
Mathieu Functions used to be a hard task ensuring convergence, but naturally this is
easier to achieve with the computing processing power available, today. However,
when we consider realistic and non-step index refractive index profiles in the fiber core,
the numerical problem is far more complex, and efficient numerical techniques are
sought after. Dealing with complexity was the first incentive, and in this aspect the
contribution of this study has strong advantages. Through consistent research of the
now established technique of transverse resonance [8][10], based on transmission line
principles, for circular core fibers, it has been proved that this approach to solving
electromagnetic problems is not only intuitive and based on well understood electrical
engineering principles, but also very powerful and capable of dealing with many hard
problems; not only forward, but also inverse [10]. The other incentive for the analysis
in the current chapter was to apply and test the same principles using the elliptical
coordinate system. In [47], a first attempt was made towards solving this problem using
transmission lines in elliptical coordinates, but the solution was not general. The
research presented in the current thesis provides a general solution and expands earlier

work by presenting numerical examples of graded index profiles and mode cutoffs.

This chapter describes the analysis and development of a method for solving the
optical properties of elliptical core optical fibers of arbitrary refractive index profile
using Transmission Line Principles without employing Mathieu Functions. The chapter
is organized as follows: it starts with the introduction of the elliptic cylindrical system,
followed by an analysis of the EM waves in the elliptical fibers. The mathematical
solution to the problem leads to the appearance of factors referred to as harmonics. The
chapter continues with the examination of the problem, first, considering no harmonics

and then with the full consideration of harmonic analysis. Then follows the examination
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of the boundary impedance of elliptical fibers. Example computations are further

provided for comparison.
3.2. Maxwell’s equations in elliptical coordinate system

The following elliptic coordinate system is used matching the cross section of the
elliptical fiber. We use

W =0+ jp,Z =ccosh(W) =x+ jy = ccosh6cos @ + jsinh 8 sin¢p

where Z and W are complex variables on the plane (x, y) and c is the semi focal
distance of the ellipses

x = csinh 6 cos ¢

Thus {y = c cosh @ sin ¢

(3.1)

The function derives from the conformal mapping transformation:
hop) = |Z—‘;’| =|csinh @ cos @ + jccoshfsin |

From the above relation, we obtain
2
hes.) = % (cosh 26 — cos2 ¢)

In the elliptic cylindrical system, Figure 3-1, each 8 constant describes an ellipse, with
semimajor axis ¢ cosh 8 and semiminor axis ¢ sinh 8 matching the fiber’s cross section
and for ¢ constant a hyperbola, of the same foci define any point at some complex point

Z. The ellipses of constant 6 are normal to the hyperbolae of constant ¢ [47].
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O=3/2

Figure 3-1 Elliptic coordinate system 0+jo

From Figure 3-1 it is clear that coordinate 6, traces the ellipse of the waveguide and
¢ deals with the angular degree of freedom of the elliptical coordinate system. As the
ellipticity increases, 6 tends to zero, and circular cross section fibers have 6 tending to

infinity, as in Figure 3-1.

Maxwell’s equations (for %: jw) expressed on a set of elliptic cylindrical

coordinates (0, ¢,z), can be written for an infinitesimal small layer of thickness A6, for
which it can be safely assumed that the refractive index n can be considered constant
[47].

9B, O(hEy) _ .
20 oz juow(hHg)
o . = amEy a5, .
VXE =—jowugH % —5e = —juow(hH,) (3.2)
d(hEp)  d(hEg) _ . 2
oH, (hHy) _ .
o oz I gw(hEp)
= . = a ]
VX H = jneywE % — % = jn?gyw(hE,) (3.3)
d(hHy) (hHg) _ . , 2

Where in elliptic cylindrical coordinate systems, the scale factor h, is
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h=. h2(8,9) and h%(0,¢) = f (cosh 28 — cos2 ¢). The mean value of

aho(e)

h2(0, @) along o is given by: h3(0) = —cosh 20, thus —== = ¢? sinh 26. Thus

B (¢,6) = hi(8) — 5 (cos2 ¢) = hi(8) — 5 (/29 + e~/29),

From this point on we define h2(8) = h3

Considering an exponential dependence along the propagation axis z, the field
components will be expressed in terms of A7A%. Using the Fourier Transform along ¢

with integer wave numbers |, the following is obtained:

( JIE; ~ jB(hE,) = ~jnow(hHo)

! JB(E,) — 22 = —juow(hiy) (3.4)
I

X% _ ji(hEy) = —juow(h ®H,)

( JUH, = jB(hH,) = jn*eow(hE)

T 0H, . —
| jBGH,) - 2= = jn2eow(RE,) (3.5)
L"’(h”"’)— jl(hHy) = jn?eqw(h? ®E,)

The functions {E,, , (hE,,) , (RE,), H, , (hH,,) , (hHg)} are the (partial) Fourier
Transforms of the respective functions over ¢ with an integer wave number [. The
Fourier Transform of the function product h2E,, represents a convolution h? ® E,

which is calculated as follows

(hz Ez) f h*(6, p)E, (8, ¢) exp(jlp) dg

= h3(0)E,

_ CZ fEZ(H,go,ﬁ) exp(j(l + 2)p) do

2 [
-2 JEZ(B,go,,B) exp(j(l — 2)¢) dg
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2
= W(0)F, - Z[E(+2) + F(-2)]

= W3O, - S 1] (36)

where d, = E,(1+2) + E,(1—2)

In the same way
—_ - C2 - R
(h?H,) = R3(O)H, - - [A.(+2) + H,(1-2)]

= h3(O)H, — < [@,] (3.7)
Where &, = H,(1+2)+ H,(l —2)
Taking into consideration that: wu, = zokoand we, = ky/z,, Where z, = |— =

120 and kg = w./ oo = 27” we begin the transformation into transmission lines

using the following set of four functions I, I, Vy,, Vi defined:

(1 = —j(hHg) = j (IE; - B(hE,))
Iy = n*(REy) = (IH - p(RH,))

3 (3.8)
I(hEy)+ BhE(O)E,
VM == -
JF
L(hE,)+ Bh3(O)E,
\ Vg = £ 7 °

where F = F, = [ + B2h,*

All the magnetic field components have been multiplied by z, in order for the couples
Vi, Vgandly, Iy to have the same units in MKSA. Also the symbol of wave number
B in (3.8) and for the rest of the analysis is normalized and represents the ratio 8/k,
The symbol of the semi axis of the ellipses c represents the product k,c, thus

£ and h3(8) are numbers without units [47].

Using the new functions I, I, V), Vg it can be proved through algebraic analysis (see
Appendix B) that the differential equations (3.4), (3.5) derived by the Maxwell
equations are equivalent to the following two sets of differential equations representing
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two interlinked transmission lines of infinitesimal length A@ [47].

oVum n2l c?

= __IM JMIg ___[‘pz]
06 (3.9)

al
Ut = —jFVy + B[]

OVE _ ]/2

] ., c?
90 jnzFIE _]MIM +JZE[(D1] (3 10)

A _ _in2Fy, 4 in2B S [@,]
20~ J ET] 7 P2

with
(V=P (B -n)h’

CZ
h§ = — cosh 26
n3

{ % = c¢%sinh 26 (3.11)
F =F, =1?+ B%hy* = y* + n?h,*
\ M = ﬁl dhy? /

Using algebraic relations (3.8) it can be easily proved that the Fourier Transforms of
the Electro Magnetic field components, along z and ¢ axis, can be calculated by the

formulae

H, = UE/F +JjBVu
(3.12a)

-  —jl
E, = J M/p"‘ﬁVE

hH, —]lVM+‘”‘° I
o (3.12b)

3.3. Even and odd modes

Beginning with the analysis of even modes we define a new Us =1V, +
nVy and IS=IM+%E . It can be proved that the above two interlinked

transmission lines differential equations (3.9) and (3.10) will become a set of two

differential equations representing one new transmission line as follows
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oUg y2—-nMF nlc? .,
— = I b, —nd
20 F s T 1 2]

, (3.13)
al ) iBc? ..
— = —jFVs === [j®; — nd,]
where
Oy = HE2 4 HE? = 212 4 RV + 2 1L 4 BV
(- 2) 1+2) (3.14)
(DZ — Eé—Z + EZl+2 ] e 2 + BVI 2 ] " l+2 +Bvl+2

The final terms in the equations (3.9) represent the entanglement of the (th harmonic
with the (I + 2)th and (I — 2)th harmonics (along the angular direction ¢). Due to the
fact that M takes the sign of [ because all the remaining factors are positive, it turns out
that positive [ instances are representing the HE modes while negative [ instances are

representing the EH modes.

We can now consider the more general case where the effect of harmonics cannot be
ignored. This is the case where either the refractive index difference 4n is high (higher
than 1/1000) or the elliptic eccentricity is high (higher than 1.5). In order to examine
this case, we calculate @1 and @2 using eqn. (3.14). Again, we define Vs = jUs, Is =
I (all the Vs are defined as imaginary functions in order to have real coefficients in the

equations). We then derive the following equations

( vl y? nMFIl
00 F
lgn [(l -2) Il 2 (1+2) (1+2) IHZ] qpl [Vl—z + Vl+2]
F LF, Fryo F 28 s

(3.15)

oL _ —FV! + qp [(l 2)11 -2 4 (l+2)ll+2]
a6 Fiy

L +%[V;l—2+vsl+2]

where g = nc? /4. It becomes clear that every mode order [, is entangled with orders
[+ 2and ! — 2. From the equation set (3.15) we can generate an infinite set of equations
by replacing | with [ + 2. Consequently, we can write (3.15) as a general matrix
equation via a parameter which takes care of the order of harmonics and the coefficients

of the harmonic values and becomes l =1+ k, k = 2,4,6, ...

Vl+k [X ] Vl+k, Vsl+2+k,Vsl_2+k] (3163.)
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d —
S = [V I, 12 172t (3.16b)

When considering the effect of higher harmonics around the harmonic [, i.e. the
harmonics ...l+2, [+ 4,l+6and | —2,l—4,l—6... they result in a set of
homogeneous differential equations for the functions
...Vsl+6 I_é+6 Vsl+4- Ié+4 Vsl+2 Ié+2 Vsl Isl‘ VSZ—Z Ié—Z Vsl—4- Ié_4 Vsl—6 I;_6 ... .The
number of the equation coefficients involved in the computation depends on the

accuracy required from the system and the number of harmonics involved.

The general matrix [A;; | of coefficients from the equations (3.16) ...l + 2, I + 4,1 +
6and | — 2,1l —4,l —6...,holds dimensions 14 x 14 and its elements are in the order
shown in Table 3-1. We observe that the diagonal elements of the matrix, all equal to
zero. Furthermore, as seen in the table, the parameters k=0, + 2, = 4, + 6... determine
the horizontal location of the elements of the matrix. k combined with [, give the
general form of [A(L, k) ] with coefficients as follows

2
Yiek "M+ kFi+k
Ok = ——+=—"""2" A= —Fj4p,
Frik

Al = Z2BU0 £ o — Zantk)(+2+k)

Fiek FroovkFiek

2
A3 = %, Ady = Bq(l+2+k)

Flez+k
—qn(l+k)(l-2+k
ABy= qn(l+k)( )
Fi2+kFi+k
(1-2+k)
A6k = Bql-2+k)
Fiz4k

We also notice that

2
Fiooee =+ 2+ k)4 B%hy" ¥ = U+ 2+ k) + (B? — n?)hy?

dhy?
Miszeic = BU+2 + 1) 7%/ Ffip i, 4=nc?/4.

Similar relations for F, M,y can be written for [ and [ — 2. Using the above
coefficients, we can compute the eigenvalues of matrix [Al,k] for the elliptical layer
a0.
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‘ng—ﬁ ‘J'SI+6 ‘éf+4 ‘J'é+4 ‘ng—Z J1'SI+2 ‘éf I_é LEI—Z I;—Z ‘éf—‘lr ‘J'é—d ‘éf—b ‘J'SI—Ev
%Vsm O R T R 0 0 0 0 0 0 0 o o
%I§+6 - Ag 0 A3z | Aby=g 0 0 0 0 0 0 0 0 0 0
%VSIH - Alyg=g | A2y=y 0 0, Aly—y | ABy—sg 0 0 0 0 0 0 0 0
%gﬂ - A=y | My=y | Ag 0 ABy=g | Abyzsg 0 0 0 0 0 0 0 0
%szz 0 0 A=z | A2y= 0 By | Aly=z | AB5y= 0 0 0 0 0 0
%gﬂ 0 0 A3yo | Adyos | A3 0 A3y—y | A6y 0 0 0 0 0 5
%V; 0 0 0 0 Alg=o | A2x= 0 [ Alg—p | ABe—g 0 0 0 0
%1‘; 0 0 0 0 A3y=p | Ady=0 Ao 0 A3,—p | Aby=g 0 0 0 0
%Vst—z 0 0 0 0 0 0 |AlL-o| A2,->| © 6, | Al A5 0 0
%;;—z 0 0 0 0 0 0 | MByes| Ay | 42 0 | A3 6| O 0
%L‘.‘S‘I_.; 0 0 0 0 0 0 0 0 Alym—s| A20=s 0 0.2 | Al—a| 25—
%;;—4 0 0 0 0 0 0 0 0 | ABers| Adeers | As | 0 | A3uers| A6ue_s
%V;“’ 0 0 0 0 0 0 0 0 0 0 Ag——g| A2=—g| O 66
%:;—6 0 0 0 0 0 0 0 0 0 0 | M| Adueg| Ae | O

Table 3-1 Even Mode Characteristic Matrix [A_(l, k) Jfor Elliptical Fiber Layers. (Coefficients of (15, 16))

The squares of the eigenvalues of the set of the simultaneous equations give the

respective transmission line characteristics yZ. The minimum squared eigenvalue y?

can be used for determining the fundamental HE and EH respective elliptical modes

for I = 1 as well as the TM, TE, respective modes for [ = 0.

