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Abstract

In the recent years, the collection of more and more data instances, has increas-
ingly led to an abundance. After the investigation of efficient ways to deal with
storing, managing and collecting of large-scale or diverse data, the research interest
of the scientific community has shifted into the extraction of meaningful informa-
tion from such collections. Deep learning lends itself particularly well to the process
of extracting valuable information. Deep learning methods thrive with large-scale
datasets. Due to their ability to learn alternative representations from raw obser-
vations, the abundance of data instances allows for generalised representations. In
turn, generalised representations allow for effective learning of complex tasks. De-
spite valuable efforts in extraction of information from single data sources or data
types, dealing with multiple diverse data sources remains an open question in the
scientific community.
Representation learning enables combination and juxtaposition of multiple diverse

data sources in a meaningful, common and lower-dimensional space. However, typical
learning frameworks for joint representation learning, face a plethora of challenges.
Initially, architectural decisions of the involved neural networks is often a product of
manual work or application specific decisions that rarely generalise to multiple do-
mains or tasks. At the same time, directly tying data sources in the input layers of the
neural network introduces an expectation of constant availability. However, expecting
all data sources to be constantly available, is not realistic in real world applications.
In addition, the involvment of redudant or non-complementary data sources may
lead to detoriating performance. However, dealing with such sources requires manual
effort. Such effort, is put into creating explicit assumptions or rules that will ensure
stability, or to understand the intricate relations between data sources, in order to
avoid non-complementary ones.
This thesis includes the formulation and investigation of the hypothesis that ex-

ternal data evidence improves deep representation learning. The above investigation
results in the proposal of a deep representation learning method, called Evidence
Transfer (EviTraN). EviTraN is a versatile and automated fusion scheme based on
deep representation learning, transfer learning and hybrid modelling between gener-
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ative and discriminative views. In addition, it leads to the proposal of a set of evalu-
ation criteria for deep representation learning for the purposes of information fusion.
Furthermore, this thesis includes a theoretical interpretation of the above method,
based on comparison with the well-received Information Bottleneck method, that acts
as a stepping stone towards explainable modelling and open science. The evaluation
process of EviTraN also includes a realistic scenario of detecting severe weather in an
unsupervised manner. Thus, demonstrating its impact and potential use in additional
real-world applications.
Experimental evaluation with artificially generated, as well as, realistic evidence

sources suggest that EviTraN is a robust and effective method. In addition, it is versa-
tile, as it allows the introduction of a variety of relations, including non-complementary
ones. Furthermore, due to its learning process based on the transfer learning setting,
it is a modular fusion scheme that does not require all data sources to be present
during inference (only the primary data instances).



Περίληψη

Τα τελευταία χρόνια, η διαδικασία συλλογής ολοένα και περισσότερων δεδομένων
έχει ως αποτέλεσμα την ύπαρξη πληθώρας δεδομένων. Μετά τη διερεύνηση αποτελεσμα-
τικών τρόπων αποθήκευσης, διαχείρισης και συλλογής δεδομένων μεγάλης κλίμακας ή
ποικίλων τύπων, το ερευνητικό ενδιαφέρον της επιστημονικής κοινότητας μετατοπίστη-
κε στην εξαγωγή πληροφορίας από τέτοιου είδους συλλογές. Η βαθιά μάθηση (deep
learning) χρησιμοποιείται συχνά για τη διαδικασία εξαγωγής πολύτιμης πληροφορίας.
Οι μέθοδοι βαθιάς μάθησης ευδοκιμούν με σύνολα δεδομένων μεγάλης κλίμακας, λό-
γω της ικανότητάς τους να μαθαίνουν εναλλακτικές αναπαραστάσεις από ακατέργαστες
παρατηρήσεις. Η διαθέσιμη πληθώρα δεδομένων επιτρέπει την εκμάθηση γενικευμένων
αναπαραστάσεων. Με τη σειρά τους, οι γενικευμένες αναπαραστάσεις επιτρέπουν την
αποτελεσματική εκμάθηση πολύπλοκων εργασιών. Παρά τις επιτυχείς προσπάθειες για
την εξαγωγή πληροφοριών από μεμονωμένες πηγές δεδομένων ή τύπους δεδομένων, η
αντιμετώπιση πολλαπλών διαφορετικών πηγών δεδομένων παραμένει ένα ανοιχτό ερώ-
τημα στην επιστημονική κοινότητα.
Η εκμάθηση αναπαραστάσεων (representation learning) επιτρέπει τον συνδυασμό

και την αντιπαράθεση πολλαπλών διαφορετικών πηγών δεδομένων σε έναν χώρο κοινό,
ουσιαστικό και χαμηλότερων διαστάσεων. Ωστόσο, τα τυπικά πλαίσια μάθησης για κοι-
νή εκμάθηση αναπαραστάσεων (joint representation learning) πρέπει να αντιμετωπίσουν
μια πληθώρα προκλήσεων. Αρχικά, οι αρχιτεκτονικές αποφάσεις των εμπλεκόμενων νευ-
ρωνικών δικτύων είναι συχνά προϊόντα προερχόμενα από διαδικασίες ή αποφάσεις που
εμπλέκουν ανθρώπινη παρέμβαση (μη αυτόματες). Οι συγκεκριμένες διαδικασίες ή α-
ποφάσεις συνήθως αφορούν συγκεκριμένες εφαρμογές και σπάνια γενικεύονται σε πολ-
λαπλούς τομείς ή εργασίες. Ταυτόχρονα, η απευθείας σύνδεση πηγών δεδομένων στα
επίπεδα εισόδου του νευρωνικού δικτύου εισάγει μια προσδοκία σταθερής διαθεσιμότη-
τας. Ωστόσο, σε πραγματικές εφαρμογές, η προσδοκία διαθεσιμότητας όλων των πηγών
δεδομένων δεν είναι ρεαλιστική. Επιπλέον, η επίδοση των τυπικών πλαισίων μάθησης
μπορεί να μειωθεί κατά τη χρήση περιττών ή μη συμπληρωματικών πηγών δεδομένων. Η
αντιμετώπιση μια τέτοιας συμπεριφοράς, επίσης απαιτεί τη χρήση μη-αυτόματων διαδικα-
σιών. Η χειρωνακτική εργασία που καταβάλλεται, σκοπεύει στη δημιουργία συγκεκρι-
μένων υποθέσεων ή κανόνων που θα διασφαλίζουν τη σταθερότητα ή στην κατανόηση
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των περίπλοκων σχέσεων μεταξύ των πηγών δεδομένων, προκειμένου να αποφευχθούν
οι μη συμπληρωματικές σχέσεις.
Σε αυτή τη διατριβή, διερευνάται η υπόθεση ότι η χρήση εξωτερικών δεδομένων

βελτιώνει την εκμάθηση αναπαραστάσεων. Η παραπάνω έρευνα καταλήγει στην πρό-
ταση μιας μεθόδου εκμάθησης αναπαραστάσεων, που ονομάζεται Evidence Transfer
(EviTraN). Η EviTraN είναι ένα ευέλικτο και αυτοματοποιημένο σχήμα σύντηξης πλη-
ροφορίας (information fusion) που βασίζεται στην εκμάθηση αναπαραστάσεων, τη μετα-
φορά μάθησης (transfer learning) και την υβριδική μοντελοποίηση (hybrid modelling).
Επιπλέον, προτείνεται μια σειρά κριτηρίων αξιολόγησης για την εκμάθηση αναπαραστά-
σεων για τους σκοπούς της σύντηξης πληροφοριών. Ακόμα, η διατριβή περιλαμβάνει
μια θεωρητική ερμηνεία της παραπάνω μεθόδου, βασισμένη στη σύγκριση με τη μέθοδο
Information Bottleneck, η οποία αποτελεί θεμέλιο λίθο για επεξηγηματική μοντελοποί-
ηση και ανοιχτή επιστήμη. Η διαδικασία αξιολόγησης της EviTraN περιλαμβάνει επίσης
ένα ρεαλιστικό σενάριο ανίχνευσης έντονων καιρικών συνθηκών χωρίς επίβλεψη, απο-
δεικνύοντας έτσι τον αντίκτυπό της, καθώς και την πιθανή χρήση της σε πρόσθετες
πραγματικές εφαρμογές.
Η πειραματική αξιολόγηση με τεχνητά παραγόμενες, καθώς και ρεαλιστικές πηγές

πληροφορίας υποδηλώνει ότι η EviTraN είναι μια σταθερή και αποτελεσματική μέθοδος.
Επιπλέον, είναι ευέλικτη, καθώς επιτρέπει την εισαγωγή ποικίλων σχέσεων, συμπερι-
λαμβανομένων των μη συμπληρωματικών. Ακόμα, λόγω της διαδικασίας εκμάθησής της
που βασίζεται στη μεταφορά εκμάθησης (transfer learning), είναι ένα αρθρωτό σχήμα
σύντηξης που δεν απαιτεί να υπάρχουν όλες οι πηγές δεδομένων κατά την εξαγωγή
συμπερασμάτων (μόνο δεδομένα που ανήκουν στην κύρια συλλογή δεδομένων).
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Chapter 1

Introduction

The rise of big data in previous years, has affected multiple aspects of technol-
ogy, communications, operations and even various tasks in our everyday lives [29].
Although big data are characterised by multiple properties, its most common aspect
is its large volume. Despite its effects on multiple domains and operations, the rise of
big data has also driven the research interest of the scientific community into deal-
ing with challenges that arise from their large volume. Dealing with such challenges
answers scientific questions such as how to manage data from multiple sources?, how
to process large-scale data? or how to make sense or extract meaningful and valu-
able information from large-scale data? Sharma [30] defined the above challenges as
“Representation of Unstructured Data” and “Analysis of Big Data”. The rise of big
data lead to the emerging of multiple technologies, e.g., big data file systems or big
data processing tools, that now allow effective operations over voluminous data such
as managing, storing, retrieving or processing.
In this day and age, data not only can be found in an abundance, but we are also

able to efficiently perform multiple operation on them, thanks to research done in
the previous years. However, the research interest has shifted more into the analysis
of data and specifically on making data-driven decisions in an automatic or semi-
automatic manner. What described as living in the data age or big data age, is
the empowerment of multiple services and technologies, such as machine learning
(including artificial intelligence and deep learning), 5G networking or blockchain,
from voluminous datasets [31]. The ability to extract automated decisions based
on observation of data has affected multiple domains including data-driven decision
support for management of flood risks [32]. Yet, the research question of “how to deal
with heterogeneous or diverse data sources?” has become more and more relevant since
many areas, such as the flood risk management, involve data from heterogeneous data
sources.
Dealing with multiple heterogeneous, diverse or homogenous data sources is by no
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means a new problem. Data fusion or information fusion is an age-old quest of combin-
ing multiple data sources or data products in order to achieve increased performance.
The criteria for the quality of fusion process may vary depending on the application
or task at hand. It frequently aims to increase the effectiveness of a task-specific
metric or reduce the redundancy yielded from the combination of the individual data
sources. In this booming of available data instances, data fusion has become increas-
ingly relevant. Dealing with multiple data sources is not straightforward. Extracting
decisions from multiple data sources, requires a fusion scheme capable of combining,
associating, correlating or aligning the data sources. Despite, dealing with multiple
data sources can be hard to manage and thus, dealing with a combined data product
(as a result of some data aligning method) is more preferred in most applications.
In spite of data fusion being a scientific direction that has been deeply researched,

fusion schemes that sprout from application or data type specific decisions are fre-
quent. Typically, the combination or fusion of heterogeneous data sources involves
the extraction or generation of data type specific transition rules or tables. This pro-
cess requires a plethora of manual work and is typically hard to manage. In addition,
such data type specific fusion schemes rarely generalise to other data types. At the
same time, it may also involve trial and error procedures which are perplexing, rarely
explainable and also require a plethora of resources. Deep learning lends itself to data
fusion by allowing the automatic combination, association, correlation or alignment
of data sources in lower dimensional and meaningful latent space.
The abundance of data instances has enabled the effectiveness of machine learn-

ing and especially deep learning methods. Deep learning is thriving in multiple ap-
plications, such as computer vision [33], prediction of DNA-RNA sequences [34] and
food-related applications [35]. Meaningful representation learning is an attribute that
is generally accepted as one of the key aspects that make deep learning particularly
effective. Sufficient amounts of learning instances allow the learning of generalised
representations, which in turn lead to learning of complex tasks. In addition, in-
volving multiple data sources in deep representation learning provides a multi-view
perspective of the problem or additional training instances and features. However,
generally applicable deep representation learning frameworks that deal with hetero-
geneous, diverse or non-complementary data types are lacking.
Despite a plethora of data instances being available, labelled data instances are

scarce. The scarcity of labelled data instances is an outcome of costly or timely
annotation processes. Complex tasks require manual work for annotation. Despite
automatic annotation processes existing, they are either application or data type
specific, e.g., image-to-text or text-to-image only, or not as accurate as manually
annotated instances. To alleviate costs or due to time restrictions, weak labels are
oftenly utilised instead. Weak labels are labels with limitations such as being incom-
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plete, noisy, containing errors or representing simpler tasks from that of the original
task. Labelled data instances are vital to the training of supervised methods which
are typically preferred by practitioners, due to being reliable and effective. However,
limited amounts of labelled data affects both of these properties. To this end, methods
that can learn both from labelled and unlabelled instances are often wanted.
This thesis includes the investigation of hypothesis: “external data evidence im-

proves deep representation learning”. Evaluating whether external data evidence im-
proves the learning of deep representations or not, requires these key components: at
least two data sources (one primary and multiple auxiliary/external), a representa-
tion learning mechanism and a way of tinkering with the initial set of representations
in order to extract an improved set of representations. This thesis focuses on the in-
vestigation of a tinkering mechanism, which is the proposed method, called Evidence
Transfer (EviTraN).
EviTraN is a representation learning method that aims to fuse multiple data

sources by learning joint representations. It can be considered as a hybrid method of
using auxiliary supervision in an unsupervised learning process. External evidence,
which is a task outcome extracted from an external dataset, is introduced in the learn-
ing process of intermediate representations. This allows EviTraN, to learn combined
representations of a primary dataset (with no labelled instances) along with external
views from auxiliary datasets. As it involves task outcomes, it does not deal with
challenges yielded from the involvement of heterogeneous datasets, such as requiring
alignment or data type specific rules.
At the same time, the end-goal of the representation learning is the combination

of diverse data sources (which may be potentially heterogeneous). It aims to fuse data
sources in an intermediate-level (within the hidden layers of a neural network). The
extraction of weak or strong task outcomes is preceding the fusion in order to deal
with data heterogeneity. In this way, it allows the fusion of data sources by reducing
manual work or trial and error decisions, as well as, being a generally applicable
method, as it does not involve any data type specific processes.

1.1 Motivation
The goal of the study is to investigate the intelligent combination of diverse or

heterogeneous types of data in an automated manner. Combining knowledge from
multiple data sources allows for informed decisions and a multi-view perspective. In
turn this allows for increased generalisation or effectiveness on an application or task,
that repurposes the combined product of the fusion process.
Domain experts are able to manually combine data in order to assess situations,
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draw informed conclusions or make educated decisions. However, the data products
of such combination processes are typically results of trial and error methods. Fusion
processes that involve manual work are error-prone and may lead to suboptimal
solutions. In addition, it may lead to less generally applicable methods as they may
depend on the data types, e.g., specifically tied to images and text, such as image-to-
text or text-to-image methods. At the same time, the combination of data through
semantic information and metadata yields collection of schemas, transition tables and
rules which are hard to manage. Semantic-based combination may also lead to tying
between data and application, similarly to manual combination methods. Despite,
metadata or other semantic information do not accommodate frequently used data
types such as arrays, numbers, strings or encodings. On the other hand, analytics
and data-science despite being used to discover structure in data for decision-making,
they also often rely on trial and error processes. During such process the connection
between the semantics of the data and the task at hand is not clear. This may
be problematic when diverse data types are involved in analysis that involves deep
learning.
Consider an example of combining textual and weather information with deep

learning for classification. Weather consists of multiple physical variables which are
typically studied over a grid of cells that represent geospatial areas. For the task at
hand, some physical variables will be highly relevant for the task at hand, while others
will be irrelevant. At the same time, text comes in many forms, e.g., bag of words,
TF-IDF features, n-grams, etc. Deep learning classification fusion schemes often treat
these fundamentally different features equally, by merging them within their layers.
This leads the causal relationship between input types and the task at hand (output)
to be unclear. On the other hand, including high-level information regarding the
semantics of the different input types and aligning them with the semantics of the
task at hand, would lead to traceability and argumentation over the analysis of results.
Using feed-forward neural networks which are designed for explicit representa-

tion learning, such as autoencoders, leads to automatic feature engineering. Explicit
representation learning is the process of learning alternative representations of raw
observations, typically without the use of supervision. Learned representations are
more robust and consists of meaningful features that allow the discovery of seman-
tic value, capable of enabling the association or alignment across data sources. In
addition, the manifestation of such representations through unsupervised learning,
allows their generalisation to a multitude of tasks. This will enable the extraction of
reproducible data derivatives such as representations, clusters, etc. This procedure
reduces the effort put into understanding the relations between data types in order
to propose a proper combination, which in most alternative cases is application or
data type specific. In addition, it enables the investigation of causal relations between
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input and task.

However, the selection of explicit or implicit representation learning depends on
the availability of labelled data samples or a set of properties expected from the
learned set of representations. Implicit representation typically involves a supervised
learning mechanism, while explicit representation learning is typically an unsuper-
vised process. Consequently, the learned representations from implicit representation
learning are typically task-specific, while learned representations from explicit rep-
resentation learning are generally applicable. As explicit representation learning is
an unsupervised learning process, the learning of representations is a process that
involves low or intermediate level of information such as raw observations or inter-
mediate/latent features.

Yet, for the extraction of some task outcomes only the observation of data fea-
tures is not capable of transmitting the necessary amount of information for effective
decision-making, such as severe weather detection (more in Chapter 6). Consider the
example of a simple computer vision task of identifying whether an image depicts a
horse or a chair. Humans are able to quickly decide whether a horse exists within an
image, since we have a clear understanding of what a horse is. In the other words, we
have learned the concept of horse through observation, which in practice is a represen-
tation produced in our brain. In future encounters with horses, we compare the visual
signal with our representation in order to decide whether the visual signal depicts a
horse. Now consider the case that we have no representation of the concepts of horse
or chairs. At first sight both the horse and the chair may have similar characteristics
such as the same amount of legs (four legs), colour (a range of dark colours) or long
bodies. Therefore, trying to learn representations (concepts) from observations with
similar characteristics could lead to misinterpretation or errors. As raw observations
do not indicate higher level characteristics, such as the fact that horse are animals
found in farms and chairs are inanimate objects found within homes or other social
areas (offices, etc.).

Being able to introduce higher level concepts in the learning process of unsu-
pervised representation learning methods would bear both advantages of implicit
and explicit representation learning. In other words, the training objective would
not require labelled instances, and therefore it will learn task-agnostic representa-
tions that would be able to be repurposed in a variety of applications. At the same
time, involving weak or strong supervision in cases where such information is avail-
able, without explicitly requiring labelled instances in the training objective, would
provide necessary information to distinguish between concepts with similar charac-
teristics. Therefore, reducing misinterpretation or errors in learning the underlying
explanatory factors of the involved concepts.

5



1.2. Contributions

1.1.1 Towards Artificial Intelligence

From traditional machine learning methods to deep learning, unsupervised learn-
ing can be considered as the closest form of machine learning to artificial intelligence
(AI). The model learns relevant features by itself without the use of supervision. A
big debate on the goals of artificial intelligence has been raised. Pioneers of the un-
supervised representation learning have highlighted the significance of unsupervised
learning and especially unsupervised/explicit representation learning towards artifi-
cial intelligence as follows: “Although specific domain knowledge can be used to help
design representations, learning with generic priors can also be used, and the quest
for AI is motivating the design of more powerful representation-learning algorithms
implementing such priors” [36].
Yet, Pennachin and Goertzel [37] debate that recent advancements in statistical AI

(e.g., deep learning) have drifted from the original focus of the AI field, by focusing on
creating models that demonstrate intelligence selectively on specialised applications
or domains. The authors characterise this approach as being the “narrow” counterpart
of AI. They suggested that Artificial General Intelligence (AGI) was the original focus
of AI, with AGI being the counterpart to the “collection of dumb specialists in small
domains” [38]1.
Despite, it is evident from this debate: that learning is not what makes a model

intelligent, but rather its understanding of the subject’s fundamental concepts. Even
though unsupervised learning models are able to extract knowledge with no supervi-
sion, they are lacking in understanding the semantic value of the input or relations
between essential parts. To this end, guiding the unsupervised learning process of
such models with high-level information extracted from related data sources can be
considered as a gateway to understanding the semantic value of the input. As in
order to associate or align data sources, knowledge of the intricate mechanisms and
interactions between the sources is required. Such knowledge which is introduced ei-
ther implicitly – learning relations from observation of data instances or explicitly –
learning a tangible version of their relation may allow a generalised perspective or
even knowledge of the problem.

1.2 Contributions
This section includes the contributions of this thesis extracted from the investi-

gation of the research hypothesis.

1This quote from Stork [38] appears in the preface of the work of Pennachin and Goertzel [37]
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1.2.1 Evaluation Criteria of Deep Representation Learning
for Fusion

To deal with challenges that arise during data fusion, the proposed method should
satisfy a set of criteria capable of enabling an effective and robust data fusion. The
evaluation criteria of EviTraN are: effectiveness, robustness and modularity. The ef-
fectiveness criterion is considered by most previous work. The combination of multiple
data sources aims to produce alternative data source(s), feature set(s) or decision(s) of
higher quality than their individual counterparts. However, one may define effective-
ness in multiple ways. The definition of effectiveness may depend on the application,
domain or data type specific properties. Therefore, the criterion of effectiveness varies
depending on the task at hand. The objective of EviTraN is to produce meaningful
representations of high semantic value that will represent the combined knowledge
coming from both primary and auxiliary datasets. Therefore, its effectiveness relies
on achieving the above objective.
Robustness represents an often neglected property of fusion schemes. A fusion

scheme designed for generalised application should not make assumptions regarding
the properties or types of the involved data sources. However, involving arbitrary
relations may result in unwanted effects, such as reduced performance due to unre-
lated relations or malicious disruption of the training process. EviTraN should resist
disturbance from noisy, non-complementary, uncorrelated or malicious evidence. It
should preserve initial performance, as indicated before the introduction of evidence
in the method.
Modularity is also a vital criterion that diverges EviTraN from previous work on

using representation learning for fusion. In most cases, the auxiliary data or decision
sources are explicitly involved as inputs of the deep neural network architecture. By
explicitly involving all data sources as input, it conditions the training and as an
extent the inference of the network, to require all data sources to be available at the
time of training or testing. Having all data sources available at the time of testing
is not realistic. As mentioned before, the procedure of annotation is often costly or
timely and therefore, during later iteration of performing inference, auxiliary data
sources may not be available. For that reason, the fusion step of EviTraN should be
iterative, and not explicitly involve the auxiliary data sources. Relevant publications:
P2, P5.

1.2.2 Versatile and Automatic Fusion Scheme
EviTraN combines data sources by involving task outcomes extracted from aux-

iliary data sources. It is able to involve any categorical variable. This enables Evi-
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TraN to be versatile by involving any relations between auxiliary datasets and pri-
mary dataset. At the same time, ensuring resistance against disturbance of non-
complementary or malicious relations, allows EviTraN to be widely applied to any
applications without detoriating the initial performance. In practice, this means that
EviTraN can be deployed in multiple applications as it bears no downsides in regard
to performance. At the same time, EviTraN performs automatic correlation/associ-
ation/alignment of data sources in a latent space through training with a composite
training objective. The training objective and a pre-processing step, intermediate to
initialisation and transfer, is able to ensure the effectiveness during meaningful re-
lations, while also the robustness during low quality of evidence. EviTraN is a deep
representation learning method that involves auxiliary task outcomes in the unsu-
pervised training process of a primary dataset. In practice, this means that EviTraN
learns from unlabelled data (primary dataset) and weak or strong labelled instances
(auxiliary task outcomes – external evidence).
Furthermore, it is tested in three different learning settings which cover a broad

spectrum of scenarios that involve auxiliary data sources. The three learning settings
are: hybrid, inaccurate and incomplete learning. Hybrid learning involves meaning-
ful categorical variables that indicate the outcome of a task. They are characterised
by consistency and often portray a semantically related task to the primary dataset.
Inaccurate learning involves noisy, non-corresponding or ill-intended categorical vari-
ables. Inaccurate learning is vital to the evaluation of the robustness criterion as these
types of variables may be detrimental to the learning process. Incomplete learning
involves auxiliary categorical variables of incomplete correspondence to the primary
dataset, such as uniformly missing samples or missing samples of specific classes.
Depending on the amount of missing samples, incomplete categorical variables may
affect the learning process similar to inaccurate variables, which makes them highly
volatile. Relevant publications: P2 and P5.

1.2.3 Theoretical Interpretation of Evidence Transfer
Deep learning is notoriously connected with unexplainable or difficult to under-

stand effectiveness. Most practitioners treat deep learning models as black boxes
that perform complex tasks through training with large scale datasets. Researchers
have frequently highlighted the advantages of being able to interpret the effects of a
method. Being able to interpret the inner workings of a model allows for insightful
communication of the results, potential increase in effectiveness by targeted adjust-
ment of the moving parts of the architecture and being an important stepping stone
towards open science. A deep representation learning fusion scheme which aims to
be generally applicable such as EviTraN, should be accommodated by a theoretical
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interpretation of its effects.
The comparison between the proposed method and the Information Bottleneck

method [39] enables the interpretation of EviTraN. Information bottleneck has been
previously used as a way of explaining the effectiveness of deep learning. EviTraN
has very similar effects to that of infomration bottleneck, first it restricts an au-
toencoder into compressing the information of primary dataset into a dimensionally
smaller space. At the same time, it increases the relevance of the latent features com-
pared to the auxiliary introduced task outcomes. Such interpretation allows the use
of EviTraN, as a fusion scheme, in multiple realistic scenarios, e.g., data with high
practical impact. The learning process, as well as, topology and evaluation of the
involved neural network architectures can be described with the use of ANNETT-O
(P1). Relevant publications: P1 and P3.

1.2.4 Evaluation in Realistic Scenario
One of these cases mentioned in the previous subsection is the realistic evalua-

tion scenario which is included in this study. The experimental evaluation of Evi-
TraN includes a use case of detecting severe weather in an unsupervised manner.
The investigation of EviTraN in a realistic scenario revolves around improving deep
representation learning for a primary dataset that consists of weather data, by intro-
ducing binary classification task outcomes of individual severe weather events, such
as windstorms, floods and tornadoes. Weather data are very impactful, as they affect
a multitude of aspects in our everyday lives. EviTraN is able to increase the effective-
ness of individual severe weather detection and thus, indicating the real-world impact
of being able to improve the learning of deep representations. Relevant publication:
P4.

Publications. The investigation of the thesis hypothesis led in the following papers:

P1 Iraklis A Klampanos, Athanasios Davvetas, Antonis Koukourikos, and Vangelis
Karkaletsis. Annett-o: an ontology for describing artificial neural network eval-
uation, topology and training. International Journal of Metadata, Semantics
and Ontologies, 13(3):179–190, 2019.

P2 Athanasios Davvetas, Iraklis A Klampanos, and Vangelis Karkaletsis. Evidence
transfer for improving clustering tasks using external categorical evidence. In
2019 International Joint Conference on Neural Networks (IJCNN), pages 1–8.
IEEE, 2019.

P3 Athanasios Davvetas, Iraklis A Klampanos, Spiros Skiadopoulos, and Vangelis
Karkaletsis. The effect of evidence transfer on latent feature relevance for clus-
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tering. In Informatics, volume 6, page 17. Multidisciplinary Digital Publishing
Institute, 2019.

P4 Athanasios Davvetas and Iraklis A. Klampanos. Unsupervised severe weather
detection via joint representation learning over textual and weather data. In
CEUR Workshop Proceedings, volume 2844, pages 83–87, 2020. URL http:
//ceur-ws.org/Vol-2844/ainst7.pdf

P5 Athanasios Davvetas, Iraklis A Klampanos, Spiros Skiadopoulos, and Vangelis
Karkaletsis. Evidence transfer: learning improved representations according to
external heterogeneous task outcomes. Accepted for publication in ACM Trans-
actions on Knowledge Discovery from Data.

P6 Athanasios Davvetas, Iraklis A Klampanos, Spiros Skiadopoulos, and Vangelis
Karkaletsis. Deep representation learning for information fusion and its appli-
cations. Currently under review in ACM Computing Surveys.

Resources. The investigation of the thesis hypothesis led in the following code and
dataset resources:

• EviTraN method implementation and evaluation code:

– https://github.com/davidath/evitrac

– https://github.com/davidath/incomplete-evidence-transfer

• Code for experiments of EviTraN’s theoretical interpretation:

– https://github.com/davidath/evidence-transfer-interpret

• Severe weather evaluation code:

– https://github.com/davidath/severe-weather-detect

• Severe weather dataset:

– https://github.com/davidath/severe-weather-dataset

1.3 Organisation
The rest of the thesis is organised as follows:

Chapter 2 contains background and related concepts which are relevant throughout
the paper. It also contains related work in deep representation learning for
fusion, as well as, a comparison of evidence transfer to previous work.
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Chapter 1. Introduction

Chapter 3 includes the introduction of the task at hand, deep learning frameworks,
training objective and learning settings of evidence transfer

Chapter 4 contains the theoretical interpretation of the effects of evidence transfer
in the latent space of an autoencoder

Chapter 5 contains experimental evaluation in artificial evaluation scenarios

Chapter 6 includes experimental evaluation in the realistic use case scenario of
unsupervised severe weather detection.
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Chapter 2

Related work

This chapter contains previous work related to EviTraN and the task at hand. It
also includes background and related concepts, to aid reading comprehension of the
thesis.

2.1 Background and Related Concepts
This section provides the necessary information required for the purposes of un-

derstanding the related work, as well as the majority of the thesis.

2.1.1 Deep Learning
Deep learning is a special case of machine learning, that utilises deep neural

networks. The term deep refers to the depth of the involved neural networks. Neural
networks consist of layers. The most frequent type of layers are fully-connected layers,
also known as dense or hidden. A minimal version of a neural network is one consisting
of an input layer, a fully-connected layer and an output layer. This configuration is
a shallow neural network, as it only involves a single hidden layer. Input and output
layers do not exist in implementation level, they are constructs that highlight the
expectations of input and output, such as shape, data type, etc.
Let 𝑋 be the input dataset of the shallow configuration and 𝑌 be its output.

The output of the fully-connected layer 𝐹𝐶1 (which is also the output of the neural
network) is 𝑦 = 𝑓(𝑊𝑥 + 𝑏). Where 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌 are instances from input and
output datasets respectively, 𝑊 is the weight matrix, 𝑏 is the bias vector and 𝑓 is a
non-linear function. The objective of training is to adjust 𝑊 and 𝑏 from random ini-
tialisations into appropriate values that will result in correctly predicting 𝑦 instances,
through observation of 𝑥. The dimensions of 𝑊 and 𝑏 are shaped by the number of
nodes in the layer. A cost function guides the training process (or learning process)
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in order to learn appropriate trainable parameters. In this example an appropriate
cost function would be to minimise the misclassification rate of 𝑦. Weight matrix
and bias vector are the trainable parameters of the neural network (which multiply
with additional layers, e.g., 𝑊1, … , 𝑊𝑁 and 𝑏1, … , 𝑏𝑁). Most frequently activation
functions 𝑓 are non-linear functions, such as Rectified Linear Unit (ReLU) [40].
The amount of layers define the depth of the model. While the width of model,

is the number of total nodes within the model (aggregation of each individual layer
width). The selection of the model’s hyperparameters, such as depth, width, activa-
tion functions, define the capacity or complexity of the model.
Feed forward neural networks is the most common archetype of deep neural net-

works, with the only other alternative being recurrent neural networks (RNN). The
characteristic of feedforward neural networks is that the information passes from the
input(s) to the output(s). In other words, the input data pass through the hidden
layers to the output layer. RNN is a type of neural network which are typically con-
nected with time-series data. This is due to RNNs involving connections along parts
of a sequence, e.g., words of a sentence, before propagating information to successive
layers [41]. Such connections, allow learning of temporal associations within the data.
An example of recurrent neural networks is neural networks that make use of Long
Short-Term Memory (LSTM) layers [42].