Using the layer eigenvalues, the resulting T-circuits for even modes can be formed

using y2 for the corresponding elliptical layer as shown in Figure 3-2, with
a9V p g elip y g

yZand jF, = j(1% + f%ho%)
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Figure 3-2 Equivalent transmission line circuit of element layer A6

Zg = y{40/(2jF)
(3.17)
Zp = 1/(jFA0)

Having represented the elliptical thin layer as a T-circuit the series cascade represents
successive elliptical thin layers, and we can compute the propagation constants by
employing resonance of the assembly.

It is known that elliptical fibers also support odd modes orthogonal to even. This can
be derived in a similar manner. From equations (3.9) and (3.10) alternatively we can
define parameters

(Vu . Vs
VSS :_] (7"‘ VE) ISS = nIM + IE lL.e. ISS = Isn VSS :JE

We can in a similar manner as with even modes derive the relations

( Vs _ _yi-nMiFy, 1 _

36 nZp, 1SS
ql ((1=2) p—2  (+2) 1427 B 1-2 /142
Ly Y Lty ——|Vss “+V.
TlFl[Fl—z SS Flog |SS ] F, [ SS SS ]

alt l (1-2) ;-
a__;s = —Fn®Vss + Qﬁ[alslsz

(3.18)

(1+2) _
| L S BRan| Ve P4V

We can show that eqns. (3.18) and (3.15) are equivalent if we multiply both sides of
(3.18) by n? and substituting Vssn? = Wi and Igs = Iss. Then the same equations
are obtained as (3.15) with respect to W(s and Iss. A homogeneous system of

equations can thus be formed again using (3.18) as with even modes.

Similarly to the case of even modes as described before, one can now consider the
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effect of higher harmonics, for odd modes, around the harmonic [, i.e. the harmonics
WA+ 2, 144 l+6and | —2,1—4,1 —6... which result in a set of homogeneous
differential equations for the functions
Vg e, Vid ™ Vg2, Vs, Vs 2, Vs Vs ® 1538, 1637 1587, Iss, 152, 15, I65°. We observe
that the eigenvalues of the respective system of equations here representing odd modes
are the same as the respective eigenvalues of the system of the previous equations (3.15)
for the eigenfunctions shown in Table 3.1. The respective resulting quadrupole however
differs and should be formed with the same respective transmission characteristic y7
but different admitances n2F = jn?(12 + B2hy*). Thus, in general the overall
transmission characteristics f of the odd modes are different to those for even modes,
(birefringence effect). Therefore, both quadrupoles representing the odd HE and EH
modes, will use the same transmission characteristic y/ and different
admittances jn? F. The characteristic impedances for odd modes of the T-circuit are

given by the equations

Zp =y} A6/(2jFn?)
and (3.19)
Zp = 1/(jJFn?40)

The previous equations were considered for [ > 0. Considering that M is proportional
to [ we can form sets of similar equations for HE (I positive integer) and for EH (I
negative integer). The resonance “frequencies” of the derived “total transmission line
of successive layers” are equal to the transmission wave numbers “f” of the respective
elliptic fibers’ odd modes. The terminal impedances for 8 = co and 8 = 0, are the
boundary conditions for the transmission line behavior. The full mathematical analysis

for the derivation of Maxwell’s equations in elliptical coordinate system and the

subsequent Transmission Line relations, is given in Appendix B.
3.4. Boundary terminal impedance calculation and resonant solutions

Calculation of terminal impedance at & = oo has been based on the fact that as 0 tends
to infinity the ellipse becomes a circle, thus the harmonics effect is negligible. Thus the

terminal impedance is the limit of the characteristic impedance of the quadruple given

by Z(ew) = V/j Fy For 0 = oo it can be shown that z,,) = 0.
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The terminal impedance for 6 =0 can similarly be calculated taking into
consideration that the field components E, and H, are symmetric for the y axis. This
results from the property that only polarized EM waves are stably transmitted in elliptic
fibers. This property means finally that the EM field components are periodic along ¢

with period wn. Thus for 6 =0, the following relations can be written:
E,(¢) = E,(¢ —m) and H, (¢) = H (¢ —m).

Hence the Fourier Transform of E, along ¢ can be given as
E, = [" E,(p)e”/dg (3.20)
It is then easy to prove that
E, = [} E,(p)e/[1+e7'"|dg (3.21)
Then for [ = even (or Zero),E_Zqé 0 and for [l = odd ,E_ZZ 0.
In the same way it can be proved that for [ = even(or zero), H,# 0 and for | =
odd ,H,=0. Thus for | = odd ,Vy, = ml/jF and I, = ﬁ@/j. But for 6 =
Oand [ # O,WherejH_(p = nﬁ, VM/IM = Zy(0) = nl/j,BF' Thus Zyz(0) =

"l/leF and Zgy(0) = l/jﬁFn' For I = even (or zero) and § = 0,{ H, # 0 and E, #

0} thus Vy # 0 and V; # 0 while I; = n2hEy = 0 and I, = hH@/j = 0, because

Ey = 0and Hy = 0. Thus for | = even (or zero) , Z;;(0) = oo, Z(0) = oo,
Zpp(0) = o, Zgy (0) = .

For each of the successive layers of A8, length can be represented by a quadrupole

like the one shown in Figure 3-2, where

jem = {) (3.22)

1
= jFmimse

{ZB = (y* —nM,F)66/(2jFn'™)

Zp

The quadrupoles representing the successive layers can be connected in series,
because the equivalent “voltages” and “currents” on their boundaries are continuous

due to the fact that Vy,, I, Vg, I are also continuous functions of 8, following the
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normal and tangential Magnetic and Electric fields being continuous. Therefore, the set
of the successive layers is forming an overall “Transmission Line” with pure imaginary

impedances.

Then the fiber mode normalized (/k0 as defined in section 3.2, the paragraph after eq.
3.8) propagation constants “f” are calculated from the resonant “frequencies” of the
line. The terminal impedances for & = oo and 6 = 0, are the boundary conditions for
the transmission line behavior. The terminal impedances should be calculated using
transmission line properties. In the case of elliptic fibers, there are symmetry properties
arising from the fact that wave transmission is polarized. The mode cutoff wavelengths
can also be computed by setting for § = n, the cutoff condition, i.e. the minimum
reduced wave number with which a mode may exist in the fiber. Due to the significance
of the harmonics in the calculation of mode propagation constants, and in order to
differentiate the current method from other TL methods presented in this thesis, the

current method will be henceforth referred to as the harmonics method.

A specific case related to the value of eccentricity is that of small elliptic eccentricity
for 1 = 0 or 1 where the effect of harmonics can be ignored (this case is not applicable
for higher harmonics). As a result of small elliptic eccentricity, the effect of harmonics
in equations (3.9) becomes negligible and the coefficients of [®1] and [@2] are zero. In

this case the equations (3.9) collapse to

Vs _ _yz—nMFI
a0 jF S
(3.23)
dls .
% = ]FVS

Furthermore we can define Vs = VTM + Vg Igg = nly + I . It can then be proved

that

dVss y2-nMF
a0 jFnz S

(3.24)

6155 _ . 2
S0 = JEn“Vsg

The set of equations (3.23) and (3.24) can be written in the following compact form
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vy _ _ (y*-nmF)

20 jFntm H
JEn for tm = {g (3.25)
28 = —jFntmy,

where Vy, Iy stand for even and odd modes respectively, or the two independent
hybrid modes with the same transmission coefficient y>-nMF and different
admittances jF and jFn?. The two modes are related to the birefringence property in
elliptic fibres. This method maybe of use, in the case where there is interest in

approximate but fast computation of the mode behavior.
3.5. Estimation of the EM Field Components for Elliptical Core Fibers

Taking into consideration the set of equations in (3.12) and due to the fact that the

values of the estimated birefringence are very small, it can be assumed that:
Vm
Vg = Tand Iz = nly,

|4 1 14 I
Thus V,, =75and1M =;S andVEEﬁandIEEn;S

Taking into consideration that h2 = Cz—zcosh 20 the set (3.12) transforms as follows

o _ U .
H, = E/F +JjBVu

(3.26)

—  —jlI

E, = J M/F + BVg

. Bh3

o o (3.27)
L_ (258 1,, + 17 ) /

E,=" "

o= ho

Having calculated B, Vs, I for each 6, or, for each bb(6) = sinh 6, the equations in
(3.26) and (3.27) can be used for the calculation and plotting the values of the EM
field components for the elliptical core fiber for TM (E) and TE (M) modes

separately.
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3.6. Results

Using the relations of the impedances in section 3.4, for the quadrupoles that make
up the Transmission Line, an algorithm can be developed that calculates the mode
propagation constant £ at the point of resonance. Using the corresponding algorithm,

the b — V diagram has been computed for a number of low order modes with ellipticity

b/a=0.5, versus V defined as V = #\/nf — n2, b defined as the semiminor axis of the

B\2_. 2
ko) nz

ellipse and a, is the semi major axis b = e The wave number  represents the

2

ratio 8/ k.

The results shown in Figure 3-3, agree within the 3™ or 4™ decimal place compared
to other published results in the literature. The curves in the figures were generated
using 5 harmonics. Using only 3 or 4 harmonics the fundamental HE11 produces
acceptable accuracy in the value of ‘B’, but the higher order modes require more

harmonics to become more accurate, as shown in Figure 3-4.

Figure 3-3 The first six normalized modes versus V, of Step Index Elliptical fiber of n, =
1.54, n, = 1.47, a/b =21=1andl=0.
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Figure 3-4 The first three normalized modes versus V, of Step Index Elliptical fiber of n; =
1.54, n, = 1.47, a/b = 2,1 = 1 calculated with 3, 4 and 5 harmonics. (The wave number B is

normalized by ko)

Table 3-2 presents a comparison of calculated normalized step index core mode

propagation constants using only 2x2 matrix Mathieu functions and the Transmission

Line method.

a/b=1.3 | Mathieu TR

V b11, Ne D11, Ne

15 1,4907763 1,4907020
2.1 1,5061120 1,5057200
2.5 1,5131290 1,5126423
3.1 1,5203294 1,5198141
a/b=1.3 | Mathieu TR

\% b11, No D11, No

1.5 1,4911885 1,4910277
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2.1 1,5064715 1,5063359
2.5 1,5134235 1,5131960
3.1 1,5205393 1,5202285
a/b=15| Mathieu TR

\% b11, Ne P11, Ne

1.5 1,4936200 1,4933413
2.1 1,5085150 1,5078138
2.5 1,5150727 1,5143015
3.1 1,5217244 1,5209683
a/b=15| Mathieu TR

\% b11, No b11, No

1.5 1,4942506 1,4936368
2.1 1,5090391 1,5083152
2.5 1,5154931 1,5147457
3.1 1,522019120000000 | 1,521299532774000

Table 3-2 Comparison of normalized mode propagation constants calculated using Mathieu

functions method and Transmission Line method

The comparison is made for two basic cases of elliptic eccentricity, namely a/b=1.3
and a/b=1.5, for the fundamental modes, both even and odd and for selected numbers
of normalized frequency V. The small differences are due to the truncation of the Matrix
using Mathieu Functions. The appearance and consideration of more harmonic terms

leads to significant accuracy for the TR method; accuracy is the harmonics method’s

competitive advantage against other existing methods.
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3.6.1. Evaluation of the method for different number of harmonics

At this point it would be interesting to investigate the effect of using different
numbers of harmonics under various ellipticities. To this end, 4 cases of elliptical fibers
are considered, with corresponding ellipticities of ab = 1.5, ab =2, ab = 3 and ab = 5.
For each of these cases, the mode propagation constants are estimated in f-V diagrams
for the fundamental mode; the calculations in each case take place using 1, 3 and 5

harmonics and the results are presented below.

B-V diagram of the fundamental mode for varying number of harmonics
ellipticity: 1.5

1.54 . . . . . .
1.53 1 e

1 Harmonic
5 Harmaonics

18271

3 Harmonics

1817
o

151

1.49

148

_14? I I I I I I I I I

Figure 3-5 -V diagram of the fundamental mode for varying number of harmonics.
Ellipticity: 1.5
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B-V Diagram of the fundamental mode for various harmonics
and ellipticity 1.5

T T T T T T T

3 harmonics
1.518 | .
1 Harmonic
15175 5 Harmonics []
3 Harmonics
1517 F A
/ 1 harmonic /
@ 5 harmonics £
1.5165 / 1

1.516 / 1
1.5155 [ / 1

1.515 | i | i i | i i | .
275 28 285 29 295 3 3.05 31 315 3.2

Figure 3-6 Zoomed B-V diagram of the fundamental mode for varying number of harmonics.
Ellipticity: 1.5

In the diagram of Figure 3-5, the difference between the g values calculated by 1
harmonic and those calculated by 3 and 5 is very notable and varying between 2 x 1073
and 6 x 1073, In Figure 3-5 however, the difference between the g values calculated
by 3 and 5 harmonics is so restricted that the two lines appear as one. In order to better
visualize the difference (between 3 and 5), a second figure is deployed, Figure 3-6,
which presents a zoomed area of the same diagram where the lines of 3 and 5 harmonics
appear distinct. The difference in 8 is around 8 x 10~°. The conclusion drawn from the
above figure, is that using more than 3 harmonics for the estimation of the -V diagram,
shifts the resulting line merely by a minimum, while beyond 5 harmonics the difference

is negligible and the line is stabilized.
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B-V diagram of the fundamental mode for varying number of harmonics
ellipticity: 2
154 T T T T T T

) T 1 Harmonic
152 A 3 Harmonics | |
5 Harmonics

@ 151

151

149 / ]

1.48 1 1 1 1 1 1 1 1 1

Figure 3-7 -V diagram of the fundamental mode for varying number of harmonics.
Ellipticity: 2

B-V diagram of the fundamental mode for varying number of harmonics
ellipticity: 2

N I I | T T T ]
5 Harmonics -
1.628 --"--------“_“- _
! 1 Harmonic
- T 3 Harmonics
5 Harmanics
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1524 _“"_:
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15822 “"_m“-m“--- _
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Figure 3-8 Zoomed B-V diagram of the fundamental mode for varying number of harmonics.
Ellipticity: 2

In the diagram of Figure 3-7, the value of ellipticity has been increased to 2. The
difference between the S values calculated by 1 harmonic and those calculated by 3 and
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5 is again quite evident and varying between 6 x 1073 and 1072. In Figure 3-7, the
difference between the £ values calculated by 3 and 5 harmonics is restricted as in
Figure 3-5 and the two lines again appear as one. In order to better visualize the
difference (between 3 and 5), Figure 3-8 is utilized, presenting a zoomed area of the
same diagram where the lines of 3 and 5 harmonics appear distinct. The difference in g
for the lines of 3 and 5 harmonics, is around 3 x 10~*. The conclusion drawn from the
above figure, is that using more that 3 harmonics for the estimation of the -V diagram
shifts the resulting line by a difference in j that reaches 3 x 10~*. The corresponding
maximum difference in g under ellipticity 1.5 is 8 x 107>, This means that for an
ellipticity of 2, using 3 harmonics is less adequate than in the case of ellipticity of 1.5.

Still, beyond 5 harmonics the difference is negligible and the line is stabilized.

B-V diagram of the fundamental mode for varying number of harmonics
ellipticity: 3

1.54

1531

1 Harmonic
3 Harmonics

182

5 Harmonics

@ 161}

1587

1491

1.48

Figure 3-9 B-V diagram of the fundamental mode for varying number of harmonics.
Ellipticity: 3

In the diagram of Figure 3-9, -V lines have been plotted for ellipticity of 3 and for
various numbers of harmonics. The difference between the f values calculated by 1
harmonic and those calculated by 3 and 5 is evident and varying between 5 x 1073 and
1.3 x 1072, In Figure 3-9, the difference between the 8 values calculated by 3 and 5
harmonics is evident and the corresponding lines appear separate without the need of a

zoom: the value of this difference reaches its maximum around 10~3. The conclusion

drawn from the above figure, is that the use of 3 harmonics may be not enough since
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there is an error of 103 between 3 and 5 harmonics and for V around 2.5. Using 5
harmonics on the other hand is adequate and the line beyond that number of harmonics

will not shift.

B-V diagram of the fundamental mode for varying number of harmonics

ellipticity: 5
154 T T T T T T T T T
7 ./--" 1 Harmnn:h:
15271 i 3 Harmonics | |
o 5 Harmonics
151 1
1.5 /} a
/
/
/
149r / 7
/
143 i i i i i i i i i

Figure 3-10 B-V diagram of the fundamental mode for varying number of harmonics.
Ellipticity: 5

Finally, on Figure 3-10, a diagram is presented with the -V plots for ellipticity of 5
and for various numbers of harmonics. The difference between the £ values calculated
by 1 harmonic and 3 is varying between 5x 1073 and 1.8 x 1072%; even wider
compared to Figure 3-9. In Figure 3-10, the difference between the g values calculated
by 3 and 5 harmonics is again evident and the corresponding lines appear separate
without the need of a zoom; the value of this difference reaches its maximum around
2 x 1073, The conclusion drawn from the above figure, is that the use of 3 harmonics
may be not enough since there is an error of 103 between 3 and 5 harmonics and for
V around 2. Using 5 harmonics even for this value of ellipticity (5) is adequate and the

line beyond that number of harmonics will not shift.

Concluding, as the value of ellipticity increases, the difference in S increases
significantly. It is therefore concluded that as ellipticity increases, a higher number of
harmonics need to be included in order for the results to converge on an accurate 8

value. However, for all the cases of ellipticity presented above (1.5, 2, 3 and 5), the
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use of 5 harmonics has been found adequate to produce results with significant

accuracy.

3.6.2. Obtaining Results for Elliptical Fibers with Arbitrary Index

Profiles

The power of the Resonant Transmission Line method is not limited to the accurate
calculation of mode propagation constants. Perhaps its most powerful feature is the
ability to produce results for index profiles, other than the typical step index, such as

graded. Graded index fibers do not have a constant refractive index in the core, but a

decreasing core index n(r), with radial distance from a maximum value of N, at the

axis, to a constant value N, beyond the core radius ‘a’ in the cladding. This refractive

index variation may be represented as:

nlx{l—Ax(é)“} r<a
a

n, r>a

n(r) =

where

A= (g —ny)/ng,

n, is the refractive index at the axis of the optical fiber,
a controls the decay or growth of the profile envelope,
a is the normalized core radius.

A variety of profiles can be generated by varying «, as shown in Fig. 3-11
below
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Figure 3-11 Possible fibre refractive index profiles for different values of o
Linear and parabolic index profiles are often used in the industry as methods for

dispersion manipulation. Results for arbitrary index profiles like the ones mentioned

above, cannot be easily produced using the Mathieu functions analytical method.
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Figure 3-12 (a) Step index profile (b) Linear index profile (c) Parabolic index profile (d) 4th
power parabolic index profile
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Further follows a demonstration of the calculation of mode propagation constants in
elliptical core fibers of arbitrary index profiles, starting with the case of linear index
profile. For a linearly varying core index profile, the distribution of the index value in
relevance to the core radius can be seen in case (b) of Figure 3-12. Specifically in the
case of an elliptical core fiber, let us consider the following case where the variation of
the core index starts from @ = 0 at the core center, from a typical value of n; = 1.54
down to n2 = 1.47 at the outer core ellipse where @ = tanh"}(1/ab). The values of mode
propagation constants under varying normalized frequency V for the fundamental mode

in an elliptical core fiber of ellipticity ab=2 have been plotted in Figure 3.13.

Linear Index Profile
1515 T T T T T T T

151 A
1505} — 1

1571 ' 1

1.495

1.49

1.485

1.48

1.475

1.47 1 1 1 1 1 1 1

Figure 3-13 The B-V diagram for a linearly varying core index profile, ab=2

Figure 3-14 presents a comparative plot between step and linear index profiles. The
upper curve is the standard curve for a constant index value ni while the lower curve
corresponds to the linearly varying index profile. As one might expect, the curve
representing the linear index profile lays below that of the step index, since the core in

its entirety is characterized by lower refractive index.
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Elliptic fibers even fundamental modes n2=1.47,n1=1.54, ab=2
1.54;
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Core refractive index lin aarly/vﬂy/ing from nl to n2
P

1.51

15

1.49

1.48

1.47°

Figure 3-14 p-v diagram comparing p values between a linearly varying core index profile

and a typical step index profile.

The demonstration continues with the analysis of the case of a parabolic index profile.
For a parabolically varying core index profile, the distribution of the index value in
relevance to the core radius can be seen in case (c) and (d) of Figure 3-12. Index values
variate from n1 = 1. 54 at the core center (® = 0), decreasing to n, = 1. 47 at the outer
core where @ = tanh™}(1/ab), in a parabolic manner, under a power of two as per case
(c) of figure 3.12. The values of mode propagation constants under varying normalized
frequency V for the fundamental mode in an elliptical core fiber of ellipticity ab=2 have

been plotted in figure 3-15.
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Parabolic Index Profile
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Figure 3-15 B-v diagram for a parabolically varying core index profile

Figure 3-16 presents a comparative plot between step parabolic and linear index
profiles. The upper curve is the standard curve for a constant index value n; while the
middle curve corresponds to the parabolically varying index profile and the lower curve
corresponds to the linearly varying index profile. As one might expect, the curve
representing the parabolic index profile lays in between those of the step and linear
index profiles, since the area covered by a larger index value is lesser than step and

greater than the linear profile cases.
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Figure 3-16 s-v diagram comparing 3 values between a typical step index profile, a

parabolic and a linear index profile
3.6.3. Calculation of Birefringence and Mode Cutoffs

The current method can be used for the calculation of birefringence and mode cutoffs,
with significant accuracy. In Figure 3-17, we study the fundamental mode birefringence
for the step index case and for 1=1, a/b=3 while we use 3, 4 and 5 harmonics in order to
highlight the convergence using higher order harmonics between them. It can be

observed that 5 harmonics provide adequate level of accuracy for most applications.
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Figure 3-17 Birefringence related to V, of Elliptical Graded Index Core fibers for n1=1.54 and
n,=1.47, for a/b=3

In the same figure we also calculate the birefringence of graded index elliptical
waveguides, using the general refractive index profile formula n(0)=n1+(nz-n1)(6/00)*
where ny is the maximum core refractive index, nz is the cladding refractive index and
0o is defined by the dimensions of the elliptic core(Bo=atanh(b/a)). Figure 3-17 also
presents two typical birefringence curves for a=2 (parabolic), and a=6. It is evident that

birefringence is higher for step index fibers compared to other graded profiles.

Figure 3-18, shows the normalized birefringence versus v-curves, using the ellipticity

a/b, as a parameter. The results are identical to the ones presented in the literature.
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Figure 3-18 Birefringence versus V, of Elliptical Step Index Core fibers forn_1=1.54,
n_2=1.47 for a/b=1.5,2,2.5, 3, 3.5 and infinity (slab).
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Figure 3-19 Mode cutoff frequencies V¢ versus ellipticity b/a for a few low order modes of
Step Index Elliptical Waveguides for n1=1.46 and n2=1.34 and I=1 and 1=0.
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A direct computation is also presented, of the mode cutoff frequencies for specific
low order modes in step index elliptical core fibers, in Figure 3-19. The agreement is
quite satisfying, considering that all published work take only the minimum size for the
transcendental matrix, using Mathieu Functions, while in the method presented, one

can simply increase the harmonic terms and reach higher accuracy.

We conclude this chapter by noticing that the harmonics method is computationally
exact, producing equivalent results with certain analytical solutions based on Mathieu
functions, without using them explicitly. Unlike existing analytical methods, it can be
applied to arbitrary refractive index profiles exhibiting remarkable simplicity, accuracy
and fast convergence. Additionally, analytical methods such as, Bessel and Mathieu
functions based methods are mostly limited to analysing cases where a finite radius core
is covered by an infinitely expanded cladding which is unrealistic since optical fibers
are covered with more layers of different materials or air. Unlike the complexity
limitations of analytical methods, the RTL calculative method can be used for the
analysis of more complexed realistic cases that examine mode propagation within

multiple layers.
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4 CHAPTERA4

A study of Eccentric Core Optical Fibers

4.1 Reasoning and methods for studying eccentricity

In several cases optical fibers for telecommunication applications have cores of non-
circular geometry. Fiber optic deformations appear in optical fibers for a variety of
reasons. Optical fiber core ellipticity where the fiber optic core is not perfectly circular
due to fiber optic manufacturing tolerances is measured and it often becomes a problem.
Optical fiber core eccentricity, is defined by the fiber core being not on the axis of the
fiber, but is offset by a certain length. This is another very important issue for ensuring
performance with low loss splices and connector losses. Both ellipticity and eccentricity
are specified in accordance with international standards for fiber optic manufacturing

telecommunications grade fibers.