2.1.2 Convolutional Neural Networks
Convolutional neural networks are deep neural networks that make use of convo-

lutional layers. They are specialised layers, that perform a different operation than
that of the fully-connected layers. As the name suggests, they perform the convolu-
tion operation over their input. They utilise lower-dimensional matrices (compared to
the original image, the size of the matrices is a hyperparameter) called kernels (filters
is also an alternative name). Kernels traverse through the image to produce lower-
dimensional feature maps from segments of the input. The objective of the above
procedure is to acquire a more accurate representation of the input, by combining its
most relevant parts. Figure 2.1 depicts the traversal process of convolutional layers.
Convolutional neural networks (CNNs) are particularly effective with datasets

that display temporal or spatial associations. Through convolution of smaller parts
of the image, convolutional layers highlight correlations between neighbouring parts,
e.g., pixels of an image. Unlike fully-connected layers, where each of the input fea-
tures are involved individually. Furthermore, kernels can traverse through multiple
channels at once. For that reason, CNNs are very active in various computer vision
applications, since these applications involve coloured images that consist of RGB
channels.
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Figure 2.1: Example of a kernel traversing through a gridded input. The figure is inspired
from a similar example in deep learning book [1].

One may classify the different CNN architectures based on the amount of di-
mensions that convolution operates on (Figure 2.4 depicts a generic CNN variation
with 2D convolutional layers). To exploit datasets with temporal correlations, such as
time-series data, the use of Conv1D layers (convolution over 1 dimension) is preferred.
While to exploit datasets with spatial correlations, such as images or other gridded
data, the use of Conv2D layers (convolution over 2 dimensions) is preferred. Exploita-
tion of spatio-temporal correlations is feasible through an aggregation of Conv1D and
Conv2D feature maps. However, implementations of Conv3D layers also exist.

2.1.3 Autoencoders

From a high-level perspective autoencoders can be seen as composition of two
procedures, the Encoding and Decoding procedures. Subsequently, two components
named: Encoder and Decoder perform the aforementioned procedures. The encoder
transforms (encodes) the input into representations squeezed through a bottleneck,
while the decoder transforms (decodes) a representation back to its original form. One
may perceive the autoencoder as an end-to-end neural network or as a composition
of two individual sub-networks (during this case, it is more frequent to perceive
encoder and decoder as stochastic mappings instead of deterministic functions [1]).
An overview of a generic autoencoder is depicted in Figure 2.2.
In general the depth of each subnetwork is arbitrary. However, it is generally

accepted that deep encoders and decoders bear more advantages than their shallow
counterparts [1]. Furthermore, Hinton and Salakhutdinov [43] showed experimentally
that deep autoencoders lead to greater compression than their shallower counterparts.
Despite the depth, autoencoders require a plethora of choices regarding the hyper-
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Figure 2.2: Overview of autoencoders and a corresponding generic neural network architec-
ture.

parameters such as activation functions, layer width, training objective, layer choice,
etc. From such choices, variations of autoencoders arise such as Convolutional or
Recurrent Autoencoders [44, 45].
One of the common misconceptions around the autoencoders is that they act as

identity functions. Meaning that the autoencoder tries to perfectly reconstruct the
input in its output. However, autoencoders that act as identity functions suggest
that the bottleneck layer does not introduce required restrictions for the encoder to
learn meaningful representations. Although there is a large discussion regarding the
properties of “good” representations (more in Chapter 5), one of the properties that
suggest meaningful representation learning is the ability of the encoder to generalise,
such as the example shown in Figure 2.3. To this end, to avoid lazy training of a
large capacity autoencoder to act as an identity function additional restrictions in
the form of regularisation are introduced. Well known regularisations are: Denoising
Autoencoders [46], Sparse Autoencoders [47], Contractive Autoencoders [48], etc.
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Figure 2.3: Example of good reconstruction with recreated data samples from MNIST [2].
The indication of learning generalised representations does not come from perfect reconstruc-
tion but rather than being able to capture multiple variations of the same concept, such as
tilted one digits and regular one digits.

Another misconception is that they are the deep learning equivalent of PCA.
Principal Component Analysis [49] is a traditional machine learning method that
learns the principal components of a data collection through linear operations. Un-
like PCA, autoencoders are able to learn representations from non-linear data, due
to the non-linearities involved in the activation functions of their neural network
architecture.
Denoising autoencoders are based on a very simple but rather effective idea. They

introduce noise in the input data. The decoder then, must learn to reconstruct the
original input without the introduced noise. Therefore, the decoder should learn to
“remove” the noise found in the input, i.e., to denoise the input. The introduced noise
may vary from dropout1, random values drawn from a well-known distribution, e.g.,
normal or uniform, salt and pepper2, etc. Bengio et al. [51] have proven that denoising
autoencoders are generative models, meaning that they learn latent variables involved

1Dropout is a stochastic procedure that transforms a random portion of the features within each
sample in a batch into zero value [50].

2Salt and pepper noise for deep neural networks is a stochastic procedure that transforms a random
portion of the features within each sample in a batch into either zero or one value. The name refers
to the end product bearing similarities to image that has salt and pepper all over it.
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Figure 2.4: Neural network architecture of a generic CNN and a generic convolutional
autoencoder.

in the generative process, that can be repurposed in order to manifest synthetic data
instances.
Convolutional autoencoders (depicted in Figure 2.4) are a variation of the original

autoencoder framework, which involve convolutional layers. The encoder utilises con-
volutional layers in order to exploit the correlations of the dataset. A fully-connected
layer aggregated all feature maps of the last convolutional layer, which acts as a bot-
tleneck. On the other hand, the decoder utilises the inverse operation, performed by
transpose convolutional layers also known as deconvolutional layers. Convolutional
autoencoders increase the complexity of the model. In turn, it allows for learning of
meaningful representations from gridded or time-series data.

2.1.4 Batch normalisation
Batch normalisation is a normalisation method developed by Ioffe and Szegedy

[52]. The concept of batch normalisation is to adjust the centre and scale of each
batch. The motivation of batch normalisation was to deal with internal covariate
shift, which is a phenomenon of internal layers shifting their means and variance,
during training. Batch normalisation has been implemented into a layer structure.
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Batch normalisation layers with trainable parameters 𝛽 and 𝛾 produce output 𝑦
based on 𝑥 = (𝑥(1), … , 𝑥(𝑑)), where 𝑑 is the number of dimensions. Each dimension
is normalised separately. The output 𝑦 is shown in Equation 2.1. The result of batch
normalisation is an output of zero mean and unit variance. A stability term 𝜖 may
be added to the variance in computation of ̂𝑥(𝑘). Scaling and shifiting performed by
𝑦 allows for restoring of representation power of the network. Batch normalisation
allows for faster and more stable optimisation of the neural network. It is also possible
to increase the effectiveness of the model.

𝐸[𝑥] = 1
𝑁

𝑁
∑
𝑖=1

𝑥𝑖

𝑉 𝑎𝑟[𝑥] = 1
𝑁

𝑁
∑
𝑖=1

(𝑥𝑖 − 𝐸[𝑥])

̂𝑥(𝑘)
𝑖 = 𝑥(𝑘)

𝑖 − 𝐸[𝑥](𝑘)

√𝑉 𝑎𝑟[𝑥(𝑘)]
with 𝑘 ∈ [1, 𝑑]

𝑦(𝑘)
𝑖 = 𝛾(𝑘) ̂𝑥(𝑘)

𝑖 + 𝛽(𝑘)

(2.1)

The above notation and terminology is consistent to that found in the work of
Ioffe and Szegedy [52].

2.1.5 Generative Vs. Discriminative Models
A high-level definition of generative models, as the name suggests, can be: prob-

abilistic models that learn to generate samples from an observable data distribution.
In the context of probabilistic classification, Ng and Jordan [53] mention that: “Gen-
erative classifiers learn a model of the joint probability p(x, y), of the inputs x and
label y”. In a more general context, one may consider a generative model to be a
probabilistic model that learns a joint probability 𝑝𝜃(𝑥, 𝑦) of observed random vari-
able 𝑥 and target random variable 𝑦. Generative models that involve deep neural
networks in the process of learning said joint probability, are characterised as deep.
In that case, parameters 𝜃 represent the trainable parameter of the neural network.
In the context of representation learning, it is often assumed that the data gen-

eration process involves some unobserved latent variables, where the generated data
instances are conditional distribution that involve these latent variables [15]. Gen-
erative models are most frequently trained without supervision. Since, they aim to
learn a joint probability between the input and a target variable.
A high-level definition of discriminative models, as the name suggests, can be:

probabilistic models that learn to “discriminate” data samples into various sets that
often represent semantic groups. Ng and Jordan [53] in the context of probabilistic
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classification mention that: “Discriminative classifiers model the posterior p(y|x) di-
rectly or learn a direct map from inputs x to the class labels”. In a more general
context, one may consider a discriminative model to be a probabilistic model that
learns posterior 𝑝(𝑦|𝑥) of target random variable 𝑦 given observable random vari-
able 𝑥. Discriminative models utilise labelled examples in order to learn a posterior
between input and target variable (i.e., most often are trained with supervision).

2.1.6 Representation Learning
Representation learning is at the same time, an explicit machine learning task

and an implicit, inherent process of deep neural networks. Deep neural networks
learn complex tasks through learning of simpler representations in each intermediate
layer. As layers sequentially pass information to the next, all intermediate representa-
tions are aggregated in the final output layer, which is typically the prediction layer.
The objective of representation learning is to learn alternative representations of raw
observations. In other words, it aims to transform the raw observations into an alter-
native space. The learning of latent representations is motivated by their repurpose
towards an ultimate objective. Examples of such objectives are: learning of a more
complex task based on less complex versions of the raw observations or extracting
insight regarding characteristics or data distribution of the raw observations.
The inherent learning of representations in deep neural networks is an implicit

procedure. Deep neural networks do not explicitly strive to learn alternative repre-
sentations. The process of learning simpler representations is a side effect from the
process of learning a down-stream task. On the other hand, the need for explicit
representation may rise. Explicit representation learning aims at various objectives
such as compression, dimensionality reduction, generation, clustering or studying the
characteristics of the dataset in a more compact feature space. Implicit or explicit
representation learning are distinguishable based on their training objective. Con-
ventionally, implicit representation learning is part of supervised learning, with the
training objective aiming to reduce the misclassification rate of the classifier. Explicit
representation learning is part of unsupervised learning, with the training objective
aiming to learn unobserved variables that are involved in the generative process of
the dataset.
For that reason, implicit representation learning produces task-specific represen-

tations. Its learning process requires an adequate amount of labelled instances. On
the other hand, explicit representation learning does not require labelled instances.
In addition, it produces representations that are transferable to other tasks. However,
evaluating the performance of explicit representation learning is more complex than
implicit representation learning (more regarding the evaluation in Chapter 5).
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Figure 2.5: Types of transfer learning according to Pan and Yang [3].

2.1.7 Transfer Learning
Transfer learning is a learning archetype of machine learning. It is based on the

idea that the products of training, such as trainable parameters or effective hyper-
parameters, should be transferable to other models that perform similar tasks. In
other words, transfer learning encourages the repurposing and adjustment of already
trained models for new tasks. This property of transfer learning allows training and
testing data to be drawn from different data distributions [3]. For example, the train-
ing could involve images from cars, while the task at hand could be to identify
trucks within images. Adjusting of pre-trained models reduces optimisation errors
from random initialisations. For instance, minimising a cost from random initialisa-
tion, depending on the seed, may lead to a local minimum. However, initialisation
from a good performing pre-trained model would avoid such errors. In addition, it
reduces the use of resources and effort put into adjustment of hyperparameters.
According to Pan and Yang [3], transfer learning can be classified into three cat-

egories: (i) Inductive Transfer Learning (ITL), (ii) Transductive Transfer Learning
(TTL) and (iii) Unsupervised Transfer Learning (UTL) (also shown in Figure 2.5).
ITL involves the transfer of knowledge from dissimilar tasks, which are outcomes
based on the observation of a common feature space. TTL involves the transfer of
knowledge from similar tasks, which are outcomes based on the observation of dis-
similar feature spaces. UTL involves the transfer of knowledge from dissimilar tasks,
which are outcomes based on the observation of dissimilar feature spaces. In addi-
tion, most often UTL consists of transferring knowledge from a source task to an
unsupervised target task.
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of universal representations approach is omitted, since it involves model adjustment in a
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2.1.8 Multi-task Learning

Multi-task learning (MTL) is essentially inductive transfer learning. However, in
MTL the objective is often to learn all tasks at the same time, rather than transferring
knowledge across one or multiple tasks. In practice, MTL aims to combine relevant
knowledge found across similar tasks, in order to increase the overall perception of
the model or to produce a more relevant feature space. For that reason, it frequently
leads to increased performance in all tasks.
According to Elliot Meyerson [4], MTL can be classified into four categories: (i)

classical, (ii) column-based, (iii) supervision at custom depths and (iv) universal rep-
resentation (also shown in Figure 2.6). Classical approach consists of a single encoder
model with task specific decoder streams. The decoders produce task outcomes based
on task-invariant features produced by the encoder model (also known as hard pa-
rameter sharing). Column-based consists of individual task specific streams which are
typically trained by sharing their parameters (each streams can be seen as a column,
also known as soft parameter sharing). Supervision at custom depths involves of a
single end-to-end model. However, it consists of multiple outputs which are outcomes
based on different depth model levels. Universal representation consists of adapting
the layers with task-specific parameters. Since the name universal representations can
be confusing in the context of studying the related work of representation learning for
information fusion, from now on this approach will be referred to as domain specific
adaptation of layers.
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2.1.9 Weak Supervision
A frequent classification of machine learning and as an extent, deep learning

methods, is according to their types of learning. Most famous types are: Supervised
Learning and Unsupervised Learning. According to Goodfellow et al. [1]: “Supervised
learning algorithms experience a dataset containing features, but each example is also
associated with a label or target”, while “Unsupervised learning algorithms experience
a dataset containing many features, then learn useful properties of the structure of
this dataset”.
Weak supervision can be seen as a middle ground between full supervision and

no supervision (unsupervised). Weak supervision involves cases with limited super-
vision. Limitations may include noisy labels, incomplete correspondence or no corre-
spondence at all. According to Zhou [54], weak supervision can be classified as: (i)
Incomplete, (ii) Inexact and (iii) Inaccurate. Incomplete supervision involves datasets
that consists mostly of unlabelled data and a small portion of labelled data. Inexact
supervision involves bags of instances instead of individually labelled instances. Inac-
curate supervision involves datasets with inaccuracies within its associated labelset.
Examples of inaccuracies are noisy, non-corresponding or irrelevant labels.

2.1.10 Information Theory
Information theory includes fundamental concepts around the act of transmitting

information from a source to a receiver. According to lexico.com [55], the definition
of information theory is: “The mathematical study of the coding of information in the
form of sequences of symbols, impulses, etc. and of how rapidly such information can
be transmitted, for example through computer circuits or telecommunications chan-
nels”. While according to Cover and Thomas [56]: “Information theory answers two
fundamental questions in communication theory: What is the ultimate data com-
pression (answer: the entropy H), and what is the ultimate transmission rate of
communication (answer: the channel capacity C)”.
These fundamental concepts are presented as follows. Entropy quantifies the un-

certainty of a random variable [56] (as shown in Equation 2.2). Random variables
that follow a uniform distribution have high entropy. Consider the example of rolling
a fair dice. Trying to predict the outcome of the dice is completely random, since all
outcomes are equivalently probable.

𝐻(𝑋) = − ∑
𝑥∈𝑋

𝑝(𝑥) log 𝑝(𝑥) (2.2)

One may desire to measure the entropy of a random variable based on observation

22



Chapter 2. Related work

of another random variable. This is known as measuring the conditional entropy of
two random variables (as shown in Equation 2.4).

𝑃(𝑥|𝑦) = 𝑃(𝑥)𝑃(𝑦|𝑥)
𝑃 (𝑦) = 𝑃(𝑥, 𝑦)

𝑃 (𝑦) −→ 𝑃(𝑥, 𝑦) = 𝑃(𝑥|𝑦)𝑃 (𝑦)

𝑃 (𝑦|𝑥) = 𝑃(𝑦)𝑃 (𝑥|𝑦)
𝑃 (𝑥) = 𝑃(𝑥, 𝑦)

𝑃 (𝑥) −→ 𝑃(𝑥, 𝑦) = 𝑃(𝑦|𝑥)𝑃 (𝑥)
(2.3)

𝐻(𝑌 |𝑋) = − ∑
(𝑥,𝑦)

𝑝(𝑥, 𝑦) log 𝑝(𝑦|𝑥)

(2.3)
−−−→ 𝐻(𝑌 |𝑋) = − ∑

(𝑥,𝑦)
𝑝(𝑥, 𝑦) log 𝑝(𝑥, 𝑦)

𝑝(𝑥)
(2.4)

Equation 2.3 involves a transformation based on Bayes’ rule. Bayes’ rule is a
formula from the domain of probability which in combination with logarithmic prop-
erties are frequently utilised to simplify concepts in information theory. Logarithmic
properties that are frequently used are show in Equation 2.5.

log𝑎(𝑥 ∗ 𝑦) = 𝑙𝑜𝑔𝑎𝑥 + 𝑙𝑜𝑔𝑎𝑦

log𝑎 (𝑥
𝑦 ) = 𝑙𝑜𝑔𝑎𝑥 − 𝑙𝑜𝑔𝑎𝑦

(2.5)

Mutual information (as shown in Equation 2.6) quantifies common information
found in two random variables. Cover and Thomas [56] defines it as: “The mutual
information I (X; Y ) is a measure of the dependence between the two random vari-
ables. It is symmetric in X and Y and always non-negative and is equal to zero if and
only if X and Y are independent”.

𝐼(𝑋; 𝑌 ) = 𝐻(𝑋) − 𝐻(𝑋|𝑌 )
𝐼(𝑌 ; 𝑋) = 𝐻(𝑌 ) − 𝐻(𝑌 |𝑋)

(2.6)

The above notation and terminology is consistent with that found in the work of
Cover and Thomas [56].

2.1.11 Data Fusion
The combination of various data sources for the purposes of producing more ef-

ficient results in an appropriate goal, is the concept that most frequently describes
data fusion. White [57] defined data fusion as “a process dealing with the associa-
tion, correlation, and combination of data and information from single and multiple
sources to achieve refined position and identity estimates, and complete and timely
assessments of situations and threats as well as their significance”. In the definition
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of White [57], not only data, but also information comes up as a component involved
in the combination. This idea popularized the term information fusion.
The combination of data products derived from raw observations is the concept

of information fusion. Data products may involve alternative features or decisions,
and therefore imply a higher semantic level. As indicated by Foo and Ng [58], the
focus of research shifted from semantically low-level information fusion to high-level
information fusion. According to Boström et al. [59]: “Information fusion is the study
of efficient methods for automatically or semi-automatically transforming information
from different sources and different points in time into a representation that provides
effective support for human or automated decision making”. Comparison of these two
definitions implies that they involve similar concepts.
To define information fusion as a research field, Boström et al. [59] in addition to

information fusion definitions also considered and discussed definitions of data fusion.
Furthermore, Boström et al. [59] explicitly mention that in practice these two terms
are sometimes synonyms. At the same time, Steinberg et al. [60] mentions that due
to lack of a general term, the term data also covers its subsets, e.g., information,
knowledge, etc.
Another term that is closely related to data fusion is data alignment. Data align-

ment is the transformation of diverse types of data into a common frame. A well-
known case of data alignment is adjustment of sensors into a common coordinate
system [61]. Despite, data alignment may also involve non-diverse data. Data align-
ment aims to find means of transition, such as rules or tables, between data sources.
The objective of the transition is to create a unified space based on which all data
sources can be referenced.
Another concept that frequently appears in data fusion is redundancy. Redun-

dancy is the propagation of irrelevant information that may create noise or errors.
The redundancy may increment with the introduction of additional data sources.
In telecommunications incremental redundancy has been defined as the transmission
of “increments of redundant bits after errors are observed” [62]. The downsides of
involving redundant data sources are: that it may require additional computational
resources to compensate to the large number of features [63] or it might disrupt the
performance of various methods (if not explicitly dealt with) [64].
In machine learning the most frequent cases of incremental redundancy are: in-

volving data features already present in other sources, which are irrelevant for the
task at hand or involving non-complementary data sources. For a better understand-
ing of the difference between the two cases, consider the following example from the
domain of computer vision. Figure 2.7, depicts five versions of the same image. The
coloured version, each individual red, green and blue versions and grey scale version.
All versions depict an object with white background. Let the task at hand be iden-
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Figure 2.7: Example of redundant images. The first three images depict the red, green and
blue version of the fourth image that is the coloured version. All images depict an object
(a folder) over a white background. The red, green and blue versions of the coloured image
propagate the redundant information of background, which is not relevant to the object
detection task. The greyscale version depicted in the fifth image is also redundant to the
coloured version, since the coloured version also depicts texture.

tifying the object within the image. Fusing individual red, green and blue channels
introduces redundant features, i.e., background features. Background features are re-
dundant, since they do not provide any insight for the task at hand. At the same time,
greyscale version is redundant to the coloured counterpart, since the coloured image
involves additional information by the combination of individual channels, which is
texture of the object.

2.1.12 Evaluation Criteria of Fusion Methods
Meng et al. [5] proposed a list of criteria based on which the performance of fusion

methods is evaluated3:

Efficiency.
“Efficiency is used to evaluate if a data fusion model makes use of resources
economically … The efficiency reflected by execution time should be evaluated
to demonstrate model advance through comparison with other models”.

An alternative to dealing with multiple data sources individually, is to utilise the
data products of their combination in order to reduce the required processing
power. Treating each data source individually, depending on the volume of
available data features or available data samples may require excessive amounts
of available processing power. Such resources may either not be available (e.g.,
insufficient memory) or they are possibly reduced through sharing of multiple
individuals (e.g., memory is sufficient but per user restrictions are insufficient
for the task at hand). Therefore, the economical use of resources is frequently
a desirable criterion during information fusion.

Quality.
3Text in italics and quotes indicates definitions from Meng et al. [5]
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“What is the direct impact on a fusion algorithm? To which degree does the
model improve the information accuracy? Quality is the core of data fusion”.
The process of fusing a variety of data sources directs towards an end-goal.
As a result, quantitative evaluation metrics represent the quality of the fusion
process. The evaluation metrics vary, depending on the end-goal. For exam-
ple, consider the process of fusing features from multiple data sources in order
to achieve better identification of objects. A straightforward evaluation met-
ric of the fusion quality could be the accuracy of identified objects. Meaning
that, increased performance in the process of quality should lead to increased
performance in correctly identifying objects.

Stability.
“Stability is used to evaluate a fusion model’s ability to keep working well in a
stable manner in different situations”.
Depending on the end-goal of the fusion process, the stability of the method
may be critical. For example, an unstable information fusion process in medical
applications may be costly and therefore, considered critical (resources: time,
computational time, materials, etc. – direct impact, such as physical implica-
tions).

Robustness.
“Robustness evaluates the strength of a fusion model to resist disturbance.
When an underlying environment is changed, fusion quality should be ensured”.
Combining multiple information sources may yield challenges. Various infor-
mation sources may often contain noise or lead to aggregated noise through
their fusion. The fusion process should be able to deal with such noise, either
inherent or aggregated, in order to ensure its operability.

Extensibility.
“Extensibility means that a data fusion model can be easily further improved
and widely used in many situations … Extensibility is a valuable feature for
wide adoption of the data fusion model in practice”.
Mechanisms within applications are often overlapping. For example in com-
puter vision, object detection mechanism is reused by many applications such
as semantic segmentation or pose estimation. The process of fusing information
sources is no exception. Modular mechanisms and methods found in informa-
tion fusion should be generalised in order to be adopted in other domains or
applications.
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Criteria

Efficiency

Extensibility

Privacy

Quality

Stability

Robustness

Tested with Real Data

Figure 2.8: Overview of criteria proposed by Meng et al. [5]. Boxes on the left side depicted
with dashed lines represent criteria which are less generally applicable.

Privacy.

“In some application scenarios, data used for fusion may be sensitive and private,
which induces security requirements on the fusion model”.

Information fusion in certain applications may require ensurance of privacy.
Fusion of personal or sensitive data should be handled with caution within the
fusion process.

Tested with real world data sets.

“In a solid research, experiments are dispensable to testify the performance of
a model prove its effectiveness and show its advantages”.

The inspiration to perform fusion of multiple data sources usually comes from
real world experience. Artificial or toy4 datasets which are used for educational
or other purposes are not as complex as real world datasets. Evaluation with
real world datasets is a critical evaluation criterion, since it relays the real world
impact of the fusion process.

Figure 2.8 visualises the criteria proposed by Meng et al. [5]. In this day and
age resource limitation are generally not so frequent due to cloud computing. Cloud

4It is common to refer to datasets that are simple or easy to solve as toy. An example of such
dataset is the Iris Plant Dataset [65, 66]. Iris plant dataset is one of the most famous datasets in
pattern recognition. However, modern methods and algorithms achieve great performance with low
amounts of effort.
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services provide access to resources that fit the needs of the problem. Due to that,
Efficiency criterion is often neglected during the fusion process. However, relying on
such cloud services may be costly. Therefore, being not a sustainable solution in the
long term. To this end, using the available resources efficiently is still a relevant issue
to consider. Yet, compared to other criteria, considering efficiency of resources during
the fusion process is less relevant than in previous years.
Incompliance to Privacy criterion, despite being unethical and potentially illegal

(e.g., medical applications), is also critical to the development of information fusion
methods. Preserving the privacy of the users involved in the data acquisition (or
other parts of fusion process) is a major stepping stone towards inspiring trust. A
relation of trust between involved users and scientists not only allows for major
advancements, but also inspires the sharing of such information. For example, data
fusion applications that detect lung diseases are not feasible without the acquisition of
relevant data. An environment of distrust towards the fusion method may encourage
users to not share their sensitive information and therefore restrict advancements in
this area, which has a direct societal impact. Yet, dealing with sensitive or private
data is not the norm. Most domains deal with publicly available or data that do
not expose information or activity of users. Thus, concluding that privacy is not a
generalisable criterion for evaluating the fusion process.
Aiming to develop extensible data fusion methods promotes reuse of effective and

stable modules or methods in multiple domains or applications. However, the imple-
mentation or design of method typically aims to a specific application, task or domain
and thus, its extensibility to other applications, task or domains may not be practical.
This could be either due to underlying assumptions not being applicable to the new
domain or either due to the two domains being unrelated and thus lacking similar
concepts. Therefore, Extensibility criterion is not a general evaluation criterion. The
remaining criteria such as Quality, Stability, Robustness and Tested with Real Data
are more broadly applicable.

2.1.13 Classification of Information Fusion Methods
To study the relevance of EviTraN compared to previous work in learning repre-

sentations for the purposes of fusing data sources, a classification of methods should
be selected. In this study, the classification of Dai and Khorram [6] and Luo et al.
[7] which is based on the abstraction level of the data, is adopted. The abstraction
levels, also shown in Figure 2.9, are:

Raw-data/signal level. As the name suggests, signal-level fusion involves raw sig-
nals or observations. The fusion at this level aims to produce a combined signal
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Figure 2.9: Abstraction level of data, according to Dai and Khorram [6] and Luo et al. [7].

of increased quality or of reduced redundancy. The combination operation, de-
pending on the interpretation can be a linear, probabilistic or other appropriate
operations.

Pixel level. This level involves combination of pixels, it consists of computer vision
applications, e.g., object detection.

Feature/intermediate level. This level involves characteristics extracted from
raw observations. The fusion at this level aims to produce a new set of refined
features or decision level information such as task outcomes. Feature-level fusion
is popular in deep learning.

Decision/high level. This level involves decision level information, such as task
outcomes. The fusion at this level aims to produce new refined decisions.

2.2 Representation Learning for Signal-Level Fu-
sion

Compared to the other two levels of fusion, signal-level fusion can be considered
as the less sophisticated one. As it directly involves raw observations, which are un-

29



2.2. Representation Learning for Signal-Level Fusion

processed, this may result in the introduction of a plethora of features which may not
be relevant. A comparative study conducted by Cui et al. [67], involved fusion of two
modalities: colour and depth images from an RGB-D sensor. The evaluation process of
the fusion involved the task of face recognition. During their study, signal-level fusion
yielded the worse performance than a respective single source solution that involved
only RGB images for one of the datasets. At the same time, it barely performed bet-
ter in the other dataset. The above study is merely an indication of signal-level not
only being less sophisticated but also being less efficient than the alternative levels.
However, to draw definitive conclusions more investigation is required.
CNNs for signal-level fusion is the most representative implicit representation

learning fusion scheme, while joint latent space is the most representative explicit
representation learning fusion scheme for signal-level fusion. Data alignment at signal-
level can be utilised both for implicit and explicit representation learning.

2.2.1 Data Alignment for Signal-Level Fusion

Signal-level fusion involves unprocessed signals. To deal with any heterogeneities,
it is frequent to perform a data alignment procedure as a pre-processing method.
The approach of fusing signals by aligning them in a common space, is common in
applications like database schema matching [68] or semantic-based fusion [69]. The
alignment process typically does not involve deep learning. Representation learning
of aligned sources involves only a single combined source. It can be either implicit or
explicit.

EviNets [70] is an implicit representation learning method for question answering,
which receives an aligned data source as input. The involved data types are text and
specialised knowledge base triples from open domain question answering. To align
the data, they first automatically retrieve the entities from relevant text. Then, they
transform both entities from the text and the knowledge base triples into embeddings
through Bag Of Words [71]. EviNets select the most relevant embeddings based on
a task appropriate scoring function.
Amorim et al. [72] proposed an alignment method to deal with heterogeneity of

data extracted from social media. They perform an automatic alignment by involving
a pre-trained Mask-RCNN model [73]. The authors extract predicted labels by feeding
images to the pre-trained model. Predictions over a certain threshold, which are
considered as successful, are concatenated at the end of the tweet. An autoencoder
produces latent representations based on the aligned embeddings from image and
text data. The authors repurpose the learned representations for the task of novelty
detection. The above process is presented in Algorithm 1.
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Algorithm 1: Automatic data alignment of image and text signals for nov-
elty detection in social media, proposed by Amorim et al. [72].
Data: 𝐼 : images extracted from tweets, 𝑇 : extracted text from tweets.
Result: Alignment of image and text signals from social media.

1 forall images 𝑖 in 𝐼 do
/* Extract labels from pre-trained Mask-RCNN */

2 𝐶 = Mask-RCNN.predict(𝑖);
3 forall 𝑐 in 𝐶 do
4 if class assignment probability of 𝑐 over threshold then
5 keep 𝑐 in 𝐶 collection;
6 else
7 remove 𝑐 from 𝐶;
8 end
9 end
10 Concatenate 𝐶 at the end of respective 𝑡 ∈ 𝑇 text;
11 end
12 Extract latent features 𝑍, from autoencoder trained on augmented 𝑇 text

collection;
13 Find novel instances from novelty detection algorithm with input 𝑍;

2.2.2 CNNs for Signal-Level Fusion.
CNNs serve as a connection between the discrepancy created by involving low-

level information, such as signals, into high-level implicit representation learning ob-
jectives. CNNs are able to produce refined features which are able to deal with that
semantic discrepancy. The input of these CNNs, consists of individual data sources,
introduced as channels. The combination takes place in the initial convolutional layer,
which is the one closest to the input. Using CNNs for signal-level fusion,typically in-
volves implicit representation learning.
Full Patch Labelling by Learned Upsampling (CNN-FPL) [74] is a CNN archi-

tecture that produces class labelled maps for the task of land cover classification. To
predict the class labelled maps, the proposed architecture receives a multi-channel in-
put that consists of near infrared, green, red and normalised digital surface channels.
The main concept of the architecture is similar to that of convolutional autoencoder.
The input is downscaled with the use of sequential convolutional layers and is then
upscaled to the original shape through deconvolutional layers.
Xu et al. [75] proposed a 3D CNN for the extraction of features from three-

dimensional grids extracted from LiDAR data. The fusion of three-dimensional grids
aims to perform the task of land cover classification which guides the training of the
extractor. A 3D CNN is also propose by Yun-Mei et al. [76], in order to deal with
heterogeneous annotation of electroencephalogram (EEG) data, as a result of varying
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medical equipment. The proposed 3D CNN architecture is able to extract spatio-
temporal features from heterogeneously annotated EEG data, in order to predict
EEG abnormalities.

2.2.3 Joint Latent Space Frameworks for Signal-Level Fusion
Joint latent space frameworks perform automatic alignment and extraction of cor-

relations between data sources by enforcing a joint latent space. The enforced joint
latent space, acts as a bottleneck that compresses the most relevant information from
all involved data sources. Joint latent space for signal-level fusion, typically involves
explicit representation learning and autoencoding frameworks. Also, they typically
involve multiple input and output streams. Since explicit representation learning does
not involve decisions (high-level information), the aggregation operations are usually
less sophisticated, e.g., concatenation. Although, more sophisticated operations such
as convolution may be utilised, if higher model complexity is required for a certain
application. In addition, convolutional layers is an efficient way of reducing the in-
put and output streams into single streams. However, it differs from previous CNN
approach, since the representation learning objective is explicit (e.g., reconstruction
error).
Correlation Neural Networks (CorrNet) [8] (as shown in Figure 2.105) is a joint

latent space framework that mostly involves dual modalities. CorrNet is a dual stream
autoencoder with an enforced bottleneck, that involves the inner-most layers of both
streams. It involves a composite training objective of three terms. Reconstruction
error of input and output pairs, reconstruction error of input and output pairs with
inverse encodings (encode with one modal – use decoder of the other modal) and
correlation between encoding pairs.
Multimodal Autoencoder (MMAE) [9] (as shown in Figure 2.11 (a)) is an au-

toencoder that involves multiple modalities as a concatenated single stream. The
motivation behind development of MMAE, is to fill missing data from modalities by
utilising the ability of autoencoders to reconstruct input. To do so, MMAE first is
trained with complete modalities. In a later step, the authors remove values from
modalities by using value -1 to represent a missing value. The error of reconstruction
is measured with cross entropy. An aggregation of all reconstruction errors for each
modality is considered as the final composite objective.
In previous work, we proposed a convolutional autoencoder (as shown in Figure

2.11 (b)) that involves multiple pressure levels of a weather variable (500, 700 and
5This figure and the following figures in Chapter 3 that depict neural network architectures from

related work, depict simpler architectures than the ones found in the original work. The simpler
architectures aim to represent the main concept of the framework, without unnecessary repetition of
layers. The actual number of layers may vary from the original work.
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Figure 2.10: Neural network architecture of Correlation Neural Networks (CorrNet) [8]. The
different arrows represent the information flow of the three different training objectives.

900 ℎ𝑃𝑎 of GHT, more regarding aspects of weather data in Chapter 6) [10]. The
proposed convolutional autoencoder, fused each pressure level into a single stream,
through their introduction as channel of the initial convolutional layer. The explicit
representation learning of the above autoencoder, aims to extract weather patterns
for source estimation of nuclear events.

2.3 Representation Learning for Intermediate-Level
Fusion

Unlike signal-level, intermediate-level involves refined features from pre-processing
raw observations or unprocessed signals. Deep neural networks inherently learn inter-
mediate features through their hidden layers, therefore deep learning frequently lends
itself in this level. Implicit representation learning in this level involves two strategies:
intermediate merging and attention-based alignment. Explicit representation learn-
ing in this level involves two strategies: generative and discriminative hybrids and
self-fusion.

2.3.1 Intermediate Merging
Intermediate merging is well-practised within deep learning. It involves the design

and training of individual neural network streams (sub-networks), which are aggre-
gated in an appropriate depth. After aggregation, typically a single stream (predic-
tion layer) is involved in an implicit representation learning objective. Each individual
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Figure 2.11: Neural network architectures of MMAE [9] and Weather ConvAE [10].
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sub-network receives as input a single data source. The sub-networks aim to learn
meaningful latent features from the individual sources. Therefore, their design is tai-
lored to the characteristics of the dataset, e.g., Conv2D for gridded data. Repurposing
of sub-networks for other tasks is common after training. Prediction layer allows back-
propagation to all sub-networks, which in turn leads to extraction of most relevant
aspects of each individual data source.
Zhou et al. [11] proposed an intermediate merging framework that consists of

fully-connected layers. The learning objective of this framework is to jointly learn
representations from multiple dialogue utterances, for the task of dialogue act recog-
nition. The sub-networks do not share their weights. A single joint fully-connected
layer acts as the combination operation before introducing joint features into the
prediction layer. The architecture is shown in Figure 2.12 (b).

X-CNN is a unique intermediate merging strategy proposed by Velickovic et al.
[13]. X-CNN consists of individual sequences of convolutional and pooling layers (one
for each channel of the input), which are followed by more sequences of convolutional
and pooling pairs. Each stage of convolutional layers that follows the initial pair
involves connection from all modalities. The across connections are merged with
concatenation. Thus, creating sub-networks that include features from all modalities.
The architecture is show in Figure 2.13 (b).
Simonyan and Zisserman [12] proposed an intermediate merging approach based

on aggregation of scores. The two-stream proposed architecture, aims to learn rep-
resentations for the task of video classification. It consists of a spatial 2D CNN,
that receives video frames and a temporal 2D CNN that receives optical displace-
ment flows. Optical flow displacement is a data product that depicts motion between
frames. To produce said product, consecutive video frames are utilised. The fusion is
auxiliary to the learning process. After training, the decisions produced by each sub-
network, is aggregated either through averaging or SVM training through stacking
the scores after 𝐿2 normalisation. The aggregation of scores is the final task outcome
of the framework. The architecture is show in Figure 2.13 (a).
Even though intermediate merging is frequently practised, the depth of the merg-

ing, as well as, the merging operation, requires significant effort in experimentation.
The merging depth and operation are vital to the effectiveness of the fusion. Park
et al. [77] investigated various intermediate merging strategies for the task of action
recognition. Similar to the previous framework it also involved two sub-networks: a
spatial and a temporal stream, that receive as input frames and optical flow dis-
placement, respectively. The proposed strategies were: concatenation of two streams,
concatenation before aggregation in a joint layer, merging by element-wise product
(referred to as multiplicative fusion) of feature maps extracted from convolutional lay-
ers or fully-connected layer outputs. In their study, multiplicative fusion performed
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better than concatenation.
Intermediate merging differs from joint latent space frameworks in thee ways.

First, it involves implicit representation learning, unlike joint latent space that in-
volves explicit representation learning. Second, joint latent space directly involves
unprocessed signals, while in intermediate merging the extraction of features is part
of learning process (inherently performed by each sub-network). Lastly, joint latent
space frameworks directly involve input and output pairs in the training objective.

2.3.2 Attention-Based Alignment
This special case of data alignment exploits the attention mechanism in order to

align data sources in an intermediate level. Attention mechanism was introduced after
the initial success of Sequence-to-Sequence model, also known as Seq2Seq, in machine
translation. Seq2Seq framework is very similar to autoencoder framework. An encoder
network receives a data sequence, that transforms into a single representation. Then
a decoder network transforms the representation back into a sequence. In machine
translation, the input and output sequences are two different languages. Attention
dealt with certain shortcomings of that model, such as dealing with a fixed-length
encoder vector. Attention [14] (as shown in Figure 2.14) was introduced as an align-
ment model that was able to weight the importance of position in input sequence,
with respect to the output positions. A feed-forward neural network calculates the
correlation between input and output positions. The correlation,is called alignment
score.Through calculation of the alignment scores, attention is able to automatically
align the input and output sequences in an intermediate-level. Therefore, learning a
deep learning intuitive method of transitioning between input and output domains.
To this end, attention lend itself to additional applications, such as image annotation
Xu et al. [78] and hierarchical attention [79].

2.3.3 Generative and Discriminative Model Hybrids.
Generative and Discriminative model hybrids combine the views of the two re-

spective models. Hybrid models are very popular in semi-supervised learning setting,
as they are able to learn from both unlabelled and labelled data. In regard to fusion,
hybrid models allow the learning of intermediate-level features from a joint learning
process, that involves signal-level and decision-level features (input data and discrimi-
native view respectively). Variational autoencoder (VAE) and Generative Adversarial
Networks (GAN) are two very established generative models, which are frequently
part of hybrid modelling.
Variational Autoencoder is a deep learning implementation of variational infer-
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Figure 2.14: Neural network architecture of attention mechanism [14].

ence [15]. Its objective is to learn latent variables involved in the generative distri-
bution, which are able to represent all variations of the data. The training process
of VAE, involves an additional training objective. The additional objective, aims to
constraint the distribution of latent variables into a multivariate Gaussian prior. The
first unsupervised model (also known as M1) has been adapted into a hybrid version
that includes a discriminative view. The proposed M2 model [16], consists of two
encoder streams. The first stream predicts latent variables, similarly to M1 model.
The second stream predicts class labels. During unlabelled data, the second stream
is trained to output Symmetric Dirichlet distribution samples, similarly to Gaussian
prior constraint of M1. During labelled data samples, the second stream learns to
correctly classify the data instances. The decoder involves both streams. The M1 and
M2 model variations are depicted in Figure 2.15.
Semi-Supervised Sequential Variational Autoencoder (SSVAE) [17], adapted the

M2 model for text classification. SSVAE involves two LSTM encoders, with similar
output to the M2 model. The classifier stream minimises the entropy of the output,
instead of imposing a Symmetric Dirichlet distribution, during unlabelled data. Based
on this adaptation, Zhang et al. [18] proposed a joint representation learning for
multi-modal sentiment classification by stacking individual uni-modal SVAEs. The
uni-modal SVAEs share common architecture characteristics with SSVAE. SSVAE
and uni-modal SVAEs hybrid models are depicted in Figure 2.16.
The above models introduce discriminative views explicitly. An alternative way
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Figure 2.15: Neural network architectures of M1 [15] and M2 [16] model variation of VAE.
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Figure 2.16: Neural network architectures of SSVAE [17] and Uni-modal SVAE [18] hybrid
models.
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of introducing discriminative views, is implicitly introducing a discriminative view.
ML-VAE [80] is a framework based on this idea. The motivation behind ML-VAE
is that data samples within a certain group share common characteristics. For that
reason, the data instances during training are introduced in groups. This is similar
to separating the dataset into categories based on a discriminative view and then
introducing each group, as a batch of training samples.
Goodfellow et al. [19] proposed the Generative Adversarial Network framework,

that quickly became one of the most influential works in generative modelling. The au-
thors proposed a unique training strategy that involves two adversarial sub-networks.
The Generator and Discriminator sub-networks, which are adversaries during the du-
ration of the training. The objective of the generator is to manifest realistic synthetic
data instances that will be able to trick the discriminator into classifying them as
real. On the other hand, the discriminator tries to distinguish between synthetic and
real data instances. From this adversarial training, the generator learns to generate
realistic data instances.
The first hybrid variation of GANs, is the Categorical Generative Adversarial

Network (CatGAN) [20, 21]. The CatGAN framework introduces a specialised dis-
criminator which in addition to classifying whether a data instance is real or syn-
thetic, it also predicts the class of the instance. The class prediction is the product
of a softmax activation that produces class probabilities. The objective of CatGAN
is similar to that of GANs, however it involves an additional term that measures the
classification error of the discriminator. CatGAN is also able to perform unsupervised
clustering by involving the minimisation of entropy of the class probabilities. GAN
and CatGAN hybrid variation are depicted in Figure 2.17.
Sricharan et al. [22] proposed that the discriminator should be divided. The pro-

posed Semi-Supervised GAN (SS-GAN), consists of stacking two discriminators, as
well as, a generator that also involves a class attribute vector. The first discriminator,
is an unsupervised discriminator that classifies whether an instance is fake or real.
During training with labelled data samples, the supervised discriminator (which is
an intermediate extension of the unsupervised discriminator) is trained to correctly
predict class attribute vector. Figure 2.18 depicts the SS-GAN model architecture.
The training strategy of GANs was adapted by other frameworks as well. Makhzani

and Frey [81] proposed the use of adversarial training in autoencoders. The proposed
Adversarial Autoencoder (AAE), involves a discriminator stream that imposes cer-
tain distributions over the latent space. The choice of the distribution causes different
effects over the latent space. Unlike VAEs, the imposing of a prior distribution in AAE
is more implicit, since AAE imposes the prior by drawing samples from the distribu-
tion and the adversarial training. AAE can be adapted to a plethora of tasks, such as
supervised classification, semi-supervised classification, unsupervised clustering and
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Figure 2.17: Neural network architecture of GAN [19] and CatGAN [20, 21] hybrid model
variation.
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Figure 2.18: Neural network architecture of SS-GAN [22].

dimensionality reduction.

2.3.4 Self-fusion
Self-fusion frameworks, bear some similarities with hybrid models. However, unlike

hybrid models that involve supervised task outcomes or labelled data, self-fusion
involves unsupervised task outcomes. Most often, they are alternative views of the
original dataset (clone fusion) or unsupervised down-stream task outcomes, such as
clustering (clustering as auxiliary view).

Clone fusion is a self-fusion scheme that involves alternative views, perspectives or
features of a single dataset. In the context of deep representation learning, it typically
involves sub-networks with similar architectures but varying hyperparameters, such as
activation functions, convolution strides or filter sizes. However, other operations that
extract alternative views can be used, e.g., traditional machine learning algorithms.
Ng et al. [23] proposed an autoencoding framework to deal with class imbalance.

The proposed Dual Autoencoding Features (DAF) framework (depicted in Figure
2.19), aims to learn a meaningful latent space that will improve decision boundaries
between the available classes. DAF consists of two autoencoders with the same archi-
tecture, but different activations (sigmoid and tanh), which capture different inter-
mediate views of the dataset. The autoencoders are first trained individually. Then, a
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Figure 2.19: Neural network architecture of DAF [23].

combined latent representation is extracted from the two independent autoencoders.
Clone fusion can also be introduced through self-augmentation. Hu et al. [82] pro-

posed the Information Maximisation Self Augmented Training (IMSAT) framework,
which learns discrete representations by encouraging the representations to be invari-
ant to various augmentations of the dataset. IMSAT learns to maximise the mutual
information between discrete representations and augmented data. The augmentation
procedure is part of the training process.
Peng et al. [83] proposed extracting representations from a random walk with

restart over biological networks. Since random walk is a stochastic process, multiple
iterations will yield different representations. An autoencoder receives all different
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Figure 2.20: Neural network architecture of DEC [24].

representations produced by the random walk. The autoencoder aims to produce
representations augmented with domain knowledge. The domain knowledge, is in-
volved through a training objective that promotes pairwise similarity between gene
nodes. The final outcome of the process, which is the outcome of gene function pre-
diction, is performed by a CNN through observation of the representations extracted
from the autoencoder.

Clustering as auxiliary view is a fusion scheme that involves the outcome of a
clustering algorithm, as an external discriminative view. The outcome of a clustering
algorithm, can be seen as a complementary discriminative view of the dataset. The
task outcome of the clustering algorithm may be either used as input in the deep
representation learning framework or as a training objective term.
Yang et al. [84] proposed an explicit representation learning framework based on

expectation-minimisation type of traning. The proposed Joint Unsupervised Learn-
ing (JULE) framework, uses a CNN sub-network to extract meaningful features from
images, as well as, exploiting the RNN mechanism to perform agglomerative clus-
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tering. The training steps of JULE are: first update a clustering membership based
on the current latent representations from the CNN. Then, it updates the latent
representations based on the clustering membership extracted from the specialised
RNN.
Xie et al. [24] proposed a clustering specific fine-tuning of the initial latent repre-

sentations learned from the original autoenconding framework. The proposed Deep
Embedded Clustering (DEC) framework (as depicted in Figure 2.20), involves the
introduction of a clustering specific layer and training objective term. The fine-tune
step, aims to minimise the Kullback-Liebler Divergence between the auxiliary layer
and a self-referencing target t-distribution that performs soft cluster assignment.
Chang et al. [85] proposed an end-to-end framework called Deep Adaptive Image

Clustering (DAC). DAC is based on the binary pairwise-classification problem. Given
a pair of images, a classifier should decide whether two images belong in the same
cluster or not. The initial class probabilities are generated from a CNN, which DAC
iteratively adapts based on the above objective with unsupervised training.

2.3.5 Domain Adaptation
Domain adaptation is case of transductive transfer learning. Domain adaptation

frameworks utilise a shared task, as a common point of reference between multiple
domains. The objective is to transfer knowledge from a source domain(s) into a
relevant target domain. It typically involves adaptation of pre-trained networks with
frozen weights or multiple sub-networks with shared weights. Domain adaptation can
be used for both implicit and explicit representation learning.
A frequent approach is using a Siamese network architecture. The Siamese archi-

tecture involves two neural network streams, with a single output that corresponds
to the similarity between inputs [86]. Motiian et al. [87] utilised the Siamese archi-
tecture with shared weights for supervised domain adaptation (as depicted in Figure
2.21 (a)). The training involves a composite objective that consists of a classification
loss, an alignment loss that encourages similarly labelled instances to produce closely
related features and a suitable similarity loss that encourages dissimilarly labelled
instances to be distanced.
Kushibar et al. [89] proposed a weight freezing strategy for supervised domain

adaptation. The proposed architecture, involves a pre-trained CNN that receives
magnetic resonance images (MRIs) from three different scanners. Each scanner de-
picts a different orientation. Dense layers that combine features from the different
MRI streams are not frozen. The final prediction layer starts from random initialisa-
tion. The aim of the framework is to adapt the predictions to domain shifts between
MRIs.
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Figure 2.21: Neural network architecture of domain adaptation frameworks.
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Ganin and Lempitsky [88] proposed an unsupervised domain adaptation frame-
work (as depicted in Figure 2.21 (b)), that aims to adapt to domain shifts from
unlabelled target tasks. The architecture involves a single stream encoder that re-
ceives both domains as input, to produce feature maps based on joint learning. Two
task-specific streams extend the encoder into producing common task outcomes, while
the second stream tries to distinguish feature maps between domains. The composite
objective is regularised by using a special layer called gradient reversal layer. Gradi-
ent reversal is a special layer proposed by the same authors, that encourages domain
invariant features through the process of reversing the gradient during backpropaga-
tion, i.e., multiplying its gradient with a negative hyperparameter. Gradient reversal
layer is used in the domain classifier branch.

2.4 Representation Learning for Decision-Level Fu-
sion

Decision-level fusion involves high-level information, such as decisions or task
outcomes. Decision-level fusion is similar to the process of ensemble methods in tra-
ditional machine learning, which combine decisions using various operations, such
as Averaging [90], Stacking [91], Bagging [92] and Boosting[93] to produce a final
more effective decision. In deep learning, transfer learning frequently lends itself as a
core model for the fusion process. Most frequent learning settings are unsupervised
transfer learning and multi-task learning.

2.4.1 Unsupervised Transfer Learning
Unsupervised transfer learning transfers knowledge from dissimilar tasks, which

are outcomes based on dissimilar domains. Since, the target task is typically an un-
supervised task, the representation learning of these frameworks is typically explicit.
Adaptation and Re-Identification Network (ARN) [25] is an explicit representation

learning framework, that deals with limited labelled instances, in the task of person re-
identification. ARN is an autoencoder with multiple encoder branches. The encoder
is a pre-trained ResNet-50, that receives images from both domains and produces
feature maps for its respective domain. The feature maps are connected with one
shared module and two private modules. The shared module receives both streams,
while the private modules receive each individual feature map. The encoder outputs
four different streams, two from the shared module and two from the private modules.
The decoder receives a concatenation of summed latent vectors, consisting of shared
and private feature maps, in order to reconstruct either the source or target domain.
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Figure 2.22: Neural network architecture of ARN framework [25].

In addition, a classifier is connected with the shared latent vector, in order to learn
from labelled instances of the source domain. Figure 2.22 depicts neural network
architecture of ARN
Wu et al. [94] proposed an unsupervised deep transfer learning framework, to

perform fault diagnosis in fog radio access networks. The proposed framework, learns
both from labelled and unlabelled fault instances in source and target domains. The
framework consists of a single encoder network that receives images from both do-
mains and performs three tasks: classification, domain discrimination (distinguish
between domains based on their feature maps) and minimising the distribution dis-
crepancy between the feature maps of source and target domains, in order to encour-
age the learning of domain-invariant features.

2.4.2 Multi-Task Learning
Multi-task learning is inherently an implicit representation learning fusion scheme,

as it involves labelled data instances for multiple tasks. However, certain categories of
multi-task learning are also repurposed for explicit representation learning. As men-
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tioned previously in Section 2.1.7, multi-task learning typically aims to concurrently
learn all tasks. It also consists of categories: hard parameter sharing, soft parameter
sharing, supervision at custom depths and domain specific adaptation of layers.
Hard parameter sharing is a multi-task learning category, that involves a single

task-invariant sub-network that is extended with multiple task-specific streams. An
established hard parameter sharing architecture for explicit representation learning is
the framework proposed by Srivastava et al. [45]. Srivastava et al. [45] extended the
LSTM autoencoder framework by involving an additional stream with the objective
to predict future sequences. The final training objective consists of two unsupervised
objectives: reconstruction of the current sequence and prediction of the next sequence
through observation of the current one.
An alternative version to concurrently learning each task, is to disjointly opti-

mise each task. Multi-Domain Network (MDNet) [95] is a hard parameter sharing
framework that learns domain invariant representations for visual tracking. MDNet
receives input sequences of image frames from videos. Since each video is a separate
domain for MDNet, each task-specific branch is trained individually depending on the
current domain. Disjoint optimisation between video classification and annotation is
also proposed by Kim et al. [96].
On the other hand, Cipolla et al. [97] proposed a composite training objective

for joint optimisation of individual task scores. The composite objective involves
homoscedastic uncertainty [98] as a principled alternative to manual or uniform linear
fusion operations. The framework of Cipolla et al. [97] involves training with instance,
semantic segmentation and depth regression tasks for visual understanding. Instance
segmentation is the task of extracting vector masks of individual objects in an image.
Semantic segmentation is the task of producing a meaningful segmentation of the
original image to semantically meaningful groups of classes. Depth regression is the
task of measuring the depth of each pixel/relative distance of each pixel from the
sensor.
Soft parameter sharing is a multi-task learning category that involves individual

sub-networks for each task, which is the opposite direction of that of hard parameter
sharing. The sub-networks typically share their weights, in order for all sub-networks
to be concurrently informed by all task outcomes.
Chen et al. [99] proposed a soft parameter sharing autoencoder, for explicit learn-

ing of phonetic-and-semantic embeddings for the task of spoken content retrieval. The
autoencoder contains several branches, which are all involved in various training ob-
jectives. Phonetic embeddings with disentangled speaker characteristics are extracted
by merging the two encoder branches: phonetic and speaker embeddings, into a sin-
gle decoder that reconstructs its input. The speaker encoder branch measures the
distance between utterances produced by the same speaker, in order to learn similar
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embeddings for the same speaker. On the other hand, the phonetic encoder branch
is involved in an adversarial training with a discriminator that learns to distinguish
between whether two utterances come from the same speaker or not.
EdgeStereo [100] is a soft parameter sharing CNN for the tasks of stereo match-

ing and edge detection. In computer vision, the task of stereo matching aims to find
corresponding pixels from two viewpoints. The output of stereo matching is a dis-
parity map, depicting the displacement between pairs of corresponding pixels. Edge
detection aims to find object boundaries. EdgeStereo involves two sub-networks for
each task that share weights.
Knowledge distillation is the task of transferring knowledge acquired from a deep

network into a shallower counterpart. It was first proposed by Hinton et al. [101].
Instead of shared weights, the knowledge distillation framework follows a student-
teacher type of training. A pre-trained deep neural network “teaches” a shallower
student model counterpart to produce similar predictions. The comparison of pre-
dictions is back-propagated to the student model, in order to align its predictions to
the teacher model. This idea was adapted by Li et al. [102], that proposed the Meta-
learning based Noise-Tolerant Training (MLNT). MLNT trains a student network to
create robust predictions, by training the student model with synthetic noisy labels.
A teacher model is utilised to compare predictions using KLD as a distance measure.
Supervision at custom depths is similar to hard parameter sharing, however in-

stead of extending a sub-network with additional task-specific branches, it introduces
the prediction of tasks at appropriate depths. Søgaard and Goldberg [103] suggested,
that the tasks categorised as semantically low-level should be predicted based on
lower-level intermediate features. Learning more accurate features in shallow levels,
through the use of “shallower” tasks, should also enable the performance of higher-level
tasks. This idea is based on the property of deep neural networks to learn complex
tasks from feature aggregations of previous layers. Hashimoto et al. [104] proposed
the Joint Many-Task (JMT) model framework for NLP tasks. JMT learns concur-
rently five different NLP tasks, where the prediction of each outcome is hierarchically
placed within a deep neural network from shallower to deeper layers.
Domain specific adaptation of layers stems from the investigation of Bilen and

Vedaldi [105], regarding the training of a representation learning framework which
will produce universal representations from multiple domains. The main focus of the
investigation was computer vision. In their study, they used a single shared architec-
ture across all domains. However, the batch normalisation layers were adapted with
domain-specific scaling factors, which were able to deal with inter-domain statistical
shifts. Furthermore, Rebuffi et al. [106] proposed adapter modules that were injected
onto deep learning architectures, such as ResNet [107]. The proposed adapter mod-
ules tackle the learning of multiple domains, and are able to intervene in multiple
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depths or connections, such as serial or parallel.
The next chapter introduces the core concepts and objectives of EviTraN, along

with its evaluation criteria and deep learning framework.
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Evidence Transfer

Evidence transfer is a deep learning method that aims to improve initial learned
representations, based on auxiliary tasks extracted from unobserved external datasets.
This chapter presents the fundamental concepts of the method and introduction of
the learning settings, that pertain to EviTraN based on the properties of introduced
auxiliary tasks. Furthermore, it includes details regarding the deep learning imple-
mentation of the method, such as variations of its neural network architecture and
training strategy.

3.1 Introduction
This section introduces the task at hand, fundamental concepts and objectives of

EviTraN. The high-level description of the involved concepts, acts as a prelude to the
presentation of deep learning implementation in Section 3.4. It also includes the eval-
uation criteria of the method, which can be generally applied during representation
learning for information fusion.

3.1.1 Objective and Concepts
Let primary dataset 𝑋 = {𝑥(1), … , 𝑥(𝑁)} be the dataset of interest for the task

of representation learning. In other words, let the primary task be the process of
learning latent variables 𝑍 = {𝑧(1), … , 𝑧(𝑁)} (also known as latent representations)
in an unsupervised manner. Latent representations 𝑍, are the outcome of a predictive
function 𝑍 = 𝐺(𝑋, 𝜃), with input a primary dataset 𝑋 and function parameters
𝜃. In unsupervised representation learning the predictive function 𝐺 is typically a
generative model. Figure 3.1 depicts an overview of the objective of EviTraN.
Furthermore, let 𝒱 = {𝑉1, … , 𝑉𝐿} be a set of external categorical variables,

where each of 𝑉𝑙 with 𝑙 ∈ {1, … , 𝐿} represents an auxiliary task acquired from
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a set of external datasets 𝜖𝑋 = {𝜖𝑥1, … , 𝜖𝑥𝐿}. 𝒱 is termed as external evidence.
Each external dataset 𝜖𝑥𝑙 is related to primary dataset 𝑋 with a relation 𝑟, such that
𝜖𝑥𝑙 = 𝑟𝑙(𝑋) or 𝜖𝑥𝑙 = 𝑟𝑙(𝑋, 𝜙𝑙) during cases where relation 𝑟𝑙 involves some model
with parameters 𝜙𝑙. Auxiliary task outcomes 𝒱 are extracted from decision models
ℱ = {𝑓1, … , 𝑓𝐿}, with corresponding set of model parameters Ψ = {𝜓1, … , 𝜓𝐿}.
External datasets 𝜖𝑋, relations 𝑟 and decision models ℱ are unobserved.
For simplicity purposes assume that 𝐿 = 1 and therefore, one single source of

external evidence is available. 𝑉1 is the outcome of an auxiliary task, acquired from a
decision model 𝑓1 with model parameters 𝜓1 and input external dataset 𝜖𝑥1. Where
external dataset 𝜖𝑥1, is related to primary dataset with relation 𝜖𝑥1 = 𝑟1(𝑋, 𝜙1).
Therefore, external categorical variable 𝑉1 contains the outcome of decision model
𝑓1, i.e., auxiliary class memberships {𝑉 (1)

1 , … , 𝑉 (𝑀)
1 }.

The objective of EviTraN is to improve the unsupervised process of learning la-
tent representations 𝑍, through observation of primary dataset 𝑋 (primary task) by
utilising auxiliary task outcomes 𝒱, extracted from related but unobserved external
datasets 𝜖𝑋. The objective of EviTraN should be a new set of model parameters 𝜃,
that will allow for more optimal (based on predefined satisfaction criteria) predictive
function 𝐺, such that 𝑍 = 𝐺(𝑋, 𝜃).

3.1.2 Evaluation Criteria
From the introduction and discussion of previously defined evaluation criteria for

information fusion in Section 2.1.12, it is evident that only some of them are generally
applicable. These criteria, namely: quality, stability, robustness and tested with real
data, should also be considered during deep representation learning for information
fusion. The proposed evaluation criteria for EviTraN method, compose a general set
of criteria for deep representation learning for information fusion.
Any deep representation learning framework for the purpose of information fusion

should at least satisfy the following criteria:

Effectiveness. The effectiveness criterion acts as a mean of measuring the satisfac-
tion of the predefined objective, e.g., learning more optimal predictive function
𝐺 through exploitation of external evidence. This is criterion is similar to qual-
ity and tested with real data. The satisfaction of this criterion depends on
auxiliary information sources, representing meaningful and relevant relations
to the primary dataset. In that case, the framework should discover these re-
lations and utilise them towards learning of more accurate parameters 𝜃 of
function 𝐺. Subsequently, the effectiveness of the method should scale with
multiple sources. Meaning that, multiple relevant information sources should
lead to greater results than a single relevant source.
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Figure 3.1: Overview of the objective of EviTraN. The primary task of the method is
the process of learning underlying variables 𝑍 from observation of primary dataset 𝑋. The
learning process is a generative model with trainable parameters 𝜃. EviTraN utilises external
categorical variables 𝑉1, … , 𝑉𝐿 (external evidence) extracted from unperceived decision
models 𝑓1, … , 𝑓𝐿 with input unobserved external datasets 𝜖𝑥1, … , 𝜖𝑥𝐿. EviTraN aims
to transfer relevant knowledge from external categorical variables to improve learning of
trainable parameters 𝜃.

Robustness. The robustness criterion acts as a mean of resisting disturbance intro-
duced by auxiliary information sources. This criterion is similar to stability and
robustness. In addition, it preserves the applicability of the framework in a vari-
ety of cases, as introducing additional assumptions may reduce the applicability
of the framework. However, the involvement of information sources that rep-
resent arbitrary relations, may include cases where the introduced source does
not contribute any insight towards the learning of the primary task. Any pro-
posed framework, should aim to preserve the initial performance of the primary
task. Initial performance refers to the effectiveness of the framework before the
introducing of auxiliary information sources.
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Modularity. Deep learning methods that directly involve multiple information
sources may condition themselves to require all sources to be present during
inference. Expecting auxiliary information sources to be available during in-
ference is not realistic, due to limitation in labelling such as costly or timely
procedures. At the same time, dedicating extra time or computational resources
towards total re-training of the model, upon presence of each auxiliary infor-
mation source, is also costly. Therefore, the framework should be deployed in a
manner that allows for incremental and independent training during the pres-
ence of new sources.