The present chapter studies ellipticity combined with core eccentricity specifically
and presents a new method for analyzing their effect. We present an extension of the
transmission line technique as a means of studying such fibers and deriving necessary
parameters. Conformal mapping on the other hand is a simple mathematical tool by
which one can generate sets of orthogonal two-dimensional coordinate systems. Shortly
a conformal map of Cartesian two-dimensional space is defined by any analytical

function w(z) where z, w, are: z=x+jy ,w =06+ jo.
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n=1 {air)

Figure 4-1 Typical eccentric core optical fiber. The core has refractive index n; and the

cladding n;

ow

0z

The function deriving by the conformal mapping transformation h ) =

/
ow

field in the derived orthogonal coordinate system. Useful conformal maps for fiber

5,1 can be used in order to define V 4 and V x A where 4 is the magnetic or electric

optics applications should have the property that the equation 8(x, y)= constant, forms

closed curves in a Cartesian two-dimensional space (X,Y).

The choice ofa 8(x, y) representing a set of co-eccentric circles, leads to the normal
case of conventional fibers with circular cores. In case of 6(x,y) representing a set of
ellipses, we have the case of elliptic core optical fibers. The case of 6(x, y) representing
a set of eccentric circles corresponds to optical fibers with eccentric core. The method
presented in the current chapter uses the transmission line technique together with
conformal mapping as tools for the study of various shaped optical fiber cores and the

effect of eccentricity on the fundamental modes of eccentric core fibers.

Orthogonal Curvilinear Coordinates can be generated using a conformal map [48] of
Cartesian coordinates (X,y) represented by the complex number z=x+jy. Of current
interest are orthogonal coordinate systems where the z coordinate remains Cartesian (as
in standard cylindrical coordinates) and furthermore for 6 = constant, closed curves are

formed on (x,y) plane. Thus, in general a Fourier Transformation along ¢ has integer
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values ‘I’. Any function of A(0,¢,z) can be transformed along z and ¢ and the derived

transformation will be a function of A(8,l,p)e/f? - e/ such that ‘;—2 = jBA, Z—: =

jlA (I =integer). The Fourier Transform along ¢ of the product of
C'(p)A'(0, p)elP? becomes the convolution

eIPZ[C(1) @ A6, )] = CoA(0,1) + CLAO, L F 1) + C,AW0, L F2) + -

where

1

2 1 (2 i
Co=5J, C@)do, Co=5["C(@)emdg

T

In general, Fourier Transforming Maxwell equations, expressed in general orthogonal
cylindrical coordinate systems leads to the appearance of certain harmonics. In most
cases related to optical fibers the harmonics can be omitted in practical calculations,
with a negligible error due to the fact that An = n,; — n, is very small in comparison

with ny. In this chapter these harmonics will be ignored.

4.2.  Fourier representation and resonance analysis

Maxwell’s equations (see appendix B, for % = jw ) expressed on a set of

orthogonal cylindrical coordinates (6, ¢, z) arising from a conformal mapping w =
w(z) ,can be written for an infinitesimal layer of very small thickness 46 where

refractive index n can be considered constant as follows

0E;  9(hEyp) .
( 20 a—zw= —juow(hHg)
d(hEg)  OE, .
!I = F— 52 = —juow(hHp) (4.1)
d(hEy)  8(hEg) ,
oo~ oy = ~JHow(R?Hy)
aHZ_ a(hH(p)_ . o
P L gow(hEyg)
d(hHy) 8H, _ .
az"’ —=g= jn?sow(hEg) (4.2)
d(hHy)  d(hHg) _ .
"o agoe = jntew (k)
aw|? 1
Where h? 9y = > = |6_Z—2:h = |h2(<o,e)|
ow
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Fourier Transforming along z and ¢ gives FT ( h?g,4)E,(9,5)) = h* 0,0y @ Ezo,1)
and omitting the harmonics arising by the F.T. of the product we obtain
FT( h%(6,5)Ep0,0)) = h3()E, (8,1) where h3(8) = [™ h2, o) de. Substituting
aa_z by jf and % by jl, where [ integer the set of six partial differential Maxwell

equations, becomes a set of four ordinary differential equations (for the remaining

variable) and two algebraic ones as follows

0E,  .,e v
( ~Z— jBEg = jH,
) %o ~ilEo = —j(h? ® H,) = —ji(ho"Hy) @3
0H, ., . o '
0H . . . . 2.

\ 55 —JlHp = jn*(h* @ E, = jn’h,"E,

{ PEp = ALz = Ho (4.4)

AH, — BH, = n?Eq

where as before wp, = zoky and wey = ky/zy as well as z, = \/? =120 and
0
ko = w\/upso = 2m/A. Symbols on the above equations represent the Fourier
Transforms along z and ¢ of the electromagnetic field functions via the

. . H H
correspondences hEg = Epz,, hE, = E,zo, hHp — Z—" , hH, > ~2 E, >
0 0

E,z,and H, —» B2  The wave number S was also replaced by f/ko and h was

Zo

replaced by hko as well as ho with hoko.

We again define a set of four new functions I, Iz, Vy, Vg in the two algebraic

equations (4.4) as

J J

_ UigtBho’Hy , _ lg+Bho’Ey (4.5)
iF F
F=0+ph

I Iy =" =B 1 = w2Ey = (IH, - BH,)
L F
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Using the new functions Iy, I, V), Vg it can be proved as in previous chapters
through simple algebraic analysis that the four differential equations (4.3) are
equivalent to the following two sets representing two interconnected transmission

lines of length A6.

37__f7 (4.6)

(4.7)

together with the auxiliary algebraic relations

2= P (B = By
F=1+ ﬁzh ? (4.8)

Using (4.6) it can be proven that the Fourier Transforms of the Electric and
Magnetic field components can be calculated from
. B . 1
Hg = jly, Eq = _IE
. l . . LI
Hy = lg + BV, E, =271+ Vg (4.9)

. . ho? : ih
\Hy = jtViy =21y, B, =11 +JF° Iy

For [ =0 we also have M = 0 so that the set of equations (4.6) and (4.7) are
independent and the corresponding transmission lines standing for the Transverse
Magnetic and Transverse Electric modes (TM and TE) become decoupled. For [ # 0,
the transmission lines are coupled thus each of them represents two modes of
transmission (two eigenmodes with eigenvalues y? +nMF ), with different
transmission parameters. These eigenmodes are “normal” between each other. That

means that if the one mode is non-zero, the other is zero. Finally it can be proved that
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for 1 # 0 the Magnetic field (H) is related to the respective Electric field (E) with the

relation H = ijnﬁ/zo in every cylindrical layer.

We shall use symbols M (Magnetic or TE modes) and E (Electric or TM modes) for

these modes which can now be written as follows:

aVy _ (Y2-nMF)
=———>oIy
o jEnt (4.10)
M _ _; tm
0 JEN""Vy

Fortm = {g there are two independent modes M

Vg _  (y*+nMF)
20 — igatm 'E
% jEnt (4.11)
E_ _; tm
_69 ]Fn VE

Fortm = {g there are two independent modes E

To apply the resonance technique, we assume again a set of successive layers of
length 60 in all cases that can be represented by a quadrupole as that of Figure 3.2.

We also define impedances as

_ 1 vhgae

B — ; m
2 Jrnt (4.12)

P jrntmag

for tm = {g The quadrupoles representing the successive layers can be connected

in series, because the equivalent “voltages” and “currents” on their boundaries are
continuous due to the fact that Vy,, I, Vi, I are continuous functions of 6 following
the normal and tangential Magnetic and Electric fields that are continuous at the
boundaries. Thus, the set of the successive layers is forming an overall “Transmission
Line” with pure imaginary impedances. The resonance “frequencies” of the line are the
transmission wave numbers “f” of the fibers. The terminal impedances for 6 =
o and 8 = 0, are the boundary conditions for the transmission line behavior. These
terminal impedances should be calculated using transmission line properties or
symmetry properties. Furthermore for b = n, we can calculate the cutoff condition, i.e.

the minimum wave number k, with which a mode may exist in the fiber. For
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monomode transmission, the interesting region for monomode transmission is the

region between cutoff wave numbers of the fundamental mode LP;; and LP,; .
4.3.  Applications in distinct coordinate systems

The method of conformal mapping for derivation of orthogonal cylindrical
coordinate systems will be applied in the following cases of (a) Elliptic Cylindrical
System (ECS), (b) Bipolar Cylindrical System (BCS). Which are examined separately

in what follows.
4.3.1. Elliptical Cylindrical System case

We againsetw = 6 + jo ,z = csin(w) = x + jy = csinh 8 cos ¢ +
jc cosh O sin ¢ so that

{x = csinh 6 cos ¢
y = ccosh@sin ¢

These relations prescribe an elliptic coordinate system. In the elliptic cylindrical
system for 6 constant on the plane (x,y) ellipses (of two foci in distance 2c) are
generated, while for ¢ constant, hyperbolae (of the same foci) are generated that are
normal to the previous ellipses. The elliptic system can be used for the study of fibers
with an elliptic core [9]. The transmission line technique has already been used for the
study of elliptic core fibers. Step index elliptic fibers can be also tackled using the

(complicated) Mathieu functions.

2
In elliptic cylindrical coordinate systems hfe,q,) = % (cosh 20 — cos2 @) and thus

omitting the harmonics we can use the previous equations via the relation h(z)(g) =

2 2
% cosh 26 which now gives % = ¢?sinh 26 resulting in the system

F=12+B%h3
y2=12+(B2-n2)h§
B (4.15)
M=BI=2/F
YiE=Y2-nMF and yiy=y%+nMF
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Each couple of modes HE or EH will be then represented by T-quadrupoles with:

_ 1 vfp46 _ 1 y§y4e
B ™ 3 jEntm B ™ 3 jrptm (4.16)
L :
and Zp = ant—mAH
for tm = {g Thus, the resonance technique can be applied assuming that z;,,(0) and

Zg (90) Will be defined.

4.3.2. Bipolar Cylindrical fiber analysis

Fromz=x+jy andw =0+ jp =celn [g] or, equivalently z = c tanh("/,) we

get a representation of a bipolar orthogonal cylindrical coordinate system.

Furthermore, it can be proven that

csinh @ csing

and y =

" cosh 6—cos ¢ cosh6—cos ¢

The previous relations for & constant represent eccentric circles on (x.y) plane.

c-coshé
sinh 6

Every eccentric circle has a radius 1, = $ centered on (X) axis at x, =
so that x, = 1, - cosh 8. The relations for ¢ constant represent circles on (x,y) plane,
normal to the previous circles. Every such circle has a radius 1, = @ centered at

c-cos @

(y) axis at y, = ory, =1, cos ¢. Viathe auxiliary relation

sin ¢

(')W_ 1 1 2c

9z z—c z+4+c z2—c?
it can be shown that

2

=[

ow

0z

c c

h2= ]2,0rh=

cosh 68—cos ¢ coshf—cos ¢

Furthermore we can show that

2 _ 1 c2m,, __c%coshf
h0(9) - an0 h*de = sinh39

from which we derive
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oh} ] 2 3

C Y T B

a6 sinh? 6 * sinh* 6
Using the previous we arrive at the system

F=12+B%h}
y2=12+(B2-n?)hj
(4.17)

LT
M=BI-J/F

yip=Y2+nMF and y2y =y2-nMF

For each couple of modes HE and EH we use their equivalent representations via

T-quadrupoles with impedances as

( 1 y2,46 1 y2,46
!ZB ~2 jEntm or B =§an‘m
' d Zp=———
L e Lp = ipntmag

for tm = {(2) At this point it must be noted that transmission in eccentric optical

fibers has been studied before in several cases [49], [50], [51], yet without the use of
the RTL technique. In this chapter it is proved that the transmission modes of the
equivalent transmission line of the eccentric fibers can be computed using the RTL

technique, with remarkably accurate results.

It can be proven that given eccentric core fiber defined by r, r,, and & as in figure,

6., 6, of the eccentric core and gladding can be calculated by the following relations:

1 [(r2 -1
coshleg 5 -6
1

1 (v} —1f
cosh @, = o 5 +4
2

Also in order to apply the resonance technique method, Z;, and Z,,; must be
calculated on the periphery of the core circle defined by 8,. The starting value for the
calculation of Z;, i.e.its value for 8 =0 is Zy,y = 0 (derived using the limit
hg(o) — o) and we proceed up to 6; with a constant refractive index n =n;. The

starting value for the computation of Z,,; for 8 = co (where n=1 for air), can be
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estimated considering that h3 =0,M =0,y =1 and F =[? thus Zout(ew) = JLF =

1
jizooju
Proceeding towards 6, , for 8 > 6,n = 1,while in the gladding i.e. in the

region 6; < 6 < 6,. The recursive relations within (or outside) are derived by the T-
quadrupole as follows
(Zin,n + ZB,n)Zp,n

Z; = +Z
inn+1 Zin,n +ZB,n +Zp,n Bn

Finally the resonance condition is given by:

Zin=0,) T Zout9=6,) = 0
The fundamental mode LP;; was calculated for r,=5¢r;, n,1=1.54, n,2=1.47 and
various eccentricities 8=ry, 2¢ry, 3°ry.