3.2 Comparison of Evidence Transfer to Previous
Work

This section presents a high-level comparison, between the proposed EviTraN
method and previous work presented in Chapter 2.

3.2.1 Machine Learning Perspective
In regard to learning type, as well as, from a systemic view, EviTraN is a hy-

brid representation learning method. In deep learning literature, associating the term
hybrid with a systemic view of the deep learning framework, is an often occurring
phenomenon. Describing a deep learning model as hybrid refers to the model’s ability
to acquire joint properties from two sub-networks/sub-systems: a Generative Model
and a Discriminative Model.
From a systemic perspective, EviTraN combines the generalisation properties of

an unsupervised model, along with conditioning introduced from a supervised dis-
criminative model. Furthermore, EviTraN introduces supervision of arbitrary seman-
tic levels of supervision in an otherwise completely unsupervised learning process. In
the context of EviTraN, any type of external categorical variable can be utilised
and be considered as external evidence. The term “external” refers to evidence sources
being of auxiliary nature to the primary task. In other words, external evidence rep-
resents categorical samples (with the most straightforward being task outcomes) with
no explicit relation to the primary task of learning latent representations.
As the name of the method suggests, EviTraN can be further categorised as a

Transfer Learning method. EviTraN utilises auxiliary sources of categorical vari-
ables in order to influence the process of learning latent representations. For con-
sistency with the transfer learning notation introduced from Pan and Yang [3]:
let 𝐷𝑃𝑟𝑖𝑚𝑒{x, 𝑃 (𝑋)} be our target domain with x being the feature space of pri-
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mary dataset and 𝑃(𝑋) being the true generative distribution of data samples 𝑋 =
{𝑥(1), … , 𝑥(𝑁)}. Also, let 𝑇𝑃𝑟𝑖𝑚𝑒{z, 𝑍} be the target task with z being a continuous
latent feature space and 𝑍 = 𝐺(𝑋, 𝜃) = {𝑧(1), … , 𝑧(𝑁)} being the latent representa-
tions. Then, EviTraN aims to utilise source task 𝑇𝐴𝑢𝑥{v, 𝒱}, where v = {v1, … , v𝐿}
is a set of categorical feature spaces and 𝒱 = {𝑉1, … , 𝑉𝐿} is a set of external evi-
dence sources, to improve the learning of target task 𝑇𝑃𝑟𝑖𝑚𝑒. Furthermore, let source
domain 𝐷𝐴𝑢𝑥{𝝐𝐱, 𝜖𝑋} with 𝝐𝐱 = {𝝐𝐱1, … , 𝝐𝐱𝐿} being a set of unobserved feature
spaces and 𝜖𝑋 = {𝜖𝑥1, … , 𝜖𝑥𝐿} being a set of unobserved external datasets.
Depending on the relations between each external dataset and the primary dataset,

EviTraN can be further classified into two more subgroups. Assuming a single source
of external evidence 𝒱 = {𝑉1}, if 𝜖𝑥1 = 𝑟1(𝑋, 𝜙1) = 𝑋, meaning that external evi-
dence 𝑉1 is acquired from decision model 𝑓1 with input the primary dataset 𝑋, then
EviTraN is related to Inductive Transfer Learning. Oppositely, if 𝑉1 is the outcome
of decision model 𝑓1 with input 𝜖𝑥1 = 𝑟1(𝑋, 𝜙1), then EviTraN is related to Un-
supervised Transfer Learning. Figure 3.2 depicts the machine learning overview of
EviTraN.
Therefore, EviTraN is an unsupervised transfer learning method, that utilises

a hybrid of a generative and discriminative model as the delivery mechanism, for
the transfer of knowledge between tasks. To this end, the hybrid modelling can be
considered as the fusion operation. EviTraN does not involve unprocessed signals
like signal-level fusion, thus being able to bypass challenges such as dealing with
voluminous data or requiring a large amount of resources for training. At the same
time, it also bypasses manual work required for data alignment at signal-level, as
finding the most relevant features for the external task is automatically performed
(more in Chapter 4).
Furthermore, EviTraN deals with expectations that arise during intermediate-

level fusion schemes such as intermediate merging. Intermediate merging involves
features from multiple sub-networks. During training data instances from all data
sources are available. However, the expectation of having all data sources available
during prediction of new instances is not realistic. Yet, missing correspondence be-
tween sources may lead to inference problems in intermediate merging. Comparison
to attention-based fusion schemes is impractical, since EviTraN does not involve
the attention mechanism. In addition, comparison to self-fusion scheme is also not
practical since the motivation behind EviTraN is to be used with task outcomes ex-
tracted from auxiliary datasets. As is, with domain adaptation, since EviTraN does
not involve a single common task.
Being an unsupervised transfer learning, EviTraN is able to deal with challenges

such as dealing with non-complementary data or expecting auxiliary data to be
available during inference. In the domain of transfer learning, dealing with non-
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Figure 3.2: Machine Learning Overview of EviTraN.

complemetary data sources is known as negative transfer learning [108]. Furthermore,
transfer learning aims to transfer knowledge from tasks, meaning that the source task
is not required after training. At the same time, it also deals with data irregularities
such as incomplete correspondence between data sources by considering the use of
EviTraN in the incomplete learning setting (more in Chapter 3).

3.2.2 Information Fusion Overview

From a machine learning perspective, EviTraN aims to guide the unsupervised
learning process of learning latent representations with arbitrary semantic levels of
supervision. However, the main motivation of EviTraN is to provide an efficient,
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effective and robust method for intelligent data fusion, utilising deep learning.
The objective of EviTraN can be reiterated from an information fusion view.

Primary dataset 𝑋 is information at signal/low-level. Auxiliary task outcomes 𝒱 is
information at decision/high-level that is extracted from signal/low-level information
sources 𝜖𝑋 = {𝜖𝑥1, … , 𝜖𝑥𝐿} through the processes of ℱ = {𝑓1, … , 𝑓𝐿}. Where each
of external data sources {𝜖𝑥1, … , 𝜖𝑥𝐿} may be potentially heterogeneous. Latent
representations 𝑍 is feature/intermediate-level information, which is the outcome of
EviTraN.
From an information fusion perspective, EviTraN aims to fuse signal-level infor-

mation from a primary data source 𝑋 and external decision-level information sources
𝒱, extracted from potentially heterogeneous and external data sources 𝜖𝑋. The out-
come of this fusion is a new set of feature-level information 𝑍 that are of improved
quality. The quality of the new feature-set is evaluated based on the previous criteria.

3.3 Learning Settings
Involving some form of supervision from auxiliary tasks in the process of learning

representations, may introduce bias. Such bias, may affect the end-goal of represen-
tation learning, such as repurposing learned representations in a downstream task
or studying the properties of the primary data distribution in a less complex space.
Locatello et al. [109] concluded in their study that the role of inductive biases and
implicit or explicit supervision, is crucial in the unsupervised learning of disentangled
representations. Therefore, from a benevolent perspective involving some form of su-
pervision in an unsupervised process, highlights semantically high-level information.
Such information, could not be observed during completely unsupervised learning, as
it only involves data features. Converting decision-level information, such as outcomes
of auxiliary tasks into latent features, can be broadly applied in multiple applications.
Such conversion, can lead to increased performance towards an end-goal or increased
knowledge regarding the data distribution.
On the other hand, the ability to guide a totally unsupervised learning process,

with arbitrary quality of supervision can be maliciously exploited. Such exploita-
tion, may include denial-of-service or other malicious activities. Since the design of
EviTraN aims at generalised application in multiple use-cases and domains, dealing
with such evidence sources is critical. Malicious attacks with the use of malevolent
evidence sources, could lead to ill-intended final decisions from the repurposing of
latent representations produced from EviTraN. To this end, the satisfaction of the
predefined criteria should be evaluated in multiple learning settings. Such as hybrid,
inaccurate and incomplete learning settings.
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3.3.1 Hybrid Learning
Hybrid learning is the most straightforward case of utilising auxiliary data sources

or task outcomes within an unsupervised learning framework. It involves evidence
sources that represent meaningful relations, which convey relevant information to
the learning of the primary task. This learning setting is characterised as such, due
to EviTraN being able to learn both from unlabelled data instances (primary data
samples) and weakly or strongly labelled instances (task outcomes of unobserved
external datasets). Involving meaningful relations from auxiliary introduced evidence
sources, does not require any measures to preserve initial performance (unlike the
two following learning settings). Evidence sources involved in this setting are usually
relevant task outcomes produced from weak or strong supervision.

3.3.2 Inaccurate Evidence Transfer
The act of introducing additional assumptions within a learning framework, aims

to utilise certain inherent properties of the available data. For example, using con-
volutional layers to capture spatial correlations within image data. In this example,
convolutional layers typically should be more effective than fully-connected layers
which can be repurposed for a variety of data. However, such assumptions may re-
duce the applicability of the method. In the current example, the use of convolutional
layers restricts the neural network architecture exclusively to gridded data types. Fur-
thermore, consider PCA (presented in Section 2.1.3). PCA expects its input to be
linear data. Although it excels with linear data, applying PCA on non-linear data is
not practical.
EviTraN involves an unsupervised primary task or target task in the context of

transfer learning. Unsupervised learning lacks semantically high-level information,
such as class labels. Therefore, to introduce assumptions regarding the relation be-
tween primary data and external evidence is complex, as there is a semantic discrep-
ancy between signal-level information (primary data) and decision-level information
(external evidence – auxiliary task outcomes).
To this end, EviTraN does not involve assumptions regarding the relations be-

tween primary data and auxiliary task outcomes. In practice, EviTraN should be
able to involve any external categorical variable. However, allowing such degrees of
freedom during selection of evidence with arbitrary distribution, quality or relation
may negatively impact the learning process.
Inaccurate evidence transfer is an analogous to inaccurate weak supervision. It

refers to a use-case of EviTraN, where the introduced auxiliary task outcomes do not
convey information that can improve the learning of the primary task. The inability
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to contribute in the process of learning the primary task, can be attributed to the
evidence source being either naturally uninformative or maliciously tampered with.
The description of these two categories is described, as follows:

Naturally Uninformative Evidence. This group consists of evidence sources
which do not convey relevant information for the primary task, due to inherent
properties, such as internal noise or uncorrelated tasks. Internal noise involves
categorical variables with high entropy, i.e., uncertainty due to noise found
during the collection procedure, such as noise from sensors or labelling errors.
On the other hand, uncorrelated tasks entail categorical variables, that convey
irrelevant information. Despite, as outcomes of meaningful processes, they may
represent non-complementary or redundant relations. Internal noise evidence,
often tends to have similar distribution characteristics to uniformly distributed
features, while uncorrelated tasks are harder to detect by observation of its data
features.

Maliciously Uninformative Evidence. While the presence of evidence sources
found within the previous group is a naturally occurring phenomenon, this
group involves artificially manifested categorical variables with malicious in-
tent, such as artificial noise or tampered tasks. These two evidence sources, are
simulation of the above naturally occurring phenomenons. Artificial noise in-
volves artificially manufactured samples, that mimic the feature characteristics
of inherent noise. Tampered tasks involve tampering with meaningful auxiliary
tasks, in order to introduce them in an uncorrelated manner. Example of such
tampering may be for example, reorganising the order of evidence samples, in
such way that is no longer corresponding with primary data samples. Both cases
aim to disrupt the learning process.

3.3.3 Incomplete Evidence Transfer
In addition to feature characteristics of the evidence sources, e.g., feature values

or data distribution, other characteristics can potentially impact the learning process
of the primary task in a negative manner. Incomplete evidence transfer refers to the
use-case of EviTraN, where introduced auxiliary task outcomes do not necessarily
have a full correspondence with the primary dataset. Such evidence sources, may
potentially behave similarly as inaccurate evidence sources.
Having incomplete correspondence with the primary task, incomplete evidence

sources, may potentially introduce implicit bias to the learning process. As evidence
source indicates external information in the form of supervision, introducing incom-
plete evidence sets would highlight semantically high-level features only for a portion
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of the primary dataset. At the same time, if the evidence sources is missing sam-
ples only from particular external classes, it would heavily bias the learning of these
classes, as the representations of their counterparts will lack high-level information.
Examples of incomplete evidence sources are:

Uniformly missing task samples. This group contains all the cases where the
amount of missing correspondence is present across all auxiliary classes, thus
auxiliary task samples are uniformly missing. Uniformly missing samples is
often a naturally occurring phenomenon. The procedure of acquiring labels for
a dataset is often costly or timely. Even for cases that require simpler labelling
procedure, i.e., weak labelling, one may introduce a preliminary version of the
evidence source. Missing samples across evidence classes could also be a result
of tampering.

Biased task outcomes. Biased task outcomes, refer to incomplete evidence sources
that are missing samples from specific auxiliary classes. Having certain auxiliary
classes unrepresented in the evidence source, can lead to extremely biased out-
comes. Biased task outcomes, may often be attributed to certain classes being
harder to identify (for manual labelling procedures) or due to missing a certain
classifier (for automatic labelling procedures). However, biased task outcomes
may also be manifested for malicious activities.

3.4 Deep Learning Framework
This section entails implementation details of EviTraN method. It includes de-

scription of the training strategy, that consists of three distinct steps. The above
training strategy covers all the aforementioned learning settings, i.e., hybrid, inaccu-
rate and incomplete learning. In addition, it includes description of the involved deep
learning models, as well as, a step-by-step description of translating the objective of
EviTraN into a deep learning framework.

3.4.1 Translating the High-Level Objective Into Deep Learn-
ing Solution

As mentioned in previous sections, the objective of EviTraN is to improve the
unsupervised representation learning process by introducing auxiliary task outcomes
– external evidence. However, the proper way of incorporating external knowledge
within a deep neural network solution is an open question within the scientific com-
munity. Despite the lack of a universal approach for the above task [110], transfer
learning is a deep learning approach capable of incorporating external knowledge.
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However, the act of improving the learning process of a model is ambiguous. For
example, consider the learning of a binary task with two possible class outcomes:
positive and negative. Furthermore, let the evaluation criteria of the process be the
F1-score. Since F1-score also involves precision and recall metrics (more detail in
Chapter 6), improving the learning of the binary task can be interpreted in two
ways. Either to improve the correct classification rate, i.e., the detection of true pos-
itives and true negatives or to reduce the misclassification rate, i.e., falsely classified
positives and negatives.
In practice these two cases are not independent (assuming a fixed set of data

instances), meaning that improving the misclassification rate should also lead to
improved correct classification rate and vice versa. However, it successfully lends itself
as an example of the complexity of translating high-level descriptions of objectives
into deep learning training objectives and solutions.
Despite the case, one may perceive these actions as an act of conditioning an initial

learning outcome. Starting from a baseline performance, one should adjust its initial
mechanism into producing a different outcome. Such conditioning, should either lead
to improvement of decision boundaries or in reduction of errors. To this end, cross
entropy lends itself to the training objective of EviTraN, in order to translate the
high-level goal into deep learning implementation.
Cross-entropy stems from the definition of the established “Kullback-Leibler Di-

vergence (KLD)” by Kullback and Leibler [111]. Kullback-Leibler Divergence is an
information theoretic metric, that measures the divergence between two data distri-
butions. Equation 3.1 describes Kullback-Leibler Divergence, using the same notation
as in Deep Learning Book [1], for consistency purposes with following definitions1.

𝐷𝐾𝐿(𝑃 ||𝑄) = 𝔼𝑥∼𝑃 [log 𝑃(𝑥)
𝑄(𝑥)] = 𝔼𝑥∼𝑃 [log𝑃(𝑥) − log𝑄(𝑥)] (3.1)

𝐻(𝑥) = 𝔼𝑥∼𝑃 [𝐼(𝑥)] = −𝔼𝑥∼𝑃 [log𝑃(𝑥)] (3.2)

𝐷𝐾𝐿(𝑃 ||𝑄) = 𝔼𝑥∼𝑃 [log𝑃(𝑥) − log𝑄(𝑥)]
= 𝔼𝑥∼𝑃 [log𝑃(𝑥)] − 𝔼𝑥∼𝑃 [log𝑄(𝑥)]

= 𝐻(𝑃)
Entropy

− 𝐻(𝑃 , 𝑄)
Cross-entropy

(3.3)

KLD involves the quantification of uncertainty within a distribution, also known
as the Shannon entropy (as depicted in Equation 3.2). The Shannon entropy of a

1The same notation as in Deep Learning Book [1] is also used for Equations 3.2, 3.3 and 3.4
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distribution is defined as: “the expected amount of information in an event drawn
from that distribution. It gives a lower bound on the number of bits (if the logarithm
is base 2, otherwise the units are different) needed on average to encode symbols
drawn from a distribution 𝑃 ” [1].
Using Equation 3.2, KLD can be rewritten as shown in Equation 3.3. Therefore,

cross-entropy (defined in Equation 3.4)2 similar to the above self-entropy definition,
it can be considered as a lower bound on the number of bits needed on average to
encode symbols drawn from distribution 𝑃 , where the encoding involves distribution
𝑄. Cross-entropy is not symmetric, since it involves the Kullback-Leibler Divergence
which is asymmetrical. Thus, cross-entropy quantifies the self-entropy of true dis-
tribution 𝑃 and the divergence of estimated distribution 𝑄 from true distribution
𝑃 .

𝐻(𝑃 , 𝑄) = −𝔼𝑥∼𝑃 [log𝑄(𝑥)] = 𝐻(𝑃) + 𝐷𝐾𝐿(𝑃 ||𝑄) (3.4)

Since cross-entropy is asymmetrical the selection of true and estimated distribu-
tion is critical. For simplicity purposes, let the set of external categorical evidence
sources be 𝒱 = {𝑉1} and thus 𝐿 = 1. 𝑉1 is a task outcome retrieved from a decision
model 𝑓1, through observation of external dataset 𝜖𝑥1, as well as, involving external
model parameters 𝜓1. Despite 𝑉1 being an observable variable, the rest of the com-
ponents are unobserved, i.e., 𝑓1, 𝜖𝑥1 and 𝜓1. Thus, from the perspective of EviTraN,
𝑉1 is fixed. In addition, training iterations of primary task learning does not affect
the auxiliary task outcomes. Thus, selecting evidence sources as the true distribution
is appropriate. On the other hand, latent representations 𝑍 are a product of a gener-
ative model. Generative model 𝐺, produces latent representations from a parametric
family of distributions that involve trainable parameters 𝜃. Since training iterations
affect the outcome of primary task, selecting 𝑍 as the estimated distribution is fitting.
Cross-entropy is an appropriate metric that allows for simultaneous satisfaction of

both the effectiveness and robustness criteria. Ultimately, the cross-entropy 𝐻(𝑉 , 𝑍)
between true distribution 𝑉1 and estimated distribution 𝐺(𝑋, 𝜃) = 𝑍 quantifies the
entropy within external evidence source 𝑉1, as well as, the divergence of estimated
distribution from true distribution.
Taking into account the cross-entropy between evidence source(s) and the latent

space can lead to two possible outcomes: minimisation of cross-entropy or decaying. If
𝑉1 is an evidence source that conveys relevant information to the primary task, then
the entropy should be a constant number, since 𝑉1 outcome is invariant to training
iterations. At the same time, latent representations 𝑍 are conditioned to minimise
their divergence to 𝑉1. Consequently, the minimisation of the objective should lead

2Not to be confused with joint entropy that is frequently notated in the same manner.
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to improved maximum likelihood estimation of the primary task. Therefore, minimi-
sation of cross-entropy allows the satisfaction of effectiveness criterion.
Alternatively, if 𝑉1 does not convey any useful information in regard to the pri-

mary task, its entropy remains unchanged and therefore is constant. However, the
divergence between 𝑉1 and 𝑍 should remain stable or increase, since conditioning
with irrelevant task outcomes is not feasible. Stability or growth of cross-entropy is
a good indication of low quality evidence. This indication, can be utilised in order to
satisfy the robustness criterion (more details are following in Section 3.4.2).
To satisfy the Modularity criterion, EviTraN as a transfer learning method should

learn to adapt into new auxiliary tasks without forgetting the primary task. EviTraN
should be carefully designed in order to avoid Catastrophic Forgetting. Catastrophic
forgetting [112] is a phenomenon that occurs in transfer learning methods. Target
models that suffer from catastrophic forgetting, underperform in the original task
after being trained to learn new auxiliary ones. To this end, the training strategy of
EviTraN belongs to families that do not suffer from catastrophic forgetting (more
details are following in Subsection 3.4.3). Therefore, satisfying the modularity cri-
terion by not requiring the presence of previously introduced evidence sources and
iteratively learning with each new available evidence source.

3.4.2 Training Strategy
The training strategy of EviTraN is depicted in Figure 3.3, presented in the logic

of a workflow diagram. EviTraN consists of three steps: initialisation, intermediate
and evidence transfer steps.
The first step in the training strategy of EviTraN is the initialisation step. Dur-

ing initialisation the generative model of choice, i.e., an autoencoder, learns initial
latent representations. In this step, the base autoencoder is trained in a completely
unsupervised manner. Similar to other representation learning methods, the learned
representations are repurposed towards an end-goal. Repurposing latent representa-
tions without the introduction of external evidence sources is a baseline solution. The
training objective that is used during initialisation step, is the reconstruction of input
depicted in Equation 3.5.

𝐿𝑖𝑛𝑖𝑡 = 𝑀𝑆𝐸(𝑋𝑖𝑛, 𝑋𝑜𝑢𝑡) = 1
𝑁

𝑁
∑
𝑖=1

(𝑥(𝑖)
𝑖𝑛 − 𝑥(𝑖)

𝑜𝑢𝑡)2 (3.5)

The subsequent steps depend on the presence of available external evidence sources.
After the initialisation step, an intermediate step between evidence transfer and ini-
tialisation is present. Intermediate step aims to filter each individual evidence source
before its use in evidence transfer. Although cross-entropy may ensure some satis-
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Figure 3.3: Training strategy of EviTraN depicted in the logic of a Workflow diagram.

faction of the predefined criteria, it focuses on the feature distribution properties of
external evidence. Due to that, certain non-meaningful evidence may not be detected.
A clear example of such case is maliciously uncorrelated tasks. Tampered mean-

ingful auxiliary tasks introduced in an uncorrelated manner, may appear as normal
task outcomes from a statistical perspective. Studying its properties should bear no
differences from any other task outcome. However, from a high-level perspective,
e.g., semantic correlation, the introduced task may be completely uncorrelated or
be introduced in a non-corresponding manner. Thus, a mechanism that will aid the
quantification of the cross-entropy in such cases, is required.
To this end, intermediate step aims to transform evidence with high-level incon-

67



3.4. Deep Learning Framework

sistencies into samples with appropriate distribution, that will aid their identification
through cross-entropy. Evidence autoencoder (Figure 3.6) is build with restricted ca-
pacity. It is a shallow model with a small number of nodes within each layer. In
addition, evidence autoencoder is trained in a biased manner. Evidence autoencoder
is optimised only for a small amount of epochs. The idea behind bias training is based
on the assumption that evidence sources which represent meaningful relations, are
characterised by consistency. On the other hand, low quality of evidence is incon-
sistent. In addition, it can either be observed through its distributional properties
(inherent noise) or by its inconsistencies (uncorrelated tasks).
For each evidence source, a shallow evidence autoencoder is trained with bias.

After training, the intermediate step produces filtered evidence sources, which are
extracted from the bottleneck of evidence autoencoder. In other words, the filtered
evidence sources are latent representations acquired from a biased shallow autoen-
coder.
If the evidence source represents a meaningful relation, then the distribution of

shallow autoencoder bottleneck is similar to the distribution of raw evidence. Due
to consistency in meaningful relations, shallow autoencoder can learn to reconstruct
the evidence distribution even for low amounts of epochs. On the other hand, if the
evidence distribution is of low quality, e.g., random values or white noise, then the
biased autoencoder can not generalise and produces representations with distribu-
tion properties similar to Uniform distribution. If the evidence source represents low
quality of evidence from a high-level perspective, e.g., uncorrelated tasks, then the
reconstruction also leads to a uniform-like distribution, similar to white noise type
of evidence. The ability of biased evidence autoencoder to behave similarly in white
noise and uncorrelated tasks, is due to shallow evidence autoencoder not being able
to generalise for inconsistent input. The evidence autoencoder training objective is
depicted in Equation 3.6.

𝐿𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒 = 𝑀𝑆𝐸(𝑉 𝑖𝑛𝑙, 𝑉 𝑜𝑢𝑡𝑙) = 1
𝑀

𝑀
∑
𝑗=1

(𝑉 𝑖𝑛(𝑗)
𝑙 − 𝑉 𝑜𝑢𝑡(𝑗)

𝑙 )2𝑤𝑖𝑡ℎ 𝑙 ∈ {1, … , 𝐿}

(3.6)

𝐿𝐸𝑇 = 𝐿𝑝𝑟𝑖𝑚𝑎𝑟𝑦
=𝐿𝑖𝑛𝑖𝑡

+𝜆 ∗ 𝐿𝑎𝑢𝑥 (3.7)

After all evidence sources have been filtered through the intermediate step, evi-
dence transfer step involves filtered evidence values, instead of their raw features. The
last step acts as the process of involving external knowledge, in the form of auxiliary
tasks in the initially unsupervised learning process. Evidence transfer step transfers
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knowledge from external evidence to the learning process of the primary task. The
training objective of evidence transfer consists of a composite learning objective. The
objective of evidence transfer (Equation 3.7) simultaneously minimises the initial ob-
jective, which is the input reconstruction (𝐿𝑖𝑛𝑖𝑡), and the cross-entropy between an
extension of latent space (auxiliary introduced layers) and filtered evidence sources
(Equation 3.8).

𝐿𝑎𝑢𝑥 = 1
𝐿

𝐿
∑
𝑙=1

𝐻(𝑉 𝑙, 𝑄𝑙) (3.8)

Evidence transfer introduces an additional hyperparameter to regulate the min-
imisation of composite objective. Alternatively, if a particular use-case requires more
stabilisation regarding the involvement of two objectives two hyperparameters can
be used (Equation 3.9).

𝐿𝐸𝑇 = 𝜆1 ∗ 𝐿𝑝𝑟𝑖𝑚𝑎𝑟𝑦
=𝐿𝑖𝑛𝑖𝑡

+𝜆2 ∗ 𝐿𝑎𝑢𝑥 (3.9)

The composite objective of evidence transfer serves a dual purpose. During cases
where the auxiliary task outcome represents a meaningful relation, then the compos-
ite objective enables the autoencoder to not forget its primary task. In other words,
the autoencoder is restricted from the composite objective to incorporate auxiliary
information into the representation learning process, instead of lazily being led to
only learn auxiliary introduced tasks. In addition, the composite training objective
enables modularity, by assimilating the auxiliary task into the primary one. On the
other hand, if low quality of evidence is introduced instead, the cross entropy should
remain stable due to weight decaying of newly introduced auxiliary layers 𝑄 (pre-
sented in Section 3.4.3). Therefore, minimisation of the composite objective falls back
on minimisation of the primary task objective. Thus, the training procedure is simi-
lar to the initial step, which allows the model to return in its original state without
disturbance of the original effectiveness.

Incomplete Training. During incomplete evidence transfer the correspondence
between evidence sources and primary dataset is incomplete. In other words, 𝑀 < 𝑁
where 𝑀 is the total number of available samples for each evidence source and 𝑁
is total amount of available primary data samples. Similar to the notation that is
frequently used during incomplete supervision frameworks, let a subset of the pri-
mary dataset 𝑋 be 𝑋𝑢𝑛𝑙𝑎𝑏𝑒𝑙𝑙𝑒𝑑 = {𝑥(1)

𝑢𝑛𝑙𝑎𝑏𝑒𝑙𝑙𝑒𝑑, … , 𝑥(𝑁−𝑀)
𝑢𝑛𝑙𝑎𝑏𝑒𝑙𝑙𝑒𝑑}. In this case the

term unlabelled refers to primary data samples that have no corresponding evi-
dence. Alternatively, evidence samples that correspond to unlabelled data samples
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are missing, i.e., 𝑉𝑢𝑛𝑙𝑎𝑏𝑒𝑙𝑙𝑒𝑑 = { }. Also let a subset of the primary dataset 𝑋 be
𝑋𝑙𝑎𝑏𝑒𝑙𝑙𝑒𝑑 = {𝑥(1)

𝑙𝑎𝑏𝑒𝑙𝑙𝑒𝑑, … , 𝑥(𝑀)
𝑙𝑎𝑏𝑒𝑙𝑙𝑒𝑑}. The term labelled refers to the labelled subset

having corresponding evidence sources 𝑉𝑙 = {𝑉 (1)
𝑙 , … , 𝑉 (𝑀)

𝑙 } with 𝑙 ∈ {1, ⋯ , 𝐿} and
𝑉𝑙𝑎𝑏𝑒𝑙𝑙𝑒𝑑 = {𝑉1, … , 𝑉𝐿}. The training strategy during incomplete training is similar
to previously defined training strategy. First, initialisation step is carried out for all
data samples in primary dataset 𝑋, since it is an unsupervised procedure. Intermedi-
ate step is also carried out similarly for all available evidence sources. However, during
evidence transfer step only the labelled data samples are used (Equation 3.10).

𝐿𝐸𝑇 −𝑖𝑛𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 = 𝑀𝑆𝐸(𝑋𝑖𝑛𝑙𝑎𝑏𝑒𝑙𝑙𝑒𝑑, 𝑋𝑜𝑢𝑡𝑙𝑎𝑏𝑒𝑙𝑙𝑒𝑑) + 𝜆 ∗ 𝐿𝑎𝑢𝑥 (3.10)

Alternatively if necessary two hyperparameters can be used:

𝐿𝐸𝑇 −𝑖𝑛𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 = 𝜆1 ∗ 𝑀𝑆𝐸(𝑋𝑖𝑛𝑙𝑎𝑏𝑒𝑙𝑙𝑒𝑑, 𝑋𝑜𝑢𝑡𝑙𝑎𝑏𝑒𝑙𝑙𝑒𝑑) + 𝜆2 ∗ 𝐿𝑎𝑢𝑥 (3.11)

3.4.3 Models
EviTraN uses Autoencoders in order to generate latent representations. For con-

sistency with previously depicted EviTraN overview (Figure 3.1), 𝐺(𝑋, 𝜃) is an au-
toencoder with trainable parameters 𝜃. Autoencoders are feed-forward neural net-
works that are widely used in order to learn dimensionally lower, frequently linear
and meaningful latent representations from raw data. They are trained in an unsu-
pervised manner, by training to minimise input reconstruction error.
As EviTraN is designed for general applications, multiple variations of autoen-

coders can be involved. The experimental evaluation that is following in Chapter 5,
involves a Convolutional and a Stacked denoising autoencoder variation. Figure 3.4
and 3.5 depict both autoencoder variations.
The selection of hyperparameters in the topology of Convolutional Autoencoder,

is based on the same idea as the base Convolutional Autoencoder used in DCEC
[44]. The idea is to utilise convolutional layers in a hierarchy where the layers move
from bigger convolutional windows to smaller, as they approach the autoencoder bot-
tleneck. The convolutional autoencoder variation is regularised with inner dropout,
i.e., transforming a random portion of the convolutional filter windows before being
fully connected to a dense layer. Stabilisation of the training procedure, requires the
use of Batch Normalisation layers. Batch normalisation layers, perform mini-batch
normalisation to enable stochastic optimisation.
The stacked denoising autoencoder variation consists mainly of fully connected
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Figure 3.4: Convolutional variation of base autoencoder involved in the primary task of
EviTraN. 𝐶𝑜𝑛𝑣 represents a convolutional layer along with its number of filters. Similarly,
𝐶𝑜𝑛𝑣𝑇 are transpose convolutional layers. This neural network configuration is used as is
during initialisation step.

layers (also known as dense). Dropout is following the input layer. However, some
use-cases may require a batch normalisation layer before dropout. The selection of
hyperparameters in the topology of stacked denoising autoencoder, is based on the
same principal as the autoencoder used in DEC [24]. The training procedure is the
standard process of training stacked denoising autoencoders. It consists of performing
greedy layer-wise pre-training [26], followed by end-to-end training. During greedy
layer-wise training, the autoencoder is trained in pairs of shallower autoencoders,
that are part of the deeper end-to-end autoencoder. Greedy layer-wise autoencoder
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Figure 3.5: Stacked denoising variation of base autoencoder involved in the primary task of
EviTraN. Dotted line around the first batch normalisation layer indicates that its use, depends
on the use-case. Notation 𝑃 represents smaller encoder pairs that are deployed during greedy
layer-wise training [26]. This neural network configuration is used as is during initialisation
step.

has been shown to lead in better performance.
Evidence autoencoder (as shown in Figure 3.6) used during the intermediate step

between initialisation and evidence transfer steps is a simple shallow autoencoder. It
consists of three fully connected layers. Evidence autoencoder is restricted in terms of
capacity, i.e., network depth and layer width, in order to effectively transform certain
cases of low quality evidence sources into new “filtered” distributions.
Additional layers are introduced to the decoders of the base autoencoder models,

during evidence transfer step (as shown in Figures 3.8 and 3.7). Additional layers serve
the purpose of incorporating external knowledge introduced in the form of external
evidence. Depending on the width of the output layer, additional compression in the
form of layers may be required, e.g., additional dense layers.
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Figure 3.6: Shallow “biased” evidence autoencoder present during the intermediate step of
EviTraN.
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Figure 3.7: Decoder adaptation during evidence transfer step of EviTraN method. This neu-
ral network configuration depicts the adjustment of layers of the stacked denoising variation.

Li and Hoiem [113] studied the ability of certain transfer learning setups to retain
knowledge from their initial task, after introduction of a new task. Evidence transfer
is similar to the joint training family of methods, i.e., layers from the initial task
are fine-tuned along with randomly initialised layers involved in the new task. The
authors conclude that joint optimisation frameworks are able to retain knowledge in
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Figure 3.8: Decoder adaptation during evidence transfer step of EviTraN method. This
neural network configuration depicts the adjustment of layers of the convolutional variation.

the initial performance. In other words, joint optimisation frameworks do not suffer
for catastrophic forgetting (also indicated from qualitative evaluation in Chapter 5).
The next chapter presents a theoretical interpretation of the effects of EviTraN in

the latent features, through comparison with the well-received information theoretic
information bottleneck method.
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Chapter 4

Effects of Evidence Transfer

This chapter contains an information theoretic interpretation of the effects of
EviTraN on the latent space of an autoencoder. To this end, it contains an introduc-
tion to the concepts of model interpretability and explainability, which is otherwise
known as explainable artificial intelligence. In addition, it includes an introduction to
an information theoretic method called Information Bottleneck. Information bottle-
neck lends itself to an interpretation of the effects of EviTraN, through comparison
of their common properties.

4.1 Towards Explainable Models
This section includes motivation regarding the use and manifestation of explain-

able and interpretable models. Furthermore, it includes introduction to Information
Bottleneck, that lends itself as a mean of interpreting the inner workings of deep
learning methods.

4.1.1 Interpretability of Deep Learning
Deep learning models are notorious for being very effective in a variety of appli-

cations, including but not limited to biological data mining [114], drug-target inter-
actions [115] or medicine [116]. Despite their popularity, due to being more effective
than their traditional machine learning counterparts, deep learning models are infa-
mous for being black box systems. A black box system [117] is a system that includes
inner processes with unknown functionality. In turn, unknown functionality of the
inner processes, constraints the perception of these systems into a set of decisions,
produced based on observation of a corresponding set of inputs. Despite the use of
deep learning in a plethora of applications, the cultivated black box perception of deep
learning models is not suitable for some applications. Explaining why a deep learning
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model is effective or what logic hides behind each prediction outcome, has become
quite complex for researchers, machine learning engineers or practitioners. Yet, to
some extent the attributes that make deep learning models effective are known.
A relevant study regarding the use of deep learning for computer vision [118],

has highlighted a multitude of aspects that make deep learning effective. The experi-
mental study, suggests that deep learning is effective due to: representation learning,
training with voluminous data and model capacity. As discussed in Section 2.1.6, rep-
resentation learning is a vital process of deep learning. Deep learning models are able
to learn increasingly high-level representations, thanks to their incremental depth and
aggregation of previous layers. In turn, it allows the learning of complex concepts,
such as shapes within an image, from observation of low-level features such as colour
values.
The rapid progress of deep learning methods and the rise of big data, played a

vital role in the advancements of artificial intelligence over the years [119, 120]. Big
data is a rather popular term which is frequently connected with the notion of dealing
with large-scale datasets. Although frequent use of the term in multiple scenarios,
suggested the requirement of a more accurate definition. Numerous organisations
and individuals have proposed various definitions of big data [121]. However, the
most widespread one, is characterising big data by Vs. The definition of Vs suggest
that big data is a multi-dimensional notion that involves three constituent concepts:
volume, variety and velocity [122, 123]. A fourth and a fifth V have also been
considered, namely veracity [124] and value [125].
Each component describes a different characteristic of the data. Volume refers

to the size of the data collection. Variety refers to the availability of a multitude of
data types. Velocity refers to the pace of generation, collection, and process of the
data. Veracity refers to uncertainty or ambiguity found within a data collection, while
Value refers the procedures revolving around repurposing of the outcomes produced
by processing of big data. The incorporation of multi-faceted data collections such as
big data, allows deep learning models to effectively generalise, due to high amount of
data samples, multiple perspectives from various data types and accurate sources.
Models with high enough capacity are necessary for the learning of complex tasks.

Yet, there are indications that increasing the amount of training data leads to more
scalable solutions, than increasing the capacity of the model [126]. To this end, an
appropriate level of capacity should be considered, instead. Models with low capacity
are computationally inexpensive, as they consist of shallow layer compositions. How-
ever, they require multiple training iterations in order to reach convergence of the
training objective. On the other hand, models with high capacity, converge quicker
but are computationally expensive. Selecting appropriate levels of capacity is the mid-
dle ground in the trade-off between training iterations and required computational
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Figure 4.1: Visual example depicting relation between model capacity, computational power
required and training iterations. Computational power required for training increases with
higher model capacity, while training iterations required to reach convergence decrease with
higher model capacity. Appropriate model capacity is the middle ground between both. Note
that lower capacity models may never reach appropriate levels of convergence, despite the
plethora of training iterations.

power. A visual example of the relations between model capacity, computational
power required and training iterations is depicted in Figure 4.1.
The deep learning aspects highlighted by Sun et al. [118], are generally accepted

by the scientific community as attributes that make deep learning effective. How-
ever, these aspects are rather broad, and do not provide any knowledge regarding the
functionality of the model mechanisms. Model capacity and training with big data
are aspects of training rather than the learning process. Representation learning,
although it provides some insight regarding the learning mechanisms of deep learn-
ing (learning complex concepts, incrementally, from learning of simpler constituent
parts), it does not allow backtracing to relevant features. To some applications, where
incorrect predictions may lead to serious implications such as healthcare [127, 128] or
industry [129]. Being knowledgable regarding inner procedures of the model, such as
learning mechanisms, most relevant features or features involved in the prediction, is
critical. Samek et al. [130] suggested that explainable artificial intelligence enables the
following properties: “verification of the system, improvement of the system, learning
from the system” and “compliance to legislation”.
However, as suggested by Section 3.4.1, translating high-level objectives into deep

learning solutions involves ambiguity. In turn, the ambiguity leads to dissociation
between the training objectives that guide the process of learning latent representa-
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tions and the end-goal (application). In practice, this means that the minimisation of
such objectives is not an indication of relevance. For example, minimising the recon-
struction error, which is frequent in unsupervised learning, does not indicate which
features are relevant to later repurposing of the learned representations, such as,
compression, clustering or disentanglement. This is also suggested by Lipton [131],
that motivates “Model Interpretability” as an urgency that originates from the dis-
crepancy between training objective and application/real world/human-interpretable
objective. In addition, the author indicates that the model interpretability should be
humanly interpretable as it aims to stakeholders.
An information theoretic method which can contribute to explaining or interpret-

ing the learning process of deep learning models is Information Bottleneck.

4.1.2 Information Bottleneck
The information bottleneck (IB) method [39] originated from the domain of infor-

mation theory. Information bottleneck is a formalisation of a rather simple problem:
How to preserve the “relevant” information of a signal after compressing into a short
code? However, the solution to such a problem is more complex. In order to preserve
the “relevant” information of a signal, one should first quantify the relevance of a sig-
nal. Yet, according to Tishby et al. [39], original formulations of information theory
[132] did not include concepts of relevance, but rather concentrated on the act of
transmitting information, independent of its relevance.
To preserve relevant information, one should understand the concepts that make a

signal meaningful. Signals by themselves are neither relevant nor irrelevant. Measur-
ing the relevance of a signal depends on predefined criteria. For example, retrieving
the most relevant articles for an academic study, depends on the scope of the study.
Drawing inspiration from various applications and domains, Tishby et al. [39] con-
clude that the criterion based on which one may classify a signal as relevant, depends
on auxiliary (or additional) variables. In other words, a signal is relevant, if it trans-
mits information that is significant for the task of predicting an auxiliary variable. For
instance, an image is relevant to the task of detecting household items, if it contains
data features that depict a household item.
Information bottleneck formalises the trade-off between compression and preser-

vation of relevant information. Transforming a high-dimensional signal into a low-
dimensional code, that only contains relevant information is desirable for two reasons.
First, lower-dimensional codes are more compact, and thus dealing with them is more
efficient in terms of computational resources. Second, preserving only the information
that is relevant, reduces the presence of redundant features. As discussed in Section
2.1.11, dealing with redundant features or signals is not desirable.
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The implementation of the method involves three components: a primary signal,
a code and an additional variable. Primary signal consists of a signal space 𝑋, proba-
bility measure 𝑝(𝑥) and values 𝑥 ∈ 𝑋. Information bottleneck aims to find a mapping
between 𝑥 and ̃𝑥 ∈ 𝑋̃, where 𝑋̃ is the code space. The mapping between 𝑥 and ̃𝑥 is
a conditional probabilistic distribution function 𝑝( ̃𝑥|𝑥). Mutual information 𝐼(𝑋; 𝑋̃)
determines the quality of mapping. Yet, without involving an additional variable,
the mapping between primary signal 𝑋 and code 𝑋̃ only represents a compression
process that may discard meaningful aspects of the primary signal. Thus, introducing
auxiliary variable 𝑌 .
The introduction of 𝑌 formalises a new objective. In order to condition the origi-

nal compression process between 𝑋 and 𝑋̃ to also capture relevant information to 𝑌 ,
an additional term is required. Mutual information 𝐼(𝑋, 𝑌 ) determines the relevant
information between two signals. However, since the aim of the method is to find
a relevant and compressed code, the mutual information 𝐼(𝑋̃; 𝑌 ) is more appropri-
ate. Therefore, the method aims to find optimal mapping 𝑝( ̃𝑥|𝑥) by minimisation of
Equation 4.1, with respective terms found in Equation 4.2 and 4.3. Note that 𝛽 is
a Lagrange multiplier [133], that regularises the trade-off between compression and
preservation.

ℒ[𝑝( ̃𝑥|𝑥)] = 𝐼(𝑋̃; 𝑋) − 𝛽𝐼(𝑋̃; 𝑌 ) (4.1)

𝐼(𝑋; 𝑋̃) = ∑
𝑥∈𝑋

∑
𝑥̃∈𝑋̃

𝑝(𝑥, ̃𝑥) log [𝑝( ̃𝑥|𝑥)
𝑝( ̃𝑥) ] (4.2)

𝐼(𝑋̃; 𝑌 ) = ∑
𝑦

∑
𝑥̃

𝑝(𝑦, ̃𝑥) log 𝑝(𝑦, ̃𝑥)
𝑝(𝑦)𝑝( ̃𝑥) ≤ 𝐼(𝑋; 𝑌 ) (4.3)

The above notation and terminology is consistent to that found in the work of Tishby
et al. [39].
Information bottleneck lend itself as an explanation for the effectiveness of deep

learning. Shwartz-Ziv and Tishby [134] suggested that the process of learning optimal
lower-dimensional representations, which are repurposed for the task of predicting an
auxiliary variable is the same principal as information bottleneck. From their study
of the “Information Plane” of deep neural networks, among others, found that most
effort of the training process is spent on compression and that input-intermediate
and intermediate-output mappings satisfy the equations of information bottleneck.
Information plane is the plane formed by mapping several latent representations
from various layers (output of hidden layers) into points with coordinates (𝐼(𝑋; 𝑇 ),
𝐼(𝑇 ; 𝑌 )) [135]. Variable 𝑇 represents the current depth representation. The above
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points in plane follow the data processing inequality [56], as presented in Equations
4.4 and 4.5.

𝐼(𝑋; 𝑌 ) ≥ 𝐼(𝑇1; 𝑌 ) ≥ 𝐼(𝑇2; 𝑌 ) ≥ … ≥ 𝐼(𝑇𝑘; 𝑌 ) ≥ 𝐼( ̂𝑌 ; 𝑌 ) (4.4)

𝐻(𝑋) ≥ 𝐼(𝑋; 𝑇1) ≥ 𝐼(𝑋; 𝑇2) ≥ … ≥ 𝐼(𝑋; 𝑇𝑘) ≥ 𝐼(𝑋; ̂𝑌 ) (4.5)

The above notation and terminology is consistent to that found in the work of
Shwartz-Ziv and Tishby [134].

4.2 Information Theoretic Interpretation of Evi-
dence Transfer

This section includes the investigation of the similarities between EviTraN and
IB, which share common characteristics. In order for the two methods to lead to
similar effects in the latent space (or short code, as mentioned in IB), their objectives
should be equivalent.
IB involves the concept of a “short code”. The concept of code is an analogous to a

latent representation. In the original work of Tishby et al. [39], an implicit mention to
this analogy is present1, while explicit mentions of that analogy are made in the later
work of explaining the effectiveness of deep neural networks [134]. Therefore, both
methods are representation learning methods. They aim to learn a mapping process
that converts data samples from a high-dimensional space to a lower-dimensional,
compact and meaningful space.

𝐿𝐼𝐵 = 𝐼(𝑋̃; 𝑋)⏟
𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛

− 𝛽𝐼(𝑋̃; 𝑌 )⏟⏟⏟⏟⏟
𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒

𝐿𝐸𝑇 = 𝑀𝑆𝐸(𝑋𝑖𝑛, 𝑋𝑜𝑢𝑡)⏟⏟⏟⏟⏟⏟⏟
𝐿𝑖𝑛𝑖𝑡

+𝜆 ∗ 𝐻(𝑉 , 𝑄)⏟
𝐿𝑎𝑢𝑥

(4.6)

At the same time, both methods utilise auxiliary variables that condition a pri-
mary task. Such condition is able to steer the learning process of the primary task,
to more efficient outcomes. With the concept of efficiency varying between the two
methods. For IB, the conditioning of learning a mapping of high-dimensional data
into short codes, is required in order to provide guidelines as to what features are rel-
evant. On the other hand, EviTraN requires conditioning of learning representations
that will incorporate external knowledge from auxiliary tasks. Such knowledge may

1“For each value of 𝑥 ∈ 𝑋 we seek a possibly stochastic mapping to a representative, or a
codeword in a codebook, 𝑥̃ ∈ 𝑋̃” [39]
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lead to more accurate results during repurposing of learned representations in other
down-stream tasks.
The investigation of the hypothesis regarding the equivalency of the two training

objectives, requires their comparison, which is shown in Equation 4.6. The confir-
mation of the hypothesis, requires investigation regarding the equivalency of the two
individual terms found in both objectives. Therefore, to investigate if EviTraN is able
to compress the original information found in primary dataset 𝑋 into latent code 𝑍
through learning of 𝐿𝑖𝑛𝑖𝑡 objective. At the same time, if 𝐿𝑎𝑢𝑥 is able to preserve
relevant information dictated by external evidence 𝑉 . Assuming that the short code
of IB is the latent space of an autoencoder the objective is transformed as shown in
Equation 4.7.

𝐿𝐼𝐵 = 𝐼(𝑍; 𝑋) − 𝛽𝐼(𝑍; 𝑌 ) (4.7)

(4.11)
−−−→ 𝐼(𝑍; 𝑋) = 𝐻(𝑍) − 𝐻(𝑍|𝑋) = 𝐻(𝑋) − 𝐻(𝑋|𝑍)

(4.12)
−−−→ = 𝐻(𝑋) − ⎡⎢

⎣
− ∑

(𝑧∈𝑍,𝑥∈𝑋)
𝑝(𝑧, 𝑥) log 𝑝(𝑧, 𝑥)

𝑝(𝑧)
⎤⎥
⎦

= 𝐻(𝑋) + ∑
(𝑧,𝑥)

𝑝(𝑧, 𝑥) log 𝑝(𝑧, 𝑥)
𝑝(𝑧)

(4.13)
−−−→ = 𝐻(𝑋) + ∑

(𝑧,𝑥)
𝑝(𝑧, 𝑥) log 𝑝(𝑧, 𝑥) − ∑

(𝑧,𝑥)
𝑝(𝑧, 𝑥) log 𝑝(𝑧)

= 𝐻(𝑋) + ∑
(𝑧,𝑥)

𝑝(𝑧, 𝑥)
⏟⏟⏟⏟⏟

𝔼𝑝(𝑧,𝑥)

log 𝑝(𝑧, 𝑥) − ∑
(𝑧,𝑥)

𝑝(𝑧, 𝑥)
⏟⏟⏟⏟⏟

𝔼𝑝(𝑧,𝑥)

log 𝑝(𝑧)

= 𝐻(𝑋) + 𝔼𝑝(𝑧,𝑥) log 𝑝(𝑧, 𝑥) − 𝔼𝑝(𝑧,𝑥) log 𝑝(𝑧)
(4.14)
−−−→ = 𝐻(𝑋) + 𝔼𝑝(𝑧,𝑥) log 𝑝(𝑥|𝑧)𝑝(𝑧) − 𝔼𝑝(𝑧,𝑥) log 𝑝(𝑧)
(4.13)
−−−→ = 𝐻(𝑋) + 𝔼𝑝(𝑧,𝑥) log 𝑝(𝑥|𝑧) + 𝔼𝑝(𝑧,𝑥) log 𝑝(𝑧) − 𝔼𝑝(𝑧,𝑥) log 𝑝(𝑧)

= 𝐻(𝑋)⏟
𝑐𝑜𝑛𝑠𝑡.

+𝔼𝑝(𝑧,𝑥) log 𝑝(𝑥|𝑧)

= 𝐻(𝑋)⏟
𝑐𝑜𝑛𝑠𝑡.

+𝔼𝑝(𝑥,𝑧) log 𝑝(𝑥|𝑧)

(4.8)

The primary training objective of EviTraN is the reconstruction error of the
autoencoder framework. Autoencoders lend themselves to compression applications
[136, 137, 138, 139], as they are able to learn meaningful mappings from high-
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dimensional data to a lower-dimensional space. Due to the learning of these mappings
(through reduction of the reconstruction error), they can convert high-dimensional
data into lower-dimensional codes and vice versa. As EviTraN utilises autoencoders
as the generative model of choice, it also inherits such properties.
Unravelling of Equation 4.7 should indicate if the compression term of IB is equiv-

alent to the reconstruction error objective of EviTraN. Equation 4.8 depicts the un-
ravelling process. To increase reading comprehension and self-containtment of this
Section, information theory equations presented during Section 2.1.10, are also re-
peated in Equations 4.11, 4.12, 4.13, 4.14.
Mutual information can be expressed as other well-known metrics from informa-

tion theory, such as self-entropy and conditional entropy (as defined in Section 2.1.10
and shown in Equation 4.11). In addition, mutual information is symmetric. Unrav-
elling the conditional entropy term further and utilising logarithmic properties, leads
to the composition of two terms. Conditional entropy consists of the expected value of
joint probability between latent representations 𝑧 and primary data samples 𝑥 minus
expected value of the prior of latent representations 𝑧, with the expectation being
taken over joint probability of 𝑧 and 𝑥. Using the Bayes’ rule, results in the expected
value of conditional probability of 𝑥 given representation 𝑧. Therefore, the mutual
information between primary data and latent representations is a composition of the
self-entropy of primary data and the expected value of conditional probability 𝑝(𝑥|𝑧).
Therefore, optimisation of mutual information between latent representations and

primary data depends on the optimisation of self-entropy 𝐻(𝑋) and 𝔼𝑝(𝑧,𝑥) log 𝑝(𝑥|𝑧).
Primary data 𝑋 are not affected by training and therefore is considered as constant.
Thus, in order to find a successful mapping between primary data and latent space,
we should increase the conditional log-probability 𝑝(𝑥|𝑧) over joint probability ex-
pectation.
A deterministic view of autoencoders was prevalent, however recent advances in

the autoencoder framework perceive them from a probabilistic point of view [15,
1, 140]. Perceiving the encoder and decoder functions as two probabilistic models
(Equation 4.9), leads to two distinct objectives. The encoder aims to maximise the
probability of 𝑝𝑒𝑛𝑐𝑜𝑑𝑒𝑟(𝑍 = 𝑧|𝑋 = 𝑥). Which is the probability of producing a specific
representation 𝑧 from observation of primary data sample 𝑥. At the same time, the
decoder aims to maximise the probability of 𝑝𝑑𝑒𝑐𝑜𝑑𝑒𝑟(𝑋 = 𝑥|𝑍 = 𝑧). Deep learning
optimisation of the above of objectives with the use of stochastic gradient descent
would require minimising:

ℒ(𝜃) = −𝔼 log 𝑝(𝑧|𝑥)
ℒ(𝜙) = −𝔼 log 𝑝(𝑥|𝑧)

(4.9)
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With 𝜃 and 𝜙 being the trainable parameters of encoder and decoder respectively.
Autoencoder training aims to learn minimise both objectives simultaneously. Since,
for the decoder to produce realistic data samples, requires the encoder to produce
successful mappings.
EviTraN makes use of denoising autoencoder. Denoising autoencoders are gener-

ative models [51], which means that learned latent code, aims to approximate the
true generative distribution of the primary data. Equation 4.10 depicts the objective
of denoising autoencoders as iterated by both Bengio et al. [51] and Goodfellow et al.
[1]. The notation found in Equation 4.10 is similar to the respective references, for
consistency purposes.

ℒ(𝜃) = −𝔼𝑃(𝑋,𝑋̃) [log𝑃𝜃(𝑋|𝑋̃)] [51]
= −𝔼𝑥∼𝑝̂𝑑𝑎𝑡𝑎(𝑥),𝑥̃∼𝐶(𝑥̃|𝑥) log 𝑝𝑑𝑒𝑐𝑜𝑑𝑒𝑟(𝑥|ℎ = 𝑓( ̃𝑥)) [1]

(4.10)

Probability 𝑃𝜃(𝑋|𝑋̃) represents the reconstruction distribution of the autoen-
coders which utilises the corrupted version of 𝑋. Parameters 𝜃 represent the trainable
parameters of the autoencoder. Despite not being explicitly mentioned in the work
of Bengio et al. [51], the latent representations are involved in the training objective,
since the process of decoding requires encoding first. Goodfellow et al. [1] explicit
mentions the involvement of latent representations 𝑧. 𝑋̃ represents the corrupted
version of primary data, 𝐶( ̃𝑥|𝑥) is the corruption function, while ℎ is the output
of hidden layer (𝑧 latent representations). Function 𝑓( ̃𝑥) represents a deterministic
version of the encoding process. The above comparison of the training objective of
denoising autoencoders (Equation 4.10) and unravelled objective of IB (Equation
4.8) indicates that the compression term of IB is equivalent to the minimisation of
reconstruction error performed in EviTraN.
The following chapter, includes the experimental evaluation of EviTraN, as well

as, investigation of the equivalence between auxiliary learning objective of EviTraN
and relevance term of IB through empirical analysis.

Repeated Equations From Section 2.1.10

𝐼(𝑋; 𝑌 ) = 𝐻(𝑋) − 𝐻(𝑋|𝑌 )
𝐼(𝑌 ; 𝑋) = 𝐻(𝑌 ) − 𝐻(𝑌 |𝑋)

(4.11)

𝐻(𝑌 |𝑋) = − ∑
(𝑥,𝑦)

𝑝(𝑥, 𝑦) log 𝑝(𝑦|𝑥)

(4.14)
−−−→ 𝐻(𝑌 |𝑋) = − ∑

(𝑥,𝑦)
𝑝(𝑥, 𝑦) log 𝑝(𝑥, 𝑦)

𝑝(𝑥)
(4.12)
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log𝑎(𝑥 ∗ 𝑦) = 𝑙𝑜𝑔𝑎𝑥 + 𝑙𝑜𝑔𝑎𝑦

log𝑎 (𝑥
𝑦 ) = 𝑙𝑜𝑔𝑎𝑥 − 𝑙𝑜𝑔𝑎𝑦

(4.13)

𝑃(𝑥|𝑦) = 𝑃(𝑥)𝑃(𝑦|𝑥)
𝑃 (𝑦) = 𝑃(𝑥, 𝑦)

𝑃 (𝑦) −→ 𝑃(𝑥, 𝑦) = 𝑃(𝑥|𝑦)𝑃 (𝑦)

𝑃 (𝑦|𝑥) = 𝑃(𝑦)𝑃 (𝑥|𝑦)
𝑃 (𝑥) = 𝑃(𝑥, 𝑦)

𝑃 (𝑥) −→ 𝑃(𝑥, 𝑦) = 𝑃(𝑦|𝑥)𝑃 (𝑥)
(4.14)
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Chapter 5

Experimental Evaluation

This chapter contains the experimental evaluation of EviTraN. In more details,
it includes the experimental setting, the quantitative and qualitative results of the
experimental evaluation, a discussion of the aforementioned results and an empirical
analysis of the correlation between the relevance term of Information Bottleneck and
auxiliary objective of EviTraN.

5.1 Experimental Setting
This section includes the experimental setting of the evaluation, such as involved

datasets, evidence sources and metrics. The experimental setting not only provides
insight necessary for the purposes of understanding the results of the evaluation, but
also acts as a guideline for reproduction of the experiments. To this end, it includes de-
tailed description of pre-processing techniques, the groups that each evidence sources
yields, etc.

5.1.1 Datasets
As mentioned in Chapter 3, EviTraN is a representation learning method guided

by unrestrained auxiliary task outcomes. To this end, its design and thus its evalu-
ation should be widely applicable. In addition, representation learning is a domain
invariant task. Therefore, the learning process of latent representations performed by
EviTraN should be evaluated for a variety of datasets. As a result, the experimental
evaluation of EviTraN includes two types of primary data sources: images and text,
which are described as follows:

1. MNIST (non-coloured images)

2. CIFAR-10 (coloured images)
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Figure 5.1: Sample from training set of MNIST [2], depicting images from all classes.

3. 20newsgroups (newsgroup posts)

4. RCV1 (newswire stories)

MNIST [2] is one of the most widely used datasets in the domain of machine
learning. Lecun et al. [2] created a modified version of NIST’s Special Database
1 and 31, by performing scaling, normalisation and re-positioning of the original
images. MNIST contains black and white images that depict handwritten digits.
Each image has a 28×28 resolution, with a 20×20 centred pixel box depicting a digit
with an 8×8 padding. The centred pixel box has no visible boundaries. The dataset
is connected with the task of identifying the class of the handwritten digit. Therefore,
the associated labels represent the numerical value of the depicted image, i.e., from 0
to 9. It contains 70,000 handwritten digits, split in a 60,000 training and 10,000 test
images. A sample from the training set of MNIST is shown in Figure 5.1.

CIFAR-10 [27] is a coloured image dataset. The 10 label variation (a 100 label
variation called CIFAR-100, also exists) contains divisions of two superclasses: ve-
hicles and animals. It contains 60,000 coloured images of 32×32 resolution split in
50,000 training and 10,000 test images. Human annotators have manually annotated
the labels of the dataset. An instruction sheet given to annotators (for more details
please refer to its technical report [27]), guided the process of labelling and including
images. The 10 categories of CIFAR-10 are: airplane (0), automobile (1), bird (2), cat
(3), deer (4), dog (5), frog (6), horse (7), ship (8), truck (9). The classes are mutually
exclusive, meaning that there is no overlap between the classes, i.e., automobile class
does not involve trucks. CIFAR-10 is connected with the task of identifying the ob-
ject or the animal that is depicted in the coloured image. CIFAR-10 and CIFAR-100
are well-known within the community of computer vision and have been used for
evaluation of multiple models. A sample from the training set of CIFAR-10 is shown
in Figure 5.2.

1https://www.nist.gov/srd/shop/special-database-catalog
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Figure 5.2: Sample from training set of CIFAR-10 [27], depicting images from all classes.

Listing 5.1: Training example from training set of 20newsgroups [141, 142] the text belongs
in category rec.autos. The user information has been retrated for privacy.
Subject: Re: Is car saftey important?

USER RETRACTED writes:
>Is it only me, or is
>safety not one of the most important factors when buying a car?

It depends on your priorities. A lot of people put higher priorities
on gas mileage and cost than on safety, buying "unsafe" econoboxes …

20newsgroups [141, 142] is a collection of newsgroup documents. It contains close
to 20,000 documents (approximately 1,000 documents for each topic). 20newsgroups
is connected with the task of identifying the topic of each news document. It consists
of 20 categories that can be seen as divisions of 6 supergroups. 20newsgroups is
a popular dataset for text applications in machine learning. Table 5.1 depicts the
categories/groups of 20newsgroups dataset. Listing 5.1 depicts an example from the
category of rec.autos.

RCV1 [143] is a collection of newswire stories. It contains 804,414 documents.
RCV1 is connected with the task of identifying the topic of each document. It consists
of 103 categories which originate from 4 root categories: CCAT (Corporate/Indus-
trial), ECAT (Economics), GCAT (Goverment/Social), MCAT (Markets). Evaluating
EviTraN requires the creation and use of a subset that consists of 10 topics (sub-
categories), for consistency purposes. The final dataset called Reuters-100k consists
of 96,933 documents. The labels of Reuters-100k are: C15 (Performance), C151 (Ac-
counts/Earnings), GPOL (Domestic Politics), GSPO (Sports), GDIP (International
Relations), E51 (Trade Reserves), M11 (Equity Markets), M14 (Commodity Mar-
kets), E21 (Goverment Finance), E41 (Employment/Labour). Table 5.2 depicts the
categories/groups of Reuters-100k dataset. An example of RCV1 data can be found
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Table 5.1: 20newsgroups root and subcategories.

Root Group Subcategories Root Group Subcategories
Comp(uters). comp.graphics (1)

comp.os.ms-windows.misc (2)
comp.sys.ibm.pc.hardware (3)
comp.sys.mac.hardware (4)
comp.windows.x (5)

Talk talk.politics.misc (18)
talk.politics.guns (16)
talk.politics.mideast (17)
talk.religion.misc (19)

Rec(reational). rec.autos (7)
rec.motorcycles (8)
rec.sport.baseball (9)
rec.sport.hockey (10)

Misc misc.forsale (6)
alt.atheism (0)
soc.religion.christian (15)

Sci(ence). sci.crypt (11)
sci.electronics (12)
sci.med (13)
sci.space (14)

Table 5.2: Reuters-100k root and subcategories.

Root Group Subcategories Root Group Subcategories
CCAT C15 (Performance) (0)

C151 (Earnings) (1)
GCAT GSPO (Sports) (3)

GPOL (Dom. Politics) (2)
GDIP (Int. Relations) (4)

ECAT E51 (Trade Reserves) (5)
E21 (Gov. Finance) (8)
E41 (Employment) (9)

MCAT M11 (Equity Markets) (6)
M14 (Comm. Markets) (7)

in the original work [143].