4.4 Numerical results for a Bipolar Cylindrical fiber

With reference to figure 4-2 it becomes clear that for fixed V' values the propagation
constant is reduced as the fiber becomes more eccentric. Depending on the level of

eccentricity this could cause the field to reach the outer cladding boundary and increase

losses. This also translates to a decreased value of W (W =r,k,~/b?> —n,? ) which in

effect would broaden the mode field into the cladding.
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Fundamental mode LP11 for r2/r1=5 and various eccentricies ecc/rl= 1.0, 2.0, 3.0
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Figure 4-2 Fundamental mode normalized propagation constant, (LP11), for various
normalized eccentricities & for 6/r1=1.0,2.0, 3.0 (n1=1.54, n2=1.47)

The fundamental mode LP11 can be calculated with a similar procedure as previously

for given values of the c/ry ratio taking into account that 8; = arctanh(ri), 0, = oo.
1

Initial impedance values are respectively Z;, oy = 0 and Z,y¢(w0) = ]—11 , for air refractive

indexn = 1. If instead of air another gas of refractive index n = ref was present than

1

the outer terminal initial impedance should be Z ;¢ () = oo
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LP11 mode for three c¢/rl values 2.0, 2.5 and 3.0
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Figure 4-3 Fundamental mode (LP11), for various normalized constants ¢ for ¢/r1=2.0, 2.5,
3.0.n1=1.54, n2=1.47.

The fundamental mode LP1; wave numbers were calculated for ratio values

c/ri=2, 2.5 and 3, as functions of V = r1ky+/n? —n3 as shown in figure 4-3.
45  The D Fiber

The analysis that takes place in the current chapter is of special interest due to its
potential application to the case of the D-shaped fiber. The D-fiber is a specific type of
optical fiber that combines ellipticity and eccentricity, its name deriving from the shape
of its section which is shown in Figure 4-4. When it comes to fibers that retain
polarization, the D fiber has two important benefits: an accurate location of the
birefringence axes and an efficient way to form power splitters or directional couplers.
D fiber achieves both goals by having a guiding domain that is easy to reach and a cross
section that facilitates the locating of the birefringent axes. In the cross section of the D

fiber, the straight part of the D is parallel to the major axis of the elliptical core.
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Figure 4-4 Image of a section of a D fiber [39].

The D fiber can be used in various fabrications including the loop mirror which can be
applied for monitoring coupling coefficients, Indium-coated polarizers, and

optoelectronic devices.
4.6 Conclusions

Conclusively, this chapter presents the combined use of Fourier Transforms,
Orthogonal Curvilinear Transforms, Conformal Mapping and their application into
Maxwell’s Equations towards deriving Transmission Line Models of Optical Fibers
with ellipticity or eccentricity in the core. The analysis reveals the modal perturbation
of the perfectly circular and non-eccentric fibers. This novel method has wide range
applications in D-shape optical Fiber sensing where the core is on purpose located near
the surface of the flat of the D in order to increase sensitivity of the surroundings. It can
be applied to fiber optic device and component manufacturing and for the study of

connector losses, as well as fiber to device losses.

100



5 CHAPTERS
Study of Optical Fibers with Angular Asymmetry

5.1 The case of angular dependency

This chapter presents a new approach towards the study of special types of optical
fibers with altered geometry which can be characterized as unconventional fibers. At
first, we shall define as conventional optical fibers all the cylindrical fibers that can be
separated in a set of very thin successive cylindrical layers of average radius r of
uniform refractive indexes 1. The refractive indexes of the successive thin cylindrical
layers in general are different for instance when the refractive index profile is solely a
function of r. This profile variation from the center of the fiber up to the outer air limit,
uniquely specifies the properties of each fiber.

At this point we can define as unconventional fibers the ones in which at least in some
of its successive thin cylindrical layers the refractive index is varying also along its
radial coordinate in general as #(7,¢). This includes all fibers in which their cores are
non-circular as are for example the elliptic core fibers, non-symmetric or eccentric core
fibers. In these fibers all the cylindrical layers that include parts of core and parts of
gladding, they have varying refractive indexes along (¢). Specifically, there will be
three main aspects of altered geometry of the cross section of such fibers including

eccentricity of the central hole, asymmetry, and elliptic boundary.

All the cylindrical optical fibers shall therefore be referred to as the class of
conventional optical fibers (COF) for as long as they can be separated in a set of n very
thin successive cylindrical layers of average radius r of uniform refractive index values
ni. Indices of successive layers will be allowed in general to be different for each step
as say, n(ri). The resulting, total index profile n(r) variation from the center of the fiber
up to the limit outer air medium, completely defines the propagation properties inside
the fiber.

The class of unconventional optical fibers (UOF) will additionally be defined as
including fibers in which at least in some of their successive thin cylindrical layers
present an additional variation of the total index profile along the radial coordinate ¢ in

the form n(r,e). Such cases include elliptic core, non-symmetric or eccentric core fibers
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and in general, all cases of not strictly circular core fibers. In these cases, any
discretization into thin cylindrical layers that “cuts™ through the core and cladding,
results in a variation of the refractive index along ¢. In figure 5-1 a related case is
presented, of a thin circular cylindrical layer cutting an elliptic core fiber. As is evident
in the schematic representation, the variation is analogous to the arc length of the

circular sector cut by the ellipse for each discretization step.

n2

n1

Figure 5-1 Example of the alternating character of the local index value from a thin shell

radial discretization.

Additionally, photonic fibers made of silica with a set of small air holes around their
centers will have many cylindrical layers of varying refractive indexes along 0. In figure

5-2, an example is shown, of a PCF with a hexagonal lattice of seven rows of air holes.
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Silica

air hole LA | |d

Figure 5-2 Schematic depiction of the alternating step index resulting from radial

discretization in PCF.

Again, radial discretization with thin circular cylindrical layers results in alternatively
cutting through air holes and silica of a PCF as depicted in the schematic. As part of the
main research, this chapter presents the development of an RTL-based method aiming
to include all such UOF cases via an appropriate transformation to mathematically

equivalent COF cases.

5.2 Mathematical equivalence of homogeneous circular cylindrical layers to

electric transmission lines

The basis for the application of the previously introduced RTL is the radial
discretization of all cylindrical fibers via a separation into a succession of thin
cylindrical layers each one with its own constant refractive index #. These layers can
be extended outside of the cladding in order to take into consideration the effect of the

surrounding air (n=1).

Following the analysis presented in chapter 2 section 6, the Maxwell equations take

the forms:
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BE ==, = ~JH, (5.1)
(220 ’jT——jH_z
and
JﬁH = jn*(E,
{ jBH, =° —Jn 2(NE, (5.2)
ELUAE "—l H, = jn*(")E,

T

Finally it is possible to prove that the system of equations (5.1) and (5.2) can be
transformed in a set of four differential equations (5.4), relating the equivalent “voltage’
and “current” functions Vy, Iy, Vg, Iz defined as follows:

lHy+BrH,

V. =
M jF

rH; _ BBy -IE;
J J

Iy = (5.3)

lE,+BTE,

VE = F

I =n*rE, = lH, — prH,

2472
where we use the notation F = (BT)%

X o (5.4)

. . 12
In (5.4) we introduced the total propagation factor y? :r—2+[32 —n? and the

218

auxiliary function M = B+ ITF
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At this point it is noticed that V), I, Vg, I are continuous functions at the boundaries
because the tangential components of electric and magnetic fields HZE) and E_(p_) b—";
on the cylindrical surface are continuous functions passing the boundaries of the
cylindrical layer. Using the previous relations, the Fourier Transforms of the Electro-
Magnetic field components along (r, I, f ) can be expressed as functions of their

equivalent “voltages” and “currents” functions with the auxiliary relations

- _JI = Ie
HTZJM/T‘» Erzm

. p
H(p :]lVM /r_FIE

— B

Y B
H, = EIE + jBVu

l
Iy + BVg

E_z=_jﬁ

It becomes evident by inspection that the final equations (5.4) represent two coupled

electric transmission lines.

5.3 Decoupling the transmission line equations

Following the analysis from chapter 2.7

AV _ 52

ar  jFM

al; _JF (5.5)
o = JFln

6VE_ 52 I

ar — jn?F F

a; o ’; (5.6)
? = —]FTl IE

Thus the set of two coupled transmission lines (5.4) is equivalent to two independent
transmission lines (5.5) and (5.6).

The two waves represented by the equations of transmission lines (5.5) and (5.6), are

geometrically normal because the first is related to Magnetic field and the second to
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Electric field that are geometrically normal for transmitted EM waves. This property is
an inherent property of EM modes in optical fibers related to birefringence phenomena.
However, the B respective values, for any mode, are always found to be very close and

can be considered as practically equal.

5.4.  Equivalent circuits for cylindrical layers, boundary conditions and

birefringence

Taking into consideration the transmission line theory, it can be proved that each

layer of infinitesimal thickness or is equivalent to a T-circuit as the one shown in

Figure 3
Zp Zp
°—|: 78
Vin Vout
’m ’out
Zp
& ®

Figure 5-3 The equivalent quadrupole for each cylindrical sector.
( § (é61)
Zp = —tanh [ ]
! B JF / 2

_ 3
L Zp = jF sinh(&87)

For {6r « 1 the impedances can be approximated by the equivalent relations

JF (5.7)

If £2 > 0, both Z, Z,, are “capacitive” reactances, for €2 < 0 however Zz becomes
“inductive” reactance. For (Vg, I) the approximate respective impedances of the T-

circuit are given as
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B Ez(&r/z)

7'y =2

5 nr (5.8)
7 =

P 7 jn2psr

As previously stated the functions (Vy,,1,) of each layer are continuous at the
cylindrical boundaries of the layer, thus if we divide the fiber (including a sufficient
number of air layers) in successive thin layers and replace them by their equivalent T-
circuits, an overall lossless transmission line is formed with only reactive elements. For
given ‘I’, the ‘4>’ values that lead to the resonance of the overall transmission line are

the eigenvalues of the whole optical fiber.

When a transmission line is in resonance, at any arbitrary point r,, of the line, the sum
of reactive impedances arising from the successive T-circuits on the left and right sides
of r, should be equal to zero, thus the equation giving the eigenvalues of the

transmission line is the following :
{ZL.rO + ZR.ro =0 (5.9)

Equation (5.9) provides the eigen-values ‘B * for a given ‘I’ , where Z, ., Zg, are
the overall reactive impedances of successive T-circuits on the left and right of r, using
(5.7) or (5.8). The value of 1y is usually given by the core radius. For the same ‘I’ the
equations (5.7) and (5.8) give usually slightly different values of ‘4’, this phenomenon
has already been defined as “Birefringence”. For circular step index fibers the
birefringence is negligible, however for elliptic fibers and fibers of any other non-

circular cores the birefringence phenomenon could be significant.

In order to calculate the overall reactive impedances on the left and right of r, we
should find the impedances for » — 0 and for r — co. As we proceed to 0 or to oo the

remaining piece of transmission line becomes “homogeneous” i.e. its overall reactive

impedance is equal to its characteristic impedance given by Z = £ (or jniF). Then

JjF

we must have

roo:F > B%r,MF - 0,§ > {f2—n2>Z_,, =0

12 l 1 1
r—>0:F > — ->-2>7 =—(or—)
T =07 jn2|i|
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For =0 Z,_, = o (open circuit at the center of the equivalent transmission line) It
is useful to notice that there is an equivalence between our formulation and the classic
formulation modes of optical fibers. In particular, for [ =0, the modes (Vwm,Im) are the
TM modes ,while the modes (Vg,lg) are the TE modes. For [ >0, the modes (Vwm,Im)
are the HE modes ,while the modes (Vg,lg) are their HE birefringence modes. For !
<0 the modes (Vwm,Im) are the EH modes ,while the modes (Vg,lg) are their EH

birefringence modes.

5.5. Calculating “Voltages” Vv , VE and “Currents” Iy, Ie and

resulting fields

For any given [, using the resonance technique the g values of the two birefringence
modes can be calculated. These S values are practically the same, thus we can consider
them as equal or we can consider as the proper value of § the mean value of the two

modes.