5.1.2 Pre-processing Techniques
The experimental evaluation for all the above datasets except MNIST, involves

embeddings instead of raw data. Using some form of embedding for text datasets is
an intuitive procedure. Due to lack of numerical values, their original format is not
suitable for machine learning methods. Word2Vec [28] or TD-IDF features [144, 145,
146, 147] are procedures capable of transforming text into vectors, which are more
appropriate for machine learning. Despite CIFAR-10 being represented by numerical
values, coloured images consist of a plethora of features. Even though the resolution
of the images is low, each image contains thrice as many features as its greyscale or
black and white counterpart. The experimental evaluation with CIFAR-10 involves
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embeddings extracted from a pre-trained VGG-16 network [148]. Such embeddings
reduce the amount of effort required for tinkering with the hyperparameters of the
network, in order to efficiently learn from data of that dimensional merit. At the same
time, such reduction enables more reasonable training times.
TF-IDF is a composite metric. It consists of two individual metrics: Term Fre-

quency (TF) and Inverse Document Frequency (IDF). Consider the task of clas-
sifying/categorising documents into semantically relatable topics, in an automated
manner. One would suggest that the observation of the most frequent words or terms
that appear within the document may indicate the topic of the document. For exam-
ple, a document from the domain of medicine or health, would include domain specific
terms such as “Pulmonology” or “Respirology”, which are characteristics of the topic.
Term frequency lends itself to the above idea. Term frequency (as shown in Equation
5.1) measures how frequent a term 𝑡 is found in a document 𝑑. The function 𝑓 is the
count of occurrences of 𝑡 within 𝑑, i.e., its frequency. For normalisation purposes, one
may divide the term frequency with the maximum term frequency found between
any term (𝑡′) in the document.

𝑇 𝐹𝑡,𝑑 = 𝑓𝑡,𝑑
max𝑡′ 𝑓𝑡′,𝑑

(5.1)

The above notation is similar to notation found within the work of Rajaraman
and Ullman [147], for consistency purposes. To aid reading comprehension, the terms
𝑖 and 𝑗 in the original work, are swapped with 𝑡 and 𝑑.
As expected however, most frequent terms found within a document are rather

generic. Common words such as “The” or “And” are very frequent and do not con-
tribute any insight regarding the context of the document. One simple solution to this
problem, would be to remove such common words, which is a data pre-processing pro-
cedure known as “Eliminating/Removing Stop Words” [147]. However, certain terms
may not be quite as common as stop words, yet they do not provide any insight
regarding the contents of the document, such as “vice versa”. Thus, term frequency
requires further conditioning.
Inverse Document Frequency (IDF) is the necessary conditioning to term fre-

quency. IDF measures how frequent a term is across all documents. As shown in
Equation 5.2, IDF is a logarithmic ratio of the number of documents (𝑁) to the
number of documents where a term 𝑡 appears (𝑛𝑡).

𝐼𝐷𝐹𝑡 = log 𝑁
𝑛𝑡

(5.2)

The above notation is similar to notation found within the work of Rajaraman
and Ullman [147], for consistency purposes. To aid reading comprehension, the terms
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𝑖 and 𝑛𝑖 in the original work, are swapped with 𝑡 and 𝑛𝑡.
Therefore, TF-IDF (Equation 5.3) quantifies how frequent is a term within a

document, while at the same time being weighted by how frequent that term is
across the collection of documents. Thus, frequent terms have high term frequency
but low inverse document frequency. At the same time, rare terms have high inverse
document frequency but low term frequency. This composition of metrics, allows a
more balanced representation regarding the ranking of words based on their frequency
and insight.

𝑇 𝐹 -𝐼𝐷𝐹𝑡,𝑑 = 𝑇 𝐹𝑡,𝑑 ⋅ 𝐼𝐷𝐹𝑡 (5.3)

Unlike its previous counterparts, e.g., N-gram model [149], Word2Vec aims to
learn continuous (dense) representations of words. Despite that, it also aims to pro-
duce word representations influenced by their context. Word2Vec is a deep neural
network that is trained to produce word embeddings. Mikolov et al. [28] proposed
two similar but distinct variations of the training strategy. The first training strategy
called Continuous Bag-of-Words Model, also known as CBOW, is based on predicting
a target word through observation of its neighbour words. On the other hand, dur-
ing Continuous Skip-gram Model the model aims to correctly predict the neighbour
words through observation of the current word. For both cases a hyperparameter,
𝐶, is used to represent the maximum distance between words, where for each word
a random amount of words between 1 and 𝐶 are selected as neighbours. Both vari-
ations receive as input a sparse one-hot vector encoding of words, called “1-of-V”,
with 𝑉 being the size of the vocabulary. Figure 5.3 depicts the training variations of
Word2Vec.
During the experimental evaluation with CIFAR-10, transformation of raw data

leads to images with shape: (𝑁 , 32, 32, 3) into single dimensional feature vectors of
4,096 features. A pre-trained VGG-16 neural network on ImageNet database [150],
lends itself to the transformation process. The VGG-16 network receives as input
rescaled CIFAR-10 images (to fit the input layer expectations) and produces em-
beddings extracted from the inner-most dense layer. The above pre-processing is
similar to that found in Xie et al. [24]. During evaluation with 20newsgroups, the
pre-processing procedure of Spathis et al. [151] and Spathis et al. [152] is followed2.
The pre-processing procedure involves tokenisation, removal of stop words, removal
of empty documents and documents with words that do not exist in the vocabulary
of the word2vec model. Then, a pre-trained word2vec model, trained on Google News

2More regarding the implementation can be found here: https://github.com/sdimi/
average-word2vec
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Figure 5.3: Training strategy variations of Word2Vec model [28]. 𝑃 represents the current
position, while 𝑊(𝑃 ) represents the word/token at current position.

Table 5.3: Final dimensions of the datasets involved in the experimental evaluation of Evi-
TraN.

Dataset Original Dims PPS Technique Final Dims
MNIST (𝑁 , 28, 28, 1) - (𝑁 , 784)
CIFAR-10 (𝑁 , 32, 32, 3) VGG-16 embeddings [24] (𝑁 , 4096)

20newsgroups - Word2Vec embeddings [151] (𝑁 , 300)
Reuters-100k - TF-IDF features [24] (𝑁 , 2000)

𝑁 : Total amount of samples found within each dataset.
PPS: pre-processing

corpus3 (about 100 billion words), lends itself to the extraction of 20newsgroups em-
beddings. The final outcome is a single feature vector of 300 features by averaging the
word embeddings (extracted from Word2Vec) of each document. During evaluation
with Reuters-100k, the pre-processing procedure of Xie et al. [24] is followed. The
pre-processing procedure involves transformation of raw text into TF-IDF features
of the 2000 most frequent word stems4. Table 5.3, shows the final dimensions and
pre-processing techniques for each dataset.

3https://code.google.com/archive/p/word2vec/
4More regarding the implementation can be found here: https://github.com/XifengGuo/

DEC-keras. DISCLAIMER: This is not the official code repository.
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5.1. Experimental Setting

5.1.3 Evidence Sources
In order to evaluate the ability of EviTraN to utilise external categorical evidence

for the purposes of guiding the learning process. The evaluation process requires the
creation and introduction of a plethora of external evidence sources for each dataset.
The experimental evaluation includes three types of external evidence: meaningful,
inaccurate and incomplete evidence, which are tested in three different quantities:
single, double and triple. Triple evidence sources are involved mostly in CIFAR-10
dataset, as its labelset groups allow for the creation of more meaningful evidence
variations, in comparison to the other three datasets.
During experiments with MNIST, meaningful evidence represents relations that

involve the numerical values of the image. The first meaningful evidence, consists of
3 auxiliary classes and represents the relation of 𝑦 𝑚𝑜𝑑 3, with 𝑦 being the numerical
value of the depicted digit, i.e., the label. Similarly, meaningful evidence that consists
of 4 auxiliary classes, represents the relation of ℎ𝑎𝑠ℎ(𝑦) 𝑚𝑜𝑑 4, where ℎ𝑎𝑠ℎ is the
hashing function of Python. Furthermore, the labelset of MNIST is also introduced
as meaningful evidence. The labelset consists of 10 auxiliary classes. Table 5.4 (a)
contains the auxiliary classes yielded from each aforementioned evidence source.
In CIFAR-10 experiments, meaningful evidence represents alternative divisions

of the labelset into various supergroups. The first meaningful evidence, consists of 3
auxiliary classes and represents supergroups: vehicles, pets and wild animals. Simi-
larly, meaningful evidence with 4 and 5 auxiliary classes consists of groups: vehicles,
indoor pets, outdoor pets, wild animals — road vehicles, other vehicles, indoor pets,
outdoor pets, wild animals. Additionally, the labelset of CIFAR-10 is also introduced
as meaningful evidence. The labelset consists of 10 auxiliary classes. Table 5.4 (b)
contains the auxiliary classes yielded from each aforementioned evidence source.
Throughout experiments with 20newsgroups, meaningful evidence represents al-

ternative divisions of its labelset into supergroups. The first meaningful evidence,
consists of 5 auxiliary classes and represents supergroups: computers, recreational,
science, talk and misc. Similarly, meaningful evidence with 6 auxiliary classes consists
of: sports, politics, religion, vehicles, systems and science. Additionally, the labelset
of 20newsgroups is also introduced as meaningful evidence. The labelset of 20news-
groups consists of 20 auxiliary classes. Table 5.5 (a) contains the auxiliary classes
yielded from each aforementioned evidence source.
In Reuters-100k experiments, meaningful evidence represents alternative divisions

of its labelset into supergroups. The first meaningful evidence, consists of 4 auxiliary
classes, which are the four root categories of RCV1. Similarly, meaningful evidence
of 5 auxiliary classes is a re-categorisation of 10 subcategories into 5 groups. The 5
groups do not represent any particular group relation. Additionally, the labelset of
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Table 5.4: Detailed description of groups yielded by meaningful evidence sources for image
datasets: MNIST and CIFAR-10

(a) MNIST

External
Evidence

Auxiliary Classes

M3
0: [0, 3, 6, 9]
1: [1, 4, 7]
2: [2, 5, 8]

M4

0: [0, 4, 8]
1: [1, 5, 9]
2: [2, 6]
3: [3, 7]

M10 V: [0, 1, 2, 3, 4
5, 6, 7, 8, 9]

(b) CIFAR-10

External
Evidence

Auxiliary Classes

M3
Vehicles: [0, 1, 8, 9]
Pets: [3, 5, 7]
Wild Animals: [2, 4, 6]

M4

Vehicles: [0, 1, 8, 9]
Indoor Pets: [3, 5]
Outdoor Pets: [4, 7]
Wild Animals: [2, 6]

M5

Road Vehicles: [1, 9]
Other Vehicles: [0, 8]
Indoor Pets: [3, 5]
Outdoor Pets: [4, 7]
Wild Animals: [2, 6]

M10 V: [0, 1, 2, 3, 4
5, 6, 7, 8, 9]

Reuters-100k is also introduced as meaningful evidence. The labelset of Reuters-100k
consists of 10 auxiliary classes. Table 5.5 (b) contains the auxiliary classes yielded
from each aforementioned evidence source.
The exploitation of meaningful evidence sources by EviTraN is crucial for the

evaluation of the effectiveness criterion. As a task outcome, meaningful evidence
sources represent semantically high information. They represent high-level concepts
that can not be inferred only through observation of the data features. For instance,
identifying the class of each handwritten digit in MNIST (i.e., predicting 𝑦) is feasible
through observation of the image features, since each label can be inferred through
the depicted shape. However, production of 𝑦 𝑚𝑜𝑑 3 requires the understanding that
each shape in MNIST represents a value. And thus, repurpose that value towards
the computation of the modulo operation. Therefore, steering of the unsupervised
learning process with such information should lead to increased performance, since
it involves additional unobservable insight from external sources.
In addition, meaningful evidence sources simulate the process of utilising task

outcomes extracted from unobserved datasets. There may exist an alternative version
of MNIST connected with the task of identifying the groups yielded from relation
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Table 5.5: Detailed description of groups yielded by meaningful evidence sources for text
datasets: 20newsgroups and Reuters-100k

(a) 20newsgroups

External
Evidence

Auxiliary Classes

M5 𝑉 : Root groups
in Table 5.1

M6

Sports: [9, 10]
Politics: [16, 17, 18]
Vehicles: [6, 7, 8]
Systems: [2, 3, 4, 5]
Science: [1, 11, 12, 13, 14]
Religion: [0, 15, 19]

M20 𝑉 : Subcategories
in Table 5.1

(b) Reuters-100k

External
Evidence

Auxiliary Classes

M4 𝑉 : Root groups
in Table 5.2

M5

0 [0, 5]
1 [1, 6]
2 [2, 7]
3 [3, 8]
4 [4, 9]

M10 𝑉 : Subcategories
in Table 5.2

Table 5.6: Example of meaningful, inaccurate and incomplete evidence sources. Meaningful
evidence is 𝑦 𝑚𝑜𝑑 3 or 𝑀3 of MNIST.

External
Evidence

Auxiliary Classes External
Evidence

Auxiliary Classes

Meaningful
(M3)

𝑌 : 0 [1, 0, 0] (a)
𝑌 : 1 [0, 1, 0] (b)
𝑌 : 2 [0, 0, 1] (c)
𝑌 : 3 [1, 0, 0] (d)
𝑌 : 0 [1, 0, 0] (e)
𝑌 : 0 [1, 0, 0] (f)
𝑌 : 2 [0, 0, 1] (g)
⋯

Inaccurate

𝑅𝑉 3: [0.3, 0.3, 0.3]
𝑅𝑉 10: [0.1, 0.1, 0.1, 0.1, 0.1

0.1, 0.1, 0.1, 0.1, 0.1]
𝑅𝐼3: 𝑌 : 0 →[0, 0, 1] (c)

𝑌 : 1 →[1, 0, 0] (a)
𝑌 : 2 →[0, 1, 0] (d)
⋯

Incomplete
(Uniform)

𝑌 : 0 [1, 0, 0] (a)
𝑌 : 1 [0, 1, 0] (b)
𝑌 : 2 [0, 0, 1] (c)
𝑌 : 3 [1, 0, 0] (d)
⋯

Incomplete
(Bias)

𝑌 : 1 [0, 1, 0] (a)
𝑌 : 2 [0, 0, 1] (b)
⋯

𝑦 𝑚𝑜𝑑 3. Involving only the outcome of the above task, simulates a realistic scenario
where the alternative MNIST version is unobserved or unavailable. Furthermore, it
reduces introduction of redundant features.
The experimental evaluation also includes a set of non-meaningful evidence sources

for the above datasets, as shown in Table 5.6. Non-meaningful evidence sources are
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part of the evaluation in the inaccurate learning setting. Two additional sources with
the same width, i.e., the same auxiliary classes, are created for each meaningful evi-
dence source. One consists of random values drawn from a uniform distribution (white
noise). Random values evidence is a simulation of inherent/artificial noise or highly
uncertain task outcomes (which are characterised by high entropy, i.e., uniform sam-
ples). The other consists of the meaningful evidence introduced in a randomised order.
Random index evidence is a simulation of uncorrelated tasks or tampered evidence.
Random index has similar distribution of features to meaningful evidence sources,
however, there is no correspondence with the primary data.
Furthermore, two versions of each meaningful evidence source that aim to simulate

incomplete learning setting scenarios are also created. Uniformly missing samples
evidence represents scenarios where an amount of samples is missing from all auxiliary
classes. This can be perceived as having a lower amount of total samples. This can
be a case of the external evidence being incomplete due to malicious activity or using
evidence that is still in the process of gathering. On the other hand, biased evidence
sources represent scenarios where some auxiliary classes are lacking. In other words,
are not represented within the evidence samples. Similarly to uniformly missing, this
can be a case of malicious activity or incomplete collection process.

5.1.4 Metrics
Unlike the evaluation process of other tasks, e.g., down-stream tasks, the evalu-

ation process of learning representations is not as straightforward. This is a conse-
quence of representation learning being disconnected from an end-goal. Most often
the training objective does not represent the end-goal. At the same time, the learning
of representations may aim to multiple end-goals such as dimensionality reduction,
clustering, compression, generation, etc. Thus, establishing universal criteria for eval-
uation of representation learning is not feasible.
During the experimental evaluation of EviTraN, clustering is the end-goal of the

representation learning procedure. Clustering is essentially an unsupervised down-
stream task, i.e., it involves unlabelled data samples. Clustering is an appropriate
task that will highlight if EviTraN is able to is able to enclose high-level information,
introduced from external evidence, into latent features. Since, clustering generates
group memberships only through observation of data features, increased performance
in the clustering task should indicate the successful translation of information from
auxiliary task outcomes into latent features.
The evaluation procedure consists of two stages (similar to training strategy).

The first stage consists of measuring the clustering performance during the initiali-
sation step. Measuring the clustering performance with initial set of representations
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Algorithm 2: Hungarian Algorithm, according to HungarianAlgorithm.com
[154]
Data: 𝑀 : square matrix with 𝑛 by 𝑛 dimensions.
Result: 𝑚: mapping of minimum cost

1 forall rows of 𝑀 do
2 row = row−min(row);
3 end
4 forall columns of 𝑀 do
5 column = column−min(column);
6 end
7 if 𝑛 vertical and horizontal lines cover all zeros then
8 𝑚 = matrix of (x, y) coordinates of zeros;
9 else
10 k = minimum element of 𝑀 not covered by a line;
11 Subtract k from uncovered elements;
12 Add k to elements covered by two lines;
13 𝑚 = matrix of (x, y) coordinates of zeros;
14 end

is the baseline solution. The second step consists of measuring the clustering perfor-
mance after the introduction of external evidence, i.e., after evidence transfer step.
During both stages, a clustering algorithm receives latent representations as input,
which are produced by the autoencoder (independent of the involvement of external
evidence). For consistency purposes across solutions, a 𝑘-means algorithm with the
same hyperparameters is deployed for both stages5.
The experimental evaluation involves two metrics: unsupervised clustering accu-

racy (ACC) [24] and normalised mutual information (NMI). Xie et al. [24] proposed
the unsupervised clustering accuracy, which measures the accuracy of the best map-
ping between a cluster membership and ground truth labels. The metric is defined
as follows, in Equation 5.4.

𝐴𝐶𝐶 = max
𝑚

∑𝑛
𝑖=1 1{𝑙𝑖 = 𝑚(𝑐𝑖)}

𝑛 (5.4)

In Equation 5.4, 𝑙𝑖 is the ground truth label of the i-th data sample. Similarly, 𝑐𝑖 is
the cluster assignment of the i-th data sample, while 𝑚 is a mapping between cluster
assignment and ground truth label (which ranges over all mappings). According to the
authors, the best mapping can be efficiently computed by the Hungarian algorithm
[153] depicted in Algorithm 2.

5𝐾 = |𝑌 | with 20 initialisations, the rest of hyperparameters are the default ones from scikit-learn
implementation.
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Algorithm 3: Computation of Unsupervised Clustering Accuracy (ACC)
[24].
Result: ACC: unsupervised clustering accuracy

1 L = ground truth labels;
2 C = clusters;
3 D = max(max(𝐿),max(𝐶));
4 W = Matrix(𝐷, 𝐷);
5 Initialise W with zeros;
6 i = 0;
7 while 𝑖 ≤ |𝐶| do
8 W[𝐶𝑖, 𝐿𝑖] += 1;
9 i += 1;
10 end
11 m = HungarianAlgorithm(−𝑊 +max(𝑊))� Find assignment of maximum

overlap between Clusters and Labels.;
12 ACC = ∑𝑛

𝑖=1 1{𝑙𝑖=𝑚(𝑐𝑖)}
𝑛 ;

In practice, the unsupervised clustering accuracy metric is very similar to plain
accuracy metric that is frequent in classification problems. However, unlike plain ac-
curacy, the label assignment through mapping 𝑚(𝑐𝑖) of cluster 𝑐𝑖, is crucial to the
performance of the metric. Assigning labels to clusters is an open research ques-
tion with multiple proposed solutions. The implementation used in the experimental
evaluation, follows the example of Xie et al. [24]. The mapping 𝑚 is produced by the
Hungarian algorithm.
Algorithm 36 depicts the process of computing unsupervised clustering accuracy.

From vectors 𝐿 and 𝐶 that contain ground truth labels and clustering memberships
respectively, a square matrix 𝑊 with dimensions equal to the maximum element
between maximum value of 𝐿 and 𝐶 is created. Matrix 𝑊 at first contains only
zeros. To populate matrix𝑊 , one should loop through the cluster membership of each
data sample and increase the counter of position (𝐶𝑖, 𝐿𝑖) by one. After population
of matrix 𝑊 , each row depicts the distribution of ground truth labels within each
cluster. For instance, position (0, 0) in 𝑊 represents how many data within cluster 0
have ground truth label 0. The Hungarian algorithm computes a mapping that yields
the minimum cost. However, in this case the mapping that yields the maximum
“cost” is required. The above procedure yields a majority vote mapping, i.e., assign
ground truth label 𝑖 to cluster that contains most 𝑖 data. In order for the Hungarian
Algorithm to produce the maximum cost, all elements of 𝑊 are turned into negative
values and the maximum element of 𝑊 is added, in order to deal with non-negative

6The implementation can be found in the original code repository: https://github.com/
piiswrong/dec
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values.
The unsupervised clustering accuracy metric is the sum of all correctly assigned

data. In other words, is the sum of all instances where elements from cluster 𝑖 have
been correctly mapped into ground truth label 𝑖. To normalise the result of the metric
into a [0, 1] range, the sum is divided with the number of classes.
On the other hand, NMI is an information theoretic metric that does not require

a mapping between cluster membership and ground truth labels. Multiple normalised
variations of mutual information exists [155, 156, 157]. Equation 5.5 shows the vari-
ation [155, 156] used in the experimental evaluation of EviTraN7.

𝑁𝑀𝐼(𝐿, 𝑃 ) = 2 𝐼(𝐿; 𝑃 )
𝐻(𝐿) + 𝐻(𝑃) (5.5)

The above notation is similar to that found in the work of Maes et al. [156], for
consistency purposes. To aid reading comprehension, notation 𝐴 and 𝐵 is switched
to 𝐿 and 𝑃 that represent the class labels and predicted labels respectively.
NMI measures the mutual information between the clustering membership yielded

from a clustering algorithm and ground truth labels. In other words, it quantifies “how
much one random variables tells us about another” [159]. For practical purposes, since
mutual information is a non-negative number, Astola and Virtanen [155] and Maes
et al. [156] proposed a normalising term.
From the introduction of the above metrics, one might find the use of ground truth

labels in experimental evaluation of an unsupervised learning process unorthodox. As
mentioned before, evaluating the unsupervised clustering is not as straightforward as
supervised tasks. To this end, two different approaches exist. Their major difference
lies on whether they make use of ground truth labels or not. Metrics that utilise
ground truth labels, such as ACC, NMI or Random Index Score [160], convey easier
to digest insight regarding the outcome of clustering. Since the outcome of these
metrics, is similar to that of evaluation metrics used in supervised tasks. However,
the expectation of knowing the ground truth labels beforehand, defeats the purpose
of unsupervised learning.
On the other hand, metrics that do not involve ground truth labels, such as

Calinski-Harabasz score [161] or silhouette score [162], evaluate the quality of the
separation of dataset into clusters. In other words, they study the similarity of data
samples within a cluster, as well as, their dissimilarity to data samples from other
clusters. The evaluation criteria of such metrics are vital. However, data samples
with similar data features may have completely distinct high-level interpretations. For
example, a 3 digit and an 8 digit from MNIST dataset might bear similar structure (as
shown in Figure 5.4), but their labels are distinct. Therefore, a cluster that contains

7More regarding the implementation can be found at: scikit-learn.org [158]
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(a) Digit: 3 (b) Digit: 8

Figure 5.4: Examples of digits: 3 and 8 from the testing set of MNIST [2].

both 3 and 8 digits satisfies the cluster quality criteria. However, 3 and 8 have different
semantic meanings.
Since EviTraN aims to translate high-level information in the form of external

evidence into latent features, evaluation metrics that involve ground truth labels are
more fit for its evaluation. If the external evidence is meaningful and thus, provides
valuable high-level semantic insight into the learning process, it should be reflected
with appropriate evaluation metrics that also involve high-level information.

5.2 Evaluation Results
This section includes the results of the evaluation process. It includes both quanti-

tative evaluation with the aforementioned metrics and qualitative evaluation through
observation and study of the state of latent space before and after deployment of
EviTraN. The quantitative evaluation includes the results for both ACC and NMI
metrics, as well as, their respective boxplots for each dataset. Qualitative evaluation
includes 2D plots of the latent space state for auxiliary classes, as well as, study of
individual auxiliary classes.
The quantitative evaluation involves the aforementioned datasets, evidence sources

and metrics. The experimental setting aims to investigate the performance of Evi-
TraN, in regard to both the effectiveness and robustness criteria, in three learning
settings. Namely: hybrid, inaccurate and incomplete learning settings. The baseline
solution, that does not utilise external evidence sources, is the evaluation of an un-
supervised solution. The matching between scenarios and learning settings depends
on the quality or type of the evidence source.
The evaluation process involves full datasets during training (except evidence

transfer step of incomplete, as presented in Section 3.4.2). The term full, refers to
datasets that consists both of training and testing data. Involving full datasets is a
realistic evaluation scenario that also enables better generalisation of the involved
models. In a realistic unsupervised learning scenario, one would use all the available
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Table 5.7: Quantitative results of the experimental evaluation of EviTraN in MNIST.

Learning Setting Evidence ACC (%) NMI (%)
Unsupervised (Baseline) - 82.03 76.25

Hybrid M3 95.57 (+13.54) 89.59 (+13.34)
M4 96.40 (+14.37) 91.10 (+14.85)
M10 96.71 (+14.68) 91.77 (+15.52)

M3 & M4 97.72 (+15.69) 93.93 (+17.68)

Inaccurate RV3 82.32 (+0.29) 76.40 (+0.15)
RV10 82.32 (+0.29) 76.40 (+0.15)

RV3 & RV4 82.20 (+0.17) 76.38 (+0.13)
RI3 82.16 (+0.13) 76.29 (+0.04)
RI10 82.34 (+0.31) 76.43 (+0.18)

M3 & RV3 95.52 (+13.49) 89.50 (+13.25)

Incomplete M3 (𝑀 ↓70%) 91.23 (+9.20) 82.93 (+6.68)
(Uniform) M3 (𝑀 ↓90%) 82.90 (+0.87) 76.84 (+0.59)

M4 (𝑀 ↓70%) 94.74 (+12.71) 87.91 (+11.66)
M4 (𝑀 ↓90%) 89.83 (+7.80) 81.14 (+4.89)
M10 (𝑀 ↓70%) 94.57 (+12.54) 87.68 (+11.43)
M10 (𝑀 ↓90%) 84.02 (+1.99) 78.00 (+1.75)

M3 & M4 (𝑀 ↓70%) 93.11 (+11.08) 85.39 (+9.14)
M3 & M4 (𝑀 ↓90%) 82.99 (+0.96) 77.02 (+0.77)

Incomplete M3 (AC ↓ 1) 90.32 (+8.29) 82.19 (+5.94)
(Bias) M3 (AC ↓ 2) 82.38 (+0.35) 76.60 (+0.35)

M4 (AC ↓ 1) 92.09 (+10.06) 86.21 (+9.96)
M4 (AC ↓ 2) 86.56 (+4.53) 80.42 (+4.17)
M10 (AC ↓ 1) 96.27 (+14.24) 91.34 (+15.09)
M10 (AC ↓ 2) 95.77 (+13.74) 90.30 (+14.05)

M3 & M4 (AC ↓ 1) 90.22 (+8.19) 81.96 (+5.71)
M3 & M4 (AC ↓ 2) 82.36 (+0.33) 76.65 (+0.40)

𝑀#: Meaningful evidence, # the represents number of auxiliary classes — width
of evidence samples.
𝑅𝑉 : Random Values.
𝑅𝐼 : Random Index.
(𝑀 ↓𝑃%): For consistency with Chapter 3, 𝑀 represents the total amount of
evidence samples with an evidence source. 𝑃 represents the reduction percentage
of the total amount of evidence samples.
AC ↓ #: Where# represents the reduction number of the total amount of auxiliary
classes.
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Figure 5.5: Boxplots of ACC and NMI metrics for experimental evaluation with MNIST
dataset in all learning settings.
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Table 5.8: Quantitative results of the experimental evaluation of EviTraN in 20newsgroups.

Learning Setting Evidence ACC (%) NMI (%)
Unsupervised (Baseline) - 21.19 25.01

Hybrid M5 34.18 (+12.99) 57.35 (+32.34)
M6 32.78 (+11.59) 60.15 (+35.14)
M20 88.90 (+67.71) 90.01 (+65.00)

M5 & M6 46.19 (+25.00) 68.31 (+43.30)

Inaccurate RV3 22.36 (+1.17) 25.49 (+0.48)
RV10 22.46 (+1.27) 26.11 (+1.10)

RV3 & RV10 22.89 (+1.70) 26.35 (+1.34)
RI5 21.77 (+0.58) 25.32 (+0.31)
RI20 22.40 (+1.21) 25.54 (+0.53)

M5 & RV3 31.41 (+10.22) 54.24 (+29.23)

Incomplete M5 (𝑀 ↓70%) 30.42 (+9.23) 39.21 (+14.20)
(Uniform) M5 (𝑀 ↓90%) 23.59 (+2.40) 29.27 (+4.26)

M6 (𝑀 ↓70%) 34.04 (+12.85) 41.71 (+16.70)
M6 (𝑀 ↓90%) 25.03 (+3.84) 31.04 (+6.03)
M20 (𝑀 ↓70%) 54.92 (+33.73) 49.94 (+24.93)
M20 (𝑀 ↓90%) 24.33 (+3.14) 27.38 (+2.37)

M5 & M6 (𝑀 ↓70%) 36.48 (+15.29) 44.75 (+19.74)
M5 & M6 (𝑀 ↓90%) 27.04 (+5.85) 33.22 (+8.21)

Incomplete M5 (AC ↓ 1) 31.27 (+10.08) 49.01 (+24.00)
(Bias) M5 (AC ↓ 2) 25.95 (+4.76) 35.59 (+10.58)

M6 (AC ↓ 1) 30.43 (+9.24) 49.53 (+24.52)
M6 (AC ↓ 2) 25.21 (+4.02) 36.41 (+11.40)
M20 (AC ↓ 1) 79.55 (+58.36) 83.40 (+58.39)
M20 (AC ↓ 2) 76.65 (+55.46) 80.20 (+55.19)

M5 & M6 (AC ↓ 1) 21.56 (+0.37) 39.03 (+14.02)
M5 & M6 (AC ↓ 2) 24.44 (+3.25) 30.81 (+5.80)

𝑀#: Meaningful evidence, # the represents number of auxiliary classes — width
of evidence samples.
𝑅𝑉 : Random Values.
𝑅𝐼 : Random Index.
(𝑀 ↓𝑃%): For consistency with Chapter 3, 𝑀 represents the total amount of
evidence samples with an evidence source. 𝑃 represents the reduction percentage
of the total amount of evidence samples.
AC ↓ #: Where# represents the reduction number of the total amount of auxiliary
classes
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Figure 5.6: Boxplots of ACC and NMI metrics for experimental evaluation with 20news-
groups dataset in all learning settings.
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Table 5.9: Quantitative results of the experimental evaluation of EviTraN in Reuters-100k.