Taking Vm =1 at the center point of the fiber(r=0) , the respective value of Iv at the
same point can be calculated by the respective terminal impedance. Using the matrix
relations between input-output for the equivalent successive T-circuits, the values of
V) and I, at the rest thin cylindrical layers can be calculated. In fact from the general
theory of the telegrapher’s equation we know that the inputs and outputs are associated

via a transfer matrix as follows

(o1 = ( cosh((r)-6r)  Z(r)-sinh(§(r) - 57‘)) [Vin] ~
outlout sinh(¢(r) - 61)/Z(r) cosh(é(r) - or) Iin
. ( 1 Z(r)- () 5T)) [Vin]
() -61)/2() 1 L
= ( 1 §4(r)- 5T/jF(T)) [Vin]
JjE(r) - 6r 1 Iin

= (5.10)

In (5.10), the characteristic impedance should be taken as Z(r) = é(r)/jF (r) to fit
with the previous analysis. Using the relations nV; = V,, and nl,, = I the respective
values of their birefringence equivalents can also be calculated for every thin

cylindrical layer ri.
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5.6. Unconventional fibers

The refractive index n(r,¢) of the fiber with a UOF profile in general can be described
as a function of both r and ¢. Each cylindrical layer of an average radius r is considered

to have a local value 5 (¢) for r = rlzﬂ . Again, we make use of the generic form of

Maxwell equations as in the previous section. Fourier Transforming the first vector
equation gives the same set of equations as in (5.1), since there is no difference with
the UOF case, however the second Maxwell vector equation due to presence of the

general n function should now be written as

( LH, - jH, = jn(p)* ®F,

JI jBH; — 22 = jn(¢)? ®E, (5.11)
L2 _2E = jne)? @ F,

The symbol @ means convolution arising by the product of two functions of the
variable ¢. In the following paragraphs it will be shown how to escape this

mathematical difficulty for the usual unconventional optical fibers.
5.7.  UOF with non-circular, non-symmetric or eccentric cores

For unconventional fibers of non-circular cores there are a set of circular layers where
the refractive index varies between the inner and outer core and cladding values
respectively. In any such case, the function n(¢)? is a sum of a steady component n?
and a periodic function of ¢ of period 2x thus can be written as a Fourier series n(¢)? =
n? + Y12 N exp(jke). Thus < n(@)? >= n?.

Taking into consideration that the convolution of the product of an exponential
function exp(jk¢e) with any function A(¢) of a Fourier Transform A(l) is equal to
A(l + k), i.e. the convolution generates “harmonics”. The function n(¢)? is in a set of
cylindrical thin layers, a sum of step functions alternating between the values
n? and n3 ,wheren, and n, are refractive indexes of core and gladding. Considering
that in optical fibers the refractive indices of core and cladding are very close, it can be

effectively assumed that (n; — n,)/n; « 1. As a result, any harmonic factors Nk of
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the function n(¢)? are negligible in comparison to its steady component n? and can be

omitted.

As an example, the harmonics become maximal for equal alternation steps. In this
case the first harmonic, that has the maximum value among all other harmonics, is

2_ .2
equalto A; = M while the steady component n? equals (n? + n3)/2 and we

can make an approximation as A, /n? ~ (4/m)(n; — ny)/n; < 1.

Thus, for optical fibers we can always assume that < n(¢)? >= n?. Then the

system (5.11) will become equivalent to the following

by L .
|( J? z _]ﬁH(p :]anr
. — O0H, . o=
4 JBH, — =% = jn’E, (5.12)
10(rH 1 — _
L" (6r¢) Jr Hy =] ’ E,

We can then follow the analysis that we did with the conventional fibers, where n?2

is the average value of the #?(p) of each layer along ¢ in the [0, 2x] interval.
5.8.  Application to elliptic core fibers

The method was applied to the calculation of fundamental modes of a fiber of elliptic
core of a and b major and minor semi-axis respectively with refractive index n1=1.54,

and a cladding value of n2=1.47 (figure 5-1) for various wavelengths (defined by

various V factor values V = b = 2 x m\/n? — n3 ) and four ratios a/b=1.1,1.3,1.5,2.0.
Results are compared with previous results calculated with Mathieu functions with the
results differing only by 0.01+ 0.123 %.

The steady component of the refractive index for the calculations for each radius r is
defined as nl for r<b, n2 for r>a and as (n; * ¢+ n, * @, )/m when b<r<b, where ¢1
,p2 are the arcs of the circle of radius r, inside and outside the ellipse in the upper semi

ellipse.
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COMPARISON OF ELLIPSE FOR THE FUNDAMENTAL MODES
a/b=1.1 | Mathieu TR
Vv b11, no b11, no DIFF relDIFF(0/00)
1.5 1,487454917000000 | 1,487538376725580 -0,000083459725580 | 0,056109079
1.7 1,493245000000000 | 1,493450986151880 -0,000205986151880 | 0,137945315
1.9 1,498457700000000 | 1,498722795582640 -0,000265095582640 | 0,17691229
2.1 1,503029750000000 | 1,503312465850780 -0,000282715850780 | 0,188097309
23 1,506994250000000 | 1,507270533663140 -0,000276283663140 | 0,183334252
2.5 1,510418500000000 | 1,510675880979590 -0,000257380979590 | 0,170403752
2.7 1,513376830000000 | 1,513609496242670 -0,000232666242670 | 0,153739794
2.9 1,515936970000000 | 1,516144774928280 -0,000207804928280 | 0,13708019
3.1 1,518160870000000 | 1,518344840727660 -0,000183970727660 | 0,121179996
3.3 1,520101500000000 | 1,520262686679180 -0,000161186679180 | 0,106036787
Table 5-1 Elliptic fiber with three indicative elliptic thin layers. Inside the ellipse r<b(n=n),
outside the ellipse r>a(n=n2) and partly outside b<r<a (n1>n>ny). Ellipticity: 1.1
COMPARISON OF ELLIPSE FOR THE FUNDAMENTAL MODES
a/b=1.3 Mathieu TR
vV b11, no b11, No DIFF relDIFF(0/00)
1.5 1,491188512000000 1,491027765079550 0,000160746920450 | 0,107797853
1.7 1,497028990000000 1,496897637511800 0,000131352488200 | 0,087742114
1.9 1,502119714000000 1,501986592174880 0,000133121825120 | 0,088622647
2.1 1,506471523000000 1,506335918376860 0,000135604623140 | 0,090014727
23 1,510205927000000 1,510039049600890 0,000166877399110 | 0,110499764
2.5 1,513423500000000 1,513196002523000 0,000227497477000 | 0,150319773
2.7 1,516170122000000 1,515897403413190 0,000272718586810 | 0,179873342
2.9 1,518513480000000 1,518220317018870 0,000293162981130 | 0,193059189
3.1 1,520539300000000 1,520228501721160 0,000310798278840 | 0,204400030
33 1,522298190000000 1,521974104375010 0,000324085624990 | 0,212892341

Table 5-2 Elliptic fiber with three indicative elliptic thin layers. Inside the ellipse r<b(n=n),

outside the ellipse r>a(n=n) and partly outside b<r<a (ni;>n>n,). Ellipticity: 1.3
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COMPARISON OF ELLIPSE FOR THE FUNDAMENTAL MODES

a/b=1.5 | Mathieu TR

Vv b11, No b11, no DIFF relDIFF(0/00)
1.5 1,494250610000000 1,493636836360350 0,000613773639650 | 0,410756827
1.7 1,499922346000000 1,499340905733040 0,000581440266960 | 0,387646913
1.9 1,504818670000000 1,504203108321470 0,000615561678530 | 0,409060368
2.1 1,509039170000000 1,508315227121150 0,000723942878850 | 0,479737633
23 1,512533150000000 1,511793195339390 0,000739954660610 | 0,489215500
25 1,515493100000000 1,514745797603970 0,000747302396030 | 0,493108412
2.7 1,518011570000000 1,517265908951310 0,000745661048690 | 0,491209068
2.9 1,520166130000000 1,519429880525980 0,000736249474020 0,48432172
3.1 1,522019120000000 1,521299532774000 0,000719587226000 | 0,472784617
33 1,523620800000000 1,522924688766490 0,000696111233510 | 0,456879582

Table 5-3 Elliptic fiber with three indicative elliptic thin layers. Inside the ellipse r<b(n=n1),

outside the ellipse r>a(n=n;) and partly outside b<r<a (ni>n>ny). Ellipticity: 1.5

COMPARISON OF ELLIPSE FOR THE FUNDAMENTAL MODES

a/b=2 | Mathieu TR

\' b11, no b11, no DIFF relDIFF(0/00)
1.5 1,499390500000000 1,497675992184210 0,001714507815790 1,143469840
1.7 1,504727250000000 1,502885066432660 0,001842183567340 1,224264110
1.9 1,509110880000000 1,507251064452310 0,001859815547690 1,232391584
2.1 1,512712190000000 1,510915134944720 0,001797055055280 1,187968913
2.3 1,515667864000000 1,514006539095880 0,001661324904120 1,096100896
2.5 1,518085750000000 1,516632675098700 0,001453074901300 0,957175773
2.7 1,520047200000000 1,518879733445780 0,001167466554220 0,768046252
29 1,521631209000000 1,520816115931370 0,000815093068630 0,535670578
3.1 1,522869900000000 1,522496060692140 0,000373839307860 0,245483418
3.3 1,523799100000000 1,523962746538420 0,000163646538420 0,107393775

Table 5-4 Elliptic fiber with three indicative elliptic thin layers. Inside the ellipse r<b(n=ny),

outside the ellipse r>a(n=n;) and partly outside b<r<a (n1>n>n,). Ellipticity: 2.0
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In the following figure 5-4 the B diagram of the fundamental even mode of an

elliptic fiber with semi axis ratio aa/bb=2, n;=1.54 and n,=1.47 and variable factor

defined by : V = bb - kg - \/n? — nZ ) is shown

Elliptic core fiber, aa/bb=2; n1=1.54,n2=1.47, fundamental mode (I=1)
1.55

1.54

1.53

1.52

B/x0

151

b=

15

1.49

1.48

1.47
0

Figure 5-4 B-V diagram of the even fundamental mode an elliptic fiber of semi axis ratio
aa/bb=2 and core refractive index 1.54 and gladding index 1.47

5.9.  Application to rectangular core fiber

The method was applied also in the calculation of fundamental modes of a fiber with
an rectangular core (see figure 5-5 ) of aa and bb semi sides, with refractive index

n1=1.54, and a gladding of refractive index n2=1.47, for various wavelengths, defined

by various V factor values V = bb - k, - \/n? — n3 and four ratios a/b=1.1,1.3,1.5,2.0.
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n2

Figure 5-5 Rectangular core fiber of semi sides aa and bb , for r<bb, n=n,, for r>aa, n=n;,
for bb<r<aa, n,<n<n;

The birefringence results are compared with the birefringence results of the elliptic
core fiber with equal semi axis. The steady component of the refractive index for the
calculations for each radius r is defined as nl for r<b, n2 for r>a and as
(nq * @1+ n, * @, ) /m when b<r<b, where ¢1,¢. are the arcs of the circle of radius r,

inside the orthogonal and outside the orthogonal in the upper semi orthogonal.
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COMPARISON OF BIREFRINGENCE FOR ELLIPTICAL AND ORTHOGONAL CORE FIBERS

Rectangular core Elliptic core
Fundamental Mode

a/b=1.1 values Birefringence (TR) Birefringence (TR)

\'

1.5 1,492539945916010  0,000346704531850 | 0,000303585935370
1.7 1,498357447022790  0,000513384576600 | 0,000575417316090
1.9 1,503350570368440  0,000576764589930 | 0,000712035787010
2.1 1,507590076049970  0,000580793732230 | 0,000757892695190
2.3 1,511183551577450  0,000554099561380 | 0,000750121835720
25 1,514237341469060  0,000513428535340 | 0,000713597265680
2.7 1,516844499544290  0,000468033918970 | 0,000663528284040
2.9 1,519082616576080  0,000422786387590 | 0,000608733773240
3.1 1,521015087494710  0,000380083447450 | 0,000554096605350
3.3 1,522693317372840  0,000340959781570 | 0,000502161305990

Table 5-5 Comparison of birefringence values between fibers of rectangular and elliptical

core. Ellipticity 1.1

COMPARISON OF BIREFRINGENCE FOR ELLIPTICAL AND ORTHOGONAL CORE FIBERS

Rectangular core Elliptic core
Fundamental Mode

a/b=1.3 values Birefringence (TR) Birefringence (TR)

\'

1.5 1,495847758922450  0,000344065006270 | 0,000325722889410
1.7 1,501459058153440 0,000451639480470 | 0,000520210503450
1.9 1,506179273220210 0,000480411129310 | 0,000601842058430
2.1 1,510134432440230 0,000468166987430 | 0,000615857816190
2.3 1,513456882268610  0,000436878544030 | 0,000593498171210
25 1,516262818410440  0,000398422704380 | 0,000553682765940
2.7 1,518648025192190  0,000358904227450 | 0,000507155757960
2.9 1,520689537973830  0,000321272665480 | 0,000459732120240
3.1 1,522448794667530  0,000286796641510 | 0,000414381305640
3.3 1,523974761485380  0,000255871394240 | 0,000372472456950