Learning Setting Evidence ACC (%) NMI (%)
Unsupervised (Baseline) - 41.12 32.72

Hybrid M4 43.34 (+2.22) 36.24 (+3.52)
M5 47.00 (+5.88) 38.75 (+6.03)
M10 48.27 (+7.15) 41.23 (+8.51)

M4 & M5 50.54 (+9.42) 41.81 (+9.09)

Inaccurate RV3 41.42 (+0.30) 32.77 (+0.05)
RV10 41.38 (+0.26) 32.74 (+0.02)

RV3 & RV10 41.16 (+0.04) 32.65 (-0.07)
RI4 41.37 (+0.25) 32.82 (+0.10)
RI10 41.38 (+0.26) 32.68 (-0.04)

M4 & RV3 43.44 (+2.32) 36.29 (+3.57)

Incomplete M4 (𝑀 ↓70%) 44.48 (+3.36) 36.12 (+3.40)
(Uniform) M4 (𝑀 ↓90%) 41.66 (+0.54) 32.98 (+0.26)

M5 (𝑀 ↓70%) 42.98 (+1.86) 33.28 (+0.56)
M5 (𝑀 ↓90%) 44.51 (+3.39) 35.84 (+3.12)
M10 (𝑀 ↓70%) 46.18 (+5.06) 36.86 (+4.14)
M10 (𝑀 ↓90%) 45.47 (+4.35) 37.18 (+4.46)

M4 & M5 (𝑀 ↓70%) 48.57 (+7.45) 38.01 (+5.29)
M4 & M5 (𝑀 ↓90%) 45.30 (+4.18) 36.91 (+4.19)

Incomplete M4 (AC ↓ 1) 41.63 (+0.51) 32.75 (+0.03)
(Bias) M4 (AC ↓ 2) 41.31 (+0.19) 32.17 (-0.55)

M5 (AC ↓ 1) 46.53 (+5.41) 41.86 (+9.14)
M5 (AC ↓ 2) 41.99 (+0.87) 40.87 (+8.15)
M10 (AC ↓ 1) 59.41 (+18.29) 49.83 (+17.11)
M10 (AC ↓ 2) 58.39 (+17.27) 49.84 (+17.12)

M4 & M5 (AC ↓ 1) 41.32 (+0.20) 32.54 (-0.18)
M4 & M5 (AC ↓ 2) 41.46 (+0.34) 32.82 (+0.10)

𝑀#: Meaningful evidence, # the represents number of auxiliary classes — width
of evidence samples.
𝑅𝑉 : Random Values.
𝑅𝐼 : Random Index.
(𝑀 ↓𝑃%): For consistency with Chapter 3, 𝑀 represents the total amount of
evidence samples with an evidence source. 𝑃 represents the reduction percentage
of the total amount of evidence samples.
AC ↓ #: Where# represents the reduction number of the total amount of auxiliary
classes
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Figure 5.7: Boxplots of ACC and NMI metrics for experimental evaluation with Reuters-
100k dataset in all learning settings.
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Table 5.10: Quantitative results of the experimental evaluation of EviTraN in CIFAR-10.

Learning Setting Evidence ACC (%) NMI (%)
Unsupervised (Baseline) - 22.79 13.44

Hybrid M3 37.34 (+14.55) 46.24 (+32.80)
M4 43.14 (+20.35) 54.81 (+41.37)
M5 62.34 (+39.55) 64.92 (+51.48)
M10 91.97 (+69.18) 83.06 (+69.62)

M3 & M4 52.86 (+30.07) 61.44 (+48.00)
M3 & M4 & M5 64.75 (+41.96) 74.23 (+60.79)

Inaccurate RV3 24.62 (+1.83) 14.66 (+1.22)
RV10 24.61 (+1.82) 14.56 (+1.12)

RV3 & RV10 25.00 (+2.21) 14.80 (+1.36)
RV3 & RV5 & RV10 25.21 (+2.42) 14.90 (+1.46)

RI3 26.18 (+3.39) 15.35 (+1.91)
RI10 26.01 (+3.22) 15.08 (+1.64)

M3 & RV3 36.97 (+14.18) 46.22 (+32.78)
M3 & RV3 & RV10 36.67 (+13.88) 46.21 (+32.77)
M4 & RV3 & RV10 44.68 (+21.89) 54.37 (+40.93)
M5 & RV3 & RV10 62.49 (+39.70) 65.58 (+52.14)
M3 & M4 & RV3 53.04 (+30.25) 61.74 (+48.30)
M3 & M5 & RV3 60.56 (+37.77) 71.39 (+57.95)
M3 & M5 & RV3 63.42 (+40.63) 77.16 (+63.72)

Incomplete M3 (𝑀 ↓70%) 30.81 (+8.02) 26.47 (+13.03)
(Uniform) M3 (𝑀 ↓90%) 25.58 (+2.79) 16.29 (+2.85)

M4 (𝑀 ↓70%) 32.78 (+9.99) 27.36 (+13.92)
M4 (𝑀 ↓90%) 24.85 (+2.06) 15.73 (+2.29)
M5 (𝑀 ↓70%) 28.44 (+5.65) 21.56 (+8.12)
M5 (𝑀 ↓90%) 24.95 (+2.16) 15.76 (+2.32)
M10 (𝑀 ↓70%) 33.94 (+11.15) 24.03 (+10.59)
M10 (𝑀 ↓90%) 23.99 (+1.20) 14.84 (+1.40)

M3 & M4 (𝑀 ↓70%) 31.99 (+9.20) 29.18 (+15.74)
M3 & M4 (𝑀 ↓90%) 27.08 (+4.29) 17.87 (+4.43)

M3 & M4 & M5 (𝑀 ↓70%) 42.95 (+20.16) 37.90 (+24.46)
M3 & M4 & M5 (𝑀 ↓90%) 28.89 (+6.10) 19.72 (+6.28)

Incomplete M3 (AC ↓ 1) 29.16 (+6.37) 28.74 (+15.30)
(Bias) M3 (AC ↓ 2) 22.77 (-0.02) 13.42 (-0.02)

M4 (AC ↓ 1) 33.18 (+10.39) 38.52 (+25.08)
M4 (AC ↓ 2) 29.87 (+7.08) 26.94 (+13.50)
M5 (AC ↓ 1) 40.28 (+17.49) 52.37 (+38.93)
M5 (AC ↓ 2) 29.70 (+6.91) 35.38 (+21.94)
M10 (AC ↓ 1) 87.70 (+64.91) 83.47 (+70.03)
M10 (AC ↓ 2) 72.10 (+49.31) 67.45 (+54.01)

M3 & M4 (AC ↓ 1) 28.78 (+5.99) 28.37 (+14.93)
M3 & M4 (AC ↓ 2) 24.38 (+1.59) 13.79 (+0.35)

M3 & M4 & M5 (AC ↓ 1) 29.90 (+7.11) 29.95 (+16.51)
M3 & M4 & M5 (AC ↓ 2) 26.82 (+4.03) 14.44 (+1.00)

Notation is similar to previous Tables.
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Figure 5.8: Boxplots of ACC and NMI metrics for experimental evaluation with CIFAR-10
dataset in all learning settings.
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(a) Initial latent space of CIFAR-10

(b) Latent space of CIFAR-10 after with M5

Figure 5.9: State of latent space before (top figure) and after the introduction of external
evidence sources (bottom figure), for CIFAR-10. The introduction of external evidence of 5
auxiliary classes, indicates the separation of the initial space into respective distinct groups.
Appendix A includes similar figure for MNIST dataset.
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(a) Initial latent space of 20newsgroups

(b) Latent space of 20newsgroups after EviTraN with M6

Figure 5.10: State of latent space before (top figure) and after the introduction of external
evidence sources (bottom figure), for 20newsgroups. The introduction of external evidence of
6 auxiliary classes, indicates the separation of the initial space into respective distinct groups.
Appendix A includes similar figure for Reuters-100k dataset.
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(a) Initial latent representations of Truck and Automobile

(b) Latent representations of Truck and Automobile after EviTraN with M5

Figure 5.11: State of latent representations of individual auxiliary classes: Truck and Au-
tomobile of CIFAR-10, before (top figure) and after EviTraN (bottom figure). Solid line
represents the decision boundary predicted by an SVM classifier with a linear kernel.
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(a) Initial latent representations of Truck and Deer

(b) Latent representations of Truck and Deer after EviTraN with M5

Figure 5.12: State of latent representations of individual auxiliary classes: Truck and Deer
of CIFAR-10, before (top figure) and after EviTraN (bottom figure). Solid line represents the
decision boundary predicted by an SVM classifier with a linear kernel.
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(a) Initial latent representations of Alt.Atheism and Talk.Religion.Misc

(b) Latent representations of Alt.Atheism and Talk.Religion.Misc after Evi-
TraN with M6

Figure 5.13: State of latent representations of individual auxiliary classes: Alt.Atheism and
Talk.Religion.Misc of 20newsgroups, before (top figure) and after EviTraN (bottom figure).
Solid line in figures, represents the decision boundary predicted by an SVM classifier with a
linear kernel.
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(a) Initial latent representations of Alt.Atheism and Rec.Autos

(b) Latent representations of Alt.Atheism and Rec.Autos after EviTraN with
M6

Figure 5.14: State of latent representations of individual auxiliary classes: Alt.Atheism and
Rec.Autos of 20newsgroups, before (top figure) and after EviTraN (bottom figure). Solid line
in figures, represents the decision boundary predicted by an SVM classifier with a linear
kernel.
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(a) Reconstruction of M5

(b) Highlighted consistent marking

Figure 5.15: Reconstructed digits after introduction of M4 evidence with EviTraN. For
visualisation purposes a different training strategy is deployed. Figure (b) highlights the con-
sistent automated marking produced by the decoder. The automated marking is an outcome
of M4 evidence influencing the initial latent space. The marking is consistent for digits that
belong in the same group.
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data in order to achieve better performance. Since clustering algorithms do not involve
any trainable parameters, they rely on the availability of the data instances during
prediction time in order to generalise. Using full datasets is a common strategy in
deep clustering [24, 84, 44, 163, 164].
The results of unsupervised, hybrid and inaccurate learning settings are the av-

erage value of 4 runs. On the other hand, the results of incomplete learning setting
are the outcome of a single run. The number of batch size for all experiments is 256.
The amount of training epochs during the initialisation step for each dataset is 250,
for all datasets. During evidence transfer step, the amount of training epochs is 200,
500, 500 and 200 for MNIST, CIFAR-10, 20newsgroups and Reuters-100k respec-
tively. Greedy layer-wise training of stacked denoising autoencoders in CIFAR-10,
20newsgroups and Reuters-100k involves 30 training epochs for each individual shal-
low autoencoder. The choice of learning rate and learning rate decay varies depending
on the dataset8. The choice of optimiser is Stochastic Gradient Descent (SGD) for
all experiments.
Despite the presence of malicious evidence sources in the inaccurate learning set-

ting, EviTraN is able to preserve its original effectiveness. While, in some exceptions
the effectiveness is below the baseline, the discrepancy is not significant. At the same
time during evaluations in hybrid learning setting, which involves meaningful evi-
dence sources (i.e., task outcomes), EviTraN utilises these external relations in order
to increase the performance of the process of learning latent representations. The
above behaviour is compatible with both metrics. The above properties found in
quantitative evaluation shown in Tables 5.7, 5.8, 5.9 and 5.10, support that EviT-
raN is robust and effective. Being effective and robust despite the introduction of
inaccurate evidence sources is a result of the composite training objective and the
intermediate step (as explained in Section 3.4.2).
EviTraN is also robust against incomplete evidence sources. In addition, certain

cases indicate that incomplete evidence sources can lead to gain in performance.
The performance heavily depends on the level of incompleteness found within each
evidence source. Evidence with uniformly missing samples is mainly effective. These
evidence sources yield effectiveness inversely proportionate to the amount of missing
samples. In other words, evidence with uniformly missing sample with low amount
of missing instances yields better performance and vice versa.
On the other hand, biased evidence sources (which are missing auxiliary classes)

are more volatile. Whether they act as low quality evidence or not, depends on the
amount of missing auxiliary classes. During experimental settings where the amount
of total auxiliary classes is low, e.g., 𝑦 𝑚𝑜𝑑 3 evidence of MNIST, the removal of

8More information regarding the hyperparameters can be found in the code repositories
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one or two auxiliary classes deteriorates its performance. Yet, evidence sources with
high total amount of classes, such as the labelset of MNIST which consists of 10
classes, removing one or two auxiliary classes does not deteriorate the performance as
much. In any case, the performance does not decrease bellow the initial performance
throughout the experimental evaluation.
Boxplots 5.5, 5.6, 5.7, 5.6 also support the conclusion that EviTraN is effective

and robust. During all boxplots hybrid learning experiments severely outperforms
the baseline solution. At the same time, inaccurate learning experiments are close to
the value of baseline solution, but never lower. Outlier samples depicted as circles in
inaccurate learning settings are experiments that involve meaningful evidence along
with non-meaningful evidence (frequent in experiments with double and triple evi-
dence sources). Incomplete learning experiments due to their volatility have a broad
range of values. However, they consistently outperform the baseline solution.
Qualitative evaluation involves transformation of the original latent representa-

tions from feature vectors of 10 features into 2-dimensional vectors, with the use of
t-SNE [165]. Hinton and Roweis [166] proposed Stochastic Neighbour Embedding
(SNE), which aims to preserve the structure of data samples from a high-dimensional
space into a low-dimensional manifold. SNE performs fit of a Gaussian distribution
centred over each data sample in the high-dimensional space. The idea behind the
fit of the Gaussian distribution is to find prospective neighbours of each data sam-
ple. Meaning that, data samples that are close in the high-dimensional space should
also be close in the lower-dimensional space produced by SNE. The cost function for
measuring the distance between samples is the Kullback-Leibler Divergence. Van der
Maaten and Hinton [165] proposed the use of Student-t distribution instead, leading
to t-Stochastic Neighbour Embedding (t-SNE).
During study of individual auxiliary classes (Figures 5.11, 5.12, 5.13 and 5.14),

a SVM classifier with a linear kernel is trained with input each pair of latent repre-
sentations and ground truth labels. The aforementioned figures depict the decision
boundaries of the SVM classifier as a solid line. The idea behind the visualization of
a linear classifier is to display how easy it is for an algorithm with linear distances to
distinguish between latent representations before and after the use of EviTraN.
Qualitative evaluation, as shown in Figures 5.9, 5.10, 5.11, 5.12, 5.13 and 5.14, pro-

vides additional insight regarding the increased effectiveness of EviTraN. As shown
in Figure 5.9 and 5.10, the initial state of the latent space (without incorporation of
evidence) bears resemblance to a Gaussian distribution. In practice, this means that
the latent representations tend to cluster close to a mean. From the perspective of
clustering, the decision boundaries between classes is not clear, since the distances
between latent samples are small. By incorporating external evidence, EviTraN is
able to manipulate the initial latent space into a more appopriate space. EviTraN
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preserves the original properties of the latent space, i.e., preserves distribution of
samples close to a mean. Yet, the composite training objective manipulates the la-
tent space to represent appropriate distances between individual auxiliary classes.
Therefore, indicating distinction between auxiliary class samples.
As shown in Figures 5.11, 5.12, 5.13 and 5.14, studying the effects of EviTraN

in pairs of auxiliary classes shows that an SVM classifier with linear kernel is able
to clearly distinguish the decision boundaries between classes, where the evidence
source indicates that they belong in different auxiliary classes. At the same time,
classes where the evidence source does not indicate their separation, preserve a similar
structure with their initial latent space counterpart. Since classes that do not indicate
separation preserve their structure, the gain in effectiveness is an effect of reducing
incorrect cluster assignment of the available data instances.
In an attempt to visualise the learning process of EviTraN, a different training

strategy is deployed to produce Figure 5.15. During this process, auxiliary layers 𝑄
are repositioned after the decoder, i.e., the reconstruction layer. Furthermore, Adam
optimiser is repurposed for more aggressive optimisation and scale the reconstructed
data samples with maxabs_scale of scikit-learn, which scales a vector in [-1, 1] range
without disturbing its sparsity. Figure 5.15 depict the results of the above visualisation
process, with introduction of M4 evidence (meaningful evidence of 4 distinct groups
representing ℎ𝑎𝑠ℎ(𝑦) 𝑚𝑜𝑑 4).
After introduction of M4 evidence, the reconstructed MNIST samples present a

consistent automated marking. The marking is consistent with the distinct groups
of M4. The automated marking indicates that despite some data instances bearing
similar data features (as depicted in Section 5.1.4), M4 allows distinction of these
samples based high-level semantic information (relation ℎ𝑎𝑠ℎ(𝑦) 𝑚𝑜𝑑 4). Therefore,
any clustering algorithm should yield increased performance, as it should not produce
clusters with similar data features but different semantic meanings (e.g., 3 and 8
digits).

5.3 Empirical Analysis of Relevance
As mentioned in Section 4.2, investigation of hypothesis regarding the auxiliary

training objective of EviTraN being similar to information bottleneck term 𝐼(𝑍; 𝑌 ),
requires an empirical analysis. This section includes the results and conclusions of
said analysis.
The goal of the previous evaluation process was to investigate the satisfaction

of effectiveness and robustness criteria. To this end, clustering metrics that involve
ground truth labels were used. The satisfaction of effectiveness criterion, as well as,
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the involved metrics, indicate that the evidence transfer step of EviTraN involves
information regarding the ground truth labels associated with the dataset.
The empirical analysis of investigating the correlation between relevance term of

IB and auxiliary learning term of EviTraN, requires an appropriate quantification
metric. A well-received metric from the domain of feature selection lends itself to
the above investigation. Feature selection aims to reduce the amount of features
into maintaining the most relevant ones. For this purpose, the metric of minimum
redundancy — maximum relevance (mRMR) [167] has been proposed.
MRMR suggests that the final outcome of a feature selection method should sat-

isfy two criteria. First, each feature in the final set should have minimum redundancy
along the features of the set. Second, each feature should have maximum relevance in
comparison to the ground truth labels. Relevance, as shown in Equation 5.6 measures
the mutual information between a set of features and a set of ground truth labels.
Computation of relevance is complex, since mutual information involves the compu-
tation of conditional probability which is often intractable. The following empirical
analysis involves two computational variations of relevance.

𝐷(𝑍, 𝑌 ) = 1
|𝑍| ∑

𝑧𝑖∈𝑍
𝐼(𝑧𝑖; 𝑌 ) (5.6)

The above notation is similar to that found in the work of Peng et al. [167], for
consistency purposes. To aid reading comprehension, notation 𝑆 and 𝑐 is switched to
𝑍 and 𝑌 that represent the set of learned representations and class labels respectively.
The first variation is based on K-Nearest Neighbour [168, 169] and computes the

mutual information between discrete and continuous sets [170]. The other variation
involves F-test values [171]. During the first variation, the mutual information is the
average of the following metric over all points in the dataset:

𝐼𝑖 = 𝜓(𝑁) − 𝜓(𝑁𝑥𝑖
) + 𝜓(𝐾) − 𝜓(𝑚𝑖) (5.7)

The above notation is the same as in the work of Ross [170], 𝜓 is the digamma
function, 𝑁 is the total number of data points and 𝐾 is the hyperparameter of choice
of finding k-nearest neighbours. While 𝑁𝑥 are data points with the same discrete
value as 𝑥𝑖 and 𝑚𝑖 is the number of neighbours within some distance 𝑑. On the other
hand, computation with F-statistic requires computation of:

𝐹(𝑖, 𝐶) = [∑𝑐 𝑛𝑐(𝑖𝑐 − 𝑖)/(𝐶 − 1)]
𝜎2

𝑉𝐹 = 1
|𝑆| ∑

𝑖∈𝑆
𝐹(𝑖, 𝐶)

(5.8)
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Table 5.11: Comparison of Relevance with ACC and NMI metrics for MNIST.

Learn. Set. Evidence Rel. MI Rel. FT ACC NMI R. Var.
Uns. (I) - 0.47 0.25 0.82 0.76 -

Hybrid (II) M3 0.58 (+0.11) 0.36 (+0.11) 0.96 (+0.14) 0.90 (+0.14) 0.4
(III) M4 0.60 (+0.13) 0.35 (+0.12) 0.96 (+0.14) 0.91 (+0.15) 0.2
(IV) M10 0.62 (+0.15) 0.40 (+0.15) 0.97 (+0.15) 0.92 (+0.16) 0.4
(V) M3 & M4 0.66 (+0.19) 0.46 (+0.21) 0.98 (+0.16) 0.94 (+0.18) 0.6

Inacc. (VI) RV3 0.48 (+0.01) 0.25 0.82 0.76 0
(VII) RV10 0.48 (+0.01) 0.25 0.82 0.77 (+0.01) 0
(VIII) RV3 & RV10 0.48 (+0.01) 0.25 0.82 0.76 0
(IX) RI3 0.48 (+0.01) 0.25 0.82 0.76 0
(X) RI10 0.48 (+0.01) 0.25 0.82 0.76 0
(XI) M3 & RV3 0.58 (+0.11) 0.35 (+0.10) 0.96 (+0.14) 0.90 (+0.14) 0.4

𝑀#: Meaningful evidence, # the represents number of auxiliary classes — width of evidence
samples.
𝑅𝑉 : Random Values.
𝑅𝐼: Random Index.
𝑅𝑒𝑙.𝑀𝐼: Relevance with Mutual Information implementation
𝑅𝑒𝑙.𝐹𝑇 : Relevance with F-test implementation
𝑅.𝑉 𝑎𝑟.: Rank Variation

The above notation is similar to that found in the work of Ding and Peng [171], 𝑖
is the mean value of data point 𝑖 and 𝑖𝑐 is the mean value of data points within 𝑐 class,
while 𝑛𝑐 is the total amount of points within 𝑐 class. To aid reading comprehension,
ℎ was switched with 𝐶.

5.3.1 Results of Empirical Analysis
The implementation used during the first variation (from scikit-learn [158]) in-

volves some stochasticity. To this end, the relevance metric that involves mutual
information, as shown in Tables 5.11, 5.12, 5.13 and 5.14, are the average of 50 runs.
The choice of K for the nearest neighbour algorithm is 𝐾 = 3. The aforementioned
tables contain the measurement of overall relevance, i.e., the average value of rele-
vance between all latent features and ground truth labels (as shown in Equation 5.6).
The measurements of relevance using F-test has been normalised using the L2 norm.
Independent of the implementation variation, relevance seems to follow the same

pattern as ACC and NMI. During hybrid learning setting, which involves meaningful
evidence, the relevance is increased (compared to the baseline result). At the same
time, during inaccurate learning setting, the relevance is barely increased or remains
completely stable. This behaviour is consistent with ACC and NMI metrics.
In practice, this means that the incorporation of meaningful evidence, enables the
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Table 5.12: Comparison of Relevance with ACC and NMI metrics for 20newsgroups.

Learn. Set. Evidence Rel. MI Rel. FT ACC NMI R. Var.
Uns. (I) - 0.28 0.05 0.21 0.25 -

Hybrid (II) M5 0.87 (+0.59) 0.39 (+0.34) 0.34 (+0.13) 0.58 (+0.33) 0.8
(III) M6 0.97 (+0.69) 0.42 (+0.37) 0.33 (+0.12) 0.60 (+0.35) 0.8
(IV) M20 1.14 (+0.86) 0.55 (+0.50) 0.87 (+0.66) 0.90 (+0.65) 0.7
(V) M5 & M6 1.08 (+0.80) 0.57 (+0.52) 0.47 (+0.26) 0.68 (+0.43) 0.9

Inacc. (VI) RV3 0.29 (+0.01) 0.06 (+0.01) 0.22 (+0.01) 0.25 0
(VII) RV10 0.30 (+0.02) 0.06 (+0.01) 0.23 (+0.02) 0.26 (+0.01) 0.2
(VIII) RV3 & RV10 0.29 (+0.01) 0.06 (+0.01) 0.23 (+0.02) 0.26 (+0.01) 0.4
(IX) RI5 0.29 (+0.01) 0.06 (+0.01) 0.21 0.25 0.2
(X) RI20 0.28 0.06 (+0.01) 0.22 (+0.01) 0.26 (+0.01) 0.2
(XI) M5 & RV3 0.83 (+0.55) 0.44 (+0.39) 0.32 (+0.11) 0.54 (+0.29) 0.6

𝑀#: Meaningful evidence, # the represents number of auxiliary classes — width of evidence
samples.
𝑅𝑉 : Random Values.
𝑅𝐼: Random Index.
𝑅𝑒𝑙.𝑀𝐼: Relevance with Mutual Information implementation
𝑅𝑒𝑙.𝐹𝑇 : Relevance with F-test implementation
𝑅.𝑉 𝑎𝑟.: Rank Variation

Table 5.13: Comparison of Relevance with ACC and NMI metrics for Reuters-100k.

Learn. Set. Evidence Rel. MI Rel. FT ACC NMI R. Var.
Uns. (I) - 0.28 0.24 0.41 0.33 -

Hybrid (II) M4 0.36 (+0.08) 0.35 (+0.11) 0.43 (+0.02) 0.36 (+0.03) 0.5
(III) M5 0.39 (+0.11) 0.37 (+0.15) 0.47 (+0.06) 0.39 (+0.06) 0.7
(IV) M10 0.38 (+0.10) 0.44 (+0.20) 0.48 (+0.07) 0.41 (+0.08) 0.7
(V) M4 & M5 0.43 (+0.15) 0.49 (+0.25) 0.51 (+0.10) 0.42 (+0.09) 0.7

Inacc. (VI) RV3 0.28 0.24 0.41 0.33 0.2
(VII) RV10 0.28 0.23 (-0.01) 0.42 (+0.01) 0.33 0.4
(VIII) RV3 & RV10 0.28 0.23 (-0.01) 0.41 0.33 0.4
(IX) RI4 0.28 0.23 (-0.01) 0.41 0.33 0.2
(X) RI10 0.28 0.23 (-0.01) 0.41 0.33 0
(XI) M4 & RV3 0.35 (+0.07) 0.34 (+0.10) 0.43 (+0.02) 0.36 (+0.03) 0.4

𝑀#: Meaningful evidence, # the represents number of auxiliary classes — width of evidence
samples.
𝑅𝑉 : Random Values.
𝑅𝐼: Random Index.
𝑅𝑒𝑙.𝑀𝐼: Relevance with Mutual Information implementation
𝑅𝑒𝑙.𝐹𝑇 : Relevance with F-test implementation
𝑅.𝑉 𝑎𝑟.: Rank Variation

latent space to increase its mutual information (or relevance) with the ground truth
labels, while remaining stable during introduction of malicious evidence. Therefore,
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Table 5.14: Comparison of Relevance with ACC and NMI metrics for CIFAR-10.

Learn. Set. Evidence Rel. MI Rel. FT ACC NMI R. Var.

Uns. (I) - 0.11 0.04 0.23 0.13 -

Hybrid (II) M3 0.59 (+0.48) 0.43 (+0.39) 0.38 (+0.15) 0.46 (+0.33) 0.8
(III) M4 0.59 (+0.48) 0.23 (+0.21) 0.43 (+0.20) 0.55 (+0.42) 0.8
(IV) M5 0.54 (+0.43) 0.19 (+0.17) 0.62 (+0.39) 0.65 (+0.52) 0.7
(V) M10 0.58 (+0.47) 0.39 (+0.35) 0.92 (+0.69) 0.83 (+0.70) 0.7
(VI) M3 & M4 0.80 (+0.69) 0.68 (+0.64) 0.53 (+0.30) 0.61 (+0.48) 1
(VII) M3 & M4 & M5 0.83 (+0.72) 0.47 (+0.45) 0.65 (+0.42) 0.74 (+0.61) 0.8

Inacc. (VIII) RV3 0.11 0.04 0.25 (+0.02) 0.15 (+0.02) 0
(IX) RV10 0.11 0.04 0.25 (+0.02) 0.15 (+0.02) 0
(X) RV3 & RV10 0.12 (+0.01) 0.04 0.25 (+0.02) 0.15 (+0.02) 0
(XI) RV3 & RV5 & RV10 0.12 (+0.01) 0.02 0.25 (+0.02) 0.15 (+0.02) 0.2
(XII) RI3 0.12 (+0.01) 0.04 0.26 (+0.03) 0.16 (+0.03) 0.2
(XIII) RI10 0.11 0.04 0.26 (+0.03) 0.15 (+0.02) 0
(XIV) M3 & RV3 0.59 (+0.48) 0.44 (+0.40) 0.37 (+0.14) 0.46 (+0.33) 0.9
(XV) M3 & RV3 & RV10 0.60 (+0.49) 0.27 (+0.25) 0.37 (+0.14) 0.46 (+0.33) 0.8
(XVI) M3 & M4 & RV3 0.79 (+0.68) 0.40 (+0.38) 0.53 (+0.30) 0.62 (+0.49) 0.9
(XVII) M3 & M5 & RV3 0.78 (+0.67) 0.45 (+0.43) 0.60 (+0.37) 0.71 (+0.58) 0.7
(XVIII) M4 & RV3 & RV10 0.59 (+0.48) 0.29 (+0.27) 0.45 (+0.22) 0.54 (+0.41) 0.8
(XIX) M4 & M5 & RV3 0.77 (+0.66) 0.46 (+0.44) 0.63 (+0.40) 0.77 (+0.64) 0.9
(XX) M5 & RV3 & RV10 0.54 (+0.43) 0.23 (+0.21) 0.62 (+0.39) 0.65 (+0.52) 0.7

𝑀#: Meaningful evidence, # the represents number of auxiliary classes — width of evidence samples.
𝑅𝑉 : Random Values.
𝑅𝐼: Random Index.
𝑅𝑒𝑙.𝑀𝐼: Relevance with Mutual Information implementation
𝑅𝑒𝑙.𝐹𝑇 : Relevance with F-test implementation
𝑅.𝑉 𝑎𝑟.: Rank Variation

the increased performance of EviTraN in clustering metrics that involve ground truth
labels (only during evaluation), such ACC and NMI, is explained by the increase of
relevance.
Additional qualitative evaluation provided in Figures 5.16 and 5.17, suggests that

the four metrics: ACC, NMI, Relevance with mutual information implementation
and Relevance with F-test implementation, follow similar patterns. Although some
discrepancy between values exists, the increase and decrease in relevance and clus-
tering performance is consistent. For visualisation purposes, all metrics have been
normalised using the max method from sklearn normalise, in range of [0,1].
The above empirical analysis, indicates that EviTraN has the same effects on the

latent space of the autoencoder as the proposed Information Bottleneck method. As
shown in Chapter 4, the reconstruction objective of the autoencoder is similar to the
compression term of IB. At the same time, as shown in this analysis, the relevance of
the latent space with the ground truth labels (which are external to the unsupervised
learning of the autoencoder) is increased during hybrid learning with meaningful
evidence sources.
In order to study the effects of EviTraN on individual latent features, the proposal

and measurement of a new metric called “Rank Variation” is required. Rank variation
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Figure 5.16: Comparison between Relevance (both implementations), ACC and NMI metrics
for MNIST and CIFAR-10. Despite the value discrepancy between the metrics (for visualisa-
tion purposes the metrics have been normalised to [0, 1]) consistent fluctuations are present
in all four metrics.
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Figure 5.17: Comparison between Relevance (both implementations), ACC and NMI metrics
for 20newsgroups and Reuters-100k. Despite the value discrepancy between the metrics (for
visualisation purposes the metrics have been normalised to [0, 1]) consistent fluctuations are
present in all four metrics.
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Figure 5.18: Comparison between Relevance (Mutual Information implementation) and
Rank Variation for MNIST and CIFAR-10. Both metrics have been normalised for visualisa-
tion purposes into a [0, 1] range. Consistent fluctuations are present in both metrics.
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Figure 5.19: Comparison between Relevance (Mutual Information implementation) and
Rank Variation for 20newsgroups and Reuters-100k. Both metrics have been normalised for
visualisation purposes into a [0, 1] range. Consistent fluctuations are present in both metrics.
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is a simple metric that measures the shifts in rank before and after the introduction of
evidence. First, an initial ranking of the most relevant features based on the relevance
metric is created. After the evidence transfer step, a new ranking is created. The
rank variation metric compares the shift of ranks from the initial ranking to the
ranking after the evidence transfer step. Rank variation is divided by the total amount
of features for normalisation purposes. The proposed rank variation is depicted in
Equation 5.9.