Table 5-6 Comparison of birefringence values between fibers of rectangular and elliptical

core. Ellipticity 1.3
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COMPARISON OF BIREFRINGENCE FOR ELLIPTICAL AND ORTHOGONAL CORE FIBERS

Rectangular core Elliptic core
Fundamental Mode

a/b=1.5 values Birefringence Birefringence (TR)

\'

1.5 1,498120450723510 0,000278361237480 | 0,000295449461120
1.7 1,503463400911670  0,000357573590440 | 0,000442306154260
1.9 1,507908503417930  0,000376605061620 | 0,000497613358440
2.1 1,511610102671980  0,000365648210230 | 0,000501375052490
2.3 1,514709614765410  0,000341283334480 | 0,000478771792790
2.5 1,517324041962060 0,000312143747180 0,000444266137270
2.7 1,519546684126380  0,000282536889750 | 0,000405759261530
2.9 1,521451022056960  0,000254483058070 | 0,000367378187930
3.1 1,523094834995030  0,000228815613970 | 0,000331142666700
3.3 1,524523718254910  0,000205765806060 | 0,000297919827130

Table 5-7 Comparison of birefringence values between fibers of rectangular and elliptical

core. Ellipticity 1.5

COMPARISON OF BIREFRINGENCE FOR ELLIPTICAL AND ORTHOGONAL CORE FIBERS

Rectangular core Elliptic core
Fundamental Mode

a/b=2 Values Birefringence (TR) Birefringence (TR)
\'

1.5 1,501154370588750 0,000115100455570 | 0.00017851280204
1.7 1,505905455821760 0,000185956233950 | 0.00028097261437
1.9 1,509839664490200 0,000217496051150 | 0.00032331073887
2.1 1,513123501262850 0,000227441962700 | 0.00033221109868
2.3 1,515890438928040 0,000225620967080 | 0.00033221109868
2.5 1,518243818452060 0,000217498908240 | 0.00030589412246
2.7 1,520263082984900 0,000206163759050 | 0.00028459934024
2.9 1,522009559228890 0,000193389032200 | 0.00026227629912
3.1 1,523531014266760 0,000180203858540 | 0.00024038749997
3.3 1,524865056067340 0,000167204354840 | 0.00021967555642

Table 5-8 Comparison of birefringence values between fibers of rectangular and elliptical

core. Ellipticity 2.0

For comparison reasons the average refractive indexes as functions of r, for an
elliptic core fiber and for a rectangular core fiber of the same aa and bb and aa/bb=2,

are shown in figure 5-6.
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Fibers with elliptic and rectangular cores aa/bb=2

1.56

1.55
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Rectangular

1.52

1.51 \\/

1.5 > =

Average refractive index
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1.49 \

1.48
\
\ \\
1.47
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Reduced distance from the center of the fiber

Figure 5-6 Average refractive indexes of circular thin layers of elliptic and

rectangular core fibers

5.10. The PCF case

In case of a holey fiber, we separate the whole fiber circular cross-section into a set
of thin cylindrical layers variable # along ¢ extending beyond the cladding to take into
account the surrounding air with #=1. Each layer’s thickness is 6r = r1 - r.. We can then
approximate n(r,p) as n(¢p) for the average r <r> =r+ Jr/2. The refractive index can be
written as a Fourier series i.e. as n(@)? =<n >2+ Y *% N, exp(jlp). Taking into
account  the  properties of the Fourier transform we see that

FT (exp(jlg)- f (@) = f(1+1") so that the expressions in the second terms of
equation (5.11) spread around a spectrum of harmonics. This is also to be understood
as a result of successive scatterings from the bored air holes. We can now use the natural
geometry of the usual hexagonal lattice to see that for each set of holes we can have
either 6k harmonics. For the fundamental harmonic of I'=1 the derived harmonics
passing through a layer of 6k holes should be 6k+1. Thus the fundamental wave
crossing the successive layers, “sees” a different set of periodic rectangle functions that

will be shown rigorously to contribute a different number of harmonics (7,13,19, etc.).
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For a common harmonic to pass through, an integer product must be considered
which leads to higher and higher harmonics thus cutting out the entire spectrum apart
from the last highest frequency. We conclude that for holey optical fibers the
approximation for any of its cylindrical thin layers, 7(r, |)2 ~ 772(I’) = 772 suffices for

further analysis of the resulting equations. Thus the original system (5.11) becomes

JBH, ——% = jn’E, (5.13)
| o)
10(rH, l—— .
k;_(ar(p) - TH =jn’E,

For the usual hexagonal pattern of holes we may utilize elementary analytical
geometry to derive the two separate regions where the refractive index alternates
between the air refractive index n=1 value and the higher value of the crystal material.
We assume that along each separate layer a large circle corresponding to each
cylindrical shell of radius r from the center of the fiber to the center of a smaller hole

of radius r << r0 is cut while moving clockwise along the large circle.

Prescribing a set of circles of successive radii r, for each of which we can find the
air holes (in 1/6 angle of the PCF) which are cut by the corresponding radius each
time. Each arc is computed inside its respective air hole and the total sum of them
divided by n/3 expresses the average squared refractive index. As a matter of fact, the
square of the refractive index in this sum is equal to one, while the refractive index in
the rest arc is the square of the silica refractive index. Hence the average refractive
index can be easily calculated along r. Figures 5-7, 5-8 and 5-9, present the average
refractive index and the Electric field of a hexagonal PCF, of n=1.46 with a twelve
layers lattice, as functions of the reduced distance from the center of the fiber for the
fundamental mode. The figures were generated by a MATLAB code for air-hole
diameter equal to 0.8 of the air-hole distance and the air hole diameter was 3.87 times

the transmitted wavelength. We also notice the parametrization used as = (A —

d/2) = 2 x m\/n? — nZ ), N1orthe Silica refractive index , nz ~minimum refractive
index=1.123, A for the reduced air hole distance, d for the reduced air hole diameter
and, A — d/2=reduced inner core of PCF.
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Figure 5-7 Average refractive index for fundamental mode p= 1.343357214454637
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Figure 5-8 Relative Electric Field distribution for Hexagonal PCF
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Hexagonal PCF, of 12 rows, n1=1.46, Air hole radius=0.4* A, fundamental mode I=1
1.45

//

1.4

1.35

b=B/k0

13

1.25

Figure 5-9 b-V diagram for fundamental mode in Hexagonal PCF
511 Conclusion

The presented resonance technique can be used for the study of unconventional fibers
i.e. fibers with cores of any shape, as long as the difference between core and cladding
refractive indices is sufficiently small which holds true for almost all the monomode
and holey fibers. The unconventional case is proven reducible to the same technique of
conventional fibers, where for each | we can approximate by a set of two, independent
and non-homogeneous, Resonant Transmission Lines (RTLs), each one representing

one mode of the birefringence.

The simulation of unconventional fibers with RTLs, gives a new, simple and effective
method for computing the eigenvalues of the RTLs representing elliptical core fibers.
The current method can also be utilized to compute the eigenvalues for various modes
of the holey fibers. Furthermore, for each eigenvalue, the average values of E.M. fields
for every thin cylindrical layer of radius r of the unconventional fiber is directly

computable from the relevant eigenfunctions of the RTLSs.
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6 CHAPTERG®G

Conclusions, applications and suggestions for further

research

6.1. Conclusions

In the process of this thesis, the development of a non-analytical technique for the
study and determination of key propagation characteristics of elliptical fibers, has been
successful. This thesis’ specific contributions to the study of elliptical fibers are listed

below:

6.1.1. Development of an innovative method for the study of elliptical
fibers

The development of a new improved method has been the main objective of the current
thesis. The harmonics method is based on RTL and estimates the mode propagation
constant 8 with significant accuracy. It avoids the cumbersome and complex theoretical
analysis including Yeh’s infinite matrices and avoids the use of Mathieu functions. As
a result, the presented method does not use the simplifications and limitations (co <
&y < 0.5) [33] that are necessary in Yeh’s analysis. The harmonics method is based on
valid mathematical analysis, applying Maxwell’s equations on elliptical coordinates,
yet proceeds with the adaptation of Transmission Lines which are utilized for the
estimation of the requested value . The resulting relations can be easily transformed
into computational programs using tools like Matlab or Octave that calculate the results
with significant accuracy and speed of convergence.

6.1.2. Simplified calculation of birefringence and cutoffs
Using the already existing programs that estimate the mode propagation constant, the
calculation of birefringence becomes simple and fast. A demonstration is presented in
chapter 3, comparing the estimated birefringence for different numbers of harmonics
and different values of ellipticity. Birefringence is a major feature of elliptical fibers
that renders them important for a series of applications including optical sensors. In a
similar manner, the presented method has simplified the procedure of calculating the
mode cutoff frequencies and investigating correlations with factors of interest like

ellipticity.
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6.1.3. Design and study of elliptical fibers with arbitrary index profiles
Up to now, the investigation of elliptical fibers with index profile other than step-index
was based on analytical methods and was significantly complex. The harmonics method
provides the tools for a much simplified and accurate estimation of the mode
propagations constant £ in elliptical fibers with arbitrary index profiles including
triangular, parabolic, and tubular. Another advantage of the current method is its
potential application on pragmatic cases of a finite cladding surrounded by air, other
substances of a given index, and even multiple layers surrounding the core.

6.1.4. Development of two additional methods for the study of elliptical,

eccentric, and fibers with angular asymmetry

Throughout the process of investigating new ways for estimating key properties of
elliptical core fibers, 3 different methods are described and presented throughout this
thesis. The first method presented in chapter 3, with the resulting harmonics, has the
advantage of increased accuracy in the calculation of propagation constants and
estimation of birefringence. The second method presented in chapter 4, follows a
different analysis resulting in the estimation of S in eccentric core fibers and addresses
the cases under which the fiber core is positioned asymmetrically within the cladding.
This method lays the basis for approaching the D-shaped fiber which is a subcategory
of elliptical core fibers. The third and final method, presented in chapter 5, defines
unconventional fibers and approaches the study of elliptical fibers from a broader-to-
narrower perspective. In estimating £, this method, although not significantly inferior
in accuracy, has the advantage of speed and simplicity while avoiding the complexity

of harmonics.

6.2 Suggestions for further study

The resulting methods and algorithms developed in the course of the study throughout
this thesis can be used as tools for further study not only of elliptical optical fibers but
also of other fiber categories including the D-shaped fiber and the PCF, also known as

holey fibers.
6.2.1 Analysis of field components in elliptical fibers

Basic definitions of EM field components are given throughout this thesis for

cylindrical and elliptical core fibers alike. However, the exact course of the field’s
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angular and radial components, as well as the resultant total field measure in the
direction z of propagation, need to be investigated. Relevant studies have already been
conducted as for example in Li Hui-Rong et al. [52] where field components are
numerically calculated and analyzed for the case of elliptical dielectric hollow fiber. An
innovative approach using the RTL method would surpass existing analytical methods
in simplicity and converging speed, but it would also be easily expandable to various

categories of elliptical fibers, simply by changing the index profile of the fiber.

Another suggestion for further study would be the reconstruction of an elliptical core
fiber from the mode electric field. Reconstruction of cylindrical core fibers has already
been successfully analyzed using the RTL method in AC Boucouvalas, CA Thraskias
[53], [54]. A relevant study for elliptical fibers would be innovative and would provide
significant design tools to manufacturers supplying fibers for a series of applications
that require specific propagation characteristics such as birefringence mode

propagation constants.

6.2.1 Estimation of propagation characteristics of the D-shaped
fiber

D-shaped fiber is a specific type of fiber used primarily in pressure and temperature
sensors. It has an estimated high dependence on cut off wavelength upon polarization
and low intrinsic birefringence. An efficient study of their propagation properties can
be based on analyses provided in this thesis, either as a combination of the harmonic-
based method with the eccentric fiber analyses or using the unconventional-fiber
method presented in chapter 5. For a study that focuses more on birefringence, the
harmonic-based method should be preferred as it provides more accurate results in

relation to mode decoupling.
6.2.2 Estimation of propagation characteristics of PCFs

In chapter 5 of the current thesis, the unconventional fibers are defined as a generic
super-category that includes elliptical fibers. Photonic-Crystal fibers or PCFs are a
category on their own, yet they fall into the defined super-category of unconventional
fibers. An innovative approach could utilize the RTL technique as modified in chapter

5 in order to study and calculate propagation characteristics of holey fibers.
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7 APPENDICES

Appendix A. Mathematical Analysis for the Derivation of

Propagation Relations in Cylindrical Core Fibers

- —

VxE =—jH
V-H=0
)% + 12
L)
r
d(rH,) . .
—L=+ jlH, + jBrH, = 0 (A1)
rH, = jly => —jrH, = Iy (A.2)

From the above, we obtain

al _
a—f = —j(iH, + BrH,)

A(rH,) _ i (1H, -I.—ﬁrHZ)

or jF
Further we define
__ lHp+PrH,
Vi =—" (A.3)
Thus
a1 .
By the relation V x E = —jH, the following equations are obtained
L E; . .
117 —jBE, = —jH, (A.5.1)
. OE, .
jBE, - %2 = —jH, (A52) (A5)

(@ — jIE, = —jrH, (A.5.3)
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From (A.5.1) it is derived that
—j(rH,) = jIE, — jBrE,
Thus

Iy = j(IE, — BrE,)

In the same way, by V x H = —jn2E, it can be proved that

V(n?E) = 0
Defining
I = n*rE,
we obtain

0(n®rE,)

o +jIn®E, + jBrn*E, = 0

Additionally defining

__ lEp+PTE,

Vg -

dlg _ . op (LEtBTrEr\ _ .
5 = ]nF(—F )— jn“FVg

Again, by V x H = —jn%E, we get

., Hy . .