𝑅𝑎𝑛𝑘𝑉 𝑎𝑟 =
| ∑𝑖∈𝑁 𝑅(𝑖)

𝑖𝑛𝑖𝑡 ≠ 𝑅(𝑖)
𝐸𝑣𝑖𝑇 𝑟𝑎𝑁 |

𝑁 (5.9)

Rank variation is shown in Tables 5.11, 5.12, 5.13 and 5.14 for all experiments. The
variation of rankings is also consistent with the above metrics. This can be observed
also in Figures 5.18 and 5.19. During hybrid learning setting, which increases the
overall relevance, more features shift their ranks. While during inaccurate learning
setting, the ranking remains stable or low variation is observed. Low variation during
inaccurate setting is due to swapping between two or four latent features. Since these
shifts do not produce any increased performance in any of the other metrics these
re-rankings do not provide any additional insight, but are rather result of additional
training with the reconstruction objective.
The following chapter includes experimental evaluation of EviTraN in a realistic

scenarion of detecting severe weather in an unsupervised manner.
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Chapter 6

Evaluation of Evidence Transfer in
a Realistic Scenario

This chapter includes an investigation of the effectiveness of EviTraN in a realistic
scenario of detecting severe weather, in an unsupervised manner. Furthermore, it
includes an introduction to the use case and the main concepts of the task at hand
(anomaly detection), the experimental setting, as well as, results of the experimental
evaluation of severe weather detection.

6.1 Use Case: Unsupervised Severe Weather De-
tection

Weather is a complex concept that involves a plethora of variables, for multiple
time instances and pressure levels. Accurately predicting weather variables is not
straightforward due to being volatile. Its volatility results from the fact that is af-
fected by a plethora of factors, such as geographic location, past conditions or season.
However, one fact that is generally accepted is: that the weather conditions rarely
shift rapidly or spontaneously. In other words, one expects the weather conditions
to gradually change, or not to change at all for long periods, e.g., prolonged dry sea-
sons. Therefore, creating the expectation of “normal” weather conditions. The criteria
based on which one may characterise the weather as “normal”, is heavily based on
factors such as geographic location.
Despite, the observation of outliers in weather is a rare occasion. For instance,

during summer in Mediterranean locations where the observation of high temper-
atures is common, the probability of low temperatures is small. Despite each day
yielding different fluctuations in temperature, expecting a stable behaviour of high
temperatures is a safe assumption. Yet, this indicates that the distinction between
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6.1. Use Case: Unsupervised Severe Weather Detection

normal and abnormal weather may be sensitive to subtle data features. In the same
example, a drop of 3 or 4 degrees could be considered as abnormal for this time frame
or season.
Finding abnormal, rare or anomalous occurrences is a task known as anomaly

detection. The existence of these occurrences is ubiquitous in all data collections.
Unless one explicitly wants to detect anomalies for a specific application, the presence
of abnormal data is often an unwanted property in a data collection. For that reason,
it is common to remove outliers during pre-processing of a data collection that aims
to machine learning training. On the other hand, one may argue that since such data
are ubiquitous in all data collection then their presence is normal and thus should
be included in the training set. Despite, a frequent assumption regarding abnormal
data is that they can be found in the outliers of the data distribution.
Yet, that is not always the case. First, in order to find anomalies1, one must first

define what an anomaly is. According to Chandola et al. [172], anomalies are data
instances that diverge from an expected behaviour or notion of the data collection.
Also, according to Chandola et al. [172] anomalies can be classified into three types:
(i) “point anomalies”: data instances that plainly differ from the majority of instances
within a data collection, (ii) “contextual anomalies”: data instances being anomalous
only under particular circumstances, (iii) “collective anomalies”: data instances being
abnormal as a collection, but individually being considered as normal.
Point anomalies cultivate the assumption of anomalies existing in the outliers

of the data distribution. Contextual anomalies can be defined from “contextual at-
tributes” or “behavioural attributes”. Contextual attributes are the observable cir-
cumstances that make the instance anomalous, for example a phone call with 1 hour
duration, is normal during business hours but abnormal during the night. Therefore,
the time frame that a phone call happens, is a contextual attribute. On the other
hand, behavioural attributes are usually unobservable within the data collection.
Severe weather is a contextual anomaly with behavioural attributes. For certain

locations such as tropical areas, the occurrence of tornados is very common. Even if a
tornado occurs during a not so frequent time period, it does not automatically make it
severe, since it may be a mild tornado. To decide whether a weather instance is severe
or not, one should study its effects after its occurrence. Severe weather instances are
the ones that lead to natural disasters and outcomes, such as damages, fatalities, or
erosion. However, such properties are not observable from the data features of the
weather instances. Thus, from an unsupervised perspective, accurately predicting
such instances is not trivial.
In this realistic scenario, EviTraN transforms unobserved behavioural attributes,
1The term anomalies will now be used as an umbrella term that includes occurrences considered

as abnormal, rare, anomalous, outliers, etc.
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i.e., the impact of severe weather, into observable latent features. Incremental ma-
nipulation of EviTraN through joint representation learning with primary data and
auxiliary task outcomes, should lead to manipulated latent representations that will
highlight the necessary attributes capable of resulting in accurate distinguish between
normal and severe weather.

6.2 Experimental Setting
This section includes the experimental setting of severe weather detection with

EviTraN. It includes details regarding the weather dataset, extraction of evidence
source from text, dealing with imbalanced classes and metrics utilised in the evalua-
tion.

6.2.1 Weather Dataset
The experimental evaluation in the use case of severe weather detection, involves

ERA-Interim re-analysis data [173], as the primary dataset. ERA-Interim re-analysis
data consist of four dimensional weather variables. Examples of such variables are
precipitation, temperature, etc. Re-analysis data include observation data along with
prior information from a forecast model, in sequential data assimilation scheme. This
assimilation scheme, aims to produce better representation of the atmospheric con-
ditions. Re-analysis data have a grid structure. The two last dimensions represent
longitude and latitude values, while the first two represent time and pressure level.
Pressure levels represent a variety of atmospheric levels, with the minimum pressure
level being measurements at sea level (1 ℎ𝑃𝑎 to 1000 ℎ𝑃𝑎). ERA-interim covers a
time period of approximately 40 years, with a spatial resolution of less than 1° and
temporal resolution of 6 hours with global coverage.
The primary data cover a time period from 1st of January 1979 to 31st of May

20182, with spatial resolution of approximately 0.7°× 0.7°. However, raw ERA-Interim
data have a global coverage. Studying weather events in such scale may lead to in-
creased complexity, as multiple weather events can occur concurrently in multiple
locations. To this end, a Cartesian domain that covers the European region is consid-
ered. WPS, which is the pre-processor of the well-known Weather Research Forecast
(WRF) model [174], is utilised for the reduction. The new spatial resolution consists
of 64 × 64 cells of 75 × 75 kilometres in the west-east and south-north axes.

2The data were retrieved from the Research Data Archive of National Center for Atmospheric
Research in Boulder, Colorado. The archive can be found here: https://rda.ucar.edu/datasets/
ds627.0/
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Figure 6.1: Data instance from primary dataset — ERA Interim. It depicts an instance of
GHT variable @ 700 hPa.

During the experimental evaluation, the weather variable of choice is the geopo-
tential height (GHT) which is a gravity-adjusted height (as shown in Figure 6.1).
GHT is well-known for its predictive properties [175, 176, 177] and its use for ex-
traction of weather patterns repurposed for emergency response [10]. Geopotential
heights, depict sequences of patterns that can be utilised in the prediction of weather
events, such as circular patterns for cyclones or tornados. Since GHT includes use-
ful patterns, in order to further highlight such features, embeddings from a VGG-16
network are repurposed instead of raw data features, similar to the pre-processing
method of CIFAR-10 in Section 5.1.2. To fit the input expectations of VGG-16, three
pressure level of GHT (500, 700 and 900 ℎ𝑃𝑎), are introduced in a similar scheme
to RGB channels of an image. The final dimensions of the data are 4096 features
(64×64, reduced from 3×64×64).

6.2.2 Wikipedia Evidence
Guiding the learning process with the use of EviTraN, requires the existence of

external auxiliary outcomes. As mentioned in the previous Section, severe weather
events are characterised as such based on the repercussions that they cause. As a re-
sult, searching for severe after-effects on Wikipedia can lead to extraction of auxiliary
task outcomes. For instance, extraction of heavy rain occurrences can be performed
from Wikipedia pages that mention the event of floods in Europe3.
The experimental evaluation involves severe weather events based on four Wikipedia

pages: (i) list of costly or deadly hailstorms, (ii) list of floods in Europe, (iii) list of
3https://en.wikipedia.org/wiki/List_of_floods_in_Europe, more regarding the sources of

the Wikipedia evidence can be found in the code repositories.
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European tornadoes and tornado outbreaks and (iv) list of European windstorms.
These Wikipedia pages, allow for effortless correlation between text evidence and
primary weather dataset. The date of occurrence mentioned within the pages, lends
itself as a common reference between both datasets. The exact timeframe of each se-
vere weather event is not reported in detail. For that reason, during the experiments
it is expected that: the minimum period of an event is a single day or four 6-hour
samples on the weather dataset.
The experimental evaluation yields the severe weather dataset4. The data col-

lection includes information regarding severe weather incidents from 1st of January
1979 till May of 2018 (similar to the primary dataset). The collection includes: the
name of the severe weather (event name), the type of severe weather (flood, tornado,
etc.), countries affected by the severe weather, specific locations (if available), coor-
dinates of the affected countries and description of the severe weather (if available).
The coordinates are extracted by performing queries in the GeoNames API5, the rest
of information are found within the Wikipedia pages.
The above data collection, is utilised as a collection of individual binary tasks

during the experiments. The experiments involve the use and creation of an auxiliary
task outcome that indicates if a 6-hour increment of the primary dataset is normal
or severe. This process yields four different binary groupings of the primary dataset
(one for each severe weather type). Hail occurrences are not included due to their
low total amount (5 incidents after 1979).

6.2.3 Class Balancing and Metrics
The task of anomaly detection suffers from a very specific and characteristic prob-

lem, which is unbalanced classes, since anomalies are rare. For any data collection
it is safe to assume that most of the data samples within that collection would be
not anomalous. This balance, or the lack thereof, leads to generalisation issues as
the anomalous class is not sufficiently represented within the collection. In the severe
weather use case, the primary dataset consists of approximately 60,000 data samples
(57,584). The total amount of severe weather cases is 3,316, which is less than 6% of
the total samples. Therefore, restoring balance in the classes is critical.
The investigation of the best balancing strategy, involves three distinct strategies

based on re-sampling. The first one revolves around over-sampling the minority class.
The second strategy is the inverse procedure of the first one, i.e., under-sampling the
majority class. While the third strategy, is a combination of both methods. The
SMOTE method [178] is selected as the over-sample method of choice. Synthetic

4The dataset can be found at: https://github.com/davidath/severe-weather-dataset
5https://www.geonames.org
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Algorithm 4: Synthetic Minority Over-sampling TEchnique (SMOTE)
[178].
Data: 𝑋, 𝑦
Result: Augmented 𝑋 with increased data instances that belong in the

anomalous class.
1 Extract 𝐾 Nearest Neighbours of 𝑋 with 𝑦 = 𝑦𝑎𝑛𝑜𝑚 (anomalous class) ;
2 forall 𝑥 ∈ 𝑋 with 𝑦 = 𝑦𝑎𝑛𝑜𝑚 do
3 Randomly select 𝑘 ∈ 𝐾 ;
4 c = random number ∈ [0, 1] ;
5 Diff = 𝑥 - 𝑘 ;
6 𝑥𝑛𝑒𝑤 = 𝑥 + diff * c ;
7 Add 𝑥𝑛𝑒𝑤 to 𝑋 collection ;
8 end

Minority Over-sampling TEchnique (SMOTE) is an over-sampling method based on
k-nearest neighbours.
The process of SMOTE is described as follows: for each data instance in the

minority class compute its k-nearest neighbours. Then for each data instance, select
a random neighbour. Compute the difference between the feature vector of the data
instance and the feature vector of the selected neighbour. Select a random number
from the range [0, 1] and multiply the difference. Add the result of this process into the
real minority instance to create a synthetic minority instance. Algorithm 4 presents
the above process in pseudo language.
Random under-sampling, i.e., removing a random amount of instances that belong

in the majority class, is selected as the under-sampling method of choice. To under-
sample the majority class more sophisticated methods than random under-sampling
exist. Edited Nearest Neighbours (EEN) [179] is an under-sampling method that is
based on k-nearest neighbours. EEN removes data from the majority class based
on a simple criterion. For each data instance extract the k-nearest neighbours of
the majority class. Remove data instances which deviate from the majority of k-
nearest neighbours. A logistic distribution lends itself as the criterion of deviation.
The method performs better with larger instances of k.
A combination of under-sampling the majority class, as well as, over-sampling

the minority class can be achieved by the SMOTEENN method [180]. SMOTEENN
combines both methods which are based on k-nearest neighbours.
The realistic use case scenario of severe weather detection, involves only two

classes: Normal and Anomalous. In anomaly detection task, the accurate prediction
of the anomalous class is more important the prediction of the normal class. Un-
supervised clustering accuracy and normalised mutual information are more fit for
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Table 6.1: Example of true positive/negative and false positive/negative data instances in
a binary task.

Ground Truth Prediction
Positive Negative

Positive True Positive (TP) False Negative (FN)
Negative False Positive (FP) True Negative (TN)

multi-class evaluation. Precision, Recall and F1-score metrics, lend themselves to the
experimental evaluation of EviTraN in the severe weather scenario. To draw conclu-
sions regarding the investigation of the best balancing strategy, the micro average of
the aforementioned metrics is studied. While, during the performance evaluation of
EviTraN, the aforementioned metrics are studied only for the anomalous class.
Independent of the task, precision and recall [181] should be studied in relation to

each other. Individually extracting conclusions by only taking into account a single
metric, e.g., precision, can lead to misleading outcomes. Equation 6.1 and 6.2 depict
precision and recall metrics respectively, according to Ting [181]. Table 6.1 depicts the
relation between true positive/negative and false positive/negative data instances, for
a binary task. Positive and negative can be relabelled as normal and anomalous.
Precision is the ratio between true positive data instances and the sum of true

positive and false positive samples. On the other hand, recall is the ratio between
true positive and the sum of true positive and false negative samples. A more clear
example from the domain of information retrieval [181], is that precision is equal
to: the total number of documents retrieved that are relevant divided by the total
number of documents retrieved. While recall is equal to: total number of documents
retrieved that are relevant divided by total number of relevant documents in the
database.
Consider the example of predicting spam and ham e-mails. In order to increase the

precision of the prediction algorithm, one should label all e-mails as spam. However,
by doing so, one ignores useful e-mails by categorising them as spam. Therefore,
these two metrics should be studied in collaboration. Yet, studying and reporting
two metrics at the same time, may be confusing. To this end, F-score or F-measure
or F1-score can be studied instead, since it is the harmonic mean between precision
and recall metrics. Equation 6.3 depicts F1-score.

𝑃 = 𝑇 𝑃
𝑇 𝑃 + 𝐹𝑃 (6.1)

𝑅 = 𝑇 𝑃
𝑇 𝑃 + 𝐹𝑁 (6.2)
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𝐹1 = 2 𝑃 ∗ 𝑅
𝑃 + 𝑅 (6.3)

6.3 Evaluation of Evidence Transfer in SevereWeather
Detection

This section includes the results of the experimental evaluation of detecting indi-
vidual severe weather events, with the use of EviTraN. It additionally includes the
results of the investigation for the best class balancing strategy.

6.3.1 Evaluation Overview
During evaluation of EviTraN in the severe weather detection use case, both the

training strategy and evaluation process is similar to previous evaluation process in
Chapter 5. First, an initial set of representations is extracted after initialisation train-
ing step from an autoencoder model, which is trained in an unsupervised manner.
Since this scenario also involves a pre-processing method that produces embeddings
from VGG-16, the stacked denoising autoencoder variation is selected. The initial
representations are repurposed as input into an unsupervised detection algorithm, in
order to infer the performance of the initialisation step. Similar to previous experi-
ments, this is considered as a baseline solution to the task at hand.
Then, the autoencoder is trained according to the evidence transfer step of EviT-

raN. After, introduction of evidence, a new set of augmented latent representations is
extracted. The new set of augmented representations is repurposed into an unsuper-
vised detection algorithm, to infer the performance of evidence transfer step. During
investigation of the most suitable class balancing strategy for this use case, a one class
SVM method lends itself as the unsupervised detection method. During experimen-
tal setting of using EviTraN to improve the performance of severe weather detection,
𝑘-means clustering that predicts two clusters (k=2) is used instead. An exception
to that is the evaluation pair: windstorm-tornado (more regarding the evaluation
pairs are following), where agglomerative clustering is deployed, as it yields better
performance for that particular case.

6.3.2 Investigation of Suitable Class Balancing Technique
The experimental investigation for the choice of best class balancing method in-

volves all auxiliary task outcomes, i.e., all types of severe weather. To this end, the
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Table 6.2: Results of the experimental investigation, regarding the choice of class balancing
method.

(a) Baseline

Metric SMOTE Undersample SMOTEENN
Precision 0.51 0.53 0.51
Recall 0.51 0.53 0.51
F1-Score 0.51 0.53 0.51

(b) Evidence Transfer

Metric SMOTE Undersample SMOTEENN
Precision 0.59 (+0.08) 0.82 (+0.29) 0.55 (+0.04)
Recall 0.59 (+0.08) 0.82 (+0.29) 0.55 (+0.04)
F1-Score 0.59 (+0.08) 0.82 (+0.29) 0.55 (+0.04)

investigation includes the creation of an evidence sources that consists of four classes:
normal, windstorm, tornado and flood. This evidence can be seen as the ground truth
of the severe weather detection task. Having access to such auxiliary outcome is un-
realistic. Despite, drawing conclusions regarding a suitable class balancing technique
should be free from implicit uncertainty introduced from nitpicking auxiliary out-
comes. Implicit uncertainty can be generated from the process of selecting which task
outcome to involve. To test the generalisation of the balancing strategy, the evidence
sources is split into 70%-30% train-test sample. During initialisation step, the full
data is used for training. While during evidence transfer step, only the training part
of the evidence set is involved (70% split).
Table 6.2, reports the quantitative evaluation of involving the above evidence

source in EviTraN. In this table, the micro average of all involved metrics for the full
dataset is reported. Micro average is more suitable for one-vs-all types of classification
(normal vs all types of severe weather events), since it involves the summing of indi-
vidual constituent parts (true positives, etc.). Equation 6.4 depicts the computation
of micro and macro average for the precision metric (assuming two classes).

𝑃𝑚𝑖𝑐𝑟𝑜 = (𝑇 𝑃1 + 𝑇 𝑃2)
(𝑇 𝑃1 + 𝑇 𝑃2 + 𝐹𝑃1 + 𝐹𝑃2)

𝑃𝑚𝑎𝑐𝑟𝑜 = 𝑃1 + 𝑃2
2

(6.4)

The three class balancing methods mentioned in Section 6.2.3 are preceding both
initialisation and evidence transfer steps of EviTraN. Random under-sampling of
the majority class, performs better than the rest of balancing techniques, for all
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three metrics. Under-sampling is able to reduce the implicit bias found in the data
collection, due to the majority class instances overpopulating the input and latent
space. Through reduction of redundancy introduced from multiple data instances in
the majority class, EviTraN is able to effectively augment and manipulate the initial
latent representations into more distinct groups. This is evident both by quantitative
results in Table 6.2 and qualitative evaluation in Figure 6.2. On the other hand, during
combination and over-sampling, the bias and redundancy invoked by majority class
aggressively conditions the latent space into similar structures.
In addition, Figure 6.2 visualises the fact that severe weather detection is a con-

textual anomaly with behavioural attributes, which are not observable. Observation
of the initial latent space for all class balancing strategies suggests that from an unsu-
pervised perspective, severe weather detection can not be distinguished from normal
instances. Since, severe weather instances and normal classes are closely tied in the
latent space, i.e., their feature vector distance is low, accurately predicting severe
weather instances is not feasible.

6.3.3 Individual Severe Weather Detection
The experimental evaluation of EviTraN during the use case of severe weather

detection involves rotation between using pairs of severe weather types as ground
truth and evidence source. For instance, tornado data instances and an equal por-
tion of non-severe data instances (after under-sampling) are selected as the primary
data. In other words, the primary task is an anomaly detection task of predicting tor-
nado weather instances from non-severe weather instances. At the same time, data
instances from another severe weather type, e.g., windstorm are selected as evidence
source.
Table 6.3, contains the results of the above evaluation process. It includes the

precision, recall and F1-score measured for the anomalous class. During evaluation
with all possible pairs of ground-truth and evidence, EviTraN effectively increases
the detection of individual severe weather types. F1-score, that considers both recall
and precision, increases after the introduction of evidence. Qualitative evaluation in
Figure 6.3, suggests that EviTraN is able to effectively manipulate the latent space
into distinct groups, that are linearly separable.
The evaluation individual severe weather detection does not involve more than

one evidence sources. Due to severe under-sampling, the amount of involved data
instances is low. By definition, instances from the anomalous class are low. Non-
severe instances are undersampled two times in order to match the amount of each
respective evidence source. The combination of low samples, as well as contradicting
evidence sources makes the evaluation of additional sources less promising.

136



Chapter 6. Evaluation of Evidence Transfer in a Realistic Scenario

(a) SMOTE: Initialisation (b) SMOTE: EviTraN

(c) SMOTEENN: Initialisation (d) SMOTEENN: EviTraN

(e) Undersample: Initialisation (f) Undersample: EviTraN

Figure 6.2: Qualitative evaluation of class balancing strategies. Left column depicts the
state of latent space during initialisation, while the right column depicts the state of latent
space after introduction of evidence with EviTraN.
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(a) Initial latent space of pair: Flood-Windstorm

(b) Latent space of Flood after introduction of Windstorm evidence

Figure 6.3: State of latent space for evaluation pair with ground truth: Flood and evidence
source: Windstorm. Top figure depicts the state of latent space during initialisation step.
The bottom figure depicts the state of the latent space after introducing Windstorm evidence
source. Introduction of Windstorm evidence allows for better distinction between normal and
anomalous classes.
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Table 6.3: Quantitative results of individual severe weather detection task with the use of
EviTraN.

(a) Ground Truth: Flood

Baseline Evidence Transfer
Metric Windstorm Tornado Windstorm Tornado
Precision 0.49 0.61 0.68 (+0.19) 0.72 (+0.11)
Recall 0.50 0.57 0.92 (+0.42) 0.69 (+0.12)
F1-Score 0.49 0.59 0.78 (+0.29) 0.71 (+0.12)

(b) Ground Truth: Tornado

Baseline Evidence Transfer
Metric Windstorm Flood Windstorm Flood
Precision 0.26 0.24 0.32 (+0.06) 0.28 (+0.04)
Recall 0.62 1.00 0.98 (+0.36) 0.69 (-0.31)
F1-Score 0.36 0.38 0.49 (+0.13) 0.40 (+0.02)

(c) Ground Truth: Windstorm

Baseline Evidence Transfer
Metric Flood Tornado Flood Tornado
Precision 0.49 0.61 0.84 (+0.23) 0.79 (+0.13)
Recall 0.50 0.57 0.74 (+0.03) 1.00 (+0.13)
F1-Score 0.49 0.75 0.79 (+0.13) 0.88 (+0.13)

Normal

Flood
Windstorm

One-vs-All Flood Task Windstorm Task
Normal

Flood

Normal

Windstorm

Figure 6.4: Visualisation of conflicting perspectives between pairs of ground-truth and ev-
idence source tasks. One-vs-All depicts the groupings of the dataset during initial data col-
lection.

The contradiction comes from the fact that only two classes are available for each
auxiliary task. For instance, let tornado outbreaks be the current ground truth and
windstorm be the evidence source. Then, the dataset consists of normal, tornado
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and windstorm data instances. From the perspective of the ground truth, normal
and windstorm instances are considered as non-severe, since only instances depicting
tornadoes are severe. On the other hand, from the perspective of windstorm: normal
and tornadoes are considered as normal. Which is the inverse case. Therefore, for
a portion data instances, ground truth and evidence source contradict each other.
Introducing additional evidence sources would further increase the contradictions
between data instances. The problem of conflicting evidence sources is depicted in
Figure 6.4.
The next chapter includes the conclusions of the thesis, as well as, discussion of

future directions.
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Conclusions and Future Work

This thesis includes the investigation of the following hypothesis: “external data
evidence improves deep representation learning”. As the above hypothesis indicates
the application of deep representation learning for data/information fusion, inspect-
ing the relevant literature suggested certain limitations in previous approaches that
mainly affected the inference of the suggested network. Examples of these limita-
tions are requiring all data sources to be available during inference or dealing with
incomplete or non-complementary datasets. To this end, it includes the proposal of
evidence transfer (EviTraN), which a versatile, robust and effective deep representa-
tion learning fusion scheme.
Being versatile, robust and effective is an outcome of setting a set of evaluation

criteria for deep representation learning fusion. The three proposed criteria, namely:
effectiveness, robustness and modularity, cause EviTraN to be effective when pre-
sented with external categorical variables (external evidence), that represents mean-
ingful relations to the primary dataset or task outcomes. At the same time, EviTraN
is robust against disturbance introduced through low quality external evidence, such
as random values, non-corresponding evidence or ill-intended evidence. The mod-
ularity criterion, enables EviTraN to overcome the above limitations, by being an
iterative step that enriches initially learned weights with knowledge from auxiliary
tasks.
From a data/information fusion perspective, EviTraN is a robust and effective

fusion scheme that deals with the combination of diverse data sources, by involving
task outcomes extracted on auxiliary datasets. The extraction of auxiliary task out-
comes – external evidence, is an effortless process. Due to allowing arbitrary levels of
supervision, such as weak or strong labels, it lends itself as a versatile fusion scheme
that learns from heterogeneous data sources. Evidence transfer performs automatic
correlation/association/alignment of data sources by introducing their task outcomes
in the unsupervised representation learning process. The production of intermediate
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features augmented from auxiliary data sources, allows multi-view perspective of the
task at hand. This multi-view perspective could either be an outcome based on the
primary dataset or other auxiliary datasets.
Due to its neural network architecture, EviTraN allows for hybrid learning of pri-

mary dataset’s representations. Thus, being able to involve unlabelled and labelled
instances whenever these are available. Due to the knowledge transfer accomplished
from the hybrid modelling, it deals with limitations found in related work regarding
the availability of data sources during inference. At the same time, its modular learn-
ing allows for iterative tinkering of representations in order to improve the quality
of representations, according to new-found evidence. In addition, the learning frame-
work allows the introduction of multiple task outcomes in a robust and effective
manner. Due to only involving task outcomes, which are typically characterised by a
low amount of features, EviTraN is scalable with multiple data sources.
The experimental evaluation of EviTraN, includes four datasets with artificially

generated auxiliary evidence sources. It also includes learning in various settings, such
as hybrid, inaccurate, uniformly incomplete and class biased incomplete learning.
Furthermore, it includes three types of evidence sources: meaningful/real, random
values/white noise and non-corresponding/random-index in three different quanti-
ties: use of single, double and triple evidence sources. Despite the artificial generated
auxiliary evidence sources, the evalution also includes a realistic use case scenario.
This scenario suggests the learning of improved representations for the task of un-
supervised severe weather detection, through introduction of auxiliary binary task
outcomes extracted from Wikipedia pages.
Through comparison with the information bottleneck method, as well as, the use of

metrics from the domain of feature selection, a theoretical interpretation of the effects
of EviTraN, on the latent space of the autoencoder is provided. The empirical analysis
indicates that EviTraN increases the relevance between latent features and ground
truth labels. The use of autoencoders enables the compression of raw observations
into a smaller dimensional space. These two properties are very similar to information
bottleneck. The comparison of EviTraN to the Information Bottleneck method not
only provides insight regarding its inner workings, but also can be utilised for the
purposes of adjusting the method for other domains or applications.

7.1 Future Work
Deep representation learning for fusion, requires multiple data sources for the

purpose of the evaluation. It is most often motivated by a realistic application and
therefore, finding data sources to include during evaluation is effortless. However, the
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generation of new methods and adjustment of hyperparameters or training objectives,
requires ready to use datasets, as in being normalised, adequate amount of samples,
labels, etc., for rapid experimentation. Despite the evaluation of EviTraN involving
such artificial data sources extracted from well-received datasets within the deep
learning community, a complete testbed that would allow the timely evaluation of new
methods is an interesting future work. Such testbed, would standardise the evaluation
of deep representation learning for fusion independent of application, which would
allow comparison by including similar data sources and evaluation metrics.
The generative and discriminative hybrid learning framework has proven to be

robust and effective and therefore an appropriate choice for EviTraN. An interesting
future direction would be the investigation of other hybrid learning methods, such as
adversarial learning introduced in hybrid models that involve GANs. Discriminating
between appropriate latent features, that will increase the relevance of the latent
space, can be an intuitive way of transferring evidence. At the same time, adversarial
training can be used before EviTraN, in order to conclude whether an evidence source
is relevant or not.

Human in the loop. Human in the loop is also known as interactive machine
learning. Which is a machine learning setting that involves querying a domain expert,
in order to produce labels for a portion of the data samples. However, since EviTraN is
able to utilise both weak and strong labels, it does not restrict such future direction to
domain experts. Anyone, even users could provide feedback or indication of relation
between data samples. Most likely, users not familiar with the intricate properties
of the dataset would provide weak supervision, while domain experts would provide
strong supervision. This interactive machine learning framework, would allow for
explainable and direct hybrid learning of latent representations, as supervision would
be extracted from decisions made by domain experts, policy makers and others. In
any case, building appropriate tools capable of allowing humans to interact with the
unsupervised learning process of EviTraN, would be an interesting future direction.

xAI. EviTraN is able to automatically associate/correlate/align data sources within
a lower-dimensional latent and compact space. However, in the current version of Evi-
TraN one is not able to explicit understand what is the relation between the data
sources. One could only derive whether the task outcomes are relevant for the pri-
mary task or not. Incorporating explicit measures towards extracting the explicit
relation between data sources, such as explicit training objectives, information the-
oretic metrics or use of semantic data, could aid the explicit discovery of relations
across data sources. Being able to discover such relations, could potentially raise the
effectiveness of the method. At the same time, being able to understand the encoding
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of such relations within the neural network is an important stepping stone towards
explainable neural networks or explainable artificial intelligence.

Negative Transfer Learning. To the extent which is capable, multiple versions
of malicious, non-complementary, irrelevant or ill-intended evidence sources, are in-
cluded in the experimental evaluation of EviTraN. In the domain of transfer learning,
including such domains or tasks is called negative transfer learning. However, these
relations are broad and are often application-specific. To this end, clear definition of
these relations, categorisation and cataloguing is essential. Through the above actions,
negative transfer learning would be standardised, and it would allow for appropriate
selection of data sources during evaluation. This selection, would reduce current tech-
niques of extracting data sources for evaluation in negative transfer learning, which
require manual work or are an outcome of trial and error procedures.
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Appendix A
This Appendix includes plots regarding the initial state and state of the latent

space, after the introduction of evidence with EviTraN for MNIST and Reuters-
100k. Unlike CIFAR-10 and 20newsgroups, MNIST and Reuters-100k do not have an
initial latent space that resembles of a Gaussian distribution. Due to already having
an initial structure, for example due to the use of Convolutional Autoencoder, the
initial state of MNIST already highlights certain groups. Therefore, from a qualitative
perspective the changes performed by EviTraN are very subtle, as shown in Figures
7.1 and 7.2

(a) Initial latent space of MNIST

(b) Latent space of MNIST after M4

Figure 7.1: State of latent space before (top figure) and after the introduction of external
evidence sources (bottom figure), for MNIST.
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(a) Initial latent space of Reuters-100k

(b) Latent space of Reuters-100k after M4

Figure 7.2: State of latent space before (top figure) and after the introduction of external
evidence sources (bottom figure), for Reuters-100k.
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