( jl=2—jBH, = jn’E, (A.10.1)
. 0H, .

! JBH; — - = jn*E, (A.10.2)

a(rH(p)
ar

— jlH, = —jn*rE, (A.10.3)
From (A.10.1), it results
n*rE, = lH, — BrH,

Thus

131

(A.6)

(A7)

(A.8)

(A.9)

(A.10)


https://en.wikipedia.org/wiki/E%CC%8A
https://en.wikipedia.org/wiki/E%CC%8A
https://en.wikipedia.org/wiki/E%CC%8A
https://en.wikipedia.org/wiki/E%CC%8A
https://en.wikipedia.org/wiki/E%CC%8A
https://en.wikipedia.org/wiki/E%CC%8A

Iz = IH, — BrH, (A.11)

Furthermore (A.2) and (A.7) define H, = ’ITM E, = £

n2r
And (A.3), (A.6), (A.8), (A.11), in order to express Hy,, H,, E,, H, by
Iy, Ig, Vy, Vi as follows:

jFVy = H, + BrH,
Iz = —BrH, + lH,

With Fr =12+ (Br)?

JEVy ,8r|
¢ Fr a Fr ~ r FE

_jWu B

Y r FE

| [ jFVy

! .
=T :ﬁIE + jBVm

[ .
=> Hz = EIE +].BVM

And

Furthermore

FVg = lE, + BrE,
Iy = —BrE, + lE,

With Fr = 12 + (Br)?

|FVE Br

—jly 1 (Flvg) jpr
E, = = —1
¢ Fr Fr + Fr'™M

l B
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Fr
And
I

Further follows the calculation of the relation 'i;/—r’”

.a(FVM)_ .0V . B_F
ar _]F or +JVMar

LO(FVp)
ar -

oH,

or +ﬁHZ

O0Hy
l? + BT'

d(rH
% = jlH, + jrn%E,

0H, _

rar

jLH, +jT'nZEZ — H(p

aH(P — jler

JPHy | ap e
p " + jIn“E, -

0H,
or

= ]ﬁHr _jan(p

0H, . i
pr = jp?rH, — jprn’E,

r

Combining (A.12), (A.13) and (A.14), results in

_O(FVy)
J or

AFV)

. JF H,

or

LO(FVy)
=>J arM
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SO = —y2ly — =L+ BH, (A.15)

2
Where y2 = B2 —n? + =

r2
Combining (A.1) and (A.5) the following relation is obtained

WV
ar

. . OF LH,
jF +]§VM = —y2%l,, ——2+ BH, (A.16)

r

W B

¢ r FE

! .
Hz = ﬁlE +JﬁVM

[H jl? Bl
e __J L
r r2 M+FrIE

Bl ,
BH, = EIE + jB*Vy

OF (., P
57V =J{B"— 3 |Vu

AV, 2Bl ,
I T e

201 201

Fr  (Br)Z+12

MF
2B
M= G+ oF

Thus

Following a similar approach, we obtain:

Vg y°

or  jn?F
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Appendix B: Mathematical analysis for elliptical waveguides

Orthogonality Relations of Mathieu Functions:

a.

b.

C.

For all y2

Fory? >0

Fory? <0

27T

f Cem(nr VZ)Cep(U; Vz)dn =0 m # p

0

2T

f sen(m,y*)se,(,y*)dn=0 m=#p
0

2T

f Cem(’l;]’z)sep(n,]/z)dn =0 m#p
0

2T %)
2 2
f ce?2n(n,y*)dn = Zﬂ[Aff")] + ﬂz Az
0 r=1
2T [*9)
2
J ce? 1 yHdn = ”Z[Agzrrﬂl)
0 r=0
21 [}
2
f se® o1 (M, y?)dn = ”Z[Bz(iﬁl)
0 r=0
21 [}
2
f se®oni2(n,y?)dn = ”Z[Bz(igm
0 r=0
21 0o
2 2
| cerannyDn = 20[aG)" 7y 4G

0 r=1
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2
[ cetumatnly?an =y B

0 r=0
2T %)
2
f se?yni1(m, | y*Ddn = ﬂZ[Agerln
0 r=0
2T o)
2
[ setumsatnly?Dan =y [BE?
0 r=0

Derivation of Maxwell equations in elliptical coordinate system

Using the definitions of equations (3.8) we proceed in the analysis as follows:
Using the so called second couple of Maxwell equations (3.5) and (3.6) we can

facilitate the derivation.

0 (B.1)
=0 (B.2)

«H

—

\Y
\Y

3

Equations (B.1) and (B.2) are not independent from the six equations arising from
(3.2) and (3.3) as they can be derived from them, however they are useful in order to

have the first set of the differential equations relating the equivalent currents and

voltages Iy, Iy, Vi, V.

Writing the equations (B.1) and (B.2) in an elliptic coordinate system the following

partial differential equations we arrive at

d0(hH d(hH d(h%H,
(hHo) , OChH,) 0(h*Hy) _
a0 do 0z

0

d(hEyp) N d(hE,) N d(h’E,)
96 F) 9z

Fourier transforming the above equations as along
pandzwith wavenumbersfBand | an integer and using the previous convolution

relations, the following ordinary differential equations are derived
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o(hHy) —— _ 2

669 +U(hH,) + ho’BH, — B~ [#:] = 0
d(hEp) — — c?

aeg +l(hE¢)+hOZﬁEZ—ﬁZ[<D2] =0

@, and @, are defined in (3.6) and (3.7) respectively. Thus the previous relations can

be written in terms of the defined functional parameters (B.7) as follows

al . 2
S = —jFVy + 5[] (B.3.1)
al , in?Bc?
Sk = —jFn?Vy + L (0]
(1 = —j(hHy) = j (IE; — B(hE,))
Iy = n?(hEg) = (IH, — p(hH,))
VM = iF
1(hEy)+ BRE(O)E,
\ E = F

And following a cumbersome procedure another set of two differential equations

can be derived

2

Vu n

- M, - e,] (B32)
Y rim M E == 2 "~
ov y? . . 1lc?

20 = " Tarls T IMIy [0

These four differential equations (B 3.1 & B3.2) along 6 are representing two
interlinked transmission lines, where furthermore their values for a wave number [ are

related with their values for the wave numbers [ + 2 and [ — 2. We call them
2 . .
“harmonics” appearing because of the relation h?, gy = h§ g — C: (e/2? + e7/29)

being a function of ¢. In the case where the circular layers h? is independent of ¢,

there are no “harmonics” and the analysis becomes much simpler.
The proof for B 3.2 relations is shown below:
By the intermediate relations:
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c
hz@Hz = h(Z)HZ - I[Cbl]
h*®E, = h(Z)Ez _Z[(pz]
2
2 _ C_ _ 12 27,2 0_F 2 ahO
ho—zcoshZH F =14+ p*hj 20 5 20
d d v an3
{ (];;/M) JF VM+]—VM = jF M_|_ ﬁz OVM
bull jFVy = l(hH,) + phZ(H,) so that finally:
a(jFVM) a(hH(p) L, 0(H,)
H 2

Taking into consideration thatH, = lIFE + jpVywe also derive

0GFVy) _  3(Rfy) + ph2 22

BLohg . o Ohd
I —9
a6 a6 a6 +t e tJjb a6 Vu

F 06

Thus we obtain

oV

v =la(th,) pn2 20 d(Hy) ﬁlaho ons

JF 0 a0 F 86

Using the differential relations of the previous paragraph we also obtain

]n 21c?

l

a(gH«J) [®,]

= jI?(hHg) + jn®lh3E,
Bh3 22 = jp2h3(hHy) - ]nzﬁhz(hE(p)
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(B.7)
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Thus

WV ﬁlahz
JF =g =i + p?h§) (RHy) + jn*Ih§ (B;) + = Iy — jn’ Bhi(RE,)
jn?lc?
— (]

We also know that

(E,) - B(RE,) = —(hHTy)
Thus

JF 2 = j12 + p2h3 — n?hd) (RHg) + 228 1, - M p,]  (BY)

This is simplified as

]n 21c?

]F = jy?(hHy) + MFI; — [®,] (B.10)
with the introduction of the auxiliary variable
2 _ lZ h2 2 2 M = 'Bl ahg
ye =1+ h5(B* —n®), T
Taking into account that (hHy) = jI,, we further get
v, jn?lc?
JjF a: = —y2ly + MFly ———[,]
and finally
W _ VMl -2 [ B.11
ﬁ—__M_] E— 4F[2] (B.11)
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Following a similar approach we can prove that

2 , , Lc?
Ig — jMIy +JE[‘D1] (B.12)

dhy?

Where: y2 = 12 4+ (B2 —n®)h,?, M =Bl —o/F2F =1 + B2hy”

A useful remark is that along 6 the “Currents” are continuous because

hHgandn?(hE,) as (i.e. the F.T. of the normal induction field components
uoHgandn?eyEp) on the surface (¢, z) are continuous. The “Voltages” are also
continuous because the tangential field components H, H,E, E,along 6 and the
function h are continuous “passing” the surface(¢, z) and every linear combination

of them is continuous on the surface(y, z).

Finally to derive an equivalent transmission line of the two interlinked transmission
lines we

we define a new “voltage”Vs and a new “current”ls by the relations

Vs =Vy +nlVels = Iy +%E representing even modes.

Using relations (B.18) we get

( oVy y? Ig  nlc?
! W——j—FIM—JMz— iF [n®,]
o(nVy) v2I: nlc?
=L _inMly + —[j®
L 30 M+ ]

Thus we also obtain

Vs _ y*-nMF
90 jF

lc? .
Is + ”4; [j®, — nd,] (B.13)

Using also (B.3.1 & B 3.2)
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oI . 2.,
a_(;w = —jFVy _ﬁ%[l‘pﬂ
a(’E/n) 5 thus:

—55 = —JFnVg +J'BTC [nd, ]

%s = —jFVs — L [jo, — nap,] (B.14)

We also have that

-2 L+ 2
(@] IE2 + jBVi > + —— 1§ + BV
-2 F1+2
[®,] = _J(l - 2) + BVL? J(l )11+2 B L+2
k 1-2 Fiyo

Thus we obtain

j(l—2)n
F_,

[j®; —nd,| =

Ill::_Z Ié-+2
+ L2 |+ I
Frew| o

= B| Vi + nvi?] + [V + ]|

[j®, — no,] = L2 12 f““)”l”z BIvE2+vi?]  (B.15)

Fi_» +2

2
Thus for q= % , andA = —andB We will get

3_V:,£ _vE-nMiF; =2n o | ., @+2n 14n 1=2 ¢ trl42
~ s H AT 1 +jAT—Is AB[VE2+vE?] (B.16)

l
art

—o=-"JFVi+B (l 2npi-2 4 g (”2)"11+2 + jBB[VE2+VE?] (B.17)
Fi—»
where

2 2 2
Floaa=(+2)%+B%hy ,Flp=(1-2)° +ﬁzho JF =1+ B%hy,

oh
yi =1+ (B —n?)hy?, = pl ag /
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Equations (B.16) and (B.17) represent a transmission line with “harmonics”. The
exponents in the relations (B.16) and (B.17) on Vsand Isare giving the harmonic order.

In order to have real coefficients we can set Us = jVs so that (B.16) and (B.17)

become
{a_U.é - ylz_anFl ISZ- _ A (l_z)n Il—z _ A (l+2)n Il+2
28 Fy Fi2 Fryz
—AB|US2+UE? Using also
{a’s ~FUt+ R 2 p PN 2 | pplyl-2y yle?)
96 Fiz Fryz
A=2Lp =5y get
F; n
{aUé _ )/ —nMF l lqn (1-2) l 2 (1+2) 1+2 qpl 1-2 1+2
0~ T F IsT Flzs +Fl+21 ] F WsT U

(B.18)
l
L g;s _FU! 4 ﬁ[(l 2)11 -2 (l+2)11+2] L 98° Ul -2 4 yl*2]

We can follow the same procedure defining

Vy Vs
VSS = 7 + VEISS = nIM + IE (ISS = ISn‘VSS = z)

for the odd modes.
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